WO2024027714A1 - 光互连件及其制造方法、芯片封装 - Google Patents

光互连件及其制造方法、芯片封装 Download PDF

Info

Publication number
WO2024027714A1
WO2024027714A1 PCT/CN2023/110575 CN2023110575W WO2024027714A1 WO 2024027714 A1 WO2024027714 A1 WO 2024027714A1 CN 2023110575 W CN2023110575 W CN 2023110575W WO 2024027714 A1 WO2024027714 A1 WO 2024027714A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
nodes
optical
waveguides
optical interconnect
Prior art date
Application number
PCT/CN2023/110575
Other languages
English (en)
French (fr)
Inventor
孟怀宇
沈亦晨
Original Assignee
杭州光智元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州光智元科技有限公司 filed Critical 杭州光智元科技有限公司
Publication of WO2024027714A1 publication Critical patent/WO2024027714A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • the present application relates to the field of optical interconnection, and more specifically, to an optical interconnection component, a manufacturing method thereof, and chip packaging.
  • Optical signals are already used to transmit data over long distances and some shorter distances, including within data centers and within individual devices.
  • An example of an optical network within a device for data transmission is an Optical Network on a Chip (ONoC).
  • ONoC Optical Network on a Chip
  • complex waveguide designs are often required to achieve optical interconnection between nodes.
  • waveguides may need to be arranged in multiple layers to avoid the crossing of waveguides.
  • Such a complex waveguide design not only limits the integration of the device, but also increases production costs.
  • this application provides an optical interconnect, a manufacturing method thereof, and a chip package.
  • the technical solutions adopted are as follows.
  • this application provides an optical interconnect, which includes:
  • each node is used to communicate with external devices
  • a plurality of waveguides each of which is used to connect two nodes among the at least four nodes, and.
  • the plurality of waveguides are distributed along a virtual closed path, and the virtual closed path passes through the at least 4 nodes, so that the plurality of waveguides are arranged not to cross each other.
  • the node includes at least one of at least one optical transmitter and at least one optical receiver.
  • Each of the waveguides is configured to connect the light transmitting part of one node of the at least four nodes and the light receiving part of another node to transmit light from the light transmitting part to the light receiving part.
  • the at least four nodes include a first node and a second node
  • the plurality of waveguides include waveguides connecting the first node and the second node.
  • the first node is adjacent to the second node along the virtual closed path.
  • N nodes are spaced between the first node and the second node, N ⁇ 1.
  • the at least 4 nodes include sequentially adjacent first nodes, second nodes, third nodes, and fourth nodes; and the plurality of waveguides include The waveguide connects the first node to the second node, the waveguide connects the first node to the third node, and the waveguide connects the first node to the fourth node.
  • the at least 4 nodes include sequentially adjacent first nodes, second nodes, third nodes, and fourth nodes; and the plurality of waveguides include The waveguide connects the first node and the third node, and the waveguide connects the second node and the fourth node.
  • the at least 4 nodes include sequentially adjacent first nodes, second nodes, third nodes, and fourth nodes; and the plurality of waveguides include a waveguide connecting the first node and the fourth node, and a waveguide connecting the second node and the third node.
  • the at least 4 nodes include sequentially adjacent first nodes, second nodes, third nodes, fourth nodes, and fifth nodes; and, the plurality of nodes include:
  • the strip waveguide includes a waveguide connecting the first node and the fourth node, and a waveguide connecting the second node and the fifth node.
  • the at least four nodes include a starting node, and the plurality of waveguides are configured such that the starting node is connected to every other node.
  • the multiple optical transmitting parts of the starting node are respectively connected to the corresponding optical receiving parts of each other node through different waveguides along the same direction of the virtual closed path.
  • the multiple optical transmitting parts of the starting node are respectively connected to the optical receiving parts corresponding to each node in a part of the nodes through different waveguides along the first direction of the virtual closed path.
  • the second direction of the closed path that is opposite to the first direction is respectively connected to the light receiving portion corresponding to each node in another part of the nodes through another different waveguide.
  • the at least 4 nodes are arranged in an array, and the virtual closed loop path extends along the columns or rows of the array, and the plurality of waveguides are arranged along the virtual closed path.
  • each of the at least 4 nodes is configured to implement a connection to its second neighbor node.
  • the node includes at least one of at least one optical transmitter and at least one optical receiver.
  • each of the waveguides is configured to connect an optical transmitting portion of one of the at least four nodes and an optical receiving portion of another node to transmit light from the optical transmitting portion to the optical receiving portion of the at least 4 nodes.
  • the light receiving part is configured to connect an optical transmitting portion of one of the at least four nodes and an optical receiving portion of another node to transmit light from the optical transmitting portion to the optical receiving portion of the at least 4 nodes.
  • the light transmitting part includes an electro-optical conversion unit
  • the light receiving part includes a photoelectric conversion unit
  • the plurality of waveguides include curved waveguides.
  • the plurality of waveguides are configured such that any two nodes among the at least four nodes are connected.
  • this application provides a chip package, which includes:
  • optical interconnect according to any of the above embodiments.
  • At least 4 chips each of which is coupled to a node of the optical interconnect, and the at least 4 chips correspond to the at least 4 nodes on a one-to-one basis;
  • the optical interconnect is configured to enable communication between two chips corresponding to two nodes connected by each waveguide.
  • the chip includes at least one of an electronic integrated circuit chip and a photonic integrated circuit chip.
  • the chip is an electronic integrated circuit chip.
  • the chip is a photonic integrated circuit chip.
  • the electronic integrated circuit chip or the photonic chip is disposed at all of the nodes of the optical interconnect. Integrated circuit chip; alternatively, the electronic integrated circuit chip is provided at a part of the nodes of the optical interconnect, and the photonic integrated circuit chip is provided at another part of the nodes of the optical interconnect. .
  • the present application provides a method of manufacturing an optical interconnect, which includes:
  • a plurality of waveguides are distributed along a virtual closed path passing through at least 4 nodes, so that each waveguide connects two nodes among the at least 4 nodes.
  • the embodiments of the present application at least have the following beneficial effects: in the optical network arrangement of the optical interconnects of the embodiments of the present application, the intersection of waveguides is avoided, and there is no need to set up a complex optical switching structure, and it is also possible to easily implement of pairwise interconnection.
  • the coupling between the chip and the optical interconnect may be of different types and applicable to different scenarios.
  • FIG. 1 is a side view of a chip package according to an exemplary embodiment of the present application.
  • FIGS. 2 and 3 illustrate top views of the locations of nodes in an optical interconnect according to an exemplary embodiment of the present application.
  • FIG. 4 illustrates an arrangement of optical connection waveguides between nodes in an optical interconnect according to the exemplary embodiment.
  • FIG. 5 is a top view showing a waveguide arrangement for the node shown in FIG. 2 .
  • FIG. 6 shows an example structure of an optical transmitting part and an optical receiving part according to an embodiment of the present application.
  • FIG. 7 shows a top view of the arrangement of optical connection waveguides between nodes in an optical interconnect according to another embodiment of the present application.
  • FIG. 8 shows an example of a virtual closed path for arranging a waveguide in an optical interconnect according to an embodiment of the present application.
  • FIG. 9 shows an example of a virtual closed path for arranging a waveguide in an optical interconnect according to an embodiment of the present application.
  • the terms “substantially,” “approximately,” “about,” and similar terms are used as terms of approximation rather than as terms of degree, and are intended to account for variations that one of ordinary skill in the art would recognize, e.g., measurements or inherent changes in calculated values. Additionally, the use of “may” when describing embodiments of the present application means “one or more embodiments of the present application.” As used herein, the terms “use,” “being used,” and “being used” may be considered synonymous with the terms “utilizing,” “utilizing,” and “being utilized,” respectively.
  • a chip package 1000 includes an optical interconnect 100 and a plurality of devices.
  • the multiple devices are optically connected through the optical interconnect, and data transmission is performed through the optical connections.
  • the multiple devices may be multiple chips 200 , and the chips may be selected from electronic integrated circuit (EIC) chips, photonic integrated circuit (PIC) chips, external devices, or other electronic or photonic devices. one or more.
  • the optical interconnect 100 includes at least 4 nodes 101 and a plurality of waveguides (not shown in FIG. 1 ), wherein each node is used to communicate with an external device, and each waveguide is used to connect two of the at least 4 nodes.
  • the nodes 101 are optically connected, and at least four chips 200 correspond to the at least four nodes 101 one-to-one.
  • the chip package may only include a plurality of EIC chips corresponding to the plurality of nodes.
  • the chip package may only include a plurality of PIC chips respectively corresponding to the plurality of nodes.
  • chip package 1000 includes an optical interconnect 100 , a plurality of chips 200 , each of which is coupled to a node of the optical interconnect 100 , and the plurality of chips 200 and The at least four nodes correspond one to one; and the optical interconnect 100 is configured to enable communication between the two chips 200 corresponding to the two nodes 101 connected by each waveguide.
  • the term "communication" should be interpreted broadly and may include two-way communication as well as, for example, one-way communication.
  • the following is an example of an optical interconnect that can be used in the chip package.
  • the optical interconnect is a semiconductor optical interconnect that can be passed through a semi-circuit. Implementation of photonic integrated circuits manufactured by conductor technology.
  • an optical interconnect includes at least 4 nodes, each node being used to communicate with an external device, and a plurality of waveguides, each of the plurality of waveguides being used to connect the at least 4 Two of the nodes are optically connected such that the plurality of waveguides are arranged not to cross each other.
  • one of an EIC chip, a PIC chip, and other electronic or photonic devices may be provided corresponding to the node.
  • the plurality of waveguides not crossing each other includes the plurality of waveguides not crossing each other on the same layer.
  • the non-intersecting waveguides include parallel arrangement of waveguides, and may also include non-parallel arrangement of waveguides.
  • a virtual closed path passing through the nodes of the optical interconnect may be drawn, and the plurality of waveguides are distributed along the virtual closed path.
  • the plurality of waveguides are distributed along a virtual closed path passing through nodes of the optical interconnect.
  • the plurality of waveguides are distributed along a virtual closed path, including being arranged near the virtual closed path, but not necessarily exactly overlapping the virtual closed path. In an exemplary embodiment, as shown in FIGS.
  • the optical interconnect includes 8 nodes, namely node 1 to node 8, and, in the optical interconnect, for nodes
  • the optically connected waveguides (not shown in Figures 2 and 3) are distributed along a virtual closed path (shown as a dotted line in Figure 3) passing through the eight nodes.
  • Figure 4 shows an example of the arrangement of waveguides along said virtual closed path.
  • the virtual closed path shown in FIG. 3 is expanded in FIG. 4 .
  • the node includes at least one of at least one optical transmitting part and at least one optical receiving part.
  • two consecutively adjacent nodes are connected through waveguides.
  • This article refers to two nodes that are adjacent in sequence as first neighbor nodes, and there are no other nodes between them.
  • the optical transmitting part Tx of node 1 and the optical receiving part Rx of node 2 are connected through a waveguide, so that information (or data) is sent from node 1 to the node in the form of an optical signal through the waveguide.
  • the arrow drawn on the waveguide schematically indicates that the waveguide is directed from the transmitting part of one node to the receiving part of another node, which can also be understood as a propagation direction of the optical signal along the waveguide.
  • the information may be information provided by an EIC chip provided at node 1, and the optical transmitting unit of node 1 may include an electro-optical conversion unit to convert the electrical signal carrying the information provided by the EIC chip into an electrical signal carrying the information. light signal.
  • the electro-optical conversion unit may include an electro-optical modulator.
  • the information may be information provided by a PIC chip provided at node 1, and the optical transmitting unit of node 1 may include an optical coupler for coupling the optical signal carrying the information provided by the PIC chip.
  • the light receiving part of the node 2 may include a photoelectric conversion unit, such as a photodetector (eg, a photodiode), for converting the received optical signal into an electrical signal, which is transmitted to an EIC chip provided outside the node 2 .
  • the light receiving part of node 2 may include an optical coupler for coupling the received optical signal to the PIC chip provided at node 2 .
  • node 2 to node 8 the waveguide arrangement between the two consecutively adjacent nodes, and the arrangement of the optical transmitting part and the optical receiving part of the node are similar to the above-mentioned settings of node 1 and node 2, and will not be repeated here. .
  • node 8 and node 1 are optically connected through a waveguide (for example, in (a) of FIG. 4 , the arrow of node 8 points to node 1 ), whereby the waveguide is arranged along a virtual closed path.
  • the topology of the optical network formed by optical connections from node 1 to node 8 is shown as A in Figure 4.
  • the coupling between the external device and the node can be through optical signals or through electrical signals.
  • a first type of chip can be coupled to a node through an optical signal to communicate with the node, and a second type of chip can be coupled to the node through an electrical signal to communicate with the node.
  • the external device may include a chip of the first type and a chip of the second type,
  • the optical interconnect 100 realizes the interconnection of 10 chips 200, of which 4 are first type chips and 6 are second type chips.
  • the types of coupling between chips and optical interconnects are enriched and applicable to different scenarios.
  • connection methods can be used between multiple nodes to form different topological structures. Examples will be described below with reference to (b) (c) (d) in Figure 4 .
  • second neighbor nodes are connected by waveguides.
  • the second nearest neighbor node refers to two nodes that are 1 node apart from each other, that is, there is 1 node between these two nodes.
  • the optical transmitting part Tx of node 1 and the optical receiving part Rx of node 3 are connected through a waveguide, so that information (or data) is sent from node 1 to the node in the form of an optical signal through the waveguide.
  • the information may be information provided by an EIC chip provided at node 1, and the optical transmitting unit of node 1 may include an electro-optical conversion unit to convert the electrical signal carrying the information provided by the EIC chip into an electrical signal carrying the information.
  • the electro-optical conversion unit may include an electro-optical modulator.
  • the information may be information provided by a PIC chip provided at node 1, and the optical transmitting unit of node 1 may include an optical coupler for coupling the optical signal carrying the information provided by the PIC chip.
  • the light receiving part of the node 3 may include a photoelectric conversion unit, such as a photodetector (eg, a photodiode), for converting the received optical signal into an electrical signal, which is transmitted to the EIC chip provided at the node 3 .
  • the light receiving part of node 3 may include an optical coupler for coupling the received optical signal to the PIC chip provided at node 3 .
  • node 2 and node 4 node 3 and node 5, node 4 and node 6, node 5 and node 7, node 6 and node 8, node 7 and node 1 (the arrow of node 7 in the figure points to node 1), Node 8 and node 2 (the arrow of node 8 in the figure points to node 2) are connected through different waveguides, and these waveguides do not cross. Therefore, the topology of the optical network formed by optically connecting node 1 to node 8 through multiple waveguides arranged along a virtual closed path is shown as B in Figure 4 . Exemplarily, for each node, it is configured to realize its connection with a second neighbor node.
  • third neighbor nodes are connected by waveguides.
  • the third nearest neighbor node refers to two nodes that are 2 nodes apart from each other, that is, there are 2 nodes between these two nodes.
  • the optical transmitting part Tx of node 1 and the optical receiving part Rx of node 4 are connected through a waveguide, so that information (or data) is sent from node 1 to the node in the form of an optical signal through the waveguide.
  • the information may be information provided by an EIC chip provided at node 1, and the optical transmitting unit of node 1 may include an electro-optical conversion unit to convert the electrical signal carrying the information provided by the EIC chip into an electrical signal carrying the information.
  • the electro-optical conversion unit may include an electro-optical modulator.
  • the information may be information provided by a PIC chip provided at node 1, and the optical transmitting unit of node 1 may be an optical coupler for coupling the optical signal carrying the information provided by the PIC chip.
  • the light receiving part of the node 4 may include a photoelectric conversion unit, such as a photodetector (eg, a photodiode), for converting the received optical signal into an electrical signal, which is transmitted to the EIC chip provided at the node 4 .
  • the light receiving part of node 4 may be an optical coupler, used to couple the received optical signal to the PIC chip provided at node 4.
  • node 2 and node 5, node 3 and node 6, node 4 and node 7, node 5 and node 8, node 6 and node 1 (the arrow of node 6 in the figure points to node 1), node 7 and node 2 ( The arrow of node 7 in the figure points to node 2), node 8 and node 3 (the arrow of node 8 in the figure points to node 3) are respectively connected through different waveguides, and these waveguides do not cross. Therefore, the topology of the optical network formed by optically connecting node 1 to node 8 through multiple waveguides arranged along a virtual closed path is shown as C in Figure 4 .
  • fourth neighbor nodes are connected by waveguides.
  • the fourth nearest neighbor node refers to two nodes that are 3 nodes apart from each other, that is, there are 3 nodes between these two nodes.
  • the optical transmitting part Tx of node 1 and the optical receiving part Rx of node 5 are connected through a waveguide, so that information (or data) is sent from node 1 to the node in the form of an optical signal through the waveguide. 5.
  • the information may be information provided by an EIC chip provided at node 1, and the optical transmitting unit of node 1 may include an electro-optical conversion unit to convert the electrical signal carrying the information provided by the EIC chip into an electrical signal carrying the information.
  • the electro-optical conversion unit may include an electro-optical modulator.
  • the information may be information provided by a PIC chip provided at node 1, and the optical transmitting unit of node 1 may include an optical coupler for coupling the optical signal carrying the information provided by the PIC chip.
  • the light receiving part of the node 5 may include a photoelectric conversion unit, such as a photodetector (eg, a photodiode), for converting the received optical signal into an electrical signal, which is transmitted to the EIC chip provided at the node 5 .
  • the light receiving part of node 5 may be an optical coupler, used to couple the received optical signal to the PIC chip provided at node 5 .
  • node 2 and node 6, node 3 and node 7, node 4 and node 8 are respectively connected through different waveguides, and these waveguides do not cross. Therefore, the topology of the optical network formed by optically connecting node 1 to node 8 through multiple waveguides arranged along a virtual closed path is shown in D in Figure 4 .
  • the plurality of waveguides are configured such that any two nodes among the at least four nodes are connected.
  • the structures shown in (a) (b) (c) (d) in Figure 4 can be combined, which is enough to form a topology interconnected by any two nodes, and bidirectional communication can be achieved between some two nodes, such as In (d) of FIG. 4 , the transmitting unit of node 1 can transmit a signal to node 5 through a waveguide, and node 5 can transmit a signal to node 1 through another waveguide.
  • bidirectional communication between any two nodes is not realized.
  • node 3 can transmit to node 4 through the waveguide.
  • Information (already shown in (a) of Figure 4), node 4 is not configured to send information to node 3, and this communication is one-way communication.
  • other appropriate numbers of waveguides can be configured, such as arranging other waveguides along virtual closed lines, and configuring appropriate transmitting/receiving units in the nodes.
  • the optical transmitting part Tx of one node includes an electro-optical modulator 501, which is used to modulate the information carried by the electrical signal transmitted through the conductive line 502 into an optical signal.
  • the transmitting part Tx is also used to send the optical signal to the waveguide 503, and the optical signal is transmitted to the optical receiving part Rx of another node via the waveguide 503, so that the optical receiving part Rx receives the optical signal carrying information through the waveguide 503.
  • the light receiving part Rx may include a light detector 504 for converting the received light signal into an electrical signal, and the electrical signal is output via another conductive line 505 .
  • Figure 5 shows a waveguide arrangement for the node shown in Figure 2, which realizes connecting a node and its second neighbor node. It can be considered that these waveguides are arranged along the virtual closed path as shown in Figure 3.
  • the waveguide in Figure 5 is a curved waveguide.
  • the curved waveguide can make it more suitable for the direction of the virtual closed path.
  • At least three curved waveguides can be configured, which is suitable for more complex connections.
  • the shape of the virtual closed path is not particularly limited. If the waveguide arrangement conforms to the rule of being arranged along the virtual closed path, it can be considered to be consistent with the concept of the present application.
  • each of the at least 4 nodes is configured to implement a connection to its second neighbor node.
  • the waveguide connecting two nodes is a single channel.
  • two nodes with optical connections each have one optical transmitting part and one optical receiving part.
  • the fourth nearest neighbor node is used to pass In the optical connection configuration of a single waveguide connection, a total of 4 parallel waveguides are provided along the virtual path, and these 4 waveguides do not cross.
  • two nodes with optical connections may be connected through multi-channels.
  • four waveguides are used to connect the four optical transmitting parts of node 1 and the four optical receiving parts of node 5 respectively, which can provide a larger transmission bandwidth.
  • the eight nodes arranged along the virtual closed path adopt a configuration in which fourth neighboring nodes are optically connected to each other.
  • a total of parallel waveguides are provided along the virtual path, and these waveguides do not cross.
  • the optical connection waveguide is provided along an approximately O-shaped circular virtual path passing through eight nodes.
  • the present application is not limited to this, and the virtual closed path may also have other forms.
  • the optical connection waveguides may also be arranged without crossing along the virtual closed path.
  • 8 nodes are used as an example in the above description, the number of nodes in the optical interconnect of the present application is not limited and may be more than 8 nodes or less than 8 nodes.
  • an optical interconnect includes a plurality of nodes and a plurality of waveguides distributed along a virtual closed path through the plurality of nodes such that the plurality of waveguides are arranged not to cross each other.
  • the plurality of nodes includes a first node and a second node, so that the waveguide connecting the first node and the second node does not cross the waveguide connecting other nodes.
  • the optical connection waveguide between node 1 (as the first node) and node 3 (as the second node) does not cross the optical connection waveguide between any other nodes (the waveguide is not shown in Figure 3); or, The optical connection waveguide between node 1 (as the first node) and node 5 (as the second node) does not cross the optical connection waveguide between any other nodes; or, node 1 (as the first node) and node 6 The optical connection waveguide between (as the second node) does not cross the optical connection waveguide between any other nodes.
  • the plurality of nodes includes a first node and a second node, the first node is adjacent to the second node, and a waveguide connecting the first node and the second node is connected to other nodes.
  • the waveguides do not cross.
  • the optical connection waveguide between node 1 (as the first node) and node 2 (as the second node) is not the same as the optical connection waveguide between any other nodes. cross.
  • the plurality of nodes includes a first node and a second node, and N nodes are spaced between the first node and the second node, N ⁇ 1. Furthermore, the waveguide connecting the first node and the second node does not cross the waveguide connecting other nodes.
  • the optical connection waveguide between node 1 (as the first node) and node 3 (as the second node) and the optical connection between any other nodes are The waveguides do not cross; or the waveguide for optical connection between node 1 (as the first node) and node 4 (as the second node) does not cross the waveguide for optical connection between any other nodes; or the waveguide for optical connection between node 1 (as the first node) does not cross The optical connection waveguide between node 5 (as the second node) does not cross the optical connection waveguide between any other nodes.
  • the plurality of nodes includes a first node, a second node, a third node and a fourth node that are adjacent in sequence; and a waveguide connecting the first node to the second node connects the first node to the second node.
  • the waveguide connecting one node to the third node and the waveguide connecting the first node to the fourth node do not cross each other. For example, with the nodes arranged in FIG. 3 (waveguides not shown in FIG. 3), the waveguides connecting node 1 and node 2, the waveguides connecting node 1 and node 3, and the waveguides connecting node 1 and node 4 do not cross each other.
  • the waveguide connecting the first node to the third node does not intersect the waveguide connecting the second node to the fourth node.
  • the waveguide connecting node 1 to node 3 does not cross the waveguide connecting node 2 to node 4.
  • the waveguide connecting the first node to the fourth node does not intersect the waveguide connecting the second node to the third node.
  • the waveguide connecting node 1 to node 4 is The waveguides connecting node 2 and node 3 do not cross.
  • the plurality of nodes includes a first node, a second node, a third node, a fourth node and a fifth node that are adjacent in sequence; and, the first node is connected to the fourth node.
  • the waveguide does not intersect the waveguide connecting the second node to the fifth node.
  • the waveguide connecting node 1 to node 4 does not intersect the waveguide connecting node 2 to node 5.
  • the optical interconnect includes a plurality of nodes and a plurality of waveguides.
  • the plurality of waveguides are arranged along any virtual closed path passing through the plurality of nodes: starting from one node among the plurality of nodes.
  • the starting node is different from each other and does not intersect with the waveguides connected to each other node.
  • node 1 is the starting node, and the waveguides connecting each node from node 2 to node 8 to node 1 are different from each other (the waveguide is not shown in Figure 3), and are not cross.
  • the multiple optical transmitting parts of the starting node are respectively connected to the corresponding optical receiving parts of each other node through different waveguides along the same direction of the virtual closed path.
  • node 1 includes 7 transmitting parts.
  • node 1 can be used as the starting node and the path can be followed along the Clockwise or counterclockwise, connect the 7 transmitting parts of node 1 to 1 receiving part of each node from node 2 to node 8 through different waveguides, so that these waveguides do not cross each other, where Figure 3 only shows the nodes The positions of the light transmitting part, the light receiving part, and the waveguide are not shown.
  • the multiple optical transmitting parts of the starting node are respectively connected to the optical receiving parts corresponding to each node in a part of the nodes through different waveguides along the first direction of the virtual closed path.
  • the second direction of the closed path that is opposite to the first direction is respectively connected to the light receiving portion corresponding to each node in another part of the nodes through another different waveguide.
  • node 1 includes 7 transmitting parts.
  • node 1 In order to connect the 7 transmitting parts of node 1 to the receiving parts of the other 7 nodes respectively, for the virtual closed path in Figure 3, node 1 can be used as the starting node and the path can be followed along the The four transmitting parts of node 1 are connected to one receiving part of each node from node 2 to node 5 in the clockwise direction through different waveguides, and the three transmitting parts of node 1 are connected to nodes 8 to node 6 through different waveguides in the counterclockwise direction. One receiving part of each node is connected separately.
  • node 1 can be used as the starting node, and its multiple transmitting parts are connected to a corresponding receiving part of each other node, so that node 1 can send optical signals to other nodes. .
  • an optical interconnect includes a plurality of nodes arranged in an array and a plurality of waveguides, and the virtual closed loop path extends along a column or row of the array, the plurality of waveguides Set along this virtual closed path.
  • 64 nodes are arranged in an 8 ⁇ 8 array.
  • a virtual closed path (shown by the solid line in Figure 9) extends up and down along the columns of the array, and is set along the virtual closed path.
  • a method of manufacturing an optical interconnect comprising:
  • a plurality of waveguides are arranged along a virtual closed path passing through at least a plurality of nodes, so that each waveguide optically connects two nodes among the plurality of nodes.
  • This application does not limit the order of determining the closed path, node setting, and waveguide setting.
  • a closed path passing through the multiple nodes can be determined based on the multiple nodes arranged on the substrate, and then a waveguide for optical connection is provided along the closed path, so that the waveguide can be Set to not cross.
  • the plurality of nodes, closed paths passing through the plurality of nodes, and a plurality of waveguides arranged along the closed paths may be stored as pattern data in advance, and in a semiconductor manufacturing process, according to the stored pattern
  • the node and the plurality of waveguides are integrally formed on the substrate using a semiconductor manufacturing process.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光互连件(100)及其制造方法、芯片封装。光互连件(100)包括至少4个节点(101),每一个节点(101)用于与外部设备通信;多条波导,其中每条波导用于连接至少4个节点(101)中的两个节点(101)。光互连件(100)的光学网络布置中,避免了波导的交叉,并且无需设置复杂的光交换结构。一种芯片封装,包括光互连件及至少4个芯片。一种制造光互连件(100)的方法。

Description

光互连件及其制造方法、芯片封装
本申请要求于2022年08月01日提交中国专利局、申请号为202210917110.9、申请名称为“光互连件及其制造方法、芯片封装”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光互连领域,更为具体而言,涉及一种光互连件及其制造方法、芯片封装。
背景技术
在芯片内部及芯片封装中,传统的信息互连主要是通过铜介质进行电子传导实现的,而电子信息传输速度和距离受限于电阻电容时间常数以及电学损耗,导致所需铜线的直径随着传输速度和传输距离的增加而显著增加,电信号互连还存在信号串扰以及带宽限制。
光学信号已经被用于远距离和一些较短距离传输数据,包括在数据中心内和在单个设备内进行数据传输。设备内的用于数据传输的光学网络的示例是片上光学网络(Optical Network on a Chip,ONoC)。对于ONoC,往往需要复杂的波导设计来实现节点间的光学互连。例如,为了实现光学互连,可能需要在多个层中布置波导,以避免波导的交叉。如此复杂的波导设计,不仅限制了设备的集成度,还增加了生产成本。
技术解决方案
为解决上述技术问题中的至少之一,本申请提供一种光互连件及其制造方法、芯片封装,所采用的技术方案如下。
第一方面,本申请提供一种光互连件,其包括:
至少4个节点,每一个节点用于与外部设备通信;
多条波导,每条所述波导用于连接所述至少4个节点中的两个节点,并且。
在一些实施方式中,所述多条波导沿着一虚拟闭合路径分布,并且所述虚拟闭合路径经过所述至少4个节点,使得所述多条波导设置成彼此不交叉。
在一些实施方式中,所述节点包括至少一个光发送部和至少一个光接收部中的至少一者。每条所述波导被配置为连接所述至少4个节点中的一个节点的光发送部以及另一节点的光接收部,以将光从所述光发送部传输至所述光接收部。
在一些实施方式中,所述至少4个节点包括第一节点和第二节点,所述多条波导包括将所述第一节点与第二节点连接的波导。
在一些实施方式中,沿着所述虚拟闭合路径,所述第一节点与第二节点相邻。在一些实施方式中,沿着所述虚拟闭合路径,所述第一节点与第二节点之间间隔N个节点,N≥1。
在一些实施方式中,沿着所述虚拟闭合路径,所述至少4个节点包括依次相邻的第一节点、第二节点、第三节点和第四节点;并且,所述多条波导包括将所述第一节点与第二节点连接的波导、将第一节点与第三节点连接的波导、以及将第一节点与第四节点连接的波导。
在一些实施方式中,沿着所述虚拟闭合路径,所述至少4个节点包括依次相邻的第一节点、第二节点、第三节点和第四节点;并且,所述多条波导包括将所述第一节点与第三节点连接的波导,以及将第二节点与第四节点连接的波导。
在一些实施方式中,沿着所述虚拟闭合路径,所述至少4个节点包括依次相邻的第一节点、第二节点、第三节点和第四节点;并且,所述多条波导包括将所述第一节点与第四节点连接的波导,以及将第二节点与第三节点连接的波导。
在一些实施方式中,沿着所述虚拟闭合路径,所述至少4个节点包括依次相邻的第一节点、第二节点、第三节点、第四节点和第五节点;并且,所述多条波导包括将所述第一节点与第四节点连接的波导,以及将第二节点与第五节点连接的波导。
在一些实施方式中,所述至少4个节点包括起始节点,所述多条波导设置成:使得该起始节点与其他每一个节点连接。在一些实施方式中,所述起始节点的多个光发送部沿所述虚拟闭合路径的同一方向通过不同的波导分别与其他每一个节点对应的光接收部连接。在一些实施方式中,所述起始节点的多个光发送部沿所述虚拟闭合路径的第一方向通过不同的波导与一部分节点中每一个节点对应的光接收部分别连接,沿所述虚拟闭合路径的与第一方向相反的第二方向通过另外不同的波导与另一部分节点中每一个节点对应的光接收部分别连接。
在一些实施方式中,所述至少4个节点以阵列形式布置,并且,所述虚拟闭环路径沿着阵列的列或行延伸,所述多条波导沿着该虚拟闭合路径设置。
在一些实施方式中,对于所述至少4个节点中的每个节点,被配置为实现与其第二近邻节点的连接。
在一些实施方式中,所述节点包括至少一个光发送部和至少一个光接收部中的至少一者。
在一些实施方式中,每条所述波导被配置为连接所述至少4个节点中的一个节点的光发送部以及另一节点的光接收部,以将光从所述光发送部传输至所述光接收部。
在一些实施方式中,所述光发送部包括电光转换单元,所述光接收部包括光电转换单元。
在一些实施方式中,所述多条波导包括弯曲波导。
在一些实施方式中,所述多条波导被配置为使得所述至少4个节点中的任意两个节点实现连接。
第二方面,本申请提供一种芯片封装,其包括:
上述任意一个实施方式所述的光互连件;以及
至少4个芯片,其中的每一个芯片耦合至所述光互连件的一个节点,并且所述至少4个芯片与所述至少4个节点一一对应;
以及,所述光互连件被配置为使得所述每条波导所连接的两个节点对应的两个芯片通信。
在一些实施方式中,所述芯片包括电子集成电路芯片和光子集成电路芯片中的至少一者。
在一些实施方式中,所述芯片为电子集成电路芯片。
在一些实施方式中,所述芯片为光子集成电路芯片。
在一些实施方式中,在所述光互连件的节点中的全部节点处设置所述电子集成电路芯片或所述光子 集成电路芯片;或者,在所述光互连件的节点中的一部分节点处设置所述电子集成电路芯片,在所述光互连件的节点中的另一部分节点处设置所述光子集成电路芯片。
第三方面,本申请提供一种制造光互连件的方法,其包括:
提供基板;
在所述基板上,沿着一经过至少4个节点的虚拟闭合路径分布多条波导,以使每条波导连接所述至少4个节点中的两个节点。
有益效果
本申请的实施例至少具有以下有益效果:在本申请实施方式的光互连件的光学网络布置中,避免了波导的交叉,并无需设置复杂的光交换结构,还能够容易地实现节点之间的两两互连。另外,本申请一些实施例中,芯片与光互连件的耦合可以有不同类型,可适用于不同场景。
本申请实施方式的各个方面、特征、优点等将在下文结合附图进行具体描述。根据以下结合附图的具体描述,本申请的上述方面、特征、优点等将会变得更加清楚。
附图说明
图1是根据本申请一种示例性实施方式的芯片封装的侧视图。
图2和图3示出了根据本申请一种示例性实施方式的光互连件中节点的位置的俯视图。
图4示出了根据所述示例性实施方式的光互连件中节点间的光学连接用波导的布置。
图5是示出了一种针对图2所示的节点进行波导布置的俯视图。
图6示出了根据本申请实施方式的光发送部和光接收部的示例结构。
图7示出了根据本申请另一种实施方式的光互连件中节点间的光学连接用波导的布置的俯视图。
图8示出了根据本申请一种实施方式的光互连件中用于设置波导的虚拟闭合路径的例子。
图9示出了根据本申请一种实施方式的光互连件中用于设置波导的虚拟闭合路径的例子。
本申请的实施方式
在下文中,将参考附图更详细地描述示例性实施方式。然而,本申请可以以各种不同形式体现,并且不应被解释为仅限于本文所示的实施方式。相反,这些实施方式作为示例来提供以便本公开将是透彻而全面的,并且将向本领域技术人员充分传达本申请的各方面和特征。因此,可能不会描述本领域普通技术人员充分理解本申请的各方面和特征所不必要的过程、元件和技术。除非另有说明,否则在整个附图和文字描述中,类似的附图标记表示类似的元件,因此,可能不会重复其描述。此外,每个示例性实施方式内的特征或方面通常应被视为可用于其他示例性实施方式中的其他类似特征或方面。
以下描述中可使用某些术语以仅供参考,因此这些术语并非旨在进行限制。例如,术语诸如“顶部”、“底部”、“上部”、“下部”、“在…上方”和“在…下方”可用于指代作为参考的附图中的方向。术语诸如“正面”、“背面”、“后面”、“侧面”、“外侧”和“内侧”可用于描述部件的各部分在一致但任意的参照系内的取向和/或位置,通过参考描述所讨论的部件的文字和相关联的附图可以清楚地了解所述取向和/或位置。此类术语可包括上文具体提及的词语、它们的衍生词语以及类似含义的词语。类似地,除 非上下文明确指出,否则术语“第一”、“第二”以及其他此类指代结构的数字术语并不意味着次序或顺序。
应当理解,当元件或特征被称为“在另一元件或层上”、“连接到”或“联接到”另一元件或层时,其可直接在另一元件或特征上、连接到或联接到另一元件或特征,或可存在一个或多个中间元件或特征。另外,还应当理解,当元件或特征被称为在两个元件或特征“之间”时,其可为这两个元件或特征之间的唯一元件或特征,或也可存在一个或多个中间元件或特征。
本文使用的术语是为了描述特定实施方式的目的,而非旨在限制本申请。如本文所用,单数形式“一”和“一种”旨在也包括复数形式,除非上下文另外明确指明。还应当理解,术语“包含”、“包括”和“具有”在本说明书中使用时指定所陈述的特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或它们的集合的存在或添加。如本文所用,术语“和/或”包括相关联的所列项目中的一个或多个的任何和所有组合。诸如“…中的至少一个”之类的表达在要素列表之前时修饰整个要素列表,而不是修饰该列表的单独要素。
如本文所用,术语“基本上”、“大致”、“约”等类似术语用作近似术语而不是用作程度术语,并且旨在考虑本领域普通技术人员将认识到的变化,例如,测量值或计算值的固有变化。此外,在描述本申请的实施方式时“可”的使用是指“本申请的一个或多个实施方式”。如本文所用,术语“使用”、“正使用”和“被使用”可被视为分别与术语“利用”、“正利用”和“被利用”同义。
除非另有定义,否则本文使用的所有术语(包括技术和科学术语)具有本申请所属领域的普通技术人员通常理解的相同含义。还应当理解,除非在本文中明确地如此定义,否则术语(诸如在常用词典中定义的那些术语)应被解释为具有与它们在相关领域和/或本说明书的上下文中的含义一致的含义,并且不应以理想化或过于正式的意义来解释。
在本申请的实施方式中,如图1所示,芯片封装1000包括光互连件100和多个设备,所述多个设备通过光互连件进行光学连接,通过所述光学连接进行数据传输。在一些实施方式中,所述多个设备可以是多个芯片200,芯片可以选自电子集成电路(EIC)芯片、光子集成电路(PIC)芯片、外部设备也可以是其他电子或光子设备中的一个或多个。光互连件100包括至少4个节点101和多条波导(图1未示),其中,每一个节点用于与外部设备通信,每条波导用于将所述至少4个节点中的两个节点101光学连接,至少4个芯片200与所述至少4个节点101一一对应。可选的,在一些实施方式中,所述芯片封装可只包括与所述多个节点分别对应的多个EIC芯片。在一些实施方式中,所述芯片封装可只包括与所述多个节点分别对应的多个PIC芯片。
在该示例性的实施方式中,芯片封装1000包括光互连件100,多个芯片200,其中的每一个芯片200耦合至所述光互连件100的一个节点,并且所述多个芯片与所述至少4个节点一一对应;以及,所述光互连件100被配置为使得所述每条波导所连接的两个节点101对应的两个芯片200通信。另外,在本文中,术语“通信”应作广义解释,可以包括双向通信,也可以包括例如单向通信。下面对可用于所述芯片封装的光互连件的实施例进行举例说明,示例性的,光互连件为半导体光互连件,其可以通过半 导体工艺制造的光子集成电路实现。
在一些实施方式中,光互连件包括至少4个节点和多条波导,其中,每一个节点用于与外部设备通信,所述多条波导中的每一者用于将所述至少4个节点中的两个节点光学连接,使得所述多条波导设置成彼此不交叉。在一些实施方式中,对应所述节点可设置EIC芯片、PIC芯片、以及其他电子或光子设备中的一个。在一些实施方式中,所述多条波导彼此不交叉包括所述多条波导在同一层不交叉。波导不交叉包括波导平行设置,也可以包括波导非平行设置。
在一些实施方式中,可以画出一条经过所述光互连件的节点的虚拟闭合路径,所述多条波导沿着该虚拟闭合路径分布。换句话说,所述多条波导沿一虚拟闭合路径分布,该虚拟闭合路径经过所述光互连件的节点。多条波导沿一虚拟闭合路径分布,其包括设置在该虚拟闭合路径附近的情形,而并不一定要刚好与虚拟闭合路径重叠。在一种示例性实施方式中,如图2和图3所示,所述光互连件包括8个节点,即节点1至节点8,并且,在所述光互连件中,用于节点间光学连接的波导(图2、3中未示出)沿着一经过所述8个节点的虚拟闭合路径(图3中虚线所示)分布。
图4示出了波导沿所述虚拟闭合路径的布置的示例。为了清楚起见,在图4中将图3所示的虚拟闭合路径展开。为了实现节点间的光学通信,所述节点包括至少一个光发送部和至少一个光接收部中的至少一者。
在一种实施方式中,对于所述虚拟闭合路径上的多个节点,依次相邻的两个节点通过波导连接。本文将依次相邻的两个节点称为第一近邻节点,这彼此间没有间隔其他节点。如图4中(a)所示,节点1的光发送部Tx与节点2的光接收部Rx通过一波导连接,从而将信息(或数据)从节点1通过波导以光信号的形式发送给节点2。波导上绘制的箭头示意性地指示该波导由一个节点的发送部指向另一个节点的接收部,亦可理解为沿该波导的光信号的一种传播方向。所述信息可以是设置于节点1的EIC芯片提供的信息,则节点1的光发送部可以包括电光转换单元,将该EIC芯片提供的携带有所述信息的电信号转换为携带所述信息的光信号。例如,所述电光转换单元可以包括电光调制器。可选的,所述信息可以是设置于节点1的PIC芯片提供的信息,则节点1的光发送部可以包括光耦合器,用于耦合该PIC芯片提供的携带所述信息的光信号。节点2的光接收部可以包括光电转换单元,例如光探测器(例如光电二极管),用于将接收的光信号转换为电信号,所述电信号被传输至设置于节点2的外部的EIC芯片。可选的,节点2的光接收部可以包括光耦合器,用于将接收的光信号耦合至设置于节点2的PIC芯片。在本实施方式中,节点2至节点8,依次相邻的两个节点间的波导设置以及节点的光发送部和光接收部的设置与上述节点1和节点2的设置相似,在此不再重复。在一些实施方式中,节点8与节点1通过一波导进行光学连接(例如,在图4的(a)中,节点8的箭头指向节点1),由此,通过沿虚拟闭合路径布置的波导将节点1至节点8光学连接而构成的光网络的拓扑如图4中A所示。根据以上示例,外部设备与节点之间可以通过光信号进行耦合,也可以通过电信号进行耦合。在一些实施方式中,第一类型的芯片可以通过光信号与节点进行耦合,从而与节点进行通信,第二类型的芯片可以通过电信号与节点进行耦合,从而与节点进行通信。外部设备可以既然包括第一类型的芯片,又包括第二类型的芯片, 例如光互连件100实现10个芯片200的互连,其中有4个是第一类型的芯片,有6个是第二类型的芯片。在本申请实施例中,丰富了芯片与光互连件耦合的类型,可适用于不同场景。
应当理解,本申请不限于此,多个节点间可以采用不同的连接方式形成不同的拓扑结构,下面结合图4中(b)(c)(d)进行举例说明。
在一些实施方式中,对于所述虚拟闭合路径上的多个节点,第二近邻节点通过波导连接。本文中,第二近邻节点是指彼此间隔1个节点的两个节点,即这两个节点间具有1个节点。如图4中(b)所示,节点1的光发送部Tx与节点3的光接收部Rx通过一波导连接,从而将信息(或数据)从节点1通过波导以光信号的形式发送给节点3。所述信息可以是设置于节点1的EIC芯片提供的信息,则节点1的光发送部可以包括电光转换单元,将该EIC芯片提供的携带有所述信息的电信号转换为携带所述信息的光信号。例如,所述电光转换单元可以包括电光调制器。可选的,所述信息可以是设置于节点1的PIC芯片提供的信息,则节点1的光发送部可以包括光耦合器,用于耦合该PIC芯片提供的携带所述信息的光信号。节点3的光接收部可以包括光电转换单元,例如光探测器(例如光电二极管),用于将接收的光信号转换为电信号,所述电信号被传输至设置于节点3的EIC芯片。可选的,节点3的光接收部可以包括光耦合器,用于将接收的光信号耦合至设置于节点3的PIC芯片。类似的,节点2与节点4、节点3与节点5、节点4与节点6、节点5与节点7、节点6与节点8、节点7与节点1(图中节点7的箭头指向节点1)、节点8与节点2(图中节点8的箭头指向节点2)分别通过不同的波导连接,并且这些波导不交叉。由此,通过沿虚拟闭合路径布置的多条波导将节点1至节点8光学连接而构成的光网络的拓扑如图4中B所示。示例性的,对于每个节点,被配置为实现其与第二近邻节点的连接。
在一些实施方式中,对于所述虚拟闭合路径上的多个节点,第三近邻节点通过波导连接。本文中,第三近邻节点是指彼此间隔2个节点的两个节点,即这两个节点间具有2个节点。如图4中(c)所示,节点1的光发送部Tx与节点4的光接收部Rx通过一波导连接,从而将信息(或数据)从节点1通过波导以光信号的形式发送给节点4。所述信息可以是设置于节点1的EIC芯片提供的信息,则节点1的光发送部可以包括电光转换单元,将该EIC芯片提供的携带有所述信息的电信号转换为携带所述信息的光信号。例如,所述电光转换单元可以包括电光调制器。可选的,所述信息可以是设置于节点1的PIC芯片提供的信息,则节点1的光发送部可以是光耦合器,用于耦合该PIC芯片提供的携带所述信息的光信号。节点4的光接收部可以包括光电转换单元,例如光探测器(例如光电二极管),用于将接收的光信号转换为电信号,所述电信号被传输至设置于节点4的EIC芯片。可选的,节点4的光接收部可以是光耦合器,用于将接收的光信号耦合至设置于节点4的PIC芯片。类似的,节点2与节点5、节点3与节点6、节点4与节点7、节点5与节点8、节点6与节点1(图中节点6的箭头指向节点1)、节点7与节点2(图中节点7的箭头指向节点2)、节点8与节点3(图中节点8的箭头指向节点3)分别通过不同的波导连接,并且这些波导不交叉。由此,通过沿虚拟闭合路径布置的多条波导将节点1至节点8光学连接而构成的光网络的拓扑如图4中C所示。
在一些实施方式中,对于所述虚拟闭合路径上的多个节点,第四近邻节点通过波导连接。本文中, 第四近邻节点是指彼此间隔3个节点的两个节点,即这两个节点间具有3个节点。如图4中(d)所示,节点1的光发送部Tx与节点5的光接收部Rx通过一波导连接,从而将信息(或数据)从节点1通过波导以光信号的形式发送给节点5。所述信息可以是设置于节点1的EIC芯片提供的信息,则节点1的光发送部可以包括电光转换单元,将该EIC芯片提供的携带有所述信息的电信号转换为携带所述信息的光信号。例如,所述电光转换单元可以包括电光调制器。可选的,所述信息可以是设置于节点1的PIC芯片提供的信息,则节点1的光发送部可以包括光耦合器,用于耦合该PIC芯片提供的携带所述信息的光信号。节点5的光接收部可以包括光电转换单元,例如光电探测器(例如光电二极管),用于将接收的光信号转换为电信号,所述电信号被传输至设置于节点5的EIC芯片。可选的,节点5的光接收部可以是光耦合器,用于将接收的光信号耦合至设置于节点5的PIC芯片。类似的,节点2与节点6、节点3与节点7、节点4与节点8分别通过不同的波导连接,并且这些波导不交叉。由此,通过沿虚拟闭合路径布置的多条波导将节点1至节点8光学连接而构成的光网络的拓扑如图4中D所示。
在一个实施方式中,所述多条波导被配置为使得所述至少4个节点中的任意两个节点实现连接。例如,将图4中(a)(b)(c)(d)所示的结构可以组合,已经足够构成任意两节点互连的拓扑,其中有的两个节点之间可以实现双向通信,例如在图4的(d)中,节点1的发送部可以通过波导向节点5发送信号,节点5通过另一波导向节点1发送信号。但是,在图4整体的方案中,即图4中(a)(b)(c)(d)的组合中,并未实现任意两节点的双向通信,例如节点3可以通过波导向节点4传输信息(在图4中的(a)已经示出),节点4则未被配置为向节点3发送信息,这种通信属于单向通信。在图4的基础上,为了实现任意两节点之间的双向通信,可以配置其它合适数量的波导,例如沿着虚拟闭合线路布置其它波导,并在节点中配置合适的发送部/接收部。
在一些实施方式中,如图6所示,其中一个节点的光发送部Tx包括电光调制器501,其用于将经过导电线路502传送来的电信号所携带的信息调制到光信号中,光发送部Tx还用于将光信号发送至波导503,光信号经由波导503传输到另一个节点的光接收部Rx,从而,光接收部Rx通过波导503接收携带信息的光信号。所述光接收部Rx可包括光探测器504,其用于将接收到的光信号转换为电信号,该电信号经由另一导电线路505输出。
图5示出了一种针对图2所示的节点进行波导布置,其实现连接一个节点与它的第二近邻节点,可以认为这些波导都沿着如图3所示的虚拟闭合路径布置,示例性的,图5中的波导是弯曲波导。在一些实施例中,弯曲的波导能使得其更适合虚拟闭合路径的走向,可以配置至少3条的弯曲波导,适用于比较复杂的连接。虚拟闭合路径的形态并无特别限制,波导布置方式符合沿着虚拟闭合路径布置的这一规律,即可认为符合本申请构思。图5中的波导布置方式,沿着虚拟闭合路径展开后,呈现如图4中的(b)所示的情形。在该示例中,对于所述至少4个节点中的每个节点,被配置为实现与其第二近邻节点的连接。
在一些实施方式中,连接两个节点间的波导为单通道。例如,如图4所示,两个具有光学连接的节点分别具有1个光发送部和1个光接收部。如图4的(d)所示,对于8个节点采用第四近邻节点通过 单波导连接的在的光学连接配置中,沿虚拟路径一共设置有4条并行的波导,并且这4条波导不交叉。在其他实施方式中,两个具有光学连接的节点可通过多通道连接。例如,如图7所示,采用4条波导分别连接节点1的4个光发送部以及节点5的4个光接收部,其可以提供更大的传输带宽。并且,如图7的拓扑结构所示,沿虚拟闭合路径布置的8个节点采用第四近邻节点彼此光学连接的配置,沿虚拟路径一共设置有并行波导,并且这些波导不交叉。在图3所示的实施方式中,沿着经过8个节点的近似O形的环形虚拟路径设置光学连接用波导。应当理解,本申请不限于此,虚拟闭合路径也可以有其它形态,例如,如图8的虚线所示,沿着该虚拟闭合路径同样可以将光学连接用波导布置成不交叉。还应当理解,虽然以上以8个节点为例进行说明,但是本申请的光学互连件中对节点的数量不做限定,可以多于8个节点,也可以少于8节点。
在一些实施方式中,光互连件包括多个节点和多条波导,所述多条波导沿着经过所述多个节点的虚拟闭合路径分布,使得设置成多条波导彼此不交叉。所述多个节点包括第一节点和第二节点,使得所述第一节点与第二节点连接的波导与连接其他节点的波导不交叉。例如,节点1(作为第一节点)与节点3(作为第二节点)之间的光学连接用波导与其他任意节点间的光学连接用波导不交叉(图3中未示出波导);或者,节点1(作为第一节点)与节点5(作为第二节点)之间的光学连接用波导与其他任意节点间的光学连接用波导不交叉;或者,节点1(作为第一节点)与节点6(作为第二节点)之间的光学连接用波导与其他任意节点间的光学连接用波导不交叉。
在一些实施方式中,所述多个节点包括第一节点和第二节点,所述第一节点与第二节点相邻,并且将所述第一节点与第二节点连接的波导与连接其他节点的波导不交叉。对于图3布置的节点(图3未示出波导),节点1(作为第一节点)与节点2(作为第二节点)之间的光学连接用波导与其他任意节点间的光学连接用波导不交叉。
在一些实施方式中,所述多个节点包括第一节点和第二节点,所述第一节点与第二节点之间间隔N个节点,N≥1。并且,将所述第一节点与第二节点连接的波导与连接其他节点的波导不交叉。例如,对于图3布置的节点(图3未示出波导),节点1(作为第一节点)与节点3(作为第二节点)之间的光学连接用波导与其他任意节点间的光学连接用波导不交叉;或者,节点1(作为第一节点)与节点4(作为第二节点)之间的光学连接用波导与其他任意节点间的光学连接用波导不交叉;或者节点1(作为第一节点)与节点5(作为第二节点)之间的光学连接用波导与其他任意节点间的光学连接用波导不交叉。
在一些实施方式中,所述多个节点包括依次相邻的第一节点、第二节点、第三节点和第四节点;并且,将所述第一节点与第二节点连接的波导、将第一节点与第三节点连接的波导、将第一节点与第四节点连接的波导彼此不交叉。例如,对于图3布置的节点(图3未示出波导),将节点1与节点2连接的波导、将节点1与节点3连接的波导、将节点1与节点4连接的波导彼此不交叉。在一些实施方式中,将所述第一节点与第三节点连接的波导与将第二节点与第四节点连接的波导不交叉。例如,将节点1与节点3连接的波导与将节点2与节点4连接的波导不交叉。在一些实施方式中,将所述第一节点与第四节点连接的波导与将第二节点与第三节点连接的波导不交叉。例如,将节点1与节点4连接的波导与 将节点2与节点3连接的波导不交叉。
在一些实施方式中,所述多个节点包括依次相邻的第一节点、第二节点、第三节点、第四节点和第五节点;并且,将所述第一节点与第四节点连接的波导与将第二节点与第五节点连接的波导不交叉。例如,对于图3布置的节点(图3未示出波导),将节点1与节点4连接的波导与将节点2与节点5连接的波导不交叉。
在一些实施方式中,光互连件包括多个节点和多条波导,所述多条波导沿着经过所述多个节点任意一条虚拟闭合路径设置:以所述多个节点中一个节点为起始节点,该起始节点与其他每一个节点连接的波导彼此不同且不交叉。例如,以图3所示的8个节点为例,节点1为起始节点,将节点2至节点8中每一个节点与节点1连接的波导彼此不同(图3未示出波导),且不交叉。在一些实施方式中,所述起始节点的多个光发送部沿所述虚拟闭合路径的同一方向通过不同的波导分别与其他每一个节点对应的光接收部连接。例如,节点1包括7个发送部,为了使得节点1的7个发送部与其它7个节点的接收部分别连接,对于图3中的虚拟闭合路径,可以以节点1为起始节点,沿顺时针或逆时针将节点1的7个发送部通过不同的波导分别与节点2至节点8中每个节点的1个接收部连接,使得这些波导彼此不交叉,其中,图3仅示出了节点的位置,未示出光发送部、光接收部、波导。在一些实施方式中,所述起始节点的多个光发送部沿所述虚拟闭合路径的第一方向通过不同的波导与一部分节点中每一个节点对应的光接收部分别连接,沿所述虚拟闭合路径的与第一方向相反的第二方向通过另外不同的波导与另一部分节点中每一个节点对应的光接收部分别连接。例如,节点1包括7个发送部,为了使得节点1的7个发送部与其它7个节点的接收部分别连接,对于图3中的虚拟闭合路径,可以以节点1为起始节点,沿顺时针通过不同波导将节点1的4个发送部与节点2至节点5中每个节点的1个接收部分别连接,沿逆时针通过不同波导将节点1的3个发送部与节点8至节点6中每个节点的1个接收部分别连接。以上的几种实施方式中,可以实现节点1作为起始节点,其多个发送部分别与其它每个节点所具有的1个对应的接收部连接,从而使得节点1能够向其它节点发送光信号。
在一些实施方式中,光互连件包括多个节点和多条波导,所述多个节点以阵列形式布置,并且,所述虚拟闭环路径沿着阵列的列或行延伸,所述多条波导沿着该虚拟闭合路径设置。如图9所示,将64个节点布置为8×8的阵列形式,一虚拟闭合路径(图9中实线所示)沿着阵列的列上下来回延伸,并且沿着该虚拟闭合路径设置有用于光学连接的多条波导。
在本申请的其他实施方式中,提供了一种制造光互连件的方法,其包括:
提供基板;
在所述基板上,沿着一经过至少多个节点的虚拟闭合路径设置多条波导,以使每条波导将所述多个节点中的两个节点光学连接。
本申请对闭合路径的确定、节点设置和波导设置的顺序不做限定。
在一些实施方式中,可以根据基板上布置的所述多个节点确定出一经过所述多个节点的闭合路径,然后沿着所述闭合路径设置用于光学连接的波导,从而,可将波导设置成不交叉。
在一些实施方式中,所述多个节点、经过所述多个节点的闭合路径和沿所述闭合路径布置的多个波导可以预先作为图案数据存储,并在半导体制造工艺中,根据存储的图案数据采用半导体制造工艺在基板上一体形成所述节点和所述多个波导。
本领技术人员应当理解,以上所公开的仅为本申请的实施方式而已,当然不能以此来限定本申请请求专利保护的权利范围,依本申请实施方式所作的等同变化,仍属本申请之权利要求所涵盖的范围。

Claims (26)

  1. 一种光互连件,其中,包括:
    至少4个节点,每一个节点用于与外部设备通信;
    多条波导,每条所述波导用于连接所述至少4个节点中的两个节点。
  2. 如权利要求1所述的光互连件,其中,所述多条波导沿着一虚拟闭合路径分布并且所述虚拟闭合路径经过所述至少4个节点,使得所述多条波导设置成彼此不交叉。
  3. 如权利要求2所述的光互连件,其中,所述节点包括至少一个光发送部和至少一个光接收部中的至少一者。
  4. 如权利要求3所述的光互连件,其中,每条所述波导被配置为连接所述至少4个节点中的一个节点的光发送部以及另一节点的光接收部,以将光从所述光发送部传输至所述光接收部。
  5. 如权利要求4所述的光互连件,其中,所述至少4个节点包括第一节点和第二节点,所述多条波导包括将所述第一节点与第二节点连接的波导。
  6. 如权利要求5所述的光互连件,其中,沿着所述虚拟闭合路径,所述第一节点与第二节点相邻。
  7. 如权利要求5所述的光互连件,其中,沿着所述虚拟闭合路径,所述第一节点与第二节点之间间隔N个节点,N≥1。
  8. 如权利要求4所述的光互连件,其中,沿着所述虚拟闭合路径,所述至少4个节点包括依次相邻的第一节点、第二节点、第三节点和第四节点;
    并且,所述多条波导包括将所述第一节点与第二节点连接的波导、将第一节点与第三节点连接的波导,以及将第一节点与第四节点连接的波导。
  9. 如权利要求4所述的光互连件,其中,沿着所述虚拟闭合路径,所述至少4个节点包括依次相邻的第一节点、第二节点、第三节点和第四节点;
    并且,所述多条波导包括将所述第一节点与第三节点连接的波导,以及将第二节点与第四节点连接的波导。
  10. 如权利要求4所述的光互连件,其中,沿着所述虚拟闭合路径,所述至少4个节点包括依次相邻的第一节点、第二节点、第三节点和第四节点;
    并且,所述多条波导包括将所述第一节点与第四节点连接的波导,以及将第二节点与第三节点连接的波导。
  11. 如权利要求4所述的光互连件,其中,沿着所述虚拟闭合路径,所述至少4个节点包括依次相邻的第一节点、第二节点、第三节点、第四节点和第五节点;
    并且,所述多条波导包括将所述第一节点与第四节点连接的波导,以及将第二节点与第五节点连接的波导。
  12. 如权利要求4述的光互连件,其中,所述至少4个节点包括起始节点,所述多条波导布置成:使得该起始节点与其他每一个节点连接。
  13. 如权利要求12所述的光互连件,其中,所述起始节点的多个光发送部沿所述虚拟闭合路径的同一方向通过不同的波导分别与其他每一个节点对应的光接收部连接。
  14. 如权利要求12所述的光互连件,其中,所述起始节点的多个光发送部沿所述虚拟闭合路径的第一方向通过不同的波导与一部分节点中每一个节点对应的光接收部分别连接,沿所述虚拟闭合路径的与第一方向相反的第二方向通过另外不同的波导与另一部分节点中每一个节点对应的光接收部分别连接。
  15. 如权利要求4所述的光互连件,其中,所述至少4个节点以阵列形式布置,并且,所述虚拟闭环路径沿着阵列的列或行延伸,所述多条波导沿着该虚拟闭合路径设置。
  16. 如权利要求4所述的光互连件,其中,对于所述至少4个节点中的每个节点,被配置为实现与其第二近邻节点的连接。
  17. 如权利要求1所述的光互连件,其中,所述节点包括至少一个光发送部和至少一个光接收部中的至少一者。
  18. 如权利要求17所述的光互连件,其中,每条所述波导被配置为连接所述至少4个节点中的一个节点的光发送部以及另一节点的光接收部,以将光从所述光发送部传输至所述光接收部。
  19. 如权利要求3-18中任意一项所述的光互连件,其中,所述光发送部包括电光转换单元,所述光接收部包括光电转换单元。
  20. 如权利要求1-18中任意一项所述的光互连件,其中,所述多条波导包括弯曲波导。
  21. 如权利要求1至20中任意一项所述的光互连件,其中,所述多条波导被配置为使得所述至少4个节点中的任意两个节点实现连接。
  22. 一种芯片封装,其中,包括:
    如权利要求1至21中任意一项所述的光互连件;以及
    至少4个芯片,其中的每一个芯片耦合至所述光互连件的一个节点,并且所述至少4个芯片与所述至少4个节点一一对应;
    以及,所述光互连件被配置为使得所述每条波导所连接的两个节点对应的两个芯片通信。
  23. 如权利要求22所述的芯片封装,其中,所述芯片包括电子集成电路芯片和光子集成电路芯片中的至少一者。
  24. 如权利要求23所述的芯片封装,其中,所述芯片为电子集成电路芯片。
  25. 如权利要求23所述的芯片封装,其中,所述芯片为光子集成电路芯片。
  26. 一种制造光互连件的方法,其中,包括:
    提供基板;
    在所述基板上,沿着一经过至少4个节点的虚拟闭合路径分布多条波导,以使每条波导连接所述至少4个节点中的两个节点。
PCT/CN2023/110575 2022-08-01 2023-08-01 光互连件及其制造方法、芯片封装 WO2024027714A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210917110.9 2022-08-01
CN202210917110.9A CN117538997A (zh) 2022-08-01 2022-08-01 光互连件及其制造方法、芯片封装

Publications (1)

Publication Number Publication Date
WO2024027714A1 true WO2024027714A1 (zh) 2024-02-08

Family

ID=89790533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110575 WO2024027714A1 (zh) 2022-08-01 2023-08-01 光互连件及其制造方法、芯片封装

Country Status (3)

Country Link
CN (1) CN117538997A (zh)
TW (1) TW202407405A (zh)
WO (1) WO2024027714A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498477A (zh) * 2001-01-24 2004-05-19 �����Ӣ��֪ʶ��Ȩ���޹�˾ 在波分复用光通信系统中的信道修饰
WO2010128958A1 (en) * 2009-05-06 2010-11-11 Hewlett-Packard Development Company, L.P. Bus-based scalable optical fabrics
CN102483727A (zh) * 2009-12-10 2012-05-30 惠普开发有限公司 公平令牌仲裁系统和方法
US20150139646A1 (en) * 2013-11-19 2015-05-21 Commissariat A L'energie Atomique Et Aux Ene Alt Optical network and data processing system comprising such an optical network
CN110249557A (zh) * 2017-02-02 2019-09-17 国际商业机器公司 波导内部节点上具有多重光信号的光子神经元件的波导结构
CN114204995A (zh) * 2020-10-30 2022-03-18 慧与发展有限责任合伙企业 用于可缩放多对多连接结构的多芯片光子节点

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498477A (zh) * 2001-01-24 2004-05-19 �����Ӣ��֪ʶ��Ȩ���޹�˾ 在波分复用光通信系统中的信道修饰
WO2010128958A1 (en) * 2009-05-06 2010-11-11 Hewlett-Packard Development Company, L.P. Bus-based scalable optical fabrics
CN102483727A (zh) * 2009-12-10 2012-05-30 惠普开发有限公司 公平令牌仲裁系统和方法
US20150139646A1 (en) * 2013-11-19 2015-05-21 Commissariat A L'energie Atomique Et Aux Ene Alt Optical network and data processing system comprising such an optical network
CN110249557A (zh) * 2017-02-02 2019-09-17 国际商业机器公司 波导内部节点上具有多重光信号的光子神经元件的波导结构
CN114204995A (zh) * 2020-10-30 2022-03-18 慧与发展有限责任合伙企业 用于可缩放多对多连接结构的多芯片光子节点

Also Published As

Publication number Publication date
CN117538997A (zh) 2024-02-09
TW202407405A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
US10063426B2 (en) Network node connection configuration
US11424837B2 (en) Method and system for large silicon photonic interposers by stitching
JP6294838B2 (ja) 高密度に実装された光インターコネクトを有するチップアセンブリ構成
CN102027399B (zh) 使用芯片上光波导的光电子交换机
CN105917257A (zh) 检测器重调器和光电子交换机
US7817880B1 (en) Multi-chip systems using on-chip photonics
CN106533993A (zh) 基于五端口光路由器的光片上网络
CN101917333B (zh) 基于区域的光电双层片上网络系统及路由方法
CN102638311A (zh) 基于波长分配的光片上网络系统及其通信方法
CN105451103B (zh) 基于波长分配的三维光片上网络路由器通信系统及方法
CN113759466B (zh) 面向5g通信的偏振无关型硅基光波分复用接收器及装置
WO2017016416A1 (zh) 一种光互联背板、传输设备及信号调度方法
CN110568560B (zh) 一种基于Benes结构且具有均衡损耗的大规模光开关拓扑阵列芯片实现方法
CN104995537A (zh) 交换Clos网络通用元件
CN105847166A (zh) 支持多播通信的多端口可扩展片上光路由器
WO2024027714A1 (zh) 光互连件及其制造方法、芯片封装
US20240056705A1 (en) Distributed optical switching and interconnect chip and system
WO2024037573A1 (zh) 时钟信号传输装置及其制造方法、光学时钟平衡装置
CN107561651B (zh) 一种可切换通路的光波导通信装置
US20130049883A1 (en) Waveguide network
Zheng et al. BGA package integration of electrical, optical, and capacitive interconnects
CN106936506B (zh) 一种光节点以及相关系统
CN113709604B (zh) 基于环形转盘总线架构的快速可重构无阻塞全连接路由器
CN110456454A (zh) 光子人工智能芯片互联装置及片间互联光子人工智能芯片
CN107209335A (zh) 电子/光子芯片集成和接合

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849420

Country of ref document: EP

Kind code of ref document: A1