WO2024027555A1 - 供电电路、显示屏及电子设备 - Google Patents

供电电路、显示屏及电子设备 Download PDF

Info

Publication number
WO2024027555A1
WO2024027555A1 PCT/CN2023/109585 CN2023109585W WO2024027555A1 WO 2024027555 A1 WO2024027555 A1 WO 2024027555A1 CN 2023109585 W CN2023109585 W CN 2023109585W WO 2024027555 A1 WO2024027555 A1 WO 2024027555A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
control module
control
mode
Prior art date
Application number
PCT/CN2023/109585
Other languages
English (en)
French (fr)
Inventor
陈文龙
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024027555A1 publication Critical patent/WO2024027555A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • This application belongs to the field of electrical technology, and specifically relates to a power supply circuit, a display screen and electronic equipment.
  • the pixel circuit has a positive power supply terminal (ELVDD) and a negative power supply terminal (ELVSS).
  • the pixel circuit can be powered by the power supply circuit connecting ELVDD and ELVSS.
  • the power supply circuit that powers ELVDD can obtain electric energy when the electronic device is charged through the charging device.
  • the charging power is high, the voltages of the input terminal and the output terminal of the power supply circuit are relatively close, and the voltage of the output terminal of the power supply circuit is relatively close. The voltage rises following the voltage at the input end, affecting the current (Iled) of the light-emitting diode, which may cause a flickering problem.
  • the purpose of the embodiments of the present application is to provide a power supply circuit, a display screen and an electronic device that can solve the problem in the related art that the power supply circuit that supplies power to the pixel circuit may cause a flickering screen when the charging power is high.
  • a power supply circuit including:
  • a voltage control module the input end of the voltage control module is connected to the power supply voltage; the output end of the voltage control module outputs the pixel driving voltage;
  • the voltage control module has a buck mode; when the voltage control module operates in the buck mode, the voltage value of the pixel driving voltage is smaller than the voltage value of the power supply voltage connected to the input terminal.
  • embodiments of the present application provide a display screen, including the power supply circuit described in the first aspect.
  • embodiments of the present application provide an electronic device, including the display screen as described in the second aspect.
  • the power supply circuit for outputting the pixel driving voltage includes a voltage control module, and the voltage control module has a buck mode, so that the voltage value of the pixel driving voltage is smaller than the power supply connected to the input terminal.
  • the voltage value of the voltage can prevent the voltage at the output end of the power supply circuit from rising following the voltage at the input end to affect the current of the light-emitting diode when the charging capacity is high (ie, the power supply voltage is high), thereby solving the problem of flickering screens.
  • Figure 1 is a schematic diagram of the power supply circuit
  • Figure 2 is a schematic diagram of the pixel circuit
  • Figure 3 is a schematic diagram of the power supply circuit synchronization mode of the pixel circuit
  • Figure 4 is a schematic diagram of the asynchronous mode of the power supply circuit of the pixel circuit
  • Figure 5 is one of the block diagrams of the power supply circuit according to the embodiment of the present application.
  • Figure 6 is the second block diagram of the power supply circuit according to the embodiment of the present application.
  • Figure 7 is the third block diagram of the power supply circuit according to the embodiment of the present application.
  • Figure 8 is the fourth block diagram of the power supply circuit according to the embodiment of the present application.
  • Figure 9 is a circuit schematic diagram of the power supply circuit according to the embodiment of the present application.
  • Figure 10 is a circuit schematic diagram of the power supply circuit in buck mode according to the embodiment of the present application.
  • Figure 11 is a circuit schematic diagram of the power supply circuit in boost mode according to the embodiment of the present application.
  • Figure 12 is a circuit schematic diagram of the power supply circuit in the pass-through mode according to the embodiment of the present application.
  • Figure 13 is a control flow chart of the electronic device according to the embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • the pixel circuit is an active-matrix organic light-emitting diode (AMOLED) pixel circuit.
  • AMOLED active-matrix organic light-emitting diode
  • ELVDD is connected to the source of the driving transistor T1
  • the drain of the driving transistor T1 is connected to ELVSS through the light-emitting element.
  • the gate of the driving transistor is connected to the scanning signal Gn.
  • the voltage jitter of ELVDD will affect the voltage (Voltage Gate to Source, Vgs) of T1, while the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) works in the constant current region.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • ELVDD is very sensitive to ripple and transient disturbances.
  • ELVDD is the positive power supply terminal of the AMOLED driver, and the input is a fixed voltage, usually 4.6V; ELVSS is the negative power supply terminal of the AMOLED driver.
  • BATT is the battery;
  • VPH_PWR is the system power supply;
  • QBAT is the MOS tube between VBATT and VPH_PWR, and the impedance after conduction is RQBAT.
  • MOS tube is the abbreviation of MOSFET.
  • VPH_PWR When the battery power is high, VPH_PWR is close to the ELVDD voltage driven by AMOLED.
  • the ELVDD power supply circuit will change from synchronous mode to asynchronous mode (equivalent to the Q1 tube being normally open), and the ELVDD voltage follows VPH_PWR. Lift.
  • Figure 3 a schematic diagram of the synchronous mode of the power supply circuit of the pixel circuit is given
  • Figure 4 a schematic diagram of the asynchronous mode of the power supply circuit of the pixel circuit is given.
  • Embodiments of the present application provide a power supply circuit, a display screen and an electronic device, which can solve the problem in the related art that the power supply circuit that supplies power to the pixel circuit may cause a flickering screen when the charging power is high.
  • an embodiment of the present application provides a power supply circuit.
  • the power supply circuit includes a voltage control module 1.
  • the input end of the voltage control module 1 is connected to a power supply voltage; the output end of the voltage control module 1 outputs a pixel driver. Voltage;
  • the voltage control module 1 has a buck mode; when the voltage control module 1 works in the buck mode, the voltage value of the pixel driving voltage is smaller than the voltage of the power supply voltage connected to the input terminal. value.
  • the power supply circuit can be used to supply power to the pixel circuit of the display screen, that is, the input terminal of the voltage control module 1 can be used to connect the first power supply 3, and the first power supply 3 can output the power supply voltage, and the output terminal of the voltage control module 1 It can be used to connect the pixel circuit 2 and output the pixel driving voltage to the pixel circuit 2 .
  • the power supply circuit is applied to electronic equipment, and the first power supply 3 can be a system power supply of the electronic equipment, that is, the first power supply 3 can be a power supply module in the electronic equipment used to provide power for the power supply circuit.
  • the power supply circuit can be connected to a power supply module in an electronic device, and the power supply module can obtain electric energy through a charger or other external power supply equipment, or it can also obtain electric energy through a battery in an electronic device, etc.
  • the embodiments of this application do not apply in this way. is limited.
  • the pixel circuit 2 may be an active-matrix organic light-emitting diode (AMOLED) pixel circuit; of course, the embodiments of the present application are not limited to this.
  • AMOLED active-matrix organic light-emitting diode
  • the power supply circuit for outputting the pixel driving voltage includes a voltage control module 1.
  • the voltage control module 1 has a buck mode, so that the voltage value of the pixel driving voltage is smaller than the power supply voltage connected to the input terminal. voltage value, thereby preventing the voltage at the output end of the power supply circuit from rising following the voltage at the input end from affecting the current of the light-emitting diode when the charging capacity is high (ie, the power supply voltage is high), and can solve the problem of flickering screens.
  • the voltage control module 1 also includes at least one of a pass-through mode and a boost mode;
  • the voltage control module 1 when the voltage control module 1 works in the boost mode, the voltage value of the pixel driving voltage is greater than the voltage value of the power supply voltage connected to the input terminal; the voltage control module 1 works in the boost mode. In the pass-through mode, the voltage value of the pixel driving voltage is equal to the voltage value of the power supply voltage connected to the input terminal.
  • the voltage control module 1 may have a buck mode and a boost mode, and the voltage control module 1 may switch between the buck mode and the boost mode; or, the voltage control module 1 may have a buck mode and a pass-through mode. mode, and the voltage control module 1 can directly switch between the buck mode and the pass-through mode; or, the voltage control module 1 can also have a buck mode, a boost mode and a pass-through mode, and the voltage control module 1 can switch between the buck mode and the pass-through mode. , switching between any two modes of boost mode and pass-through mode, etc., the embodiments of the present application are not limited thereto.
  • the voltage control module 1 has a buck mode.
  • the voltage control module 1 is in the buck mode. model.
  • the voltage control module 1 can only operate when the voltage value of the power supply voltage is greater than the voltage value of the pixel driving voltage.
  • a pass-through module for example, can be connected between the first power supply 3 and the pixel circuit 2 (implemented by switching between switches) work, and when the voltage value of the power supply voltage is less than the voltage value of the pixel driving voltage, other power supply circuits (such as boost circuits) are used to output the pixel driving signal to the pixel circuit 2, so that the pixel driving The circuit can obtain stable input voltage, etc.
  • the voltage control module 1 has a buck mode and a pass-through mode, then when the voltage value of the power supply voltage is greater than the voltage value of the pixel driving voltage, the voltage control module 1 is in The buck mode; when the voltage value of the power supply voltage is equal to the voltage value of the pixel driving voltage, the voltage control module 1 is in the pass-through mode.
  • the voltage control module 1 can only work when the voltage value of the power supply voltage is greater than or equal to the voltage value of the pixel driving voltage, and when the voltage value of the power supply voltage is less than the voltage value of the pixel driving voltage.
  • other power supply circuits such as boost circuits
  • boost circuits are used to output pixel driving signals to the pixel circuit 2 so that the pixel driving circuit can obtain a stable input voltage, etc.
  • the voltage control module 1 has a buck mode and a boost mode.
  • the voltage control module 1 In the buck mode; when the voltage value of the power supply voltage is less than the voltage value of the pixel driving voltage, the voltage control module 1 is in the boost mode.
  • the voltage control module 1 can only work when the voltage value of the power supply voltage is greater than or less than the voltage value of the pixel driving voltage, and when the voltage value of the power supply voltage is equal to the voltage value of the pixel driving voltage. It does not work, but uses a pass-through module (for example, it can be realized through a switch connected between the first power supply 3 and the pixel circuit 2), so that the pixel driving circuit can obtain a stable input voltage, etc.
  • the voltage control module 1 has a buck mode, a boost mode and a pass-through mode, then when the voltage value of the power supply voltage is greater than the voltage value of the pixel driving voltage, the voltage The control module 1 is in the buck mode; when the voltage value of the power supply voltage is less than the voltage value of the pixel driving voltage, the voltage control module 1 is in the boost mode; when the voltage value of the power supply voltage is When the voltage value is equal to the voltage value of the pixel driving voltage, the voltage control module 1 is in the pass-through mode.
  • the power supply circuit includes: a voltage control module 1 and a voltage detection module 4 .
  • the input terminal of the voltage control module 1 is connected to the power supply voltage; the output terminal of the voltage control module 1 outputs the pixel driving voltage; the input terminals of the voltage detection module 4 and the voltage control module 1 Connected to the output terminal respectively, the voltage detection module 4 is used to detect the power supply voltage input from the input terminal of the voltage control module 1 and the output pixel driving voltage.
  • the power supply circuit when used to power the pixel circuit of a display screen, the power supply circuit can also be controlled by a controller external to the display screen.
  • the voltage detection module 4 can be connected to the controller.
  • the device can control the working mode of the power supply circuit based on the power supply voltage and pixel driving voltage detected by the voltage detection module. system.
  • the controller controls the voltage control module 1 to be in the buck mode; the voltage control module 1 also includes a pass-through mode, and When the voltage value of the power supply voltage is equal to the voltage value of the pixel driving voltage, the controller controls the voltage control module 1 to be in the pass-through mode; the voltage control module 1 also includes a boost mode, and the When the voltage value of the power supply voltage is smaller than the voltage value of the pixel driving voltage, the controller controls the voltage control module 1 to be in the boost mode.
  • the input end of the voltage control module 1 is used to connect the first power supply 3, that is, the input power supply voltage; the output end of the voltage control module 1 is used to connect the positive power supply end of the pixel circuit 2, that is, Output the pixel driving voltage; the voltage detection module 4 is connected to the input terminal of the voltage control module 1, and the voltage detection module 4 is used to detect the power supply voltage input by the input terminal of the voltage control module 1.
  • the voltage control module 1 when the power supply voltage is greater than the target voltage, the voltage control module 1 is in the buck mode, and the voltage control module 1 outputs the target voltage in the buck mode; when the power supply voltage is less than In the case of the target voltage, the voltage control module 1 is in the boost mode, and the voltage control module 1 outputs the target voltage in the boost mode; when the power supply voltage is equal to the target voltage , the voltage control module 1 is in the pass-through mode, and the voltage control module 1 outputs the target voltage in the pass-through mode.
  • the voltage detection module 4 is also connected to the output terminal of the voltage control module 1, and the voltage detection module 4 is also used to detect the pixel driving voltage output by the output terminal of the voltage control module 1;
  • the logic control module 5 is also configured to adjust the duty cycle of the control signal according to the voltage value of the pixel driving voltage detected by the voltage detection module 4 .
  • the duty cycle of the control signal can be adjusted.
  • the duty cycle of the control signal can be adjusted in buck mode.
  • the duty cycle of the control signal keeps the output voltage of the voltage control module 1 at the target voltage.
  • the target voltage is the voltage required by the positive power supply terminal of the pixel circuit 2.
  • the voltage required by the positive power supply terminal of the AMOLED pixel circuit is 4.6V.
  • the voltage control module 1 has a buck mode, or in addition to the buck mode, the voltage control module 1 also has at least one of a pass-through mode and a boost mode.
  • the voltage control module 1 has a buck mode, a boost mode and a pass-through mode.
  • the voltage control module 1 works in the buck mode ( or called buck mode); when the power supply voltage at the input end of the voltage control module 1 is less than the target voltage set by the pixel circuit 2, the voltage control module 1 works in the boost mode (or called boost mode); when the power supply voltage at the input end of the voltage control module 1 When the power supply voltage is equal to the target voltage set by the pixel circuit 2, the voltage control module 1 operates in the pass-through mode (or pass mode).
  • the pass-through mode refers to a mode in which the input voltage of the voltage control module 1 is the same as the output voltage, that is, when the input voltage of the voltage control module 1 is the target voltage, it can output the target voltage;
  • the buck mode refers to the mode in which the voltage control module 1 steps down the input voltage and maintains the output voltage at the target voltage;
  • the boost mode refers to the voltage control module 1 steps up the input voltage and maintains the voltage.
  • the output voltage is the target voltage mode.
  • the power supply circuit provided at the positive power supply end of the pixel circuit 2 includes a voltage control module 1 and a voltage detection module 4.
  • the voltage detection module 4 detects the power supply voltage at the input end of the voltage control module 1, and detects when the power supply voltage When the power supply voltage is greater than the target voltage, the voltage control module 1 is in the buck mode and outputs the target voltage; when the power supply voltage is less than the target voltage, the voltage control module 1 is in the boost mode, and Output the target voltage; when the power supply voltage is equal to the target voltage, the voltage control module 1 is in the pass-through mode and outputs the target voltage, so that the positive power supply of the pixel circuit 2 can be achieved through the power supply circuit
  • the terminal voltage is maintained at the target voltage, that is, the positive power supply terminal voltage of the pixel circuit 2 is ensured to remain in a stable state, which solves the problem in the related art that the source and the source of the transistor in the pixel circuit 2 are unstable due to the unstable input voltage of the power supply circuit of the pixel circuit 2.
  • the voltage control module 1 includes: a switch unit 11 and an energy storage element 12 .
  • the first connection end of the switch unit 11 is used to input the power supply voltage (for example, the first connection end is used to connect the first power supply 3 ), and the second connection end of the switch unit 11 is used to connect the pixel circuit 2
  • the positive power supply end of the switch unit 11 is connected to the first voltage end; the first end of the energy storage element 12 is connected to the first power supply 3 and the third power supply through the switch unit 11 respectively.
  • One voltage terminal is connected, and the second terminal of the energy storage element 12 is connected to the positive power supply terminal and the first voltage terminal of the pixel circuit 2 through the switch unit 11 respectively.
  • the voltage control module 1 when the switch unit 11 switches between the first conduction state and the second conduction state, the voltage control module 1 is in the buck mode; the switch unit 11 is in the first conduction state.
  • the voltage control module 1 When the switch unit 11 is switched between the first conduction state and the third conduction state, the voltage control module 1 is in the boost mode; when the switch unit 11 is only in the first conduction state, the voltage control module 1 in pass-through mode.
  • the first connection end in the first conduction state, is conductive to the second connection end through the energy storage element 12; in the second conduction state, the third connection end is through The energy storage element 12 is electrically connected to the second connection end; in the third conduction state, the first connection end is electrically connected to the third connection end through the energy storage element 12 .
  • the energy storage component 12 may be an inductor or an inductive component or other components or components for energy storage, which are not limited to the embodiments of this application.
  • the first voltage terminal may be a ground terminal, or a stable voltage terminal with a non-zero voltage value (such as a low-level stable voltage terminal), etc., and the embodiment of the present application is not limited thereto.
  • the switch unit 11 when the switch unit 11 is in the first conductive state, the first connection end is connected to the second connection end through the energy storage element 12, the energy storage element 12 is charged, and the third connection end is electrically charged.
  • the three connection ends are connected to the energy storage element 12 through the The second connection terminal is turned on and the energy storage element 12 is discharged, so that when the switch unit 11 alternately switches between the first conduction state and the second conduction state, the voltage reduction function is achieved.
  • the first connection end is connected to the second connection end through the energy storage element 12, the energy storage element 12 is charged, and the switch
  • the first connection end is connected to the third connection end through the energy storage element 12, and the energy storage element 12 discharges, so that the switch unit 11 is in When switching alternately between the first conduction state and the third conduction state, the voltage boosting function is implemented.
  • the switch unit 11 is always in the first conductive state, the first connection end is always connected to the second connection end through the energy storage element 12 , thereby realizing a direct circuit.
  • the switch unit 11 further includes a control terminal, which is used to input a control signal; wherein the control signal is used to control the conduction state of the switch unit 11 .
  • control signal can be used to control the switch unit 11 to alternately switch between the first conduction state and the second conduction state, that is, to implement the buck mode; or to control the switch unit 11 to switch between the first conduction state and the second conduction state.
  • the three conduction states are alternately switched, that is, the boost mode is realized; or the switch unit 11 is controlled to always be in the first conduction state, that is, the pass-through mode is realized.
  • the power supply circuit also includes: a logic control module 5, the logic control module 5 is connected to the voltage control module 1;
  • the logic control module 5 outputs a control signal, and the voltage control module 1 is in the buck mode under the action of the control signal, or the voltage control module 1 is in the buck mode under the action of the control signal. and other modes; wherein the other modes are at least one of a boost mode and a buck mode.
  • the logic control module 5 may be a digital logic control circuit. As shown in FIG. 7 , the digital logic control circuit may be connected to the control end of the switch unit 11 , and the logic control module 5 outputs a control signal to the switch unit.
  • the power supply circuit further includes: a voltage detection module 4, which is connected to the input terminal of the voltage control module 1, the output terminal of the voltage control module 1 and the logic control module respectively. 5 connections;
  • the voltage detection module 4 detects the voltage value of the power supply voltage and the voltage value of the pixel driving voltage, and feeds back the voltage value of the power supply voltage and the voltage value of the pixel driving voltage to the logic control Module 5;
  • the control signal output by the logic control module 5 when the voltage value of the power supply voltage is greater than the voltage value of the pixel driving voltage controls the voltage control module 1 to be in the buck mode; when the voltage control When the module 1 also includes a pass-through mode, the logic control module 5 outputs a control signal when the voltage value of the power supply voltage is equal to the voltage value of the pixel driving voltage, controlling the voltage control module 1 to be in the pass-through mode. mode; when the voltage control module 1 also includes a boost mode, the logic control module 5 outputs a control signal when the voltage value of the power supply voltage is equal to the voltage value of the pixel driving voltage, controlling The voltage control module 1 is in boost mode.
  • the logic control module 5 is a digital logic control circuit.
  • the digital logic control circuit can adopt adaptive coding and modulation (ACM) for controlling the power supply voltage and pixel drive detected by the voltage detection module 4 voltage, output a control signal to the voltage control module 1 to control the voltage control module 1 in the buck mode, or control the voltage control module 1 to switch between the buck mode and other modes.
  • ACM adaptive coding and modulation
  • the control signal can control the switch unit 11 to alternately switch between the first conduction state and the second conduction state, that is, to achieve the buck mode; or control the switch unit 11 to switch in the first conduction state. and the third conduction state are alternately switched, that is, the boost mode is realized; or the switch unit 11 is controlled to always be in the first conduction state, that is, the pass-through mode is realized.
  • the logic control module 5 and the voltage detection module 4 can be integrated.
  • the integrated logic control module 5 and the voltage detection module 4 can be packaged in the power supply circuit.
  • the logic control module 5 and the voltage detection module 4 can also be arranged outside the power supply circuit (such as integrated on the motherboard of an electronic device), etc., which are not limited to the embodiments of this application.
  • the logic control module 5 processes a voltage value that can compare the power supply voltage and the pixel driving voltage, control the voltage control module 1 to be in the buck mode, or control the voltage control module 1 to switch between the buck mode and other modes.
  • the logic control module 5 is used to adjust the duty cycle of the control signal according to the difference between the voltage value of the pixel driving voltage and the target value, so that the voltage value of the pixel driving voltage is always Maintain at a stable value, where the target value can be the voltage value required by the positive power supply terminal of the pixel circuit 2, for example: the voltage value required by the positive power supply terminal of the AMOLED pixel circuit is 4.6V.
  • the voltage control module 1 includes: a first control switch 111, a second control switch 112, a third control switch 113, a fourth control switch 114 and an energy storage element 12; wherein,
  • the first end of the first control switch 111 is connected to the power supply voltage, and the second end of the first control switch 111 is connected to the first end of the second control switch 112 through the energy storage element 12,
  • the second end of the second control switch 112 outputs the pixel driving voltage
  • the first end of the third control switch 113 is connected to the second end of the first control switch 111
  • the fourth control switch 114 The first end is connected to the first end of the second control switch 112, the second end of the third control switch 113 and the second end of the fourth control switch 114 are respectively connected to the first voltage end;
  • the control terminal of the first control switch 111 is connected to the first control signal
  • the control terminal of the second control switch 112 is connected to the second control signal
  • the control terminal of the third control switch 113 is connected to the third control signal
  • the control terminal of the fourth control switch 114 is connected to the fourth control signal.
  • the second control switch 112 is in the on state
  • the fourth control switch 114 is in the off state
  • the first control switch 111 and the third control switch 113 are in the on state alternately.
  • the voltage control module 1 is in the buck mode; for example, the second control signal is a continuous high level or low level signal, so as to realize that the second control switch 112 is continuously in the conductive state, that is, normally open (specifically, The high-level signal or the low-level signal depends on the type of transistor used in the second control switch 112, which is not specifically limited in the embodiment of this application); the fourth control signal is a continuous low-level or high-level signal to achieve the first The fourth control switch 114 is continuously in a closed state, that is, normally closed (the specific use of a low-level signal or a high-level signal depends on the type of transistor used in the fourth control switch 114, which is not specifically limited in the embodiment of this application); the first control The signal and the third control signal are pulse signals, and when the first control signal is high level, the
  • the second control switch is in the on state, the third control switch is in the off state, and the first control switch
  • the voltage control module 1 is in the boost mode; for example, the second control signal is a continuous high level or low level signal to achieve the second control
  • the switch 112 is continuously in the on state, that is, normally open; the third control signal is a continuous low level or high level signal to realize that the third control switch 113 is continuously in the closed state, that is, normally closed; the first control signal and the fourth The control signal is a pulse signal, and when the first control signal is high level, the fourth control signal is low level, so that the first control switch 111 and the fourth control switch 114 are alternately in a conductive state.
  • the voltage control module 1 is in the pass-through mode;
  • the first control signal and the second control signal are continuous high-level or low-level signals, so that the first control switch 111 and the second control switch 112 are continuously in the conductive state, that is, normally open;
  • the third control signal and The fourth control signal is a continuous low-level or high-level signal, so that the third control switch 113 and the fourth control switch 114 are continuously in a closed state, that is, normally closed.
  • the first control signal, the second control signal, the third control signal and the fourth control signal may be output by the logic control module 5, that is, the control signal output by the logic control module 5 may include the first control signal. , the second control signal, the third control signal and the fourth control signal.
  • the logic control module 5 can also adjust the duty cycle of the first control signal and the third control signal according to the voltage value and the target value of the pixel driving voltage, so that the pixel driving voltage is The voltage value is maintained at the target value.
  • the logic control module 5 can also adjust the duty cycle of the first control signal and the fourth control signal according to the voltage value and the target value of the pixel driving voltage, so that the voltage value of the pixel driving voltage is maintained. is the target value.
  • the first control switch 111 and the second control switch 112 are both P-type transistors; the third control switch 113 and the fourth control switch 114 are both N-type transistors; wherein,
  • the transistor can be a MOS tube or a thin film transistor (Thin Film Transistor, TFT), etc.
  • TFT Thin Film Transistor
  • the switch unit in the embodiment of the present application can also be implemented using other transistors, and the embodiment of the present application is not limited thereto.
  • first end of the first control switch 111 and the first end of the second control switch 112 are both sources of the P-type transistor; the second end of the first control switch 111 and the The second terminal of the second control switch 112 is the drain of the P-type transistor; the control terminals of the first control switch 111 and the second control switch 112 are both the gate of the P-type transistor.
  • the first terminal of the third control switch 113 and the first terminal of the fourth control switch 114 are both drains of the N-type transistor; the second terminal of the third control switch 113 and the first terminal of the fourth control switch 114 are both drains of the N-type transistor.
  • the second terminal of the fourth control switch 114 is the source of the N-type transistor; the control terminals of the third control switch 113 and the fourth control switch 114 are both the gate of the N-type transistor.
  • the fourth control switch 114 is normally closed, the second control switch 112 is normally open, and the first control switch 111 and the third control switch 113 are controlled to periodically alternately turn on and off. cut off to achieve the voltage reduction function. If the first control switch 111 is turned on and the third control switch 113 is turned off, the energy storage element 12 (ie, the inductor L) is charged at this time; The first control switch 111 is turned off, and the third control switch 113 is turned on. At this time, the energy storage element 12 (ie, the inductor L) is discharged.
  • the third control switch 113 is normally closed and the second control switch 112 is normally open.
  • the first control switch 111 and the fourth control switch 114 By controlling the first control switch 111 and the fourth control switch 114 to periodically alternately turn on and off, cut off to achieve the boost function. If the first control switch 111 is turned on and the fourth control switch 114 is turned off, the energy storage element 12 (i.e., the inductor L) is charged; the first control switch 111 is turned off and the fourth control switch 114 (i.e., Q4) is turned on. At this time, the energy storage element 12 (ie, the inductor L) is discharged.
  • the third control switch 113 and the fourth control switch 114 are both normally closed, the first control switch 111 and the second control switch 112 are both normally open, the circuit is straight-through, and the output voltage is approximately equal to the input voltage. .
  • the logic control module 5 can be set independently from the voltage detection module 4 or can be integrated with the voltage detection module 4 .
  • the logic control module 5 can adopt ACM adaptive coding modulation, and the voltage detection module 4 can be an analog-to-digital conversion (DAC) module.
  • DAC analog-to-digital conversion
  • logic control module 5 and the voltage detection module 4 in the embodiment of the present application can also be independently provided outside the power supply circuit, or can be integratedly provided outside the power supply circuit, such as independently or integrated.
  • the ground is set on the main board or sub-board of the electronic device.
  • Embodiments of the present application also provide a display screen, which includes the power supply circuit as described above and can achieve the same technical effects as the power supply circuit. To avoid repetition, the details will not be described here.
  • An embodiment of the present application also provides an electronic device, which includes the display screen as described above, that is, includes the power supply circuit as described above, and can achieve the same technical effect as the power supply circuit mentioned above. To avoid duplication, the details will not be described again here.
  • Step 101 In the standby or shutdown state, the AMOLED screen does not light up and the process does not start. A button or other trigger to trigger a screen-on event is required before proceeding to the next step.
  • Step 102 The DAC (ie, the voltage detection module 4) collects the input and output voltages, converts them into digital signals and sends them to the ACM digital logic unit (ie, the logic control module 5).
  • the digital logic unit monitors the input and output voltages and compares them.
  • Step 103 Determine the relationship between VPH_PWR and ELVDD. If VPH_PWR is greater than ELVDD, go to step 105; otherwise, go to step 104.
  • Step 104 Whether VPH_PWR is less than ELVDD, if so, proceed to step 106, otherwise, proceed to step 107.
  • Step 105 The circuit switches to the BUCK operating mode (ie, buck mode), and the process returns to step 102 to continue monitoring the input and output voltages.
  • the BUCK operating mode ie, buck mode
  • Step 106 The circuit switches to the BOOST operating mode (i.e., boost mode), and the process returns to step 102 to continue monitoring the input and output voltages.
  • the BOOST operating mode i.e., boost mode
  • Step 107 The circuit switches to the PASS operating mode (ie, pass-through mode), and the process returns to step 102 to continue monitoring the input and output voltages.
  • PASS operating mode ie, pass-through mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种供电电路、显示屏及电子设备,其中,供电电路,包括:电压控制模块(1),电压控制模块(1)的输入端接入电源电压;电压控制模块(1)的输出端输出像素驱动电压;其中,电压控制模块(1)具有降压模式;电压控制模块(1)工作于降压模式时,像素驱动电压的电压值小于输入端接入的电源电压的电压值。

Description

供电电路、显示屏及电子设备
相关申请的交叉引用
本申请主张在2022年8月2日在中国提交的中国专利申请No.202210922120.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于电学技术领域,具体涉及一种供电电路、显示屏及电子设备。
背景技术
像素电路有正供电端(ELVDD)和负供电端(ELVSS),可以通过连接ELVDD和ELVSS的供电电路为像素电路供电。如图1所示,给ELVDD供电的供电电路可以在电子设备通过充电设备进行充电时获得电能,当充电电量较高时,该供电电路的输入端与输出端的电压较为接近,该供电电路输出端的电压跟随输入端的电压抬升,影响发光二极管的电流(Iled),从而可能导致出现闪屏的问题。
发明内容
本申请实施例的目的是提供一种供电电路、显示屏及电子设备,能够解决相关技术中给像素电路供电的供电电路在充电电量较高时,可能导致闪屏的问题。
第一方面,本申请实施例提供了一种供电电路,包括:
电压控制模块,所述电压控制模块的输入端接入电源电压;所述电压控制模块的输出端输出像素驱动电压;
其中,所述电压控制模块具有降压模式;所述电压控制模块工作于所述降压模式时,所述像素驱动电压的电压值小于所述输入端接入的所述电源电压的电压值。
第二方面,本申请实施例提供了一种显示屏,包括如第一方面所述的供电电路。
第三方面,本申请实施例提供了一种电子设备,包括如第二方面所述的显示屏。
在本申请实施例中,用于输出像素驱动电压的供电电路包括电压控制模块,该电压控制模块具有降压模式,使得所述像素驱动电压的电压值小于所述输入端接入的所述电源电压的电压值,从而避免在充电电量较高(即电源电压较高)时,供电电路输出端的电压跟随输入端的电压抬升而影响发光二极管的电流,以解决闪屏的问题。
附图说明
图1是供电电路的示意图;
图2是像素电路的示意图;
图3是像素电路的供电电路同步模式的示意图;
图4是像素电路的供电电路异步模式的示意图;
图5是本申请实施例的供电电路的框图之一;
图6是本申请实施例的供电电路的框图之二;
图7是本申请实施例的供电电路的框图之三;
图8是本申请实施例的供电电路的框图之四;
图9是本申请实施例的供电电路的电路示意图;
图10是本申请实施例的供电电路在降压模式下的电路示意图;
图11是本申请实施例的供电电路在升压模式下的电路示意图;
图12是本申请实施例的供电电路在直通模式下的电路示意图;
图13是本申请实施例的电子设备的控制流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。
如图2所示,给出了一种像素电路的示意图,该像素电路为有源矩阵有机发光二极管(Active-matrix organic light-emitting diode,AMOLED)像素电路。其中,ELVDD连接驱动晶体管T1的源极,驱动晶体管T1的漏极经发光元件连接ELVSS。驱动晶体管的栅极连接扫描信号Gn。ELVDD的电压抖动,会影响到T1的栅极到源极的电压(Voltage Gate to Source,Vgs),而金属半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)工作于恒流区,所以Vgs的抖动会影响到红外发光二极管(infrared light-emitting diode,Iled)的电流,导致闪屏,因此ELVDD对纹波和瞬态扰动较为常敏感。其中,ELVDD是AMOLED驱动正供电端,输入为固定的电压,通常为4.6V;ELVSS是AMOLED驱动负供电端。
如继续参见图1,在充电过程中,VPH_PWR是由充电器供电,所以VPH_PWR=VBATT+I*RQBAT。其中,BATT是电池;VPH_PWR是系统电源;QBAT是VBATT和VPH_PWR之间的MOS管,导通后的阻抗为RQBAT。其中,MOS管为MOSFET的缩写。
当电池电量较高时,VPH_PWR与AMOLED驱动的ELVDD电压较为接近,ELVDD的供电电路会由同步模式变为异步模式(相当于Q1管常开),ELVDD电压跟随VPH_PWR 抬升。如图3所示,给出了一种像素电路的供电电路同步模式的示意图,如图4所示,给出了一种像素电路的供电电路异步模式的示意图。当ELVDD电压达到门限值时,供电电路会停止开关动作,ELVDD电压会下降,影响到AMOLED屏内部的Vgs电压,Iled电流,导致AMOLED屏闪屏。
本申请实施例提供了一种供电电路、显示屏及电子设备,能够解决相关技术中给像素电路供电的供电电路在充电电量较高时,可能导致闪屏的问题。
如图5所示,本申请实施例提供一种供电电路,供电电路包括电压控制模块1,所述电压控制模块1的输入端接入电源电压;所述电压控制模块1的输出端输出像素驱动电压;
其中,所述电压控制模块1具有降压模式;所述电压控制模块1工作于所述降压模式时,所述像素驱动电压的电压值小于所述输入端接入的所述电源电压的电压值。
例如:该供电电路可以应用于显示屏的像素电路进行供电,即电压控制模块1的输入端可以用于连接第一电源3,该第一电源3可以输出电源电压,电压控制模块1的输出端可以用于连接像素电路2,用于向像素电路2输出像素驱动电压。
可选地,所述供电电路应用于电子设备,所述第一电源3可以是电子设备的系统电源,即第一电源3可以是电子设备中用于为所述供电电路提供电能的供电模块。例如:该供电电路可以与电子设备中的供电模块连接,该供电模块可以通过充电器或其他外部供电设备获得电能,或者也可以通过电子设备中的蓄电池获得电能等,本申请实施例不以此为限。
可选地,所述像素电路2可以是有源矩阵有机发光二极管(Active-matrix organic light-emitting diode,AMOLED)像素电路;当然,本申请实施例不以此为限。
上述方案中,用于输出像素驱动电压的供电电路包括电压控制模块1,该电压控制模块1具有降压模式,使得所述像素驱动电压的电压值小于所述输入端接入的所述电源电压的电压值,从而避免在充电电量较高(即电源电压较高)时,供电电路输出端的电压跟随输入端的电压抬升而影响发光二极管的电流,并能够解决闪屏的问题。
可选地,所述电压控制模块1还包括直通模式和升压模式中的至少一个;
其中,所述电压控制模块1工作于所述升压模式时,所述像素驱动电压的电压值大于所述输入端接入的所述电源电压的电压值;所述电压控制模块1工作于所述直通模式时,所述像素驱动电压的电压值等于所述输入端接入的所述电源电压的电压值。
该实施例中,电压控制模块1可以具有降压模式和升压模式,且电压控制模块1可以在降压模式和升压模式之间切换;或者,电压控制模块1可以具有降压模式和直通模式,且电压控制模块1可以在降压模式和直通模式直接切换;或者,电压控制模块1还可以具有降压模式、升压模式和直通模式,且所述电压控制模块1可以在降压模式、升压模式和直通模式的任意两个模式之间切换等,本申请实施例不以为限。
作为一种实现方式,所述电压控制模块1具有降压模式,则在所述电源电压的电压值大于所述像素驱动电压的电压值的情况下,所述电压控制模块1处于所述降压模式。比如:该电压控制模块1可以仅在电源电压的电压值大于所述像素驱动电压的电压值的情况下 工作;当电源电压的电压值小于或等于所述像素驱动电压的电压值的情况下,可以采用其他供电电路(如具有升压模式和直通模式的供电电路)向像素电路2输出像素驱动信号,以使得像素驱动电路能够获得稳定的输入电压;或者当电源电压的电压值等于所述像素驱动电压的电压值的情况下,采用直通模块(如可以通过连接于第一电源3和像素电路2之间的开关实现)工作,以及当电源电压的电压值小于所述像素驱动电压的电压值的情况下,采用其他供电电路(如升压电路)向像素电路2输出像素驱动信号,以使得像素驱动电路能够获得稳定的输入电压等。
作为又一种实现方式:所述电压控制模块1具有降压模式和直通模式,则在所述电源电压的电压值大于所述像素驱动电压的电压值的情况下,所述电压控制模块1处于所述降压模式;在所述电源电压的电压值等于所述像素驱动电压的电压值的情况下,所述电压控制模块1处于所述直通模式。比如:该电压控制模块1可以仅在电源电压的电压值大于或等于所述像素驱动电压的电压值的情况下工作,且当电源电压的电压值小于所述像素驱动电压的电压值的情况下不工作,而是采用其他供电电路(如升压电路)向像素电路2输出像素驱动信号,以使得像素驱动电路能够获得稳定的输入电压等。
作为又一种实现方式:所述电压控制模块1具有降压模式和升压模式,则在所述电源电压的电压值大于所述像素驱动电压的电压值的情况下,所述电压控制模块1处于所述降压模式;在所述电源电压的电压值小于所述像素驱动电压的电压值的情况下,所述电压控制模块1处于所述升压模式。比如:该电压控制模块1可以仅在电源电压的电压值大于或小于所述像素驱动电压的电压值的情况下工作,且当电源电压的电压值等于所述像素驱动电压的电压值的情况下不工作,而是采用直通模块(如可以通过连接于第一电源3和像素电路2之间的开关实现)工作,以使得像素驱动电路能够获得稳定的输入电压等。
作为再一种实现方式:所述电压控制模块1具有降压模式、升压模式和直通模式,则在所述电源电压的电压值大于所述像素驱动电压的电压值的情况下,所述电压控制模块1处于所述降压模式;在所述电源电压的电压值小于所述像素驱动电压的电压值的情况下,所述电压控制模块1处于所述升压模式;在所述电源电压的电压值等于所述像素驱动电压的电压值的情况下,所述电压控制模块1处于所述直通模式。
如图6所示,给出了又一种供电电路的示意图,该供电电路包括:电压控制模块1和电压检测模块4。
作为一种实现方式,所述电压控制模块1的输入端接入电源电压;所述电压控制模块1的输出端输出像素驱动电压;所述电压检测模块4与所述电压控制模块1的输入端和输出端分别连接,所述电压检测模块4用于检测所述电压控制模块1的输入端输入的电源电压,以及输出的像素驱动电压。
例如:该供电电路应用于显示屏的像素电路进行供电的情况下,该供电电路还可以由外置于显示屏的控制器进行电路控制,该电压检测模块4可以与该控制器连接,该控制器可以根据电压检测模块检测到的电源电压和像素驱动电压对供电电路的工作模式进行控 制。比如:在所述电源电压的电压值大于所述像素驱动电压的电压值的情况下,控制器控制所述电压控制模块1处于所述降压模式;在电压控制模块1还包括直通模式,且所述电源电压的电压值等于所述像素驱动电压的电压值的情况下,控制器控制所述电压控制模块1处于所述直通模式;在所述电压控制模块1还包括升压模式,且所述电源电压的电压值小于所述像素驱动电压的电压值的情况下,控制器控制所述电压控制模块1处于所述升压模式。
作为又一种实现方式,所述电压控制模块1的输入端用于连接第一电源3,即输入电源电压;所述电压控制模块1的输出端用于连接像素电路2的正供电端,即输出像素驱动电压;所述电压检测模块4与所述电压控制模块1的输入端连接,所述电压检测模块4用于检测所述电压控制模块1的输入端输入的电源电压。
其中,在所述电源电压大于目标电压的情况下,所述电压控制模块1处于降压模式,所述电压控制模块1在所述降压模式下输出所述目标电压;在所述电源电压小于所述目标电压情况下,所述电压控制模块1处于升压模式,所述电压控制模块1在所述升压模式下输出所述目标电压;在所述电源电压等于所述目标电压的情况下,所述电压控制模块1处于直通模式,所述电压控制模块1在所述直通模式下输出所述目标电压。
可选地,所述电压检测模块4还与所述电压控制模块1的输出端连接,所述电压检测模块4还用于检测所述电压控制模块1的输出端输出的像素驱动电压;所述逻辑控制模块5还用于根据所述电压检测模块4检测的所述像素驱动电压的电压值,调节所述控制信号的占空比。
例如:在降压模式下,通过检测电压控制模块1输出端的像素驱动电压,如果像素驱动电压与该目标电压不相等,则可以调整控制信号的占空比,请参照图7,即调整储能元件12的充放电时间,使得电压控制模块1输出电压维持在目标电压。相应的,在升压模式下,也可以通过检测电压控制模块1输出端的像素驱动电压,如果像素驱动电压与该目标电压不相等,则可以调整控制信号的占空比,即调整储能元件12的充放电时间,使得电压控制模块1输出电压维持在目标电压。
可选地,所述目标电压是所述像素电路2的正供电端所需的电压,例如:AMOLED像素电路的正供电端所需电压为4.6V。
可选地,所述电压控制模块1具有降压模式,或者所述电压控制模块1除了具有降压模式外,还具有直通模式和升压模式中的至少一个。例如:以电压控制模块1具有降压模式、升压模式和直通模式为例,当电压控制模块1输入端的电源电压大于像素电路2设置的目标电压时,电压控制模块1工作在降压模式(或称为buck模式);当电压控制模块1输入端的电源电压小于像素电路2设置的目标电压时,电压控制模块1工作在升压模式(或称为boost模式);当电压控制模块1输入端的电源电压等于像素电路2设置的目标电压时,电压控制模块1工作在直通模式(或称为pass模式)。
其中,电压控制模块1处于上述buck模式或boost模式时,其均工作在同步模式,输 出电压能稳定在目标电压,纹波小。可选地,所述直通模式是指所述电压控制模块1输入的电压与输出的电压相同的模式,即在所述电压控制模块1输入电压为目标电压时,其可以输出目标电压;所述降压模式是指所述电压控制模块1将输入电压进行降压调节并维持输出电压为目标电压的模式;所述升压模式是指所述电压控制模块1将输入电压进行升压调节并维持输出电压为目标电压的模式。
上述方案中,设置在像素电路2的正供电端的供电电路,包括电压控制模块1和电压检测模块4,通过电压检测模块4检测所述电压控制模块1输入端的电源电压,并在所述电源电压大于目标电压的情况下,所述电压控制模块1处于降压模式,且输出所述目标电压;在所述电源电压小于所述目标电压情况下,所述电压控制模块1处于升压模式,且输出所述目标电压;在所述电源电压等于所述目标电压的情况下,所述电压控制模块1处于直通模式,且输出所述目标电压,这样通过该供电电路可以使得像素电路2的正供电端电压维持为目标电压,即保证像素电路2的正供电端电压维持在稳定状态,解决了相关技术中由于像素电路2的供电电路输入的电压不稳定,导致像素电路2中晶体管的源极和栅极之间的电压可能出现抖动,从而出现闪屏的问题。
如图7所示,作为一种实现方式:所述电压控制模块1包括:开关单元11和储能元件12。
所述开关单元11的第一连接端用于输入电源电压(如第一连接端用于连接所述第一电源3),所述开关单元11的第二连接端用于连接所述像素电路2的正供电端,所述开关单元11的第三连接端与第一电压端连接;所述储能元件12的第一端通过所述开关单元11分别与所述第一电源3和所述第一电压端连接,所述储能元件12的第二端通过所述开关单元11分别与所述像素电路2的正供电端和所述第一电压端连接。
其中,所述开关单元11在第一导通状态和第二导通状态之间切换的情况下,所述电压控制模块1处于所述降压模式;所述开关单元11在第一导通状态和第三导通状态之间切换的情况下,所述电压控制模块1处于所述升压模式;所述开关单元11仅处于所述第一导通状态的情况下,所述电压控制模块1处于所述直通模式。
其中,所述第一导通状态下,所述第一连接端通过所述储能元件12与所述第二连接端导通;所述第二导通状态下,所述第三连接端通过所述储能元件12与所述第二连接端导通;所述第三导通状态下,所述第一连接端通过所述储能元件12与所述第三连接端导通。
可选地,所述储能元件12可以是电感或电感组件或者其他用于储能的元件或组件等,本申请实施例不以为限。
可选地,所述第一电压端可以是接地端,或者非零电压值的稳定电压端(如低电平的稳定电压端)等,本申请实施例不以为限。
具体的,所述开关单元11在第一导通状态下,所述第一连接端通过所述储能元件12与所述第二连接端导通,所述储能元件12充电,所述第三连接端通过所述储能元件12与 所述第二连接端导通,所述储能元件12放电,这样所述开关单元11在第一导通状态和第二导通状态之间交替切换时,实现降压功能。相应地,所述开关单元11在第一导通状态下,所述第一连接端通过所述储能元件12与所述第二连接端导通,所述储能元件12充电,所述开关单元11在所述第三导通状态下,所述第一连接端通过所述储能元件12与所述第三连接端导通,所述储能元件12放电,这样所述开关单元11在第一导通状态和第三导通状态之间交替切换时,实现升压功能。在所述开关单元11始终处于第一导通状态的情况下,所述第一连接端始终通过所述储能元件12与所述第二连接端导通,实现电路直通。
可选地,所述开关单元11还包括控制端,所述控制端用于输入控制信号;其中,所述控制信号用于控制所述开关单元11的导通状态。
具体的,控制信号可以用于控制所述开关单元11在第一导通状态和第二导通状态交替切换,即实现降压模式;或者控制所述开关单元11在第一导通状态和第三导通状态交替切换,即实现升压模式;或者控制所述开关单元11始终处于第一导通状态,即实现直通模式。
可选地,如图8所示,所述供电电路还包括:逻辑控制模块5,所述逻辑控制模块5与所述电压控制模块1连接;
其中,所述逻辑控制模块5输出控制信号,所述电压控制模块1在所述控制信号作用下处于降压模式,或者所述电压控制模块1在所述控制信号作用下在所述降压模式和其他模式之间切换;其中,所述其他模式为升压模式和降压模式中的至少一个。
可选地,所述逻辑控制模块5可以为数字逻辑控制电路,如继续参见图7,该数字逻辑控制电路可以与开关单元11的控制端连接,由逻辑控制模块5向开关单元输出控制信号。
可选地,所述供电电路进一步还包括:电压检测模块4,所述电压检测模块4分别与所述电压控制模块1的输入端、所述电压控制模块1的输出端和所述逻辑控制模块5连接;
其中,所述电压检测模块4检测所述电源电压的电压值以及所述像素驱动电压的电压值,并将所述电源电压的电压值和所述像素驱动电压的电压值反馈至所述逻辑控制模块5;
所述逻辑控制模块5在所述电源电压的电压值大于所述像素驱动电压的电压值的情况下输出的控制信号,控制所述电压控制模块1处于所述降压模式;在所述电压控制模块1还包括直通模式的情况下,所述逻辑控制模块5在所述电源电压的电压值等于所述像素驱动电压的电压值的情况下输出的控制信号,控制所述电压控制模块1处于直通模式;在所述电压控制模块1还包括升压模式的情况下,所述逻辑控制模块5在所述电源电压的电压值等于所述像素驱动电压的电压值的情况下输出的控制信号,控制所述电压控制模块1处于升压模式。
可选地,所述逻辑控制模块5为数字逻辑控制电路,该数字逻辑控制电路可以采用自适应编码调制(Adaptive Coding and Modulation,ACM),用于根据电压检测模块4检测的电源电压和像素驱动电压,向电压控制模块1输出控制信号,以控制电压控制模块1处 于降压模式,或者控制电压控制模块1在降压模式和其他模式之间切换。如继续参见图7,该控制信号可以控制所述开关单元11在第一导通状态和第二导通状态交替切换,即实现降压模式;或者控制所述开关单元11在第一导通状态和第三导通状态交替切换,即实现升压模式;或者控制所述开关单元11始终处于第一导通状态,即实现直通模式。
可选地,作为一种实现方式,所述逻辑控制模块5与所述电压检测模块4可以集成设置,如集成设置的逻辑控制模块5与所述电压检测模块4可以封装在所述供电电路中。或者作为其他实现方式,逻辑控制模块5与所述电压检测模块4也可以设置在所述供电电路的外部(如集成在电子设备的主板上)等,本申请实施例不以为限。
进一步地,所述逻辑控制模块5处理可以比较电源电压和像素驱动电压的电压值,控制所述电压控制模块1处于降压模式,或者控制电压控制模块1在降压模式和其他模式之间切换之外,所述逻辑控制模块5用于根据所述像素驱动电压的电压值与目标值之间的差值,调整所述控制信号的占空比,以使得所述像素驱动电压的电压值始终维持在稳定值,其中,该目标值可以所述像素电路2的正供电端所需电压的电压值,例如:AMOLED像素电路的正供电端所需电压的电压值为4.6V。
可选地,如图9所示,所述电压控制模块1包括:第一控制开关111、第二控制开关112、第三控制开关113、第四控制开关114和储能元件12;其中,
所述第一控制开关111的第一端接入所述电源电压,所述第一控制开关111的第二端通过所述储能元件12与所述第二控制开关112的第一端连接,所述第二控制开关112的第二端输出所述像素驱动电压,所述第三控制开关113的第一端与所述第一控制开关111的第二端连接,所述第四控制开关114的第一端与所述第二控制开关112的第一端连接,所述第三控制开关113的第二端和所述第四控制开关114的第二端分别与第一电压端连接;
所述第一控制开关111的控制端接入第一控制信号,所述第二控制开关112的控制端接入第二控制信号,所述第三控制开关113的控制端接入第三控制信号,所述第四控制开关114的控制端接入第四控制信号。
可选地,所述第二控制开关112处于导通状态,所述第四控制开关114处于关闭状态,所述第一控制开关111和所述第三控制开关113交替处于导通状态的情况下,所述电压控制模块1处于所述降压模式;例如:第二控制信号为持续高电平或低电平信号,以实现第二控制开关112持续处于导通状态,即常开(具体采用高电平信号或低电平信号取决于第二控制开关112所采用的晶体管类型,本申请实施例不做具体限定);第四控制信号为持续低电平或高电平信号,以实现第四控制开关114持续处于关闭状态,即常闭(具体采用低电平信号或高电平信号取决于第四控制开关114所采用的晶体管类型,本申请实施例不做具体限定);第一控制信号和第三控制信号为脉冲信号,且第一控制信号为高电平时第三控制信号为低电平,从而实现所述第一控制开关111和所述第三控制开关113交替处于导通状态。
所述第二控制开关处于导通状态,所述第三控制开关处于关闭状态,所述第一控制开 关和所述第四控制开关交替处于导通状态的情况下,所述电压控制模块1处于升压模式;例如:第二控制信号为持续高电平或低电平信号,以实现第二控制开关112持续处于导通状态,即常开;第三控制信号为持续低电平或高电平信号,以实现第三控制开关113持续处于关闭状态,即常闭;第一控制信号和第四控制信号为脉冲信号,且第一控制信号为高电平时第四控制信号为低电平,从而实现所述第一控制开关111和所述第四控制开关114交替处于导通状态。
所述第一控制开关和所述第二控制开关均处于导通状态,所述第三控制开关和所述第四控制开关均处于关闭状态的情况下,所述电压控制模块1处于直通模式;例如:第一控制信号和第二控制信号为持续高电平或低电平信号,以实现第一控制开关111和第二控制开关112持续处于导通状态,即常开;第三控制信号和第四控制信号为持续低电平或高电平信号,以实现第三控制开关113和第四控制开关114持续处于关闭状态,即常闭。
可选地,所述第一控制信号、第二控制信号、第三控制信号和第四控制信号可以由逻辑控制模块5输出,也即是逻辑控制模块5输出的控制信号可以包括第一控制信号、第二控制信号、第三控制信号和第四控制信号。
进一步地,在降压模式下,所述逻辑控制模块5还可以根据像素驱动电压的电压值和目标值,来调整第一控制信号和第三控制信号的占空比,以使得像素驱动电压的电压值维持为所述目标值。在升压模式下,所述逻辑控制模块5还可以根据像素驱动电压的电压值和目标值,来调整第一控制信号和第四控制信号的占空比,以使得像素驱动电压的电压值维持为所述目标值。
作为一种实现方式,所述第一控制开关111和所述第二控制开关112均为P型晶体管;所述第三控制开关113和所述第四控制开关114均为N型晶体管;其中,晶体管可以是MOS管或薄膜晶体管(Thin Film Transistor,TFT)等。当然,本申请实施例中的开关单元还可以采用其他晶体管实现,本申请实施例不以为限。
其中,所述第一控制开关111的第一端和所述第二控制开关112的第一端均为所述P型晶体管的源极;所述第一控制开关111的第二端和所述第二控制开关112的第二端均为所述P型晶体管的漏极;所述第一控制开关111和所述第二控制开关112的控制端均为所述P型晶体管的栅极。
其中,所述第三控制开关113的第一端和所述第四控制开关114的第一端均为所述N型晶体管的漏极;所述第三控制开关113的第二端和所述第四控制开关114的第二端均为所述N型晶体管的源极;所述第三控制开关113和所述第四控制开关114的控制端均为所述N型晶体管的栅极。
以下结合附图对本申请实施例的开关单元11的工作过程进行说明:
如图10所示,在降压模式下,第四控制开关114常闭,第二控制开关112常开,通过控制第一控制开关111和第三控制开关113的周期性地交替导通和关断,实现降压功能。如第一控制开关111导通,第三控制开关113关断,此时储能元件12(即电感L)充电; 第一控制开关111关断,第三控制开关113导通,此时储能元件12(即电感L)放电。
如图11所示,在升压模式下,第三控制开关113常闭,第二控制开关112常开,通过控制第一控制开关111和第四控制开关114的周期性地交替导通和关断,实现升压功能。如第一控制开关111导通,第四控制开关114关断,此时储能元件12(即电感L)充电;第一控制开关111关断,第四控制开关114(即Q4)导通,此时储能元件12(即电感L)放电。
如图12所示,在直通模式下,第三控制开关113和第四控制开关114均常闭,第一控制开关111和第二控制开关112均常开,电路直通,输出电压约等于输入电压。
需要说明的是,所述逻辑控制模块5可以与电压检测模块4独立设置,也可以与电压检测模块4集成设置。可选地,所述逻辑控制模块5可以采用ACM自适应编码调制,电压检测模块4可以模数转换(DAC)模块。
需要说明的是,本申请实施例中的逻辑控制模块5和电压检测模块4还可以分别独立地设置在所述供电电路的外部,也可以集成地设置在供电电路的外部,如独立地或集成地设置在电子设备的主板上或副板上等。
本申请实施例还提供一种显示屏,包括如上所述的供电电路,并且能够达到上述供电电路相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种电子设备,包括如上所述的显示屏,即包括如上所述的供电电路,并且能够达到上述供电电路相同的技术效果,为避免重复,这里不再赘述。
如图13所示,给出了一种应用上述供电电路的电子设备的控制流程图,具体包括以下步骤:
步骤101:在待机或关机状态,AMOLED屏未亮,流程不开始,需要有按键等触发亮屏事件产生才进行下一步。
步骤102:DAC(即电压检测模块4)采集输入与输出电压,转化为数字信号发送给ACM数字逻辑单元(即逻辑控制模块5),数字逻辑单元监测输入输出电压,并进行比较。
步骤103:判断VPH_PWR与ELVDD的关系,是否VPH_PWR大于ELVDD,是则进入步骤105;否则进入步骤104。
步骤104:是否VPH_PWR小于ELVDD,是则进入步骤106,否则进入步骤107。
步骤105:电路切换到BUCK工作模式(即降压模式),流程返回102继续监测输入输出电压。
步骤106:电路切换到BOOST工作模式(即升压模式),流程返回102继续监测输入输出电压。
步骤107:电路切换到PASS工作模式(即直通模式),流程返回102继续监测输入输出电压。
其中步骤105、106、107中的电路工作状态可以参见上述实施例,为避免重复,这里不再赘述。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上所述的是本申请的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本申请所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本申请的保护范围内。

Claims (10)

  1. 一种供电电路,包括:
    电压控制模块,所述电压控制模块的输入端接入电源电压;所述电压控制模块的输出端输出像素驱动电压;
    其中,所述电压控制模块具有降压模式;所述电压控制模块工作于所述降压模式时,所述像素驱动电压的电压值小于所述输入端接入的所述电源电压的电压值。
  2. 根据权利要求1所述的供电电路,其中,所述电压控制模块还包括直通模式和升压模式中的至少一个;
    其中,所述电压控制模块工作于所述升压模式时,所述像素驱动电压的电压值大于所述输入端接入的所述电源电压的电压值;
    所述电压控制模块工作于所述直通模式时,所述像素驱动电压的电压值等于所述输入端接入的所述电源电压的电压值。
  3. 根据权利要求1所述的供电电路,其中,
    在所述电源电压的电压值大于所述像素驱动电压的电压值的情况下,所述电压控制模块处于所述降压模式;
    在电压控制模块还包括直通模式,且所述电源电压的电压值等于所述像素驱动电压的电压值的情况下,所述电压控制模块处于所述直通模式;
    在所述电压控制模块还包括升压模式,且所述电源电压的电压值小于所述像素驱动电压的电压值的情况下,所述电压控制模块处于所述升压模式。
  4. 根据权利要求1所述的供电电路,其中,还包括:
    逻辑控制模块,所述逻辑控制模块与所述电压控制模块连接;
    其中,所述逻辑控制模块输出控制信号,所述电压控制模块在所述控制信号作用下处于降压模式,或者所述电压控制模块在所述控制信号作用下在所述降压模式和其他模式之间切换;
    其中,所述其他模式为升压模式和降压模式中的至少一个。
  5. 根据权利要求4所述的供电电路,其中,还包括:
    电压检测模块,所述电压检测模块分别与所述电压控制模块的输入端、所述电压控制模块的输出端和所述逻辑控制模块连接;
    其中,所述电压检测模块检测所述电源电压的电压值以及所述像素驱动电压的电压值,并将所述电源电压的电压值和所述像素驱动电压的电压值反馈至所述逻辑控制模块;
    所述逻辑控制模块在所述电源电压的电压值大于所述像素驱动电压的电压值的情况下输出的控制信号,控制所述电压控制模块处于所述降压模式;
    在所述电压控制模块还包括直通模式的情况下,所述逻辑控制模块在所述电源电压的电压值等于所述像素驱动电压的电压值的情况下输出的控制信号,控制所述电压控制模块 处于直通模式;
    在所述电压控制模块还包括升压模式的情况下,所述逻辑控制模块在所述电源电压的电压值等于所述像素驱动电压的电压值的情况下输出的控制信号,控制所述电压控制模块处于升压模式。
  6. 根据权利要求5所述的供电电路,其中,所述逻辑控制模块用于根据所述像素驱动电压的电压值与目标值之间的差值,调整所述控制信号的占空比。
  7. 根据权利要求1至6中任一项所述的供电电路,其中,所述电压控制模块包括:第一控制开关、第二控制开关、第三控制开关、第四控制开关和储能元件;其中,
    所述第一控制开关的第一端接入所述电源电压,所述第一控制开关的第二端通过所述储能元件与所述第二控制开关的第一端连接,所述第二控制开关的第二端输出所述像素驱动电压,所述第三控制开关的第一端与所述第一控制开关的第二端连接,所述第四控制开关的第一端与所述第二控制开关的第一端连接,所述第三控制开关的第二端和所述第四控制开关的第二端分别与第一电压端连接;
    所述第一控制开关的控制端接入第一控制信号,所述第二控制开关的控制端接入第二控制信号,所述第三控制开关的控制端接入第三控制信号,所述第四控制开关的控制端接入第四控制信号。
  8. 根据权利要求7所述的供电电路,其中,
    所述第二控制开关处于导通状态,所述第四控制开关处于关闭状态,所述第一控制开关和所述第三控制开关交替处于导通状态的情况下,所述电压控制模块处于所述降压模式;
    所述第二控制开关处于导通状态,所述第三控制开关处于关闭状态,所述第一控制开关和所述第四控制开关交替处于导通状态的情况下,所述电压控制模块处于升压模式;
    所述第一控制开关和所述第二控制开关均处于导通状态,所述第三控制开关和所述第四控制开关均处于关闭状态的情况下,所述电压控制模块处于直通模式。
  9. 一种显示屏,包括如权利要求1至8中任一项所述的供电电路。
  10. 一种电子设备,包括如权利要求9所述的显示屏。
PCT/CN2023/109585 2022-08-02 2023-07-27 供电电路、显示屏及电子设备 WO2024027555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210922120.1 2022-08-02
CN202210922120.1A CN115242090A (zh) 2022-08-02 2022-08-02 供电电路、显示屏及电子设备

Publications (1)

Publication Number Publication Date
WO2024027555A1 true WO2024027555A1 (zh) 2024-02-08

Family

ID=83677982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109585 WO2024027555A1 (zh) 2022-08-02 2023-07-27 供电电路、显示屏及电子设备

Country Status (2)

Country Link
CN (1) CN115242090A (zh)
WO (1) WO2024027555A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115242090A (zh) * 2022-08-02 2022-10-25 维沃移动通信有限公司 供电电路、显示屏及电子设备
CN115314033B (zh) * 2022-10-09 2023-03-07 深圳英集芯科技股份有限公司 快充驱动电路及相关产品
CN117691863B (zh) * 2024-02-01 2024-05-24 荣耀终端有限公司 电源管理系统及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952900B2 (en) * 2008-04-16 2011-05-31 Analog Devices, Inc. H-bridge buck-boost converter
KR20120056456A (ko) * 2010-11-25 2012-06-04 삼성모바일디스플레이주식회사 Dc-dc 컨버터
CN103378733A (zh) * 2012-04-20 2013-10-30 英特尔移动通信有限责任公司 数控降压-升压调节器
CN104335475B (zh) * 2012-06-13 2018-07-10 德克萨斯仪器股份有限公司 用于电容性负载的驱动器
CN111262435A (zh) * 2020-03-11 2020-06-09 昌芯(西安)集成电路科技有限责任公司 一种四开关升降压型变换器的控制电路及控制方法
CN115242090A (zh) * 2022-08-02 2022-10-25 维沃移动通信有限公司 供电电路、显示屏及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952900B2 (en) * 2008-04-16 2011-05-31 Analog Devices, Inc. H-bridge buck-boost converter
KR20120056456A (ko) * 2010-11-25 2012-06-04 삼성모바일디스플레이주식회사 Dc-dc 컨버터
CN103378733A (zh) * 2012-04-20 2013-10-30 英特尔移动通信有限责任公司 数控降压-升压调节器
CN104335475B (zh) * 2012-06-13 2018-07-10 德克萨斯仪器股份有限公司 用于电容性负载的驱动器
CN111262435A (zh) * 2020-03-11 2020-06-09 昌芯(西安)集成电路科技有限责任公司 一种四开关升降压型变换器的控制电路及控制方法
CN115242090A (zh) * 2022-08-02 2022-10-25 维沃移动通信有限公司 供电电路、显示屏及电子设备

Also Published As

Publication number Publication date
CN115242090A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2024027555A1 (zh) 供电电路、显示屏及电子设备
US9177508B2 (en) Light emitting apparatus
CN202535272U (zh) 一种开关电源的控制电路、发光装置及电子设备
EP3748959B1 (en) Display apparatus
KR102222198B1 (ko) 직류 전압 변환 회로 및 직류 전압 변환 방법과 액정 표시 장치
TWI441553B (zh) 對光源供電之差分驅動電路及驅動系統
WO2014153787A1 (zh) 一种led背光驱动电路及背光模组
US20100060190A1 (en) Light-emitting diode driving circuit
CN105528995B (zh) 显示面板及其驱动方法、显示装置
US8912731B2 (en) LED backlight driving circuit and backlight module
WO2022027264A1 (zh) 通道开关的驱动电路、充电控制方法及充电器
US11915654B1 (en) Power-supply voltage generator for outputting varied voltages to display panel
TWI508410B (zh) 電源管理電路
US10140917B2 (en) Power supply circuit, driving method for the same and display device
US11238792B2 (en) Pixel circuit and display device
CN1302594C (zh) 用于配备多电池的电子装置的供电控制装置
CN107249235B (zh) 一种兼容带指示灯开关的led驱动电路
US9673622B2 (en) Power supplying system, linear controlling module thereof, and controlling method of switching component
CN113489126A (zh) 一种高效毫瓦级光伏能量收集控制电路
CN111883085A (zh) 一种改善液晶设备稳定工作的装置
JP2007202399A (ja) 電源回路
US6376934B1 (en) Voltage waveform generator
EP1516043B1 (en) Electroluminescent lamp driver circuit with lamp discharge detection
US20240028096A1 (en) Power supply abnormality detection circuit and display terminal
CN117410933B (zh) 过压保护电路及储能电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849263

Country of ref document: EP

Kind code of ref document: A1