WO2024031162A1 - Composições antimicrobianas esporocidas e seus usos - Google Patents

Composições antimicrobianas esporocidas e seus usos Download PDF

Info

Publication number
WO2024031162A1
WO2024031162A1 PCT/BR2023/050253 BR2023050253W WO2024031162A1 WO 2024031162 A1 WO2024031162 A1 WO 2024031162A1 BR 2023050253 W BR2023050253 W BR 2023050253W WO 2024031162 A1 WO2024031162 A1 WO 2024031162A1
Authority
WO
WIPO (PCT)
Prior art keywords
sporocidal
compositions
acid
betacyclodextrin
antimicrobial
Prior art date
Application number
PCT/BR2023/050253
Other languages
English (en)
French (fr)
Inventor
Renata Moises Iwamizu Silva
Original Assignee
DA SILVA, Tasso Pereira
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DA SILVA, Tasso Pereira filed Critical DA SILVA, Tasso Pereira
Publication of WO2024031162A1 publication Critical patent/WO2024031162A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/724Cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/02Local antiseptics

Definitions

  • the present invention consists of compositions containing cyclic oligosaccharides with the function of germinating encapsulating agent for sporulating microorganisms, and can also act as an interaction agent with components of the microorganism's spore-forming structures.
  • the composition assumes a supramolecular structure favorable to “guest-host” interaction, associated with different antiseptic active ingredients in an inclusion compound, and may be in formulations that contain other excipients, for different applications.
  • the present invention is related to compositions with sporocidal and sterilizing antimicrobial activity, with cyclodextrins as the main agents in association with an antiseptic active, in combined action methods that present high effectiveness against microorganisms with spores, using a low concentration of active ingredients. encapsulated antiseptics and low toxicity.
  • Microbial resistance has become one of the most important issues in global public health, especially as a result of the incorrect use of antibiotics. As a result, there is a significant increase in cases of infection by antibiotic-resistant microorganisms without effective treatment alternatives. Considering the susceptibility pyramid of microorganisms, it is more difficult to eliminate those with a spore formation process for self-defense when in hostile environments. [003] Currently, the specific identification of bacteria that cause death due to infections is complex and expensive, which makes it impossible to obtain accurate data on the real economic and social impact caused by infections caused by resistant microorganisms, such as, for example, the spore of the bacterium Clostridium difficile (C. difficile), especially in underdeveloped countries.
  • C. difficile spores can be transported through the air and on surfaces such as fabrics, equipment and hospital waste, hands and bodies.
  • the transmission process of C. difficile normally occurs via the fecal-oral route. Symptoms can be very severe, especially for the elderly. It is estimated that 13% of patients stay in hospitals for more than 2 weeks and that 50% of this number stays for more than 4 weeks.
  • the spores that persist in the environment will germinate in the colon, where, already in their vegetative state, where their toxins are released and will be responsible for the clinical aspects of CDAD.
  • Bacterial spores are structures produced by bacteria when they are in environmental conditions that are unfavorable to their survival. Endospores have high resistance as a result of their various structural layers, with each layer associated with resistance to adverse physical and chemical conditions such as extreme heat, pH variation, UV radiation and chemicals that have antimicrobial active ingredients. An endospore can remain dormant for years, having the ability to convert back into a vegetative cell when it is in a favorable environment.
  • the spores of C. difficile present, in their structure, from the most internal to the most external: the core, with a low concentration of water, when compared to its vegetative state, with dehydration being related to its resistance to toxic chemicals .
  • the high levels of dipocholinic acid (DPA), especially chelated with calcium (Ca-DPA) and the concentration of small soluble proteins (PPASs) protect the nucleus of the microorganism even after the lipase and protease of the spore's protective layers, binding to the DNA and allowing it to resist ultraviolet radiation, drying and high temperature.
  • DPA dipocholinic acid
  • Ca-DPA chelated with calcium
  • PPASs small soluble proteins
  • the nucleus is surrounded by an internal membrane, rich in peptidoglycans, composed of specific proteins, relevant in the release of DPA from the spore nucleus during the germination process.
  • Surrounding the membrane of the nucleus there is the cortex, the germinal cell wall, a structure of modified peptidoglycans, forming a protective mesh that will only be degraded in the presence of specific enzymes;
  • the outer membrane, which surrounds the cortex is composed of glycolyzed proteins similar to collagen, which is anchored in the basal layer; as an external resistant structure there is the crust, a layer of protein coating, rich in cysteine and tyrosine, which self-assembles into a hexagonal mesh, is glycolyzed and, in some cases, is surrounded by an exospore, the outermost layer of its structure, similar in structure to the crust and which may be related to the faster germination of C. difficile.
  • Spore self-germination is the process of eliminating rigid structures and returning them to the vegetative state, that is, reestablishing their activities. The process can occur in 5 minutes and occurs when nutritional and environmental conditions become favorable for its development, especially in the presence of specific germinating agents.
  • Bacillus subtilis and Clostridium perfingens are sensitive to nucleosides, sugars, amino acids and ions to trigger the self-germination process, and that sporulating C. difficile germinates in response to a combination of salts specific bile bile, such as taurocholate, glycocholate, deoxycholate and l-glycine.
  • the germinating agent be it an amino acid, purine derivatives (taurocholate, glycocholate, cholate and deoxycholate), sugar or bile salts bind to the connectors, a series of phenomena occur in a chain, including the release of monovalent cations ( K + , H + and Na + ) and dipicolinic acid concentrate chelated to the Ca 2+ cation (Ca-DPA).
  • Ca-DPA monovalent cations
  • This process being irreversible, possibly occurs through closed channels located in the internal membrane of the spore, composed in part of SpoVA, SpoVAC and SpoVAD proteins.
  • Cyclodextrins are widely used, as a result of their high commercial availability, relative low cost, low toxicity, known use in the formulation of inclusion compounds and because they are used as excipients in drug delivery vehicles and anti-aggregating agents. New formulations with cyclodextrin continue to be reported, generating new interests for science, mainly in the areas of medicine and biomedicine. For many years, cyclodextrins had their role limited to excipients. However, more recent research has shown that these oligosaccharides can no longer be considered just excipients in formulations.
  • Cyclodextrins have characteristics that enable them to act, in the patent in question, in up to three ways combined in the present invention, ceasing to play a supporting role and assuming the role of protagonist (active agent), as follows: we will call them agent here encapsulating its already known function of forming inclusion compounds with a multitude of organic and inorganic compounds with antimicrobial action. Especially in this invention, this capacity will allow the antimicrobial active to be temporarily masked, as a result of the weak bonds formed and disguising the presence of the antiseptic active in solution.
  • cyclodextrin in the present invention is due to the fact that its structure is made up of D-glucose units, which confers, like sugar, its role as a germinating agent, by creating a favorable environment for the microorganism and causing, in the spore, , its self-germination, which generates the self-elimination of the structures that protect it from the external environment.
  • cyclodextrin can also function as an interaction agent, when it interacts and collaborates to destabilize the spore structure, for example.
  • hydrophobic characteristic of the internal region of cyclodextrins which presents itself as a region of possible interaction with the lipoprotein-based structure of the bacterial wall, such as, for example, dipicolinic acid chelated with calcium (Ca-DPA) and the lipoproteins present in the cortex and exospore.
  • Ca-DPA dipicolinic acid chelated with calcium
  • the compounds formed as a result of the interaction of the cyclodextrin cavity with different molecules were designated as “host-host” interaction and, later, as “inclusion compounds”.
  • the host maintains non-covalent forces in its cavity, which are weak and viable so that the entire system is reversible.
  • the formation of inclusion compounds is the result of balanced association/dissociation between the free guest and the free guest in the compound. This is governed by the formation constant (Kf). When solubilizing these compounds, an equilibrium is established between the dissociated and associated structures, and this is expressed by the stability constant (K a ).
  • K a stability constant
  • the association of the CD and guest molecules, and the dissociation of the formed CD/guest complex is governed by a thermodynamic equilibrium. The preferential position of the guest in the cavity depends on steric interactions and functional groups relating to the structure of each guest and the environment where the inclusion compound is located.
  • Patent WO2011070456 from 2009, entitled “Sporocidal composition for Clostridium difficile spores”, describes a formulation that contains a sporicidal composition, which includes about 0.1 -20% weight/weight of a germinating agent, about 0 .01 -75% w/w of an antimicrobial agent, in terms of total dry or wet weight, and which is mixed with water to generate a solution with pH between 3.5-9.5.
  • Patent US2016174566 from 2014, entitled “Methods, formulation, and kits for bacterial degradation” refers to methodologies, formulations and kits suitable for decontaminating environments containing bacterial spores through the degradation of the spores.
  • the formulations necessarily contain papain , at least one germinant and, optionally, one or more additional enzymes.
  • Methods for killing bacterial spores include contacting a bacterial spore with the formulation for a duration sufficient to kill the spore, or rendering the spore susceptible by a reagent.
  • the document reports the importance of a germinating agent, however, it conditions effective action against spores on the presence of papain and does not use cyclodextrins as a germinating encapsulating agent.
  • the present invention lists natural or synthetic active ingredients with known antimicrobial activity, however, without effectiveness in relation to sporulating microorganisms, which are inserted into an inclusion compound, as a germinating encapsulating agent, being cyclodextrin, especially betacyclodextrin. , and its structural variations, used as an encapsulating agent.
  • the results presented show that after the formation of the inclusion compound, the active ingredient, which previously did not have sporocidal efficacy, now has activity in eliminating spores.
  • the properties of cyclodextrins are fully utilized in the present invention.
  • cyclodextrin does not assume the role of a simple excipient but rather as a germinating agent, functioning as a Trojan horse mechanism, in which the spore does not detect the presence of the antiseptic active ingredient, since the functional groups of the antiseptic active ingredient are not exposed, maintaining a favorable environment for their germination.
  • the present invention preferably used betacyclodextrin, due to its more rigid structure, with its complete secondary belt, as a result of the greater number of hydrogen bonds formed between the C-2-OH group of a glucopyranoside unit with the C-3-OH group of the adjacent glucopyranose unit (4C1 conformation), which explains its significantly lower solubility and its cavity relatively more hydrophobic, when compared to the alpha and gamma alternatives.
  • the present invention presents the use of cyclodextrin and its variations as germinating agents for sporulating microorganisms, in addition to acting as carriers or encapsulants of various agents with antimicrobial activity. More than that, it presents products with very low toxicity, which replace existing alternatives, in addition to enabling the use of products with sporocidal activity more broadly, directly impacting the increase in hospital safety in the face of nosocomial contamination.
  • cyclodextrins cyclic oligosaccharides formed by D-glucose units, more specifically glycopyranoses
  • cyclodextrins cyclic oligosaccharides formed by D-glucose units, more specifically glycopyranoses
  • the technology presents sporocidal antimicrobial compositions that comprise a germinating encapsulating agent, which is a cyclic oligosaccharide, at least one antiseptic active in an inclusion compound with cyclic oligosaccharide and excipients.
  • a germinating encapsulating agent which is a cyclic oligosaccharide
  • at least one antiseptic active in an inclusion compound with cyclic oligosaccharide and excipients are examples of sporocidal antimicrobial compositions that comprise a germinating encapsulating agent, which is a cyclic oligosaccharide, at least one antiseptic active in an inclusion compound with cyclic oligosaccharide and excipients.
  • the cyclic oligosaccharide is cyclodextrin or its structural variations, or a mixture of these.
  • the structural variations of cyclodextrin can be comprised of the compounds betacyclodextrin, hydroxypropyl-betacyclodextrin, sodium betadexsulfobutylether, hydroxymethyl-betacyclodextrin, methyl-betacyclodextrin, 2,6-dimethyl-betacyclodextrin and hydroxyethyl-betacyclodextrin.
  • the antiseptic active ingredient can be a cationic, anionic, zwitterionic or neutral antimicrobial active ingredient, provided that such active ingredients can form inclusion compounds with cyclic oligosaccharides and have their functional groups with antimicrobial activity provisionally protected in the inclusion compound formed.
  • compositions of the present invention include 1,1'-hexamethylene-b/s-(5-(-chlorophenyl) biguanide), commonly known as chlorhexidine and its salts, such as hydrochloric, acetic and gluconic acids.
  • chlorhexidine 1,1'-hexamethylene-b/s-(5-(-chlorophenyl) biguanide
  • salts such as hydrochloric, acetic and gluconic acids.
  • the digluconate salt is highly soluble in water, about 70% in water, and the diacetate salt has a solubility of about 1.8% in water.
  • Other useful biguanide compounds include Cosmoci® CQ® and Vantocil® IB which include poly(hexamethylene biguanide hydrochloride).
  • Other useful cationic antimicrobial agents include b/s-biguanide alkanes.
  • the usable water-soluble salts of the above are chlorides, bromides, sulfates, alkylsulfonates such as methylsulfonate and ethylsulfonate, phenylsulfonates such as p-methylphenylsulfonates, nitrates, acetates, gluconates and the like.
  • Examples of suitable bis-biguanide compounds are chlorhexidine; 1,6-bis-(2-ethylhexylbiguanidohexane) dihydrochloride; 1,6-di-(N1,N1'-phenyldiguanido-N5,N5')-hexane tetrahydrochloride; 1,6-di-(N1,N1'-phenyl-N1,N1'-methyldiguanido-/V5,N5')-hexane dihydrochloride; 1,6-di-(N1,N1'-o-chlorophenyldiguanido-N5,N5')-hexane dihydrochloride; 1,6-di-(N1,N1'-2,6-dichlorophenyldiguanido-/V5,/V5')-hexane dihydrochloride; 1,6-di-[N 1 , N1 '-Beta-(
  • Antimicrobials and their respective inclusion compounds with cyclodextrins in molar proportions 1:2 to 1:10 or higher molar proportions preferred from this group are potassium tetrahydrochloride.
  • Tetracyclines are compounds belonging to the group of natural or semi-synthetic antibiotics that can be used together with cyclodextrins to obtain inclusion compounds.
  • quaternary compounds can also be used as antimicrobial and antiviral actives for compositions with cyclodextrins and their inclusion compounds in molar ratios 1:3 to 1:10 or greater molar ratios of quaternary ammonium compounds: cyclodextrins of present invention.
  • Non-limiting examples of useful quaternary compounds include: benzalkonium chlorides and/or substituted benzalkonium chlorides, such as commercially available Barquat®, Maquat®, Variquat® and Hyamine®; short-chain quaternary di-(C6-C14)-alkyl-di- (C1-4 alkyl and/or hydroxyalkyl), such as Bardac® products; N -(3-chloroallyl)hexamine chlorides, such as Dowicide® and Dowicil ®; benzethonium chloride such as Hyamine® 1622 from Rohm &Haas; methylbenzethonium chloride represented by Hyamine® 10x; cetylpyridinium chloride, such as Cepacol chloride.
  • benzalkonium chlorides and/or substituted benzalkonium chlorides such as commercially available Barquat®, Maquat®, Variquat® and Hyamine®
  • the quaternary dialkyl compounds are di-(C8-C12) dialkyldimethylammonium chloride, such as didecyldimethylammonium chloride (Bardac 22) and dioctyl dimethylammonium chloride (Bardac 2050).
  • saturated chain organic acids with numbers of carbon atoms between 2 and 8 such as ethanoic acid, propanoic acid, butanoic acid, 2-methyl-propanoic acid, pentanoic acid, 2-methylbutanoic acid , 3-methylbutanoic acid, dimethyl-propanoic acid, hexanoic acid, 2-methyl-pentanoic acid, 3-methyl-pentanoic acid, 4-methyl-pentanoic acid, 2,2-dimethyl-butanoic acid, 3,3-dimethyl acid -butanoic acid, 2- ethylbutanoic acid, 2,3-dimethylbutanoic acid, heptanoic acid, 2- methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 3,4-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 2,3-d
  • the antiseptic active can also be selected from the groups comprising the classes of organic acids with a saturated or unsaturated chain, with a main chain with a number of carbon atoms between 2 and 8, or a combination of these acids in a concentration of 0.01 to 30% m/v, preferably at a concentration of 0.05 to 20% m/v.
  • the antiseptic active ingredient is also selected from the groups comprising the classes of essential oils provided with natural bases such as thyme, eucalyptus, oregano, basil, mint, peppermint, rosemary, wild rosemary, pequi, geranium, citronella, palmarosa, pitanga , cypress, melaleuca, ginger, lemongrass, lemongrass, or propolis or a combination of these in concentrations between 0.05 and 20% m/m.
  • natural bases such as thyme, eucalyptus, oregano, basil, mint, peppermint, rosemary, wild rosemary, pequi, geranium, citronella, palmarosa, pitanga , cypress, melaleuca, ginger, lemongrass, lemongrass, or propolis or a combination of these in concentrations between 0.05 and 20% m/m.
  • Essential oils extracted by hydrodistillation, maceration, solvent extraction, enfleurage, supercritical gases or microwaves, and their hydrodistilled derivatives may or may not be added to the final product formulation as active ingredients or formulation excipients.
  • Excipients can be humectants, emulsifiers, preservatives, thickeners, sweeteners, stabilizers, dyes, antioxidants, surfactants and/or flavorings in concentrations between 0.02 and 70.0% m/m.
  • the use of the sporocidal composition can be in aqueous solution, powder, paste, wet gel, xerogels, aerosols, spray or foam, tablets, capsules, inserted into cellulosic, polymeric materials or fabrics. They can be used in the production of surface disinfection sanitizers, for the production of formulations for topical use or for environmental treatment, surface hygiene, air hygiene or in air purification equipment.
  • the surface may be selected from the group comprising epithelial tissues, skin, fingers, nails, hair, mammary glands, perineal region, genitalia, rectum or mucous membranes.
  • the inclusion compound formed can also be nanoencapsulated or encapsulated in other drug delivery structures, in order to direct the active ingredient to the desired site of action.
  • the solution presented in the present invention can also be used in the veterinary field, such as in medicines for veterinary or agricultural use, for application in animal feed or agricultural pesticides.
  • Example 1 Processes for preparing compositions of chlorhexidine digluconate iclodextrin inclusion compounds in a molar ratio of 1:1 to 1:10
  • the process of obtaining the inclusion compound comprises the steps following the procedure reported in the literature (Cortez et al., The chlorhexidine:/3-Cyclodextrin Inclusion compounds: preparation, characterization and microbial evaluation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 40, 2001, 97 - 302).
  • Solutions with the inclusion compounds were obtained from the addition of chlorhexidine salt to an aqueous solution containing encapsulant from the cyclodextrin family (betacyclodextrin, hydroxypropyl-betacyclodextrin, sodium betadexsulfobutylether, hydroxymethyl-betacyclodextrin, methyl-betacyclodextrin, 2, 6-dimethyl-betacyclodextrin and hydroxyethyl- betacyclodextrin) at 60 °C, maintaining the molar proportions at 1:1 to 1:10.
  • cyclodextrin family betacyclodextrin, hydroxypropyl-betacyclodextrin, sodium betadexsulfobutylether, hydroxymethyl-betacyclodextrin, methyl-betacyclodextrin, 2, 6-dimethyl-betacyclodextrin and hydroxyethyl
  • Example 2 The process of preparing the antimicrobial system with inclusion compound and organic acid
  • Example 3 Microbiological activity study of the inclusion compound chlorhexidine digluconate: betacyclodextrin against sporulating Clostridium difficile bacteria using the Kill Time Test methodology for 5 and 60 minutes
  • Tests were carried out to evaluate the spectrum of action of the inclusion compounds in the molar proportions of chlorhexidine digluconate; betacyclodextrin of 1:2 (L3), 1:3 (A9), by monitoring the population of microorganisms within a period of 5 and 60 minutes, at a fixed temperature of 35 °C.
  • the direct plating method was performed on TSA for bacteria and HC for yeast (DE QUA 1502- ASTM E2315-16, Standard Guide for Assessment of Antimicrobial Activity Using a Time-Kill Procedure, ASTM International, West Conshohocken, PA, 2016).
  • the initial microorganism count was 10 6 to 10 8 CFU/g or mL.
  • Table 1 presents the data on the activity against the sporulating C. difficile bacteria (ATCC 9689) presenting the data in log of the colony forming unit per gram after exposure (CFU/g or mL) and the reduction factor from the initial baseline count (%RF).
  • Example 4 Study of the microbiological activity of the inclusion compound chlorhexidine digluconate: betacyclodextrin in the molar ratio 1:3 (A9) against the bacteria Clostridium spp. sporulated using the Kill Time Test methodology for 5, 30 and 60 minutes [061]
  • Activity studies of inclusion compound A9 were carried out using the AOAC - 966.04:2016 methodology. The activities of the compound were determined at times of 5, 30 and 60 minutes, at concentrations of 1%, 2% and 2.5% (m/v).
  • the sanitizer used as a control has the formulation: inclusion compound A9 (2.5%), alkyl dimethyl benzyl ammonium chloride and didecyl dimethyl ammonium chloride (0.5%), ethoxylated fatty alcohol C9-C11 (2 %), methylisothiazolinone and methylchloroisothiazolinone (0.0015%), 2-bromo-nitro propane-1, 3-diol (0.0082%), aqua (qsp).
  • Example 5 Evaluation of the sporocidal activity of the inclusion compound doxycycline: betacyclodextrin in the molar ratio 1:4 against spotulated Clostridium difficile bacteria.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A presente invenção consiste em composições contendo oligossacarídeos cíclicos com função de agente encapsulante germinante de microrganismos esporulados, podendo também atuar como agente de interação com componentes das estruturas formadoras de esporos do microrganismo. A composição assume estrutura supramolecular favorável à interação "hóspede-hospedeiro", associado a diferentes ativos antissépticos em composto de inclusão, podendo estar em formulações que contenham outros excipientes, para diferentes aplicações. Mais especificamente, a presente invenção está relacionada a composições com atividade antimicrobiana esporocida e esterilizante, tendo como agentes principais as ciclodextrinas em associação com ativo antisséptico, em métodos de ação combinados que apresentam alta efetividade frente a microorganismos dotados de esporos, utilizando baixa concentração de ativos antissépticos encapsulados e baixa toxicidade.

Description

COMPOSIÇÕES ANTIMICROBIANAS ESPOROCIDAS E SEUS USOS
[001] A presente invenção consiste em composições contendo oligossacarídeos cíclicos com função de agente encapsulante germinante de microrganismos esporulados, podendo também atuar como agente de interação com componentes das estruturas formadoras de esporos do microrganismo. A composição assume estrutura supramolecular favorável à interação “hóspede- hospedeiro”, associado a diferentes ativos antissépticos em composto de inclusão, podendo estar em formulações que contenham outros excipientes, para diferentes aplicações. Mais especificamente, a presente invenção está relacionada a composições com atividade antimicrobiana esporocida e esterilizante, tendo como agentes principais as ciclodextrinas em associação com ativo antisséptico, em métodos de ação combinados que apresentam alta efetividade frente a microorganismos dotados de esporos, utilizando baixa concentração de ativos antissépticos encapsulados e baixa toxicidade.
[002] A resistência microbiana tornou-se um dos assuntos mais importantes da saúde pública mundial, especialmente como decorrência do uso incorreto de antibióticos. Por consequência, há um aumento significativo de casos de infecção por microrganismos resistentes a antibióticos sem alternativas eficazes de tratamento. Considerando a pirâmide de suscetibilidade de microrganismos, encontra-se maior dificuldade de eliminação daqueles dotados de processo de formação de esporos para autodefesa, quando em ambientes hostis. [003] Atualmente, a identificação específica de bactérias causadoras de morte por infecções é complexa e de alto custo, o que inviabiliza a obtenção de dados precisos sobre o real impacto econômico-social, causado por infecções de microrganismos resistentes, como, por exemplo, o esporo da bactéria Clostridium difficile (C. difficile), especialmente em países subdesenvolvidos.
[004] A maioria dos casos de infecções por microrganismos resistentes e esporulados são detectados em ambientes hospitalares, mas tais microorganismos podem estar em todos os lugares. Alternativas tradicionais de desinfecção, eficazes contra microrganismos formadores de esporos, são significativamente tóxicas e/ou corrosivos, além de possuírem alto custo, gerando impacto financeiro importante para os hospitais e sistemas de saúde Como consequência, a maioria dos hospitais e clínicas optam por utilizar ativos antissépticos de espectro reduzido na desinfecção diária de ambientes e, somente em caso de confirmação prévia de presença de bactérias específicas resistentes, passam a utilizar ativos com atividade de maior espectro, nas áreas de contaminação identificadas. Esse proceder implica em aumento direto no risco de contaminação cruzada e cria ambiente favorável para o surgimento de microrganismos progressivamente ainda mais resistentes e o consequente aumento de doenças mais graves.
[005] Na literatura, dentre os microrganismos que são capazes de formar esporos, são encontrados estudos mais detalhados relativos às bactérias dos gêneros Clostridium e Bacillus. Uma vez que a C. difficile é intrinsecamente resistente a muitos antibióticos e causa, frequentemente, infecções recorrentes em 20% dos casos, este agente patogênico representa uma particular ameaça para sistemas de saúde em todo o mundo.
[006] Os esporos da C. difficile podem ser transportados pelo ar e em superfícies como tecidos, equipamentos e resíduos hospitalares, mãos e corpos. O processo de transmissão da C. difficile dá-se, normalmente, pela rota fecal-oral. Os sintomas podem ser muito severos, especialmente para os idosos. Estima-se que 13 % dos pacientes permanecem mais de 2 semanas internadas nos hospitais e que 50 % deste número permanecem mais de 4 semanas. Os esporos que persistem no ambiente irão germinar no colon, onde, já no seu estado vegetativo, onde suas toxinas que passam a ser liberadas serão as responsáveis pelos aspectos clínicos da CDAD.
[007] Os esporos bacterianos (endósporos) são estruturas produzidas pelas bactérias quando encontram-se em condições ambientais desfavoráveis a sua sobrevivência. Os endósporos possuem alta resistência por consequência de suas várias camadas estruturais, sendo cada camada associada a resistência frente a condições físicas e químicas adversas como calor extremo, variação de pH, radiação UV e a produtos químicos que apresentam ativos antimicrobianos. Um endósporo pode permanecer dormente durante anos, tendo a capacidade de converter-se novamente em uma célula vegetativa quando se encontra em ambiente favorável.
[008] Os esporos da C. difficile apresentam, em sua estrutura, do mais interno para o mais externo: o cerne, com baixa concentração de água, quando comparado ao seu estado vegetativo, estando a desidratação relacionada à sua resistência a produtos químicos tóxicos. Ainda no cerne, os níveis altos de ácido dipocolínico (DPA), especialmente quelatados com cálcio (Ca-DPA) e a concentração das pequenas proteínas solúveis (PPASs), protegem o núcleo do microrganismo mesmo após a lipase e protease das camadas de proteção do esporo, ligando-se ao DNA e permitindo que o mesmo resista a radiação ultravioleta, dessecamento e alta temperatura. O núcleo é rodeado por uma membrana interna, rica em peptideoglicanos, composto por proteínas específicas, relevantes na liberação do DPA do núcleo do esporo no processo de germinação. Envolvendo a membrana do núcleo, tem-se o córtex, a parede celular germinal, uma estrutura de peptideoglicanos modificados, formando uma malha de proteção que somente será degradada na presenta de enzimas específicas; a membrana externa, que envolve o córtex, é composta por proteínas glicolisadas semelhante ao colágeno, que está ancorada na camada basal; como estrutura resistente externa tem-se a crosta, uma camada de proteína de revestimento, rica em cisteína e tirosina, que se auto monta em uma malha hexagonal, é glicolisada e, em alguns casos, está envolta por um exoesporo, a camada mais externa de sua estrutura, de estrutura similar à crosta e que pode estar relacionada à germinação mais rápida da C. dificile.
[009] A autogerminação do esporo é o processo de eliminação das estruturas rígidas e o seu retorno ao estado vegetativo, ou seja, do restablecimento de suas atividades. O processo pode ocorrer em 5 minutos e dá-se quando as condições de nutrição e ambiental se tornam favoráveis ao seu desenvolvimento, em especial na presença de agentes germinadores específicos. No estado da arte, é relatado que as bactérias Bacillus subtilis e Clostridium perfingens esporuladas são sensíveis a nucleosídeos, açúcares, aminoácidos e íons para acionamento do processo de auto-germinação, e que a C. difficile esporulada germina em resposta a uma combinação de sais biliares específicos como, por exemplo, taurocolato, glicocolato, deoxicolato e l-glicina.
[010] Após o agente germinante, seja ele um aminoácido, derivados purínicos (taurocolato, glicocholato, colato e deoxicolato), açúcar ou sais biliares ligarem-se aos conectores, uma série de fenômenos ocorrem em cadeia, incluindo a liberação de cátions monovalentes (K+, H+ e Na+) e do concentrado de ácido dipicolínico quelatado ao cátion Ca2+ (Ca-DPA). A liberação do Ca-DPA, sendo este processo irreversível, possivelmente ocorre através dos canais fechados localizados na membrana interna do esporo, composta em parte por proteínas SpoVA, SpoVAC e SpoVAD.
[01 1] Compostos como quaternário de amónia, ácidos orgânicos ou álcoois apresentam atividade antimicrobiana eficaz, porém, não apresentam atividade relevante como esporocidas. Em especial, o álcool etílico, isopropílico e n-propanol são conhecidos como inibidores de esporulação e germinação de esporos, mas esta ação é temporária.
[012] Estudos recentes mostram o desenvolvimento de técnicas de preparo para aplicação de óleos essenciais , na substituição de produtos tóxicos ao meio ambiente, frente a esporos de fungos. Contudo, a aplicação destes em esporos bacterianos ainda não foram efetivos.
[013] As ciclodextrinas (CDs) são amplamente utilizadas, por consequência da alta disponibilidade comercial, relativo baixo custo, baixa toxicidade, conhecida utilização na formulação de composto de inclusão e por serem utilizadas como excipientes em veículos de drug delivery e agentes antiagregantes. Novas formulações com ciclodextrina continuam a ser reportadas, gerando novos interesses para a ciência, principalmente nas áreas da medicina e biomedicina. Por muitos anos, as ciclodextrinas tiveram seu papel limitado a excipientes. Contudo, pesquisas mais recentes mostraram que estes oligossacarídeos não podem mais ser considerados apenas excipientes nas formulações. Por serendipidade, descobriu-se que a utilização da hydroxipropil-betaciclodextrina auxilia na redução da progressão da doença de Niemann Pick tipo C. Baseado em estudos que apresentaram resultados similares, as ciclodextrinas recentemente receberam a classificação de princípio ativo pela Food and Drug Administration e European Drug Agency (FDA).
[014] As ciclodextrinas apresentam características que as possibilitam agir, na patente em questão, de até três formas combinadas na presente invenção, deixando de exercer papel de coadjuvante e assumindo o papel de protagonista (agente ativo), como segue: nomearemos aqui de agente encapsulante sua função já conhecida de formar compostos de inclusão com uma infinidade de compostos orgânicos e inorgânicos com ação antimicrobiana. Especialmente nesta invenção, tal capacidade possibilitará que o ativo antimicrobiano fique mascarado temporariamente, por consequência das ligações fracas formadas e disfarçando a presença do ativo antisséptico em solução. O segundo papel da ciclodextrina na presente invenção é consequente do fato de sua estrutura ser constituída por unidades de D-glicose, que confere, como açúcar, o seu papel de agente germinante, ao criar um ambiente favorável para o microorganismo e provocar, no esporo, sua autogerminação, que gera a autoeliminação das estruturas que o protege do meio externo. E, por último, a ciclodextrina também pode apresentar a função de agente de interação, quandointerage e colabora para desestabilização da estrutura do esporo, por consequência da característica hidrofóbica da região interna das ciclodextrinas, que se apresenta como uma região de possível interação com a estrutura de base lipoprotéica da parede bacteriana, como, por exemplo, o ácido dipicolínico quelatado com cálcio (Ca- DPA) e as lipoproteínas presentes no cortex e exoesporo.
[015] Os compostos formados como resultado da interação da cavidade da ciclodextrina com diferentes moléculas foram designados como interação “hospede-hospedeiro” e, posteriormente, por “compostos de inclusão”. O hospedeiro mantém na sua cavidade forças não covalentes, que são fracas e viáveis para que todo o sistema seja reversível. A formação dos compostos de inclusão é resultado da associação/dissociação equilibrada entre o convidado livre e o hóspede livre no composto. Isso é governado pela constante de formação (Kf). Ao solubilizar estes compostos, é estabelecido um equilíbrio entre as estruturas dissociadas e associadas, e isto, é expresso pela constante de estabilidade (Ka). A associação das moléculas CD e convidado, e a dissociação do complexo CD/convidado formado é governada por um equilíbrio termodinâmico. A posição preferencial do hóspede na cavidade depende das interações estéricas e grupos funcionais referente à estrutura de cada hóspede e do meio onde o composto de inclusão se encontra.
[016] A patente WO2011070456, de 2009, intitulado “Sporocidal composition for Clostridium difficile spores”, descreve uma formulação que contém uma composição esporicida, que inclui cerca de 0,1 -20% peso/peso de um agente germinante, cerca de 0,01 -75% p/p de um agente antimicrobiano, em termos de peso total seco ou úmido, e que é misturado com água para gerar uma solução com pH entre 3, 5-9, 5. A anterioridade relata que os agentes antimicrobianos, quando associados em formulação ao lauril sulfato, tiveram perda de atividade; enquanto que na presença de agentes germinativos, como taurocolato de sódio, glicolato de sódio, colato de sódio ou glicina, foi confirmado um alcance de atividade de 90%. Desta forma, apresenta a importância da utilização de um agente germinante, mas não menciona o agente encapsulante com o uso de composto de inclusão, como as ciclodextrinas.
[017] A patente US2016174566, de 2014, intitulado "Methods, formulation, and kits for bacterial degradation” refere-se a metodologias, formulações e kits adequados para descontaminar ambientes contendo esporos bacterianos por meio da degradação dos esporos. As formulações contêm necessariamente papaína, pelo menos um germinante e, opcionalmente, uma ou mais enzimas adicionais. Os métodos para eliminação dos esporos bacterianos incluem o contato de um esporo bacteriano com a formulação por uma duração suficiente para matar o esporo, ou tornar o esporo suscetívelpor um reagente . Assim, o documento relata a importância de um agente germinante, porém, condiciona a ação efetiva contra esporos à presença da papaina e não utiliza as ciclodextrinas como agente encapsulante germinante.
[018] No documento US201 30142856, de 201 1 , intitulado "Compositions comprising a germinant and antimicrobial agent”, é relatado que o processo de germinação para exterminar o microrganismo teve sucesso limitado no cenário clínico. O trabalho apresenta soluções antibacterianas com a presença de agentes germinantes, como o sal de taurocolato e, pelo menos, dois aminoácidos, para estimular a germinação do esporo e a utilização de um agente antibacteriano, especialmente o cloreto de benzilcônio e álcool benzílico, por não causarem efeito inibidor da germinação do microrganismo. Não há solução apresentada que utilize as ciclodextrinas ou qualquer outro composto que exerça a função de agente encapsulante de ativo e possa impedir que a alteração do ambiente favorável à germinação ocorra.
[019] Outro exemplo é o trabalho apresentado por Nerandzic & Donskey de 2010, onde são realizados experimentos com a indução da germinação como estratégia para facilitar a eliminação de esporos de C. difficile induzidos por UV-C em superfícies, reduzindo o tempo e a dose de radiação necessária para desinfecção de salas hospitalares. Além disso, relata-se o potencial de início da germinação para melhorar a facilidade de eliminação dos esporos de C. difficile pelo calor, álcool e exposição ao oxigênio do ambiente (Nerandzic M.M., Donskey C.J., Triggering Germination Represents a Novel Strategy to Enhance Killing of Clostridium difficile Spores, PLoS ONE, 5(8):e12285.).
[020] Apesar de já existirem estudos que apresentam a utilização de agente encapsulante ou agente germinante associados a antissépticos frente a bactérias formadoras de esporos, não é conhecido o uso de oligossacarídeos cíclicos exercendo esta função dupla, agente encapsulante germinante. A característica específica das ciclodextrinas, em especial, permite a proteção do ativo antisséptico ao mesmo tempo em que exerce a função de agente germinante. O propósito da utilização dessa classe de compostos como encapsulante germinante é de potencializar o ambiente favorável para a auto-germinação do esporo, ao proteger o ativo antisséptico para que ele não prejudique o ambiente favorável à germinação da solução e, possivelmente , ao ocorrer a interação da cavidade interna da ciclodextrina com a parede estrutural do microorganimos, acelerando a liberação do ativo, que agirá contra o microorganismo já exposto ao meio e suscetível à ação antisséptica.
[021] A maioria das soluções que são utilizadas no processo de higienização em ambientes de alto risco de contaminação biológica não se mostram eficazes frente aos esporos da C. difficile. Assim, a presente invenção apresenta um novo produto, de baixa toxicidade, não corrosivo, economicamente viável e altamente eficaz na prevenção da propagação de microrganismos patogênicos esporulados no ambiente.
[022] Dentre os biocidas mais utilizados em produtos antissépticos, desinfetantes e conservantes está a clorexidina e seus sais. A utilização destes se deve a sua eficácia em um amplo espectro de microrganismos. Contudo, não há relatos indicando ação satisfatória esporicida destes compostos. Similarmente à doxiciclina, um antibiótico da classe das tetraciclinas, mesmo apresentando atividade frente a diversos microrganismos, não apresenta atividade esporicida satisfatória relatada.
[023] A presente invenção elenca princípios ativos naturais ou sintéticos de conhecida atividade antimicrobiana porém, sem eficácia em relação a microrganismos esporulados, os quais são inseridos num composto de inclusão, na função de agente encapsulante germinante, sendo a ciclodextrina, em especial a betaciclodextrina, e suas variações estruturais, utilizada como agente encapsulante. Os resultados apresentados mostram que após a formação do composto de inclusão, o ativo, que antes não possuía eficácia esporocida, passa a ter atividade na eliminação de esporos. [024] As propriedades das ciclodextrinas são totalmente aproveitadas na presente invenção. A sua capacidade de estabelecer interações específicas de encapsulamentos moleculares, através da formação de ligações não covalentes, tais como interações hidrofóbicas, forças de van der Waals e pontes de hidrogênio, são fundamentais para o sucesso da presente invenção. Por se tratarem de ligações fracas nos compostos de inclusão, a estratégia de encapsulamento em um primeiro momento e a liberação do hóspede apenas em um segundo momento criam uma sequência de atividades fundamentais para a eficácia da presente invenção. O ativo permanece escondido até o momento em que a auto germinação do esporo ocorre e, então, o ativo é liberado e cumpre o seu papel, quando o microrganismo já está vulnerável.
[025] Considerando o ambiente favorável que a ciclodextrina é capaz de criar colabora positivamente para a auto germinação dos esporos, entendemos que, quanto maior a constante de formação entre o ativo antimicrobiano e a ciclodextrina, mais favorável o ambiente se apresentará, existindo menor risco de presença de ativos antimicrobianos expostos no meio no momento inicial.
[026] Pela estrutura toroidal das ciclodextrinas, com sua cavidade de caráter hidrofóbico e a superfície externa mais hidrofílica, ocorre uma interação favorável energeticamente entre o composto a ser encapsulado e a cavidade da ciclodextrina. Para a presente invenção, pode-se utilizar ativos cuja interação entre o ativo e a cavidade da ciclodextrina exista, porém sendo inferior àquela que ocorrerá naturalmente entre a parede lipoproteica do microorganismo e a cavidade. [027] Na presente invenção, o composto de inclusão combinando as ciclodextrinas com diferentes ativos antissépticos, conhecidamente não eficazes contra esporos em sua forma livre, demonstrou atividade esporocida, mesmo com quantidades significativamente baixas de ativo. Desta forma, a ciclodextrina não assume o papel de simples excipiente e sim como um agente germinador, funcionando como mecanismo cavalo de Troia, no qual o esporo não detecta a presença do ativo antisséptico, já que os grupos funcionais do ativo antisséptico não estão expostos, mantendo o ambiente favorável à sua germinação.
[028] A combinação de fatores associados aos parâmetros físico- químicos como a constante de formação, constante de estabilidade, entalpia, efeito estérico e polaridade, são fundamentais para a formulação de produtos eficazes contra os esporos. Assim, na presente invenção, as ciclodextrinas assumem inicialmente o papel fundamental no momento em que simplesmente protege o ativo antisséptico no interior de sua cavidade e, posteriormente, como um agente germinante, quando indica para o microrganismo a falsa segurança para a germinação e ainda pode agir como agente de interação com a parede do esporo.
[029] A presente invenção utilizou preferencialmente a betaciclodextrina, em função da sua estrutura mais rígida, com sua cinta secundária completa, por consequência do maior número de ligações de hidrogênio formadas entre o grupo C-2-OH de uma unidade de glucopiranosídeo com o grupo C-3-OH da unidade de glucopiranose adjacente (conformação 4C1 ), o que justifica sua solubilidade significativamente mais baixa e sua cavidade relativamente mais hidrofóbica, quando comparamos com as alternativas alfa e gama.
[030] Desta forma, a presente invenção apresenta a utilização da ciclodextrina e suas variações como agentes germinantes de microrganismos esporulados, além de agirem como carreadores ou encapsulante de diversos agentes com atividade antimicrobiana. Mais que isso, apresenta produtos de baixíssima toxicidade, que substituem as alternativas existentes, além de viabilizar a utilização de produtos com atividade esporocida de forma mais ampla, impactando diretamente no aumento da segurança dos hospitais frente a contaminações nosocomiais
DESCRIÇÃO DETALHADA DA TECNOLOGIA
[031] Em particular, na presente invenção, é apresentada a utilização das ciclodextrinas, oligossacarídeos cíclicos formados por unidades de D-glicose, mais especificamente de glicopiranoses como agentes germinadores da C. difficile, tornando-as um potencial ingrediente de formulações microbiológica, especialmente frente aos seus esporos.
[032] A tecnologia apresenta composições antimicrobianas esporocidas que compreendem um agente encapsulante germinante, sendo ele um oligossacarídeo cíclico, pelo menos um ativo antisséptico em composto de inclusão com oligossacarídeo cíclico e excipientes.
[033] Sendo o oligossacarídeo cíclico a ciclodextrina ou suas variações estruturais, ou a mistura destas. As variações estruturais da ciclodextrina podem ser compreendidas pelos compostos betaciclodextrina, hidroxipropil-betaciclodextrina, betadexsulfobutileter sódico, hidroximetil-betaciclodextrina, metil- betaciclodextrina, 2,6-dimetil-betaciclodextrina e hydroxietil- betaciclodextrina.
[034] O ativo antisséptico pode ser um ativo antimicrobiano catiônico, aniônicos, zwitteriônicos ou neutros, desde que tais ativos possam formar compostos de inclusão com oligossacarídeos cíclicos e tenham seus grupos funcionais com atividade antimicrobiana protegidos provisoriamente no composto de inclusão formado.
[035] Dentre a diversas alternativas já conhecidas na literatura, trazemos como exemplo as classes de b/s-biguanida, como a clorexidina ou seus sais de acetato, gluconato ou digluconato de clorexidina, as classes das tetraciclinas como a doxiciclina, eraciclina, monociclina, omadaciclina ou combinação destas. [036] Considerando o papel da ciclodextrina nesta patente, que ultrapassa o papel de agente encapsulante, pode haver adição extra de ciclodextrinas sem formação de composto de inclusão, com o objetivo de agir como agente germinante na formulação e/ou suas variações estruturais ou combinação destas, que podem se encontrar na faixa de 0,01 a 20 % m/m.
[037] Alguns dos compostos halogenados antimicrobianos especialmente estudados, de amplo espectro antimicrobiano e que são úteis nas composições da presente invenção incluem 1 ,1 '- hexametileno-b/s-(5-( -clorofenil)biguanida), vulgarmente conhecida como clorexidina e seus sais como, por exemplo, com ácidos clorídrico, acético e glucônico. O sal digluconato é altamente solúvel em água, cerca de 70 % em água, e o sal diacetato tem uma solubilidade de cerca de 1 ,8 % em água.
[038] Outros compostos úteis de biguanida incluem Cosmoci® CQ® e Vantocil® IB que incluem cloridrato de poli(hexametileno biguanida). Outros agentes antimicrobianos catiônicos úteis incluem os alcanos b/s-biguanida. Os sais solúveis em água utilizáveis dos anteriores são cloretos, brometos, sulfatos, alquilsulfonatos, tais como metilsulfonato e etilsulfonato, fenilsulfonatos, tais como p- metilfenilsulfonatos, nitratos, acetatos, gluconatos e semelhantes.
[039] Exemplos de compostos bis-biguanida adequados são a clorexidina; Dicloridrato de 1 ,6-bis-(2-etil-hexilbiguanido-hexano); Tetra-hidrocloreto de 1 , 6-di-(N1 ,N1 '-fenildiguanido-N 5,N 5')-hexano; Dicloridrato de 1 ,6-di-(N1 , N1 '-fenil- N1 , N1 '-metildiguanido-/V5, N 5')- hexano; Dicloridrato de 1 ,6-di-(N1 , N1 '-o-clorofenildiguanido-N 5, N 5')- hexano; Dicloridrato de 1 ,6-di-(N 1 , N1 '-2,6-diclorofenildiguanido- /V5,/V5')-hexano; Dicloridrato de 1 ,6-di-[N 1 , N1 '-Beta-( - metoxifenil)diguanido-N 5,N 5']-hexano; Dicloridrato de 1 ,6-di-(N1 ,N1 '- Alfa-metil-beta-fenildiguanido-N 5,N 5')-hexano; Dicloridrato de 1 ,6-di- (N1 ,N1 '-p-nitrofenildiguanido-N 5,N 5')-hexano; Ômega'-di-(N1 ,N1 '- fenildiguanido-N 5, N 5')-di-dicloridrato de éter n-propílico; Ômega'-di- (N 1 ,N -p-clorofenildiguanido-N 5,N 5 ')-tetra-hidrocloreto de éter di-n- propílico; Tetra-hidrocloreto de 1 ,6-di-(N 1 , N1 '-2,4- diclorofenildiguanido-N 5,N 5')-hexano; Dicloridrato de 1 ,6-di-(N1 ,N1 '- p-metilfenildiguanido-N 5,N 5')-hexano; Tetrahidrocloreto de 1 ,6-di- (N1 , N1 '-2,4,5-triclorofenildiguanido-N 5,N 5')-hexano; Dicloridrato de 1 ,6-di-[N 1 , N1 '-Alfa-(p-clorofenil)etildiguanido- N 5, N 5']-hexano;
Omega.: Mega-di-(N1 ,N1 '-p-clorofenildiguanido-N 5,N5) dicloridrato de m-xileno; Dicloridrato de 1 ,12-di-(N 1 ,N1 '-p-clorofenildiguanido- N5,N5')-dodecano; 1 , 10-di-(N 1 , N1 '-fenildiguanido-N 5, N 5')-tetra- hidrocloreto de decano; 1 , 12-di-(N 1 ,N1 '-fenildiguanido-N 5, N 5') dodecano tetra-hidrocloreto; Dicloridrato de 1 ,6-di-(N 1 , N1 '-o- clorofenildiguanido-N 5,N 5')-hexano; 1 ,6-di-(N1 , N1 '-p- clorofenildiguanido-/V5,/V5')-hexano tetra-hidrocloreto; Etileno bis(1 - tolil biguanida); Etileno bis(p-tolil biguanida); Etileno bis(3,5- dimetilfenil biguanida); Etileno bis(p-terc-amilfenil biguanida); Etileno bis(nonilfenil biguanida); Etileno bis(fenilbiguanida); Etileno bis(N - butilfenil biguanida); Etileno bis(2,5-dietoxifenil biguanida); Etileno bis(2,4-dimetilfenil biguanida); Etileno bis(o-difenilbiguanida); Etileno bis(amil-naftil biguanida mista); N -butil etileno bis(fenilbiguanida); Bis(o-tolil biguanida) de trimetileno; N -butil trimetileno bis(fenil biguanida) e os sais farmaceuticamente aceitáveis correspondentes de todos os itens acima, tais como os acetatos; gluconatos; cloridratos; bromidratos; citratos; bissulfitos; fluoretos; polialeatos; N- alquilalquilsarcosinatos; fosfitos; hipofosfitos; perfluorooctanoatos; silicatos; sorbatos; salicilatos; maleatos; tartaratos; fumaratos; etilenodiaminotetraacetatos; iminodiacetatos; cinamatos; tiocianatos; arginatos; pirromelitos; tetracarboxibutiratos; benzoatos; glutaratos; monofluorofosfatos; e perfluoropropionatos e suas misturas.
[040] Os antimicrobianos e os respectivos compostos de inclusão com ciclodextrinas nas proporções molares 1 :2 a 1 :10 ou proporções molares superiores preferidos deste grupo são o tetra-hidrocloreto de
1.6-di-(N1 ,N1 '-fenildiguanido-N 5,N 5')-hexano; Dicloridrato de 1,6-di-
(N1 ,N1 '-o-clorofenildiguanido-/V5,/\/5')-hexano; Dicloridrato de 1,6-di- (N 1 ,N1 '-2,6-diclorofenildiguanido-N 5, N 5 ')-hexano; Tetra- hidrocloreto de 1 , 6-di-(N1 ,N1 '-2,4-diclorofenildiguanido- N 5, N 5')- hexano; Dicloridrato de 1 ,6-di-[N 1 ,N1 Alfa.-(o- clorofenil)etildiguanido-N 5,N 5']-hexano; .Ômega.: Dicloridrato de Mega.'di-(N1 ,N1 '-p-clorofenildiguanido-/V5, N 5 ')-m-xileno;
Dicloridrato de 1 , 12-di-(N 1 ,N1 '-p-clorofenildiguanido-N 5, N 5') dodecano; Dicloridrato de 1 ,6-di-(N 1 ,N1 '-o-clorofenildiguanido- /V5,/V5')-hexano; 1 , 6-di-(N1 , N1 '-p-clorofenildiguanido-N 5,N 5')- hexano tetra-hidrocloreto e suas misturas; mais preferencialmente, dicloridrato de 1 ,6-di-(N1 , N1 '-o-clorofenildiguanido-/V5,/V5')-hexano; Dicloridrato de 1 , 6-di-(N1 ,N1 '-2,6-diclorofenildiguanido- N 5, N 5')- hexano; Tetra-hidrocloreto de 1 ,6-di-(N 1 ,N1 '-2,4- diclorofenildiguanido- N 5, N 5 ')-hexano; Dicloridrato de 1 ,6-di-[N 1 ,N1 Alfa-(p-clorofenil)etildiguanido-N 5,N 5']-hexano; .Ômega.: .Mega.'di- (N1 , N1 '-p-clorofenildiguanido- N 5, N 5 ')-m-xileno; Dicloridrato de 1 ,12- di-(N 1 ,N1 '-p-clorofenildiguanido-/V5,/V5')-dodecano; Dicloridrato de
1.6-di-(N1 , N1 '-o-clorofenildiguanido-/V5,/\/5')-hexano; 1 , 6-di-(N1 , N1 '- -clorofenildiguanido-/V5,/V5')-hexano tetra-hidrocloreto; e mistura desses. [041] As tetraciclinas são compostos pertencentes ao grupo de antibióticos naturais ou semissintéticos que podem ser utilizadas junto às ciclodextrinas na obtenção de compostos de inclusão.
[042] Uma grande variedade de compostos quaternários também pode ser usada como ativos antimicrobianos e antivirals para as composições com ciclodextrinas e seus compostos de inclusão nas proporções molares 1 :3 a 1 :10 ou proporções molares maiores de compostos quaternários de amônio:ciclodextrinas da presente invenção. Exemplos não limitantes de compostos quaternários úteis incluem: cloretos de benzalcônio e/ou cloretos de benzalcônio substituídos, como Barquat® disponível no mercado, Maquat®, Variquat® e Hyamine®; quaternário di-(C6-C14)-alquil-di- de cadeia curta (alquil C1 -4 e/ou hidroxialquil), como os produtos Bardac®; cloretos deN -(3-cloroalil)hexamina, como Dowicide® e Dowicil ®; cloreto de benzetônio tal como Hyamine® 1622 da Rohm & Haas; cloreto de metilbenzetônio representado por Hyamine® 10x; cloreto de cetilpiridínio, como cloreto de Cepacol. Preferencialmente, os compostos dialquil quaternários são o cloreto de di-(C8-C12) dialquil- dimetil-amônio, como cloreto de didecildimetilamônio (Bardac 22) e cloreto de dioctil dimetilamônio (Bardac 2050).
[043] Dentre os ativos, outra alternativa são os ácidos orgânicos de cadeia saturada com números de átomos de carbono entre 2 e 8 como ácido etanoico, ácido propanoico, ácido butanoico, ácido 2- metil-propanoico, ácido pentanoico, ácido 2-metilbutanoico, ácido 3- metilbutanoico, ácido dimetil-propanoico, ácido hexanoico, ácido 2- metil-pentanoico, ácido 3-metil-pentanoico, ácido 4-metil-pentanoico, ácido 2,2-dimetil-butanoico, ácido 3,3-dimetil-butanoico, ácido 2- etilbutanoico, ácido 2,3-dimetilbutanoico, ácido heptanoico, ácido 2- metilhexanoico, ácido 3-metilhexanoico, ácido 4-metilhexanoico, ácido 5-metilhexanoico, ácido 3,4-dimetilpentanoico, ácido 2,4- dimetilpentanoico, ácido 2,3-dimetilpentanoico, ácido 2,2- dimetilpentanoico, ácido 3,3-dimetilpentanoico, ácido 4,4- dimetilpentanoico, ácido 2,2,3-trimetilbutanoico, ácido 2,3,3- trimetilbutanoico, ácido 2-etilpentanoico, ácido 2-etil-3- metilbutanoico, ácido octanoico, ácido 2-metilheptanoico, ácido 3- metilheptanoico, ácido 4-metilheptanoico, ácido 5-metilheptanoico, ácido 6-metilheptanoico, ácido 2-etilhexanoico, ácido 3- etilhexanoico, ácido 4-etilhexanoico, ácido 2,2-dimetilhexanoico, ácido 3,3-dimetilhexanoico, ácido 4,4-dimetilhexanoico, ácido 5,5- dimetilhexanoico, ácido 2,3-dimetilhexanoico, ácido 2,4- dimetilhexanoico, ácido 2,5-dimetilhexanoico, ácido 3,4- dimetilhexanoico, ácido 3,5-dimetilhexanoico, ácido 4,5- dimetilhexanoico, ácido 2,3,4-trimetilpentanoico, ácido 3,4,4- trimetilpentanoico, ácido 2,3,3-trimetilpentanoico, ácido 2,4,4- trimetilpentanoico, ácido 2,2,4-trimetilpentanoico, ácido 2,2,3- trimetilpentanoico, ácido 2-propilpentanoico, ácido 3-etilhexanoico, ácido 2-isopropilpentanoico, ácido 3-etil-4-metilpentanoico, ácido 3- etil-2-metilpentanoico, ácido 3-etil-3-metilpentanoico, ácido 2, 2,3,3- tetrametilbutanoico, ácido 2-etil-2,3-dimetilbutanoico, ácido 2,2- dietilbutanoico ou mistura destes.
[044] O ativo antisséptico também podem ser selecionados dos grupos compreendendo as classes dos ácidos orgânicos de cadeia saturada ou insaturada, de cadeia principal com número de átomos de carbonos entre 2 e 8, ou combinação destes ácidos em uma concentração de 0,01 a 30 % m/v, preferencialmente e na concentração de 0,05 a 20 % m/v. [045] O ativo antisséptico é selecionado também dos grupos compreendendo as classes de óleos essenciais providos de bases naturais como tomilho, eucalipto, orégano, manjericão, hortelã, hortelã pimenta, alecrim, alecrim do campo, pequi, gerânio, citronela, palmarosa, pitanga, cipreste, melaleuca, gengibre, capim cidreira, capim limão, ou própolis ou a combinação destes em concentrações entre 0,05 e 20 % m/m.
[046] Óleos essenciais extraídos por hidrodestilação, maceração, extração por solvente, enfleuragem, gases supercríticos ou microondas, e seus derivados hidrodestilados podem ser ou não adicionados na formulação do produto final como ativos ou excipientes de formulação.
[047] Os excipientes podem ser umectantes, emulsionantes, conservantes, espessantes, edulcorantes, estabilizantes, corantes, antioxidantes, tensoativos e/ou aromatizantes em concentrações entre 0,02 e 70,0 % m/m.
[048] A utilização da composição esporocida podem ser em solução aquosa, pó, pasta, gel úmido, xerogéis, aerossóis, spray ou espuma, comprimidos, cápsulas, inserida em materiais celulósicos, poliméricos ou em tecidos. Podem ser utilizados na produção de sanitizantes de desinfecção de superfície, para produção de formulações para uso tópico ou para tratamento de ambiente, higienização de superfícies, higienização de ar ou em equipamentos de purificação de ar. A superfície pode ser selecionada do grupo compreendendo tecidos epiteliais, pele, dedos, unhas, cabelo, glândulas mamárias, região perineal, genitálias, reto ou mucosas.
[049] Além disso, possuem aplicação farmacológica, para tratamento gastrointestinal ou doenças causadas por infecção de microorganismos formadores de esporos, atuando como antibióticos, na forma farmacêutica cápsulas, comprimidos para uso oral (liberação gastroresistente), ou supositórios para uso retal. Para utilização como medicamento, o composto de inclusão formado pode ainda estar nanoencapsulado ou encapsulado em outras estruturas de drug delivery, de forma a direcionar o ativo para o local de ação desejado.
[050] A solução apresentada na presente invenção pode ainda ser utilizada na área veterinária, como em medicamentos para uso veterinário ou agro, para aplicação em ração animal ou defensivos agrícolas.
[051] A presente tecnologia pode ser mais bem compreendida através dos exemplos a seguir, não limitantes da mesma.
Exemplo 1. Processos de preparação das composições dos compostos de inclusão de digluconato de clorexidina iclodextrina na proporção molar de 1 :1 a 1 :10
[052] O processo de obtenção do composto de inclusão compreende as etapas seguindo o procedimento relatado na literatura (Cortez et a!., The chlorhexidine:/3-Cyclodextrin Inclusion compounds: preparation, characterization and microbial evaluation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 40, 2001 , 97 - 302).
[053] As soluções com os compostos de inclusão foram obtidas a partir da adição do sal de clorexidina em uma solução aquosa contendo encapsulante da família das ciclodextrina (betaciclodextrina, hidroxipropil-betaciclodextrina, betadexsulfobutileter sódico, hidroximetil-betaciclodextrina, metil- betaciclodextrina, 2,6-dimetil-betaciclodextrina e hydroxietil- betaciclodextrina) a 60 °C , mantendo-se as proporções molares em 1 :1 a 1 :10.
[054] Após um período de 30 minutos a 2 horas em agitação, foi obtido o composto de inclusão em pó utilizando a secagem por Spray Dryer.
Exemplo 2. O processo de preparo do sistema antimicrobiano com composto de inclusão e ácido orgânico
[055] O processo de preparo do sistema composto de inclusão e ácido orgânico foi realizado seguindo seguintes formulações:
[056] Em uma solução aquosa contendo o ácido orgânico como, por exemplo, o ácido acético, nas concentrações 0,01 % a 20,0 % foi adicionado ciclodextrina em pó, na proporção molar adequada em sua formulação, para obter uma solução na qual este composto encontre-se na concentração entre 0,01 % e 20,0 %.
[057] Após um período de 30 minutos a 2 horas em agitação, foi obtido o produto em pó utilizando a secagem por Spray Dryer ou liofilizador.
Exemplo 3. Estudo de atividade microbiológica do composto de inclusão digluconato de clorexidina:betaciclodextrina frente à bactéria Clostridium difficile esporulada utilizando a metodologia Kill Time Test para 5 e 60 minutos
[058] Foram realizados testes visando avaliar o espectro de ação dos compostos de inclusão nas proporções molares digluconato de clorexidina;betaciclodextrina de 1 :2 (L3), 1 :3 (A9), por monitoramento da população de microrganismos dentro do tempo de 5 e 60 minutos, a temperatura fixa de 35 °C. Foi realizado o método de plaqueamento direto sobre TSA para bactéria e HC para levedura (DE QUA 1502- ASTM E2315-16, Standard Guide for Assessment of Antimicrobial Activity Using a Time-Kill Procedure, ASTM International, West Conshohocken, PA, 2016).
[059] A contagem inicial de microrganismos foi de 106 a 108 UFC/g ou mL. Na Tabela 1 apresentam-se os dados da atividade frente à bactéria C. difficile esporulada (ATCC 9689) apresentando os dados em log da unidade formadora de colônia por grama após exposição (UFC/g ou mL) e o fator de redução a partir da contagem inicial da linha de base (% RF).
Tabela 1. Dados de redução de colônia de esporos por tempo da bactéria C. difficile esporulada
Figure imgf000024_0001
[060] A partir dos valores dos dados obtidos, pode-se afirmar que os compostos de inclusão testados apresentam atividade antimicrobiana para Clostridium difficile esporulada produzindo uma redução de 99,99 % após 5 e 60 minutos de contato com o microrganismo.
Exemplo 4. Estudo de atividade microbiológica do composto de inclusão digluconato de clorexidina:betaciclodextrina na proporção molar 1 :3 (A9) frente à bactéria Clostridium spp. esporulada utilizando a metodologia Kill Time Test para 5, 30 e 60 minutos [061] Os estudos de atividade do composto de inclusão A9 foi realizado utilizando a metodologia AOAC - 966.04:2016. Foram determinadas as atividades do composto nos tempos de 5, 30 e 60 minutos, nas concentrações de 1 %, 2%e 2,5 % (m/v).
[062] O saneante utilizado como controle apresenta a formulação: composto de inclusão A9 (2,5%), cloreto de alquil dimetil benzil amonio e cloreto de didecil dimetil amonio (0,5%), álcool graxo etoxilado C9-C11 (2%), methilisotiazolinona e methylcloroisotiazolinona (0,0015%), 2-bromo-nitro propano-1 , 3-diol (0,0082%), aqua (qsp).
[063] Os dados da atividade antimicrobiana dos matérias frente à bactéria C. difficile esporulada estão presentes na tabela 2.
Tabela 2. Dados de tempo desinfecção da bactéria C. difficile esporulada após contato com os compostos.
Figure imgf000025_0001
[064] Observa-se que a ação do composto de inclusão, seja na proporção molar de 1 :2 (L3) ou 1 :3 (A9), apresenta atividade satisfatória em diferentes tempos e concentrações. Para o A9, em concentração de 2,5%, já houve atividade no tempo a partir de 5 minutos. Para o L3, a concentração de 2% foi suficiente para atividade no menor tempo (5 minutos).
[065] É importante apontar que o saneante, que apresenta o composto de inclusão A9 na concentração de 2,5% sofreu perda de atividade esporocida quando formulado com outros ativos antimicrobianos, quando comparado com o mesmo tempo e concentração do ativo A9 em solução aquosa. O resultado deixa evidente que a presença de outros agentes antimicrobianos na formulação do produto final acarreta a redução de atividade esporocida frente ao esporo da bactéria testada (C. difficile esporulada), o que pode ser justificado pelo fato de que o ambiente favorável para germinação do esporo, proporcionado pela ciclodextrina, foi alterado.
Exemplo 5. Avaliação da atividade esporocida do composto de inclusão doxiciclina:betaciclodextrina na proporção molar 1 :4 frente à bactéria Clostridium difficile espotulada.
[066] O estudo de atividade frente ao esporo da bactéria Clostridium difficile foi realizada utilizando uma solução de 2,5 % (m/v) do composto de inclusão num período de ação de 30 minutos frente ao microrganismo, seguindo a metodologia AOAC - 966.04:2016.
[067] O composto de inclusão apresentou atividade satisfatória na avaliação, mostrando que sua atividade foi confirmada pela eliminação do microrganismo avaliado em quantidade suficiente dos carreadores empregados no teste (Tabela 3).
Tabela 3. Avaliação da atividade esporocida do composto doxiciclina:ciclodextrina frente à C. difficile.
Figure imgf000026_0001
[068] O resultado mostra que a formação do composto de inclusão (doxiciclina:ciclodextrina) apresentou atividade esporocida.

Claims

REIVINDICAÇÕES
1. COMPOSIÇÕES ANTIMICROBIANAS ESPOROCIDAS, caracterizadas por compreenderem um agente encapsulante germinante, sendo ele um oligossacarídeo cíclico, pelo menos um ativo antisséptico em composto de inclusão com oligossacarídeo cíclico e excipientes.
2. COMPOSIÇÕES ANTIMICROBIANA ESPOROCIDAS, de acordo com reivindicação 1, caracterizadas pelo agente encapsulante germinante oligossacarídeo cíclico ser a ciclodextrina ou suas variações estruturais, ou a mistura destas.
3. COMPOSIÇÕES ANTIMICROBIANAS ESPOROCIDAS, de acordo com as reivindicações 1 e 2, caracterizadas pelas variações estruturais da ciclodextrina serem compreendidas pelos compostos betaciclodextrina, hidroxipropil-betaciclodextrina, betadexsulfobutileter sódico, hidroximetil- betaciclodextrina, metil-betaciclodextrina, 2,6-dimetil-betaciclodextrina e hydroxietil-betaciclodextrina.
4. COMPOSIÇÕES ANTIMICROBIANAS ESPOROCIDAS, de acordo com a reivindicação 1 , caracterizadas pelo ativo antisséptico ser um ativo antimicrobiano catiônico, aniônicos, zwitteriônicos ou neutros como as classes de b/s-biguanida como a clorexidina ou seus sais de acetato, gluconato ou digluconato, as classes das tetraciclinas , como a doxiciclina, eraciclina, monociclina, omadaciclina ou combinação destes.
5. COMPOSIÇÕES ANTIMICROBIANAS ESPOROCIDAS, de acordo com as reivindicações 1 a 4, caracterizadas pelo, o ativo antisséptico e o agente germinante estarem em proporções molares de 8:1 a 1 :10, respectivamente.
6. COMPOSIÇÕES ANTIMICROBIANAS ESPOROCIDAS, de acordo com as reivindicações 1 e 4, caracterizadas por compreender 0,01 a 20 % m/m em excesso de agente germinante no produto e/ou suas variações estruturais ou combinação destas.
7. COMPOSIÇÕES ANTIMICROBIANAS ESPOROCIDAS, de acordo com as reivindicações 1 e 4, caracterizadas por compreender como excipientes umectantes, emulsionantes, conservantes, espessantes, edulcorantes, estabilizantes, corantes, antioxidantes, tensoativos e/ou aromatizantes em concentrações entre 0,02 e 70,0 % m/m.
8. COMPOSIÇÕES ANTIMICROBIANAS ESPOROCIDAS, de acordo com as reivindicações 1 e 4, caracterizadas pelo ativo antisséptico ser selecionado dos grupos compreendendo as classes dos ácidos orgânicos de cadeia saturada ou insaturada, de cadeia principal com número de átomos de carbonos entre 2 e 8, ou combinação destes ácidos em uma concentração de 0,01 a 30 % m/v, preferencialmente e na concentração de 0,05 a 10 % m/v.
9. COMPOSIÇÕES ANTIMICROBIANAS ESPOROCIDAS, de acordo com as reivindicações 1 e 4, caracterizadas pelo ativo antisséptico ser selecionado dos grupos compreendendo as classes de óleos essenciais como tomilho, eucalipto, orégano, manjericão, hortelã menta, alecrim, alecrim do campo, pequi, gerânio, citronela, palmarosa, pitanga, cipreste, melaleuca, gengibre, capim cidreira, capim limão, ou própolis ou a combinação destes em concentrações entre 0,05 e 20 % m/m.
10. USO DAS COMPOSIÇÕES ESPOROCIDAS definidas em qualquer uma das reivindicações 1 a 9, caracterizadas por ser em solução aquosa, pó, pasta, gel úmido, xerogéis, aerossóis, spray ou espuma, comprimidos, cápsulas, inserida em materiais celulósicos, poliméricos ou em tecidos.
1 1. USO DAS COMPOSIÇÕES ESPOROCIDAS, de acordo com a reivindicação 10, caracterizadas por ser sanitizante para a desinfecção de superfície, para produção de formulações para uso tópico ou para tratamento de ambiente, higienização de superfícies, higienização de ar ou em equipamentos de purificação de ar.
12. USO DAS COMPOSIÇÕES ESPOROCIDAS, de acordo com a reivindicação 10, caracterizadas pela superfície ser selecionada do grupo compreendendo tecidos epiteliais, pele, dedos, unhas, cabelo, glândulas mamárias, região perineal, genitálias, reto ou mucosas.
13. USO DAS COMPOSIÇÕES ESPOROCIDAS, de acordo com a reivindicação 10, caracterizadas pela ser para aplicação farmacológica, como antibióticos, sendo de uso oral, retal, genital, ocular ou nasal.
14. USO DAS COMPOSIÇÕES ESPOROCIDAS, de acordo com a reivindicação 10, caracterizadas por ser ativa frente à bactéria Clostridium difficile esporulada.
15. USO DAS COMPOSIÇÕES ESPOROCIDAS, de acordo com a reivindicação 10, caracterizadas por ser para aplicação em medicamento de uso veterinário, ou agro, em ração animal ou defensivo agrícola.
PCT/BR2023/050253 2022-08-08 2023-08-08 Composições antimicrobianas esporocidas e seus usos WO2024031162A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR1020220156190 2022-08-08
BR102022015619A BR102022015619A2 (pt) 2022-08-08 2022-08-08 Composições antimicrobianas esporocidas e seus usos

Publications (1)

Publication Number Publication Date
WO2024031162A1 true WO2024031162A1 (pt) 2024-02-15

Family

ID=89850047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2023/050253 WO2024031162A1 (pt) 2022-08-08 2023-08-08 Composições antimicrobianas esporocidas e seus usos

Country Status (2)

Country Link
BR (1) BR102022015619A2 (pt)
WO (1) WO2024031162A1 (pt)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995216A (ja) * 1982-11-24 1984-06-01 Taisho Pharmaceut Co Ltd 外用剤
US20030078215A1 (en) * 2000-10-17 2003-04-24 Shastri Venkatram R. Method of increasing the efficacy of antibiotics by compexing with cyclodextrins
US20090105195A1 (en) * 2007-10-17 2009-04-23 O'brien Chris Composition comprising microbicidal active ingredients
WO2009058327A1 (en) * 2007-10-30 2009-05-07 Pinnacle Pharmaceuticals, Inc. Cyclodextrin derivatives as potentiators for antibiotics
CN102813665A (zh) * 2012-08-17 2012-12-12 上海瑞创医药科技有限公司 一种强力霉素doxycycline抗菌活性增效的组合物及其应用
DE102012000024A1 (de) * 2012-01-03 2013-07-04 Erlend Dinné Desinfektionsmittel
CN107349253A (zh) * 2017-06-23 2017-11-17 苏州凌科特新材料有限公司 无刺激医用消毒液及其制备方法
CN111632334A (zh) * 2020-06-17 2020-09-08 成都市图腾环保科技有限公司 一种消毒剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995216A (ja) * 1982-11-24 1984-06-01 Taisho Pharmaceut Co Ltd 外用剤
US20030078215A1 (en) * 2000-10-17 2003-04-24 Shastri Venkatram R. Method of increasing the efficacy of antibiotics by compexing with cyclodextrins
US20090105195A1 (en) * 2007-10-17 2009-04-23 O'brien Chris Composition comprising microbicidal active ingredients
WO2009058327A1 (en) * 2007-10-30 2009-05-07 Pinnacle Pharmaceuticals, Inc. Cyclodextrin derivatives as potentiators for antibiotics
DE102012000024A1 (de) * 2012-01-03 2013-07-04 Erlend Dinné Desinfektionsmittel
CN102813665A (zh) * 2012-08-17 2012-12-12 上海瑞创医药科技有限公司 一种强力霉素doxycycline抗菌活性增效的组合物及其应用
CN107349253A (zh) * 2017-06-23 2017-11-17 苏州凌科特新材料有限公司 无刺激医用消毒液及其制备方法
CN111632334A (zh) * 2020-06-17 2020-09-08 成都市图腾环保科技有限公司 一种消毒剂及其制备方法和应用

Also Published As

Publication number Publication date
BR102022015619A2 (pt) 2024-02-20

Similar Documents

Publication Publication Date Title
US11044914B2 (en) Antimicrobial sanitizer compositions and their use
US7439218B2 (en) Disinfectant compositions comprising an orange oil mixture and methods of use thereof
ES2392384T3 (es) Uso de tensioactivos catiónicos como agentes esporicidas
JP2005531637A (ja) 消毒組成物
JPS62292709A (ja) 皮膚及び粘膜を殺菌するための殺菌剤及び殺菌方法
ES2205217T3 (es) Composicion limpiadora y/o desinfectante.
WO2008019320A2 (en) Biocidal compositions and methods
US9693564B2 (en) Water based antimicrobial composition using benzalkonium chloride and cocamidopropyl PG-dimonium chloride phosphate
WO2011044916A1 (en) Multipurpose eco-friendly disinfecting composition comprising nano size antibacterial agent
Nasila et al. A review on cetylpyridinium chloride
CN113854290A (zh) 一种长效持久双胍类复合消毒剂及其制备方法
WO2024031162A1 (pt) Composições antimicrobianas esporocidas e seus usos
BR102023015877A2 (pt) Composições antimicrobianas esporocidas e seus usos
CN104324047A (zh) 一种新型复合型医用碘消毒剂及其制备方法
KR102252009B1 (ko) 비자나무 잎 추출물을 포함하는 항바이러스용 또는 살균용 조성물
RU2351365C2 (ru) Антисептическая композиция "хлордикс"
Gorman et al. The sporicidal activity and inactivation of chlorhexidine gluconate in aqueous and alcoholic solution
BR102014004849A2 (pt) mistura biocida, uso de mistura biocida e composições compreendendo mistura biocida
Padsalg et al. Preparation and evaluation of hand rub disinfectant
TW200924788A (en) A plant essential oil composition with bacteria-killing function
CN114344229A (zh) 天然植物抑菌免洗消毒液及其制备方法和应用
WO2023141689A1 (pt) Composições antimicrobianas de longa duração com ativos catiônicos e excipientes aniônicos e usos
CA2251941C (en) Cleaning and/or disinfecting composition
CN111298108A (zh) 一种儿童长效型复合酶消毒组合物及应用
CZ30473U1 (cs) Kvarterní amoniová sůl, dezinfekční kompozice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851128

Country of ref document: EP

Kind code of ref document: A1