WO2018166207A1 - 显示切换装置、显示器和电子设备 - Google Patents

显示切换装置、显示器和电子设备 Download PDF

Info

Publication number
WO2018166207A1
WO2018166207A1 PCT/CN2017/107488 CN2017107488W WO2018166207A1 WO 2018166207 A1 WO2018166207 A1 WO 2018166207A1 CN 2017107488 W CN2017107488 W CN 2017107488W WO 2018166207 A1 WO2018166207 A1 WO 2018166207A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
display
diffraction
switching device
liquid crystal
Prior art date
Application number
PCT/CN2017/107488
Other languages
English (en)
French (fr)
Inventor
高健
董学
陈小川
杨亚锋
卢鹏程
王维
马新利
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/067,691 priority Critical patent/US11402656B2/en
Publication of WO2018166207A1 publication Critical patent/WO2018166207A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/188Plurality of such optical elements formed in or on a supporting substrate
    • G02B5/1885Arranged as a periodic array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses

Definitions

  • Embodiments of the present disclosure are directed to a display switching device, a display, and an electronic device.
  • the naked-eye 3D display is favored in the field of three-dimensional stereoscopic display because it does not require the viewer to wear glasses.
  • the main naked-eye 3D technology can be divided into, directional backlight, parallax barrier and lens array.
  • the directional backlight type needs to be time-multiplexed by the light source, the technology is more complicated and the 3D effect is poor; the parallax barrier type transmittance is less than 50%, and the cost is high, the volume is large, the weight is large, and the commercialization is poor.
  • the cylindrical lens array has improved transmittance compared with the parallax barrier type, and is currently the most widely used method in the naked eye 3D, but it has a great influence on the normal display of the 2D image, and introduces a certain optical aberration to the image.
  • the image display of 2D and 3D switching is not ideal.
  • Embodiments of the present disclosure provide a display switching device, a display, and an electronic device, which have a simple structure, thereby facilitating subsequent use in conjunction with a display device to achieve a 2D and 3D switchable display effect.
  • a display switching device comprising a lens array and a control device, the lens array comprising a plurality of diffraction column lenses, each of the diffraction column lenses comprising: a first substrate, wherein the a substrate having a diffraction phase grating array; a liquid crystal cell comprising liquid crystal filled in the diffraction phase grating array; a first electrode layer and a second electrode layer configured to apply a voltage to the liquid crystal cell, wherein the control device Applying a control voltage corresponding to the display mode to the first electrode layer and the second electrode layer according to a corresponding display mode to change a refractive index state of the liquid crystal cell.
  • the first electrode layer is located above the diffraction phase grating array, an insulating layer is disposed between the first electrode layer and the second electrode layer, and the second electrode layer is located above the insulating layer.
  • the diffraction phase grating array includes a plurality of periodically arranged first phase grating groups and second phase grating groups, and the first phase grating group and the second phase grating group are opposite to The center line of the diffraction column lens is symmetrically distributed.
  • first phase grating group and the second phase grating group each include first to Mth grating elements.
  • each grating unit includes N steps, wherein N is 2 ⁇ m, m is a positive integer, the phase difference of adjacent steps is 2 ⁇ /N, and the step height is
  • is the wavelength of the incident light
  • n is the refractive index of the first substrate
  • n o is the minimum refractive index of the liquid crystal cell with respect to the incident polarized light.
  • the j-th grating unit has a first side and a second side, wherein a distance from the first side to a center line of the diffraction column lens is r j,1 , and the second side to the diffraction The distance of the center line of the cylindrical lens is r j,2 , where j is a positive integer less than or equal to M.
  • n 1 is the refractive index of the object medium on which the first substrate is placed.
  • the first side of each of the grating elements has a plurality of steps.
  • the first electrode layer includes a plurality of electrode strips.
  • the first electrode layer and the second electrode layer each include a transparent electrode.
  • the lens array is a diffraction column lens array to enter a 3D display mode; when the first electrode layer and the second electrode layer are applied with a voltage, The lens array is glass to enter the 2D display mode.
  • a second aspect of the present disclosure provides a display comprising: a display device and a display switching device on a light exiting side of the display device, the display switching device being as described in the first aspect of the present disclosure.
  • Embodiments of the Third Embodiment Embodiments of the present disclosure propose an electronic device including the display of the second aspect of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a display switching device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of a diffraction column lens 10 according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a diffraction phase grating array 111 according to an embodiment of the present disclosure
  • FIG. 4 is a partial cross-sectional structural view of a diffraction phase grating array 111 corresponding to two steps, four steps, and eight steps in each grating unit, according to an embodiment of the present disclosure
  • FIG. 5 is a partial cross-sectional structural view of a diffraction column lens when a voltage is applied to a first electrode layer and a second electrode layer, in accordance with an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a display according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a display according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural view of a diffraction column lens 10 according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a display switching device according to an embodiment of the present disclosure.
  • a display switching device includes a lens array 1 including a plurality of diffraction column lenses 10, and a control device 2, wherein each of the diffraction column lenses 10 includes the same structure, 2 is a schematic structural view of a diffraction column lens 10 according to an embodiment of the present disclosure.
  • Each of the diffraction column lenses 10 may include: a first substrate 11 in which the first substrate 11 has a diffraction phase grating array 111; a liquid crystal cell 12 including liquid crystals filled in the diffraction phase grating array 111; a first electrode layer and a first electrode layer a second electrode layer configured to apply a voltage to the liquid crystal cell, wherein the control device is configured to acquire a corresponding display mode and apply the display mode corresponding to the first electrode layer and the second electrode layer according to the display mode Control voltage to change the refractive index state of the liquid crystal cell.
  • the liquid crystals in the liquid crystal cell are at least filled between the diffraction phase arrays, and may also be on and between the diffraction phase arrays.
  • the first electrode layer 13 may be located above the diffraction phase grating array, and the insulating layer 14 may be disposed between the first electrode layer 13 and the second electrode layer 15, and the second electrode layer 15 may be located above the insulating layer 14.
  • FIG. 2 shows an exemplary structure of such a diffraction column lens 10.
  • the positions of the first electrode layer and the second electrode layer may not be as shown in FIG. 2, and embodiments of the embodiments of the present disclosure are not limited thereto as long as the first and second electrode layers are disposed to be capable of being directed to the liquid crystal cell.
  • a voltage for deflecting the liquid crystal therein may be applied.
  • the first electrode layer 13 may be disposed on a side of the first substrate 11 opposite to the liquid crystal cell
  • the second electrode layer 15 may be disposed on the first substrate of the liquid crystal cell 12 11 opposite side.
  • applying a control voltage corresponding to the display mode to the first electrode layer and the second electrode layer includes a case where no voltage is applied to the first and second electrode layers, for example, to the first and second electrode layers. A voltage of zero is applied, or the same voltage is applied to the first and second electrode layers but there is no potential difference between the two.
  • the control device 2 is configured to acquire a corresponding display mode, and apply a control voltage corresponding to the display mode to the first electrode layer 13 and the second electrode layer 15 according to the display mode to change the refractive index state of the liquid crystal cell 12.
  • the diffraction phase grating array 111 may include a plurality of periodically arranged first phase grating groups 111a and second phase grating groups 111b, and the first phase grating group 111a and the second phase grating group 111b It is symmetrically distributed with respect to the center line of the diffraction column lens 10.
  • the schematic diagram of the structure of the diffraction phase grating array 111 corresponding to one cycle is shown in FIG. 3 .
  • the first phase grating group 111a and the second phase grating group 111b each include first to Mth grating units, that is, the first phase grating group 111a is composed of first to Mth grating units, and the second phase grating group 111b is composed of The first to Mth grating units are composed.
  • M is a positive integer.
  • each of the grating units includes N steps.
  • N 2 ⁇ m and m is a positive integer.
  • the phase difference of adjacent steps is 2 ⁇ /N, and the step height is
  • is the wavelength of the incident light
  • n is the refractive index of the first substrate
  • n o is the minimum refractive index of the liquid crystal cell with respect to the incident polarized light.
  • the jth grating unit has a first side and a second side, the distance from the first side to the center line of the diffraction column lens is r j,1 , and the second side is to the center line of the diffraction column lens The distance is r j,2 , where j is a positive integer less than or equal to M.
  • each grating unit has a plurality of steps.
  • each of the first phase grating group 111a and the second phase grating group 111b includes three grating units, and FIG. 4 respectively illustrates that each grating unit includes two steps, four steps, and eight steps.
  • each of the grating units has N steps, so that one groove can be formed in each of the grating units, and the liquid crystal cell 12 is filled in the diffraction phase grating array 111, and the liquid crystal display 12 can be The liquid crystal molecules fill the grooves of the grating unit to improve the image display effect.
  • n 1 is the refractive index of the object medium on which the first substrate is placed.
  • the widths of consecutive N-1 steps in each grating unit are the same, and the width of the remaining steps is different from the width of N-1 steps, wherein the n-th grating unit is continuous N-1
  • the width of the steps is
  • the width of the remaining steps in the jth grating unit is
  • the jth raster unit has N-1 t j, 2 width steps and a t j, 1 width step.
  • each of the first phase grating group 111a and the second phase grating group 111b includes three grating units
  • FIG. 4 respectively illustrates that each grating unit includes two steps, four steps, and eight steps.
  • a schematic partial cross-sectional view of the diffraction phase grating array 111 can be seen from FIG. 4.
  • the step width distribution in the diffraction phase grating array 111 is the same as the Fresnel band width distribution.
  • the width of the steps different from the other three steps in the first grating unit can be determined according to the formula for solving the step width.
  • the remaining 3 steps each step width is The width of the step different from the other three steps in the second grating unit
  • the remaining 3 steps each step width is The width of the step different from the other three steps in the third grating unit
  • the remaining 3 steps each step width is
  • the widths of the steps including 8 steps in each grating unit can also be calculated by the formulas (2) and (3), and details are not described herein again.
  • the first electrode layer 13 may include a plurality of electrode strips.
  • each of the first electrode layer 13 and the second electrode layer 15 may include a transparent electrode.
  • the transparent electrode in the first electrode layer 13 may be a strip electrode
  • the transparent electrode in the second electrode layer 15 may be a surface electrode
  • the control device 2 may control that no voltage is applied to the first electrode layer 13 and the second electrode layer 15, that is, the first electrode layer The 13 and second electrode layers 15 have no voltage.
  • the refractive index of the liquid crystal cell 12 is at a low refractive index, that is, the liquid crystal cell 12 is in a low refractive index state with respect to the incident polarized light, and at this time, the lens array 1 functions as The diffractive lens array functions, that is, the lens array is a diffraction column lens array, at which time the display switching device enters the 3D display mode.
  • the control device 2 can apply a voltage to the first electrode layer 13 and the second electrode layer 15, that is, apply voltage to the first electrode layer 13 and the second electrode layer 15.
  • the refractive index of the liquid crystal cell 12 is at a high refractive index, that is, the liquid crystal cell 12 is in a high refractive index state with respect to the incident polarized light.
  • the lens array 1 functions as a flat glass, that is, the lens array is glass to enter the 2D display mode.
  • the liquid crystal deflection state of the liquid crystal cell in the diffraction column lens is as shown in FIG. 2 .
  • FIG. 5 illustrates the liquid crystal deflection of the liquid crystal cell in the diffraction column lens. status.
  • the display switching device of the embodiment of the present disclosure is configured to fill a liquid crystal cell in a lens array in a diffraction phase grating array of a first substrate, and to provide a first electrode layer on the diffraction phase grating array, and a first electrode layer An insulating layer is disposed thereon, and a second electrode layer is disposed on the insulating layer, and a corresponding display mode is acquired by the control device, and a control voltage corresponding to the display mode is applied to the first electrode layer and the second electrode layer according to the display mode.
  • the refractive index state of the liquid crystal cell is changed, thereby providing a display switching device with a simple structure, which is convenient for subsequent use in combination with the display device, and realizes a 2D and 3D switchable display effect.
  • embodiments of the present disclosure also propose a display.
  • FIG. 6 is a schematic structural diagram of a display according to an embodiment of the present disclosure.
  • a display includes a display device 100 and a display switching device 200 located above the display device, wherein:
  • the display device 100 can be an LCD (Liquid Crystal Display) or an OLED (Organic Light-Emitting Diode).
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the transmission axis of the light-emitting side of the display device is perpendicular to the initial alignment of the long axis of the liquid crystal molecules in the liquid crystal cell, and in this case, when the first electrode layer and the second electrode layer are not energized
  • the liquid crystal molecules in the liquid crystal cell have a low refractive index with respect to the incident polarized light, and the lens array functions as a diffraction column lens array in combination with the display device.
  • the display can realize the 3D display function.
  • the liquid crystal molecules in the liquid crystal cell have a high refractive index with respect to the incident polarized light, and at this time, the liquid crystal molecules are high with respect to the incident polarized light.
  • the refractive index is equal to the refractive index of the lower substrate, which is equivalent to filling the diffraction grating on the first substrate. Therefore, the lens array functions as a flat glass in combination with the display device. At this time, the display can realize a 2D display function.
  • 3D display can be realized when the electrode is powered on, and 2D display can be realized when the electrode is powered off.
  • the initial alignment of the liquid crystal cell may not be performed, and whether the initial alignment of the liquid crystal cell is related to the shape of the liquid crystal cell.
  • the liquid crystal cell is a blue phase liquid crystal molecular material, and since its molecular initial state is spherical, it is not necessary to initially align it.
  • the display of the embodiment of the present disclosure acquires a corresponding display mode by the control device, and applies a control voltage corresponding to the display mode to the first electrode layer and the second electrode layer according to the display mode to change the refractive index state of the liquid crystal cell, thereby A display with a simple structure and a switchable display mode is provided, which facilitates the user to realize the switching display of 2D and 3D effects based on the display.
  • FIG. 7 is a schematic structural diagram of a display according to an embodiment of the present disclosure. It should be noted that, in order to facilitate the description and understanding, in this embodiment, the appearance of the diffraction column lens array as a geometric cylindrical lens array is described as an example.
  • the coordinate origin in FIG. 7 is located at the center of the diffraction lens array, which is numbered 0, the X axis coincides with the optical axis of the lens numbered 0, and the Y axis is parallel to the pixel plane of the display device.
  • the lens numbers of the diffraction columns are 1, 2, ..., k, ..., respectively, and the lens numbers of the diffraction columns are -1, -2, ..., -k, ..., respectively, in the negative direction of the Y-axis.
  • the viewpoints of the respective parallax images are symmetrically distributed about the x-axis. If the display uses m parallax images, when the human eye views the 3D display, the two eyes will receive the adjacent two parallax images.
  • the spacing is also the eyelid distance.
  • the height of the pixel seen by the kth diffraction column lens at the i-th and i+1th parallax image viewpoints is from the optical axis of the diffraction column lens to h k,i and h k,i+ 1 . According to the geometric relationship, you can get:
  • p is the unit diffraction lens width and l is the human eye viewing distance.
  • the focal length of the diffraction lens lens is:
  • the object point of the i-th parallax image seen by the eye through the k-th lens should fall within the pixel field of view of the parallax image, namely:
  • embodiments of the present disclosure also propose an electronic device including the above display.
  • the electronic device of the embodiment of the present disclosure can obtain a corresponding display mode by the control device, and apply a control voltage corresponding to the display mode to the first electrode layer and the second electrode layer according to the display mode to change the refractive index state of the liquid crystal cell. Switching display of 2D and 3D effects of electronic devices.
  • an embodiment of the present disclosure further provides a lens array in which the lens array 1 is structurally schematic.
  • the lens array 1 may include a plurality of diffraction column lenses 10 including a plurality of diffraction column lenses.
  • each of the diffraction column lenses 10 includes the same structure, and FIG. 2 is a schematic structural view of the diffraction column lens 10 according to an embodiment of the present disclosure.
  • the diffraction column lens 10 further includes: located at the second The second substrate 16 above the electrode layer 15.
  • Embodiments of the present disclosure provide a lens array with a simple structure, which facilitates subsequent switching of display modes in combination with other devices, and realizes switching display of 2D and 3D effects.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly, and may be, for example, a fixed connection or a Removable connection, or integrated; can be mechanical connection or electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal connection of two elements or the interaction of two elements, unless There are also clear limits.
  • the specific meanings of the above terms in the embodiments of the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features may pass, unless otherwise explicitly stated and defined. Intermediary media indirect contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature is higher than the second feature. Sign.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种显示切换装置、显示器和电子设备。该显示切换装置包括:控制装置(2);以及透镜阵列(1),透镜阵列(1)包括多个衍射柱透镜(10),每个衍射柱透镜(10)包括:第一基板(11),其中,第一基板(11)具有衍射相位光栅阵列(111);液晶单元(12),包括填充在衍射相位光栅阵列(111)之中的液晶;第一电极层(13)和第二电极层(15),构造为向液晶单元(12)施加电压,其中控制装置(2)构造为获取对应的显示模式并根据显示模式对第一电极层(13)和第二电极层(15)施加显示模式对应的控制电压以改变液晶单元(12)的折射率状态。这种显示切换装置具有简单的结构,方便后续结合显示器件使用,实现2D与3D可切换的显示效果。

Description

显示切换装置、显示器和电子设备 技术领域
本公开的实施例涉及一种显示切换装置、显示器和电子设备。
背景技术
目前,在实现三维3D(3 Dimensions)立体显示众多的技术当中,裸眼3D显示由于无需观看者佩戴眼镜的优点使得它在三维立体显示领域中备受青睐。
现阶段主要的裸眼3D技术可分为、指向性背光式、视差屏障式和透镜阵列式。其中,指向性背光式需进行光源分时复用,其技术较为复杂且3D效果较差;视差屏障式透过率低于50%,且成本高、体积大、重量大、商业化推广不佳;柱透镜阵列式相比视差屏障式其透过率有所改善,也是目前裸眼3D中应用最广泛的方式,但是其对2D图像的正常显示影响较大,给图像引进了一定的光学像差,2D和3D切换的图像显示效果不理想。
发明内容
本公开的实施例提供一种显示切换装置、显示器和电子设备,该显示切换装置具有简单的结构,从而方便后续结合显示器件使用,实现2D与3D可切换的显示效果。
根据本公开第一方面提出了一种显示切换装置,包括透镜阵列和控制装置,所述透镜阵列包括多个衍射柱透镜,每个所述衍射柱透镜包括:第一基板,其中,所述第一基板具有衍射相位光栅阵列;液晶单元,包括填充在所述衍射相位光栅阵列之中的液晶;第一电极层和第二电极层,构造为向所述液晶单元施加电压,其中所述控制装置根据对应的显示模式向所述第一电极层和所述第二电极层施加所述显示模式对应的控制电压以改变所述液晶单元的折射率状态。
例如,所述第一电极层位于所述衍射相位光栅阵列之上,所述第一电极层和第二电极层之间设置有绝缘层,所述第二电极层位于所述绝缘层之上。
例如,所述衍射相位光栅阵列包括多个周期性排列的第一相位光栅组和第二相位光栅组,且所述第一相位光栅组和所述第二相位光栅组相对于所述 衍射柱透镜的中心线对称分布。
例如,所述第一相位光栅组和所述第二相位光栅组均包括第一至第M光栅单元。
例如,每个光栅单元中包括N个台阶,其中,N为2^m,m为正整数,相邻台阶的相位差为2π/N,台阶高度为
Figure PCTCN2017107488-appb-000001
其中,λ为入射光的波长,n为所述第一基板的折射率,no为所述液晶单元相对于入射偏振光的最小折射率。
例如,所述第j光栅单元具有第一边和第二边,其中,所述第一边至所述衍射柱透镜的中心线的距离为rj,1,所述第二边至所述衍射柱透镜的中心线的距离为rj,2,其中,j为小于或等于M的正整数。
例如,其中,
Figure PCTCN2017107488-appb-000002
Figure PCTCN2017107488-appb-000003
其中,f为透镜的物方焦距,n1为所述第一基板所处物方介质的折射率。
例如,每个所述光栅单元的第一边具有多个台阶。
例如,每个光栅单元中的连续N-1个台阶的宽度相同,剩余台阶的宽度与N-1个台阶的宽度不同,其中,第j光栅单元中连续N-1个台阶的宽度为
Figure PCTCN2017107488-appb-000004
第j光栅单元中剩余台阶的宽度为
Figure PCTCN2017107488-appb-000005
其中,dj,1=rj,1-rj-1,2,dj,2=rj,2-rj,1
例如,所述第一电极层包括多个电极条。
例如,所述第一电极层和所述第二电极层均包括透明电极。
例如,当所述第一电极层和第二电极层无电压时,所述透镜阵列为衍射柱透镜阵列以进入3D显示模式;当所述第一电极层和第二电极层施加电压时,所述透镜阵列为玻璃以进入2D显示模式。
本公开第二方面提出了一种显示器,包括:显示器件和位于所述显示器件出光侧的显示切换装置,该显示切换装置如本公开第一方面所述。
本公开的实施例第三方面实施例提出了一种电子设备,包括本公开第二方面的显示器。
附图说明
本公开的实施例的上述和/或附加的方面从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开的实施例的显示切换装置的结构示意图;
图2为根据本公开的实施例的衍射柱透镜10的结构示意图;
图3为根据本公开的实施例的衍射相位光栅阵列111的结构示意图;
图4为根据本公开的实施例的每个光栅单元中包括两个台阶、四个台阶和八台阶所对应的衍射相位光栅阵列111的部分剖面结构示意图;
图5为根据本公开的实施例的在第一电极层和第二电极层施加电压时衍射柱透镜的部分剖面结构示意图;
图6为根据本公开的实施例的显示器的结构示意图;
图7是根据本公开的实施例的显示器的原理结构示意图;
图8为根据本公开的实施例的衍射柱透镜10的结构示意图。
附图标记:
1-透镜阵列;2-控制装置;10-衍射柱透镜;11-第一基板;12-液晶单元;13-第一电极层;14-绝缘层;15-第二电极层;16-第二基板;111-衍射相位光栅阵列;111a-第一相位光栅组;111b-第二相位光栅组;100-显示器件;200-显示切换装置。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开的实施例,而不能理解为对本公开的实施例的限制。
下面参考附图描述根据本公开的实施例的显示切换装置、显示器和电子设备。
图1为根据本公开一个实施例的显示切换装置的结构示意图。
如图1所示,根据本公开实施例的显示切换装置包括透镜阵列1和控制装置2,透镜阵列1包括多个衍射柱透镜10,其中,每个衍射柱透镜10均包含相同的结构,图2为根据本公开一个实施例的衍射柱透镜10的结构示意图。
每个衍射柱透镜10可以包括:第一基板11,其中,第一基板11具有衍射相位光栅阵列111;液晶单元12,包括填充在衍射相位光栅阵列111之中的液晶;第一电极层和第二电极层,构造为向所述液晶单元施加电压,其中所述控制装置构造为获取对应的显示模式并根据所述显示模式对所述第一电极层和第二电极层施加所述显示模式对应的控制电压以改变所述液晶单元的折射率状态。
这里,液晶单元中的液晶至少填充衍射相位阵列之间,而且还可以在衍射相位阵列之上以及之间。
例如,第一电极层13可以位于所述衍射相位光栅阵列之上,第一电极层13和第二电极层15之间可以设置有绝缘层14,第二电极层15可以位于绝缘层14之上,图2示出了这样的衍射柱透镜10的示例性结构。
例如,第一电极层和第二电极层的设置位置可以并非如图2所示,本公开的实施例的实施例并不对此进行限制,只要第一和第二电极层设置为能够向液晶单元施加使得其中的液晶偏转的电压即可,例如,第一电极层13可以设置在第一基板11的与液晶单元相反的一侧,第二电极层15可以设置在液晶单元12的与第一基板11相反的一侧。
这里,需要说明的是,向第一电极层和第二电极层施加与显示模式对应的控制电压包括向第一和第二电极层未施加电压的情况,例如,向第一和第二电极层施加为零的电压,或者向第一和第二电极层施加相同的电压但是二者之间不具有电势差。
其中,控制装置2用于获取对应的显示模式,并根据显示模式对第一电极层13和第二电极层15施加显示模式对应的控制电压以改变液晶单元12的折射率状态。
在本公开的一个实施例中,衍射相位光栅阵列111可以包括多个周期性排列的第一相位光栅组111a和第二相位光栅组111b,且第一相位光栅组111a和第二相位光栅组111b相对于衍射柱透镜10的中心线对称分布。其中,一个周期所对应的衍射相位光栅阵列111的结构示意图,如图3所示。
其中,第一相位光栅组111a和第二相位光栅组111b均包括第一至第M光栅单元,即,第一相位光栅组111a由第一至第M光栅单元组成,第二相位光栅组111b由第一至第M光栅单元组成。
其中,M为正整数。
其中,每个光栅单元中均包括N个台阶。
其中,N为2^m,m为正整数。
其中,对于每个光栅单元而言,相邻台阶的相位差为2π/N,台阶高度为
Figure PCTCN2017107488-appb-000006
其中,λ为入射光的波长,n为第一基板的折射率,no为液晶单元相对于入射偏振光的最小折射率。
在本公开的一个实施例中,第j光栅单元具有第一边和第二边,第一边至衍射柱透镜的中心线的距离为rj,1,第二边至衍射柱透镜的中心线的距离为rj,2,其中,j为小于或等于M的正整数。
其中,每个光栅单元的第一边具有多个台阶。
举例而言,假设第一相位光栅组111a和第二相位光栅组111b中均包括3个光栅单元,图4分别示意出了每个光栅单元中包括两个台阶、四个台阶和八台阶所对应的衍射相位光栅阵列111的部分剖面结构示意图,从图4中可以看出对于具有两台阶的光栅单元,第一边上有两个台阶;对于具有四台阶的光栅单元,第一边上有四个台阶;对于八台阶的光栅单元,第一边上有八个台阶。
需要理解的是,该实施例中每个光栅单元具有N个台阶,使得在每个光栅单元中可形成一个沟槽,在衍射相位光栅阵列111之中填充液晶单元12,可将液晶显示12中的液晶分子填满光栅单元的沟槽,以提高图像显示效果。
其中,
Figure PCTCN2017107488-appb-000007
Figure PCTCN2017107488-appb-000008
其中,f为透镜的物方焦距,n1为第一基板所处物方介质的折射率。
在本公开的一个实施例中,每个光栅单元中的连续N-1个台阶的宽度相同,剩余台阶的宽度与N-1个台阶的宽度不同,其中,第j光栅单元中连续N-1个台阶的宽度为
Figure PCTCN2017107488-appb-000009
第j光栅单元中剩余台阶的宽度为
Figure PCTCN2017107488-appb-000010
其中,dj,1=rj,1-rj-1,2,dj,2=rj,2-rj,1。也就是说,第j个光栅单元中具有N-1个tj,2宽度的台阶和一个tj,1宽度的台阶。
举例而言,假设第一相位光栅组111a和第二相位光栅组111b中均包括3个光栅单元,图4分别示意出了每个光栅单元中包括两个台阶、四个台阶和八台阶所对应的衍射相位光栅阵列111的部分剖面结构示意图,通过图4可以看出,在每个光栅单元中包括两个台阶时,衍射相位光栅阵列111中台阶宽度分布与菲涅耳波带宽度分布相同。在每个光栅单元中包括四个台阶时,根据求解台阶宽度的公式可以确定出第1光栅单元中与其他3个台阶不同的台阶的宽度
Figure PCTCN2017107488-appb-000011
剩余3个台阶每个台阶宽度为
Figure PCTCN2017107488-appb-000012
第2光栅单元中与其他3个台阶不同的台阶的宽度
Figure PCTCN2017107488-appb-000013
剩余3个台阶每个台阶宽度为
Figure PCTCN2017107488-appb-000014
第3光栅单元中与其他3个台阶不同的台阶的宽度
Figure PCTCN2017107488-appb-000015
剩余3个台阶每个台阶宽度为
Figure PCTCN2017107488-appb-000016
其中,需要理解的是,对于图4而言,通过公式(2)和(3)同样可以计算出每个光栅单元中包括8个台阶时台阶的宽度,此处不再赘述。
在本公开的一个实施例中,第一电极层13可以包括多个电极条。
在本公开的一个实施例中,第一电极层13和第二电极层15均可以包括透明电极。
举例而言,第一电极层13中的透明电极可以条形电极,第二电极层15中的透明电极可以为面性电极。
在本公开的一个实施例中,如果控制装置2获取对应的显示模式为3D显示模式,控制装置2可控制对第一电极层13和第二电极层15不施加电压,即,第一电极层13和第二电极层15无电压。在第一电极层13和第二电极层15无电压时,液晶单元12的折射率处于低折射率,即,液晶单元12相对入射偏振光处于低折射率状态,此时,透镜阵列1起到衍射透镜阵列作用,即,透镜阵列为衍射柱透镜阵列,此时,显示切换装置进入3D显示模式。
如果控制装置2获取对应的显示模式为2D显示模式,控制装置2可对第一电极层13和第二电极层15施加电压,即,对第一电极层13和第二电极层15施加电压。在第一电极层13和第二电极层15施加电压时,液晶单元12的折射率处于高折射率,即,液晶单元12相对入射偏振光处于高折射率状态, 此时,透镜阵列1起到平板玻璃的作用,即,透镜阵列为玻璃以进入2D显示模式。
其中,在第一电极层13和第二电极层15无电压时,衍射柱透镜中液晶单元的液晶偏转状态,如图2所示。
其中,在第一电极层13和第二电极层15施加电压时,衍射柱透镜的部分剖面结构示意图,如图5所示,图5中示意出了此时衍射柱透镜中液晶单元的液晶偏转状态。
本公开实施例的显示切换装置,通过将透镜阵列中的液晶单元填充在第一基板的衍射相位光栅阵列之中,并在衍射相位光栅阵列之上设置第一电极层,以及在第一电极层之上设置绝缘层,并在绝缘层之上设置第二电极层,以及通过控制装置获取对应的显示模式,并根据显示模式对第一电极层和第二电极层施加显示模式对应的控制电压以改变液晶单元的折射率状态,由此,提供了一种结构简单的显示切换装置,方便后续结合显示器件使用,实现2D与3D可切换的显示效果。
为了实现上述实施例,本公开的实施例还提出一种显示器。
图6为根据本公开的一个实施例的显示器的结构示意图。
如图6所示,根据本公开实施例的显示器,包括显示器件100和位于显示器件之上的显示切换装置200,其中:
其中,需要说明的是,前述对显示切换装置200的解释说明也适用于该实施例,此处不再赘述。
其中,显示器件100可以为LCD(Liquid Crystal Display,液晶显示器)或OLED(Organic Light-Emitting Diode,有机发光二极管)。
在本公开的一个实施例中,假设显示器件出光侧的透光轴与液晶单元中液晶分子长轴的初始配向垂直,此时,在第一电极层和第二电极层不加电的情况下,液晶单元中的液晶分子相对于入射偏振光具有低折射率,透镜阵列起衍射柱透镜阵列的作用,结合显示器件,此时,显示器可以实现3D的显示功能。
另外,在对第一电极层和第二电极层施加对应的控制电压的情况下,液晶单元中的液晶分子相对于入射偏振光具有高折射率,此时,液晶分子相对于入射偏振光处于高折射率等于下基板的折射率,这就相当于将第一基板上的衍射光栅填平,故,透镜阵列起平面玻璃的作用,结合显示器件,此时,显示器可实现2D显示功能。
需要理解的是,在显示器件的出光侧的透过轴与液晶单元中的长轴的初始配向平行时,也可以在电极加电时实现3D显示,在电极断电时实现2D显示。
其中,需要说明的是,在一些情况中也可以不对液晶单元进行初始配向,是否对液晶单元进行初始配向与液晶单元的形状有关。例如,液晶单元为蓝相液晶分子材料,由于其分子初始状态为球状,故无需对其进行初始配向。
本公开的实施例的显示器,通过控制装置获取对应的显示模式,并根据显示模式对第一电极层和第二电极层施加显示模式对应的控制电压以改变液晶单元的折射率状态,由此,提供了一种结构简单、且可切换显示模式的显示器,方便了用户基于该显示器实现2D和3D效果的切换显示。
图7是根据本公开的一个实施例的显示器的原理结构示意图。其中,需要说明的是,为了方便描述理解,该实施例中以将衍射柱透镜阵列绘制成了几何柱透镜阵列外貌为例进行描述。
其中,图7中的坐标原点位于衍射柱透镜阵列中编号为0的中心,X轴与编号为0的透镜光轴重合,Y轴则平行于显示器件像素平面。沿Y轴正方向,衍射柱透镜编号分别为1,2,…,k,…,沿Y轴负方向,衍射柱透镜编号分别为-1,-2,…,-k,…。
假设用户处于显示屏的正中央此时,将各视差图像的视点关于x轴对称分布。如果显示器采用m幅视差图像,人眼双眼观看3D显示时,两眼将接收相邻的两幅视差图像。将第i幅视差图像的最佳视点定于(l,[i-(m+1)/2)]e),其中,i=1,2,3…,m,e为相邻视差点的间距也为人眼瞳距。
其中,需要说明的是,图7中仅示意出了m=2的情况,两视点的坐标分别为(l,-e/2)和(l,-e/2)。
假设眼睛位于第i幅和第i+1幅视差图像视点处透过第k个衍射柱透镜看到的像素点距离该衍射柱透镜光轴的高度分别为hk,i和hk,i+1。根据几何关系可以得到:
Figure PCTCN2017107488-appb-000017
Figure PCTCN2017107488-appb-000018
其中,p为单元衍射透镜宽度,l为人眼观看距离。
根据公式(4)和(5)可以得到,
Figure PCTCN2017107488-appb-000019
Figure PCTCN2017107488-appb-000020
假设显示器件像素宽度为t,则有:
t=hk,i-hk,i+1      (8)
结合式(6)、(7)、(8),可得衍射柱透镜物方焦距为:
Figure PCTCN2017107488-appb-000021
此外,眼睛透过第k块透镜看到的第i幅视差图像的物点应落在该幅视差图像的像素视场范围内,即:
Figure PCTCN2017107488-appb-000022
将式(6)、(9)带入到(10)式中,可得
Figure PCTCN2017107488-appb-000023
因此p的一个合适值为:
Figure PCTCN2017107488-appb-000024
允许浮动的范围是
Figure PCTCN2017107488-appb-000025
其中,在m=2,可以得出单元衍射柱透镜的宽度为
Figure PCTCN2017107488-appb-000026
为了实现上述实施例,本公开的实施例还提出一种电子设备,包括上述的显示器。
本公开的实施例的电子设备,通过控制装置获取对应的显示模式,并根据显示模式对第一电极层和第二电极层施加显示模式对应的控制电压以改变液晶单元的折射率状态,可以实现电子设备的2D和3D效果的切换显示。
为了实现上述实施例,本公开的实施例还提出一种透镜阵列,其中,透镜阵列1的结构示意图,如图1所示,透镜阵列1可以包括多个衍射柱透镜10包括多个衍射柱透镜,
其中,每个衍射柱透镜10均包含相同的结构,图2为根据本公开的一个实施例的衍射柱透镜10的结构示意图。
其中,需要说明的是,前述对衍射柱透镜10的解释说明也适用于该实施例的显示切换的透镜阵列的实施例,此处不再赘述。
在图2所示的基础上,如图8所示,该衍射柱透镜10还包括:位于第二 电极层15之上的第二基板16。
本公开的实施例提供了一种结构简单的透镜阵列,方便后续结合其他装置实现显示模式的切换,以及实现2D与3D效果的切换显示。
在本公开的实施例的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开的实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的实施例的限制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开的实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开的实施例中的具体含义。
在本公开的实施例中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特 征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的实施例的限制,本领域的普通技术人员在本公开的实施例的范围内可以对上述实施例进行变化、修改、替换和变型。
本申请要求于2017年3月17日提交的中国专利申请第201710160630.9的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。

Claims (15)

  1. 一种显示切换装置,包括:
    控制装置;以及
    透镜阵列,所述透镜阵列包括多个衍射柱透镜,每个所述衍射柱透镜包括:
    第一基板,其中,所述第一基板具有衍射相位光栅阵列;
    液晶单元,包括填充在所述衍射相位光栅阵列之中的液晶;
    第一电极层和第二电极层,构造为向所述液晶单元施加电压,
    其中所述控制装置构造为获取对应的显示模式并根据所述显示模式对所述第一电极层和第二电极层施加所述显示模式对应的控制电压以改变所述液晶单元的折射率状态。
  2. 如权利要求1所述的显示切换装置,其中所述第一电极层位于所述衍射相位光栅阵列之上,所述第一电极层和所述第二电极层之间设置有绝缘层,所述第二电极层位于所述绝缘层之上。
  3. 如权利要求1或2所述的显示切换装置,其中所述衍射相位光栅阵列包括多个周期性排列的第一相位光栅组和第二相位光栅组,且所述第一相位光栅组和所述第二相位光栅组相对于所述衍射柱透镜的中心线对称分布。
  4. 如权利要求3所述的显示切换装置,其中所述第一相位光栅组和所述第二相位光栅组均包括第一至第M光栅单元。
  5. 如权利要求4所述的显示切换装置,其中每个光栅单元中包括N个台阶,其中,N为2^m,m为正整数,相邻台阶的相位差为2π/N,台阶高度为
    Figure PCTCN2017107488-appb-100001
    其中,λ为入射光的波长,n为所述第一基板的折射率,no为所述液晶单元相对于所述入射光的最小折射率。
  6. 如权利要求5所述的显示切换装置,其中所述第j光栅单元具有第一边和第二边,其中,所述第一边至所述衍射柱透镜的中心线的距离为rj,1,所述第二边至所述衍射柱透镜的中心线的距离为rj,2,其中,j为小于或等于M的正整数。
  7. 如权利要求6所述的显示切换装置,其中
    Figure PCTCN2017107488-appb-100002
    Figure PCTCN2017107488-appb-100003
    其中,f为透镜的物方焦距,n1为所述第一基板所处物方介质的折射率。
  8. 如权利要求7所述的显示切换装置,其中每个所述光栅单元的第一边具有所述N个台阶。
  9. 如权利要求8所述的显示切换装置,其中每个光栅单元中的连续N-1个台阶的宽度相同,剩余台阶的宽度与N-1个台阶的宽度不同,其中,第j光栅单元中连续N-1个台阶的宽度为
    Figure PCTCN2017107488-appb-100004
    第j光栅单元中剩余台阶的宽度为
    Figure PCTCN2017107488-appb-100005
    其中,dj,1=rj,1-rj-1,2,dj,2=rj,2-rj,1
  10. 如权利要求1或2所述的显示切换装置,其中所述第一电极层包括多个电极条。
  11. 如权利要求1或2所述的显示切换装置,其中所述第一电极层和所述第二电极层均包括透明电极。
  12. 如权利要求1或2所述的显示切换装置,其中,
    当所述第一电极层和第二电极层未被施加电压时,所述透镜阵列为衍射柱透镜阵列以进入3D显示模式;
    当所述第一电极层和第二电极层施加电压时,所述透镜阵列为玻璃以进入2D显示模式。
  13. 如权利要求1或2所述的显示切换装置,其中,
    当所述第一电极层和第二电极层未被施加电压时,所述透镜阵列为衍射柱透镜阵列以进入2D显示模式;
    当所述第一电极层和第二电极层施加电压时,所述透镜阵列为玻璃以进入3D显示模式。
  14. 一种显示器,包括:
    显示器件;
    显示切换装置,位于所述显示器件的出光侧且如权利要求1-13中任一项所述。
  15. 一种电子设备,包括如权利要求14所述的显示器。
PCT/CN2017/107488 2017-03-17 2017-10-24 显示切换装置、显示器和电子设备 WO2018166207A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/067,691 US11402656B2 (en) 2017-03-17 2017-10-24 Display switching device, display device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710160630.9 2017-03-17
CN201710160630.9A CN106842598B (zh) 2017-03-17 2017-03-17 显示切换装置、显示器和电子设备

Publications (1)

Publication Number Publication Date
WO2018166207A1 true WO2018166207A1 (zh) 2018-09-20

Family

ID=59144833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107488 WO2018166207A1 (zh) 2017-03-17 2017-10-24 显示切换装置、显示器和电子设备

Country Status (3)

Country Link
US (1) US11402656B2 (zh)
CN (1) CN106842598B (zh)
WO (1) WO2018166207A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918917A (zh) * 2017-03-17 2017-07-04 京东方科技集团股份有限公司 液晶盒、显示器和电子设备
US10901310B2 (en) * 2018-07-24 2021-01-26 Qualcomm Incorporated Adjustable light distribution for active depth sensing systems
CN109669278B (zh) * 2018-11-21 2021-01-29 京东方科技集团股份有限公司 镜片和眼镜
CN110850390B (zh) * 2019-11-26 2021-11-19 广东博智林机器人有限公司 光学准直装置及激光雷达
CN115407570B (zh) * 2022-08-23 2023-12-15 武汉华星光电技术有限公司 显示面板及其制备方法
CN116027567B (zh) * 2023-03-31 2023-09-26 成都工业学院 一种后投影立体显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676286A (zh) * 2012-08-31 2014-03-26 京东方科技集团股份有限公司 一种液晶光栅面板、立体显示装置及显示方法
CN104317135A (zh) * 2014-11-19 2015-01-28 京东方科技集团股份有限公司 光栅装置、显示装置及其驱动方法
CN104793394A (zh) * 2015-04-29 2015-07-22 京东方科技集团股份有限公司 光栅装置、显示装置及其驱动方法
CN105572892A (zh) * 2016-03-10 2016-05-11 京东方科技集团股份有限公司 分光材料及其制备方法、光栅及其使用方法和显示装置
CN105842862A (zh) * 2016-06-02 2016-08-10 宁波万维显示科技有限公司 一种超薄2d/3d切换显示器的制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561558A (en) * 1993-10-18 1996-10-01 Matsushita Electric Industrial Co., Ltd. Diffractive optical device
JPH09318942A (ja) * 1996-05-28 1997-12-12 Mitsubishi Electric Corp カラー液晶表示装置
KR20120091646A (ko) 2011-02-09 2012-08-20 주식회사 엘지화학 프레넬 렌즈 구조체 및 이를 이용한 2d/3d 전환 영상표시장치
WO2014132781A1 (ja) * 2013-03-01 2014-09-04 シチズンホールディングス株式会社 光束分割素子
CN203688918U (zh) * 2013-12-17 2014-07-02 京东方科技集团股份有限公司 立体显示装置
KR20150070784A (ko) * 2013-12-17 2015-06-25 삼성디스플레이 주식회사 액정 프레넬 렌즈 및 그 제조 방법
CN106226930B (zh) 2016-09-08 2023-06-20 京东方科技集团股份有限公司 一种菲涅尔透镜装置
CN106324898B (zh) * 2016-10-28 2017-08-25 京东方科技集团股份有限公司 显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676286A (zh) * 2012-08-31 2014-03-26 京东方科技集团股份有限公司 一种液晶光栅面板、立体显示装置及显示方法
CN104317135A (zh) * 2014-11-19 2015-01-28 京东方科技集团股份有限公司 光栅装置、显示装置及其驱动方法
CN104793394A (zh) * 2015-04-29 2015-07-22 京东方科技集团股份有限公司 光栅装置、显示装置及其驱动方法
CN105572892A (zh) * 2016-03-10 2016-05-11 京东方科技集团股份有限公司 分光材料及其制备方法、光栅及其使用方法和显示装置
CN105842862A (zh) * 2016-06-02 2016-08-10 宁波万维显示科技有限公司 一种超薄2d/3d切换显示器的制作方法

Also Published As

Publication number Publication date
US11402656B2 (en) 2022-08-02
CN106842598B (zh) 2019-09-06
US20210165241A1 (en) 2021-06-03
CN106842598A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2018166207A1 (zh) 显示切换装置、显示器和电子设备
US9377629B2 (en) Lenticular unit for two-dimensional/three-dimensional auto-stereoscopic display
CN102073142B (zh) 立体显示单元
JP5142356B2 (ja) 立体画像変換パネル
CN102162964B (zh) 液晶透镜和显示装置
US9104034B2 (en) Display apparatus
CN105589277B (zh) 一种液晶透镜及显示装置
US8279270B2 (en) Three dimensional display
US8836873B2 (en) Display devices and methods of manufacturing the same
US20150362741A1 (en) Stereoscopic image display apparatus
US9104032B1 (en) Naked-eye 3D display device and liquid crystal lens thereof
US20120075434A1 (en) Three dimensional image display
CN102116991A (zh) 电场驱动液晶透镜单元及采用该透镜单元的立体图像显示装置
WO2018166354A2 (zh) 液晶盒、显示器和电子设备
TWI463213B (zh) Image display device
KR20120091646A (ko) 프레넬 렌즈 구조체 및 이를 이용한 2d/3d 전환 영상표시장치
CA2913953C (en) Multi-view display device
CN205750220U (zh) 一种液晶透镜光栅、立体显示装置及立体显示手机
KR102061234B1 (ko) 표시 장치 및 이를 위한 액정 렌즈 패널
EP3299883B1 (en) Display device including lens panel
Huang Liquid Crystal 3D Displays
KR20080050767A (ko) 액정렌즈의 피치 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901269

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17901269

Country of ref document: EP

Kind code of ref document: A1