WO2024027640A1 - 一种具有局部半开放钝化接触结构的钙钛矿太阳能电池及其制备方法 - Google Patents

一种具有局部半开放钝化接触结构的钙钛矿太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2024027640A1
WO2024027640A1 PCT/CN2023/110204 CN2023110204W WO2024027640A1 WO 2024027640 A1 WO2024027640 A1 WO 2024027640A1 CN 2023110204 W CN2023110204 W CN 2023110204W WO 2024027640 A1 WO2024027640 A1 WO 2024027640A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
perovskite
insulating
transport layer
low
Prior art date
Application number
PCT/CN2023/110204
Other languages
English (en)
French (fr)
Inventor
徐集贤
彭伟
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Publication of WO2024027640A1 publication Critical patent/WO2024027640A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of solar cells, and specifically relates to a perovskite solar cell with a semi-open passivation contact structure and a preparation method thereof.
  • Perovskite solar cells have received widespread attention due to their low production cost and simple structure.
  • the structure of perovskite solar cells is divided into formal structure and trans structure.
  • the current certified maximum efficiency of perovskite solar cells has reached 25.7%, which comes from the Ulsan National Institute of Science and Technology in South Korea.
  • the preparation methods of perovskite solar cells mainly include solution method and vapor deposition method.
  • the solution method is more commonly used due to its simple preparation process and low production cost, and the resulting perovskite film has better coverage and crystallinity.
  • heterojunction contact problems are often one of the potential reasons for poor cell performance.
  • scholars have conducted a lot of research work. Taking mesoporous structures as an example, most of the reports currently use materials such as zirconia, alumina, and titanium oxide to make mesopores. structure and applied at the interface.
  • the present invention designs a perovskite solar cell with a partially semi-open passivation contact structure, including a charge transport layer (including an electron transport layer (Electron transport layer, referred to as “ETL” for short) ) and a hole transport layer (Hole transport layer, referred to as "HTL”)) and a layer of insulating low-conductivity shielding layer with local nanoscale openings, which can simultaneously passivate the perovskite interface and limit the current passing through the openings.
  • ETL electron transport layer
  • HTL hole transport layer
  • a perovskite solar cell with a partially semi-open passivation contact structure which at least includes a charge transport layer and a perovskite layer.
  • An insulating or low-conducting material layer is provided between the perovskite layers, and the insulating or low-conducting material layer is a continuous or discontinuous island-shaped structure.
  • the above nanoscale semi-opening contact (NSC) structure serves as a new type of charge transport
  • the layer can passivate interface defects without affecting carrier transport.
  • charge transport layers there are two types of charge transport layers: electron transport layer and hole transport layer.
  • insulating or low-conducting materials are deposited on the surface between the perovskite and the charge transport layer through physical or chemical methods ( (below) interface.
  • the charge transport layer is prepared by a physical deposition method or a chemical deposition method.
  • Physical deposition methods include but are not limited to vacuum evaporation, sputtering, ion beam deposition, pulse laser deposition, etc.
  • chemical deposition methods include but are not limited to chemical vapor deposition, atomic layer deposition, sol-gel spin coating, etc.
  • the horizontal scale of the continuous or discontinuous islands is smaller than the diffusion length of the photogenerated carriers in the perovskite
  • the distance between islands is smaller than the horizontal scale of the island, which is 0.1-9 times of the horizontal scale of the island.
  • the shape of the island-like structure is needle-like, cone-like, columnar, spherical or sheet-like; the height of the island-like structure is 1-400nm, and the horizontal width is 10-2000nm.
  • the insulating low-conducting precursor material uses an insulating oxide to form a discontinuous island distribution between the charge transport layer and the perovskite layer. There are openings between the islands. The existence of the NSC layer makes the carriers There is no way to transport to the charge transport layer through the insulating oxide material, only through the perovskite phase.
  • the coverage of the insulating or low-conducting material layer is 5-99%, and the coverage is the area where the insulating low-conducting material blocks and prevents carriers from being transferred from the perovskite layer to the charge transport layer.
  • the percentage of layer surface area, d is the average horizontal width of the island structure, and s is the average spacing of the island structure.
  • pathway a which is directly transmitted from the perovskite layer to the hole (electron) transport layer
  • pathway b which is first transported from the perovskite layer to the hole (electron) transport layer.
  • the perovskite phase diffuses from the top of the island-shaped insulating low-conductivity material to the openings, and then is transported to the hole (electron) transport layer.
  • the insulating or low-conducting material layer may be an insulating or low-conducting material containing groups including but not limited to hydroxyl, phosphoric acid, carboxylic acid, etc., preferably capable of interacting with the perovskite material.
  • the insulating or low-conducting material layer includes inorganic insulating or low-conducting materials or organic insulating or low-conducting materials or materials wrapped by the above insulating or low-conducting materials;
  • the inorganic insulating or low-conducting materials include zirconium oxide, aluminum oxide, iron oxide, lithium oxide, germanium oxide, silicon oxide, phosphorus pentoxide, boron oxide, magnesium oxide, chromium oxide, zirconium fluoride, aluminum fluoride, fluorine One or more of iron, germanium fluoride, silicon fluoride, boron fluoride, magnesium fluoride or lithium fluoride;
  • the organic insulating or low-conducting materials include polyethylene, polypropylene, polytetrafluoroethylene, polyvinyl chloride, polycarbonate, polyacrylic acid, polyamide, polysulfone, polymethyl methacrylate, polyformaldehyde, phenolic resin, Epoxy resin, melamine formaldehyde resin, polyimide, rubber, fiber, 2-phenylethylamine hydroiodide, piperazine diiodate, 1,8-octanediamine hydroiodide or oleylamine iodine one or more types.
  • these insulating low-conductivity materials can also be surface-coated with conductors, semiconductors (including but not limited to metals, fullerenes, graphene, graphdiyne and other two-dimensional sheet materials and their derivatives) materials to provide high insulation or low conductivity.
  • conductors including but not limited to metals, fullerenes, graphene, graphdiyne and other two-dimensional sheet materials and their derivatives
  • the thickness of the insulating or low-conducting cladding material should be such that it is sufficiently low-conducting or even insulating.
  • the insulating or low conductive material layer is prepared by a physical deposition method or a chemical deposition method.
  • Physical deposition methods include but are not limited to vacuum evaporation, sputtering, ion beam deposition, pulse laser deposition, etc.; chemical deposition methods include but are not limited to chemical vapor deposition, atomic layer deposition, sol-gel spin coating, etc., the average of the island Horizontal width 10-2000nm, average height 1-400nm, coverage 5-99%.
  • the battery structure is a p-i-n structure, which consists of a transparent conductive substrate, an NSC-type hole transport layer, a perovskite layer, an electron transport layer and a back electrode from bottom to top.
  • the battery structure is an n-i-p structure, consisting of a transparent conductive substrate, an NSC electron transport layer, a perovskite layer, a hole transport layer and a back electrode from bottom to top.
  • the structure uses NSC layers on both upper and lower surfaces. From bottom to top, they are a transparent conductive substrate, an NSC-type hole (electron) transport layer, a perovskite layer, an NSC-type electron (hole) transport layer and a back surface. electrode.
  • NSC layers on both upper and lower surfaces. From bottom to top, they are a transparent conductive substrate, an NSC-type hole (electron) transport layer, a perovskite layer, an NSC-type electron (hole) transport layer and a back surface. electrode.
  • the battery structure is a perovskite-perovskite stacked structure, which consists of a transparent conductive substrate, an NSC-type hole (electron) transport layer, a perovskite layer, and an electron (hole) transport layer from bottom to top. , tunneling composite layer, NSC-type hole (electron) transport layer, perovskite layer, electron (hole) transport layer, electrode.
  • the battery structure is a perovskite-silicon stack structure, which from bottom to top is silicon battery, transparent conductive oxide, NSC-type hole (electron) transport layer, perovskite layer, electron (hole) Transmission layer, electrode.
  • the battery structure is a perovskite-CIGS structure. From bottom to top, it is a CIGS battery, a transparent conductive oxide, an NSC-type hole (electron) transport layer, a perovskite layer, and an electron (hole) transport layer. ,electrode.
  • the present invention also provides a method for preparing a perovskite solar cell with a partially semi-open passivation contact structure as described above.
  • the specific steps are as follows:
  • the present invention also provides other preparation methods for perovskite solar cells with partially semi-open passivation contact structures as described above.
  • the specific steps are as follows:
  • the insulating or low conductive material layer is a continuous or discontinuous island structure.
  • the horizontal scale of the continuous or discontinuous islands should be smaller than the diffusion length of the photogenerated carriers in the perovskite, and the distance between the islands should be as small as possible relative to the horizontal scale of the island, which is approximately the horizontal scale of the island. 0.1-9 times.
  • the insulating or low-conducting material layer is prepared by a physical deposition method or a chemical deposition method
  • the physical deposition method is vacuum evaporation, sputtering, ion beam deposition or pulse laser deposition;
  • the chemical deposition method is chemical vapor deposition, atomic layer deposition or sol-gel spin coating.
  • distance refers to the shortest distance between two objects, and the distance between the centers of two objects refers to the center distance.
  • the insulating low-conducting semi-open shielding layer of the technical solution of the present invention can be composed of insulating low-conducting materials distributed discretely in an island shape (that is, the openings are connected and distributed) or made of connected and distributed insulating low-conducting materials (that is, the openings are discrete) Distribution), by placing the insulating low-conducting material between the charge transport layer and the perovskite layer, the charge transport layer and the insulating low-conducting material form a new charge transport structure, achieving nanoscale partial semi-open contact (nanoscale semi- opening contact (abbreviated as "NSC") to achieve the effect of passivating the interface between the charge transport layer and the perovskite layer, reducing non-radiative recombination at the interface, while not affecting the current carrying capacity between the perovskite layer and the charge transport layer
  • NSC nanoscale partial semi-open contact
  • the preparation process of the technical solution of the present invention does not require high temperature, and its local contact characteristics will not affect the absorption of light by the perovskite layer. For hydrophobic base materials, it can also enhance the contact between the perovskite layer and the charge transport layer. Achieve full coverage of the perovskite film; the technical solution of the present invention can be applied to single-cell perovskite solar cells, perovskite-perovskite stacked cells, silicon-perovskite stacked solar cells, perovskite- CIGS stacked batteries, etc., and are suitable for both rigid and flexible substrates;
  • the present invention utilizes the NSC-type charge transport structure to not only passivate the defects at the interface between the charge transport layer and the perovskite layer, reduce non-radiative recombination losses, and increase the open circuit voltage, but also enhances the transmission of carriers at the interface. , achieving dual improvements in passivation and transmission; the photoluminescence lifetime of the NSC/perovskite of the technical solution of the present invention is significantly extended to about 4 ⁇ s, allowing the open circuit voltage to reach more than 97% of the thermodynamic limit.
  • These combined functions enable us to combine p-i-n Device efficiency increased from approximately 23% to 25.5% (certified 24.9%);
  • the NSC layer of the technical solution of the present invention can increase the wettability of the surface of the hydrophobic base material, it can promote the full coverage of perovskite and other materials, which is conducive to large-area preparation; and due to the stability of the NSC layer, the device It has excellent thermal stability, long-term storage stability and operational stability, which can significantly improve the performance of perovskite solar cells. At the same time, the preparation process is simple and low-cost, and it is suitable for commercial applications in large areas.
  • Figure 1 is a perovskite solar cell structure with a partially open passivation contact structure of the present invention
  • Figure 2 is a schematic diagram of the discontinuous island structure of the insulating or low-conducting material layer of the present invention (that is, the openings are connected and distributed);
  • Figure 3 is a schematic diagram of the continuous island-like structure of the insulating or low-conducting material layer of the present invention (that is, the openings are discretely distributed);
  • Figure 4 is an atomic force microscope (AFM) image of the alumina of the present invention spin-coated on HTL showing island-like distribution;
  • Figure 5 is a cross-sectional curve diagram showing an island-like distribution of alumina spin-coated on HTL of the present invention, corresponding to the cross-section at the dotted line in Figure 4;
  • Figure 6 shows the experimental results obtained when alumina dispersions of different concentrations of the present invention were spin-coated on HTL, resulting in different alumina coverage rates on HTL;
  • Figure 7 is a cross-sectional view of a p-i-n structure perovskite solar cell with a partially semi-open passivation contact structure of the present invention
  • Figure 8 shows the current density-voltage (JV) curve of a p-i-n structure perovskite solar cell before and after growing a 1-2nm dense layer of aluminum oxide on HTL using atomic layer deposition technology;
  • Figure 9 is the current density-voltage curve before and after passivation of the p-i-n structure perovskite solar cell with a partially semi-open passivation contact structure of the present invention.
  • Figure 10 is the maximum power point tracking of the p-i-n structure perovskite solar cell with a partially semi-open passivation contact structure of the present invention before and after passivation.
  • FIG 11 is a comparison chart of the transient fluorescence spectrum (TRPL) of the p-i-n structure perovskite solar cell of the present invention before and after passivation;
  • TRPL transient fluorescence spectrum
  • Figure 12 is a schematic structural diagram of a single-junction perovskite solar cell with a partially semi-open passivation contact structure of the present invention (there are NSC layers on both sides of the perovskite layer);
  • Figure 13 is a schematic structural diagram of a perovskite-perovskite stacked battery with a partially semi-open passivation contact structure of the present invention (the perovskite structure is a p-i-n structure or an n-i-p structure, in which the NSC layer is on the bottom side of the perovskite layer );
  • Figure 14 is a schematic structural diagram of a silicon-perovskite stacked battery with a partially semi-open passivation contact structure of the present invention.
  • Figure 15 is a picture of the partial semi-open passivation contact structure of the present invention promoting the covering of perovskite film on the hole transport layer.
  • Picture A shows a perovskite film without NSC structure
  • picture B shows a perovskite film with NSC structure. film.
  • Figure 16 shows the stability tracking of perovskite solar cells with and without partial semi-open passivation contact structures of the present invention.
  • the invention designs a structure of an NSC-type hole transport layer, which is composed of a transparent conductive substrate, an NSC-type hole transport layer, a perovskite layer, an electron transport layer and a back electrode.
  • the insulating or low-conducting material in the NSC layer uses commercial 20wt% alumina, zirconium oxide, and silicon oxide isopropyl alcohol dispersion.
  • the electronic dense layer can be made of titanium oxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), vanadium oxide (V 2 O 5 ), zinc tin oxide (Zn 2 SnO 4 ), fullerene (C60) , C70, etc.) and their derivatives, etc., made of one or more n-type semiconductor materials, but are not limited to the n-type semiconductor materials listed above;
  • the NSC layer in the present invention can not only passivate interface defects, reduce non-radiative recombination losses, and increase open circuit voltage, but also facilitate faster transmission of carriers through the perovskite phase, increase filling factor, and achieve passivation and Double improvement in transmission.
  • due to its hydrophilicity it can improve the wettability of the surface of the base material and promote full coverage of the perovskite film, which is beneficial to the preparation of large-area devices.
  • the stability of the insulating or low-conducting precursor material in the NSC layer also plays a certain role in promoting the stability of the device.
  • the insulating low-conductivity precursor material in the NSC layer is anchored on the perovskite surface through physical and chemical effects, showing uniform or uneven distribution, passivating the surface without affecting carrier transmission, and having a low thermal expansion coefficient.
  • the insulating low-conducting precursor material is beneficial to control the stress changes between the perovskite and the charge transport layer and improve the mechanical stability of the perovskite battery.
  • step 3 Deposit a layer of perovskite on the basis of step 2, with a thickness of about 500nm;
  • step 6 Use the device prepared in step 6 to conduct JV curve testing and maximum power point tracking.
  • the use of the NSC layer improves device performance: when the NSC layer is not used, the photoelectric conversion efficiency of the device is 22.83%, the open circuit voltage is 1.15V, the fill factor is 79.14%, and the short circuit current The density is 25.01mA/cm 2 , and the steady-state efficiency obtained by maximum power point tracking is 23.3%.
  • the photoelectric conversion efficiency can be increased to 25.50%, the open circuit voltage is 1.21V, and the fill factor is 84.37%.
  • the short-circuit current density is 25.11mA/cm 2 , and the steady-state efficiency derived from maximum power point tracking is 25.6%. Therefore, the use of an NSC-type hole transport layer is beneficial to simultaneously increasing the open circuit voltage and filling factor without affecting the short-circuit current density.
  • the tunneling composite layer uses thermally evaporated Au, with a thickness of 2nm;
  • step 3 Deposit a layer of perovskite on the basis of step 2, with a thickness of about 500nm;
  • the photoelectric conversion efficiency of the device is 22.83%; after using the NSC layer, the photoelectric conversion efficiency can be increased to 25.28%.
  • the photoelectric conversion efficiency of the device is 22.83%; after using the NSC layer, the photoelectric conversion efficiency can be increased to 25.13%.
  • ALD atomic layer deposition
  • the performance of the device has not been improved.
  • the short-circuit current density is reduced from 24.63mA/cm 2 to 24.20mA/cm 2 and the filling factor is reduced from 82.26 % dropped to 78.19%, the open circuit voltage dropped from 1.10V to 1.08V, The efficiency is reduced from 22.29% to 20.41%.
  • the decrease in short-circuit current density and fill factor once again shows that this traditional ultra-thin insulating oxide is used as a passivation layer, which is sensitive to thickness and generally increases the transmission resistance, which is not conducive to the extraction and transmission of carriers, resulting in Loss of device performance.
  • step 3 Take the AFM image of the sample prepared in step 2, use Bruker brand instrument and equipment, use chrome/gold-plated silicon cantilever beam, tap mode, resonant frequency is 160kHz, and torque constant is 5N/m. All images were obtained with the same scanning parameters: 256 points/ ⁇ m, 1s/line, 1s/retrace.
  • step 3 Test the sample prepared in step 2 for TRPL.
  • the excitation wavelength is 450nm
  • the standard pulse time is 80ps
  • the average energy injection is 3mW.
  • the carrier lifetime in the sample was significantly improved, from 880ns in the blank control sample to more than 3500ns.
  • the significant increase in carrier lifetime shows that non-radiative recombination inside the sample is effectively suppressed, which proves that the NSC structure is conducive to the increase of open circuit voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种具有局部半开放钝化接触结构的钙钛矿太阳能电池,其至少包括电荷传输层和钙钛矿层,在电荷传输层和钙钛矿层之间设置有绝缘或低导材料层,所述绝缘或低导材料层为连续或不连续的岛状结构。通过使电荷传输层与绝缘或低导材料层之间构成局部半开放钝化接触结构,实现电荷传输层与钙钛矿层之间的接触面积减小、减少界面处的非辐射复合,同时不影响钙钛矿层与电荷传输层之间载流子的提取和传输,克服了钝化与电荷传输之间的矛盾,从而实现高开路电压和填充因子,且不会降低电流密度,并使钝化层的厚度可在较大范围内设置;制备过程无需高温,其局部接触的特点不会影响钙钛矿层对光的吸收。

Description

一种具有局部半开放钝化接触结构的钙钛矿太阳能电池及其制备方法 技术领域
本发明属于太阳能电池技术领域,具体涉及一种具有半开放钝化接触结构的钙钛矿太阳能电池及其制备方法。
背景技术
能源是当今世界发展的重要基础,而光伏作为绿色能源,为解决能源问题提供了一个重要途径。钙钛矿太阳能电池因其制作成本低、结构简单而收到广泛关注。钙钛矿太阳能电池的结构分为正式结构和反式结构,目前钙钛矿太阳能电池的认证最高效率已达25.7%,出自韩国蔚山国家科学技术研究所。
钙钛矿太阳能电池的制备方法主要有溶液法和气相沉积法。溶液法因其制备工艺简易、制作成本低而应用更加普遍,并且得到的钙钛矿薄膜覆盖度和结晶度更好。在钙钛矿太阳能电池的结构中,异质结的接触问题经常是导致电池性能较差的潜在原因之一。为降低异质结接触造成的非辐射复合损失,学者们进行了大量的研究工作,以介孔结构为例,目前所报道的大多是使用氧化锆、氧化铝、氧化钛等材料制作成介孔结构并应用在界面处,但由于此结构需要高温烧结,因此不能在高温烧结步骤之前使用低熔沸点的材料,否则烧结过程中会破坏介孔以下的底层材料,对器件材料的选取有很大限制。而在平面结构中界面处通常插入有钝化层,目前有报道的钝化层常用材料如绝缘有机材料、绝缘无机材料、半导体有机材料、半导体无机材料、低导有机材料、低导无极材料等在用作钝化层时都对厚度有较高要求,基本不能超过5nm,原因在于亚纳米级别的厚度增加可能会导致传输受阻,引起电流密度和填充因子的大幅下降,而纳米级别的厚度下降,就可能会引起开路电压的损失,所以很难同时提高开路电压和填充因子。由于对钝化层厚度极为苛刻的控制要求,限制了钙钛矿太阳能电池的大规模生产应用。
因此亟需一种能解决现有钙钛矿太阳能电池难以同时提高开路电压和填充因子及异质结接触造成的非辐射复合损失问题的钙钛矿太阳能电池。
发明内容
鉴于以上所述现有技术的缺点,本发明设计了一种具有局部半开放钝化接触结构的钙钛矿太阳能电池,包含电荷传输层(包括电子传输层(Electron transport layer,简称为“ETL”)和空穴传输层(Hole transport layer,简称为“HTL”))和一层局部纳米级开孔的绝缘低导遮挡层,具有能同时实现钝化钙钛矿界面和限制电流从开孔通过的优点。
为实现上述目的及其它相关目的,本发明提供了如下技术方案:一种具有局部半开放钝化接触结构的钙钛矿太阳能电池,其至少包括电荷传输层和钙钛矿层,在电荷传输层和钙钛矿层之间设置有绝缘或低导材料层,所述绝缘或低导材料层为连续或不连续的岛状结构。
以上的纳米级局部半开放接触(nanoscale semi-opening contact,简称为“NSC”)型结构作为新型电荷传输 层可以钝化界面缺陷,不影响载流子的传输。根据电池结构的不同电荷传输层有电子传输层和空穴传输层两种,NSC型电荷传输层中绝缘或低导材料通过物理或者化学方法沉积在钙钛矿与电荷传输层之间的上(下)界面。
进一步地,所述电荷传输层通过物理沉积方法或化学沉积方法制备。物理沉积方法包括但不仅限于真空蒸发法、溅射、离子束沉积、脉冲激光沉积等;化学沉积方法包括但不仅限于化学气相沉积、原子层沉积、溶胶-凝胶旋涂法等。
进一步地,所述连续或不连续的岛的水平尺度小于钙钛矿中光生载流子的扩散长度;
进一步地,岛之间的距离小于岛的水平尺度,为岛水平尺度的0.1-9倍。
进一步地,所述岛状结构的形状为针状、锥状、柱状、球状或片状;所述岛状结构的高度为1-400nm,水平宽度为10-2000nm。举例如下,绝缘低导前驱体材料采用绝缘氧化物,在电荷传输层和钙钛矿层之间形成不连续的岛状分布,岛与岛之间为开孔,NSC层的存在,使得载流子无法通过绝缘氧化物材料传输到电荷传输层,只能通过钙钛矿相进行传输。
进一步地,所述绝缘或低导材料层的覆盖率为5-99%,所述覆盖率为绝缘低导材料遮挡并阻止载流子从钙钛矿层传输到电荷传输层的区域面积占电荷传输层表面积的百分比,d为岛状结构的平均水平宽度,s为岛状结构的平均间距。
进一步地,所述具有NSC结构的器件中,载流子有两种传输途径,一种是途径a即直接由钙钛矿层传输到空穴(电子)传输层,另一种是途径b即先从岛状绝缘低导材料的上方由钙钛矿相扩散到开孔处,再传输到空穴(电子)传输层。
进一步地,所述绝缘或低导材料层可以采用含有包括但不限于羟基、磷酸、羧酸等基团,优选能够与钙钛矿材料发生相互作用的绝缘或者低导的材料。
进一步地,所述绝缘或低导材料层包括无机绝缘或低导材料或有机绝缘或低导材料或由以上绝缘或低导材料包裹的材料;
所述无机绝缘或低导材料包括氧化锆、氧化铝、氧化铁、氧化锂、氧化锗、氧化硅、五氧化二磷、氧化硼、氧化镁、氧化铬、氟化锆、氟化铝,氟化铁、氟化锗、氟化硅、氟化硼、氟化镁或氟化锂中的一种或几种;
所述有机绝缘或低导材料包括聚乙烯、聚丙烯、聚四氟乙烯、聚氯乙烯、聚碳酸酯、聚丙烯酸、聚酰胺、聚砜、聚甲基丙烯酸甲酯、聚甲醛、酚醛树脂、环氧树脂、三聚氰胺甲醛树脂、聚酰亚胺、橡胶、纤维、2-苯乙胺氢碘酸盐、哌嗪二碘酸盐、1,8-辛二胺氢碘酸盐或油胺碘中的一种或几种。进一步地,这些绝缘低导材料也可以由导电体、半导体(包括但不仅限于金属、富勒烯、石墨烯、石墨炔等二维片状材料及其衍生物)材料表面包覆以上绝缘或低导材料组成,绝缘或低导包覆材料的厚度应该使其足够低导甚至绝缘。
进一步地,所述绝缘或低导材料层通过物理沉积方法或化学沉积方法制备。物理沉积方法包括但不仅限于真空蒸发法、溅射、离子束沉积、脉冲激光沉积等;化学沉积方法包括但不仅限于化学气相沉积、原子层沉积、溶胶-凝胶旋涂法等,岛的平均水平宽度10-2000nm,平均高度1-400nm,覆盖率为5-99%。
进一步地,所述的电池结构为p-i-n结构,由下至上依次是透明导电基底、NSC型空穴传输层、钙钛矿层、电子传输层和背电极。
进一步地,所述的电池结构为n-i-p结构,由下至上依次是透明导电基底、NSC型电子传输层、钙钛矿层、空穴传输层和背电极。
进一步地,所述的结构为上下表面双面使用NSC层,由下至上依次是透明导电基底、NSC型空穴(电子)传输层、钙钛矿层、NSC型电子(空穴)传输层和背电极。
进一步地,所述的电池结构为钙钛矿-钙钛矿叠层结构,由下至上依次是透明导电基底、NSC型空穴(电子)传输层、钙钛矿层、电子(空穴)传输层、隧穿复合层、NSC型空穴(电子)传输层、钙钛矿层、电子(空穴)传输层、电极。
进一步地,所述的电池结构为钙钛矿-硅叠层结构,由下至上依次是硅电池、透明导电氧化物、NSC型空穴(电子)传输层、钙钛矿层、电子(空穴)传输层、电极。
进一步地,所述的电池结构为钙钛矿-CIGS结构,由下至上依次是CIGS电池、透明导电氧化物、NSC型空穴(电子)传输层、钙钛矿层、电子(空穴)传输层、电极。
本发明还提供了如上所述的具有局部半开放钝化接触结构的钙钛矿太阳能电池的制备方法,具体步骤如下:
1)在清洗干净的透明导电氧化物衬底上制备空穴传输层或电子传输层;
2)在步骤1)得到的层上制备绝缘或低导材料层;
3)在步骤2)得到的层上沉积钙钛矿层;
4)在钙钛矿层上制备电子传输层或空穴传输层;
5)在步骤4)得到的层上制备空穴或电子阻挡层;
6)在步骤5)得到的空穴或电子阻挡层上制备背电极。
本发明还提供了如上所述的具有局部半开放钝化接触结构的钙钛矿太阳能电池的其它制备方法,具体步骤如下:
1)在清洗干净的透明导电氧化物衬底上制备空穴传输层或电子传输层;
2)在步骤1)得到的层上制备绝缘或低导材料层;
3)在步骤2)得到的层上沉积钙钛矿层;
4)在钙钛矿层上制备电子传输层或空穴传输层;
5)在步骤4)得到的层上制备致密层;
6)在步骤5)得到的致密层上制备隧穿复合层;
7)在步骤6)得到的隧穿复合层上制备空穴传输层或电子传输层;
8)在步骤7)得到的层上制备绝缘或低导材料层
9)在步骤8)得到的层上沉积钙钛矿层;
10)在步骤9)得到的层上制备电子传输层或空穴传输层;
11)在步骤10)得到的层上制备背电极。
进一步地,所述绝缘或低导材料层为连续或不连续的岛状结构。
进一步地,所述连续或不连续的岛的水平尺度要小于钙钛矿中光生载流子的扩散长度,同时岛之间的距离要相对岛的水平尺度尽可能更小,大约为岛水平尺度的0.1-9倍。
进一步地,所述绝缘或低导材料层通过物理沉积方法或化学沉积方法制备;
所述物理沉积方法为真空蒸发法、溅射、离子束沉积或脉冲激光沉积;
所述化学沉积方法为化学气相沉积、原子层沉积或溶胶-凝胶旋涂法。
统一距离的定义:一般情况下,距离是指两物体间的最近距离,而两个物体中心的距离是指中心距。
由于采用了以上技术,本发明与现有技术相比,其显著优点为:
1)本发明技术方案的绝缘低导半开放遮挡层可由由岛状分立分布的绝缘低导材料构成(即开孔为连通分布)或由连通分布的绝缘低导材料构成(即开孔为分立分布),通过将绝缘低导材料设置于电荷传输层与钙钛矿层之间,使电荷传输层与绝缘低导材料构成一种全新的电荷传输结构,达到纳米级局部半开放接触(nanoscale semi-opening contact,简称为“NSC”)的效果,实现钝化电荷传输层与钙钛矿层之间界面的效果,减少界面处的非辐射复合,同时不影响钙钛矿层与电荷传输层之间载流子的提取和传输,克服了钝化与电荷传输之间的矛盾,从而实现高开路电压和高填充因子,且不会降低电流密度、使厚度在较大范围内不敏感;
2)本发明技术方案的制备过程无需高温,其局部接触的特点不会影响钙钛矿层对光的吸收,而对于疏水性基底材料,还能增强钙钛矿层与电荷传输层之间的接触,实现钙钛矿薄膜的全覆盖;本发明的技术方案可以应用于单节钙钛矿太阳电池、钙钛矿-钙钛矿叠层电池、硅-钙钛矿叠层太阳能电池、钙钛矿-CIGS叠层电池等,且同时适用于刚性和柔性基底;
3)本发明利用NSC型电荷传输结构不仅可以钝化电荷传输层与钙钛矿层之间的界面的缺陷,减少非辐射复合损失,提高开路电压,而且还会增强载流子在界面处的传输,实现钝化和传输的双重提高;本发明技术方案的NSC/钙钛矿的光致发光寿命显著延长至约4μs,使开路电压达到热力学极限的97%以上,这些组合功能使我们能够将p-i-n器件的效率从约23%提高到25.5%(经认证的24.9%);
4)本发明技术方案的NSC层由于能增加疏水性基底材料表面的润湿性,所以能促进钙钛矿等材料的全覆盖,有利于大面积制备;并且由于NSC层的稳定性,使得器件具备优秀的热稳定性、长期储存稳定性和运行稳定性,能明显提高钙钛矿太阳能电池的性能,同时制备过程简单、成本低,适用于大面积上商业化应用。
附图说明
图1为本发明的具有局部半开放钝化接触结构的钙钛矿太阳能电池结构;
图2为本发明的绝缘或低导材料层不连续的岛状结构示意图(即开孔为连通分布);
图3为本发明的绝缘或低导材料层连续的岛状结构示意图(即开孔为分立分布);
图4为本发明的氧化铝旋涂于HTL上呈现岛状分布的原子力显微镜(AFM)图像;
图5为本发明的氧化铝旋涂于HTL上呈现岛状分布的截面曲线图,对应于图4中虚线处的截面;
图6为本发明的不同浓度氧化铝分散液旋涂于HTL上造成HTL上氧化铝覆盖率不同而得到的实验结果;
图7为本发明的具有局部半开放钝化接触结构的p-i-n结构钙钛矿太阳能电池的截面图;
图8为使用原子层沉积技术在HTL上生长一层1-2nm氧化铝致密层前后的p-i-n结构钙钛矿太阳能电池的电流密度-电压(简称为JV)曲线;
图9为本发明的具有局部半开放钝化接触结构的p-i-n结构钙钛矿太阳能电池的钝化前后的电流密度-电压曲线;
图10为本发明的具有局部半开放钝化接触结构的p-i-n结构钙钛矿太阳能电池的钝化前后的最大功率点追踪。
图11为本发明的p-i-n结构钙钛矿太阳能电池钝化前后的瞬态荧光光谱(TRPL)对比图;
图12为本发明的具有局部半开放钝化接触结构的单结钙钛矿太阳能电池结构示意图(钙钛矿层两侧都有NSC层);
图13为本发明的具有局部半开放钝化接触结构的钙钛矿-钙钛矿叠层电池结构示意图(钙钛矿结构为p-i-n结构或者n-i-p结构,其中NSC层都在钙钛矿层的底侧);
图14为本发明的具有局部半开放钝化接触结构的硅-钙钛矿叠层电池结构示意图。
图15为本发明的局部半开放钝化接触结构促进钙钛矿薄膜在空穴传输层上覆盖的图片,A图为没有NSC结构的钙钛矿薄膜,B图为具有NSC结构的钙钛矿薄膜。
图16为本发明的有无局部半开放钝化接触结构的钙钛矿太阳能电池的稳定性追踪。
具体实施方式
为了更好地理解本发明,以下结合具体实施案例对本发明做进一步详细说明。这些实施例是用于说明本发明的主要反应及基本特征,不受以下实施案例的限制,实施案例中采用的实施条件可以根据具体要求做进一步的调整,未注明的实施条件通常为常规实验中的条件。
下面结合实施例,通过对实施例的描述,对本发明做进一步说明。
本发明设计了一种NSC型空穴传输层的结构,是由透明导电基底、NSC型空穴传输层、钙钛矿层、电子传输层和背电极组成。NSC层中的绝缘或低导材料采用商用的20wt%的氧化铝、氧化锆、氧化硅异丙醇分散液。
具体地,在p-i-n或n-i-p结构中:空穴型致密层可选用无机空穴传输层:氧化镍(NiO)、氧化钼(MoO3)、氧化亚铜(Cu2O)、碘化铜(CuI)、酞菁铜(CuPc)、硫氰酸亚铜(CuSCN)、氧化还原石墨烯;有机空穴传输层:聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、[n-(3,6-二甲基-9氢-咔唑-9-yl)丁基]膦酸(Me-nPACz)(其中n=1,2,3,4,5…)、2-(9H-咔唑-9-基)乙基)膦酸(2-PACz)、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺 二芴(Spiro-OMeTAD)、聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)、4-丁基-N,N-二苯基苯胺均聚物(Ploy-TPD)、聚乙烯基咔唑(PVK)等一种或多种p型半导体材料制成,但不限于上述所列的p型半导体材料。电子型致密层可选用氧化钛(TiO2)、氧化锡(SnO2)、氧化锌(ZnO)、氧化钒(V2O5)、氧化锌锡(Zn2SnO4)、富勒烯(C60、C70等)及其衍生物等一种或多种n型半导体材料制成,但不限于上述所列的n型半导体材料;
本发明中NSC层不仅可以起到钝化界面缺陷的作用,减少非辐射复合损失,提高开路电压,而且有利于载流子通过钙钛矿相更快地传输,提高填充因子,实现钝化和传输的双重提高。同时由于其亲水性,可以提高基底材料表面的润湿性,促进钙钛矿薄膜的全覆盖,有利于大面积器件的制备。同时由于NSC层中绝缘或低导前驱体材料自身的稳定性,也对器件的稳定性起到了一定的促进作用。
本发明中NSC层中的绝缘低导前驱体材料通过物理和化学作用锚定在钙钛矿表面,呈现均匀或者不均匀分布,不影响载流子传输的同时钝化表面,同时具有低热膨胀系数的绝缘低导前驱体材料有利于控制钙钛矿与电荷传输层之间的应力变化,提高钙钛矿电池的机械稳定性。
实施例1
如图1所示的p-i-n结构钙钛矿太阳能电池的具体制备过程如下:
1)在清洗干净的透明导电氧化物衬底上制备一层20nm左右的[4-(3,6-二甲基-9氢-咔唑-9-yl)丁基]膦酸(Me-4PACz)作为空穴传输层;
2)在制备好的空穴传输层上旋涂稀释过的100nm氧化铝分散液形成一层岛状分布的绝缘低导层,与步骤1中的空穴传输层形成NSC型空穴传输层,作为NSC器件;没有岛状分布的绝缘低导层作为空白对照器件;
3)在步骤2的基础上沉积一层钙钛矿,厚度大约500nm;
4)利用热蒸发制备一层富勒烯(C60)作为电子传输层,厚度大约30nm;
5)利用热蒸发制备一层浴铜灵(BCP)作为空穴阻挡层,厚度大约8nm;
6)最后利用热蒸发蒸镀一层厚度为100nm的Ag作为背电极。
7)使用步骤6中制备好的器件进行JV曲线测试和最大功率点追踪。
如图9,10所示,发现使用NSC层后,起到了提升器件性能作用:不使用NSC层时,器件的光电转换效率为22.83%,开路电压为1.15V,填充因子为79.14%,短路电流密度为25.01mA/cm2,最大功率点追踪得出的稳态效率为23.3%;而使用了NSC层后,光电转换效率可提升至25.50%,开路电压为1.21V,填充因子为84.37%,短路电流密度为25.11mA/cm2,最大功率点追踪得出的稳态效率为25.6%。所以使用了NSC型空穴传输层后,有利于开路电压和填充因子的同时提高,并且不会影响短路电流密度。
实施例2
如图13所示的p-i-n叠层钙钛矿太阳能电池的具体制备过程如下:
1)在清洗干净的透明导电氧化物衬底上制备一层20nm左右的聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA) 作为空穴传输层;
2)在制备好的空穴传输层上旋涂稀释过的100nm氧化铝分散液形成一层绝缘低导层,与步骤1中的空穴传输层形成NSC型空穴传输层;
3)在制备好的NSC层上沉积一层宽带隙钙钛矿,厚度大约300nm;
4)利用热蒸发制备一层富勒烯(C60)作为电子传输层,厚度大约18nm;
5)使用原子层沉积在C60上生长一层SnO2作为致密层,厚度为15nm;
6)隧穿复合层采用热蒸发蒸镀的Au,厚度为2nm;
7)采用聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)制备空穴传输层;
8)在制备好的空穴传输层上旋涂稀释过的100nm氧化铝分散液形成一层绝缘低导层,与步骤7中的空穴传输层形成NSC型空穴传输层;
9)在制备好的NSC层上沉积一层窄带隙钙钛矿,厚度为1000nm左右;
10)利用热蒸发制备一层C60和2,9-二甲基-4,7-二苯基-1,10-菲咯啉(BCP)的双层结构作为电子传输层,厚度分别为30nm和5nm;
11)最后利用热蒸发蒸镀一层厚度为150nm的Ag作为背电极。
实施例3
如图1所示的p-i-n结构钙钛矿太阳能电池的具体制备过程如下:
1)在清洗干净的透明导电氧化物衬底上制备一层20nm左右的[4-(3,6-二甲基-9氢-咔唑-9-yl)丁基]膦酸(Me-4PACz)作为空穴传输层;
2)在制备好的空穴传输层上旋涂稀释过的不同浓度的100nm氧化铝分散液形成一层非全覆盖的或者岛状分布的绝缘低导层,与步骤1中的空穴传输层形成NSC型空穴传输层;浓度范围为0-4mg/mL,其中0mg/mL作为空白对照;
3)在步骤2的基础上沉积一层钙钛矿,厚度大约500nm;
4)利用热蒸发制备一层富勒烯(C60)作为电子传输层,厚度大约30nm;
5)利用热蒸发制备一层浴铜灵(BCP)作为空穴阻挡层,厚度大约8nm;
6)最后利用热蒸发蒸镀一层厚度为100nm的Ag作为背电极。
实验结果如图6所示,随着氧化铝分散液浓度的提高,覆盖率明显得到提升;随着覆盖率的提升,可以看到开路电压、填充因子和效率先上升后下降,在1.4-2mg/mL的范围内,达到最大值。本实施例中的实验结论为在覆盖率为20-35%范围内,最有利于NSC器件的性能。
实施例4
如图1所示的p-i-n结构钙钛矿太阳能电池的具体制备过程如下:
1)在清洗干净的透明导电氧化物衬底上制备一层20nm左右的[4-(3,6-二甲基-9氢-咔唑-9-yl)丁基]膦酸 (Me-4PACz)作为空穴传输层;
2)在制备好的空穴传输层上旋涂稀释过的100nm氧化锆分散液形成一层非全覆盖的或者岛状分布的绝缘低导层,与步骤1中的空穴传输层形成NSC型空穴传输层;
3)在制备好的NSC层上沉积一层钙钛矿,厚度大约500nm;
4)利用热蒸发制备一层富勒烯(C60)作为电子传输层,厚度大约30nm;
5)利用热蒸发制备一层浴铜灵(BCP)作为空穴阻挡层,厚度大约8nm;
6)最后利用热蒸发蒸镀一层厚度为100nm的Ag作为背电极。
使用NSC层后,起到了提升器件性能作用:不使用NSC层时,器件的光电转换效率为22.83%;而使用了NSC层后,光电转换效率可提升至25.28%。
实施例5
如图1所示的p-i-n结构钙钛矿太阳能电池的具体制备过程如下:
1)在清洗干净的透明导电氧化物衬底上制备一层20nm左右的[4-(3,6-二甲基-9氢-咔唑-9-yl)丁基]膦酸(Me-4PACz)作为空穴传输层;
2)在制备好的空穴传输层上旋涂稀释过的100nm氧化硅分散液形成一层非全覆盖的或者岛状分布的绝缘低导层,与步骤1中的空穴传输层形成NSC型空穴传输层;
3)在制备好的NSC层上沉积一层钙钛矿,厚度大约500nm;
4)利用热蒸发制备一层富勒烯(C60)作为电子传输层,厚度大约30nm;
5)利用热蒸发制备一层浴铜灵(BCP)作为空穴阻挡层,厚度大约8nm;
6)最后利用热蒸发蒸镀一层厚度为100nm的Ag作为背电极。
使用NSC层后,起到了提升器件性能作用:不使用NSC层时,器件的光电转换效率为22.83%;而使用了NSC层后,光电转换效率可提升至25.13%。
对照例1
1)在清洗干净的透明导电氧化物衬底上制备一层20nm左右的[4-(3,6-二甲基-9氢-咔唑-9-yl)丁基]膦酸(Me-4PACz)作为空穴传输层;
2)在制备好的空穴传输层上利用原子层沉积(ALD)技术生长一层全覆盖的厚度大约1-2nm的氧化铝层;
3)在制备好的氧化铝层上沉积一层钙钛矿,厚度大约500nm;
4)利用热蒸发制备一层富勒烯(C60)作为电子传输层,厚度大约30nm;
5)利用热蒸发制备一层浴铜灵(BCP)作为空穴阻挡层,厚度大约8nm;
6)最后利用热蒸发蒸镀一层厚度为100nm的Ag作为背电极。
如图8所示,使用ALD氧化铝层后,器件的性能并没有得到提升,相比于NSC结构的器件,短路电流密度由24.63mA/cm2降低到24.20mA/cm2,填充因子由82.26%降低到78.19%,开路电压由1.10V降低到1.08V, 效率由22.29%降低到20.41%。短路电流密度和填充因子的降低,再一次说明这种传统的超薄绝缘氧化物作钝化层,对厚度比较敏感,一般情况下都会增加传输电阻,不利于载流子的提取和传输,造成器件性能的损失。
实施例6
如图4所示的AFM图像样品的具体制备过程如下:
1)在清洗干净的透明导电氧化物衬底上制备一层20nm左右的[4-(3,6-二甲基-9氢-咔唑-9-yl)丁基]膦酸(Me-4PACz)作为空穴传输层;
2)在制备好的空穴传输层上旋涂稀释过的1.4mg/mL的100nm氧化铝分散液形成一层岛状分布的绝缘低导层,与步骤1中的空穴传输层形成NSC型空穴传输层;
3)将步骤2中制备好的样品进行AFM图像的拍摄,使用布鲁克品牌的仪器设备,采用镀铬/金的硅悬臂梁,轻敲模式,谐振频率为160kHz,力矩常数为5N/m。所有图像均获得相同的扫描参数:256points/μm、1s/line、1s/retrace。
测试结果可以看到,氧化铝在HTL上形成团簇,呈现不连续的岛状分布。
实施例7
如图11所示的TRPL图像样品的具体制备过程如下:
1)在清洗干净的透明导电氧化物衬底上制备一层20nm左右的[4-(3,6-二甲基-9氢-咔唑-9-yl)丁基]膦酸(Me-4PACz)作为空穴传输层;
2)在制备好的空穴传输层上旋涂稀释过的浓度为0.7-2mg/mL的100nm氧化铝分散液形成一层岛状分布的绝缘低导层,与步骤1中的空穴传输层形成NSC型空穴传输层;没有岛状分布的绝缘低导层作为空白对照样品;
3)将步骤2中制备好的样品进行TRPL的测试,激发波长为450nm,标准脉冲时间为80ps,平均能量注入为3mW。
测试结果发现使用NSC层后,样品中的载流子寿命得到明显提升,由空白对照样品的880ns提升到3500ns以上。载流子寿命的明显提高,表明了样品内部的非辐射复合得到了有效的抑制,佐证了NSC结构有利于开路电压的提高。
上述实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围,即在此范围内的等同替换改进,也在本发明的保护范围之内。

Claims (10)

  1. 一种具有局部半开放钝化接触结构的钙钛矿太阳能电池,其至少包括电荷传输层和钙钛矿层,其特征在于,在电子传输层和钙钛矿层之间设置有绝缘或低导材料层,所述绝缘或低导材料层为连续或不连续的岛状结构。
  2. 如权利要求1所述的钙钛矿太阳能电池,其特征在于,岛的水平尺度小于钙钛矿中光生载流子的扩散长度;
    优选地,岛之间的距离为岛水平尺度的0.1-9倍。
  3. 如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述岛状结构的形状为针状、锥状、柱状、球状或片状;所述岛状结构的高度为1-400nm,水平尺度为10-2000nm;
    优选地,所述岛状结构的高度、水平宽度与光生载流子的扩散长度匹配。
  4. 如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述绝缘或低导材料层的覆盖率为5-99%,所述覆盖率为绝缘低导材料遮挡并阻止载流子从钙钛矿层传输到电荷传输层的区域面积占电荷传输层表面积的百分比。
  5. 如权利要求4所述的钙钛矿太阳能电池,其特征在于,所述绝缘或低导材料层包括无机绝缘或低导材料或有机绝缘或低导材料,或者由绝缘或低导材料包裹导体或者半导体形成的绝缘或低导材料;
    所述无机绝缘或低导材料包括氧化锆、氧化铝、氧化铁、氧化锂、氧化锗、氧化硅、五氧化二磷、氧化硼、氧化镁、氧化铬、氟化锆、氟化铝,氟化铁、氟化锗、氟化硅、氟化硼、氟化镁或氟化锂中的一种或几种;
    所述有机绝缘或低导材料包括聚乙烯、聚丙烯、聚四氟乙烯、聚氯乙烯、聚碳酸酯、聚丙烯酸、聚酰胺、聚砜、聚甲基丙烯酸甲酯、聚甲醛、酚醛树脂、环氧树脂、三聚氰胺甲醛树脂、聚酰亚胺、橡胶、纤维、2-苯乙胺氢碘酸盐、哌嗪二碘酸盐、1,8-辛二胺氢碘酸盐或油胺碘中的一种或几种。
  6. 如权利要求1-5任一项所述的具有局部半开放钝化接触结构的钙钛矿太阳能电池的制备方法,其特征在于,具体步骤如下:
    1)在干净的透明导电氧化物衬底上制备空穴传输层或电子传输层;
    2)在步骤1)得到的层上制备绝缘或低导材料层;
    3)在步骤2)得到的层上沉积钙钛矿层;
    4)在钙钛矿层上制备电子传输层或空穴传输层;
    5)在步骤4)得到的层上制备空穴或电子阻挡层;
    6)在步骤5)得到的空穴或电子阻挡层上制备背电极。
  7. 如权利要求1-5任一项所述的具有局部半开放钝化接触结构的钙钛矿太阳能电池的制备方法,其特征在于,具体步骤如下:
    1)在干净的透明导电氧化物衬底上制备空穴传输层或电子传输层;
    2)在步骤1)得到的层上制备绝缘或低导材料层;
    3)在步骤2)得到的层上沉积钙钛矿层;
    4)在钙钛矿层上制备电子传输层或空穴传输层;
    5)在步骤4)得到的层上制备致密层;
    6)在步骤5)得到的致密层上制备隧穿复合层;
    7)在步骤6)得到的隧穿复合层上制备空穴传输层或电子传输层;
    8)在步骤7)得到的层上制备绝缘或低导材料层
    9)在步骤8)得到的层上沉积钙钛矿层;
    10)在步骤9)得到的层上制备电子传输层或空穴传输层;
    11)在步骤10)得到的层上制备背电极。
  8. 如权利要求6或7所述的制备方法,其特征在于,所述绝缘或低导材料层为连续或不连续的岛状结构。
  9. 如权利要求6所述的制备方法,其特征在于,所述连续或不连续的岛的水平尺度小于钙钛矿中光生载流子的扩散长度;
    优选地,所述岛之间的距离为岛水平尺度的0.1-9倍;
    或优选地,岛间距和岛的水平尺度能保证所述绝缘或低导材料层的覆盖率为5-99%,所述覆盖率为绝缘低导材料遮挡并阻止载流子从钙钛矿层传输到电荷传输层的区域面积占电荷传输层表面积的百分比。
  10. 如权利要求6所述的制备方法,其特征在于,所述绝缘或低导材料层通过物理沉积方法或化学沉积方法制备;
    所述物理沉积方法为真空蒸发法、溅射、离子束沉积或脉冲激光沉积;
    所述化学沉积方法为化学气相沉积、原子层沉积或溶胶-凝胶旋涂法。
PCT/CN2023/110204 2022-08-02 2023-07-31 一种具有局部半开放钝化接触结构的钙钛矿太阳能电池及其制备方法 WO2024027640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210919606.X 2022-08-02
CN202210919606.XA CN115884607B (zh) 2022-08-02 2022-08-02 一种具有局部半开放钝化接触结构的钙钛矿太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2024027640A1 true WO2024027640A1 (zh) 2024-02-08

Family

ID=85769551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110204 WO2024027640A1 (zh) 2022-08-02 2023-07-31 一种具有局部半开放钝化接触结构的钙钛矿太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN115884607B (zh)
WO (1) WO2024027640A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115884607B (zh) * 2022-08-02 2023-11-17 中国科学技术大学 一种具有局部半开放钝化接触结构的钙钛矿太阳能电池及其制备方法
CN115881832B (zh) * 2022-08-03 2023-08-15 中国科学技术大学 一种太阳能电池钝化结构与制备方法
CN117677260A (zh) * 2024-01-22 2024-03-08 链行走新材料科技(广州)有限公司 一种基于卷曲状p3ht空穴传输层的钙钛矿太阳电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180286596A1 (en) * 2015-10-06 2018-10-04 Oxford University Innovation Limited Device architecture
CN111640870A (zh) * 2020-06-16 2020-09-08 西南石油大学 一种高效钙钛矿太阳能电池及制备方法
EP3945608A1 (en) * 2020-07-31 2022-02-02 Total Se Two terminal perovskite/silicon tandem solar cell and associated manufacturing method
CN115884607A (zh) * 2022-08-02 2023-03-31 中国科学技术大学 一种具有局部半开放钝化接触结构的钙钛矿太阳能电池及其制备方法
CN115881832A (zh) * 2022-08-03 2023-03-31 中国科学技术大学 一种太阳能电池钝化结构与制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038825A1 (en) * 2014-09-10 2016-03-17 Sharp Kabushiki Kaisha Back contact perovskite solar cell
US10192689B2 (en) * 2015-01-07 2019-01-29 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Self-assembly of perovskite for fabrication of transparent devices
TWI692879B (zh) * 2018-12-27 2020-05-01 財團法人工業技術研究院 鈣鈦礦太陽能電池及其製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180286596A1 (en) * 2015-10-06 2018-10-04 Oxford University Innovation Limited Device architecture
CN111640870A (zh) * 2020-06-16 2020-09-08 西南石油大学 一种高效钙钛矿太阳能电池及制备方法
EP3945608A1 (en) * 2020-07-31 2022-02-02 Total Se Two terminal perovskite/silicon tandem solar cell and associated manufacturing method
CN115884607A (zh) * 2022-08-02 2023-03-31 中国科学技术大学 一种具有局部半开放钝化接触结构的钙钛矿太阳能电池及其制备方法
CN115881832A (zh) * 2022-08-03 2023-03-31 中国科学技术大学 一种太阳能电池钝化结构与制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG LIJING; HöRANTNER MAXIMILIAN T.; ZHANG WEI; YAN QINGFENG; SNAITH HENRY J.: "Near-neutral-colored semitransparent perovskite films using a combination of colloidal self-assembly and plasma etching", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM., NL, vol. 160, 1 January 1900 (1900-01-01), NL , pages 193 - 202, XP029825849, ISSN: 0927-0248, DOI: 10.1016/j.solmat.2016.10.035 *

Also Published As

Publication number Publication date
CN115884607B (zh) 2023-11-17
CN115884607A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2024027640A1 (zh) 一种具有局部半开放钝化接触结构的钙钛矿太阳能电池及其制备方法
JP5947799B2 (ja) 光起電デバイスにおける感光層のエピタキシャル成長制御用材料
CN110600614B (zh) 一种钙钛矿/钙钛矿两端叠层太阳能电池的隧穿结结构
KR20180130397A (ko) 페로브스카이트 실리콘 텐덤 태양전지의 제조 방법
TW201019518A (en) Organic tandem solar cells
TW201133974A (en) Method for improving the efficiency of a flexible organic solar cell
US20230371292A1 (en) Laminated battery and method for fabrication thereof
CN115881832B (zh) 一种太阳能电池钝化结构与制备方法
CN111403519A (zh) 一种自封装叠层光电器件及其制备方法
CN110098335A (zh) 一种基于离子液修饰空穴传输层的钙钛矿太阳能电池及其制备方法
TWI572049B (zh) 鈣鈦礦太陽能電池及其製造方法
CN115117247B (zh) 一种钙钛矿太阳能电池及其制备方法
Xu et al. Polymer‐Regulated SnO2 Composites Electron Transport Layer for High‐Efficiency n–i–p Perovskite Solar Cells
CN111446369B (zh) 钙钛矿光伏电池器件及其制造方法
Lee et al. Investigation of PCBM/ZnO and C60/BCP-based electron transport layer for high-performance pin perovskite solar cells
CN110459681A (zh) 基于聚乙烯亚胺修饰的氧化锌电子传输层构建柔性结构的聚合物太阳能电池及其制备方法
CN116828873A (zh) 一种太阳能电池及其制造方法
CN115172602B (zh) 一种掺杂金属氧化物复合层结构
CN217719655U (zh) 一种钙钛矿/晶体硅叠层电池结构
CN111446368A (zh) 钙钛矿光伏器件及其制造方法
WO2023097646A1 (zh) 钙钛矿太阳能电池、光伏组件
CN112968130B (zh) 一种柔性太阳能电池器件及其制备方法
CN111326659A (zh) 一种金属透明电极及有机太阳能电池
CN103928617A (zh) 一种高电导率有机薄膜太阳能光伏电池的制备方法
Huang et al. Enhanced Selective Charge Collection with Metal–Insulator–Semiconductor Junction in Electron Transport Layer‐Free Perovskite Solar Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849347

Country of ref document: EP

Kind code of ref document: A1