WO2024029061A1 - 音響共振器、変調器、および音響光学変調器 - Google Patents

音響共振器、変調器、および音響光学変調器 Download PDF

Info

Publication number
WO2024029061A1
WO2024029061A1 PCT/JP2022/030068 JP2022030068W WO2024029061A1 WO 2024029061 A1 WO2024029061 A1 WO 2024029061A1 JP 2022030068 W JP2022030068 W JP 2022030068W WO 2024029061 A1 WO2024029061 A1 WO 2024029061A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor
piezoelectric body
piezoelectric
acoustic resonator
Prior art date
Application number
PCT/JP2022/030068
Other languages
English (en)
French (fr)
Inventor
めぐみ 黒子
大樹 畑中
浩司 山口
芳孝 谷保
創 岡本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/030068 priority Critical patent/WO2024029061A1/ja
Publication of WO2024029061A1 publication Critical patent/WO2024029061A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator

Definitions

  • the present invention relates to bulk acoustic resonators, modulators, and acousto-optic modulators.
  • a conventional bulk acoustic resonator has a structure in which a piezoelectric body is sandwiched between two metal electrodes.
  • a piezoelectric body is formed on one metal electrode, and the other metal electrode is formed on the formed piezoelectric body.
  • Non-Patent Document 1 bulk acoustic resonators have been fabricated by laminating a lithium niobate single crystal onto an impurity-doped semiconductor substrate instead of a metal lower electrode. This technique has the problem that there is a possibility that foreign matter may be mixed in or cavities may be generated at the interface between the lithium niobate single crystal and the semiconductor layer, which may reduce the piezoelectric efficiency and Q value.
  • the present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to make it possible to form an acoustic resonator using a high quality piezoelectric material.
  • the acoustic resonator according to the present invention includes a first electrode made of a semiconductor doped with impurities, a piezoelectric body made of a piezoelectric semiconductor formed on the first electrode, and a second electrode made of a piezoelectric semiconductor formed on the piezoelectric body. and an electrode.
  • a modulator according to the present invention includes a first electrode made of a semiconductor doped with impurities, a piezoelectric body made of a piezoelectric semiconductor formed on the first electrode, and a second electrode formed on the piezoelectric body. and a semiconductor optical device stacked on the second electrode.
  • the acousto-optic modulator according to the present invention includes a first electrode made of a semiconductor doped with impurities, a piezoelectric body made of a piezoelectric semiconductor formed on the first electrode, and a piezoelectric body made of a piezoelectric semiconductor formed on the piezoelectric body. It includes two electrodes and an acousto-optic medium laminated on the first electrode or the second electrode.
  • An acousto-optic modulator includes a first electrode made of a semiconductor doped with impurities, a piezoelectric body made of an acousto-optic medium formed on the first electrode, and a piezoelectric body formed on the piezoelectric body. 2 electrodes.
  • a piezoelectric body made of a piezoelectric semiconductor is formed on the first electrode made of a semiconductor doped with impurities, so that an acoustic resonator made of a high quality piezoelectric substance is formed. can.
  • FIG. 1 is a sectional view showing the configuration of an acoustic resonator according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view showing the configuration of another acoustic resonator according to Embodiment 1 of the present invention.
  • FIG. 3A is a characteristic diagram showing a bulk acoustic resonance mode generated by applying a high frequency to the acoustic resonator according to Embodiment 1 of the present invention.
  • FIG. 3B is a characteristic diagram showing a bulk acoustic resonance mode generated by applying a high frequency to the acoustic resonator according to Embodiment 1 of the present invention.
  • FIG. 1 is a sectional view showing the configuration of an acoustic resonator according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view showing the configuration of another acoustic resonator according to Embodiment 1 of the present invention.
  • FIG. 3C is a characteristic diagram showing the relationship between the thickness of the piezoelectric body 102 and the center frequency that can be excited.
  • FIG. 4 is a cross-sectional view showing the configuration of a modulator according to Embodiment 2 of the present invention.
  • FIG. 5 is a sectional view showing the configuration of an acousto-optic modulator according to Embodiment 3 of the present invention.
  • This acoustic resonator includes a first electrode 101, a piezoelectric body 102, and a second electrode 103.
  • the first electrode 101 is made of a semiconductor doped with impurities.
  • the piezoelectric body 102 is made of a piezoelectric semiconductor and is formed on the first electrode 101.
  • the piezoelectric semiconductor is, for example, a nitride semiconductor.
  • the second electrode 103 is formed on the piezoelectric body 102.
  • the second electrode 103 can be made of a metal or a semiconductor doped with impurities.
  • a piezoelectric body 102 is sandwiched between a first electrode 101 and a second electrode 103, for example, the piezoelectric body 102 is formed on top of the first electrode 101 and in contact with it, and the second electrode 103 is formed on top of the piezoelectric body 102 in contact with it. has been done.
  • the piezoelectric body 102 is formed on top of the first electrode 101 and in contact with it
  • the second electrode 103 is formed on top of the piezoelectric body 102 in contact with it. has been done.
  • the piezoelectric body 102 can be formed by epitaxially growing a piezoelectric semiconductor on the first electrode 101.
  • the second electrode 103 is made of metal
  • the second electrode 103 can be formed by depositing a metal material on the piezoelectric body 102 by sputtering or the like.
  • the second electrode 103 is a semiconductor
  • the second electrode 103 can be formed by growing the semiconductor on the piezoelectric body 102 by a well-known CVD method or the like.
  • the first electrode 101 can be made of n-type silicon carbide doped with N as an impurity.
  • the piezoelectric body 102 can be made of aluminum nitride (AlN).
  • the second electrode 103 can be made of Ti and Al.
  • a piezoelectric body 102 with a thickness of 700 nm is formed by epitaxially growing c-axis oriented aluminum nitride on a first electrode 101 made of n-type silicon carbide by a known metal organic chemical vapor deposition (MOCVD) method.
  • MOCVD metal organic chemical vapor deposition
  • the first electrode 101 is floating or grounded.
  • an ohmic electrode can also be produced by forming a film of a metal such as Ni or Ti that forms an alloy with silicon carbide on the ground plane of the first electrode 101 and then heat-treating it at a temperature of 800 to 1200°C. .
  • the thickness of the n-type silicon carbide substrate used as the first electrode 101 is 244 ⁇ m, but it can be made thinner by polishing or etching. It is also possible to increase the thickness by using substrates with different thicknesses.
  • the three second electrodes 103a, 103b, and 103c are formed on the piezoelectric body 102, as shown in FIG.
  • the second electrode 103a and the second electrode 103c are used as ground terminals
  • the second electrode 103b is used as a signal terminal
  • a high frequency GSG probe is electrically connected to these.
  • FIG. 3B which is a partially enlarged view of FIG. 3A
  • a cavity mode with a peak at every 26.8 MHz is observed.
  • This frequency interval corresponds to the acoustic modes that propagate back and forth through the bulk acoustic resonator.
  • This experimental result shows that by applying a high frequency voltage between the second electrodes 103a, 103b, 103c and the first electrode 101 made of n-type silicon carbide, the piezoelectric body 102 made of AlN is inversely piezoelectrically generated. This shows that the piezoelectric body 102 vibrates through the effect, and this vibration propagates through the first electrode 101.
  • a bulk acoustic resonator is realized by forming the first electrode 101 from n-type silicon carbide and forming the piezoelectric body 102 from AlN.
  • the piezoelectric body 102 is made of AlN, Al x Ga 1-x N (0 ⁇ x ⁇ 1), GaN, Sc x Al 1-x N (0 ⁇ x ⁇ 1), Sc x Ga 1-x N (0 ⁇ x ⁇ 1).
  • Sc the crystal structure changes from hexagonal to cubic as the composition x increases.
  • the inverse piezoelectric effect can be maximized by forming a (111) oriented piezoelectric semiconductor.
  • Ru the relationship between the thickness of the piezoelectric body 102 and the center frequency that can be excited.
  • the excitation center frequency can also be adjusted by the second electrode 103.
  • FIG. 3A is the result of an acoustic resonator in which the second electrode 103 made of metal is formed on the piezoelectric body 102, and therefore is different from the result of FIG. 3C for a single piezoelectric semiconductor.
  • the piezoelectric semiconductor is epitaxially grown on the first electrode 101 made of a semiconductor doped with impurities, the piezoelectric body 102 can be made of a high quality piezoelectric semiconductor. It becomes possible. As a result, it is possible to improve the Q value, piezoelectric coefficient, and electromechanical coupling constant. Furthermore, since this type of epitaxial growth is performed in a film formation chamber under reduced pressure, it is possible to prevent foreign matter from entering or forming cavities at the interface between the first electrode 101 and the piezoelectric body 102.
  • the first electrode 101 is the substrate on which the piezoelectric semiconductor to be used as the piezoelectric body 102 is grown, there is no need to separately form an electrode made of metal, and the acoustic resonator The manufacturing process can be simplified.
  • the second electrode 103 is made of an impurity-doped semiconductor and the piezoelectric body 102 is made of a nitride semiconductor, a transparent acoustic resonator can be obtained.
  • Piezoelectric semiconductors include AlN, Al x Ga 1-x N (0 ⁇ x ⁇ 1), GaN, Sc x Al 1-x N (0 ⁇ x ⁇ 1), Sc x Ga 1-x N (0 ⁇ x ⁇ 1), etc.
  • the first electrode 101 and the second electrode 103 can be made of doped-AlN, doped-AlGaN, doped-GaN, or the like. These materials can be combined in various ways.
  • a transparent acoustic resonator By using a transparent acoustic resonator, interactions between acoustic modes and, for example, charges, spins, elastic waves, excitons, and color centers in the crystal can be observed in detail optically. Furthermore, by configuring the first electrode 101, the piezoelectric body 102, and the second electrode 103 from the same type of nitride semiconductor, an acoustic resonator with perfect acoustic impedance matching can be achieved, resulting in highly efficient acoustic Mode propagation is possible.
  • the first electrode 101/piezoelectric body 102/second electrode 103 may be made of doped-GaN/GaN/doped-GaN, doped-AlN/AlN/doped-AlN, doped-AlGaN/AlGaN/doped-AlGaN, etc. I can do it.
  • This modulator includes a first electrode 101 made of a semiconductor doped with impurities, a piezoelectric body 102 made of a piezoelectric semiconductor formed on the first electrode 101, and a second piezoelectric body 102 formed on the piezoelectric body 102. It includes an electrode 103 and a semiconductor optical device 120 stacked on the second electrode 103.
  • a first semiconductor layer 121 made of an n-type semiconductor, an active layer 122 made of a semiconductor, and a second semiconductor layer 123 made of a p-type semiconductor are formed on the second electrode 103 made of a semiconductor doped with impurities.
  • the semiconductor optical device 120 which is a semiconductor laser, can be formed by sequential epitaxial growth.
  • the energy band in the active layer 122 of the semiconductor optical device 120 is modulated by the acoustic resonator formed by the first electrode 101, the piezoelectric body 102, and the second electrode 103, thereby making it possible to modulate the laser output.
  • the acoustic resonator and the semiconductor optical device 120 can be integrated into a modulator, and the modulator can be made smaller and more efficient. Further, by making the piezoelectric body 102 thinner, it becomes possible to modulate the frequency at a higher frequency. Furthermore, by forming the semiconductor from a nitride semiconductor, the acoustic mode can be made to have a high frequency due to its high sound velocity, and the wavelength of the laser beam can be shortened due to its wide bandgap.
  • This acousto-optic modulator includes a first electrode 101, a piezoelectric body 102 formed on the first electrode 101, a second electrode 103 formed on the piezoelectric body 102, and a first electrode 101 or a second and an acousto-optic medium 131 laminated on the electrode 103.
  • the acousto-optic medium 131 can be composed of crystals such as gallium phosphide, tellurium dioxide, indium phosphide, quartz, and germanium.
  • the first electrode 101 is laminated on top of the acousto-optic medium 131 in contact with it.
  • an acousto-optic modulator can be obtained.
  • the acoustic resonator acts as a high frequency transducer.
  • the high frequency bulk acoustic waves generated from the acoustic resonator propagate through the acousto-optic medium 131.
  • the refractive index of the acousto-optic medium 131 is periodically modulated by the propagating bulk acoustic wave.
  • a laser beam is incident on the acousto-optic medium 131 whose refractive index is periodically modulated in this way, it is diffracted due to the periodic change in the refractive index, and a laser beam whose frequency is shifted by the frequency of the bulk acoustic wave is output.
  • a piezoelectric body made of a piezoelectric semiconductor is formed on the first electrode made of a semiconductor doped with impurities, so that an acoustic resonator made of a high quality piezoelectric substance is formed. be able to form.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

この音響共振器は、第1電極(101)と、圧電体(102)と、第2電極(103)とを備える。第1電極(101)は、不純物がドーピングされた半導体から構成されている。圧電体(102)は、圧電性半導体から構成され、第1電極(101)の上に形成されている。圧電性半導体は、例えば、窒化物半導体である。第2電極(103)は、圧電体(102)の上に形成されている。第2電極(103)は、金属または不純物がドーピングされた半導体から構成することができる。

Description

音響共振器、変調器、および音響光学変調器
 本発明は、バルクの音響共振器、変調器、および音響光学変調器に関する。
 従来のバルク音響共振器は、圧電体を2つの金属電極で挟んだ構造を持っている。この場合、一方の金属電極の上に圧電体を形成し、形成した圧電体の上に他方の金属電極を形成している。ただし、一方の金属電極の上への圧電体の成膜において、高品質の成膜が可能であるエピタキシャル成長が困難であった。このため通常は、一方の金属電極上に圧電体をスパッタリング法により成膜することとなる。
J. Wu et al., "A New Class of High-Overtone Bulk Acoustic Resonators Using Lithium Niobate on Conductive Silicon Carbide", IEEE Electron Device Letters, vol. 42, no. 7, pp. 1061-1064, 2021.
 しかしながら、スパッタリング法を用いて金属電極上に圧電体を成膜した場合には、単結晶成長のエピタキシャル成長は難しく、圧電体が多結晶の薄膜となり、膜の品質が低下するという問題があった。また、スパッタリング法を用いて金属電極上に圧電体をエピタキシャル成長させるためには、金属電極上へのシード層成長などが必要であり製造工程が複雑化することとなる。
 また、近年では、金属下部電極の代わりに不純物ドーピングした半導体基板上に、ニオブ酸リチウム単結晶を張り合わせることによってバルク音響共振器が作製されている(非特許文献1)。この技術では、ニオブ酸リチウム単結晶と半導体層との間の界面で、異物混入や空洞が発生する可能性があり、圧電効率やQ値が低下する可能性があるという課題があった。
 本発明は、以上のような問題点を解消するためになされたものであり、高い品質の圧電体による音響共振器が形成できるようにすることを目的とする。
 本発明に係る音響共振器は、不純物がドーピングされた半導体からなる第1電極と、第1電極の上に形成された圧電性半導体からなる圧電体と、圧電体の上に形成された第2電極とを備える。
 本発明に係る変調器は、不純物がドーピングされた半導体からなる第1電極と、第1電極の上に形成された圧電性半導体からなる圧電体と、圧電体の上に形成された第2電極と、第2電極の上に積層された半導体光素子とを備える。
 本発明に係る音響光学変調器は、不純物がドーピングされた半導体からなる第1電極と、第1電極の上に形成された圧電性半導体からなる圧電体と、圧電体の上に形成された第2電極と、第1電極または第2電極に積層された音響光学媒体とを備える。
 本発明に係る音響光学変調器は、不純物がドーピングされた半導体からなる第1電極と、第1電極の上に形成された音響光学媒体からなる圧電体と、圧電体の上に形成された第2電極とを備える。
 以上説明したように、本発明によれば、不純物がドーピングされた半導体からなる第1電極の上に、圧電性半導体からなる圧電体を形成するので、高い品質の圧電体による音響共振器が形成できる。
図1は、本発明の実施の形態1に係る音響共振器の構成を示す断面図である。 図2は、本発明の実施の形態1に係る他の音響共振器の構成を示す断面図である。 図3Aは、本発明の実施の形態1に係る音響共振器に高周波を印加したことにより発生するバルク音響共振モードを示す特性図である。 図3Bは、本発明の実施の形態1に係る音響共振器に高周波を印加したことにより発生するバルク音響共振モードを示す特性図である。 図3Cは、圧電体102の厚さと、励振可能な中心周波数との関係を示す特性図である。 図4は、本発明の実施の形態2に係る変調器の構成を示す断面図である。 図5は、本発明の実施の形態3に係る音響光学変調器の構成を示す断面図である。
 以下、本発明の実施の形態に係る音響共振器について説明する。
[実施の形態1]
 はじめに、本発明の実施の形態1に係る音響共振器について、図1を参照して説明する。この音響共振器は、第1電極101と、圧電体102と、第2電極103とを備える。第1電極101は、不純物がドーピングされた半導体から構成されている。圧電体102は、圧電性半導体から構成され、第1電極101の上に形成されている。圧電性半導体は、例えば、窒化物半導体である。第2電極103は、圧電体102の上に形成されている。第2電極103は、金属または不純物がドーピングされた半導体から構成することができる。
 圧電体102が第1電極101と第2電極103とに挟まれ、例えば、第1電極101の上に接して圧電体102が形成され、圧電体102の上に接して第2電極103が形成されている。第1電極101と第2電極103との間に高周波電圧を印加することで、印加した高周波電圧の周波数に対応した音響振動を発生させることができる。
 例えば、第1電極101の上に圧電性半導体をエピタキシャル成長することで、圧電体102を形成することができる。第2電極103が金属の場合、スパッタ法などにより金属材料を圧電体102の上に堆積することで、第2電極103を形成することができる。また、第2電極103が半導体の場合、よく知られたCVD法などにより半導体を圧電体102の上に成長させることで、第2電極103を形成することができる。
 例えば、第1電極101は、不純物としてNをドーピングしたn型の炭化ケイ素とすることができる。また、圧電体102は、窒化アルミニウム(AlN)とすることができる。また、第2電極103は、TiとAlから構成することができる。n型の炭化ケイ素からなる第1電極101の上に、公知の有機金属気相成長(MOCVD)法によりc軸配向した窒化アルミニウムをエピタキシャル成長することで、厚さ700nmの圧電体102を形成し、圧電体102の上にTiおよびAlを堆積して第2電極103を形成すれば、音響共振器が得られる。
 第1電極101は、浮遊接地または接地する。接地する場合は、第1電極101の接地面に、炭化ケイ素と合金を作るNiやTiなど金属を成膜した後に、800~1200℃の温度で加熱処理し、オーミック電極を作製することもできる。第1電極101とするn型炭化ケイ素基板の厚さは244μmであるが、研磨やエッチングにより薄膜化が可能である。また、厚さの異なる基板を使用することでより厚くすることも可能である。
 上述したように第1電極101を浮遊接地または接地する場合、図2に示すように、圧電体102の上に、3つの第2電極103a、第2電極103b、第2電極103cを形成し、第2電極103a、第2電極103cをグラント端子とし、第2電極103bを信号端子とし、これらに、高周波用のGSGプローブを電気的に接続する。この状態で、高周波を印加すると、図3Aの(a)に示すように、4GHz程度を中心としたバルク音響共振モードが得られる。
 また、図3Aの一部を拡大した図3Bに示されているように、26.8MHzごとにピークを持つキャビティモードが観測されている。この周波数間隔は、バルク音響共振器を往復伝播する音響モードと一致する。この実験結果は、第2電極103a、第2電極103b、第2電極103cと、n型炭化ケイ素からなる第1電極101と間に高周波電圧をかけることで、AlNからなる圧電体102の逆圧電効果を通して圧電体102が振動し、この振動が第1電極101を伝播していることを示している。この結果は、第1電極101をn型炭化ケイ素から構成し、圧電体102をAlNから構成することで、バルク音響共振器が実現されていることを示している。
 一方、ノンドープの炭化ケイ素の基板を用い、この基板の上にAlNをエピタキシャル成長して圧電体を形成し、さらに、この上に、金属電極を形成した構成では、図3Aの(b)に示すように、バルク音響共振モードが発生しないことが確認された。この結果より、第1電極は、ドーピングした半導体層から構成することが必須であることがわかる。
 なお、圧電体102は、AlN,AlxGa1-xN(0<x<1),GaN,ScxAl1-xN(0<x<1),ScxGa1-xN(0<x<1)などの圧電性半導体から構成することができる。Scを含む場合には、組成xの増加により結晶構造が六方晶から立方晶に変化する。立方晶構造の場合には、(111)配向した圧電性半導体を形成することで逆圧電効果を最大化できる。
 ここで、励振可能な中心周波数fcと圧電性半導体の厚さt、縦波の音速vLの関係は、「fc=vL/(2t)・n(nは奇数)」の式で表される。例えば、圧電体102をAlNから構成する場合、圧電体102の厚さと、励振可能な中心周波数との関係は、図3Cに示されるようになる。励振可能な中心周波数は、第2電極103によっても調整可能である。なお、図3Aは、圧電体102の上に金属からなる第2電極103が形成されている音響共振器の結果であるため、圧電性半導体の単体における図3Cの結果とは異なっている。
 また、音響共振器の有効面積を変えることによっても、励振可能な中心周波数を変えることができることが、実験より明らかになっている。
 実施の形態1によれば、不純物がドーピングされた半導体から構成した第1電極101の上に、圧電性半導体をエピタキシャル成長しているので、高品質の圧電性半導体から圧電体102を構成することが可能となる。この結果、Q値、圧電係数、電気機械結合定数の向上が可能となる。また、この種のエピタキシャル成長は、減圧された成膜室内で実施されるため、第1電極101と圧電体102との界面に、異物混入や空洞が発生することも防ぐことができる。
 また、実施の形態1によれば、圧電体102とする圧電性半導体を成長するための基板が第1電極101であるため、別途に金属からなる電極を形成する必要が無く、音響共振器の製造プロセスを簡素化することができる。
 ところで、第2電極103を、不純物ドーピングした半導体から構成し、圧電体102を窒化物半導体から構成した場合、透明な音響共振器とすることができる。圧電性半導体としては、AlN,AlxGa1-xN(0<x<1),GaN,ScxAl1-xN(0<x<1),ScxGa1-xN(0<x<1)などが挙げられる。また、第1電極101,第2電極103は、doped-AlN,doped-AlGaN,doped-GaNなどから構成することができる。これらの材料を様々に組み合わせることができる。
 透明な音響共振器とすることで、音響モードと、例えば、結晶中の電荷、スピン、弾性波、エキシトン、色中心との相互作用を光学的に詳細に観測することができる。
 また、第1電極101,圧電体102,および第2電極103を全て同種の窒化物半導体から構成することで、完全に音響インピーダンス整合のとれた音響共振器とすることができ、高効率な音響モードの伝播ができる。例えば、第1電極101/圧電体102/第2電極103を、doped-GaN/GaN/doped-GaN、doped-AlN/AlN/doped-AlN、doped-AlGaN/AlGaN/doped-AlGaNなどとすることができる。
[実施の形態2]
 次に、本発明の実施の形態2に係る変調器について、図4を参照して説明する。この変調器は、不純物がドーピングされた半導体からなる第1電極101と、第1電極101の上に形成された圧電性半導体からなる圧電体102と、圧電体102の上に形成された第2電極103と、第2電極103の上に積層された半導体光素子120とを備える。
 例えば、不純物がドーピングされた半導体から構成した第2電極103の上に、n型の半導体からなる第1半導体層121、半導体からなる活性層122、p型の半導体からなる第2半導体層123を順次にエピタキシャル成長することなどにより、半導体レーザーである半導体光素子120を形成することができる。
 第1電極101、圧電体102、第2電極103による音響共振器により、半導体光素子120の活性層122におけるエネルギーバンドが変調されることにより、レーザー出力の変調が可能となる。音響共振器と半導体光素子120が一体となった変調器とすることができ、変調器の小型化と高効率化が可能となる。また、圧電体102を薄膜化することで変調の高周波化が可能となる。また、窒化物半導体から構成することで、音速が高速であることから音響モードの高周波化、ワイドバンドギャップであることからレーザー光の短波長化を同時に行うことができる。
[実施の形態3]
 次に、本発明の実施の形態3に係る音響光学変調器について、図5を参照して説明する。この音響光学変調器は、第1電極101と、第1電極101の上に形成された圧電体102と、圧電体102の上に形成された第2電極103と、第1電極101または第2電極103に積層された音響光学媒体131とを備える。音響光学媒体131は、ガリウムリン、二酸化テルル、インジウムリン、石英、ゲルマニウムなどの結晶から構成することができる。
 この例では、音響光学媒体131の上に、第1電極101が接する状態で積層されている。例えば、音響共振器の第1電極101と音響光学媒体131とを貼り付けることで、音響光学変調器とすることができる。音響共振器は高周波トランスデューサとしての役割を果たす。
 音響共振器から発生した高周波バルク音響波は、音響光学媒体131を伝播する。伝搬するバルク音響波によって、音響光学媒体131の屈折率が周期的に変調される。このように屈折率が周期的に変調されている音響光学媒体131にレーザー光が入射すると、周期的な屈折率変化により回折され、バルク音響波の周波数だけ周波数シフトしたレーザー光が出力される。
 なお、圧電体102を音響光学媒体から構成することで、音響共振器単独で、上述同様の効果を得ることができる。
 以上に説明したように、本発明によれば、不純物がドーピングされた半導体からなる第1電極の上に、圧電性半導体からなる圧電体を形成するので、高い品質の圧電体による音響共振器が形成できるようになる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…第1電極、102…圧電体、103…第2電極。

Claims (6)

  1.  不純物がドーピングされた半導体からなる第1電極と、
     前記第1電極の上に形成された圧電性半導体からなる圧電体と、
     前記圧電体の上に形成された第2電極と
     を備える音響共振器。
  2.  請求項1記載の音響共振器において、
     前記圧電性半導体は、窒化物半導体であることを特徴とする音響共振器。
  3.  請求項1記載の音響共振器において、
     前記第2電極は、金属または不純物がドーピングされた半導体から構成されていることを特徴とする音響共振器。
  4.  不純物がドーピングされた半導体からなる第1電極と、
     前記第1電極の上に形成された圧電性半導体からなる圧電体と、
     前記圧電体の上に形成された第2電極と、
     前記第2電極の上に積層された半導体光素子と
     を備える変調器。
  5.  不純物がドーピングされた半導体からなる第1電極と、
     前記第1電極の上に形成された圧電性半導体からなる圧電体と、
     前記圧電体の上に形成された第2電極と、
     前記第1電極または前記第2電極に積層された音響光学媒体と
     を備える音響光学変調器。
  6.  不純物がドーピングされた半導体からなる第1電極と、
     前記第1電極の上に形成された音響光学媒体からなる圧電体と、
     前記圧電体の上に形成された第2電極と
     を備える音響光学変調器。
PCT/JP2022/030068 2022-08-05 2022-08-05 音響共振器、変調器、および音響光学変調器 WO2024029061A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030068 WO2024029061A1 (ja) 2022-08-05 2022-08-05 音響共振器、変調器、および音響光学変調器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030068 WO2024029061A1 (ja) 2022-08-05 2022-08-05 音響共振器、変調器、および音響光学変調器

Publications (1)

Publication Number Publication Date
WO2024029061A1 true WO2024029061A1 (ja) 2024-02-08

Family

ID=89848749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030068 WO2024029061A1 (ja) 2022-08-05 2022-08-05 音響共振器、変調器、および音響光学変調器

Country Status (1)

Country Link
WO (1) WO2024029061A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465171A (en) * 1994-11-04 1995-11-07 Iowa State University Research Foundation, Inc. Optical modulator device using a thin film resonator
JPH08184863A (ja) * 1994-12-28 1996-07-16 Minolta Co Ltd 光偏向走査装置
JP2001217675A (ja) * 1999-12-22 2001-08-10 Koninkl Philips Electronics Nv フィルタ構成、その製造方法、これを用いた移動電話機、受信機、送信機、データ伝送システム
JP2004006272A (ja) * 2002-03-26 2004-01-08 Sanyo Electric Co Ltd 波長可変光源
JP2010118730A (ja) * 2008-11-11 2010-05-27 Toshiba Corp 圧電デバイス及びその製造方法
WO2020099851A1 (en) * 2018-11-15 2020-05-22 The University Of Bristol Acousto-optic device
WO2020208877A1 (ja) * 2019-04-12 2020-10-15 パナソニックIpマネジメント株式会社 光位相変調器、および光位相変調方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465171A (en) * 1994-11-04 1995-11-07 Iowa State University Research Foundation, Inc. Optical modulator device using a thin film resonator
JPH08184863A (ja) * 1994-12-28 1996-07-16 Minolta Co Ltd 光偏向走査装置
JP2001217675A (ja) * 1999-12-22 2001-08-10 Koninkl Philips Electronics Nv フィルタ構成、その製造方法、これを用いた移動電話機、受信機、送信機、データ伝送システム
JP2004006272A (ja) * 2002-03-26 2004-01-08 Sanyo Electric Co Ltd 波長可変光源
JP2010118730A (ja) * 2008-11-11 2010-05-27 Toshiba Corp 圧電デバイス及びその製造方法
WO2020099851A1 (en) * 2018-11-15 2020-05-22 The University Of Bristol Acousto-optic device
WO2020208877A1 (ja) * 2019-04-12 2020-10-15 パナソニックIpマネジメント株式会社 光位相変調器、および光位相変調方法

Similar Documents

Publication Publication Date Title
US11949400B2 (en) Multiple layer system, method of manufacture and saw device formed on the multiple layer system
JP2021044835A (ja) 波閉じ込め構造を有する板波デバイス及び作製方法
US9209779B2 (en) Heterogenous acoustic structure formed from a homogeneous material
EP1748556B1 (fr) Structure résonante hybride
US5426340A (en) Surface acoustic wave device and method of manufacturing the same
US12095449B2 (en) Resonant cavity surface acoustic wave (SAW) filters
US5221870A (en) Surface acoustic wave device
US5440189A (en) Surface acoustic wave device
JP2018506930A5 (ja)
CN106233626B (zh) 具有高耦合系数的温度补偿体声波谐振器
JPH06164294A (ja) 表面弾性波素子
JPH027525B2 (ja)
FR3033462A1 (fr) Dispositif a ondes elastiques de surface comprenant un film piezoelectrique monocristallin et un substrat cristallin, a faibles coefficients viscoelastiques
FR2988538A1 (fr) Resonateur hbar comportant une structure d'amplification de l'amplitude d'au moins une resonance dudit resonateur et procedes de realisation de ce resonateur
Park et al. Epitaxial Al 0.77 Sc 0.23 N SAW and Lamb wave resonators
EP3599720A1 (en) Resonant cavity surface acoustic wave (saw) filters
JPH10270978A (ja) 表面弾性波素子及びその製造方法
JP2005056940A (ja) 電子デバイス用基板、電子デバイスおよびそれらの製造方法
WO2024029061A1 (ja) 音響共振器、変調器、および音響光学変調器
JPS6341449B2 (ja)
JP2021520755A (ja) フィルムバルク音響波共振器およびその製造方法
US20230090976A1 (en) Bulk Acoustic Resonator and Filter
JP2002374145A (ja) 圧電薄膜共振子
JP3248258B2 (ja) 表面弾性波素子
WO2022266789A1 (zh) 基于高结晶度掺杂压电薄膜的声波谐振器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954049

Country of ref document: EP

Kind code of ref document: A1