WO2024027585A1 - 一种液晶盒和2d-3d可切换的显示装置 - Google Patents

一种液晶盒和2d-3d可切换的显示装置 Download PDF

Info

Publication number
WO2024027585A1
WO2024027585A1 PCT/CN2023/109798 CN2023109798W WO2024027585A1 WO 2024027585 A1 WO2024027585 A1 WO 2024027585A1 CN 2023109798 W CN2023109798 W CN 2023109798W WO 2024027585 A1 WO2024027585 A1 WO 2024027585A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal cell
alignment
display device
dispersant
Prior art date
Application number
PCT/CN2023/109798
Other languages
English (en)
French (fr)
Inventor
赵振理
袁鑫
李敏敏
Original Assignee
张家港康得新光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港康得新光电材料有限公司 filed Critical 张家港康得新光电材料有限公司
Publication of WO2024027585A1 publication Critical patent/WO2024027585A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses

Definitions

  • the present invention relates to the field of stereoscopic display, and specifically to a liquid crystal box and a 2D-3D switchable display device.
  • the display effect of display devices is transitioning from flat display to three-dimensional display.
  • Common stereoscopic display technology uses 3D glasses to transmit different image information to the left and right eyes respectively.
  • the naked-eye stereoscopic display gets rid of the constraints of spectacle-type 3D glasses and improves the viewer's comfort.
  • View separation elements in existing naked-eye stereoscopic display devices usually include lenticular lens gratings, which require applying, baking, and rubbing alignment liquid on the surface of the optical structure (lenticular lens) to complete liquid crystal alignment. Due to the difference in surface morphology of the prisms after the cylindrical lens array is formed, when the alignment film is coated in the subsequent process, the alignment film material flows and gathers at the bottom of the three-dimensional structure of the cylindrical lens array. As a result, the distribution of the alignment film in the three-dimensional structure of the cylindrical lens array is inconsistent. Uniform, resulting in poor light splitting effect of the final formed visual separation element, resulting in poor display effect of the display device.
  • the present invention provides a liquid crystal box and a 2D-3D switchable display device.
  • An alignment structure is integrated inside the liquid crystal box, eliminating the need to make an additional alignment film and avoiding the problem of uneven film thickness distribution during the production process of the alignment film, thereby enabling 2D- 3D switchable display device achieves better dimming effect.
  • the liquid crystal cell provided according to the present invention sequentially includes a first electrode, a lenticular lens layer, and a liquid crystal layer. and a second electrode, the surface of the lenticular lens layer is provided with an alignment structure.
  • a spacer is further provided between the lenticular lens layer and the second electrode; the spacer is an isolation column or an isolation ball.
  • the alignment structure is an alignment groove; the width of the alignment groove is between 10 nm and 100 nm; and the depth of the alignment groove is between 10 nm and 100 nm.
  • the lenticular lens layer includes a plurality of lenticular lens structures, and the refractive index of the lenticular lens structures is between 1.45-1.65; preferably, the refractive index of the lenticular lens structures is between 1.6-1.65.
  • the first electrode and the second electrode respectively include a base material and a conductive layer; the conductive layer includes at least one of indium tin oxide, indium gallium zinc oxide, indium titanium oxide, indium aluminum zinc oxide, and aluminum zinc oxide.
  • the material of the cylindrical lens layer is a photocurable resin containing a polymer dispersant; preferably, the polymer dispersant is a polycaprolactone polyester polyol-polyethyleneimine block copolymer dispersant, At least any one of acrylate polymer dispersants, polyurethane, polymer polyether or polyester polymer dispersants, or at least any one of the grafted combinations of the above polymer dispersants, or the above A mixture of at least one of the polymeric dispersants and at least one of the grafted combinations of the above-mentioned polymeric dispersants; preferably, the addition ratio of the polymeric dispersant is between 10% and 50% by weight.
  • the polymer dispersant is a polycaprolactone polyester polyol-polyethyleneimine block copolymer dispersant, At least any one of acrylate polymer dispersants, polyurethane, polymer polyether or polyester polymer dispersants, or at least any one of the grafted combinations of the above polymer
  • the material of the lenticular lens layer is a photocurable resin containing inorganic materials
  • the photocurable resin includes polyimide, unsaturated polyester, polyurethane acrylate, polyester acrylate, epoxy acrylate, acrylate, or Silicone oligomer
  • the viscosity of the photocurable resin containing inorganic materials is 20-2000 cps
  • the inorganic materials include zinc oxide, titanium oxide or zirconium oxide particles.
  • the particle size range of the inorganic material is between 5 nm and 100 nm.
  • the addition ratio of the inorganic material is between 10%wt-50%wt.
  • the viscosity of the polymeric dispersant is less than or equal to 500 cps; the density of the polymeric dispersant is 1.03-1.08g/cm 3 ; the average molecular weight of the polymeric dispersant is 30000-50000Da; the pH value of the polymer dispersant is 2.0-3.0.
  • the 2D-3D switchable display device of the present invention includes an image display device and any of the above-mentioned liquid crystal cells, and the 3D display crosstalk degree of the display device is less than or equal to 2.28%.
  • the image display device may be any one of an LED-backlit LCD display, a Mini-LED-backlit LCD display, a QD-backlit LCD display, a Micro-LED display, an OLED display, and a QD-OLED display.
  • the 2D-3D switchable display device directly sets the alignment structure on the lens surface of the cylindrical lens layer of the liquid crystal cell, replacing the alignment structure formed by applying alignment liquid, and avoiding the thickness of the alignment liquid applied at different positions of the cylindrical lens layer.
  • Different problems enable the 2D-3D switchable display device to more accurately control the deflection of the liquid crystal and improve the 3D display effect.
  • Figure 1 is a schematic structural diagram of a liquid crystal cell according to an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of a liquid crystal cell according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the partially enlarged structure of the dotted circle of the liquid crystal cell in Figure 2 of the present invention.
  • Figure 4 is a schematic structural diagram of a liquid crystal cell according to an embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of a liquid crystal cell according to an embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of a 2D-3D switchable display device according to an embodiment of the present invention.
  • FIG. 7 is a comparison diagram of the optical effects of a 2D-3D switchable display device and an alignment film structure on the surface of the lenticular lens layer according to an embodiment of the present invention.
  • FIGS. 1 and 2 it is a schematic structural diagram of a liquid crystal cell according to an embodiment of the present invention, which sequentially includes a display panel (not shown), a first electrode 10 , a lenticular lens layer 20 , a liquid crystal layer 30 and a second electrode 40 .
  • the first electrode 10 includes a base material 11 and a conductive layer 12
  • the second electrode 40 includes a base material 41 and a conductive layer 42
  • the lenticular lens layer 20 includes a plurality of lenticular lens structures
  • the surface of the lenticular lens layer 20 has an alignment structure.
  • the display panel may be an LCD display panel or an OLED display panel, which is not limited by the present invention.
  • the liquid crystal layer 30 can be deflected in the electric field formed by the first electrode 10 and the second electrode 40; in one embodiment, the refractive index of the deflected liquid crystal layer 30 is different from that of the lenticular lens layer 20, and the lenticular lens layer 20 has a different refractive index.
  • the light is modulated so that the light with different incident angles converges at different positions to achieve 3D display; in another embodiment, by setting the direction of the alignment structure, the liquid crystal layer 30 can be positioned between the first electrode 10 and the second electrode 40
  • the refractive index when no electric field is applied is the same as that of the cylindrical lens, enabling 2D display.
  • the conductive layers 12/42 are arranged opposite each other, and the conductive layers 12/42 are closer to the liquid crystal layer 30 relative to the substrate 11/41.
  • the conductive layers may be made of indium tin oxide, indium gallium zinc oxide, indium titanium oxide, or indium oxide. Made of at least one of aluminum zinc or aluminum zinc oxide.
  • FIG 3 it is a schematic diagram of the partially enlarged structure of the liquid crystal cell shown in the dotted circle in Figure 2 of the present invention.
  • An alignment structure 21 is provided on the surface of the lenticular lens layer 20 .
  • the alignment structure 21 is a nanoscale alignment groove, and the width of the alignment groove is The degree is between 10nm-100nm, and the depth of the alignment groove is between 10nm-100nm.
  • the alignment structure 21 and the lenticular lens layer 20 are integrally formed. It replaces the process of forming a cylindrical lens first and then applying an alignment liquid to form an alignment film, which avoids the problem of uneven film thickness of the alignment liquid on the surface of the cylindrical lens.
  • a polymeric dispersant is added to acrylic resin as a resin material with alignment function.
  • the polymeric dispersant includes but is not limited to polycaprolactone polyol-polyethyleneimine block.
  • the mixing ratio of the grafted combinations of the above-mentioned polymer dispersants is between 10% and 50%.
  • Polymer dispersants have anchoring groups that have affinity with the surface of liquid crystal materials, and have extended chains that can create steric hindrance.
  • the alignment structure 21 and the cylindrical lens layer 20 are integrally formed to have an alignment function.
  • the viscosity of the polymeric dispersant is less than or equal to 500cps; the density of the polymeric dispersant is 1.03-1.08g/cm 3 ; the average molecular weight of the polymeric dispersant is 30000-50000Da; The pH value of the polymer dispersant is 2.0-3.0.
  • inorganic materials may be added to the photocurable resin forming the lenticular lenses.
  • the inorganic materials include but are not limited to zinc oxide, titanium oxide, and zirconium oxide particles.
  • the particle size range is between 5nm and 100nm, and the addition ratio is between 10% and 50%.
  • the viscosity range of the acrylic resin with alignment function after mixing inorganic materials in this application is 20-2000cps; the refractive index is between 1.45-1.65.
  • the friction cloth used in the aligned friction process of the present invention consists of a base cloth and fluff.
  • the friction cloth materials include but are not limited to cotton, rayon, nylon, etc.
  • the main process and parameters for forming the alignment groove of this patent include: the alignment pressing amount used is 0.2 ⁇ 0.6mm, the rotation speed of the friction roller is 500 ⁇ 1800r/min, and the friction level is The speed of the table is 20 ⁇ 80mm/sec, the torque value is 1.0 ⁇ 2.0Nm, the number of friction rollers rubbing along the structural direction of the alignment groove is 1 ⁇ 10 times, and the rotation direction of the friction roller is selected according to the direction of the friction cloth hair.
  • the above embodiment takes acrylic resin as an example.
  • the photocurable resin used to form the lenticular lens in this application includes but is not limited to unsaturated polyester, polyurethane acrylate, polyester acrylate, epoxy acrylate, acrylate, silicone oligomer, etc. .
  • FIG. 4 and 5 it is a schematic side structural diagram of a liquid crystal cell in an embodiment of the present invention.
  • a spacer is further provided between the lenticular lens layer 20 and the second electrode 40 , and the spacer may be an isolation ball 51 or an isolation pillar 52 .
  • the spacer can keep the distance between the lenticular lens layer 20 and the second electrode 40 constant, and the spacer can be uniformly disposed between the lenticular lens layer 20 and the second electrode 40 , or between the lenticular lens layer 20 and the second electrode 40
  • the density of spacers in the central area is greater than the density in the surrounding areas.
  • FIG. 6 it is a 2D-3D switchable display device in an embodiment of the present invention, including a liquid crystal cell 100 and an image display device 200.
  • the liquid crystal cell in this embodiment takes the liquid crystal cell shown in Figure 4 as an example. In other embodiments, liquid crystal cells in other embodiments of the present invention may be used.
  • the image display device 200 can display images in 2D mode and can also display left-eye and left-eye images in 3D mode.
  • the image display device 200 may be selected from the group consisting of an LED backlight LCD display, a Mini-LED backlight LCD display, a QD backlight LCD display, a Micro-LED display, an OLED display, and a QD-OLED display.
  • liquid crystal cell of the present invention the following 11 types of liquid crystal cells were tested and compared.
  • the recorded experimental contents are as follows:
  • the light-curing resin uses polyurethane acrylate, 90 parts by weight; the dispersant uses polycaprolactone polyester polyol-polyethyleneimine block copolymer dispersant, 10 parts by weight; the dispersant added to the mixed material is 10% by weight. .
  • an alignment rubbing process is used to make it have a surface on the cured lenticular lens.
  • the photocurable resin is polyurethane acrylate, 70 parts by weight; the dispersant is polycaprolactone polyester polyol-polyethyleneimine block copolymer dispersant, 30 parts by weight, and the dispersant added to the mixed material is 30% wt.
  • an alignment rubbing process is used to make it have nano-scale alignment grooves on the surface of the cured cylindrical lens. Please refer to the table below for the size of the alignment groove.
  • the 3D crosstalk degree is measured with the image display device.
  • the light-curing resin uses polyurethane acrylate, 50 parts by weight; the dispersant uses polycaprolactone polyester polyol-polyethyleneimine block copolymer dispersant, 50 parts by weight; the dispersant added to the mixed material is 50% wt.
  • an alignment rubbing process is used to make it have nano-scale alignment grooves on the surface of the cured cylindrical lens. Please refer to the table below for the size of the alignment groove.
  • the 3D crosstalk degree is measured with the image display device.
  • the light-curing resin is polyester acrylate, 90 parts by weight; the dispersant is an acrylic polymer dispersant, 10 parts by weight; the dispersant added to the mixed material is 10% wt.
  • an alignment rubbing process is used to make it have nano-scale alignment grooves on the surface of the cured cylindrical lens. Please refer to the table below for the size of the alignment groove.
  • the 3D crosstalk degree is measured with the image display device.
  • the light-curing resin uses polyester acrylate, 70 parts by weight; the dispersant uses an acrylate polymer dispersant, 30 parts by weight; the dispersant added to the mixed material is 30% wt.
  • an alignment rubbing process is used to create nanoscale alignment grooves on the surface of the cured lenticular lens.
  • the alignment grooves Refer to the table below for dimensions.
  • the light-curing resin is polyester acrylate, 50 parts by weight; the dispersant is an acrylic polymer dispersant, 50 parts by weight; the dispersant added to the mixed material is 50% wt.
  • an alignment rubbing process is used to make it have nano-scale alignment grooves on the surface of the cured cylindrical lens. Please refer to the table below for the size of the alignment groove.
  • the 3D crosstalk degree is measured with the image display device.
  • the photocurable resin uses silicone oligomer, 90 parts by weight; the dispersant uses polyurethane polymer dispersant, 10 parts by weight; the dispersant added to the mixed material is 10% wt.
  • an alignment rubbing process is used to make it have nano-scale alignment grooves on the surface of the cured cylindrical lens. Please refer to the table below for the size of the alignment groove.
  • the 3D crosstalk degree is measured with the image display device.
  • the photocurable resin uses silicone oligomer, 70 parts by weight; the dispersant uses polyurethane polymer dispersant, 30 parts by weight; the dispersant added to the mixed material is 30% wt.
  • an alignment rubbing process is used to make it have nano-scale alignment grooves on the surface of the cured cylindrical lens. Please refer to the table below for the size of the alignment groove.
  • the 3D crosstalk degree is measured with the image display device.
  • the photocurable resin uses silicone oligomer, 50 parts by weight; the dispersant uses polyurethane polymer dispersant, 50 parts by weight; the dispersant added to the mixed material is 50% wt.
  • an alignment rubbing process is used to make it have nano-scale alignment grooves on the surface of the cured cylindrical lens. Please refer to the table below for the size of the alignment groove.
  • the 3D crosstalk degree is measured with the image display device.
  • the photocurable resin uses silicone oligomer, 90 parts by weight; the dispersant uses polyurethane polymer type. Powder, 5 parts by weight; the amount of dispersant added to the mixed material is 5% wt.
  • an alignment rubbing process is used to make it have nano-scale alignment grooves on the surface of the cured cylindrical lens. Please refer to the table below for the size of the alignment groove.
  • the 3D crosstalk degree is measured with the image display device.
  • the photocurable resin uses silicone oligomer, 40 parts by weight; the dispersant uses polyurethane polymer dispersant, 60 parts by weight; the dispersant added to the mixed material is 60% wt.
  • an alignment rubbing process is used to make it have nano-scale alignment grooves on the surface of the cured cylindrical lens. Please refer to the table below for the size of the alignment groove.
  • the 3D crosstalk degree is measured with the image display device.
  • the photocurable resin uses silicone oligomer, 50 parts by weight; the dispersant uses vinyl bis stearamide dispersant, 50 parts by weight; the dispersant added to the mixed material is 50% wt.
  • an alignment rubbing process is used to make it have nano-scale alignment grooves on the surface of the cured cylindrical lens. Please refer to the table below for the size of the alignment groove.
  • the 3D crosstalk degree is measured with the image display device.
  • FIG. 7 a comparative diagram of optical effects using an alignment film structure on the surface of a liquid crystal cell and a lenticular lens layer according to an embodiment of the present invention.
  • the upper left and lower left in the figure are crosstalk degrees and crosstalk diagrams during 3D display using an alignment film structure in the prior art.
  • the upper right and lower right in the figure are crosstalk degrees and crosstalk diagrams during 3D display of a liquid crystal cell according to an embodiment of the present invention. It can be seen from the figure that due to the uneven coating of the alignment liquid that forms the alignment film at the top and bottom of the microstructure, the degree of crosstalk is high (more than 2.5%) and the naked-eye 3D effect is poor. After using the technical solution of the present invention, the degree of crosstalk is significantly improved and controlled within 2.28%, making the naked-eye 3D effect better.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶盒和2D-3D可切换的显示装置,液晶盒(100)依次包括第一电极(10)、柱状透镜层(20)、液晶层(30)以及第二电极(40),柱状透镜层(20)表面设有配向结构(21),液晶盒(100)直接在柱状透镜层(20)的透镜表面设置了配向结构(21),替代了涂布配向液来形成的配向结构,避免了配向液在柱状透镜层(20)不同位置涂附的厚度不同的问题,使2D-3D可切换的显示装置更加准确的控制液晶的偏转,提高3D显示的效果。

Description

一种液晶盒和2D-3D可切换的显示装置 技术领域
本发明涉及立体显示领域,具体地说,涉及一种液晶盒及2D-3D可切换的显示装置。
背景技术
随着显示技术的发展,显示装置的显示效果正在从平面显示到立体显示过渡。常见的立体显示技术是利用3D眼镜来实现将不同的图像信息分别传送到左右眼的。而裸眼立体显示摆脱了眼镜式3D的眼镜束缚,提高了观看者的舒适度。现有的裸眼立体显示装置中的视景分离元件通常包括柱状透镜光栅,需要在光学结构(柱状透镜)表面通过涂抹、烘烤和摩擦配向液来完成液晶配向。由于柱状透镜阵列成型后棱镜表面形貌差异,导致后续制程中配向膜涂布时,配向膜材料流动在柱状透镜阵列立体结构的底部聚集,从而配向膜在柱状透镜阵列的立体结构中的分布不均匀,导致最终成型的视景分离元件分光效果较差,以致显示装置的显示效果较差。
发明内容
本发明提供了一种液晶盒和2D-3D可切换的显示装置,在液晶盒内部集成配向结构,无需额外制作配向膜,避免配向膜制作过程中膜厚分布不均的问题,从而使得2D-3D可切换的显示装置实现更好的调光效果。
根据本发明所提供的液晶盒,依次包括第一电极,柱状透镜层,液晶层, 以及第二电极,所述柱状透镜层表面设有配向结构。
优选地,所述柱状透镜层与第二电极之间还设有间隔物;所述间隔物为隔离柱或隔离球。
优选地,所述配向结构为配向凹槽;所述配向凹槽宽度在10nm-100nm之间;所述配向凹槽的深度在10nm-100nm之间。
优选地,所述柱状透镜层包含多个柱状透镜结构,所述柱状透镜结构的折射率在1.45-1.65之间;优选地,柱状透镜结构的折射率在1.6-1.65之间。
优选地,第一电极与第二电极分别包括基材和导电层;所述导电层包括氧化铟锡、氧化铟镓锌、氧化铟钛、氧化铟铝锌、氧化铝锌中至少一种。
优选地,柱状透镜层材料为含高分子型分散剂的光固化树脂;优选地,所述高分子型分散剂为多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂、丙烯酸酯高分子型分散剂、聚氨酯、高分子聚醚或聚酯型高分子分散剂至少任意一种,或者是上述高分子分散剂的两两嫁接组合中的至少任意一种,或者是是上述高分子分散剂中至少一种与上述高分子分散剂的两两嫁接组合中至少一种的混合物;优选地,所述高分子型分散剂的添加比例为10%-50%wt之间。
优选地,柱状透镜层材料为含有无机材料的光固化树脂;所述光固化树脂包括聚酰亚胺、不饱和聚酯、聚氨酯丙烯酸脂、聚酯丙烯酸酯、环氧丙烯酸脂、丙烯酸脂、或有机硅低聚物;所述含有无机材料的光固化树脂的的粘度在20-2000cps;所述无机材料包括氧化锌、氧化钛或氧化锆粒子。
优选地,所述无机材料的粒径范围在5nm-100nm之间。
优选地,所述无机材料的添加比例在10%wt-50%wt之间。
优选地,所述高分子型分散剂的粘度小于等于500cps;所述高分子型分散剂的密度为1.03-1.08g/cm3;所述高分子型分散剂的平均分子量为 30000-50000Da;所述高分子型分散剂的PH值在2.0-3.0。
本发明的2D-3D可切换的显示装置包括图像显示装置和上述任一液晶盒,所述显示装置的3D显示串扰度小于等于2.28%。
所述图像显示装置可为LED背光的LCD显示器,Mini-LED背光的LCD显示器,QD背光的LCD显示器,Micro-LED显示器,OLED显示器,QD-OLED显示器中任意一种。
2D-3D可切换的显示装置直接在液晶盒的柱状透镜层的透镜表面设置了配向结构,替代了涂布配向液来形成的配向结构,避免了配向液在柱状透镜层不同位置涂附的厚度不同的问题,使2D-3D可切换的显示装置更加准确的控制液晶的偏转,提高3D显示的效果。
附图说明
附图1为本发明一实施例的液晶盒结构示意图;
附图2为本发明一实施例的液晶盒结构示意图;
附图3为本发明图2液晶盒虚线圈局部放大结构示意图;
附图4为本发明一实施例的液晶盒结构示意图;
附图5为本发明一实施例的液晶盒结构示意图;
附图6为本发明一实施例的2D-3D可切换的显示装置结构示意图
附图7为本发明一实施例的2D-3D可切换的显示装置与柱状透镜层表面采用配向膜结构的光学效果比较图。
其中:
10第一电极;11导电层;12基材;20柱状透镜层;21配向凹槽;30液晶
层;40第二电极;41导电层;42基材;51隔离球;52隔离柱;100液晶盒,200 图像显示装置
具体实施方式
有关本发明的前述及其他技术内容、特点与功效,在以下配合参考图式的一优选实施例的详细说明中,将可清楚的呈现。以下实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。
下面结合附图对本发明作进一步详细的说明:
如图1和图2所示,为本发明一实施例中液晶盒结构示意图,依次包括显示面板(未画出)、第一电极10,柱状透镜层20,液晶层30和第二电极40。第一电极10包括基材11和导电层12,第二电极40包括基材41和导电层42,柱状透镜层20包括多个柱状透镜结构,柱状透镜层20的表面具有配向结构。显示面板可以是LCD显示面板或OLED显示面板,本发明不作限制。液晶层30可在第一电极10和第二电极40形成的电场中进行偏转;在一实施例中,偏转后的液晶层30折射率与柱状透镜层20的折射率不同,柱状透镜层20对光线进行调制,使不同入射角度的光在不同的位置会聚,进而实现3D显示;在另一实施例中,通过设置配向结构的方向,可使液晶层30在第一电极10和第二电极40未施加电场时的折射率与柱状透镜的折射率相同,实现2D显示。
在一实施例中,导电层12/42相向设置,导电层12/42相对于基材11/41更邻近液晶层30,导电层可由氧化铟锡,氧化铟镓锌,氧化铟钛,氧化铟铝锌或氧化铝锌至少之一制成。
如图3所示,为本发明图2中液晶盒虚线圈局部放大结构示意图。柱状透镜层20表面设有配向结构21。配向结构21为纳米级配向凹槽,配向凹槽的宽 度在10nm-100nm之间,配向凹槽的深度在10nm-100nm之间。配向结构21与柱状透镜层20一体成型。替代了先成型柱状透镜再涂布配向液形成配向膜的工艺,避免了配向液在柱状透镜表面成膜厚度不均匀的问题。
在一实施例中,将高分子型分散剂添加到丙烯酸树脂中,作为具有配向功能的树脂材料,此高分子型分散剂包括但不限于多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂、丙烯酸酯高分子型分散剂、聚氨酯、高分子聚醚或聚酯型高分子分散剂,或者是上述高分子分散剂的两两嫁接组合,或者是上述高分子分散剂与上述高分子分散剂的两两嫁接组合的混合,添加比例在10%-50%之间。高分子型分散剂具有和液晶材料表面具有亲和力的锚定基团,并且具有能够产生空间位阻的伸展链。通过锚定基团与液晶之间产生作用力,也称配向力,实现配向结构21与柱状透镜层20一体成型具有配向功能。优选地,所述高分子型分散剂的粘度小于等于500cps;所述高分子型分散剂的密度为1.03-1.08g/cm3;所述高分子型分散剂的平均分子量为30000-50000Da;所述高分子型分散剂的PH值在2.0-3.0。
在一实施例种,为提升柱状透镜的折射率,在形成柱状透镜的光固化树脂中还可添加无机材料,此无机材料包括但不限于氧化锌、氧化钛、氧化锆粒子。粒径范围在5nm-100nm之间,添加比例在10%-50%之间。本申请混合无机材料后具有配向功能的丙烯酸树脂粘度范围在20-2000cps;折射率在1.45-1.65之间。
同时采用配向摩擦工艺,使得其在固化的丙烯酸树脂表面具有纳米级的配向沟槽。从而让液晶在柱状透镜表面的配向结构控制下具有很强的配向力和锚定力。本发明配向摩擦工艺使用的摩擦布由基布和绒毛组成,摩擦布材质包括但不限于棉、人造丝、尼龙等。形成本专利配向凹槽的主要工艺过程和参数包括,采用的配向压入量在0.2~0.6mm,摩擦滚轮的转速500~1800r/min,摩擦平 台的速度20~80mm/sec,扭矩值在1.0~2.0N.m,摩擦滚轮沿配向凹槽的结构方向摩擦回数为1~10回,摩擦滚轮转动方向依据摩擦布毛向选择转动方向。
上述实施例以丙烯酸树脂为例,本申请形成柱状透镜的光固化树脂包括但不限于不饱和聚酯、聚氨酯丙烯酸脂、聚酯丙烯酸酯、环氧丙烯酸脂、丙烯酸脂、有机硅低聚物等。
如图4和图5所示,为本发明一实施例中液晶盒侧视结构示意图。在本实施例中,在柱状透镜层20与第二电极40之间还设有间隔物,间隔物可为隔离球51或隔离柱52。间隔物可保持柱状透镜层20与第二电极40之间的间距保持恒定,间隔物可均匀的设置在柱状透镜层20与第二电极40之间,或者柱状透镜层20与第二电极40之间的中心区域设置的间隔物密度大于周边区域的密度。
如图6所示,为本发明一实施例中2D-3D可切换的显示装置,包括液晶盒100和图像显示装置200,本实施例中的液晶盒以图4所示的液晶盒为例,在其他实施方式中,可采用本发明其他实施例中的液晶盒。图像显示装置200可以显示2D模式时的图像,也可以显示3D模式时的左右眼图像。图像显示装置200可选自LED背光的LCD显示器,Mini-LED背光的LCD显示器,QD背光的LCD显示器,Micro-LED显示器,OLED显示器,QD-OLED显示器中任意一种。
根据本发明的液晶盒,测试了以下11种液晶盒,并做了比较,记录的实验内容如下:
实施例1
光固化树脂采用聚氨酯丙烯酸酯,90重量份;分散剂采用多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂,10重量份;混合材料中分散剂添加量10%重量份。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具 有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
实施例2
光固化树脂采用聚氨酯丙烯酸酯,70重量份;分散剂采用多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂,30重量份,混合材料中分散剂添加量30%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
实施例3
光固化树脂采用聚氨酯丙烯酸酯,50重量份;分散剂采用多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂,50重量份;混合材料中分散剂添加量50%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
实施例4
光固化树脂采用聚酯丙烯酸酯,90重量份;分散剂采用丙烯酸酯高分子型分散剂,10重量份;混合材料中分散剂添加量10%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
实施例5
光固化树脂采用聚酯丙烯酸酯,70重量份;分散剂采用丙烯酸酯高分子型分散剂,30重量份;混合材料中分散剂添加量30%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽 尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
实施例6
光固化树脂采用聚酯丙烯酸酯,50重量份;分散剂采用丙烯酸酯高分子型分散剂,50重量份;混合材料中分散剂添加量50%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
实施例7
光固化树脂采用有机硅低聚物,90重量份;分散剂采用聚氨酯高分子型分散剂,10重量份;混合材料中分散剂添加量10%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
实施例8
光固化树脂采用有机硅低聚物,70重量份;分散剂采用聚氨酯高分子型分散剂,30重量份;混合材料中分散剂添加量30%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
实施例9
光固化树脂采用有机硅低聚物,50重量份;分散剂采用聚氨酯高分子型分散剂,50重量份;混合材料中分散剂添加量50%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
对比例1
光固化树脂采用有机硅低聚物,90重量份;分散剂采用聚氨酯高分子型分 散剂,5重量份;混合材料中分散剂添加量5%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
对比例2
光固化树脂采用有机硅低聚物,40重量份;分散剂采用聚氨酯高分子型分散剂,60重量份;混合材料中分散剂添加量60%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
对比例3
光固化树脂采用有机硅低聚物,50重量份;分散剂采用乙烯基双硬脂酰胺分散剂,50重量份;混合材料中分散剂添加量50%wt。在形成柱状透镜后,采用配向摩擦工艺,使得其在固化的柱镜表面具有纳米级的配向沟槽,配向沟槽尺寸参考下表,完成液晶盒后,配合图像显示装置测量3D串扰度。
根据以上实施例1-9及对比例1,测得参数如下表:

如图7所示,本发明一实施例的液晶盒与柱状透镜层表面采用配向膜结构的光学效果比较图。图中左上和左下为现有技术中采用配向膜结构3D显示时串扰度和串扰图,图中右上和右下为本发明一实施例的液晶盒的3D显示时串扰度和串扰图。从图中可以看出,由于形成配向膜的配向液在微结构的谷顶谷底涂布不均匀性导致串扰度高(2.5%以上)、裸眼3D效果差。使用本发明的技术方案后,则串扰度改善明显,控制在2.28%以内,使得裸眼3D的效果更好。
以上所述,仅为本发明的优选实施例而已,当不能以此限定本发明实施的范围,即所有依本发明权利要求书及说明内容所作的简单的等效变化,组合或修改,都仍属本发明专利覆盖的范围内。另外,本发明的任一实施例或权利要求不须达成本发明所揭露的全部目的或优点或特点。此外,摘要和发明名称仅是用来辅助专利文件检索之用,并非用来限制本发明的权利范围。此外,本说明书或权利要求书中提及的“第一”、“第二”等用语仅用以命名元件(element)的名称或区别不同实施例或范围,而并非用来限制元件数量上的上限或下限。

Claims (13)

  1. 一种液晶盒,依次包括第一电极,柱状透镜层,液晶层,以及第二电极,其特征在于:所述柱状透镜层表面设有配向结构。
  2. 根据权利要求1所述的液晶盒,其特征在于,所述柱状透镜层与所述第二电极之间还设有间隔物,所述间隔物为隔离柱或隔离球。
  3. 根据权利要求1所述的液晶盒,其特征在于,所述配向结构为配向凹槽。
  4. 根据权利要求3所述的液晶盒,其特征在于,所述配向凹槽的宽度在10nm-100nm之间,所述配向凹槽的深度在10nm-100nm之间。
  5. 根据权利要求1所述的液晶盒,其特征在于,所述柱状透镜层包含多个柱状透镜结构,所述柱状透镜结构的折射率在1.45-1.65之间;
    优选的,所述柱状透镜结构的折射率在1.6-1.65之间。
  6. 根据权利要求1所述的液晶盒,其特征在于,所述第一电极和所述第二电极分别包括基材和导电层,所述导电层包括氧化铟锡、氧化铟镓锌、氧化铟钛、氧化铟铝锌、氧化铝锌中至少一种。
  7. 根据权利要求1所述的液晶盒,其特征在于,柱状透镜层材料为光固化树脂,所述光固化树脂包含高分子型分散剂;
    优选地,所述高分子型分散剂为多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂、丙烯酸酯高分子型分散剂、聚氨酯、高分子聚醚或聚酯型高分子分散剂至少任意一种,或者是上述高分子分散剂的两两嫁接组合中的至少任意一种,或者是上述高分子分散剂中至少一种与上述高分子分散剂的两两嫁接组合中至少一种的混合物;
    优选地,所述高分子型分散剂的添加比例为10%-50%wt之间;
    优选地,所述高分子型分散剂的粘度小于等于500cps;所述高分子型分散剂的密度为1.03-1.08g/cm3;所述高分子型分散剂的平均分子量为 30000-50000Da;所述高分子型分散剂的PH值在2.0-3.0。
  8. 根据权利要求7所述的液晶盒,其特征在于,所述光固化树脂包括不饱和聚酯、聚氨酯丙烯酸脂、聚酯丙烯酸酯、环氧丙烯酸脂、丙烯酸脂、或有机硅低聚物。
  9. 根据权利要求7所述的液晶盒,其特征在于,所述光固化树脂还包含无机材料,所述无机材料为氧化锌、氧化钛或氧化锆粒子,所述光固化树脂的粘度在20-2000cps。
  10. 根据权利要求9所述的液晶盒,其特征在于,所述无机材料的粒径范围在5nm-100nm之间,所述无机材料的添加比例在10%wt-50%wt之间。
  11. 一种2D-3D可切换的显示装置,其特征在于,包括图像显示装置及根据权利要求1-10任一所述的液晶盒。
  12. 一种2D-3D可切换的显示装置,其特征在于,所述显示装置的3D显示串扰度小于等于2.28%。
  13. 根据权利要求11所述的2D-3D可切换的显示装置,其特征在于,所述图像显示装置可为LED背光的LCD显示器,Mini-LED背光的LCD显示器,QD背光的LCD显示器,Micro-LED显示器,OLED显示器,QD-OLED显示器中任意一种。
PCT/CN2023/109798 2022-08-02 2023-07-28 一种液晶盒和2d-3d可切换的显示装置 WO2024027585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210920983.5 2022-08-02
CN202210920983 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024027585A1 true WO2024027585A1 (zh) 2024-02-08

Family

ID=85293366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109798 WO2024027585A1 (zh) 2022-08-02 2023-07-28 一种液晶盒和2d-3d可切换的显示装置

Country Status (2)

Country Link
CN (1) CN115728996A (zh)
WO (1) WO2024027585A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115728996A (zh) * 2022-08-02 2023-03-03 张家港康得新光电材料有限公司 一种液晶盒和2d-3d可切换的显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893789A (zh) * 2010-07-07 2010-11-24 深圳超多维光电子有限公司 配向层材料、配向层制造工艺及显示面板
CN103003722A (zh) * 2010-08-09 2013-03-27 Jsr株式会社 光指向性控制单元及其制造方法、可2d/3d切换的显示模块以及液晶配向剂
KR20160002054A (ko) * 2014-06-30 2016-01-07 코오롱인더스트리 주식회사 무안경 3d 디스플레이 장치를 위한 스위칭 렌즈 및 그 제조 방법
CN109324420A (zh) * 2018-11-30 2019-02-12 张家港康得新光电材料有限公司 2d/3d可切换的视景分离元件及其制作方法、立体显示装置
WO2019132658A1 (en) * 2017-12-29 2019-07-04 Zhangjiagang Kangde Xin Optronics Material Co. Ltd Process for producing a lenticular device
CN110140082A (zh) * 2017-01-24 2019-08-16 Jsr株式会社 液晶元件及其制造方法以及显示装置
CN111087844A (zh) * 2019-12-24 2020-05-01 天津宝兴威科技股份有限公司 一种纳米银导电膜用涂布液
CN115728996A (zh) * 2022-08-02 2023-03-03 张家港康得新光电材料有限公司 一种液晶盒和2d-3d可切换的显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893789A (zh) * 2010-07-07 2010-11-24 深圳超多维光电子有限公司 配向层材料、配向层制造工艺及显示面板
CN103003722A (zh) * 2010-08-09 2013-03-27 Jsr株式会社 光指向性控制单元及其制造方法、可2d/3d切换的显示模块以及液晶配向剂
KR20160002054A (ko) * 2014-06-30 2016-01-07 코오롱인더스트리 주식회사 무안경 3d 디스플레이 장치를 위한 스위칭 렌즈 및 그 제조 방법
CN110140082A (zh) * 2017-01-24 2019-08-16 Jsr株式会社 液晶元件及其制造方法以及显示装置
WO2019132658A1 (en) * 2017-12-29 2019-07-04 Zhangjiagang Kangde Xin Optronics Material Co. Ltd Process for producing a lenticular device
CN109324420A (zh) * 2018-11-30 2019-02-12 张家港康得新光电材料有限公司 2d/3d可切换的视景分离元件及其制作方法、立体显示装置
CN111087844A (zh) * 2019-12-24 2020-05-01 天津宝兴威科技股份有限公司 一种纳米银导电膜用涂布液
CN115728996A (zh) * 2022-08-02 2023-03-03 张家港康得新光电材料有限公司 一种液晶盒和2d-3d可切换的显示装置

Also Published As

Publication number Publication date
CN115728996A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
CN102314014B (zh) 可切换三维转换器件、其制造方法和立体图像显示装置
WO2024027585A1 (zh) 一种液晶盒和2d-3d可切换的显示装置
CN102854693B (zh) 液晶透镜及包括该液晶透镜的显示装置
CN102830568B (zh) 液晶透镜及包括该液晶透镜的显示装置
CN101258427B (zh) 用于自动立体显示装置的透镜设备以及产生该设备的方法
CN103109213B (zh) 光扩散元件、带光扩散元件的偏振板、偏光元件、及使用其的液晶显示装置
TWI477818B (zh) Lighting device and display device
CN104508546A (zh) 显示装置及照明单元
CN102252223A (zh) 照明装置和显示装置
CN102830547A (zh) 光学补偿膜、其制作方法以及液晶面板、液晶显示装置
CN109477982A (zh) 热塑性光学装置
TW201211628A (en) Display and illumination device
TWI518421B (zh) 二維影像/立體影像切換用透鏡陣列及其製造方法、以及二維影像/立體影像切換型複合面板及影像顯示裝置
CN103852936B (zh) 立体图像显示装置
KR20110109443A (ko) 디스플레이 장치용 컬러시프트 저감 광학필터 및 이의 제조방법
CN112470067A (zh) 具有反射器的可切换的光准直层
WO2018166207A1 (zh) 显示切换装置、显示器和电子设备
CN106200143A (zh) 液晶透镜及立体显示装置
CN103217849A (zh) 一种新型结构的焦距可调液晶微透镜阵列
CN112470066A (zh) 用于包括双稳态电泳流体的可切换的光准直层的驱动波形
CN105954937A (zh) 显示面板及其制作方法、显示装置
CN106483670B (zh) 偏振控制面板及其制造方法和使用其的立体显示装置
CN203287666U (zh) 一种液晶透镜及应用该液晶透镜的立体显示装置
KR20080001172A (ko) 렌티큘라 렌즈와 그 액정 배향방법
CN103792671B (zh) 一种3d眼镜的镜片及制作方法、3d眼镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849293

Country of ref document: EP

Kind code of ref document: A1