WO2024027601A1 - 一种sma马达、摄像模组及电子设备 - Google Patents

一种sma马达、摄像模组及电子设备 Download PDF

Info

Publication number
WO2024027601A1
WO2024027601A1 PCT/CN2023/109904 CN2023109904W WO2024027601A1 WO 2024027601 A1 WO2024027601 A1 WO 2024027601A1 CN 2023109904 W CN2023109904 W CN 2023109904W WO 2024027601 A1 WO2024027601 A1 WO 2024027601A1
Authority
WO
WIPO (PCT)
Prior art keywords
collision
circuit board
component
fixed
movable
Prior art date
Application number
PCT/CN2023/109904
Other languages
English (en)
French (fr)
Inventor
孙战立
李邓峰
刘洪明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027601A1 publication Critical patent/WO2024027601A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations

Definitions

  • Embodiments of the present application relate to the field of camera structure technology, and in particular to a shape memory alloy (SMA) motor, camera module and electronic equipment.
  • SMA shape memory alloy
  • the principle of the camera module with optical anti-shake function in the related technology is to detect and feedback the device shake in a certain frequency and amplitude range in real time when taking pictures, and adjust the position of the image sensor (or lens) to reverse compensation, so as to realize Optical image stabilization.
  • One of the optical image stabilization solutions uses an SMA motor to drive the image sensor to move on a plane perpendicular to the optical axis.
  • a conventional SMA motor includes a fixed part, a movable part, a plurality of elastic cantilevers and a plurality of SMA wires. The movable part and the fixed part are connected by a plurality of elastic cantilevers. Both ends of multiple SMA wires are connected to the fixed component and the movable component respectively.
  • the movable component can be driven to move on a plane perpendicular to the optical axis.
  • the image sensor is fixed on the movable component, and the image sensor can be controlled. Position adjustment.
  • the elastic cantilever in the conventional SMA motor is formed with a metal layer using an etching process, so that the elastic force provided by the metal layer and the gravity of the movable parts are Phase balance keeps moving parts stable in position.
  • the cross-sectional dimensions of the elastic cantilever and the metal layer are in the micron range.
  • the metal layer produced by the traditional etching process has poor consistency, large dimensional tolerances of the metal layer, low production yield, and large fluctuations in elastic coefficients of multiple metal layers. Large, it is difficult to provide a predetermined elastic force, and the movable parts will have a certain displacement in different gravity directions. Conventional SMA motors have the problem of large posture differences.
  • Embodiments of the present application provide an SMA motor, a camera module and an electronic device, which solve the problem of large posture differences in conventional SMA motors.
  • an SMA motor which includes a fixed component, a movable component, a plurality of elastic cantilevers, one or more supports, and a plurality of SMA wires.
  • One or more supports are provided between the fixed part and the movable part. Each support has oppositely disposed first and second ends. The first end is fixed to the movable part or the fixed part. The second end is in sliding friction fit with the fixed component or the movable component.
  • the top surface of the movable part is higher than the top surface of the fixed part so that the plurality of elastic cantilevers are in a stretched state.
  • Both ends of each SMA wire are respectively fixed on the fixed component and the movable component, and the cooperation of multiple SMA wires can drive the movable component to move on a predetermined plane relative to the fixed component.
  • the movable parts can be used to install image sensors and other related devices, and the movable parts can move on a plane perpendicular to the optical axis to drive the related devices to move.
  • the optical axis direction is defined as the Z-axis direction
  • the plane perpendicular to the optical axis is the XY plane
  • the movable parts can move along the X-axis and Y-axis.
  • the support has a certain height (Z-direction size) and supports the movable part on the fixed part.
  • the top surface of the movable part is higher than the top surface of the fixed part, causing the elastic cantilever to produce Z-direction tensile deformation.
  • the elastic cantilever is affected by the support and the movable part. The upward force on the component along the Z direction.
  • the elastic cantilever has a reaction force on the support and the movable part, that is, the support will receive a downward force in the Z direction, so that the second end of the support remains against the fixed part or the movable part, and there is no or extreme possibility of separation in the Z direction. Small.
  • the movable part and the fixed part are connected through elastic cantilevers, and a support is provided between the movable part and the fixed part, so that the movable part is supported on the fixed part, and the multiple elastic cantilevers are stretched and deformed.
  • the movable parts exert a preloading effect on the bearing.
  • the first end of the support is fixed on one of the movable component and the fixed component, and the second end of the support remains against the other component without being detached in the Z direction.
  • Multiple SMA wires arranged to drive the movable part relative to the fixed part The part moves on the XY plane, causing the image sensor installed on the movable part to follow the movement to achieve optical image stabilization.
  • the SMA motor does not rely on the elastic coefficient of the elastic cantilever when the metal layer is formed by the traditional etching process. There is no need to consider the large fluctuations in the elastic coefficient of the elastic cantilever.
  • the movable part pre-determines the support. The pressure effect can effectively reduce the Z-direction displacement produced by the movable part in different gravity directions, so that the movable part can move on the XY plane without deviating from the predetermined position in the Z direction, which better solves the problem of the large posture difference of conventional SMA motors.
  • the problem is that the process is simple.
  • the fixed component includes a first circuit board
  • the movable component includes a second circuit board
  • each elastic cantilever has a conductive function to electrically connect the first circuit board and the second circuit board.
  • the fixed component also includes a bottom plate, the first circuit board is fixed on the bottom plate, the first circuit board has a receiving hole, the movable component is arranged corresponding to the accommodation hole, and one or more supports are arranged in the accommodation hole. and is located between the base plate and the moving parts.
  • the first circuit board has a receiving hole, so that the first circuit board has a frame-like structure, and the movable parts are located in the frame-like structure, which facilitates the arrangement of multiple SMA wires on the frame-like structure, and the coordination of the multiple SMA wires To drive the moving parts to move on the XY plane.
  • the movable component further includes an anti-collision part
  • the second circuit board is fixed on the anti-collision part
  • one or more supports are provided between the anti-collision part and the fixed component.
  • the anti-collision piece serves as a buffer and anti-torsion structural member.
  • the anti-collision piece collides with the predetermined structure first, protecting some devices on the second circuit board and reducing the possibility of the devices on the second circuit board being hit. , improve structural reliability.
  • the fixed component includes a base plate
  • the base plate, the support, the anti-collision piece and the second circuit board are stacked in sequence to realize the pre-pressure effect of the support on the anti-collision piece and the second circuit board, thus better solving the problem of large posture differences.
  • the number of supports is greater than or equal to three, and the supports are columnar or other shapes, which can better support the movable parts on the fixed parts.
  • the support When the movable parts move relative to the fixed parts, the support The friction between the second end and the contact surface is small, which facilitates the movement of the SMA motor-driven moving parts.
  • one or more supports and the anti-collision piece are integrally formed structures, and the second end of the support is in sliding friction fit with the bottom plate of the fixed component.
  • one or more supports and the bottom plate of the fixed component are integrally formed structures, and the second end of the support is in sliding friction fit with the anti-collision piece.
  • the above two methods can prevent the support from deviating from the predetermined position when the movable parts move, simplify the process, and make it easy to form.
  • the second end of the support meets the predetermined flatness, which reduces the friction between the second end of the support and the contact surface, which facilitates the smooth movement of the SMA motor-driven movable parts relative to the fixed parts and gives full play to the characteristics of the motor.
  • the one-piece structure can be injection molded or semi-etched, which is easy to process and has a stable structure.
  • one or more supports are formed on a connecting piece, and the connecting piece is attached to the side of the anti-collision piece facing the fixed component, and the second end of the support slides and rubs against the bottom plate of the fixed component.
  • one or more supports are formed on a connecting piece, the connecting piece is attached to the side of the bottom plate of the fixed component facing the anti-collision piece, and the second end of the support slides with the anti-collision piece Friction fit.
  • the above two methods can increase the bonding area, reliably fix the support at a predetermined position, reduce the risk of the support falling off when moving parts move, and improve reliability.
  • only one bonding process is needed to fix one or more supports at a predetermined position, and the process is simple.
  • the second end of the support meets the predetermined flatness, which reduces the friction between the second end of the support and the contact surface, which facilitates the smooth movement of the SMA motor-driven movable parts relative to the fixed parts and gives full play to the characteristics of the motor.
  • the support is formed on a connecting piece and can be semi-etched, which is easy to process and has a stable structure.
  • the anti-collision component is provided with a plurality of first holes
  • the support is an injection molded part molded at the first holes
  • the second end of the support is in sliding friction fit with the bottom plate of the fixed component.
  • the base plate of the fixed component is provided with a plurality of second holes
  • the support is an injection molded part molded at the second holes
  • the second end of the support is in sliding friction fit with the anti-collision piece.
  • holes are drilled in the anti-collision part or the bottom plate, and a support is formed by injection molding at the punched position, so that the support is reliably connected to the anti-collision part or the bottom plate, thereby reducing the risk of the support falling off when the movable parts move.
  • the second end of the support meets the predetermined flatness, which reduces the friction between the second end of the support and the contact surface, which facilitates the smooth movement of the SMA motor-driven movable parts relative to the fixed parts and gives full play to the characteristics of the motor.
  • the SMA motor further includes a cover fixed on the fixed component, the anti-collision member has one or more first collision parts, the cover has one or more second collision parts, and the first collision part
  • the first collision portion and the second collision portion are arranged in one-to-one correspondence; when the movable component moves relative to the fixed component, the corresponding first collision portion and the second collision portion collide and fit.
  • the first collision part of the anti-collision part and the second collision part of the cover play the role of collision and anti-torsion.
  • the first collision part and the second collision part collide first, lowering the The risk of some devices on the moving parts being knocked damaged reduces the risk of powder generated by collisions between parts falling on the image sensor, causing black shadows and black spots during imaging.
  • the walls of the first collision part and/or the second collision part are elastic parts.
  • One of the first collision part and the second collision part is configured as an elastic part, which can reduce the stress generated by the first collision part and the second collision part during impact. Both the first collision part and the second collision part are configured as elastic parts, which can more effectively reduce the stress generated during impact.
  • the anti-collision piece includes a first body, the first body and the first collision part are formed by two-color injection molding, the hardness of the first body is greater than the hardness of the first collision part; and/or the cover includes The second body, the wall surface of the second body and the second collision part are formed by two-color injection molding, and the hardness of the second body is greater than the hardness of the wall surface of the second collision part.
  • the collision part is made of elastic material and the body is made of harder material. In this way, when the first collision part and the second collision part collide, the stress generated during the collision can be reduced.
  • the anti-collision part includes a first body, the first body is a metal piece, the first collision part is molded on the first body through single-color injection molding, and the hardness of the first body is greater than that of the first collision part. Hardness; and/or, the cover body includes a second body, the second body is a metal piece, the wall surface of the second collision part is molded on the second body through single-color injection molding, and the hardness of the second body is greater than the wall surface hardness of the second collision part .
  • the body is made of metal, and the collision part is injection molded on the body.
  • the connection between the collision part and the body is reliable, and the collision part is smaller in hardness than the body.
  • the elastic cantilevers are arranged in pairs, and the elastic cantilevers arranged in pairs are symmetrically distributed outside the diagonal corners of the second circuit board with the center of the second circuit board, and outside the same diagonal corner of the second circuit board. Arranged with one or more pairs of elastic cantilevers.
  • the elastic coefficients of this solution are centrally symmetrical in the X and Y directions, and the elastic coefficients in the X and Y directions are relatively close, so that the forces exerted by the elastic cantilever on the movable parts in the X and Y directions are relatively close, and the activities can be better controlled.
  • the posture of the parts is poor.
  • the first circuit board has a receiving hole, and the second circuit board is located in the receiving hole; each elastic cantilever is an axially symmetrical structure, and one end of each elastic cantilever is connected to the first circuit board. One end is in the middle of the inner edge, and the other end is connected to the middle of one of the outer edges of the second circuit board.
  • This solution can arrange elastic cantilevers at different corners of the second circuit board to achieve more signal transmission between the first circuit board and the second circuit board, and can provide a predetermined elastic coefficient to control the posture difference of the movable parts.
  • the first circuit board has a frame-like structure, including a first section, a second section, a third section and a fourth section connected in sequence.
  • the second circuit board is rectangular and includes a first side, a second side, a third side and a fourth side connected in sequence.
  • the second circuit board is arranged in the hollow position of the first circuit board, and the first section, the second section, the third section, and the fourth section are spaced from the first side, the second side, the third side, and the fourth side in one-to-one correspondence. and set relatively.
  • the elastic cantilever is arranged in an L shape.
  • the elastic cantilever can be arranged at two diagonal corners of the second circuit board, or the elastic cantilever can be arranged at four diagonal corners of the second circuit board.
  • One or more elastic cantilevers can be arranged at each diagonal corner.
  • a first elastic cantilever, a second elastic cantilever, a third elastic cantilever, and a fourth elastic cantilever are respectively arranged outside the four corners of the second circuit board.
  • a first elastic cantilever is connected between the middle section of the first section of the first circuit board and the middle section of the second side of the second circuit board, and the middle section of the third section of the first circuit board is connected to the middle section of the second side of the second circuit board.
  • a third elastic cantilever is connected between the middle section of the third section of the first circuit board and the fourth side of the second circuit board.
  • the middle section of the first section of the first circuit board and the fourth side of the second circuit board are connected with each other.
  • a fourth elastic cantilever is connected between the sides.
  • the first section of the first circuit board is formed with two first connecting arms extending at intervals from the inner side
  • the middle section of the third section is formed with two second connecting arms extending at intervals from the inner side.
  • the second circuit board has a first connecting portion extending outside the middle portion of the second side, and a second connecting portion extending outside the middle portion of the fourth side.
  • the two ends of the first elastic cantilever are connected to the adjacent first connecting arm and the first connecting part respectively, the two ends of the second elastic cantilever are connected to the adjacent second connecting arm and the first connecting part respectively, and the third elastic cantilever
  • the two ends of the fourth elastic cantilever are respectively connected to the adjacent second connecting arm and the second connecting part, and the two ends of the fourth elastic cantilever are respectively connected to the adjacent first connecting arm and the second connecting part.
  • the elastic cantilever is in a linear shape, and one or more elastic cantilevers are respectively arranged around the second circuit board.
  • the elastic cantilever is L-shaped, and the L-shaped elastic cantilever is only arranged outside two diagonal corners of the second circuit board, and is not arranged outside the other two diagonal corners of the second circuit board. Flexible cantilever.
  • each of the pair of elastic cantilevers includes a first metal shielding layer, a first insulation layer, a signal layer, a second insulation layer and a second metal shielding layer stacked in sequence, and the The first metal shielding layer and the second metal shielding layer are both grounded.
  • the signal layer and the first metal shielding layer are arranged on a pair of elastic cantilevers distributed outside the diagonal corners of the second circuit board, and the signal layer and the first metal shielding layer are not arranged on the other elastic cantilevers.
  • MIPI signal transmission is achieved through two signal layers.
  • the elastic cantilever with the signal layer also includes a third insulating layer, a power layer and a fourth insulating layer, and the third insulating layer, the power layer and the fourth insulating layer are sequentially stacked on the second metal shield. layer.
  • a power supply layer is configured on the elastic cantilever with a signal layer to supply power to the image sensor and other devices on the second circuit board.
  • the laminated structure formed by the signal layer and the power layer can arrange fewer elastic cantilevers in a limited space, so that the elastic cantilever can be made wider and can be easily formed using traditional processes.
  • the width of the first metal shielding layer is less than or equal to the maximum width of the elastic cantilever.
  • the elastic coefficient of the elastic cantilever can be reduced to a certain extent, which facilitates the smooth movement of the SMA motor-driven movable parts relative to the fixed parts and gives full play to the motor characteristics.
  • each elastic cantilever includes a first metal shielding layer, a first insulation layer, a signal layer, a second insulation layer and a second metal shielding layer stacked in sequence. layer, this method is also feasible.
  • the number of SMA lines is four, and the first SMA line, the second SMA line, the third SMA line, and the fourth SMA line are respectively arranged on the frame-like structure of the first circuit board and located on the first circuit board. 2.
  • the movable component has a first reference surface and a second reference surface. The first reference surface and the second reference surface intersect, and the intersection line passes through the center of the initial position of the second circuit board.
  • the first reference plane and the second reference plane may be perpendicular.
  • the first SMA line and the second SMA line are symmetrically distributed on the first reference plane, and the third SMA line and the fourth SMA line are symmetrically distributed on the first reference plane.
  • the first SMA line and the fourth SMA line are symmetrically distributed on the second reference plane, and the second SMA line and the third SMA line are symmetrically distributed on the second reference plane.
  • the positional relationship of the four SMA wires is defined.
  • resultant forces of different sizes and directions on the XY plane can be formed on the movable parts to drive the movable parts along the first reference plane or
  • the second reference plane moves, or moves along the first reference plane and the second reference plane at the same time, so that the movable component can drive the image sensor to move on the XY plane to achieve optical image stabilization.
  • fixed clamps are provided at a pair of corners of the fixed component
  • movable clamps are provided at a pair of corners of the movable component.
  • the first end of each SMA wire is fixed on the fixed component through the fixed clamp
  • the second end of the SMA wire is fixed on the movable part through a movable clamp.
  • the fixed clamp and the movable clamp are electrically conductive, allowing the SMA wire to be electrically connected between the movable part and the fixed part.
  • the movable clamp can be configured in a bar shape, and the bar-shaped movable clamp can be located at the corner of the second circuit board.
  • the movable clamp can span over the elastic cantilever, and the movable clamp is far away from the second circuit board.
  • One end is provided close to the corner of the frame-shaped structure of the first circuit board.
  • the fixed fixture may also be disposed close to the corner of the frame-like structure of the first circuit board. This makes it easier to set the SMA wire longer in a limited space, which is beneficial to improving the power performance of the SMA motor.
  • the strip-shaped movable clamp can pass through the escape hole of the cover body, and the fixed clamp is arranged outside the cover body and on the frame-like structure of the first circuit board, so that the SMA wire can be arranged on the cover body On the outer periphery, there is a certain distance between the SMA wire and the cover, allowing the SMA wire to deform reliably without being affected by surrounding structures.
  • the fixed clamp is located on the frame-like structure of the first circuit board and is arranged in the cover body
  • the bar-shaped movable clamp is located in the cover body
  • the SMA wire is arranged in the cover body.
  • a plurality of elastic cantilevers are located within the frame structure of the first circuit board and located on the outer periphery of the second circuit board.
  • the first collision part (the second collision part) is located between the elastic cantilever and the SMA wire, so that the SMA wire and the elastic cantilever can independently deform or move without affecting each other, and work reliably.
  • buffer glue can be connected between the movable part and the fixed part, and the buffer glue can reduce the friction between the movable part and the fixed part. Jitter during movement improves the imaging quality of the image sensor.
  • embodiments of the present application provide a camera module, including a lens, an image sensor and the above-mentioned SMA motor.
  • the image sensor is provided on a movable component, and the lens and the image sensor are arranged oppositely.
  • the SMA motor adjusts the position of the image sensor on a plane perpendicular to the optical axis to achieve optical anti-shake.
  • the external light is projected on the image sensor through the lens and forms an image on the image sensor.
  • the camera module of the embodiment of the present application uses the above-mentioned SMA motor, which better solves the problem of large posture difference of conventional SMA motors.
  • embodiments of the present application provide an electronic device, including a housing and the above-mentioned camera module, and the camera module is installed on the housing.
  • the electronic device of the embodiment of the present application uses the above-mentioned camera module, which better solves the problem of large posture difference of conventional SMA motors.
  • embodiments of the present application provide an electronic device, including a housing and an SMA motor, and the SMA motor is installed on the housing.
  • the SMA motor includes fixed parts, movable parts, a plurality of elastic cantilevers, one or more supports and a plurality of SMA wires. Fixed and moving parts spacing settings. The two ends of each elastic cantilever are connected to the fixed part and the movable part respectively.
  • One or more supports are provided between the fixed part and the movable part. Each support has oppositely disposed first and second ends. The first end is fixed to the movable part or the fixed part. The second end is in sliding friction fit with the fixed component or the movable component.
  • the top surface of the movable part is higher than the top surface of the fixed part so that the plurality of elastic cantilevers are in a stretched state.
  • Both ends of each SMA wire are respectively fixed on the fixed component and the movable component, and the cooperation of multiple SMA wires can drive the movable component to move on a predetermined plane relative to the fixed component.
  • the movable part and the fixed part are connected through an elastic cantilever, and a support is provided between the movable part and the fixed part, so that the movable part is supported on the fixed part, and a plurality of elastic
  • the cantilever is stretched and deformed, and the movable parts form a pre-pressure effect on the support.
  • the first end of the support is fixed on one of the movable component and the fixed component, and the second end of the support remains against the other component without being detached in the Z direction.
  • SMA wires are arranged to drive the movable component to move on the XY plane relative to the fixed component, so that the image sensor mounted on the movable component follows the movement to achieve optical image stabilization.
  • the SMA motor does not rely on the elastic coefficient of the elastic cantilever when the metal layer is formed by the traditional etching process. There is no need to consider the large fluctuations in the elastic coefficient of the elastic cantilever.
  • the movable part pre-determines the support.
  • the pressure effect can effectively reduce the Z-direction displacement produced by the movable part in different gravity directions, so that the movable part can move on the XY plane without deviating from the predetermined position in the Z direction, which better solves the problem of the large posture difference of conventional SMA motors.
  • the problem is that the process is simple.
  • the fixed component includes a first circuit board
  • the movable component includes a second circuit board
  • each elastic cantilever has a conductive function to electrically connect the first circuit board and the second circuit board.
  • the fixed component also includes a bottom plate, the first circuit board is fixed on the bottom plate, the first circuit board has a receiving hole, the movable component is arranged corresponding to the accommodation hole, and one or more supports are arranged in the accommodation hole. and is located between the base plate and the moving parts.
  • the first circuit board has a receiving hole, so that the first circuit board has a frame-like structure, and the movable parts are located in the frame-like structure, which facilitates the arrangement of multiple SMA wires on the frame-like structure, and the coordination of the multiple SMA wires To drive the moving parts to move on the XY plane.
  • the movable component further includes an anti-collision part
  • the second circuit board is fixed on the anti-collision part
  • one or more supports are provided between the anti-collision part and the fixed component.
  • the anti-collision piece serves as a buffer and anti-torsion structural member.
  • the anti-collision piece collides with the predetermined structure first, protecting some devices on the second circuit board and reducing the possibility of the devices on the second circuit board being hit. , improve structural reliability.
  • the fixed component includes a base plate, the base plate, the support, the anti-collision piece and the second circuit board are stacked in sequence to realize the pre-pressure effect of the support on the anti-collision piece and the second circuit board, thus better solving the problem of large posture differences.
  • the number of supports is greater than or equal to three, and the supports are columnar or other shapes, which can better support the movable parts on the fixed parts.
  • the support When the movable parts move relative to the fixed parts, the support The friction between the second end and the contact surface is small, which facilitates the movement of the SMA motor-driven moving parts.
  • one or more supports and the anti-collision piece are integrally formed structures, and the second end of the support is in sliding friction fit with the bottom plate of the fixed component.
  • one or more supports and the bottom plate of the fixed component are integrally formed structures, and the second end of the support is in sliding friction fit with the anti-collision piece.
  • the above two methods can prevent the support from deviating from the predetermined position when the movable parts move, simplify the process, and make it easy to form.
  • the second end of the support meets the predetermined flatness, which reduces the friction between the second end of the support and the contact surface, which facilitates the smooth movement of the SMA motor-driven movable parts relative to the fixed parts and gives full play to the characteristics of the motor.
  • the one-piece structure can be injection molded or semi-etched, which is easy to process and has a stable structure.
  • one or more supports are formed on a connecting piece, and the connecting piece is attached to the side of the anti-collision piece facing the fixed component, and the second end of the support slides and rubs against the bottom plate of the fixed component.
  • one or more supports are formed on a connecting piece, the connecting piece is attached to the side of the bottom plate of the fixed component facing the anti-collision piece, and the second end of the support slides with the anti-collision piece Friction fit.
  • the above two methods can increase the bonding area, reliably fix the support at a predetermined position, reduce the risk of the support falling off when moving parts move, and improve reliability.
  • only one bonding process is needed to fix one or more supports at a predetermined position, and the process is simple.
  • the second end of the support meets the predetermined flatness, which reduces the friction between the second end of the support and the contact surface, which facilitates the smooth movement of the SMA motor-driven movable parts relative to the fixed parts and gives full play to the characteristics of the motor.
  • the support is formed on a connecting piece and can be semi-etched, which is easy to process and has a stable structure.
  • the anti-collision component is provided with a plurality of first holes
  • the support is an injection molded part molded at the first holes
  • the second end of the support is in sliding friction fit with the bottom plate of the fixed component.
  • the base plate of the fixed component is provided with a plurality of second holes
  • the support is an injection molded part molded at the second holes
  • the second end of the support is in sliding friction fit with the anti-collision piece.
  • holes are drilled in the anti-collision part or the bottom plate, and a support is formed by injection molding at the punched position, so that the support is reliably connected to the anti-collision part or the bottom plate, thereby reducing the risk of the support falling off when the movable parts move.
  • the second end of the support meets the predetermined flatness, which reduces the friction between the second end of the support and the contact surface, which facilitates the smooth movement of the SMA motor-driven movable parts relative to the fixed parts and gives full play to the characteristics of the motor.
  • the SMA motor further includes a cover fixed on the fixed component, the anti-collision member has one or more first collision parts, the cover has one or more second collision parts, and the first collision part
  • the first collision portion and the second collision portion are arranged in one-to-one correspondence; when the movable component moves relative to the fixed component, the corresponding first collision portion and the second collision portion collide and fit.
  • the first collision part of the anti-collision part and the second collision part of the cover play the role of collision and anti-torsion.
  • the first collision part and the second collision part collide first, lowering the The risk of some devices on the moving parts being knocked damaged reduces the risk of powder generated by collisions between parts falling on the image sensor, causing black shadows and black spots during imaging.
  • the walls of the first collision part and/or the second collision part are elastic parts.
  • One of the first collision part and the second collision part is configured as an elastic part, which can reduce the stress generated by the first collision part and the second collision part during impact. Both the first collision part and the second collision part are configured as elastic parts, which can more effectively reduce the stress generated during impact.
  • the anti-collision piece includes a first body, the first body and the first collision part are formed by two-color injection molding, the hardness of the first body is greater than the hardness of the first collision part; and/or the cover includes The second body, the wall surface of the second body and the second collision part are formed by two-color injection molding, and the hardness of the second body is greater than the hardness of the wall surface of the second collision part.
  • the collision part is made of elastic material and the body is made of harder material. In this way, when the first collision part and the second collision part collide, the stress generated during the collision can be reduced.
  • the anti-collision part includes a first body, the first body is a metal piece, the first collision part is molded on the first body through single-color injection molding, and the hardness of the first body is greater than that of the first collision part. Hardness; and/or, the cover body includes a second body, the second body is a metal piece, the wall surface of the second collision part is molded on the second body through single-color injection molding, and the hardness of the second body is greater than the wall surface hardness of the second collision part .
  • the body is made of metal, and the collision part is injection molded on the body.
  • the connection between the collision part and the body is reliable, and the collision part is smaller in hardness than the body.
  • the elastic cantilevers are arranged in pairs, and the elastic cantilevers arranged in pairs are symmetrically distributed outside the diagonal corners of the second circuit board with the center of the second circuit board, and outside the same diagonal corner of the second circuit board. Arranged with one or more pairs of elastic cantilevers.
  • the elastic coefficients of this solution are centrally symmetrical in the X and Y directions, and the elastic coefficients in the X and Y directions are relatively close, so that the forces exerted by the elastic cantilever on the movable parts in the X and Y directions are relatively close, and the activities can be better controlled.
  • the posture of the parts is poor.
  • the first circuit board has a receiving hole, and the second circuit board is located in the receiving hole; each elastic cantilever It is an axially symmetrical structure, one end of each elastic cantilever is connected to the middle of one of the inner edges of the first circuit board, and the other end is connected to the middle of one of the outer edges of the second circuit board.
  • This solution can arrange elastic cantilevers at different corners of the second circuit board to achieve more signal transmission between the first circuit board and the second circuit board, and can provide a predetermined elastic coefficient to control the posture difference of the movable parts.
  • the first circuit board has a frame-like structure, including a first section, a second section, a third section and a fourth section connected in sequence.
  • the second circuit board is rectangular and includes a first side, a second side, a third side and a fourth side connected in sequence.
  • the second circuit board is arranged in the hollow position of the first circuit board, and the first section, the second section, the third section, and the fourth section are spaced from the first side, the second side, the third side, and the fourth side in one-to-one correspondence. and set relatively.
  • the elastic cantilever is arranged in an L shape.
  • the elastic cantilever can be arranged at two diagonal corners of the second circuit board, or the elastic cantilever can be arranged at four diagonal corners of the second circuit board.
  • One or more elastic cantilevers can be arranged at each diagonal corner.
  • a first elastic cantilever, a second elastic cantilever, a third elastic cantilever, and a fourth elastic cantilever are respectively arranged outside the four corners of the second circuit board.
  • a first elastic cantilever is connected between the middle section of the first section of the first circuit board and the middle section of the second side of the second circuit board, and the middle section of the third section of the first circuit board is connected to the middle section of the second side of the second circuit board.
  • a third elastic cantilever is connected between the middle section of the third section of the first circuit board and the fourth side of the second circuit board.
  • the middle section of the first section of the first circuit board and the fourth side of the second circuit board are connected with each other.
  • a fourth elastic cantilever is connected between the sides.
  • the first section of the first circuit board is formed with two first connecting arms extending at intervals from the inner side
  • the middle section of the third section is formed with two second connecting arms extending at intervals from the inner side.
  • the second circuit board has a first connecting portion extending outside the middle portion of the second side, and a second connecting portion extending outside the middle portion of the fourth side.
  • the two ends of the first elastic cantilever are connected to the adjacent first connecting arm and the first connecting part respectively, the two ends of the second elastic cantilever are connected to the adjacent second connecting arm and the first connecting part respectively, and the third elastic cantilever
  • the two ends of the fourth elastic cantilever are respectively connected to the adjacent second connecting arm and the second connecting part, and the two ends of the fourth elastic cantilever are respectively connected to the adjacent first connecting arm and the second connecting part.
  • the elastic cantilever is in a linear shape, and one or more elastic cantilevers are respectively arranged around the second circuit board.
  • the elastic cantilever is L-shaped, and the L-shaped elastic cantilever is only arranged outside two diagonal corners of the second circuit board, and is not arranged outside the other two diagonal corners of the second circuit board. Flexible cantilever.
  • each of the pair of elastic cantilevers includes a first metal shielding layer, a first insulation layer, a signal layer, a second insulation layer and a second metal shielding layer stacked in sequence, and the The first metal shielding layer and the second metal shielding layer are both grounded.
  • the signal layer and the first metal shielding layer are arranged on a pair of elastic cantilevers distributed outside the diagonal corners of the second circuit board, and the signal layer and the first metal shielding layer are not arranged on the other elastic cantilevers.
  • MIPI signal transmission is achieved through two signal layers.
  • the elastic cantilever with the signal layer also includes a third insulating layer, a power layer and a fourth insulating layer, and the third insulating layer, the power layer and the fourth insulating layer are sequentially stacked on the second metal shield. layer.
  • a power supply layer is configured on the elastic cantilever with a signal layer to supply power to the image sensor and other devices on the second circuit board.
  • the laminated structure formed by the signal layer and the power layer can arrange fewer elastic cantilevers in a limited space, so that the elastic cantilever can be made wider and can be easily formed using traditional processes.
  • the width of the first metal shielding layer is less than or equal to the maximum width of the elastic cantilever.
  • the elastic coefficient of the elastic cantilever can be reduced to a certain extent, which facilitates the smooth movement of the SMA motor-driven movable parts relative to the fixed parts and gives full play to the motor characteristics.
  • each elastic cantilever includes a first metal shielding layer, a first insulation layer, a signal layer, a second insulation layer and a second metal shielding layer stacked in sequence. layer, this method is also feasible.
  • the number of SMA lines is four, and the first SMA line, the second SMA line, the third SMA line, and the fourth SMA line are respectively arranged on the frame-like structure of the first circuit board and located on the first circuit board. 2.
  • the movable component has a first reference surface and a second reference surface. The first reference surface and the second reference surface intersect, and the intersection line passes through the center of the initial position of the second circuit board.
  • the first reference plane and the second reference plane may be perpendicular.
  • the first SMA line and the second SMA line are symmetrically distributed on the first reference plane,
  • the third SMA line and the fourth SMA line are symmetrically distributed on the first reference plane.
  • the first SMA line and the fourth SMA line are symmetrically distributed on the second reference plane, and the second SMA line and the third SMA line are symmetrically distributed on the second reference plane.
  • the positional relationship of the four SMA wires is defined.
  • resultant forces of different sizes and directions on the XY plane can be formed on the movable parts to drive the movable parts along the first reference plane or
  • the second reference plane moves, or moves along the first reference plane and the second reference plane at the same time, so that the movable component can drive the image sensor to move on the XY plane to achieve optical image stabilization.
  • fixed clamps are provided at a pair of corners of the fixed component
  • movable clamps are provided at a pair of corners of the movable component.
  • the first end of each SMA wire is fixed on the fixed component through the fixed clamp
  • the second end of the SMA wire is fixed on the movable part through a movable clamp.
  • the fixed clamp and the movable clamp are electrically conductive, allowing the SMA wire to be electrically connected between the movable part and the fixed part.
  • the movable clamp can be configured in a bar shape, and the bar-shaped movable clamp can be located at the corner of the second circuit board.
  • the movable clamp can span over the elastic cantilever, and the movable clamp is far away from the second circuit board.
  • One end is provided close to the corner of the frame-shaped structure of the first circuit board.
  • the fixed fixture may also be disposed close to the corner of the frame-like structure of the first circuit board. This makes it easier to set the SMA wire longer in a limited space, which is beneficial to improving the power performance of the SMA motor.
  • the strip-shaped movable clamp can pass through the escape hole of the cover body, and the fixed clamp is arranged outside the cover body and on the frame-like structure of the first circuit board, so that the SMA wire can be arranged on the cover body On the outer periphery, there is a certain distance between the SMA wire and the cover, allowing the SMA wire to deform reliably without being affected by surrounding structures.
  • the fixed clamp is located on the frame-like structure of the first circuit board and is arranged in the cover body
  • the bar-shaped movable clamp is located in the cover body
  • the SMA wire is arranged in the cover body.
  • a plurality of elastic cantilevers are located within the frame structure of the first circuit board and located on the outer periphery of the second circuit board.
  • the first collision part (the second collision part) is located between the elastic cantilever and the SMA wire, so that the SMA wire and the elastic cantilever can independently deform or move without affecting each other, and work reliably.
  • a buffer glue can be connected between the movable part and the fixed part.
  • the buffer glue can reduce the jitter of the movable part during movement and improve the imaging quality of the image sensor.
  • Figure 1 is a three-dimensional exploded view of an SMA motor provided by an embodiment of the present application.
  • Figure 2 is a three-dimensional assembly view of the SMA motor formed by assembling part of the structure in Figure 1;
  • Figure 3 is a cross-sectional view along line A-A of Figure 2;
  • Figure 4 is a simplified structural diagram of the SMA motor in Figure 3. In order to show the connection relationship between the fixed parts, the movable parts and the elastic cantilever, the shape of the elastic cantilever is changed in the figure;
  • Figure 5 is a three-dimensional assembly view of the SMA motor in Figure 2;
  • Figure 6 is a bottom view of the SMA motor of Figure 5 after the bottom plate is removed;
  • Figure 7 is a bottom view after removing the anti-collision part based on the SMA motor of Figure 6;
  • Figure 8 is a three-dimensional exploded view of an SMA motor provided by another embodiment of the present application.
  • Figure 9 is a three-dimensional exploded view of the integrated structure of the support and the connecting piece and the anti-collision piece in the SMA motor provided by another embodiment of the present application;
  • Figure 10 is a three-dimensional exploded view of an SMA motor provided by another embodiment of the present application.
  • Figure 11 is a three-dimensional assembly view of the SMA motor of Figure 1;
  • Figure 12 is a top view of the SMA motor of Figure 11;
  • Figure 13 is an exploded perspective view of the SMA motor of Figure 11 from another angle;
  • Figure 14 is a three-dimensional assembly view of an SMA motor provided by another embodiment of the present application.
  • Figure 15 is an exploded perspective view of the SMA motor of Figure 14;
  • Figure 16 is an exploded perspective view of the SMA motor of Figure 14 from another angle;
  • Figure 17 is a schematic structural diagram of the second circuit board and the elastic cantilever in the SMA motor of Figure 7;
  • Figure 18 is a cross-sectional view along line B-B of the elastic cantilever of Figure 17;
  • Figure 19 is a schematic structural diagram of a camera module provided by an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • connection may be detachable.
  • the ground connection can also be a non-detachable connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • length The terms “length”, “width”, “top”, “bottom”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, The orientation or positional relationship indicated by “inside”, “outer”, etc.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • an embodiment of the present application provides an SMA motor 1000 , which includes a fixed component 110 , a movable component 120 , a plurality of elastic cantilevers 130 , one or more supports 140 and a plurality of SMA wires 200 .
  • the fixed component 110 and the movable component 120 are spaced apart.
  • the two ends (130a, 130b) of each elastic cantilever 130 are connected to the fixed component 110 and the movable component 120 respectively.
  • one or more supports 140 are provided between the fixed component 110 and the movable component 120 .
  • Each support 140 has oppositely disposed first and second ends 140a and 140b. The first end 140a is fixed to the movable part 120 or the fixed part 110.
  • the second end 140b is in sliding friction fit with the fixed component 110 or the movable component 120 .
  • the top surface 120a of the movable component 120 is higher than the top surface 110a of the fixed component 110, so that the plurality of elastic cantilevers 130 are in a stretched state.
  • both ends of each SMA wire 200 are respectively fixed on the fixed component 110 and the movable component 120 .
  • the cooperation of multiple SMA wires 200 can drive the movable component 120 to move on a predetermined plane relative to the fixed component 110 .
  • the movable component 120 can be used to install related devices such as the image sensor 300 , and the movable component 120 can move on a plane perpendicular to the optical axis to drive the related devices to move.
  • the optical axis direction is defined as the Z-axis direction
  • the plane perpendicular to the optical axis is the XY plane
  • the movable component 120 can move along the X-axis and Y-axis.
  • the first end 140 a of the support 140 is fixed on the movable component 120 , and the second end 140 b is in sliding friction fit with the fixed component 110 , which will be mainly described below.
  • the first end 140a of the support 140 can also be fixed on the fixed component 110, and the second end 140b is in sliding friction fit with the movable component 120.
  • the top surface 120a of the movable component 120 is Refers to the side of the movable component 120 away from the predetermined support surface 1
  • the top surface 110 a of the fixed component 110 refers to the side of the fixed component 110 away from the predetermined support surface 1 .
  • the top surface 120a of the movable component 120 is higher than the top surface 110a of the fixed component 110.
  • Hooke's law is a basic law of mechanical elasticity theory: within the linear elasticity range of solid materials, the unidirectional tensile deformation of solid materials is proportional to the external force.
  • the support 140 has a certain height (Z-direction dimension) to support the movable component 120 on the fixed component 110.
  • the top surface 120a of the movable component 120 is higher than the top surface 110a of the fixed component 110, causing the elastic cantilever 130 to form
  • the elastic cantilever 130 is stretched and deformed in the Z direction, and the elastic cantilever 130 receives an upward force along the Z direction from the support 140 and the movable component 120 .
  • the elastic cantilever 130 has a reaction force on the support 140 and the movable component 120, that is, the support 140 will be subjected to a downward force along the Z direction, so that the second end 140b of the support 140 remains against the fixed component 110 or the fixed component 110.
  • there is no or very small Z-direction separation (for example, less than or equal to 5um).
  • the SMA wire 200 is made of shape memory alloys (SMA).
  • SMA shape memory alloys
  • Shape memory alloys are metals with shape memory effect. Shape memory effect refers to the phenomenon that a solid material with a certain shape, after undergoing certain plastic deformation under certain conditions, completely returns to its original shape before deformation when heated to a certain temperature. SMA has the ability to recover from deformation, which is essentially the thermoelastic martensite transformation that occurs inside the material during the deformation process. There are two phases in SMA: high-temperature austenite phase and low-temperature martensite phase. Depending on different thermal load conditions, SMA will exhibit two properties.
  • the SMA wire 200 when the SMA wire 200 is heated by electricity or heating, it can reverse from the low-temperature martensite phase to the high-temperature austenite phase and return to its original shape before deformation, and the SMA wire 200 shrinks.
  • the SMA wire 200 When the SMA wire 200 is cooled without being energized or heated, it can change from the high-temperature austenite phase to the low-temperature martensite phase, and the SMA wire 200 becomes longer.
  • SMA wire 200 achieves the effect of thermal contraction and cold expansion.
  • the first end 201 of the SMA wire 200 is fixed to the fixed component 110, and the second end 202 of the SMA wire 200 is fixed to the movable component 120.
  • the SMA wire 200 When the SMA wire 200 is powered on, it shrinks, and the second end 202 of the SMA wire 200 is pulled toward the first The direction of the end 201 moves, thereby changing the relative position of the movable component 120 relative to the fixed component 110 .
  • the movable component 120 and the fixed component 110 are connected through an elastic cantilever 130, and a support 140 is provided between the movable component 120 and the fixed component 110, so that the movable component 120 is supported on the fixed component 110.
  • the plurality of elastic cantilevers 130 are stretched and deformed, and the movable component 120 forms a preloading effect on the support 140.
  • the first end 140a of the support 140 is fixed on one of the movable component 120 and the fixed component 110, and the second end 140b of the support 140 remains against the other component without being detached in the Z direction.
  • the plurality of SMA wires 200 are arranged to be able to drive the movable component 120 to move on the XY plane relative to the fixed component 110, so that the image sensor 300 mounted on the movable component 120 follows the movement to achieve optical image stabilization.
  • the SMA motor 1000 does not rely on the elastic coefficient of the elastic cantilever 130 when the metal layer is formed by the traditional etching process, and does not need to consider the large fluctuations in the elastic coefficient of the elastic cantilever 130.
  • the preloading effect on the support 140 can effectively reduce the Z-direction displacement produced by the movable part in different gravity directions, so that the movable part 120 can move on the XY plane without deviating from the predetermined position in the Z direction, which better solves the problem.
  • Conventional SMA motors have the problem of large posture differences and the process is simple.
  • the fixed component 110 includes a first circuit board 111
  • the movable component 120 includes a second circuit board 121
  • each elastic cantilever 130 has a conductive function to connect the first circuit board 111 and the second circuit board 121.
  • the two circuit boards 121 are electrically connected.
  • the movable component 120 can move relative to the fixed component 110, and the electrical connection between the movable component 120 and the fixed component 110 is achieved through the elastic cantilever 130, which can realize power supply or signal transmission.
  • the first circuit board 111, the second circuit board 121 and the plurality of elastic cantilevers 130 can form an assembly, which can be called an elastic circuit board.
  • the first circuit board 111 and the second circuit board 121 are connected through the elastic cantilevers 130.
  • the elastic cantilevers 130 can provide a certain elastic coefficient, the second circuit board 121 can move relative to the first circuit board 111, and the first circuit board 111 and the second circuit board 121 are electrically connected through the elastic cantilever 130.
  • the elastic cantilever 130 has conductive traces to achieve electrical connection between the movable component 120 and the fixed component 110 .
  • the first circuit board 111 can be configured with a connector to be connected to the main board of the device, and the second circuit board 121 can be mounted with the image sensor 300 .
  • the device mainboard provides control signals to the first circuit board 111, and transmits the control signals to the image sensor 300 on the second circuit board 121 through the conductive traces of the elastic cantilever 130.
  • the image signal acquired by the image sensor 300 can also be transmitted through the second circuit board. 121.
  • the conductive traces of the elastic cantilever 130 and the first circuit board 111 are transmitted to the main board of the device.
  • the first circuit board 111 , the conductive traces of the elastic cantilever 130 and the second circuit board 121 are electrically connected to transmit external power to the devices on the second circuit board 121 .
  • the first circuit board 111 may be a rigid-flexible board, which includes a connected hard board part and a flexible board part.
  • the hard board part is connected to the second circuit board 121 through an elastic cantilever 130, and the flexible board part can be bent and deformed.
  • the board can be connected to the main board of the device through a connector.
  • the second circuit board 121 may be a printed circuit board, or the second circuit board 121 may be a stacked structure of a flexible circuit board and a rigid board.
  • the fixed component 110 also includes a bottom plate 112.
  • the first circuit board 111 is fixed on the bottom plate 112.
  • the first circuit board 111 has a receiving hole 1111.
  • the movable component 120 corresponds to A receiving hole 1111 is provided.
  • one or more supports 140 are provided in the receiving hole 1111 and between the base plate 112 and the movable component 120 .
  • the first circuit board 111 has a receiving hole 1111, so that the first circuit board 111 has a frame-like structure, and the movable component 120 is located in the frame-like structure.
  • multiple elastic cantilevers 130 can be distributed between the outer periphery of the movable component 120 and the inner wall of the receiving hole 1111, which can provide relatively close elastic coefficients in the X and Y directions of the predetermined plane, which is beneficial to overcoming posture differences. question.
  • the first circuit board 111 and the bottom plate 112 can be assembled by bonding or other methods, and the first circuit board 111 and the bottom plate 112 can also be an integrally formed structure.
  • the bottom plate 112 can be set in different shapes as required. In the embodiment of FIG. 1 , the bottom plate 112 is set in a frame shape, and the middle through portion of the bottom plate 112 can avoid the reinforcing plate 301 on the back of the image sensor 300 , making the overall structure thinner. . In other embodiments, the bottom plate 112 can also be configured in other shapes, such as a plate shape.
  • the movable component 120 further includes an anti-collision part 122
  • the second circuit board 121 is fixed on the anti-collision part 122
  • one or more supports 140 are provided between the anti-collision part 122 and the anti-collision part 122 . between fixed components 110.
  • the anti-collision part 122 serves as a buffering and anti-torsion structural component.
  • the anti-collision part 122 collides with the predetermined structure first, protecting some devices on the second circuit board 121 and lowering the speed of the devices on the second circuit board 121. Reduce the possibility of being hit and improve structural reliability.
  • the collision guard 122 is provided, the support 140 is supported between the fixed component 110 and the collision guard 122 .
  • the anti-collision piece 122 is roughly in the shape of a plate. The middle through portion of the anti-collision piece 122 can avoid the image sensor 300 and the reinforcing plate 301 .
  • the anti-collision piece 122 can be made lighter to facilitate movement driven by the SMA motor.
  • the anti-collision part 122 may be an injection molded part or a stamped part.
  • the second circuit board 121 can be bonded or fixed on the anti-collision member 122 in other ways.
  • the fixed component 110 includes the bottom plate 112, the bottom plate 112, the support 140, the anti-collision piece 122 and the second circuit board 121 are stacked in sequence to realize the pre-pressure effect of the support 140 on the anti-collision piece 122 and the second circuit board 121. It is better to solve the problem of large posture difference.
  • the number of supports 140 is greater than or equal to three.
  • the supports 140 can be columnar or other shapes, which can better support the movable component 120 on the fixed component 110 , and the movable components 120 are relatively opposite to each other.
  • the friction force between the second end 140b of the support 140 and the contact surface is small, which facilitates the SMA motor to drive the movable component 120 to move.
  • the number of supports 140 is configured as required.
  • the three supports 140 are arranged in a triangle, which has a simple structure and is easy to manufacture.
  • the distance between the three supports 140 can be as far as possible to better support the movable component 120 on the fixed component 110 .
  • the second end 140b of the three supports 140 meets the predetermined flatness.
  • the three supports 140 can reliably support the movable component 120 on the fixed component 110 and reduce the switching of the supports 140 during the movement of the movable component 120.
  • the movement or tilt is relatively large, which satisfies the motion stability of the movable component 120 .
  • the supports 140 may also be in an annular or arc shape, and the supports 140 may be provided in one or more, and may also support the movable component 120 on the fixed component 110 .
  • the first end 140a of the support 140 needs to be formed on one of the fixed part 110 and the movable part 120, and the second end 140b of the support 140 needs to be formed on the other one.
  • the parts fit together.
  • the second end 140b of the support 140 is in sliding friction fit with the other component.
  • the first implementation is: referring to Figures 1, 6, and 7, one or more supports 140 and anti-collision parts 122 are integrally formed structures. With reference to Figure 4, the second end 140b of the support 140 and the fixing component 110 are The bottom plate 112 has a sliding friction fit.
  • the second implementation method is: referring to FIG. 8 , one or more supports 140 and the bottom plate 112 of the fixed component 110 are integrally formed structures, and the second end 140 b of the support 140 is in sliding friction fit with the anti-collision member 122 .
  • the above two methods can prevent the support 140 from deviating from the predetermined position when the movable part 120 moves, simplify the process, and make molding easy.
  • the second end 140b of the support 140 satisfies the predetermined flat
  • the flatness reduces the friction between the second end 140b of the support 140 and the contact surface, which facilitates the smooth movement of the SMA motor-driven movable component 120 relative to the fixed component 110 and gives full play to the motor characteristics.
  • the one-piece structure can be injection molded or semi-etched, which is easy to process and has a stable structure.
  • Injection molding can use liquid crystal polymer (LCP) or other plastic materials.
  • Semi-etched molding can be made of phosphor bronze, stainless steel (such as SUS316L) or other materials.
  • one or more supports 140 and anti-collision parts 122 are integrally injection molded and LCP materials are used.
  • the height of the supports 140 is greater than or equal to 0.25 mm, and the thickness of the anti-collision parts 122 is greater than or equal to 0.25 mm. Equal to 0.1mm.
  • one or more supports 140 and anti-collision parts 122 are formed by semi-etching, using phosphor bronze or stainless steel, etching on the plate to remove part of the material, and the remaining parts form one or more An integrated structure of a support 140 and an anti-collision piece 122.
  • the height of the support 140 is greater than or equal to 0.01mm. For example, half of the thickness is etched on a plate with a thickness of 150um to obtain an integrated structure of the support 140 and the anti-collision part 122.
  • the height of the support 140 is 75um and the thickness of the anti-collision part 122 is 75um.
  • the third implementation method is: referring to Figure 9, one or more supports 140 are formed on a connecting piece 141.
  • the connecting piece 141 is attached to the side of the anti-collision piece 122 facing the fixed component 110.
  • the second side of the supporting piece 140 is The end 140b is in a sliding friction fit with the bottom plate 112 of the fixed component 110.
  • the fourth implementation method is: referring to Figure 10, one or more supports 140 are formed on a connector 141.
  • the connector 141 is attached to the side of the bottom plate 112 of the fixed component 110 facing the anti-collision member 122.
  • the supports 140 The second end 140b and the anti-collision member 122 are in sliding friction fit.
  • one or more supports 140 are formed on the connecting piece 141, and then the connecting piece 141 is attached to the anti-collision piece 122 or the bottom plate 112.
  • the above two methods can increase the bonding area, so that the support 140 can be reliably fixed at a predetermined position, and reduce the impact of the support when the movable part 120 moves. 140 risk of falling off, improving reliability.
  • the connecting member 141 may be in a sheet shape and has a compact structure.
  • the second end 140b of the support 140 meets a predetermined flatness (for example, within 0.03 mm), which reduces the friction between the second end 140b of the support 140 and the contact surface, which is beneficial to the SMA motor driving the movable component 120 relative to the fixed component 110 Move smoothly and give full play to the characteristics of the motor.
  • a predetermined flatness for example, within 0.03 mm
  • one or more supports 140 are formed on a connecting piece 141, which can be semi-etched, which is easy to process and has a stable structure.
  • Semi-etched molding can be made of phosphor bronze, stainless steel or other materials.
  • the connecting piece 141 can be configured in a frame shape corresponding to the shape of the anti-collision piece 122 .
  • the phosphor bronze plate with a thickness of 150um is etched to obtain an integrated structure of the support 140 and the connector 141.
  • the height of the support 140 is 75um, and the thickness of the connector 141 is 75um.
  • the anti-collision part 122 is a stainless steel stamping part with a thickness of 0.15 mm.
  • the connecting piece 141 is attached to the anti-collision piece 122, and the support 140 is placed on the base plate 112 to complete the assembly.
  • the connecting piece 141 is attached to the bottom plate 112, and the support 140 is placed against the anti-collision piece 122 to complete the assembly.
  • the fifth implementation method is: referring to Figures 6 and 7, the anti-collision piece 122 is provided with a plurality of first holes, the support 140 is an injection molded part formed at the first holes, and the second end 140b of the support 140 It is in sliding friction fit with the bottom plate 112 of the fixed component 110 .
  • the sixth implementation is: referring to Figure 8, the bottom plate 112 of the fixed component 110 is provided with a plurality of second holes, the support 140 is an injection molded part formed at the second holes, and the second end 140b of the support 140 and The anti-collision piece 122 has a sliding friction fit.
  • the second end 140b of the support 140 meets a predetermined flatness (for example, within 0.03 mm), which reduces the friction between the second end 140b of the support 140 and the contact surface, which is beneficial to the SMA motor driving the movable component 120 relative to the fixed component 110 Move smoothly and give full play to the characteristics of the motor.
  • the anti-collision part 122 or the bottom plate 112 is made of a stainless steel plate, holes are drilled in the stainless steel plate with a thickness of 0.2 mm, and the support 140 is injection molded.
  • the SMA motor also includes a cover 150 fixed on the fixed component 110.
  • the anti-collision member 122 has one or more first collision parts 1221
  • the cover 150 has one or more second collision parts 151
  • the first collision parts 1221 and the second collision parts 151 are arranged in one-to-one correspondence; when the movable component 120 moves relative to the fixed component 110, the corresponding first collision part The portion 1221 and the second collision portion 151 collide with each other.
  • the first collision part 1221 of the anti-collision part 122 and the second collision part 151 of the cover 150 play an impact and anti-torsion role.
  • the first collision part 1221 and the second collision part 151 of the cover 150 The collision part 151 strikes first, which reduces the risk of some devices on the movable part 120 being damaged and reduces the risk of powder generated by collisions between parts falling on the image sensor 300 to cause black shadows and black spots during imaging.
  • the first collision part 1221 may be a protruding part provided on the outer side of the anti-collision member 122
  • the second collision part 151 may be a groove provided on the side of the cover 150, and the protruding part may extend into the groove.
  • the protrusion and the wall of the groove can be made of elastic materials, so that when the protrusion collides with the wall of the groove, the structural stress can be reduced.
  • the cover 150 is generally frame-shaped, the through area 153 of the cover 150 corresponds to the image sensor 300 , and the light is projected on the image sensor 300 through the through area 153 of the cover 150 .
  • the cover 150 can be bonded to the first circuit board 111 .
  • the four sides of the cover 150 are respectively provided with grooves, and the four outer sides of the anti-collision member 122 are respectively provided with protrusions protruding outward.
  • the protrusions and grooves are arranged in one-to-one correspondence to achieve impact and anti-torsion effects.
  • the walls of the first collision part 1221 and/or the second collision part 151 are elastic parts.
  • the elastic part refers to a structure made of elastic materials that deforms when subjected to force and can recover when the external force is removed.
  • One of the first collision part 1221 and the second collision part 151 is configured as an elastic part, which can reduce the stress generated by the first collision part 1221 and the second collision part 151 during impact.
  • Both the first collision part 1221 and the second collision part 151 are configured as elastic parts, which can more effectively reduce the stress generated during impact.
  • the anti-collision member 122 includes a first body 1222 , the first body 1222 and the first collision part 1221 are formed by two-color injection molding, and the hardness of the first body 1222 is greater than the hardness of the first collision part 1221 ;
  • the cover 150 includes a second body 152 , the second body 152 and the wall surface 151 a of the second collision part 151 are formed by two-color injection molding, and the hardness of the second body 152 is greater than the hardness of the wall surface 151 a of the second collision part 151 .
  • Two-color injection molding refers to a molding process in which two different materials are injected into the same set of molds, and the injection molded parts are made of two materials.
  • two materials with different softness and hardness are used in the two-color injection molding.
  • the collision part is made of elastic material, and the body is made of harder material. In this way, when the first collision part 1221 and the second collision part 151 collide, the stress generated during the collision can be reduced.
  • Two-color injection molding must use two materials that are compatible in adhesion and processing processes, which is conducive to structural injection molding and ensures reliable connection between the two materials.
  • the elastic material can be liquid crystal polymer (LCP), thermoplastic elastomer (TPE), thermoplastic polyurethane elastomer rubber (thermoplastic polyurethanes, TPU), thermoplastic vulcanizate (TPV) or other.
  • LCP liquid crystal polymer
  • TPE thermoplastic elastomer
  • TPU thermoplastic polyurethane elastomer rubber
  • TPV thermoplastic vulcanizate
  • the harder material can be acrylonitrile butadiene styrene (ABS), polypropylene (PP), polybutylene terephthalate (PBT) or others.
  • ABS acrylonitrile butadiene styrene
  • PP polypropylene
  • PBT polybutylene terephthalate
  • the first body 1222 is generally frame-shaped and made of ABS material; the first collision part 1221 may be provided on the outer edge of the first body 1222 and made of TPE material.
  • the second body 152 is generally frame-shaped and made of ABS material.
  • the second collision portion 151 is a groove provided on the side of the second body 152 and is made of TPE material.
  • the anti-collision member 122 includes a first body 1222 , which is a metal piece.
  • the first collision part 1221 is formed on the first body 1222 by single-color injection molding.
  • the hardness of the body 1222 is greater than the hardness of the first collision part 1221; and/or the cover 150 includes a second body 152, the second body 152 is a metal piece, and the wall surface 151a of the second collision part 151 is formed on the second surface by single-color injection molding.
  • the hardness of the second main body 152 is greater than the hardness of the wall surface 151 a of the second collision part 151 .
  • the body is made of metal, and the collision part is injection molded on the body.
  • the connection between the collision part and the body is reliable, and the collision part is smaller in hardness than the body.
  • the metal can be stainless steel or other.
  • the collision part can be made of the elastic material mentioned above.
  • the elastic cantilevers 130 are arranged in pairs.
  • the elastic cantilevers 130 arranged in pairs are symmetrically distributed outside the diagonal corners of the second circuit board 121 with the center 1211 of the second circuit board 121 .
  • One or more pairs of elastic cantilevers 130 are arranged outside the same diagonal corner of the plate 121 .
  • central symmetry refers to rotating a figure 180° around a point. If the figure can coincide with another figure, the two figures are symmetrical about the center.
  • the first elastic cantilever 130 a and the third elastic cantilever 130 c are A pair of elastic cantilever arms 130
  • the second elastic cantilever arm 130b and the fourth elastic cantilever arm 130d are another pair of elastic cantilever arms 130.
  • the elastic coefficients of this solution in the X and Y directions are centrally symmetrical, and the elastic coefficients in the X and Y directions are relatively close, so that the forces exerted by the elastic cantilever 130 on the movable component 120 in the X direction and Y direction are relatively close, and the elastic coefficients in the X and Y directions are relatively close.
  • the posture difference of the movable part 120 is controlled.
  • the second circuit board 121 is rectangular, and one or more elastic cantilevers 130 are respectively distributed at four corners of the second circuit board 121 to facilitate controlling the posture difference of the movable component 120 .
  • these elastic cantilever arms 130 are arranged at intervals.
  • the first circuit board 111 has a receiving hole 1111, and the second circuit board 121 is located in the receiving hole 1111; each elastic cantilever 130 is an axially symmetrical structure, and one end 1301 of each elastic cantilever 130 The other end 1302 is connected to the middle of one of the inner edges of the first circuit board 111 , and the other end 1302 is connected to the middle of one of the outer edges of the second circuit board 121 .
  • This solution can arrange elastic cantilevers 130 at different corners of the second circuit board 121 to achieve more signal transmission between the first circuit board 111 and the second circuit board 121 and provide a predetermined elastic coefficient to control the movable component 120 Poor posture.
  • the first circuit board 111 When arranging the first circuit board 111, the second circuit board 121 and the elastic cantilever 130, the first circuit board 111 has a frame-like structure, including a first section 111a, a second section 111b, a third section 111c and a fourth section connected in sequence. Paragraph 111d.
  • the second circuit board 121 has a rectangular shape and includes a first side 121a, a second side 121b, a third side 121c and a fourth side 121d connected in sequence.
  • the second circuit board 121 is arranged in the hollow position of the first circuit board 111.
  • the first section 111a, the second section 111b, the third section 111c, and the fourth section 111d correspond to the first side 121a, the second side 121b, and the second section 111d.
  • the third side 121c and the fourth side 121d are spaced apart and relatively arranged.
  • the elastic cantilever 130 is generally arranged in an L shape.
  • the elastic cantilever 130 can be arranged at two diagonal corners of the second circuit board 121 , or can be arranged at four diagonal corners of the second circuit board 121 .
  • One or more elastic cantilevers 130 may be arranged at each diagonal corner.
  • a first elastic cantilever 130a, a second elastic cantilever 130b, a third elastic cantilever 130c, and a fourth elastic cantilever 130d are respectively arranged outside the four corners of the second circuit board 121.
  • a first elastic cantilever 130a is connected between the middle part of the first section 111a of the first circuit board 111 and the middle part of the second side 121b of the second circuit board 121, and the middle part of the third section 111c of the first circuit board 111 and the second circuit board 121
  • a second elastic cantilever 130b is connected between the middle part of the second side 121b of
  • a fourth elastic cantilever 130d is connected between the middle part of the first section 111a of the circuit board 111 and the fourth side 121d of the second circuit board 121.
  • two elastic cantilevers 130 are arranged outside each corner of the second circuit board 121 . In other embodiments, other numbers of elastic cantilevers 130 may be arranged outside each corner of the second circuit board 121 .
  • first connecting arms 1112 are formed spaced apart from the inside of the middle part of the first section 111a of the first circuit board 111.
  • Two second connecting arms 1113 are formed at intervals from the inner side of the middle portion of the segment 111c.
  • the second circuit board 121 has a first connecting portion 1212 extending out of the middle of the second side 121b, and a second connecting portion 1213 extending out of the middle of the fourth side 121d.
  • the two ends of the first elastic cantilever 130a are respectively connected to the adjacent first connecting arm 1112 and the first connecting part 1212, and the two ends of the second elastic cantilever 130b are respectively connected to the adjacent second connecting arm 1113 and the first connecting part. 1212, the two ends of the third elastic cantilever 130c are respectively connected to the adjacent second connecting arm 1113 and the second connecting part 1213, and the two ends of the fourth elastic cantilever 130d are respectively connected to the adjacent first connecting arm 1112 and the second connecting part 1213. Connection part 1213.
  • both ends of the multiple elastic cantilevers 130 arranged at intervals can be respectively connected to the same connecting arm and connecting portion. This facilitates arranging the elastic cantilever 130 in the area between the outside of the second circuit board 121 and the inside of the first circuit board 111 receiving hole 1111, leaving space for movement of the second circuit board 121 and deformation of the elastic cantilever 130.
  • first connecting arm 1112 and the second connecting arm 1113 are arranged on the inner wall of the receiving hole 1111 of the first circuit board 111 .
  • first connecting arms 1112 are spaced apart to form a first groove 1112a
  • second connecting arms 1113 are spaced apart to form a second groove 1113a.
  • the first collision part 1221 is a protrusion provided on the outer side of the anti-collision member 122 and the second collision part 151 is a groove provided on the side of the cover 150
  • the first groove 1112a (the second groove 1113a) is connected with the groove of the cover 150, and a part of the protruding portion of the anti-collision piece 122 can extend into the first groove 1112a (second groove 1113a).
  • the anti-collision piece 122 and the first circuit board 111 are approximately arranged on the same plane, fully Utilize space and make the structure compact.
  • the elastic cantilever 130 can also be configured in other shapes, or be arranged between the first circuit board 111 and the second circuit board 121 in other ways. It is necessary that the elastic cantilevers 130 arranged in pairs are symmetrically distributed outside the diagonal corners of the second circuit board 121 with the center 1211 of the second circuit board 121. The elastic coefficients formed by the multiple elastic cantilevers 130 in the X and Y directions are relatively close. .
  • the elastic cantilever 130 is in a linear shape, and one or more elastic cantilevers 130 are respectively arranged around the second circuit board 121 .
  • the elastic cantilever 130 is L-shaped, and the L-shaped elastic cantilever 130 is only arranged outside two diagonal corners of the second circuit board 121 , and no elastic cantilever 130 is arranged outside the other two diagonal corners of the second circuit board 121 . .
  • the elastic cantilever 130 is L-shaped. One end of the elastic cantilever 130 is connected to the inner edge of the first circuit board 111 except the middle, and the other end is connected to the outer edge of the second circuit board 121 except the middle.
  • each elastic cantilever has a signal layer.
  • the signal layer is used for mobile industry processor interface (MIPI) signals. transmission.
  • MIPI mobile industry processor interface
  • the signal layer needs to be covered with metal materials around the cross section to achieve electromagnetic shielding.
  • the width of the metal shielding layer is larger than the width of the signal layer.
  • each elastic cantilever (130a, 130c) of a pair of elastic cantilevers 130 It includes a first metal shielding layer 131, a first insulation layer 132, a signal layer 133, a second insulation layer 134 and a second metal shielding layer 135 stacked in sequence.
  • the first metal shielding layer 131 and the second metal shielding layer 135 are both grounded. .
  • the signal layer 133 and the first metal shielding layer 131 are configured on a pair of elastic cantilevers (130a, 130c) distributed diagonally outside the second circuit board 121, and are not configured on the other elastic cantilevers (130b, 130d).
  • MIPI signal transmission is implemented through two signal layers 133.
  • the first metal shielding layer 131 can be reduced accordingly, thereby reducing the elastic coefficient formed by the multiple elastic cantilevers 130, which is conducive to exerting the performance of the SMA motor, driving the movable component 120 to move smoothly relative to the fixed component 110, and improving the structure. reliability.
  • the first metal shielding layer 131 can be made of a metal material with a certain elastic coefficient, such as titanium and copper.
  • the signal layer 133 can be made of a material with good conductivity, such as copper.
  • the second circuit board 121 and the elastic cantilever 130 can be an integrated structure. First, the flexible circuit board process is used to produce an integrated flexible layer of the second circuit board 121 and the elastic cantilever 130, and then the second circuit board 121 and the elastic cantilever (130a, 130c ) is provided with metal material in the flexible layer area corresponding to it (the section line part in Figure 17). The metal material corresponding to the elastic cantilever (130a, 130c) is the first metal shielding layer 131.
  • the other elastic cantilevers (130b, 130d) are not provided with metal material. , in this way, the second circuit board 121 and the elastic cantilever 130 can be easily produced as an integrated structure, and the elastic cantilever 130 has an appropriate elastic coefficient.
  • the elastic cantilever 130 with the signal layer 133 also includes a third insulating layer 136 , a power supply layer 137 and a fourth insulating layer 138 .
  • the third insulating layer 136 , the power supply layer 137 and the fourth insulating layer 138 are stacked on the second metal shielding layer 135 in turn.
  • the elastic cantilever 130 with the signal layer 133 is configured with a power layer 137 to provide power to the image sensor 300 and other devices on the second circuit board 121 .
  • a power layer 137 to provide power to the image sensor 300 and other devices on the second circuit board 121 .
  • the first metal shielding layer 131, the signal layer 133, the second metal shielding layer 135, and the power layer 137 are made of metal materials, which will provide a certain elastic coefficient to the elastic cantilever 130 as a whole.
  • the width W1 of the first metal shielding layer 131 is less than or equal to the maximum width W0 of the elastic cantilever 130 .
  • the width W1 of the first metal shielding layer 131 and the maximum width W0 of the elastic cantilever 130 are both width dimensions on the cross section of the elastic cantilever 130.
  • the width direction and the thickness direction are perpendicular to each other, and the thickness direction is the stacking direction of the stacked structure.
  • the left and right directions in Figure 18 are the width directions, and the up and down directions are the thickness directions.
  • the elastic coefficient of the elastic cantilever 130 can be reduced to a certain extent, which facilitates the smooth movement of the SMA motor-driven movable component 120 relative to the fixed component 110 and gives full play to the motor characteristics.
  • the width W1 interval of the first metal shielding layer 131 is set to [40um, 80um], which can better narrow the width of the first metal shielding layer 131, thereby reducing the elastic coefficient of the elastic cantilever 130.
  • the width W1 of the first metal shielding layer 131 is set to 40um, 45um, 50um, 55um, 60um, 65um, 70um, 80um, etc.
  • the signal layer 133 and the first metal shielding layer 131 are configured on a pair of elastic cantilevers (130a, 130c) distributed outside the diagonal corners of the second circuit board 121, and on the other elastic cantilevers (130c).
  • the signal layer 133 and the first metal shielding layer 131 are not arranged on 130b, 130d).
  • the elastic cantilever 130 configured with the signal layer 133 includes a first metal shielding layer 131, a first insulation layer 132, a signal layer 133, a second insulation layer 134, a second metal shielding layer 135, a third insulation layer 136, which are stacked in sequence. power layer 137 and fourth insulation layer 138.
  • each layer is as follows: the width of the first metal shielding layer 131 is 40 ⁇ 10um; the first insulating layer 132 is glue, with a thickness of 50um; the signal layer 133 is copper, with a thickness of 20um, a width of 17um, and the lateral direction of the signal layer 133 Insulating materials 1331 are provided at both ends; the second insulating layer 134 is polyimide (PI) with a thickness of 25um; the second metal shielding layer 135 is copper with a thickness of 12 ⁇ 2um and a width of 80um; the third insulating layer 136 includes a thickness of Glue 1361 of 15um and PI layer 1362 with a thickness of 12.5um; the power layer 137 is copper, with a thickness of 20 ⁇ 3um and a width of 43 ⁇ 2um.
  • PI polyimide
  • Insulating materials 1371 are provided at both lateral ends of the power layer 137; the fourth insulating layer 138 is an ink , with a thickness of 15um; except for the first insulating layer 132, the width dimension of each layer remains 80um.
  • the elastic cantilevers 130 can be arranged in a limited space, so that the elastic cantilever 130 can be made wider, which facilitates molding using traditional processes.
  • each elastic cantilever 130 includes a first metal shielding layer 131, a first insulating layer 132, a signal layer 133, a second metal shielding layer 131, a first metal shielding layer 132, a second metal shielding layer 132, and a second metal shielding layer 132. Insulating layer 134 and second metal shielding layer 135, this method is also feasible.
  • the number of SMA wires 200 is four.
  • the first SMA wire 200a, the second SMA wire 200b, the third SMA wire 200c, and the fourth SMA wire 200d are respectively arranged in the first circuit.
  • the frame-like structure of the board 111 is located around the second circuit board 121 .
  • the movable component 120 has a first reference surface 120b and a second reference surface 120c.
  • the first reference surface 120b and the second reference surface 120c intersect, and the intersection line passes through the center of the second circuit board 121 at its initial position.
  • the first reference surface 120b and the second reference surface 120c may be perpendicular.
  • the first SMA line 200a and the second SMA line 200b are symmetrically distributed on the first reference plane 120b, and the third SMA line 200c and the fourth SMA line 200d are symmetrically distributed on the first reference plane 120b.
  • the first SMA line 200a and the fourth SMA line 200d are symmetrically distributed on the second reference plane 120c, and the second SMA line 200b and the third SMA line 200c are symmetrically distributed on the second reference plane 120c.
  • the positional relationship of the four SMA wires is defined.
  • resultant forces of different sizes and directions on the XY plane can be formed on the movable component 120 to drive the movable component 120 along the first reference.
  • the surface 120b or the second reference surface 120c moves, or moves along the first reference surface 120b and the second reference surface 120c simultaneously, so that the movable component 120 can drive the image sensor 300 to move on the XY plane to achieve optical image stabilization.
  • fixed clamps 210 are provided at a pair of corners of the fixed component 110
  • movable clamps 220 are provided at a pair of corners of the movable component 120 .
  • the first end 201 of each SMA wire 200 passes through the fixed clamps 210 .
  • the clamp 210 is fixed on the fixed component 110
  • the second end 202 of the SMA wire 200 is fixed on the movable component 120 through the movable clamp 220 .
  • the fixed clamp 210 and the movable clamp 220 are electrically conductive, so that the SMA wire 200 is electrically connected between the movable part 120 and the fixed part 110 .
  • the fixed clamp 210 and the movable clamp 220 can be configured as claws or other forms, so that the two ends of the SMA wire 200 can be fixed on the corresponding fixed clamp 210 and the movable clamp 220 respectively.
  • the movable clamp 220 can be arranged in a bar shape, and the bar-shaped movable clamp 220 can be arranged at the corner of the second circuit board 121 .
  • the movable clamp 220 can span over the elastic cantilever 130 , and the movable clamp 220 can be away from the second circuit board 121
  • One end of the first circuit board 111 is disposed close to the corner of the frame-like structure of the first circuit board 111 , so that the SMA wire 200 can be set longer in a limited space.
  • the fixed clamp 210 can also be disposed close to the corner of the frame-like structure of the first circuit board 111 to facilitate the SMA wire 200 to be disposed longer in a limited space. Setting the SMA wire 200 to be longer is beneficial to improving the power performance of the SMA motor.
  • the bar-shaped movable clamp 220 can pass through the escape hole 154 of the cover 150 , and the fixed clamp 210 is arranged outside the cover 150 and located in the first circuit.
  • the SMA wire 200 can be arranged on the outer periphery of the cover 150. There is a certain distance between the SMA wire 200 and the cover 150, so that the SMA wire 200 can be reliably deformed without being affected by surrounding structures.
  • the fixed clamp 210 is located in the first circuit.
  • the frame-like structure of the plate 111 is arranged in the cover 150
  • the bar-shaped moving clamp 220 is located in the cover 150
  • the SMA wire 200 is arranged in the cover 150 .
  • the plurality of elastic cantilevers 130 are located within the frame structure of the first circuit board 111 and on the outer periphery of the second circuit board 121 .
  • the first collision part 1221 (the second collision part 151) is located between the elastic cantilever 130 and the SMA wire 200, so that the SMA wire 200 and the elastic cantilever 130 can independently deform or move without affecting each other, and work reliably.
  • a buffer glue can be connected between the movable component 120 and the fixed component 110 .
  • the buffer glue can reduce the jitter of the movable component 120 during movement and improve the imaging quality of the image sensor 300 .
  • the buffer rubber and the movable clamp 220 are arranged in a one-to-one correspondence. One end of the buffer rubber can be fixed to the corresponding movable clamp 220, and the other end is fixed to the fixed component 110 at a position opposite to the movable clamp 220. This can improve structural reliability.
  • the buffer glue can be damping glue or other methods.
  • an embodiment of the present application provides a camera module 2000, which includes a lens 500, an image sensor 300, and the above-mentioned SMA motor 1000.
  • the image sensor 300 is provided on the movable component 120, and the lens 500 It is arranged opposite to the image sensor 300 .
  • the lens 500 has one or more lenses, which have the function of condensing light.
  • the image sensor 300 may be a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), or a thin film transistor (TFT), depending on the requirements.
  • CMOS complementary metal oxide semiconductor
  • TFT thin film transistor
  • a reinforcing plate 301 can be provided on the side of the image sensor 300 facing away from the lens 500 .
  • the reinforcing plate 301 can be fixed on the movable component 120 to improve structural reliability.
  • the SMA motor 1000 adjusts the position of the image sensor 300 on the plane perpendicular to the optical axis to achieve optical anti-shake.
  • the external light is projected on the image sensor 300 through the lens 500, and in the image Image on sensor 300.
  • the camera module 2000 in the embodiment of the present application uses the above-mentioned SMA motor 1000, which better solves the problem of large posture difference of conventional SMA motors.
  • an infrared cutoff filter 400 can be provided between the lens 500 and the image sensor 300 to filter the infrared light in the light passing through the lens 500 so that the image sensor 300 has better performance. imaging quality.
  • the infrared cut filter 400 may be blue glass (BG).
  • an embodiment of the present application provides an electronic device, including a housing 600 and the above-mentioned camera module 2000.
  • the camera module 2000 is installed on the housing 600.
  • electronic devices can be mobile phones, tablets, laptops, vehicle-mounted devices, wearable devices, televisions, etc.
  • Wearable devices can be smart bracelets, smart watches, smart glasses, smart headsets, etc.
  • the housing 600 can be configured with one or more camera modules 2000.
  • the electronic device in the embodiment of the present application uses the above-mentioned camera module 2000, which better solves the problem of large posture difference of conventional SMA motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请提供了一种SMA马达、摄像模组及电子设备。SMA马达包括固定部件、活动部件、弹性悬臂、支座和SMA线。活动部件和固定部件之间通过弹性悬臂连接,在活动部件和固定部件之间设置支座,使活动部件支撑在固定部件上,多个弹性悬臂拉伸变形,活动部件对支座形成预压作用。支座的第一端固定在活动部件和固定部件其中一个部件上,支座的第二端保持抵设在另一个部件上而不会Z向脱离。将多个SMA线布置为能够驱动活动部件相对于固定部件在XY平面上移动。该SMA马达不依赖于弹性悬臂由传统蚀刻工艺形成金属层时的弹性系数,通过活动部件对支座的预压作用,能降低在不同重力方向时活动部产生的Z向位移,较好地解决了常规SMA马达姿势差较大的问题,工艺简单。

Description

一种SMA马达、摄像模组及电子设备
本申请要求于2022年08月02日提交国家知识产权局、申请号为202210925573.X、申请名称为“一种SMA马达、摄像模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及摄像头结构技术领域,尤其涉及一种形状记忆合金(shape memory alloys,SMA)马达、摄像模组及电子设备。
背景技术
相关技术中具有光学防抖功能的摄像模组,原理是在拍照时对一定频率和幅度范围内的设备抖动进行实时检测和反馈,并调整图像传感器(或镜头)的位置以反向补偿,实现光学防抖。其中一种光学防抖方案是通过SMA马达驱动图像传感器在垂直光轴的平面上移动。常规的SMA马达包括固定部件、活动部件、多个弹性悬臂和多个SMA线,活动部件和固定部件之间通过多个弹性悬臂连接。多个SMA线的两端分别连接至固定部件和活动部件,通过多个SMA线配合能驱动活动部件在垂直光轴的平面上移动,图像传感器固定在活动部件上,就能实现对图像传感器的位置调整。为了克服活动部件的姿势差问题,即在不同重力方向时活动部件存在不同位移的问题,常规SMA马达中的弹性悬臂用蚀刻工艺形成金属层,使金属层提供的弹性力和活动部件所受重力相平衡,使活动部件保持位置稳定。然而,弹性悬臂和金属层的横截面尺寸是微米级的,传统蚀刻工艺制作的金属层一致性较差,金属层尺寸公差较大,生产良率较低,多个金属层的弹性系数波动较大,难以提供预定弹性力,在不同重力方向上活动部件会有一定位移。常规SMA马达存在姿势差较大的问题。
发明内容
本申请实施例提供一种SMA马达、摄像模组及电子设备,解决了常规SMA马达存在姿势差较大的问题。
本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种SMA马达,包括固定部件、活动部件、多个弹性悬臂、一个或多个支座和多个SMA线。固定部件和活动部件间隔设置。每个弹性悬臂的两端分别连接在固定部件和活动部件上。一个或多个支座设置在固定部件和活动部件之间。每个支座具有相对设置的第一端和第二端。第一端与活动部件或固定部件固定。第二端与固定部件或活动部件滑动摩擦配合。活动部件的顶面高于固定部件的顶面,以使多个弹性悬臂处于拉伸状态。各个SMA线的两端分别固定于固定部件和活动部件上,多个SMA线配合能够驱动活动部件相对于固定部件在预定平面上移动。
其中,活动部件可用于安装图像传感器等相关器件,活动部件可以在垂直光轴的平面上移动以带动相关器件移动。将光轴方向定义为Z轴方向,垂直光轴的平面就是XY平面,活动部件可沿X轴和Y轴移动。
支座具有一定高度(Z向尺寸),将活动部件支撑在固定部件上,活动部件的顶面高于固定部件的顶面,使弹性悬臂产生Z向拉伸变形,弹性悬臂受到支座和活动部件沿Z向向上的作用力。弹性悬臂对支座和活动部件有反作用力,即支座会受到沿Z向向下的作用力,使得支座的第二端保持抵设在固定部件或活动部件上,Z向脱离没有或极小。
本申请实施例提供的SMA马达,活动部件和固定部件之间通过弹性悬臂连接,在活动部件和固定部件之间设置支座,使得活动部件支撑在固定部件上,多个弹性悬臂拉伸变形,活动部件对支座形成预压作用。支座的第一端固定在活动部件和固定部件其中一个部件上,支座的第二端保持抵设在另一个部件上而不会Z向脱离。将多个SMA线布置为能够驱动活动部件相对于固定部 件在XY平面上移动,使得安装在活动部件上的图像传感器跟随移动,实现光学防抖。在面对活动部件姿势差问题时,该SMA马达不依赖于弹性悬臂由传统蚀刻工艺形成金属层时的弹性系数,无需考虑弹性悬臂的弹性系数波动大的情况,通过活动部件对支座的预压作用,能有效降低在不同重力方向时活动部产生的Z向位移,满足活动部件可在XY平面上移动,而在Z向上不脱离预定位置,较好地解决了常规SMA马达姿势差较大的问题,工艺简单。
在一种可选实现方式中,固定部件包括第一电路板,活动部件包括第二电路板,各个弹性悬臂具有导电功能,以使第一电路板和第二电路板电连接。该方案中,活动部件可相对固定部件运动,并且通过弹性悬臂实现活动部件和固定部件的电连接,可实现供电或信号传输。
在一种可选实现方式中,固定部件还包括底板,第一电路板固定在底板上,第一电路板具有容纳孔,活动部件对应容纳孔设置,一个或多个支座设置在容纳孔内且位于底板和活动部件之间。
该方案中,第一电路板具有容纳孔,使第一电路板具有一个框状结构,活动部件位于框状结构内,便于多个SMA线布置在框状结构上,通过多个SMA线线配合以驱动活动部件在XY平面上移动。
在一种可选实现方式中,活动部件还包括防撞件,第二电路板固定于防撞件上,一个或多个支座设置在防撞件和固定部件之间。
防撞件作为缓冲和抗扭的结构件,在活动部件移动时,防撞件和预定结构先碰撞,保护第二电路板上的一些器件,降低第二电路板上的器件被撞击的可能性,提升结构可靠性。
在固定部件包括底板时,底板、支座、防撞件和第二电路板依次叠设,实现支座对防撞件和第二电路板的预压作用,较好解决姿势差大的问题。
在一种可选实现方式中,支座的数量大于或等于三,支座呈柱状或其他形状,能较好的将活动部件支撑在固定部件上,活动部件相对固定部件移动时,支座的第二端和接触面之间的摩擦力较小,便于SMA马达驱动活动部件移动。
在一种可选实现方式中,一个或多个支座和防撞件为一体成型结构,支座的第二端和固定部件的底板滑动摩擦配合。
在一种可选实现方式中,一个或多个支座和固定部件的底板为一体成型结构,支座的第二端和防撞件滑动摩擦配合。
以上两种方式能避免活动部件移动时支座脱离预定位置的情况,简化工艺,容易成型。支座的第二端满足预定平面度,降低支座的第二端和接触面之间的摩擦力,利于SMA马达驱动活动部件相对固定部件的平稳移动,充分发挥马达特性。一体成型结构可以是注塑成型或者半蚀刻成型,容易加工,结构稳定。
在一种可选实现方式中,一个或多个支座成型于一连接件上,连接件贴设于防撞件面向固定部件的一侧,支座的第二端和固定部件的底板滑动摩擦配合。
在一种可选实现方式中,一个或多个支座成型于一连接件上,连接件贴设在固定部件的底板面向防撞件的一侧,支座的第二端和防撞件滑动摩擦配合。
以上两种方式可提升粘接面积,使得支座可靠地固定在预定位置上,降低活动部件移动时支座脱落的风险,提升可靠性。在装配一个或多个支座时只要一次粘接工艺就能将一个或多个支座固定在预定位置,工艺简单。支座的第二端满足预定平面度,降低支座的第二端和接触面之间的摩擦力,利于SMA马达驱动活动部件相对固定部件的平稳移动,充分发挥马达特性。支座成型于一连接件上,可以是半蚀刻成型,容易加工,结构稳定。
在一种可选实现方式中,防撞件上设有多个第一孔,支座为注塑成型在第一孔处的注塑件,支座的第二端和固定部件的底板滑动摩擦配合。
在一种可选实现方式中,固定部件的底板上设有多个第二孔,支座为注塑成型在第二孔处的注塑件,支座的第二端和防撞件滑动摩擦配合。
以上两种方式,通过在防撞件或底板上打孔,在打孔位置注塑形成支座,使支座可靠地连接在防撞件或底板上,降低活动部件移动时支座脱落的风险,提升可靠性。支座的第二端满足预定平面度,降低支座的第二端和接触面之间的摩擦力,利于SMA马达驱动活动部件相对固定部件的平稳移动,充分发挥马达特性。
在一种可选实现方式中,SMA马达还包括固定于固定部件上的盖体,防撞件具有一个或多个第一碰撞部,盖体具有一个或多个第二碰撞部,第一碰撞部和第二碰撞部一一对应相对设置;在活动部件相对固定部件运动的情况下,相对应的第一碰撞部和第二碰撞部碰撞配合。
该方案中,防撞件的第一碰撞部和盖体的第二碰撞部起到撞击和抗扭作用,在活动部件平移或旋转运动时,第一碰撞部和第二碰撞部先撞击,降低活动部件上的一些器件被撞坏的风险,降低零件之间碰撞产生的粉末落在图像传感器上导致成像时出现黑影黑点的风险。
在一种可选实现方式中,第一碰撞部和/或第二碰撞部的壁面为弹性部位。
第一碰撞部和第二碰撞部其中一处设置为弹性部位,能降低第一碰撞部和第二碰撞部在撞击时产生的应力。第一碰撞部和第二碰撞部两处都设置为弹性部位,能更有效降低撞击时产生的应力。
在一种可选实现方式中,防撞件包括第一本体,第一本体和第一碰撞部通过双色注塑成型,第一本体的硬度大于第一碰撞部的硬度;和/或,盖体包括第二本体,第二本体和第二碰撞部的壁面通过双色注塑成型,第二本体的硬度大于第二碰撞部的壁面硬度。
双色注塑中选用两种软硬不同的材料,碰撞部采用弹性材料,本体采用较硬材料。这样第一碰撞部和第二碰撞部相撞击时,就能降低撞击时产生的应力。
在一种可选实现方式中,防撞件包括第一本体,第一本体为金属件,第一碰撞部通过单色注塑成型在第一本体上,第一本体的硬度大于第一碰撞部的硬度;和/或,盖体包括第二本体,第二本体为金属件,第二碰撞部的壁面通过单色注塑成型在第二本体上,第二本体的硬度大于第二碰撞部的壁面硬度。
该方案中,本体采用金属制作,碰撞部采用注塑成型在本体上,碰撞部和本体之间连接可靠,碰撞部比本体的硬度小。在第一碰撞部和第二碰撞部相撞击时,能降低撞击时产生的应力。
在一种可选实现方式中,弹性悬臂成对设置,成对设置的弹性悬臂以第二电路板的中心对称分布在第二电路板的对角外,在第二电路板的同一对角外布置有一对或多对弹性悬臂。
该方案在X、Y两个方向的弹性系数中心对称,X、Y两个方向上弹性系数比较接近,使得弹性悬臂对活动部件在X向和Y向上的作用力比较接近,较好地控制活动部件的姿势差。
在一种可选实现方式中,第一电路板具有容纳孔,第二电路板位于容纳孔内;每个弹性悬臂为轴对称结构,每个弹性悬臂的其中一端连接于第一电路板的其中一内边缘中部,而另外一端连接于第二电路板的其中一外边缘中部。
该方案可在第二电路板的不同角部布置弹性悬臂,实现第一电路板和第二电路板之间更多信号传输,而且能提供预定的弹性系数,以控制活动部件的姿势差。
在一种可选实现方式中,第一电路板具有框状结构,包括依次连接的第一段、第二段、第三段和第四段。第二电路板呈矩形,包括依次连接的第一边、第二边、第三边和第四边。第二电路板设置在第一电路板的中空位置,第一段、第二段、第三段、第四段一一对应地和第一边、第二边、第三边、第四边间隔并相对设置。弹性悬臂设置为L型,可以在第二电路板的其中两个对角布置弹性悬臂,也可以在第二电路板的四个对角布置弹性悬臂。在每个对角上可以布置一个或多个弹性悬臂。
在一种可选实现方式中,第二电路板的四个角外分别布置有第一弹性悬臂、第二弹性悬臂、第三弹性悬臂、第四弹性悬臂。第一电路板的第一段中部和第二电路板的第二边中部之间连接有第一弹性悬臂,第一电路板的第三段中部和第二电路板的第二边中部之间连接有第二弹性悬臂,第一电路板的第三段中部和第二电路板的第四边之间连接有第三弹性悬臂,第一电路板的第一段中部和第二电路板的第四边之间连接有第四弹性悬臂。
在一种可选实现方式中,第一电路板的第一段中部内侧间隔延伸形成有两个第一连接臂,第三段中部内侧间隔延伸形成有两个第二连接臂。第二电路板的第二边中部外侧延伸形成有第一连接部,第四边中部外侧延伸形成有第二连接部。第一弹性悬臂的两端分别连接于相邻的第一连接臂和第一连接部,第二弹性悬臂的两端分别连接于相邻的第二连接臂和第一连接部,第三弹性悬臂的两端分别连接于相邻的第二连接臂和第二连接部,第四弹性悬臂的两端分别连接于相邻的第一连接臂和第二连接部。通过在第一电路板容纳孔内壁设置第一连接臂和第二连接臂,便于弹性 悬臂的一端和第一电路板相连接。
在一种可选实现方式中,弹性悬臂呈直线形,在第二电路板的四周外分别布置一个或多个弹性悬臂。
在一种可选实现方式中,弹性悬臂呈L字型,只在第二电路板的其中两个对角外布置L字型的弹性悬臂,第二电路板的另外两个对角外不布置弹性悬臂。
在一种可选实现方式中,其中一对弹性悬臂中的各个弹性悬臂包括依次叠设的第一金属屏蔽层、第一绝缘层、信号层、第二绝缘层和第二金属屏蔽层,第一金属屏蔽层和第二金属屏蔽层均接地。
该方案中,对分布在第二电路板对角外的一对弹性悬臂上配置信号层和第一金属屏蔽层,在其他弹性悬臂上不配置信号层和第一金属屏蔽层。通过两个信号层实现MIPI信号传输。通过减少信号层,相应可减少第一金属屏蔽层,降低了多个弹性悬臂形成的弹性系数,有利于发挥SMA马达性能,驱动活动部件相对固定部件的平稳移动,提升结构可靠性。
在一种可选实现方式中,具有信号层的弹性悬臂还包括第三绝缘层、电源层和第四绝缘层,第三绝缘层、电源层和第四绝缘层依次叠设在第二金属屏蔽层上。
该方案中,对具有信号层的弹性悬臂配置电源层,实现对第二电路板上的图像传感器等器件供电。通过信号层和电源层等形成的层叠结构,可在有限空间内布置较少的弹性悬臂,从而使弹性悬臂可以做宽,而且便于采用传统工艺成型。
在一种可选实现方式中,第一金属屏蔽层的宽度小于或等于弹性悬臂的最大宽度。通过缩小第一金属屏蔽层的宽度,可以在一定程度上降低弹性悬臂的弹性系数,利于SMA马达驱动活动部件相对固定部件的平稳移动,充分发挥马达特性。
在一种可选实现方式中,所有弹性悬臂均设置信号层,即每个弹性悬臂包括依次叠设的第一金属屏蔽层、第一绝缘层、信号层、第二绝缘层和第二金属屏蔽层,这种方式也是可行的。
在一种可选实现方式中,SMA线的数量为四,第一SMA线、第二SMA线、第三SMA线、第四SMA线分别布置在第一电路板的框状结构上并位于第二电路板的四周。活动部件上具有第一参考面和第二参考面,第一参考面和第二参考面相交,且相交线经过第二电路板初始位置时的中心。第一参考面和第二参考面可以相垂直。第一SMA线和第二SMA线以第一参考面对称分布,第三SMA线和第四SMA线以第一参考面对称分布。第一SMA线和第四SMA线以第二参考面对称分布,第二SMA线和第三SMA线以第二参考面对称分布。
该方案中,限定了四个SMA线的位置关系,通过控制四个SMA线内的电信号可以对活动部件形成在XY平面上不同大小和方向的合力,以驱动活动部件沿第一参考面或者第二参考面移动,或者同时沿第一参考面和第二参考面移动,使得活动部件可带动图像传感器在XY平面上移动,实现光学防抖。
在一种可选实现方式中,固定部件的一对角处设有定夹具,活动部件的一对角处设有动夹具,每个SMA线的第一端通过定夹具固定在固定部件上,SMA线的第二端通过动夹具固定在活动部件上。定夹具和动夹具可导电,使得SMA线电连接在活动部件和固定部件之间。
在一种可选实现方式中,动夹具可以设置为条形,条形的动夹具可设于第二电路板的角部,动夹具可跨越在弹性悬臂的上方,动夹具远离第二电路板的一端靠近第一电路板的框状结构角部设置。定夹具也可以靠近第一电路板的框状结构角部设置。这样便于在有限空间下使SMA线设置得较长,有利于提升SMA马达的动力性能。
在一种可选实现方式中,条形的动夹具可穿过盖体的避让孔,定夹具布置在盖体外并位于第一电路板的框状结构上,这样SMA线可布置在盖体的外周,SMA线和盖体有一定间隔,使得SMA线可靠变形而不受周围结构影响。
在一种可选实现方式中,定夹具位于第一电路板的框状结构上并布置在盖体内,条形的动夹具位于盖体内,SMA线布置在盖体内。多个弹性悬臂位于第一电路板的框状结构内并位于第二电路板的外周。第一碰撞部(第二碰撞部)位于弹性悬臂和SMA线之间,使得SMA线和弹性悬臂能独立变形或运动而不会相互影响,工作可靠。
在一种可选实现方式中,活动部件和固定部件之间可连接缓冲胶,缓冲胶可减小活动部件在 运动时的抖动,提升图像传感器的成像质量。
第二方面,本申请实施例提供一种摄像模组,包括镜头、图像传感器和上述SMA马达,图像传感器设于活动部件上,镜头和图像传感器相对设置。
本申请实施例的摄像模组,在工作时,SMA马达调整图像传感器在垂直光轴的平面上的位置,实现光学防抖,外部光线经过镜头投射在图像传感器上,在图像传感器上成像。本申请实施例的摄像模组采用了上述SMA马达,较好地解决了常规SMA马达姿势差较大的问题。
第三方面,本申请实施例提供一种电子设备,包括壳体和上述摄像模组,摄像模组安装于壳体上。
本申请实施例的电子设备采用了上述摄像模组,较好地解决了常规SMA马达姿势差较大的问题。
第四方面,本申请实施例提供一种电子设备,包括壳体和SMA马达,SMA马达安装于壳体上。SMA马达包括固定部件、活动部件、多个弹性悬臂、一个或多个支座和多个SMA线。固定部件和活动部件间隔设置。每个弹性悬臂的两端分别连接在固定部件和活动部件上。一个或多个支座设置在固定部件和活动部件之间。每个支座具有相对设置的第一端和第二端。第一端与活动部件或固定部件固定。第二端与固定部件或活动部件滑动摩擦配合。活动部件的顶面高于固定部件的顶面,以使多个弹性悬臂处于拉伸状态。各个SMA线的两端分别固定于固定部件和活动部件上,多个SMA线配合能够驱动活动部件相对于固定部件在预定平面上移动。
本申请实施例提供的电子设备,在SMA马达中,活动部件和固定部件之间通过弹性悬臂连接,在活动部件和固定部件之间设置支座,使得活动部件支撑在固定部件上,多个弹性悬臂拉伸变形,活动部件对支座形成预压作用。支座的第一端固定在活动部件和固定部件其中一个部件上,支座的第二端保持抵设在另一个部件上而不会Z向脱离。将多个SMA线布置为能够驱动活动部件相对于固定部件在XY平面上移动,使得安装在活动部件上的图像传感器跟随移动,实现光学防抖。在面对活动部件姿势差问题时,该SMA马达不依赖于弹性悬臂由传统蚀刻工艺形成金属层时的弹性系数,无需考虑弹性悬臂的弹性系数波动大的情况,通过活动部件对支座的预压作用,能有效降低在不同重力方向时活动部产生的Z向位移,满足活动部件可在XY平面上移动,而在Z向上不脱离预定位置,较好地解决了常规SMA马达姿势差较大的问题,工艺简单。
在一种可选实现方式中,固定部件包括第一电路板,活动部件包括第二电路板,各个弹性悬臂具有导电功能,以使第一电路板和第二电路板电连接。该方案中,活动部件可相对固定部件运动,并且通过弹性悬臂实现活动部件和固定部件的电连接,可实现供电或信号传输。
在一种可选实现方式中,固定部件还包括底板,第一电路板固定在底板上,第一电路板具有容纳孔,活动部件对应容纳孔设置,一个或多个支座设置在容纳孔内且位于底板和活动部件之间。
该方案中,第一电路板具有容纳孔,使第一电路板具有一个框状结构,活动部件位于框状结构内,便于多个SMA线布置在框状结构上,通过多个SMA线线配合以驱动活动部件在XY平面上移动。
在一种可选实现方式中,活动部件还包括防撞件,第二电路板固定于防撞件上,一个或多个支座设置在防撞件和固定部件之间。
防撞件作为缓冲和抗扭的结构件,在活动部件移动时,防撞件和预定结构先碰撞,保护第二电路板上的一些器件,降低第二电路板上的器件被撞击的可能性,提升结构可靠性。在固定部件包括底板时,底板、支座、防撞件和第二电路板依次叠设,实现支座对防撞件和第二电路板的预压作用,较好解决姿势差大的问题。
在一种可选实现方式中,支座的数量大于或等于三,支座呈柱状或其他形状,能较好的将活动部件支撑在固定部件上,活动部件相对固定部件移动时,支座的第二端和接触面之间的摩擦力较小,便于SMA马达驱动活动部件移动。
在一种可选实现方式中,一个或多个支座和防撞件为一体成型结构,支座的第二端和固定部件的底板滑动摩擦配合。
在一种可选实现方式中,一个或多个支座和固定部件的底板为一体成型结构,支座的第二端和防撞件滑动摩擦配合。
以上两种方式能避免活动部件移动时支座脱离预定位置的情况,简化工艺,容易成型。支座的第二端满足预定平面度,降低支座的第二端和接触面之间的摩擦力,利于SMA马达驱动活动部件相对固定部件的平稳移动,充分发挥马达特性。一体成型结构可以是注塑成型或者半蚀刻成型,容易加工,结构稳定。
在一种可选实现方式中,一个或多个支座成型于一连接件上,连接件贴设于防撞件面向固定部件的一侧,支座的第二端和固定部件的底板滑动摩擦配合。
在一种可选实现方式中,一个或多个支座成型于一连接件上,连接件贴设在固定部件的底板面向防撞件的一侧,支座的第二端和防撞件滑动摩擦配合。
以上两种方式可提升粘接面积,使得支座可靠地固定在预定位置上,降低活动部件移动时支座脱落的风险,提升可靠性。在装配一个或多个支座时只要一次粘接工艺就能将一个或多个支座固定在预定位置,工艺简单。支座的第二端满足预定平面度,降低支座的第二端和接触面之间的摩擦力,利于SMA马达驱动活动部件相对固定部件的平稳移动,充分发挥马达特性。支座成型于一连接件上,可以是半蚀刻成型,容易加工,结构稳定。
在一种可选实现方式中,防撞件上设有多个第一孔,支座为注塑成型在第一孔处的注塑件,支座的第二端和固定部件的底板滑动摩擦配合。
在一种可选实现方式中,固定部件的底板上设有多个第二孔,支座为注塑成型在第二孔处的注塑件,支座的第二端和防撞件滑动摩擦配合。
以上两种方式,通过在防撞件或底板上打孔,在打孔位置注塑形成支座,使支座可靠地连接在防撞件或底板上,降低活动部件移动时支座脱落的风险,提升可靠性。支座的第二端满足预定平面度,降低支座的第二端和接触面之间的摩擦力,利于SMA马达驱动活动部件相对固定部件的平稳移动,充分发挥马达特性。
在一种可选实现方式中,SMA马达还包括固定于固定部件上的盖体,防撞件具有一个或多个第一碰撞部,盖体具有一个或多个第二碰撞部,第一碰撞部和第二碰撞部一一对应相对设置;在活动部件相对固定部件运动的情况下,相对应的第一碰撞部和第二碰撞部碰撞配合。
该方案中,防撞件的第一碰撞部和盖体的第二碰撞部起到撞击和抗扭作用,在活动部件平移或旋转运动时,第一碰撞部和第二碰撞部先撞击,降低活动部件上的一些器件被撞坏的风险,降低零件之间碰撞产生的粉末落在图像传感器上导致成像时出现黑影黑点的风险。
在一种可选实现方式中,第一碰撞部和/或第二碰撞部的壁面为弹性部位。
第一碰撞部和第二碰撞部其中一处设置为弹性部位,能降低第一碰撞部和第二碰撞部在撞击时产生的应力。第一碰撞部和第二碰撞部两处都设置为弹性部位,能更有效降低撞击时产生的应力。
在一种可选实现方式中,防撞件包括第一本体,第一本体和第一碰撞部通过双色注塑成型,第一本体的硬度大于第一碰撞部的硬度;和/或,盖体包括第二本体,第二本体和第二碰撞部的壁面通过双色注塑成型,第二本体的硬度大于第二碰撞部的壁面硬度。
双色注塑中选用两种软硬不同的材料,碰撞部采用弹性材料,本体采用较硬材料。这样第一碰撞部和第二碰撞部相撞击时,就能降低撞击时产生的应力。
在一种可选实现方式中,防撞件包括第一本体,第一本体为金属件,第一碰撞部通过单色注塑成型在第一本体上,第一本体的硬度大于第一碰撞部的硬度;和/或,盖体包括第二本体,第二本体为金属件,第二碰撞部的壁面通过单色注塑成型在第二本体上,第二本体的硬度大于第二碰撞部的壁面硬度。
该方案中,本体采用金属制作,碰撞部采用注塑成型在本体上,碰撞部和本体之间连接可靠,碰撞部比本体的硬度小。在第一碰撞部和第二碰撞部相撞击时,能降低撞击时产生的应力。
在一种可选实现方式中,弹性悬臂成对设置,成对设置的弹性悬臂以第二电路板的中心对称分布在第二电路板的对角外,在第二电路板的同一对角外布置有一对或多对弹性悬臂。
该方案在X、Y两个方向的弹性系数中心对称,X、Y两个方向上弹性系数比较接近,使得弹性悬臂对活动部件在X向和Y向上的作用力比较接近,较好地控制活动部件的姿势差。
在一种可选实现方式中,第一电路板具有容纳孔,第二电路板位于容纳孔内;每个弹性悬臂 为轴对称结构,每个弹性悬臂的其中一端连接于第一电路板的其中一内边缘中部,而另外一端连接于第二电路板的其中一外边缘中部。
该方案可在第二电路板的不同角部布置弹性悬臂,实现第一电路板和第二电路板之间更多信号传输,而且能提供预定的弹性系数,以控制活动部件的姿势差。
在一种可选实现方式中,第一电路板具有框状结构,包括依次连接的第一段、第二段、第三段和第四段。第二电路板呈矩形,包括依次连接的第一边、第二边、第三边和第四边。第二电路板设置在第一电路板的中空位置,第一段、第二段、第三段、第四段一一对应地和第一边、第二边、第三边、第四边间隔并相对设置。弹性悬臂设置为L型,可以在第二电路板的其中两个对角布置弹性悬臂,也可以在第二电路板的四个对角布置弹性悬臂。在每个对角上可以布置一个或多个弹性悬臂。
在一种可选实现方式中,第二电路板的四个角外分别布置有第一弹性悬臂、第二弹性悬臂、第三弹性悬臂、第四弹性悬臂。第一电路板的第一段中部和第二电路板的第二边中部之间连接有第一弹性悬臂,第一电路板的第三段中部和第二电路板的第二边中部之间连接有第二弹性悬臂,第一电路板的第三段中部和第二电路板的第四边之间连接有第三弹性悬臂,第一电路板的第一段中部和第二电路板的第四边之间连接有第四弹性悬臂。
在一种可选实现方式中,第一电路板的第一段中部内侧间隔延伸形成有两个第一连接臂,第三段中部内侧间隔延伸形成有两个第二连接臂。第二电路板的第二边中部外侧延伸形成有第一连接部,第四边中部外侧延伸形成有第二连接部。第一弹性悬臂的两端分别连接于相邻的第一连接臂和第一连接部,第二弹性悬臂的两端分别连接于相邻的第二连接臂和第一连接部,第三弹性悬臂的两端分别连接于相邻的第二连接臂和第二连接部,第四弹性悬臂的两端分别连接于相邻的第一连接臂和第二连接部。通过在第一电路板容纳孔内壁设置第一连接臂和第二连接臂,便于弹性悬臂的一端和第一电路板相连接。
在一种可选实现方式中,弹性悬臂呈直线形,在第二电路板的四周外分别布置一个或多个弹性悬臂。
在一种可选实现方式中,弹性悬臂呈L字型,只在第二电路板的其中两个对角外布置L字型的弹性悬臂,第二电路板的另外两个对角外不布置弹性悬臂。
在一种可选实现方式中,其中一对弹性悬臂中的各个弹性悬臂包括依次叠设的第一金属屏蔽层、第一绝缘层、信号层、第二绝缘层和第二金属屏蔽层,第一金属屏蔽层和第二金属屏蔽层均接地。
该方案中,对分布在第二电路板对角外的一对弹性悬臂上配置信号层和第一金属屏蔽层,在其他弹性悬臂上不配置信号层和第一金属屏蔽层。通过两个信号层实现MIPI信号传输。通过减少信号层,相应可减少第一金属屏蔽层,降低了多个弹性悬臂形成的弹性系数,有利于发挥SMA马达性能,驱动活动部件相对固定部件的平稳移动,提升结构可靠性。
在一种可选实现方式中,具有信号层的弹性悬臂还包括第三绝缘层、电源层和第四绝缘层,第三绝缘层、电源层和第四绝缘层依次叠设在第二金属屏蔽层上。
该方案中,对具有信号层的弹性悬臂配置电源层,实现对第二电路板上的图像传感器等器件供电。通过信号层和电源层等形成的层叠结构,可在有限空间内布置较少的弹性悬臂,从而使弹性悬臂可以做宽,而且便于采用传统工艺成型。
在一种可选实现方式中,第一金属屏蔽层的宽度小于或等于弹性悬臂的最大宽度。通过缩小第一金属屏蔽层的宽度,可以在一定程度上降低弹性悬臂的弹性系数,利于SMA马达驱动活动部件相对固定部件的平稳移动,充分发挥马达特性。
在一种可选实现方式中,所有弹性悬臂均设置信号层,即每个弹性悬臂包括依次叠设的第一金属屏蔽层、第一绝缘层、信号层、第二绝缘层和第二金属屏蔽层,这种方式也是可行的。
在一种可选实现方式中,SMA线的数量为四,第一SMA线、第二SMA线、第三SMA线、第四SMA线分别布置在第一电路板的框状结构上并位于第二电路板的四周。活动部件上具有第一参考面和第二参考面,第一参考面和第二参考面相交,且相交线经过第二电路板初始位置时的中心。第一参考面和第二参考面可以相垂直。第一SMA线和第二SMA线以第一参考面对称分布, 第三SMA线和第四SMA线以第一参考面对称分布。第一SMA线和第四SMA线以第二参考面对称分布,第二SMA线和第三SMA线以第二参考面对称分布。
该方案中,限定了四个SMA线的位置关系,通过控制四个SMA线内的电信号可以对活动部件形成在XY平面上不同大小和方向的合力,以驱动活动部件沿第一参考面或者第二参考面移动,或者同时沿第一参考面和第二参考面移动,使得活动部件可带动图像传感器在XY平面上移动,实现光学防抖。
在一种可选实现方式中,固定部件的一对角处设有定夹具,活动部件的一对角处设有动夹具,每个SMA线的第一端通过定夹具固定在固定部件上,SMA线的第二端通过动夹具固定在活动部件上。定夹具和动夹具可导电,使得SMA线电连接在活动部件和固定部件之间。
在一种可选实现方式中,动夹具可以设置为条形,条形的动夹具可设于第二电路板的角部,动夹具可跨越在弹性悬臂的上方,动夹具远离第二电路板的一端靠近第一电路板的框状结构角部设置。定夹具也可以靠近第一电路板的框状结构角部设置。这样便于在有限空间下使SMA线设置得较长,有利于提升SMA马达的动力性能。
在一种可选实现方式中,条形的动夹具可穿过盖体的避让孔,定夹具布置在盖体外并位于第一电路板的框状结构上,这样SMA线可布置在盖体的外周,SMA线和盖体有一定间隔,使得SMA线可靠变形而不受周围结构影响。
在一种可选实现方式中,定夹具位于第一电路板的框状结构上并布置在盖体内,条形的动夹具位于盖体内,SMA线布置在盖体内。多个弹性悬臂位于第一电路板的框状结构内并位于第二电路板的外周。第一碰撞部(第二碰撞部)位于弹性悬臂和SMA线之间,使得SMA线和弹性悬臂能独立变形或运动而不会相互影响,工作可靠。
在一种可选实现方式中,活动部件和固定部件之间可连接缓冲胶,缓冲胶可减小活动部件在运动时的抖动,提升图像传感器的成像质量。
附图说明
图1为本申请实施例提供的SMA马达的立体分解图;
图2为图1中的部分结构装配形成的SMA马达的立体装配图;
图3为图2的沿A-A线剖视图;
图4为图3的SMA马达的简化结构图,为了展示固定部件、活动部件和弹性悬臂的连接关系,图中改变了弹性悬臂的形态;
图5为在图2的SMA马达的立体装配图;
图6为图5的SMA马达在拆卸底板后的仰视图;
图7为在图6的SMA马达的基础上拆卸防撞件后的仰视图;
图8为本申请另一实施例提供的SMA马达的立体分解图;
图9为本申请另一实施例提供的SMA马达中的支座和连接件的一体结构和防撞件的立体分解图;
图10为本申请另一实施例提供的SMA马达的立体分解图;
图11为图1的SMA马达的立体装配图;
图12为图11的SMA马达的俯视图;
图13为图11的SMA马达的另一角度立体分解图;
图14为本申请另一实施例提供的SMA马达的立体装配图;
图15为图14的SMA马达的立体分解图;
图16为图14的SMA马达的另一角度立体分解图;
图17为图7的SMA马达中的第二电路板和弹性悬臂的结构示意图;
图18为图17的弹性悬臂的沿B-B线剖视图;
图19为本申请实施例提供的摄像模组的结构示意图;
图20为本申请实施例提供的电子设备的结构示意图。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作为申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参阅图1和图2,本申请实施例提供一种SMA马达1000,包括固定部件110、活动部件120、多个弹性悬臂130、一个或多个支座140和多个SMA线200。固定部件110和活动部件120间隔设置。每个弹性悬臂130的两端(130a、130b)分别连接在固定部件110和活动部件120上。结合图3、图4,一个或多个支座140设置在固定部件110和活动部件120之间。每个支座140具有相对设置的第一端140a和第二端140b。第一端140a与活动部件120或固定部件110固定。第二端140b与固定部件110或活动部件120滑动摩擦配合。活动部件120的顶面120a高于固定部件110的顶面110a,以使多个弹性悬臂130处于拉伸状态。结合图5,各个SMA线200的两端分别固定于固定部件110和活动部件120上,多个SMA线200配合能够驱动活动部件120相对于固定部件110在预定平面上移动。
其中,参阅图2,活动部件120可用于安装图像传感器300等相关器件,活动部件120可以在垂直光轴的平面上移动以带动相关器件移动。将光轴方向定义为Z轴方向,垂直光轴的平面就是XY平面,活动部件120可沿X轴和Y轴移动。
在图4所示实施例中,支座140的第一端140a固定在活动部件120,第二端140b和固定部件110滑动摩擦配合,下文主要以这种方式说明。在其他实施例中,支座140的第一端140a还可以固定在固定部件110,第二端140b和活动部件120滑动摩擦配合。
参阅图3、图4,在固定部件110朝下平放在预定支撑面1时,活动部件120的顶面120a是 指活动部件120远离预定支撑面1的一侧,固定部件110的顶面110a是指固定部件110远离预定支撑面1的一侧。活动部件120的顶面120a高于固定部件110的顶面110a,活动部件120的顶面120a和固定部件110的顶面110a之间存在段差,两者不平齐。
胡克定律是力学弹性理论的一条基本定律:在固体材料的线弹性范围内,固体材料的单向拉伸变形量与所受的外力成正比。胡克定律的表达式是:F=kx,其中,F是固体材料所受的外力,k是固体材料的弹性系数,x是固体材料的单向拉伸变形量。
本实施例中,支座140具有一定高度(Z向尺寸),将活动部件120支撑在固定部件110上,活动部件120的顶面120a高于固定部件110的顶面110a,使弹性悬臂130产生Z向拉伸变形,弹性悬臂130受到支座140和活动部件120沿Z向向上的作用力。相应地,弹性悬臂130对支座140和活动部件120有反作用力,即支座140会受到沿Z向向下的作用力,使得支座140的第二端140b保持抵设在固定部件110或活动部件120上,Z向脱离没有或极小(比如小于或等于5um)。
其中,参阅图1、图5,SMA线200采用形状记忆合金(shape memory alloys,SMA)制作。形状记忆合金是具有形状记忆效应的金属。形状记忆效应是指具有一定形状的固体材料,在某种条件下经过一定的塑性变形后,在加热到一定温度时,材料完全恢复到变形前原来形状的现象。SMA具有变形恢复能力,本质上是变形过程中材料内部发生的热弹性马氏体相变。SMA中具有两种相:高温奥氏体相、低温马氏体相。根据不同的热力载荷条件,SMA会呈现出两种性能。
本实施例中,SMA线200在通电或加热而升温时,可实现由低温马氏体相逆变为高温奥氏体相,恢复到变形前原来形状,SMA线200收缩。SMA线200在不通电或不加热而冷却时,可实现由高温奥氏体相变为低温马氏体相,SMA线200变长。SMA线200实现热缩冷胀的效果。将SMA线200的第一端201固定于固定部件110,SMA线200的第二端202固定在活动部件120,SMA线200通电时收缩,SMA线200的第二端202被拉着向第一端201的方向移动,从而改变活动部件120相对固定部件110的相对位置。
本申请实施例提供的SMA马达1000,活动部件120和固定部件110之间通过弹性悬臂130连接,在活动部件120和固定部件110之间设置支座140,使得活动部件120支撑在固定部件110上,多个弹性悬臂130拉伸变形,活动部件120对支座140形成预压作用。支座140的第一端140a固定在活动部件120和固定部件110其中一个部件上,支座140的第二端140b保持抵设在另一个部件上而不会Z向脱离。将多个SMA线200布置为能够驱动活动部件120相对于固定部件110在XY平面上移动,使得安装在活动部件120上的图像传感器300跟随移动,实现光学防抖。在面对活动部件120姿势差问题时,该SMA马达1000不依赖于弹性悬臂130由传统蚀刻工艺形成金属层时的弹性系数,无需考虑弹性悬臂130的弹性系数波动大的情况,通过活动部件120对支座140的预压作用,能有效降低在不同重力方向时活动部产生的Z向位移,满足活动部件120可在XY平面上移动,而在Z向上不脱离预定位置,较好地解决了常规SMA马达姿势差较大的问题,工艺简单。
在一些实施例中,参阅图1、图2,固定部件110包括第一电路板111,活动部件120包括第二电路板121,各个弹性悬臂130具有导电功能,以使第一电路板111和第二电路板121电连接。该方案中,活动部件120可相对固定部件110运动,并且通过弹性悬臂130实现活动部件120和固定部件110的电连接,可实现供电或信号传输。
第一电路板111、第二电路板121和多个弹性悬臂130可构成一个组件,可以称为弹性电路板,第一电路板111和第二电路板121之间通过弹性悬臂130连接,弹性悬臂130能提供一定的弹性系数,第二电路板121可相对第一电路板111运动,且第一电路板111和第二电路板121之间通过弹性悬臂130电连接。
示例性的,弹性悬臂130具有导电迹线,可实现活动部件120和固定部件110的电连接。在SMA马达中,第一电路板111可配置接头连接至设备主板,第二电路板121可安装图像传感器300。设备主板对第一电路板111提供控制信号,通过弹性悬臂130的导电迹线将控制信号传输至第二电路板121上的图像传感器300,图像传感器300获取的图像信号也可以通过第二电路板121、弹性悬臂130的导电迹线和第一电路板111传输至设备主板上。第一电路板111、弹性悬臂130的导电迹线和第二电路板121电连接,可将外部电能传输至第二电路板121上的器件。
其中,第一电路板111可以为刚柔板,其包括相连接的硬板部和柔板部,硬板部通过弹性悬臂130和第二电路板121连接,柔板部可弯折变形,柔板部和设备主板之间可通过接头连接。第二电路板121可以为印制电路板,或者第二电路板121是柔性电路板和刚性板叠设的结构。
在一些实施例中,参阅图1、图3,固定部件110还包括底板112,第一电路板111固定在底板112上,第一电路板111具有容纳孔1111,结合图2,活动部件120对应容纳孔1111设置,结合图3,一个或多个支座140设置在容纳孔1111内且位于底板112和活动部件120之间。
该方案中,第一电路板111具有容纳孔1111,使第一电路板111具有一个框状结构,活动部件120位于框状结构内,结合图5,便于多个SMA线200布置在框状结构上,通过多个SMA线200线配合以驱动活动部件120在XY平面上移动。参阅图2,多个弹性悬臂130可分布在活动部件120的外周和容纳孔1111的内壁之间,这样可在预定平面的X、Y两个方向上提供比较接近的弹性系数,利于克服姿势差问题。
其中,第一电路板111和底板112之间可以采用粘接或其他方式组装,第一电路板111和底板112也可以为一体成型结构。
底板112可以按需设置为不同的形状,在图1的实施例中,底板112设置为框状,底板112的中间贯通部分可避让图像传感器300背面的补强板301,使得整体结构厚度较小。在其他实施例中,底板112还可以设置为其他形状,比如板状。
在一些实施例中,参阅图1至图4,活动部件120还包括防撞件122,第二电路板121固定于防撞件122上,一个或多个支座140设置在防撞件122和固定部件110之间。
防撞件122作为缓冲和抗扭的结构件,在活动部件120移动时,防撞件122和预定结构先碰撞,保护第二电路板121上的一些器件,降低第二电路板121上的器件被撞击的可能性,提升结构可靠性。在设置防撞件122时,支座140支撑在固定部件110和防撞件122之间。
防撞件122大致设置为板状,防撞件122的中间贯通部分可避让图像传感器300和补强板301,而且防撞件122可制作得较轻,便于SMA马达驱动移动。防撞件122可以为注塑件或冲压件。第二电路板121可粘接或其他方式固定在防撞件122上。
在固定部件110包括底板112时,底板112、支座140、防撞件122和第二电路板121依次叠设,实现支座140对防撞件122和第二电路板121的预压作用,较好解决姿势差大的问题。
在一些实施例中,参阅图1,支座140的数量大于或等于三,支座140可以呈柱状或其他形状,能较好的将活动部件120支撑在固定部件110上,而且活动部件120相对固定部件110移动时,支座140的第二端140b和接触面之间的摩擦力较小,便于SMA马达驱动活动部件120移动。支座140的数量按需配置。
示例性的,三个支座140呈三角形布置,结构简单,容易制作。三个支座140之间的距离可以尽量拉远,以较好地将活动部件120支撑在固定部件110上。结合图4,三个支座140的第二端140b满足预定平面度,通过三个支座140能可靠地将活动部件120支撑在固定部件110上,降低活动部件120运动过程中切换支座140而导致移动或倾斜偏大,满足活动部件120的运动稳定性。
在另一些实施例中,支座140还可以呈环状或弧线型,支座140可设置为一个或多个,也能将活动部件120支撑在固定部件110上。
在设置固定部件110、活动部件120和支座140时,支座140的第一端140a需要成型在固定部件110和活动部件120的其中一个部件上,支座140的第二端140b和另一个部件抵接配合。在活动部件120相对固定部件110移动时,支座140的第二端140b和上述另一个部件滑动摩擦配合。具体有如下多种可选的实现方式。
第一种实现方式是:参阅图1、图6、图7,一个或多个支座140和防撞件122为一体成型结构,结合图4,支座140的第二端140b和固定部件110的底板112滑动摩擦配合。
第二种实现方式是:参阅图8,一个或多个支座140和固定部件110的底板112为一体成型结构,支座140的第二端140b和防撞件122滑动摩擦配合。
相比于直接将支座140粘接在防撞件122或底板112上,以上两种方式能避免活动部件120移动时支座140脱离预定位置的情况,简化工艺,容易成型。支座140的第二端140b满足预定平 面度(比如在0.03mm内),降低支座140的第二端140b和接触面之间的摩擦力,利于SMA马达驱动活动部件120相对固定部件110的平稳移动,充分发挥马达特性。
其中,一体成型结构可以是注塑成型或者半蚀刻成型,容易加工,结构稳定。注塑成型可以选用液晶高分子聚合物(liquid crystal polymer,LCP)或其他塑胶材质。半蚀刻成型可选用磷青铜、不锈钢(如SUS316L)或其他材料。
示例性的,参阅图6、图7,一个或多个支座140和防撞件122采用一体注塑成型,选用LCP材料,支座140的高度大于或等于0.25mm,防撞件122厚度大于或等于0.1mm。
示例性的,参阅图6、图7,一个或多个支座140和防撞件122采用半蚀刻成型,选用磷青铜或不锈钢,在板材上蚀刻以去除部分材料,剩余的部分形成一个或多个支座140和防撞件122的一体结构。支座140的高度大于或等于0.01mm。比如,在厚度150um的板材上蚀刻一半厚度,得到支座140和防撞件122的一体结构,支座140高度75um,防撞件122厚度75um。
在一个或多个支座140和底板112一体成型时,成型方式是类似的,不再赘述。
第三种实现方式是:参阅图9,一个或多个支座140成型于一连接件141上,连接件141贴设于防撞件122面向固定部件110的一侧,支座140的第二端140b和固定部件110的底板112滑动摩擦配合。
第四种实现方式是:参阅图10,一个或多个支座140成型于一连接件141上,连接件141贴设在固定部件110的底板112面向防撞件122的一侧,支座140的第二端140b和防撞件122滑动摩擦配合。
以上两种方式,将一个或多个支座140成型在连接件141上,再将连接件141贴设在防撞件122或底板112上。相比于直接将支座140粘接在防撞件122或底板112上,以上两种方式可提升粘接面积,使得支座140可靠地固定在预定位置上,降低活动部件120移动时支座140脱落的风险,提升可靠性。在装配一个或多个支座140时只要一次粘接工艺就能将一个或多个支座140固定在预定位置,工艺简单。其中,连接件141可以为片状,结构紧凑。支座140的第二端140b满足预定平面度(比如在0.03mm内),降低支座140的第二端140b和接触面之间的摩擦力,利于SMA马达驱动活动部件120相对固定部件110的平稳移动,充分发挥马达特性。
其中,一个或多个支座140成型于一连接件141上,可以是半蚀刻成型,容易加工,结构稳定。半蚀刻成型可选用磷青铜、不锈钢或其他材料。连接件141可设置为框状,对应防撞件122的形状设置。
示例性的,在厚度150um的磷青铜板材上蚀刻,得到支座140和连接件141的一体结构,支座140高度75um,连接件141厚度75um。防撞件122采用厚度0.15mm的不锈钢冲压件。将连接件141贴设在防撞件122上,而支座140抵设于底板112上,完成装配。或者,将连接件141贴设在底板112上,而支座140抵设于防撞件122上,完成装配。
第五种实现方式是:参阅图6、图7,防撞件122上设有多个第一孔,支座140为注塑成型在第一孔处的注塑件,支座140的第二端140b和固定部件110的底板112滑动摩擦配合。
第六种实现方式是:参阅图8,固定部件110的底板112上设有多个第二孔,支座140为注塑成型在第二孔处的注塑件,支座140的第二端140b和防撞件122滑动摩擦配合。
以上两种方式,通过在防撞件122或底板112上打孔,在打孔位置注塑形成支座140,使支座140可靠地连接在防撞件122或底板112上,降低活动部件120移动时支座140脱落的风险,提升可靠性。支座140的第二端140b满足预定平面度(比如在0.03mm内),降低支座140的第二端140b和接触面之间的摩擦力,利于SMA马达驱动活动部件120相对固定部件110的平稳移动,充分发挥马达特性。
示例性的,防撞件122或底板112采用不锈钢板,在厚度0.2mm的不锈钢板上打孔,注塑成型出支座140。
在一些实施例中,参阅图1、图11,SMA马达还包括固定于固定部件110上的盖体150,结合图12、图13,防撞件122具有一个或多个第一碰撞部1221,盖体150具有一个或多个第二碰撞部151,第一碰撞部1221和第二碰撞部151一一对应相对设置;在活动部件120相对固定部件110运动的情况下,相对应的第一碰撞部1221和第二碰撞部151碰撞配合。
该方案中,防撞件122的第一碰撞部1221和盖体150的第二碰撞部151起到撞击和抗扭作用,在活动部件120平移或旋转运动时,第一碰撞部1221和第二碰撞部151先撞击,降低活动部件120上的一些器件被撞坏的风险,降低零件之间碰撞产生的粉末落在图像传感器300上导致成像时出现黑影黑点的风险。
其中,第一碰撞部1221可以为设于防撞件122外侧边的突出部,第二碰撞部151可以为设于盖体150侧边的凹槽,突出部可伸入凹槽内。在活动部件120处于初始位置时,突出部和凹槽之间具有一定间隙以供突出部可在一定范围内移动。突出部和凹槽的壁面可以采用弹性材料制作,这样突出部碰撞在凹槽的壁面时,能降低结构应力。
示例性的,盖体150大致呈框状,盖体150的贯通区域153对应图像传感器300,光线要经过盖体150的贯通区域153投射在图像传感器300上。盖体150可粘接在第一电路板111上。盖体150的四个侧边分别设置有凹槽,防撞件122的四个外侧边分别向外凸设有突出部,突出部和凹槽一一对应设置,实现撞击和抗扭作用。
在一些实施例中,第一碰撞部1221和/或第二碰撞部151的壁面为弹性部位。弹性部位是指用弹性材料制作的结构,该结构在受力时会发生形变,在外力撤销时能复原。第一碰撞部1221和第二碰撞部151其中一处设置为弹性部位,能降低第一碰撞部1221和第二碰撞部151在撞击时产生的应力。第一碰撞部1221和第二碰撞部151两处都设置为弹性部位,能更有效降低撞击时产生的应力。
在一些实施例中,参阅图13,防撞件122包括第一本体1222,第一本体1222和第一碰撞部1221通过双色注塑成型,第一本体1222的硬度大于第一碰撞部1221的硬度;和/或,盖体150包括第二本体152,第二本体152和第二碰撞部151的壁面151a通过双色注塑成型,第二本体152的硬度大于第二碰撞部151的壁面151a硬度。
双色注塑是指将两种不同的材料注塑在同一套模具,注塑成型的零件由两种材料形成的成型工艺。本实施例中,双色注塑中选用两种软硬不同的材料,碰撞部采用弹性材料,本体采用较硬材料。这样第一碰撞部1221和第二碰撞部151相撞击时,就能降低撞击时产生的应力。双色注塑要选用粘合相容和加工过程相容的两种材料,利于结构注塑成型,两种材料连接可靠。
其中,弹性材料可以是液晶高分子聚合物(liquid crystal polymer,LCP)、热塑性弹性体(thermoplastic elastomer,TPE)、热塑性聚氨酯弹性体橡胶(thermoplastic polyurethanes,TPU)、热塑性硫化橡胶(thermoplastic vulcanizate,TPV)或其他。
较硬材料可以是丙烯腈-丁二烯-苯乙烯共聚物(acrylonitrile butadiene styrene,ABS)、聚丙烯(polypropylene,PP)、聚对苯二甲酸丁二酯(polybutylene terephthalate,PBT)或其他。
示例性的,第一本体1222大致呈框状,采用ABS材料;第一碰撞部1221可以为设于第一本体1222的外侧边,采用TPE材料。第二本体152大致呈框状,采用ABS材料,第二碰撞部151为设于第二本体152侧边的凹槽,采用TPE材料。
在一些实施例中,参阅图14至图16,防撞件122包括第一本体1222,第一本体1222为金属件,第一碰撞部1221通过单色注塑成型在第一本体1222上,第一本体1222的硬度大于第一碰撞部1221的硬度;和/或,盖体150包括第二本体152,第二本体152为金属件,第二碰撞部151的壁面151a通过单色注塑成型在第二本体152上,第二本体152的硬度大于第二碰撞部151的壁面151a硬度。
该方案中,本体采用金属制作,碰撞部采用注塑成型在本体上,碰撞部和本体之间连接可靠,碰撞部比本体的硬度小。在第一碰撞部1221和第二碰撞部151相撞击时,能降低撞击时产生的应力。
其中,金属可以是不锈钢或其他。碰撞部可采用前面提到的弹性材料。
在一些实施例中,参阅图7,弹性悬臂130成对设置,成对设置的弹性悬臂130以第二电路板121的中心1211对称分布在第二电路板121的对角外,在第二电路板121的同一对角外布置有一对或多对弹性悬臂130。
其中,中心对称是指把一个图形绕着一个点旋转180°,如果该图形能与另一个图形重合,这两个图形中心对称。在图7所示的实施例中,第一弹性悬臂130a和第三弹性悬臂130c为其中 一对弹性悬臂130,第二弹性悬臂130b和第四弹性悬臂130d为另外一对弹性悬臂130。
该方案在X、Y两个方向的弹性系数中心对称,X、Y两个方向上弹性系数比较接近,使得弹性悬臂130对活动部件120在X向和Y向上的作用力比较接近,较好地控制活动部件120的姿势差。
示例性的,第二电路板121呈矩形,在第二电路板121的四个角部分别分布有一个或多个弹性悬臂130,便于控制活动部件120的姿势差。在第二电路板121的一个角布置多个弹性悬臂130时,这些弹性悬臂130间隔设置。
在一些实施例中,参阅图7,第一电路板111具有容纳孔1111,第二电路板121位于容纳孔1111内;每个弹性悬臂130为轴对称结构,每个弹性悬臂130的其中一端1301连接于第一电路板111的其中一内边缘中部,而另外一端1302连接于第二电路板121的其中一外边缘中部。
其中,一个平面图形沿着一条直线折叠后,直线两旁的部分能互相重合,这个图形就是轴对称。
该方案可在第二电路板121的不同角部布置弹性悬臂130,实现第一电路板111和第二电路板121之间更多信号传输,而且能提供预定的弹性系数,以控制活动部件120的姿势差。
在设置第一电路板111、第二电路板121和弹性悬臂130时,第一电路板111具有框状结构,包括依次连接的第一段111a、第二段111b、第三段111c和第四段111d。第二电路板121呈矩形,包括依次连接的第一边121a、第二边121b、第三边121c和第四边121d。第二电路板121设置在第一电路板111的中空位置,第一段111a、第二段111b、第三段111c、第四段111d一一对应地和第一边121a、第二边121b、第三边121c、第四边121d间隔并相对设置。弹性悬臂130大致设置为L型,可以在第二电路板121的其中两个对角布置弹性悬臂130,也可以在第二电路板121的四个对角布置弹性悬臂130。在每个对角上可以布置一个或多个弹性悬臂130。
在具体设置弹性悬臂130时,第二电路板121的四个角外分别布置有第一弹性悬臂130a、第二弹性悬臂130b、第三弹性悬臂130c、第四弹性悬臂130d。第一电路板111的第一段111a中部和第二电路板121的第二边121b中部之间连接有第一弹性悬臂130a,第一电路板111的第三段111c中部和第二电路板121的第二边121b中部之间连接有第二弹性悬臂130b,第一电路板111的第三段111c中部和第二电路板121的第四边121d之间连接有第三弹性悬臂130c,第一电路板111的第一段111a中部和第二电路板121的第四边121d之间连接有第四弹性悬臂130d。在图7所示的实施例中,第二电路板121的每个角外布置有两个弹性悬臂130,在其他实施例中,第二电路板121的每个角外可以布置其他数量的弹性悬臂130。
为了便于弹性悬臂130的两端分别连接至第一电路板111和第二电路板121上,第一电路板111的第一段111a中部内侧间隔延伸形成有两个第一连接臂1112,第三段111c中部内侧间隔延伸形成有两个第二连接臂1113。第二电路板121的第二边121b中部外侧延伸形成有第一连接部1212,第四边121d中部外侧延伸形成有第二连接部1213。第一弹性悬臂130a的两端分别连接于相邻的第一连接臂1112和第一连接部1212,第二弹性悬臂130b的两端分别连接于相邻的第二连接臂1113和第一连接部1212,第三弹性悬臂130c的两端分别连接于相邻的第二连接臂1113和第二连接部1213,第四弹性悬臂130d的两端分别连接于相邻的第一连接臂1112和第二连接部1213。
在第二电路板121的同一角部外设置多个弹性悬臂130时,间隔设置的多个弹性悬臂130两端可分别连接在同样的连接臂和连接部。这样便于将弹性悬臂130布置在第二电路板121外和第一电路板111容纳孔1111内之间的区域,预留出第二电路板121运动和弹性悬臂130变形的活动空间。
参阅图7,通过在第一电路板111容纳孔1111内壁设置第一连接臂1112和第二连接臂1113,便于弹性悬臂130的一端和第一电路板111相连接。在第一电路板111上,两个第一连接臂1112间隔形成第一槽1112a,两个第二连接臂1113间隔形成第二槽1113a。结合图12,在第一碰撞部1221为设于防撞件122外侧边的突出部,第二碰撞部151为设于盖体150侧边的凹槽时,第一槽1112a(第二槽1113a)和盖体150的凹槽连通,防撞件122的突出部一部分区域可伸入第一槽1112a(第二槽1113a),结合图11,使得防撞件122和第一电路板111大致布置在同一平面上,充分 利用空间,使结构紧凑。
可以理解的,弹性悬臂130还可以设置为其他形状,或采用其他方式布置在第一电路板111和第二电路板121之间。需要满足成对设置的弹性悬臂130以第二电路板121的中心1211对称分布在第二电路板121的对角外,多个弹性悬臂130在X、Y两个方向上形成的弹性系数比较接近。
比如,弹性悬臂130呈直线形,在第二电路板121的四周外分别布置一个或多个弹性悬臂130。
或者,弹性悬臂130呈L字型,只在第二电路板121的其中两个对角外布置L字型的弹性悬臂130,第二电路板121的另外两个对角外不布置弹性悬臂130。
或者,弹性悬臂130呈L字型,弹性悬臂130的一端连接在第一电路板111内边缘除了中部的其他位置,另一端连接在第二电路板121外边缘除了中部的其他位置。
在常规的SMA马达中,活动部件每个角部外会布置多个的弹性悬臂,每个弹性悬臂均具有信号层,信号层用于移动产业处理器接口(mobile industry processor interface,MIPI)信号的传输。该信号层在横截面的四周需要设置金属材料包地,实现电磁屏蔽。在弹性悬臂的横截面上,金属屏蔽层的宽度要大于信号层的宽度。在有限空间内,弹性悬臂的布置数量越多,弹性悬臂做得越细,难以在信号层周围通过传统工艺设置金属材料包地。在弹性悬臂上设置过多金属材料,会使得多个弹性悬臂和活动部件的整体结构形成在X向和Y向上过大的弹性系数,在有限空间下,可能会导致SMA马达动力不足,影响活动部件在预定平面内移动,甚至会造成SMA线断线风险,降低结构可靠性。
为了解决常规SMA马达中的弹性悬臂的弹性系数过大问题,在本申请一些实施例中,参阅图7、图17、图18,其中一对弹性悬臂130中的各个弹性悬臂(130a、130c)包括依次叠设的第一金属屏蔽层131、第一绝缘层132、信号层133、第二绝缘层134和第二金属屏蔽层135,第一金属屏蔽层131和第二金属屏蔽层135均接地。
该方案中,对分布在第二电路板121对角外的一对弹性悬臂(130a、130c)上配置信号层133和第一金属屏蔽层131,在其他弹性悬臂(130b、130d)上不配置信号层133和第一金属屏蔽层131。通过两个信号层133实现MIPI信号传输。通过减少信号层133,相应可减少第一金属屏蔽层131,从而降低了多个弹性悬臂130形成的弹性系数,有利于发挥SMA马达性能,驱动活动部件120相对固定部件110的平稳移动,提升结构可靠性。
其中,第一金属屏蔽层131可以选用具有一定弹性系数的金属材料,比如钛铜。信号层133可以选用导电良好的材料,比如铜。第二电路板121和弹性悬臂130可以为一体结构,先采用柔性电路板工艺制作出第二电路板121和弹性悬臂130的一体柔性层,接着在第二电路板121和弹性悬臂(130a、130c)对应的柔性层区域设置金属材料(图17中的剖面线部分),对应弹性悬臂(130a、130c)的金属材料就是第一金属屏蔽层131,其他弹性悬臂(130b、130d)不设置金属材料,这样就可方便地制作出第二电路板121和弹性悬臂130为一体结构,弹性悬臂130具有合适的弹性系数。
在一些实施例中,参阅图18,具有信号层133的弹性悬臂130还包括第三绝缘层136、电源层137和第四绝缘层138,第三绝缘层136、电源层137和第四绝缘层138依次叠设在第二金属屏蔽层135上。
该方案中,对具有信号层133的弹性悬臂130配置电源层137,实现对第二电路板121上的图像传感器300等器件供电。通过信号层133和电源层137等形成的层叠结构,可在有限空间内布置较少的弹性悬臂130,从而使弹性悬臂130可以做宽,而且便于采用传统工艺成型。第一金属屏蔽层131、信号层133、第二金属屏蔽层135、电源层137采用金属材料制作,会对弹性悬臂130整体提供一定的弹性系数。
在一些实施例中,参阅图18,第一金属屏蔽层131的宽度W1小于或等于弹性悬臂130的最大宽度W0。第一金属屏蔽层131的宽度W1和弹性悬臂130的最大宽度W0都是在弹性悬臂130的横截面上的宽度尺寸,宽度方向和厚度方向相互垂直,厚度方向就是层叠结构的层叠方向。图18中的左右方向就是宽度方向,上下方向是厚度方向。通过缩小第一金属屏蔽层131的宽度W1,可以在一定程度上降低弹性悬臂130的弹性系数,利于SMA马达驱动活动部件120相对固定部件110的平稳移动,充分发挥马达特性。
其中,第一金属屏蔽层131的宽度W1区间设置为[40um,80um],可较好地缩窄第一金属屏蔽层131的宽度,从而降低弹性悬臂130的弹性系数。比如,第一金属屏蔽层131的宽度W1设置为40um、45um、50um、55um、60um、65um、70um、80um等等。
示例性的,参阅图17、图18,对分布在第二电路板121对角外的一对弹性悬臂(130a、130c)上配置信号层133和第一金属屏蔽层131,在其他弹性悬臂(130b、130d)上不配置信号层133和第一金属屏蔽层131。配置有信号层133的弹性悬臂130包括依次叠设的第一金属屏蔽层131、第一绝缘层132、信号层133、第二绝缘层134、第二金属屏蔽层135、第三绝缘层136、电源层137和第四绝缘层138。
各层的材质和尺寸参数如下:第一金属屏蔽层131的宽度为40±10um;第一绝缘层132为胶水,厚度50um;信号层133为铜,厚度20um,宽度17um,信号层133的横向两端设置绝缘材料1331;第二绝缘层134为聚酰亚胺(polyimide,PI),厚度25um;第二金属屏蔽层135为铜,厚度12±2um,宽度80um;第三绝缘层136包括厚度15um的胶水1361和厚度12.5um的PI层1362;电源层137为铜,厚度20±3um,宽度43±2um,电源层137的横向两端设置绝缘材料1371;第四绝缘层138为一种油墨,厚度15um;除了第一绝缘层132以外,各层的宽度尺寸保持80um。通过信号层133和电源层137等形成的层叠结构,可在有限空间内布置较少的弹性悬臂130,使弹性悬臂130可以做宽,便于采用传统工艺成型。在设置各层的材质和尺寸参数,可按需设置。
可以理解的,在其他实施例中,所有弹性悬臂130均设置信号层133,即每个弹性悬臂130包括依次叠设的第一金属屏蔽层131、第一绝缘层132、信号层133、第二绝缘层134和第二金属屏蔽层135,这种方式也是可行的。
在布置多个SMA线200时,参阅图5,SMA线200的数量为四,第一SMA线200a、第二SMA线200b、第三SMA线200c、第四SMA线200d分别布置在第一电路板111的框状结构上并位于第二电路板121的四周。活动部件120上具有第一参考面120b和第二参考面120c,第一参考面120b和第二参考面120c相交,且相交线经过第二电路板121初始位置时的中心。第一参考面120b和第二参考面120c可以相垂直。第一SMA线200a和第二SMA线200b以第一参考面120b对称分布,第三SMA线200c和第四SMA线200d以第一参考面120b对称分布。第一SMA线200a和第四SMA线200d以第二参考面120c对称分布,第二SMA线200b和第三SMA线200c以第二参考面120c对称分布。
该方案中,限定了四个SMA线的位置关系,通过控制四个SMA线内的电信号可以对活动部件120形成在XY平面上不同大小和方向的合力,以驱动活动部件120沿第一参考面120b或者第二参考面120c移动,或者同时沿第一参考面120b和第二参考面120c移动,使得活动部件120可带动图像传感器300在XY平面上移动,实现光学防抖。
在一些实施例中,参阅图5,固定部件110的一对角处设有定夹具210,活动部件120的一对角处设有动夹具220,每个SMA线200的第一端201通过定夹具210固定在固定部件110上,SMA线200的第二端202通过动夹具220固定在活动部件120上。定夹具210和动夹具220可导电,使得SMA线200电连接在活动部件120和固定部件110之间。
其中,定夹具210和动夹具220可以设置为卡爪或其他形式,方便SMA线200的两端分别固定在相应的定夹具210和动夹具220上即可。
其中,动夹具220可以设置为条形,条形的动夹具220可设于第二电路板121的角部,动夹具220可跨越在弹性悬臂130的上方,动夹具220远离第二电路板121的一端靠近第一电路板111的框状结构角部设置,便于在有限空间下使SMA线200设置得较长。定夹具210也可以靠近第一电路板111的框状结构角部设置,便于在有限空间下使SMA线200设置得较长。将SMA线200设置较长,有利于提升SMA马达的动力性能。
在图11的实施例中,在固定部件110上设置盖体150时,条形的动夹具220可穿过盖体150的避让孔154,定夹具210布置在盖体150外并位于第一电路板111的框状结构上,这样SMA线200可布置在盖体150的外周,SMA线200和盖体150有一定间隔,使得SMA线200可靠变形而不受周围结构影响。
在图14至图16的实施例中,在固定部件110上设置盖体150时,定夹具210位于第一电路 板111的框状结构上并布置在盖体150内,条形的动夹具220位于盖体150内,SMA线200布置在盖体150内。多个弹性悬臂130位于第一电路板111的框状结构内并位于第二电路板121的外周。第一碰撞部1221(第二碰撞部151)位于弹性悬臂130和SMA线200之间,使得SMA线200和弹性悬臂130能独立变形或运动而不会相互影响,工作可靠。
在一些实施例中,活动部件120和固定部件110之间可连接缓冲胶,缓冲胶可减小活动部件120在运动时的抖动,提升图像传感器300的成像质量。其中,缓冲胶和动夹具220一一对应布置,缓冲胶一端可固定于对应的动夹具220,另一端固定于固定部件110上和动夹具220相对的位置,这样能提升结构可靠性。缓冲胶可以为阻尼胶或其他方式。
参阅图2、图11、图14、图19,本申请实施例提供一种摄像模组2000,包括镜头500、图像传感器300和上述SMA马达1000,图像传感器300设于活动部件120上,镜头500和图像传感器300相对设置。
其中,镜头500具有一个或多个镜片,具有汇聚光线的作用。图像传感器300可以是电荷耦合器件(charge coupled device,CCD)、互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS),或者薄膜晶体管(thin film transistor,TFT),具体按需设置。结合图3,图像传感器300背向镜头500的一侧可设置补强板301,补强板301可固定在活动部件120上,提升结构可靠性。
本申请实施例的摄像模组2000,在工作时,SMA马达1000调整图像传感器300在垂直光轴的平面上的位置,实现光学防抖,外部光线经过镜头500投射在图像传感器300上,在图像传感器300上成像。本申请实施例的摄像模组2000采用了上述SMA马达1000,较好地解决了常规SMA马达姿势差较大的问题。
在一些实施例中,参阅图1、图3,在镜头500和图像传感器300之间可设置红外截止滤光片400,用于过滤经过镜头500光线中的红外光,使图像传感器300具有更好的成像质量。红外截止滤光片400可以是蓝玻璃(blue glass,BG)。
参阅图11、图14、图19、图20,本申请实施例提供一种电子设备,包括壳体600和上述摄像模组2000,摄像模组2000安装于壳体600上。
其中,电子设备可以是手机、平板电脑、笔记本电脑、车载设备、可穿戴设备、电视等。可穿戴设备可以是智能手环、智能手表、智能眼镜、智能头显等。壳体600可配置一个或多个摄像模组2000。
本申请实施例的电子设备采用了上述摄像模组2000,较好地解决了常规SMA马达姿势差较大的问题。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种SMA马达(1000),其特征在于,包括:固定部件(110)、活动部件(120)、多个弹性悬臂(130)、一个或多个支座(140)和多个SMA线(200);
    所述固定部件(110)和所述活动部件(120)间隔设置;
    每个所述弹性悬臂(130)的两端分别连接在所述固定部件(110)和所述活动部件(120)上;
    一个或多个所述支座(140)设置在所述固定部件(110)和所述活动部件(120)之间;
    每个所述支座(140)具有相对设置的第一端(140a)和第二端(140b),所述第一端(140a)与所述活动部件(120)或所述固定部件(110)固定,所述第二端(140b)与所述固定部件(110)或所述活动部件(120)滑动摩擦配合;
    所述活动部件(120)的顶面(120a)高于所述固定部件(110)的顶面(110a),以使多个所述弹性悬臂(130)处于拉伸状态;
    各个所述SMA线(200)的两端分别固定于所述固定部件(110)和所述活动部件(120)上,多个所述SMA线(200)配合能够驱动所述活动部件(120)相对于所述固定部件(110)在预定平面上移动。
  2. 根据权利要求1所述的SMA马达(1000),其特征在于,所述固定部件(110)包括第一电路板(111),所述活动部件(120)包括第二电路板(121),各个所述弹性悬臂(130)具有导电功能,以使所述第一电路板(111)和所述第二电路板(121)电连接。
  3. 根据权利要求2所述的SMA马达(1000),其特征在于,所述固定部件(110)还包括底板(112),所述第一电路板(111)固定在所述底板(112)上,所述第一电路板(111)具有容纳孔(1111),所述活动部件(120)对应所述容纳孔(1111)设置,一个或多个所述支座(140)设置在所述容纳孔(1111)内且位于所述底板(112)和所述活动部件(120)之间。
  4. 根据权利要求2或3所述的SMA马达(1000),其特征在于,所述活动部件(120)还包括防撞件(122),所述第二电路板(121)固定于所述防撞件(122)上,一个或多个所述支座(140)设置在所述防撞件(122)和所述固定部件(110)之间。
  5. 根据权利要求4所述的SMA马达(1000),其特征在于,一个或多个所述支座(140)和所述防撞件(122)为一体成型结构;
    或,一个或多个所述支座(140)和所述固定部件(110)的底板(112)为一体成型结构;
    或,一个或多个所述支座(140)成型于一连接件(141)上,所述连接件(141)贴设于所述防撞件(122)面向所述固定部件(110)的一侧;
    或,一个或多个所述支座(140)成型于一连接件(141)上,所述连接件(141)贴设在所述固定部件(110)的底板(112)面向所述防撞件(122)的一侧;
    或,所述防撞件(122)上设有多个第一孔,所述支座(140)为注塑成型在所述第一孔处的注塑件;
    或,所述固定部件(110)的底板(112)上设有多个第二孔,所述支座(140)为注塑成型在所述第二孔处的注塑件。
  6. 根据权利要求4或5所述的SMA马达(1000),其特征在于,所述SMA马达(1000)还包括固定于所述固定部件(110)上的盖体(150),所述防撞件(122)具有一个或多个第一碰撞部(1221),所述盖体(150)具有一个或多个第二碰撞部(151),所述第一碰撞部(1221)和所述第二碰撞部(151)一一对应相对设置;在所述活动部件(120)相对所述固定部件(110)运动的情况下,相对应的所述第一碰撞部(1221)和所述第二碰撞部(151)碰撞配合。
  7. 根据权利要求6所述的SMA马达(1000),其特征在于,所述第一碰撞部(1221)和/或所述第二碰撞部(151)的壁面(151a)为弹性部位。
  8. 根据权利要求6或7所述的SMA马达(1000),其特征在于,所述防撞件(122)包括第一本体(1222),所述第一本体(1222)和所述第一碰撞部(1221)通过双色注塑成型,所述第一本体(1222)的硬度大于所述第一碰撞部(1221)的硬度;
    或,所述防撞件(122)包括第一本体(1222),所述第一本体(1222)为金属件,所述第一碰撞部(1221)通过单色注塑成型在所述第一本体(1222)上,所述第一本体(1222)的硬度大于所述第一碰撞部(1221)的硬度;
    或,所述盖体(150)包括第二本体(152),所述第二本体(152)和所述第二碰撞部(151)的壁面(151a)通过双色注塑成型,所述第二本体(152)的硬度大于所述第二碰撞部(151)的壁面(151a)硬度;
    或,所述盖体(150)包括第二本体(152),所述第二本体(152)为金属件,所述第二碰撞部(151)的壁面(151a)通过单色注塑成型在所述第二本体(152)上,所述第二本体(152)的硬度大于所述第二碰撞部(151)的壁面(151a)硬度。
  9. 根据权利要求2至8任一项所述的SMA马达(1000),其特征在于,所述弹性悬臂(130)成对设置,成对设置的所述弹性悬臂(130)以所述第二电路板(121)的中心(1211)对称分布在所述第二电路板(121)的对角外,在所述第二电路板(121)的同一对角外布置有一对或多对所述弹性悬臂(130)。
  10. 根据权利要求9所述的SMA马达(1000),其特征在于,所述第一电路板(111)具有容纳孔(1111),所述第二电路板(121)位于所述容纳孔(1111)内;每个所述弹性悬臂(130)为轴对称结构,每个所述弹性悬臂(130)的其中一端(1301)连接于所述第一电路板(111)的其中一内边缘中部,而另外一端(1302)连接于所述第二电路板(121)的其中一外边缘中部。
  11. 根据权利要求9或10所述的SMA马达(1000),其特征在于,其中至少一对所述弹性悬臂(130)中的各个所述弹性悬臂(130)包括依次叠设的第一金属屏蔽层(131)、第一绝缘层(132)、信号层(133)、第二绝缘层(134)和第二金属屏蔽层(135),所述第一金属屏蔽层(131)和所述第二金属屏蔽层(135)均接地。
  12. 根据权利要求11所述的SMA马达(1000),其特征在于,具有所述信号层(133)的所述弹性悬臂(130)还包括第三绝缘层(136)、电源层(137)和第四绝缘层(138),所述第三绝缘层(136)、所述电源层(137)和所述第四绝缘层(138)依次叠设在所述第二金属屏蔽层(135)上。
  13. 根据权利要求11或12所述的SMA马达(1000),其特征在于,所述第一金属屏蔽层(131)的宽度小于或等于所述弹性悬臂(130)的最大宽度。
  14. 一种摄像模组(2000),其特征在于,包括镜头(500)、图像传感器(300)和如权利要求1至13任一项所述的SMA马达(1000),所述图像传感器(300)设于所述活动部件(120)上,所述镜头(500)和所述图像传感器(300)相对设置。
  15. 一种电子设备,其特征在于,包括壳体(600)和如权利要求14所述的摄像模组(2000),所述摄像模组(2000)安装于所述壳体(600)上。
  16. 一种电子设备,其特征在于,包括壳体(600)和SMA马达(1000),所述SMA马达(1000)安装于所述壳体(600)上;所述SMA马达(1000)包括:固定部件(110)、活动部件(120)、多个弹性悬臂(130)、一个或多个支座(140)和多个SMA线(200);
    所述固定部件(110)和所述活动部件(120)间隔设置;
    每个所述弹性悬臂(130)的两端分别连接在所述固定部件(110)和所述活动部件(120)上;
    一个或多个所述支座(140)设置在所述固定部件(110)和所述活动部件(120)之间;
    每个所述支座(140)具有相对设置的第一端(140a)和第二端(140b),所述第一端(140a)与所述活动部件(120)或所述固定部件(110)固定,所述第二端(140b)与所述固定部件(110)或所述活动部件(120)滑动摩擦配合;
    所述活动部件(120)的顶面(120a)高于所述固定部件(110)的顶面(110a),以使多个所述弹性悬臂(130)处于拉伸状态;
    各个所述SMA线(200)的两端分别固定于所述固定部件(110)和所述活动部件(120)上,多个所述SMA线(200)配合能够驱动所述活动部件(120)相对于所述固定部件(110)在预定平面上移动。
  17. 根据权利要求16所述的电子设备,其特征在于,所述固定部件(110)包括第一电路板(111),所述活动部件(120)包括第二电路板(121),各个所述弹性悬臂(130)具有导电功能,以使所述第一电路板(111)和所述第二电路板(121)电连接。
  18. 根据权利要求17所述的电子设备,其特征在于,所述固定部件(110)还包括底板(112),所述第一电路板(111)固定在所述底板(112)上,所述第一电路板(111)具有容纳孔(1111),所述活动部件(120)对应所述容纳孔(1111)设置,一个或多个所述支座(140)设置在所述容纳孔(1111)内且位于所述底板(112)和所述活动部件(120)之间。
  19. 根据权利要求17或18所述的电子设备,其特征在于,所述活动部件(120)还包括防撞件(122), 所述第二电路板(121)固定于所述防撞件(122)上,一个或多个所述支座(140)设置在所述防撞件(122)和所述固定部件(110)之间。
  20. 根据权利要求19所述的电子设备,其特征在于,一个或多个所述支座(140)和所述防撞件(122)为一体成型结构;
    或,一个或多个所述支座(140)和所述固定部件(110)的底板(112)为一体成型结构;
    或,一个或多个所述支座(140)成型于一连接件(141)上,所述连接件(141)贴设于所述防撞件(122)面向所述固定部件(110)的一侧;
    或,一个或多个所述支座(140)成型于一连接件(141)上,所述连接件(141)贴设在所述固定部件(110)的底板(112)面向所述防撞件(122)的一侧;
    或,所述防撞件(122)上设有多个第一孔,所述支座(140)为注塑成型在所述第一孔处的注塑件;
    或,所述固定部件(110)的底板(112)上设有多个第二孔,所述支座(140)为注塑成型在所述第二孔处的注塑件。
  21. 根据权利要求19或20所述的电子设备,其特征在于,所述SMA马达(1000)还包括固定于所述固定部件(110)上的盖体(150),所述防撞件(122)具有一个或多个第一碰撞部(1221),所述盖体(150)具有一个或多个第二碰撞部(151),所述第一碰撞部(1221)和所述第二碰撞部(151)一一对应相对设置;在所述活动部件(120)相对所述固定部件(110)运动的情况下,相对应的所述第一碰撞部(1221)和所述第二碰撞部(151)碰撞配合。
  22. 根据权利要求21所述的电子设备,其特征在于,所述第一碰撞部(1221)和/或所述第二碰撞部(151)的壁面(151a)为弹性部位。
  23. 根据权利要求21或22所述的电子设备,其特征在于,所述防撞件(122)包括第一本体(1222),所述第一本体(1222)和所述第一碰撞部(1221)通过双色注塑成型,所述第一本体(1222)的硬度大于所述第一碰撞部(1221)的硬度;
    或,所述防撞件(122)包括第一本体(1222),所述第一本体(1222)为金属件,所述第一碰撞部(1221)通过单色注塑成型在所述第一本体(1222)上,所述第一本体(1222)的硬度大于所述第一碰撞部(1221)的硬度;
    或,所述盖体(150)包括第二本体(152),所述第二本体(152)和所述第二碰撞部(151)的壁面(151a)通过双色注塑成型,所述第二本体(152)的硬度大于所述第二碰撞部(151)的壁面(151a)硬度;
    或,所述盖体(150)包括第二本体(152),所述第二本体(152)为金属件,所述第二碰撞部(151)的壁面(151a)通过单色注塑成型在所述第二本体(152)上,所述第二本体(152)的硬度大于所述第二碰撞部(151)的壁面(151a)硬度。
  24. 根据权利要求17至23任一项所述的电子设备,其特征在于,所述弹性悬臂(130)成对设置,成对设置的所述弹性悬臂(130)以所述第二电路板(121)的中心(1211)对称分布在所述第二电路板(121)的对角外,在所述第二电路板(121)的同一对角外布置有一对或多对所述弹性悬臂(130)。
  25. 根据权利要求24所述的电子设备,其特征在于,所述第一电路板(111)具有容纳孔(1111),所述第二电路板(121)位于所述容纳孔(1111)内;每个所述弹性悬臂(130)为轴对称结构,每个所述弹性悬臂(130)的其中一端(1301)连接于所述第一电路板(111)的其中一内边缘中部,而另外一端(1302)连接于所述第二电路板(121)的其中一外边缘中部。
  26. 根据权利要求24或25所述的电子设备,其特征在于,其中至少一对所述弹性悬臂(130)中的各个所述弹性悬臂(130)包括依次叠设的第一金属屏蔽层(131)、第一绝缘层(132)、信号层(133)、第二绝缘层(134)和第二金属屏蔽层(135),所述第一金属屏蔽层(131)和所述第二金属屏蔽层(135)均接地。
  27. 根据权利要求26所述的电子设备,其特征在于,具有所述信号层(133)的所述弹性悬臂(130)还包括第三绝缘层(136)、电源层(137)和第四绝缘层(138),所述第三绝缘层(136)、所述电源层(137)和所述第四绝缘层(138)依次叠设在所述第二金属屏蔽层(135)上。
  28. 根据权利要求26或27所述的电子设备,其特征在于,所述第一金属屏蔽层(131)的宽度小于或等于所述弹性悬臂(130)的最大宽度。
PCT/CN2023/109904 2022-08-02 2023-07-28 一种sma马达、摄像模组及电子设备 WO2024027601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210925573.XA CN117560553A (zh) 2022-08-02 2022-08-02 一种sma马达、摄像模组及电子设备
CN202210925573.X 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024027601A1 true WO2024027601A1 (zh) 2024-02-08

Family

ID=89811611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109904 WO2024027601A1 (zh) 2022-08-02 2023-07-28 一种sma马达、摄像模组及电子设备

Country Status (2)

Country Link
CN (1) CN117560553A (zh)
WO (1) WO2024027601A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292864A (ja) * 2006-04-21 2007-11-08 Fujifilm Corp レンズ駆動装置及びこれを用いる撮影装置
CN210927781U (zh) * 2019-12-26 2020-07-03 东莞市亚登电子有限公司 一种摄像头光学防抖的驱动装置
CN112887521A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 摄像头模组及电子设备
CN113259547A (zh) * 2020-02-11 2021-08-13 华为技术有限公司 Sma马达、摄像头模组及电子设备
CN114513588A (zh) * 2020-11-17 2022-05-17 华为技术有限公司 Sma马达、摄像模组及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292864A (ja) * 2006-04-21 2007-11-08 Fujifilm Corp レンズ駆動装置及びこれを用いる撮影装置
CN112887521A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 摄像头模组及电子设备
CN210927781U (zh) * 2019-12-26 2020-07-03 东莞市亚登电子有限公司 一种摄像头光学防抖的驱动装置
CN113259547A (zh) * 2020-02-11 2021-08-13 华为技术有限公司 Sma马达、摄像头模组及电子设备
CN114513588A (zh) * 2020-11-17 2022-05-17 华为技术有限公司 Sma马达、摄像模组及电子设备

Also Published As

Publication number Publication date
CN117560553A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US20230071152A1 (en) Camera assembly
US9491364B2 (en) Camera module
US20220021812A1 (en) Image sensor driving mechanism
EP4047918A1 (en) Camera motor, camera module, and electronic device
CN113014785B (zh) 一种柔性电路板组件、驱动装置、摄像模组及电子产品
CN112965318A (zh) 基于图像传感器的防抖模组、镜头模组和电子设备
WO2024082846A1 (zh) 防抖组件、摄像模组及电子设备
WO2024027601A1 (zh) 一种sma马达、摄像模组及电子设备
EP4171007A1 (en) Camera module and electronic device
WO2021047635A1 (zh) 摄像模组及移动终端
CN115695971A (zh) 电路板、摄像模组及电子设备
EP4280438A1 (en) Voice coil motor, camera, and electronic device
CN218514443U (zh) 防抖组件、摄像模组及电子设备
CN218387701U (zh) 防抖组件、摄像模组及电子设备
WO2024082845A1 (zh) 摄像组件、摄像模组及电子设备
KR20140116737A (ko) 카메라 모듈
WO2024037631A1 (zh) 压电马达及其摄像模组
US20230333395A1 (en) Display apparatus
CN220896783U (zh) 传感器移动装置以及摄像模组
WO2023066343A1 (zh) 驱动组件和摄像模组
CN218514442U (zh) 摄像模组及电子设备
EP4198596A1 (en) Reflective module and camera module comprising same
CN216291137U (zh) 镜头支撑结构、摄像模组及电子设备
WO2023061479A1 (zh) 压电驱动器、成像模组及电子设备
CN116017100A (zh) 驱动组件和摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849309

Country of ref document: EP

Kind code of ref document: A1