WO2024027454A1 - 货箱搬运任务分配方法、装置、设备、系统及存储介质 - Google Patents

货箱搬运任务分配方法、装置、设备、系统及存储介质 Download PDF

Info

Publication number
WO2024027454A1
WO2024027454A1 PCT/CN2023/106094 CN2023106094W WO2024027454A1 WO 2024027454 A1 WO2024027454 A1 WO 2024027454A1 CN 2023106094 W CN2023106094 W CN 2023106094W WO 2024027454 A1 WO2024027454 A1 WO 2024027454A1
Authority
WO
WIPO (PCT)
Prior art keywords
boxes
containers
container
processed
candidate
Prior art date
Application number
PCT/CN2023/106094
Other languages
English (en)
French (fr)
Inventor
喻润方
周红霞
徐圣东
艾鑫
Original Assignee
深圳市库宝软件有限公司
深圳市海柔创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市库宝软件有限公司, 深圳市海柔创新科技有限公司 filed Critical 深圳市库宝软件有限公司
Publication of WO2024027454A1 publication Critical patent/WO2024027454A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses

Definitions

  • Embodiments of the present application relate to the field of intelligent warehousing technology, and in particular to a container handling task allocation method, device, equipment, system and storage medium.
  • the transport robot is used to transport boxes between the warehouse and the operation platform.
  • the operating platform is provided with multiple slots, and each slot can be used to place goods corresponding to an order or a combination order.
  • the picker picks one or more goods from the box next to the operation desk according to the order requirements, and places them in the corresponding slots. After the goods in the orders corresponding to the slots are collected, they are packaged.
  • Embodiments of the present application provide a method, device, equipment, system and storage medium for allocating and transporting cargo boxes to solve the technical problem of low picking and delivery efficiency.
  • embodiments of the present application provide a method for allocating container handling tasks, including: obtaining candidate containers; obtaining the number of processed containers corresponding to multiple operating stations on the conveyor line;
  • the number of containers processed includes the number of containers in transit and the number of allocated containers.
  • the number of containers in transit includes the number of occupied containers.
  • the number of allocated boxes includes the number of boxes that have been allocated but not yet occupied by the handling robot; if there are multiple operating stations, the number of processed boxes If the preset equilibrium conditions are met, a handling robot is assigned to the candidate container, so that the handling robot can carry the candidate container to the conveyor line and transfer it to the corresponding target operation station.
  • allocating handling robots to candidate containers includes: determining based on the number of processed containers corresponding to multiple operation stations. Priority operation station set; when the priority operation station set is an empty set, the handling robot is assigned to the candidate container.
  • the method further includes: if the priority operation station set is a non-empty set, and if the target operation station is in the priority operation station set, allocate a handling robot to the candidate container.
  • the handling robot is not allocated to the current candidate container, and the next candidate container is processed.
  • the aforementioned determination of a set of priority operation stations based on the number of processed containers corresponding to multiple operation stations includes: obtaining the maximum value among the number of processed containers of multiple operation stations; traversing multiple operation stations, If the difference between the number of processed containers of the current operation station and the maximum value is greater than or equal to the first threshold, the current operation station will be included in the priority operation station set. After the traversal of multiple operation stations is completed, the priority operation station set will be obtained.
  • the step before determining the set of priority operation stations based on the number of processed containers corresponding to the multiple operation stations, the step further includes: if the number of in-transit containers corresponding to the multiple operation stations is greater than or equal to the second threshold, Then allocate a handling robot to the candidate container; if there is an operation station among the multiple operation stations whose number of containers in transit is less than the second threshold, then perform the step of determining a set of priority operation stations based on the number of processed containers corresponding to the multiple operation stations.
  • the method further includes: if the number of processed containers corresponding to the target operation station is less than or equal to a third threshold after the handling robot is assigned to the candidate container, allocating the handling robot to the candidate container.
  • allocating a handling robot to the candidate container includes: obtaining an allocation quota, allocating a quota is the third threshold minus the number of in-transit containers corresponding to the target operation station; if the number of allocated containers corresponding to the target operation station plus 1 does not exceed the allocation quota, a handling robot will be allocated to the candidate container.
  • the method further includes: after allocating the handling robot to the candidate container, updating the number of allocated containers corresponding to the target operation station.
  • the candidate boxes are one or more of the boxes waiting to be processed in the orders that have occupied the console slots, and the boxes waiting to be processed are goods that have not been allocated. box.
  • the obtaining candidate containers includes: scoring each of the containers waiting to be processed; and obtain the container with the highest score as a candidate container.
  • each container in the step of scoring each container waiting to be processed, is scored based on at least one of the outbound deadline, the picking efficiency of the corresponding workstation, and the outbound efficiency. Boxes waiting to be processed are scored.
  • a container handling task allocation device including: a first acquisition module, used to acquire candidate cargo containers; a second acquisition module, used to acquire transportation The number of processed boxes corresponding to multiple online operation stations; the number of processed boxes includes the number of boxes in transit and the number of allocated boxes, where the number of boxes in transit includes the number of boxes occupied by handling robots and on the conveyor line The number of boxes that have not yet been picked, and the number of allocated boxes includes the number of boxes that have been allocated but have not yet been occupied by the handling robot; the first allocation module is used if the number of processed boxes corresponding to multiple operating stations meets the preset If the equilibrium conditions are met, a handling robot is assigned to the candidate container, so that the handling robot can carry the candidate container to the conveyor line and transfer it to the corresponding target operation station.
  • embodiments of the present application provide a control device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores information that can be processed by at least one Instructions executed by the processor are executed by at least one processor to cause the control device to execute the method of the first aspect.
  • embodiments of the present application provide a warehousing system, including a plurality of handling robots, a plurality of operation consoles connected by conveyor lines, and a control device as in the third aspect; a plurality of The handling robot is used to obtain the candidate container allocated by the control device and transport the candidate container to the conveyor line, and the conveyor line is used to transport the candidate container to the corresponding target operation station.
  • inventions of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer execution instructions.
  • the processor executes the computer execution instructions, the following is implemented: One way approach.
  • embodiments of the present application provide a computer-executable program, causing the computer to execute the steps of the method in the first aspect.
  • the container handling task allocation method, device, equipment, system and storage medium provided by the embodiments of the present application obtain candidate containers, and the candidate container is to be allocated Cargo boxes for handling robots. And, obtain the number of processed containers corresponding to multiple operation stations on the conveyor line. Based on the number of processed boxes, including the number of in-transit boxes and the number of allocated boxes, the number of in-transit boxes is the number of boxes that have occupied the handling robot but have not yet completed picking, and the number of allocated boxes is Already allocated but not yet occupied The number of boxes used by the handling robot, therefore, the number of allocated boxes and the number of boxes in transit are all boxes that need to flow into the operator station for picking.
  • a handling robot is allocated to the candidate container so that the number of processed containers corresponding to each operation station can remain balanced, that is, it will subsequently flow into each operation.
  • the number of cargo boxes on the platform can be kept balanced.
  • scheduling the cargo boxes to be transported by the transport robot can reduce the inefficiency of the robot's supply of cargo boxes required for each operating platform.
  • the balanced probability maintains the balanced supply of boxes on multiple operating stations and has high picking efficiency, thereby improving the overall picking efficiency.
  • Figure 1 is a schematic diagram of the application scenario of the warehousing system according to the embodiment of the present application
  • Figure 2 is a schematic flow chart of a container handling task allocation method provided by an embodiment of the present application
  • Figure 3 is a schematic diagram of order allocation slots provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the allocation and processing of cargo boxes corresponding to multiple operating consoles provided by the embodiment of the present application;
  • FIG. 5 is a schematic sub-flow diagram of step S30 in the method shown in Figure 3;
  • Figure 6 is a schematic diagram of obtaining a priority operation desk set provided by an embodiment of the present application.
  • FIG. 7 is another sub-flow schematic diagram of step S30 provided by the embodiment of the present application.
  • Figure 8 is a schematic flowchart of another container handling task allocation method provided by an embodiment of the present application.
  • Figure 9 is a schematic flowchart of another container handling task allocation method provided by an embodiment of the present application.
  • Figure 10 is a functional block diagram of a container handling task allocation device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • FIG 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the shelves 10 can be used to place cargo boxes 20.
  • the cargo boxes 20 store goods. For example, 20 pieces of exercises are stored in box 1 #.
  • This book contains 10 pencil cases, etc. in container #2.
  • the cargo box can be marked by external features of the cargo box 20 (such as a QR code or a barcode or other similar identification), and the system stores a mapping relationship between the cargo box and specific goods.
  • multiple cargo boxes 20 in the same shelf 10 can store goods in the same field.
  • the goods stored in the multiple boxes in shelf A belong to the field of stationery
  • the goods stored in multiple boxes in shelf B belong to the field of stationery.
  • the goods belong to the field of toys. It can be understood that in some embodiments, multiple cargo boxes in the same shelf can also store goods from multiple fields, which is not limited here.
  • the warehousing system 100 also includes a plurality of operation consoles 30 and a plurality of transport robots 40 , wherein the plurality of operation consoles 30 are connected to the conveyor line 50 .
  • the conveyor line 50 may be a crawler-type conveyor platform, and the conveyor line 50 may also be annular.
  • Each operation station 30 may include a picking position and multiple slots (not shown).
  • the type of slots may include single-product slots or multi-product slots. Single-product slots are used to place a single type of goods, and multi-product slots. Slots are used to place various types of goods.
  • the picking position is used to place the boxes of goods to be picked.
  • the transport robot 40 can be provided with a back Baskets, etc., can be moved with cargo boxes.
  • Both the transport robot 40 and the operation console 50 can communicate with the control device 60, which can be a server, a terminal device, etc.
  • the control device 60 can allocate the slot of the corresponding console 30 to the order, and schedule the transport robot 40 to transport the cargo box 20 corresponding to the goods required by the order from the shelf 10 to the conveyor line 50
  • the conveyor line 50 transports the cargo box 20 to the picking position of the corresponding operating platform 30, so that the picker standing near the operating platform 30 takes out the corresponding number of goods from the cargo box 20 according to the quantity of goods required for the order. , and place it in the slot corresponding to the order.
  • the handling robot 40 returns the cargo box to the shelf 10 , and the cargo box 30 includes goods that have not been picked out.
  • the collected goods can be sent for packaging.
  • the control device 60 can allocate another order to this slot. This cycle continues until all orders are issued and picking is completed.
  • multiple operation stations 30 and multiple transfer robots 40 operate simultaneously, and the multiple transfer robots 40 provide container supply to the multiple operation stations 30 . If the efficiency of the transport robot 40 in supplying cargo boxes required by each operation station 30 is unbalanced, the operation station with insufficient supply of cargo boxes will be idle, and the operation station with excess supply of cargo boxes will be crowded and blocked, which will ultimately affect the outbound picking of the entire warehousing system. efficiency. If the 8 slots of the 1# console correspond to the 8 orders being picked, the corresponding 20 boxes need to be transported by the robot to the 1# console for pickers to pick. At the same time, other operating stations are also assigned orders and need to supply corresponding containers.
  • the supply of containers is carried out in the order of orders. For example, after the supply of containers for order 1# is completed, the supply of containers for order 2# is then carried out, and so on. It is understandable that due to the limited number of handling robots, it is impossible to satisfy all orders assigned to each operation station at the same time. When the handling robots centrally supply boxes to some operation stations, these operation stations will be busy, and the boxes corresponding to the orders of other operation stations cannot be transported and supplied. The idle time will be long, which will affect the overall picking and delivery efficiency.
  • some embodiments of the present application provide a method, device, equipment, system and storage medium for allocating cargo container handling tasks.
  • This method breaks up the cargo containers required for each operating station, and the cargo required for each operating station is
  • the boxes are evenly distributed to the handling robots for handling, thus balancing the supply of boxes on multiple operating stations.
  • the boxes can circulate quickly on the conveyor line, making the entire warehousing system have higher picking efficiency and improving the overall picking efficiency.
  • FIG. 2 is a schematic flowchart of a container handling task allocation method provided by an embodiment of the present application.
  • the execution subject of the method in this embodiment may be the above control device.
  • the method S100 may include the following steps:
  • the “candidate container” refers to the container waiting to be processed in the order that has occupied the console slot.
  • order that have occupied the slot on the console refer to orders that have been sent to the console and have occupied the slot.
  • Containers waiting to be processed refers to containers that have not yet been processed. It can be understood that the “processed container” here refers to the container to which the handling robot has been assigned, including: the container to which the handling robot has been allocated and occupied, and the container to which the handling robot has been allocated but has not yet been occupied. .
  • the control device continuously obtains several orders and distributes these orders to multiple operating stations according to certain rules, and each operating station receives some orders.
  • the operation console will configure corresponding slots for these orders.
  • the number of orders distributed to an operation station is generally equal to its number of slots.
  • the operation desk has 4 slots. At this time, 4 orders are distributed to the operation desk. These 4 orders assigned to the slots are orders that have occupied the operation desk slots. It can be understood that, based on the fact that these four orders have been allocated to slots and waiting for the supply of the boxes corresponding to the goods included in these four orders, the handling robot needs to supply boxes for these four orders. When the goods for an order are ready and the picking is completed, and the corresponding slot is free, a new order can be allocated to the free slot.
  • the control device will break up the cargo boxes required by the orders that occupy the slots in each operation station, and allocate handling robots to these cargo boxes. Due to the limit on the number of handling robots, handling robots cannot be assigned to these containers at the same time. Therefore, the control device will allocate handling robots to these containers in a certain order. As shown in Figure 4, the cargo boxes that have been allocated and processed by the control device can be called processed cargo boxes; the cargo boxes that have not been allocated and processed by the control device and are waiting to be processed can be called cargo waiting to be processed. box. It can be understood that the candidate container can be one or more of the containers waiting to be processed in the orders that have occupied the console slot.
  • the control device scores each container waiting to be processed, and the container with the highest score is prioritized for processing.
  • the candidate container may be the container with the highest score.
  • the control equipment can print boxes for each container waiting to be processed based on multiple factors such as the deadline for outbound delivery, the picking efficiency of the corresponding workstation, and the outbound efficiency. For example, the closer the delivery deadline is, the higher the score can be. How to calculate the score will not be explained in detail here.
  • the conveyor line is a device that provides a transport channel for containers.
  • the conveyor line may be a crawler-type transmission platform. In this embodiment, there is no restriction on the specific structure of the conveyor line.
  • the number of containers processed includes the number of containers in transit and the number of allocated containers.
  • the number of boxes in transit includes the number of boxes occupied by handling robots and the number of boxes on the conveyor line that have not yet completed picking.
  • the number of allocated containers is the number of containers that have been allocated but have not yet been occupied by the handling robot.
  • the control device allocates a handling robot to the container and records the handling robot ID and the corresponding container ID.
  • the control device can assign the handling tasks of multiple containers to a handling robot, that is, there are multiple containers that need to be handled by the handling machine, and these containers constitute the task list of the handling robot.
  • the handling robot can move the boxes in the task list from the shelf to the conveyor line one by one.
  • the handling robot can also carry two or three containers that are placed closer in the task list to the conveyor line at the same time based on the principle of proximity.
  • the container When the container is released on the conveyor line, it is transported to the picking position of the corresponding operation station on the conveyor line.
  • the picker next to the operation station takes out the corresponding quantity of goods from the container according to the order requirements.
  • the control equipment can deploy the handling robot to remove the boxes from the conveyor line and move them to the corresponding shelves. It can be understood that before the boxes leave the picking position, they are all boxes that have not been picked on the conveyor line.
  • Cartons in transit include those that are occupied by handling robots and those that have not yet been picked on the conveyor line.
  • the container occupied by the transport robot refers to the container being transported by the transport robot.
  • the unpicked boxes on the conveyor line may be transported on the conveyor line or may be picked at the picking position by the picker.
  • the transport robot carries out transport processing in sequence. As the transport progresses, when the cargo box in the task list is transported by the transport robot, at this time, the container Occupying the handling robot, the container occupied by the handling robot is removed from the task list.
  • the containers in the task list that have been assigned to the handling robot but have not yet been moved by the handling robot are assigned containers. Therefore, "a container that has been assigned but not yet occupied by a transport robot" (allocated container) refers to a container that has been assigned to a transport robot but has not yet been transported by the transport robot.
  • both the in-transit containers and the allocated containers are containers that are about to be transported to the operation station. It can be seen that each operation station has Number of boxes processed The quantity can reflect the supply situation of the container.
  • the preset equilibrium condition is a rule used to constrain the equilibrium between the number of processed containers corresponding to multiple operation stations.
  • the preset equilibrium condition may include that the number of processed containers corresponding to each operation station is within a certain range, so that the number of processed containers corresponding to each operation station is not significantly different, that is, the supply volume of the containers is not significantly different.
  • the target operation station is the operation station corresponding to the candidate container. It can be understood that the goods in the candidate container are goods required to complete the order corresponding to the slot of the target operation station.
  • the handling robot After the handling robot is assigned to the candidate container, the handling robot will transport the candidate container to the conveyor line, and the candidate container will be transported to the picking position of the target operation platform through the conveyor line. Therefore, the picker can follow the corresponding order requirements from The corresponding quantity of goods is picked from the candidate container and placed in the corresponding slot.
  • a handling robot is allocated to the candidate boxes so that the number of processed boxes corresponding to each operation station can be maintained balanced, that is, it will subsequently flow into each operation station.
  • the number of boxes can be balanced.
  • scheduling the cargo boxes to be transported by the transport robot can reduce the inefficiency of the robot's supply of cargo boxes required for each operating platform.
  • the balanced probability maintains a balanced supply of boxes on multiple operating stations and has a high picking efficiency, thereby improving the overall picking efficiency.
  • step S30 specifically includes:
  • S31 Determine the set of priority operation stations based on the number of processed containers corresponding to multiple operation stations.
  • the priority operation station set refers to the set of operation stations that need to give priority to the supply of cargo containers due to the relatively small supply of cargo containers.
  • the priority operation station set may be an empty set, or include at least one operation station.
  • the number of processed boxes reflects the number of boxes that are about to be transported to the operation platform. Therefore, based on the number of processed boxes corresponding to multiple operation stations, it is possible to filter out the boxes that have a relatively small supply and need to be given priority.
  • Operating table In some embodiments, a quantity threshold is set, and if the number of processed containers corresponding to the operation station is less than the quantity threshold, the operation station is included in the priority operation station set.
  • the aforementioned step S31 specifically includes:
  • S312 Traverse multiple operation stations, if the difference between the number of processed containers at the current operation station and the maximum value is greater than or equal to is at the first threshold, the current operation console is included in the priority operation console set. After the traversal of multiple operation consoles is completed, the priority operation console set is obtained.
  • the number of processed containers at the multiple operation stations is calculated.
  • the maximum value max among the number of processed containers of these multiple operation stations is obtained.
  • the multiple operation stations traverse the multiple operation stations, and calculate the difference between the number of processed containers at the current operation station and the maximum value. If the difference between the number of processed containers at the current operation station and the maximum value is greater than or equal to the first threshold, then The current operation station is included in the priority operation station set; if the difference between the number of processed containers of the current operation station and the maximum value is less than the first threshold, the current operation station is not included in the priority operation station set. Then, the difference between the number of processed containers of the next operation station and the maximum value is compared with the first threshold. After the traversal of these multiple operation stations is completed, a set of priority operation stations is obtained.
  • the first threshold is an empirical value set by those skilled in the art according to actual conditions, and is not limited here.
  • the maximum value of the number of processed boxes among multiple operation stations on the conveyor line is used as the anchor point, and then based on the difference between the number of processed boxes at other operation stations and the maximum value, the first threshold can be used Accurately screen out the operation consoles that need to be supplied with containers first due to the relatively small supply of cargo containers to form a priority operation console set.
  • the priority operation station set is an empty set, which means that the supply of cargo boxes at each operation station on the conveyor line is not very different and is relatively balanced. There is no operation station with a relatively small supply of cargo boxes.
  • the priority operation station set is an empty set, allocating handling robots to candidate containers will not break the supply balance, and the number of containers that will subsequently flow into each operation station can be kept balanced, that is, the containers of multiple operation stations can be maintained. Supply balance can improve the overall efficiency of picking and shipping.
  • the method further includes:
  • the priority operation station set is a non-empty set, indicating that there are operation stations with relatively small container supply.
  • priority should be given to operation stations with relatively few container supplies, that is, priority should be given to providing container supply to operation stations in the priority operation station set.
  • the handling robot is allocated to the candidate container, and relatively few target operation stations can be provided for the container. Providing container supply is helpful to balance the supply quantity of containers.
  • the candidate container will be skipped, the handling robot will not be allocated to the candidate container, and the next container will be processed.
  • the priority operation station set is emptied as much as possible, so that the number of processed cargo boxes of each operation station is close to the maximum value, so that the transportation The line has high picking and delivery efficiency.
  • the method further includes
  • the number of boxes in transit includes the number of boxes occupied by the handling robot and the number of boxes on the conveyor line that have not completed picking.
  • “Cartons in transit” include those that are occupied by handling robots and those that have not yet been picked on the conveyor line.
  • the cargo box occupied by the transport robot is the cargo box being transported by the transport robot.
  • the unpicked boxes on the conveyor line may be transported on the conveyor line or may be picked at the picking position by the picker.
  • the number of in-transit boxes directly affects the picking workload of the console in a short period of time.
  • the picking workload corresponding to the operation desk is also smaller. If the number of in-transit cargo boxes corresponding to multiple operation stations is greater than or equal to the second threshold, it means that the picking workload of each operation station is relatively saturated, and high picking and delivery efficiency can be maintained, and some operation stations will not be crowded or Some consoles are idle and on standby.
  • the second threshold is an empirical value set by those skilled in the art according to actual conditions, and is not limited here.
  • FIG. 8 is a schematic flowchart of another container handling task allocation method provided by an embodiment of the present application. As shown in Figure 8, the method S200 includes:
  • the number of containers processed includes the number of containers in transit and the number of allocated containers.
  • the number of boxes in transit includes the number of boxes occupied by handling robots and the number of boxes on the conveyor line that have not yet completed picking.
  • the number of allocated containers is the number of containers that have been allocated but have not yet been occupied by the handling robot.
  • steps S201 and S202 can be referred to the previous embodiments, and will not be described again here.
  • the number of in-transit cargo boxes corresponding to multiple operation stations is greater than or equal to the second threshold, it means that the picking workload of each operation station is relatively saturated, and high picking and delivery efficiency can be maintained, and some operation stations will not be crowded or Some consoles are idle and on standby. Therefore, when the number of in-transit containers corresponding to multiple operation stations is greater than or equal to the second threshold, a handling robot is assigned to the candidate container, and each operation station on the conveyor line can be ensured without considering the problem of container supply balance. All have high picking and shipping efficiency.
  • a set of priority operation stations is determined based on the number of processed containers corresponding to multiple operation stations. Among them, the priority operation station set refers to the set of operation stations that need to give priority to the supply of cargo containers due to the relatively small supply of cargo containers.
  • the priority operation station set is an empty set, which means that the supply of cargo boxes at each operation station on the conveyor line is not very different and is relatively balanced. There is no operation station with a relatively small supply of cargo boxes.
  • the priority operation desk set is empty, allocating handling robots to candidate boxes will not break the supply balance and maintain high picking and delivery efficiency.
  • the priority operation station set is a non-empty set, indicating that there are operation stations with relatively small container supply.
  • priority should be given to operation stations with relatively few container supplies, that is, priority should be given to providing container supply to operation stations in the priority operation station set. If the target operation station corresponding to the candidate container is in the priority operation station set, the handling robot is assigned to the candidate container, which can provide container supply to the target operation station with relatively few container supply, which is beneficial to balancing the number of container supply.
  • a second threshold is set to determine whether there is an console with a relatively small picking workload. If not, Then there is no need to consider the problem of container supply balance. If it exists, supply containers to the operation stations belonging to the priority operation station set first, so as to clear the priority operation station set as much as possible, so that the number of processed containers of each operation station is balanced, so that , making the conveyor line have higher picking and delivery efficiency, and the container supply balance is more rigorous and effective.
  • the third threshold is the upper limit of the number of processed containers corresponding to the operation console. Based on the above definition of the number of processed containers, it can be seen that the number of processed containers on the operation console can reflect the supply situation of the containers. Therefore, the third threshold can be understood as the maximum container supply or picking volume that the operation platform can bear within a certain period of time.
  • the handling robot when assigning a handling robot to a candidate container, it is determined whether the number of processed containers corresponding to the target operating station exceeds the upper limit (third threshold) after the candidate container is assigned a handling robot. If the number of processed containers corresponding to the target operation station does not exceed the upper limit, it means that the supply of containers at the target operation station has not reached the maximum amount it can bear. Therefore, a handling robot can be allocated to the candidate containers. By constraining the container supply balance of each operation station through the upper limit of container supply (the third threshold), the overall picking and shipping efficiency can be improved.
  • the aforementioned step S40 specifically includes:
  • the allocation quota is the third threshold (the upper limit of container supply) minus the number of in-transit containers corresponding to the target operation station. It can be understood that the allocation quota can reflect the upper limit of the number of allocated containers corresponding to the target operation station. That is to say, after the handling robot is allocated to the candidate container, the number of allocated containers corresponding to the target operation station cannot exceed the allocated quota.
  • a handling robot will be allocated to the candidate container.
  • the aforementioned method S100 or S200 also includes:
  • the number of allocated containers corresponding to the target operation station is updated.
  • the number of allocated containers after the update is the number of allocated containers before the update. plus 1.
  • embodiments of the present application also provide a container handling task allocation device.
  • the allocation device may be implemented by a control device and used to execute one or more steps of the above container handling task allocation method.
  • Figure 10 is a container handling task allocation device provided by an embodiment of the present application. As shown in FIG. 10 , the distribution device 400 includes: a first acquisition module 410 , a second container module 420 and a first distribution module 430 .
  • the first acquisition module 410 is used to acquire candidate containers.
  • the second acquisition module 420 is used to obtain the number of processed containers corresponding to multiple operation stations on the conveyor line.
  • the number of processed containers includes the number of in-transit containers and the number of allocated containers, where the number of in-transit containers includes the number of occupied containers.
  • the number of allocated boxes includes the number of boxes that have been allocated but have not yet been occupied by the handling robot.
  • the first allocation module 430 is used to allocate handling robots to candidate containers if the number of processed containers corresponding to multiple operation stations meets the preset equilibrium conditions, so that the handling robots can convey the candidate containers to the conveyor line and transfer them to the corresponding target console.
  • the first allocation module 430 is specifically configured to determine a set of priority operation stations based on the number of processed containers corresponding to multiple operation stations; when the set of priority operation stations is an empty set, allocate candidate containers to move Transport robot.
  • the first allocation module 430 is also configured to allocate a handling robot to the candidate container if the target operation station is in the priority operation station set when the priority operation station set is a non-empty set.
  • the first allocation module 430 is also specifically used to obtain the maximum value of the number of processed containers of multiple operation stations; traverse multiple operation stations, if the number of processed containers of the current operation station and the maximum value The difference is greater than or equal to the first threshold, then the current operation console is included in the priority operation console set. After the traversal of multiple operation consoles is completed, the priority operation console set is obtained.
  • the allocation device 400 further includes a trigger module 440.
  • the trigger module 440 is used to allocate handling robots to candidate containers if the number of in-transit containers corresponding to multiple operation stations is greater than or equal to the second threshold. If there is an operation station among the multiple operation stations whose number of cargo boxes in transit is less than the second threshold, the aforementioned step of determining a set of priority operation stations based on the number of processed cargo boxes corresponding to the multiple operation stations is performed.
  • the distribution device 400 further includes a second distribution module 450.
  • the second distribution module 450 is specifically used to determine if the number of processed containers corresponding to the target operation station is less than or equal to the first after the candidate container is assigned to the handling robot. Three thresholds, then a handling robot is assigned to the candidate container.
  • the second allocation module 450 is specifically configured to obtain an allocation quota, which is the third threshold minus the number of in-transit containers corresponding to the target operation station. If the number of allocated containers corresponding to the target operation station is increased by 1 and does not exceed the allocation quota, a handling robot will be allocated to the candidate container.
  • the allocation device 400 further includes an update module 460, which is used to update the number of allocated containers corresponding to the target operation station after allocating the handling robot to the candidate container.
  • the computer software can be stored in a computer-readable storage medium, and when executed, the program can include the processes of the above method embodiments.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory or a random access memory, etc.
  • FIG 11 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • the control device 400 in this embodiment of the present application may include: at least one processor 401 and a memory 402.
  • the processor 401 is connected to the memory 402, for example the processor 401 may be connected to the memory 402 via a bus.
  • the processor 401 is configured to support the control device 400 in executing corresponding functions in the container handling task allocation method.
  • the processor 401 can be a central processing unit (CPU), a network processor (NP), a hardware chip or any combination thereof.
  • the above-mentioned hardware chip can be an application specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination thereof.
  • the memory 402 can be used to store non-transitory software programs, non-transitory computer executable programs and modules, such as program instructions corresponding to the container handling task allocation method in the embodiment of the present application. /module.
  • the processor 401 can implement the container handling task allocation method in any of the above method embodiments by running non-transient software programs, instructions and modules stored in the memory 402 .
  • the memory 402 may include volatile memory (VM), such as random access memory (RAM); the memory 1002 may also include non-volatile memory (NVM), such as read-only memory.
  • VM volatile memory
  • RAM random access memory
  • NVM non-volatile memory
  • Memory read-only memory, ROM), flash memory (flash memory), hard disk drive (HDD), or solid-state drive (SSD); the memory 402 may also include a combination of the above types of memory.
  • control device provided by this embodiment.
  • the implementation principles and technical effects of the control device provided by this embodiment can be referred to the foregoing embodiments, and will not be described again here.
  • An embodiment of the present application also provides a warehousing system, including a plurality of handling robots, a plurality of operation consoles connected by conveyor lines, and the control device in any of the foregoing embodiments.
  • multiple handling robots are used to obtain candidate boxes assigned by the control device and transport the candidate boxes to the conveyor line.
  • the conveyor line is used to transfer the candidate boxes to the corresponding target operation station for pickers to pick. .
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are used to cause the computer device to execute the cargo box provided by the embodiment of the present application.
  • the transportation task allocation method for example, the container transportation task allocation method as shown in Figures 2 to 9.
  • the storage medium can be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, flash memory, magnetic surface memory, optical disk, or CD-ROM; it can also be a variety of memories including one or any combination of the above memories. equipment.
  • a memory such as FRAM, ROM, PROM, EPROM, EEPROM, flash memory, magnetic surface memory, optical disk, or CD-ROM; it can also be a variety of memories including one or any combination of the above memories. equipment.
  • executable instructions may take the form of a program, software, software module, script, or code, written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and May be deployed in any form, including deployed as a stand-alone program or deployed as a module, component, subroutine or other unit suitable for use in a computing environment.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physically separate.
  • the unit can be located in one place, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

本申请实施例涉及智能仓储技术领域,公开了一种货箱搬运任务分配方法、装置、设备、系统及存储介质,获取候选货箱,该候选货箱为待分配搬运机器人的货箱。以及,获取输送线上多个操作台对应的已处理货箱数量。基于已处理货箱数量包括在途货箱数量和已分配货箱数量,其中,该在途货箱数量包括已占用搬运机器人的货箱数量和输送线上未完成拣货的货箱数量,该已分配货箱数量包括已分配但还未占用搬运机器人的货箱的数量。在多个操作台对应的已处理货箱数量满足预设均衡条件下,为该候选货箱分配搬运机器人,使得各操作台对应的已处理货箱数量能够保持均衡,使得多个操作台的货箱供应平衡,从而,具有较高的拣货效率,能够提高整体的拣货出库效率。

Description

货箱搬运任务分配方法、装置、设备、系统及存储介质
本申请要求于2022年8月4日提交中国专利局、申请号为202210934432.4、申请名称为“货箱搬运任务分配方法、装置、设备、系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及智能仓储技术领域,尤其涉及一种货箱搬运任务分配方法、装置、设备、系统及存储介质。
背景技术
随着社会商业贸易的不断加强和发展,物流和仓储管理的重要性和受关注程度也开始在不断的提升。如何提供快速、高效的物流和仓储管理服务是当前的热点问题。
依托电子信息技术,例如工业机器人等自动化产业的发展,现有的许多货物仓库在进行仓储管理时,均采用机器人或者其它自动化设备相互配合的方式,以实现高效率的货物或者仓储管理。例如,多个操作台和多个搬运机器人可以辅助实现各类货物的处理,提升货物处理效率,降低成本。具体地,搬运机器人用于在仓库与操作台之间搬运货箱。操作台设置有多个槽位,每个槽位可以用于放置一个订单或一个组合单对应的货物。拣货员在操作台旁从货箱中按订单需求拣出一个或者多个货物,放于相应的槽位,待槽位对应的订单中的货物集齐后进行打包。
然而,多个操作台和多个搬运机器人同时运转,受搬运机器人数量限制,如何为各个操作台所需的货箱分配搬运机器人,会直接影响拣货出库效率。
发明内容
本申请实施例提供一种分配搬运货箱的方法、装置、设备、系统及存储介质,用于解决拣货出库效率较低的技术问题。
为解决上述技术问题,第一方面,本申请实施例中提供给了一种货箱搬运任务分配方法,包括:获取候选货箱;获取输送线上多个操作台对应的已处理货箱数量;已处理货箱数量包括在途货箱数量和已分配货箱数量,其中,在途货箱数量包括已占用 搬运机器人的货箱数量和输送线上未完成拣货的货箱数量,已分配货箱数量包括已分配但还未占用搬运机器人的货箱数量;若多个操作台对应的已处理货箱数量满足预设均衡条件,则为候选货箱分配搬运机器人,以使搬运机器人将候选货箱搬运至输送线、传输至对应的目标操作台。
在一些实施例中,前述若多个操作台对应的已处理货箱数量满足预设均衡条件,则为候选货箱分配搬运机器人,包括:根据多个操作台对应的已处理货箱数量,确定优先操作台集合;在优先操作台集合为空集的情况下,为候选货箱分配搬运机器人。
在一些实施例中,该方法还包括:在优先操作台集合为非空集的情况下,若目标操作台在优先操作台集合中,则为候选货箱分配搬运机器人。
在一些实施例中,若当前候选货箱对应的目标操作台不在优先操作台集合中,则不为所述当前候选货箱分配搬运机器人,而对下一个候选货箱进行处理。
在一些实施例中,前述根据多个操作台对应的已处理货箱数量,确定优先操作台集合,包括:获取多个操作台的已处理货箱数量中的最大值;遍历多个操作台,若当前操作台的已处理货箱数量和最大值的差大于或等于第一阈值,则将当前操作台纳入优先操作台集合,在多个操作台遍历完成后,得到优先操作台集合。
在一些实施例中,前述在根据多个操作台对应的已处理货箱数量,确定优先操作台集合之前,还包括:若多个操作台对应的在途货箱数量均大于或等于第二阈值,则为候选货箱分配搬运机器人;若多个操作台中存在在途货箱数量小于第二阈值的操作台,则执行根据多个操作台对应的已处理货箱数量,确定优先操作台集合的步骤。
在一些实施例中,该方法还包括:若候选货箱分配搬运机器人后,目标操作台对应的已处理货箱数量小于或等于第三阈值,则为候选货箱分配搬运机器人。
在一些实施例中,前述若候选货箱分配搬运机器人后,目标操作台对应的已处理货箱数量小于或等于第三阈值,则为候选货箱分配搬运机器人,包括:获取分配名额,分配名额为第三阈值减去目标操作台对应的在途货箱数量;若目标操作台对应的已分配货箱数量加1后,未超过分配名额,则为候选货箱分配搬运机器人。
在一些实施例中,该方法还包括:在为候选货箱分配搬运机器人后,更新目标操作台对应的已分配货箱数量。
在一些实施例中,所述候选货箱为已占用操作台槽位的订单中等待被处理的货箱中的一个或多个,所述等待被处理的货箱为未被进行分配处理的货箱。
在一些实施例中,所述获取候选货箱包括:为每个所述等待被处理的货箱打分; 和获取得分最高的货箱作为候选货箱。
在一些实施例中,所述为每个所述等待被处理的货箱打分的步骤中,根据出库截止时间、对应工作站的拣货效率和出库效率中的至少一者对每个所述等待被处理的货箱进行打分。
为解决上述技术问题,第二方面,本申请实施例中提供给了一种货箱搬运任务分配装置,包括:第一获取模块,用于获取候选货箱;第二获取模块,用于获取输送线上多个操作台对应的已处理货箱数量;已处理货箱数量包括在途货箱数量和已分配货箱数量,其中,在途货箱数量包括已占用搬运机器人的货箱数量和输送线上未完成拣货的货箱数量,已分配货箱数量包括已分配但还未占用搬运机器人的货箱数量;第一分配模块,用于若多个操作台对应的已处理货箱数量满足预设均衡条件,则为候选货箱分配搬运机器人,以使搬运机器人将候选货箱搬运至输送线、传输至对应的目标操作台。
为解决上述技术问题,第三方面,本申请实施例中提供给了一种控制设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使控制设备执行如第一方面的方法。
为解决上述技术问题,第四方面,本申请实施例中提供给了一种仓储系统,包括多个搬运机器人、通过输送线连接的多个操作台和如第三方面中的控制设备;多个搬运机器人用于获取控制设备分配的候选货箱并将候选货箱搬运至输送线,输送线用于将候选货箱传输至对应的目标操作台。
为解决上述技术问题,第五方面,本申请实施例中提供给了一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当处理器执行计算机执行指令时,实现如第一方面的方法。
为解决上述技术问题,第六方面,本申请实施例中提供一种计算机能够执行的程序,使所述计算机执行如第一方面的方法的步骤。
本申请实施例的有益效果:区别于现有技术的情况,本申请实施例提供的货箱搬运任务分配方法、装置、设备、系统及存储介质,获取候选货箱,该候选货箱为待分配搬运机器人的货箱。以及,获取输送线上多个操作台对应的已处理货箱数量。基于已处理货箱数量包括在途货箱数量和已分配货箱数量,其中,该在途货箱数量为已占用搬运机器人、但还未完成拣货的货箱的数量,该已分配货箱数量为已分配但还未占 用搬运机器人的货箱的数量,从而,已分配货箱数量和在途货箱数量都是要流入操作台进行拣货的货箱。在多个操作台对应的已处理货箱数量满足预设均衡条件下,为该候选货箱分配搬运机器人,使得各操作台对应的已处理货箱数量能够保持均衡,即后续即将要流入各个操作台的货箱数量能够保持均衡。在此实施例中,从多个操作台对应的货箱被分配搬运的情况进行整体考虑,对搬运机器人所要搬运的货箱进行调度,能够减少机器人对各个操作台所需的货箱供给效率不平衡的概率,保持多个操作台的货箱供应平衡,具有较高的拣货效率,从而,能够提高整体的拣货出库效率。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例的仓储系统的应用场景的示意图;
图2为本申请实施例提供的货箱搬运任务分配方法的流程示意图;
图3为本申请实施例提供的订单分配槽位的示意图;
图4为本申请实施例提供的多个操作台对应的货箱被分配处理的示意图;
图5为图3所示方法中步骤S30的一子流程示意图;
图6为本申请实施例提供的获取优先操作台集合的示意图;
图7为本申请实施例提供的步骤S30的另一子流程示意图;
图8为本申请实施例提供的另一货箱搬运任务分配方法的流程示意图;
图9为本申请实施例提供的另一货箱搬运任务分配方法的流程示意图;
图10为本申请实施例提供的货箱搬运任务分配装置的功能框图;
图11为本申请实施例提供的控制设备的结构示意图。
具体实施方式
下面结合具体实施例对本申请进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本申请,但不以任何形式限制本申请。应当指出的是,对本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进。这些 都属于本申请的保护范围。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本申请实施例中的各个特征可以相互结合,均在本申请的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。此外,本文所采用的“第一”、“第二”、“第三”等字样并不对数据和执行次序进行限定,仅是对功能和作用基本相同的相同项或相似项进行区分。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1为本申请实施例提供的一种应用场景示意图。如图1所示,在仓储系统100中,可以在仓库中设置多个货架10,货架10可以用于放置货箱20,货箱20内存放货物,例如货箱1#内存放有20件练习本,货箱2#内存放有10件文具盒等。可以通过货箱20外部的特征(如二维码或者条形码等类似的标识)来标记货箱,系统存储有货箱与具体的货物之间的映射关系。
在一些实施例中,同一个货架10中的多个货箱20可以存放同领域的货物,例如货架A中的多个货箱存放的货物属于文具领域,货架B中的多个货箱存放的货物属于玩具领域。可以理解的是,在一些实施例中,同一个货架中的多个货箱也可以存放多个领域的货物,在此不做限定。
仓储系统100还包括多个操作台30和多个搬运机器人40,其中,多个操作台30与输送线50连接。在一些实施例中,输送线50可以是履带式的传输台,输送线50也可以是环形的。每个操作台30可以包括拣选位和多个槽位(图未示),槽位的类型可以有单品槽位或多品槽位,单品槽位用于放置单一种类的货物,多品槽位用于放置多种类的货物。拣选位用于放置即将拣选货物的货箱。搬运机器人40可以设置有背 篓等,能够携带货箱移动。
搬运机器人40、操作台50均可以与控制设备60进行通信,该控制设备60可以为服务器、终端设备等。控制设备60在获取到用户下发的订单后,可以为订单分配对应的操作台30的槽位,并调度搬运机器人40将订单需要的货物对应的货箱20从货架10上搬运至输送线50上,输送线50将货箱20传输至对应的操作台30的拣选位,从而,站在操作台30附近的拣货员按订单所需的货物数量,从货箱20中取出相应数量的货物,并放置到订单对应的槽位中。最后,搬运机器人40再把货箱还回货架10上,货箱30中包括没有被拣选出来的货物。
当槽位对应的订单所包括的货物集齐后,可以将集齐后的货物送去打包。当某个槽位空出后,控制设备60可以再分配一个订单到这个槽位。如此循环,直至所有订单都发出且拣货完成。
可以理解的是,多个操作台30和多个搬运机器人40同时运转,多个搬运机器人40为多个操作台30提供货箱供给。若搬运机器人40对各个操作台30所需的货箱供给效率不平衡,会导致货箱供给不足的操作台空闲,货箱供给过剩的操作台拥挤堵塞,最终影响整个仓储系统的出库拣货效率。若1#操作台的8个槽位对应的正在拣货的8个订单中对应20个货箱需要机器人搬运至1#操作台,以供拣货员进行拣货。同时,其它操作台也均分配有订单,需要供给相应的货箱。在搬运机器人数量有限的情况下,例如若仓储系统包括3个搬运机器人,若这3个搬运机器人均被分配为搬运1#操作台所需的货箱,会使得其它操作台没有货箱供给,导致闲置停摆。而20个货箱集中涌入1#操作台,货箱供给太快,拣选速率有限,导致货箱进不去对应的拣选位,从而,会在1#操作台的拣货位附近形成堵塞,或者,在输送线上形成堵塞。因此,如何为各个操作台所需的货箱分配搬运机器人,会直接影响拣货出库效率。
相关技术中,按订单顺序进行货箱供给,例如完成1#订单的货箱供给后,接着进行2#订单的货箱供给,依次类推。可以理解的是,由于搬运机器人的数量有限,无法同时满足被分配给各个操作台的全部订单。当搬运机器人集中为一些操作台供给货箱时,会导致这些操作台繁忙,而其它操作台的订单对应的货箱无法被搬运供给,等待闲置时间长,影响整体的拣货出库效率。
针对上述问题,本申请一些实施例提供了一种货箱搬运任务分配方法、装置、设备、系统及存储介质,该方法将各个操作台所需的货箱打散,各个操作台所需的货箱被均匀分配给搬运机器人进行搬运,从而,能够使得多个操作台的货箱供应平衡,货 箱能在输送线上快速流通,使得整个仓储系统具有较高的拣货效率,提高整体的拣货出库效率。
下面结合附图,对本申请一些实施方式作详细说明。在各实施例不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图2为本申请实施例提供的一种货箱搬运任务分配方法的流程示意图。本实施例中方法的执行主体可以为上述控制设备。如图2所示,该方法S100可以包括如下步骤:
S10:获取候选货箱。
其中,“候选货箱”是指已占用操作台槽位的订单中等待被处理的货箱。这里,“已占用操作台槽位的订单”是指已经发送至操作台且占用了槽位的订单。“等待被处理的货箱”是指还未被处理的货箱。可以理解的是,这里“被处理的货箱”是指已确定分配搬运机器人的货箱,包括:已分配并占用了搬运机器人的货箱,和,已分配但还未占用搬运机器人的货箱。
控制设备不断获取到若干个订单,并将这些订单按照一定规则分发给多个操作台,每个操作台得到一些订单。操作台会为这些订单配置相应的槽位。在一些实施例中,分发给操作台的订单数量通常等于其槽位数量。例如,请参阅图3,操作台有4个槽位,此时,分发给该操作台4个订单,这4个分配到槽位的订单为已占用操作台槽位的订单。可以理解的是,基于这4个订单已分配到槽位,等候这4个订单所包括货物对应的货箱的供给,搬运机器人需要为这4个订单供给货箱。当某一订单的货物配齐,完成拣货后,对应槽位空闲,则可以为该空闲槽位分配新的订单。
在此实施例中,请参阅图4,控制设备会将各个操作台中已占用槽位的订单所需要的货箱打散,为这些货箱分配搬运机器人。由于受到搬运机器人的数量限制,无法同时为这些货箱分配搬运机器人,从而,控制设备会按一定先后顺序陆续为这些货箱分配搬运机器人。如图4所示,已被控制设备进行分配处理后的货箱,可以称为被处理的货箱;未被控制设备进行分配处理的货箱,等待被处理,可以称为等待被处理的货箱。可以理解的是,候选货箱可以是已占用操作台槽位的订单中等待被处理的货箱中的一个或多个。
在一些实施例中,控制设备为每个等待被处理的货箱打分,得分最高的货箱,优先被考虑处理。在此实施例中,候选货箱可以为得分最高的货箱。控制设备可以从出库截止时间、对应工作站的拣货效率、出库效率等多个方便为各等待被处理的货箱打 分,例如出库截止时间越近,分数可以越高,具体如何计算分数,在此不详细说明。
S20:获取输送线上多个操作台对应的已处理货箱数量。
输送线上多个操作台是与输送线连接的操作台,例如4个操作台与输送线连接,这4个操作台也均在作业,从而,获取这4个操作台对应的已处理货箱数量。可以理解的是,输送线是一种提供货箱运输通道的设备,例如,输送线可以是履带式的传输台。在此实施例中,对输送线的具体结构不做任何限制。
已处理货箱数量包括在途货箱数量和已分配货箱数量。其中,在途货箱数量包括已占用搬运机器人的货箱数量和输送线上未完成拣货的货箱数量。已分配货箱数量为已分配但还未占用搬运机器人的货箱的数量。
可以理解的是,控制设备为货箱分配搬运机器人,记录搬运机器人ID和对应的货箱ID。控制设备可以为一个搬运机器人分配多个货箱的搬运任务,即需要被该搬运机器搬运的货箱有多个,这些货箱构成搬运机器人的任务列表。在一些实施例中,搬运机器人可以逐个将任务列表中的货箱从货架上搬运至输送线上。在一些实施例中,搬运机器人也可以按就近原则,同时将任务列表中摆放较近的2个或3个货箱搬运至输送线上。
当该货箱被释放在输送线上后,其在输送线上运输至对应操作台的拣选位,操作台旁的拣货员按订单需求从该货箱中取出相应数量的货物。待拣货员取完货物后,控制设备可以调配搬运机器人将货箱从输送线上搬离,搬运至对应的货架上。可以理解的是,在货箱未离开拣货位之前均属于输送线上未完成拣货的货箱。
“在途货箱”包括已占用搬运机器人的货箱和输送线上未完成拣货的货箱。其中,已占用搬运机器人的货箱是指正在被搬运机器人搬运的货箱。输送线上未完成拣货的货箱可能在输送线上运输或者在拣选位上供拣货员拣货。
可以理解的是,搬运机器人的任务列表中可能有多个货箱,搬运机器人按顺序进行搬运处理,随着搬运的进行,任务列表中的货箱被搬运机器人搬运时,此时,该货箱占用搬运机器人,已占用搬运机器人的货箱从任务列表中移除。任务列表中已分配给搬运机器人但还未被搬运机器人搬运的货箱即为已分配货箱。从而,“已分配但还未占用搬运机器人的货箱”(已分配货箱)是指已被分配了搬运机器人但还未被搬运机器人搬运的货箱。
可以理解的是,基于已处理货箱数量包括在途货箱数量和已分配货箱数量,在途货箱和已分配货箱都是即将要运输至操作台的货箱,可知,各操作台的已处理货箱数 量可以反映货箱供给情况。
为了使得多个操作台的货箱供给平衡,后续步骤中,为候选货箱分配搬运机器人时,考虑多个操作台对应的已处理货箱数量之间的均衡性。
S30:若多个操作台对应的已处理货箱数量满足预设均衡条件,则为候选货箱分配搬运机器人,以使搬运机器人将候选货箱搬运至输送线、传输至对应的目标操作台。
这里,预设均衡条件是用于约束多个操作台对应的已处理货箱数量之间均衡性的规则。例如,预设均衡条件可以包括各操作台对应的已处理货箱数量均在一定范围内,使得各操作台对应的已处理货箱数量差异不大,即货箱供给量相差不大。
目标操作台为该候选货箱对应的操作台。可以理解的是,该候选货箱中的货物为完成目标操作台的槽位对应的订单所需的货物。在为候选货箱分配搬运机器人后,搬运机器人会将该候选货箱搬运至输送线上,候选货箱通过输送线运输至目标操作台的拣选位,从而,拣选员可以按照对应订单需求,从该候选货箱中拣选出相应数量的货物,放置在对应槽位中。
在多个操作台对应的已处理货箱数量满足预设均衡条件下,为候选货箱分配搬运机器人,使得各操作台对应的已处理货箱数量能够保持均衡,即后续即将要流入各个操作台的货箱数量能够保持均衡。在此实施例中,从多个操作台对应的货箱被分配搬运的情况进行整体考虑,对搬运机器人所要搬运的货箱进行调度,能够减少机器人对各个操作台所需的货箱供给效率不平衡的概率,保持多个操作台的货箱供应平衡,具有较高的拣货效率,从而,能够提高整体的拣货出库效率。
在一些实施例中,请参阅图5,前述步骤S30具体包括:
S31:根据多个操作台对应的已处理货箱数量,确定优先操作台集合。
其中,优先操作台集合是指因货箱供给相对较少,需要优先供给货箱的操作台的集合。该优先操作台集合可以为空集,或,包括至少一个操作台。基于已处理货箱数量反映即将要运输至操作台上的货箱数量,从而,可以根据多个操作台对应的已处理货箱数量,筛选出货箱供给相对较少、需要优先供给货箱的操作台。在一些实施例中,设置有数量阈值,若操作台对应的已处理货箱数量小于该数量阈值,则纳入优先操作台集合。
在一些实施例中,前述步骤S31具体包括:
S311:获取多个操作台的已处理货箱数量中的最大值。
S312:遍历多个操作台,若当前操作台的已处理货箱数量和最大值的差大于或等 于第一阈值,则将当前操作台纳入优先操作台集合,在多个操作台遍历完成后,得到优先操作台集合。
在此实施例中,请参阅图6,根据输送线上多个操作台的在途货箱数量和已分配货箱数量,统计出这多个操作台的已处理货箱数量。从而,获取这多个操作台的已处理货箱数量中的最大值max。
然后,遍历这多个操作台,计算当前操作台的已处理货箱数量和该最大值的差,若当前操作台的已处理货箱数量和该最大值的差大于或等于第一阈值,则将当前操作台纳入优先操作台集合;若当前操作台的已处理货箱数量和该最大值的差小于第一阈值,则不将当前操作台纳入优先操作台集合。继而将下一个操作台的已处理货箱数量和最大值的差与第一阈值进行比较,在这多个操作台遍历完成后,得到优先操作台集合。
其中,第一阈值是本领域技术人员根据实际情况而设置的经验值,在此不做任何限定。
在此实施例中,将输送线上多个操作台中已处理货箱数量的最大值作为锚点,然后基于其它操作台的已处理货箱数量与最大值之间的差距,采用第一阈值能够准确筛选出因货箱供给相对较少,需要优先供给货箱的操作台,以构成优先操作台集合。
S32:在优先操作台集合为空集的情况下,为候选货箱分配搬运机器人。
优先操作台集合为空集,说明输送线上各个操作台的货箱供给差距不大,较均衡,不存在货箱供给相对较少的操作台。在优先操作台集合为空集的情况下,为候选货箱分配搬运机器人,不会打破供给平衡,后续即将要流入各个操作台的货箱数量能够保持均衡,即保持多个操作台的货箱供应平衡,能够提高整体的拣货出库效率。
在一些实施例中,该方法还包括:
S33:在优先操作台集合为非空集的情况下,若目标操作台在优先操作台集合中,则为候选货箱分配搬运机器人。
优先操作台集合为非空集,说明存在货箱供给相对较少的操作台。为了保持供给平衡,应该优先考虑货箱供给相对较少的操作台,即优先考虑给优先操作台集合中的操作台提供货箱供给。
在优先操作台集合为非空集的情况下,若候选货箱对应的目标操作台在优先操作台集合中,则为候选货箱分配搬运机器人,能够为货箱供给相对较少的目标操作台提供货箱供给,有益于平衡货箱供给数量。
可以理解的是,若候选货箱对应的目标操作台不在优先操作台集合中,则跳过该候选货箱,不为该候选货箱分配搬运机器人,对下一个货箱进行处理。
在此实施例中,通过优先为属于优先操作台集合中的操作台供应货箱,以达到尽量清空优先操作台集合,使得各个操作台的已处理货箱数量均接近最大值,从而,使得输送线具有较高的拣货出库效率。
在一些实施例中,请参阅图7,在前述步骤S31之前,该方法还包括
S34:若多个操作台对应的在途货箱数量均大于或等于第二阈值,则为候选货箱分配搬运机器人。
S35:若多个操作台中存在在途货箱数量小于第二阈值的操作台,则返回执行上述步骤S31。
由上可知,在途货箱数量包括已占用搬运机器人的货箱数量和输送线上未完成拣货的货箱数量。“在途货箱”包括已占用搬运机器人的货箱和输送线上未完成拣货的货箱。其中,已占用搬运机器人的货箱是正在被搬运机器人搬运的货箱。输送线上未完成拣货的货箱可能在输送线上运输或者在拣选位上供拣货员拣货。
可以理解的是,在途货箱数量直接影响操作台短时间内的拣货工作量,在途货箱数量越大,则操作台对应的拣货工作量也越大,在途货箱数量越小,则操作台对应的拣货工作量也越小。若多个操作台对应的在途货箱数量均大于或等于第二阈值,说明各个操作台的拣货工作量比较饱和,能够保持较高的拣货出库效率,不会出现一些操作台拥挤、一些操作台空闲待机的情况。因此,在多个操作台对应的在途货箱数量均大于或等于第二阈值的情况下,则为候选货箱分配搬运机器人,无需考虑货箱供给均衡问题,即可保证输送线上各个操作台均有较高的拣货出货效率。
若多个操作台中存在在途货箱数量小于第二阈值的操作台,说明存在拣货工作量比较小的操作台。在途货箱数量小于第二阈值的操作台货箱供给不足,影响拣货效率。因此,在多个操作台中存在在途货箱数量小于第二阈值的操作台的情况下,考虑货箱供给均衡问题,返回至上述步骤S31,执行步骤S31和S32,或,执行步骤S31至S33,从而,能够为货箱供给较少的操作台优先供给货箱,有益于保持多个操作台的货箱供应平衡,能够提高整体的拣货出库效率。
其中,第二阈值是本领域技术人员根据实际情况而设置的经验值,在此不做任何限定。
在此实施例中,基于在途货箱数量直接影响操作台短时间内的拣货工作量的特性, 设置第二阈值,以分辨出是否存在拣货工作量比较小的操作台(相对空闲的操作台),若不存在,则无需考虑货箱供应均衡问题,若存在,则考虑触发控制设备考虑货箱供应均衡问题,使得货箱供应平衡更加严谨有效。
图8为本申请实施例提供的另一种货箱搬运任务分配方法的流程示意图。如图8所示,该方法S200包括:
S201:获取候选货箱。
S202:获取输送线上多个操作台对应的已处理货箱数量。
其中,已处理货箱数量包括在途货箱数量和已分配货箱数量。其中,在途货箱数量包括已占用搬运机器人的货箱数量和输送线上未完成拣货的货箱数量。已分配货箱数量为已分配但还未占用搬运机器人的货箱的数量。
在本实施例中,步骤S201和S202的具体实现原理和过程可以参见前述实施例,在此不再赘述。
S203:若多个操作台对应的在途货箱数量均大于或等于第二阈值,则为候选货箱分配搬运机器人。
若多个操作台对应的在途货箱数量均大于或等于第二阈值,说明各个操作台的拣货工作量比较饱和,能够保持较高的拣货出库效率,不会出现一些操作台拥挤、一些操作台空闲待机的情况。因此,在多个操作台对应的在途货箱数量均大于或等于第二阈值的情况下,则为候选货箱分配搬运机器人,无需考虑货箱供给均衡问题,即可保证输送线上各个操作台均有较高的拣货出货效率。
S204:若多个操作台中存在在途货箱数量小于第二阈值的操作台,则根据多个操作台对应的已处理货箱数量,确定优先操作台集合。
若多个操作台中存在在途货箱数量小于第二阈值的操作台,说明存在拣货工作量比较小的操作台。在途货箱数量小于第二阈值的操作台货箱供给不足,影响拣货效率。因此,在多个操作台中存在在途货箱数量小于第二阈值的操作台的情况下,考虑货箱供给均衡问题。具体地,根据多个操作台对应的已处理货箱数量,确定优先操作台集合。其中,优先操作台集合是指因货箱供给相对较少,需要优先供给货箱的操作台的集合。
可以理解的是,“根据多个操作台对应的已处理货箱数量,确定优先操作台集合”的具体实现原理和过程可以参见前述实施例,在此不再赘述。
S205:在优先操作台集合为空集的情况下,为候选货箱分配搬运机器人。
优先操作台集合为空集,说明输送线上各个操作台的货箱供给差距不大,较均衡,不存在货箱供给相对较少的操作台。在优先操作台集合为空集的情况下,为候选货箱分配搬运机器人,不会打破供给平衡,能够保持较高的拣货出库效率。
S206:在优先操作台集合为非空集的情况下,若目标操作台在优先操作台集合中,则为候选货箱分配搬运机器人。
优先操作台集合为非空集,说明存在货箱供给相对较少的操作台。为了保持供给平衡,应该优先考虑货箱供给相对较少的操作台,即优先考虑给优先操作台集合中的操作台提供货箱供给。若候选货箱对应的目标操作台在优先操作台集合中,则为候选货箱分配搬运机器人,能够为货箱供给相对较少的目标操作台提供货箱供给,有益于平衡货箱供给数量。
在此实施例中,基于在途货箱数量直接影响操作台短时间内的拣货工作量的特性,设置第二阈值,以分辨出是否存在拣货工作量比较小的操作台,若不存在,则无需考虑货箱供应均衡问题,若存在,通过优先为属于优先操作台集合中的操作台供应货箱,以达到尽量清空优先操作台集合,使得各个操作台的已处理货箱数量均衡,从而,使得输送线具有较高的拣货出库效率,并且货箱供应平衡更加严谨有效。
在一些实施例中,请参阅图9,上述方法S100或S200还包括:
S40:若候选货箱分配搬运机器人后,目标操作台对应的已处理货箱数量小于或等于第三阈值,则为候选货箱分配搬运机器人。
其中,第三阈值为操作台对应的已处理货箱数量的上限。基于上述已处理货箱数量的定义可知,操作台的已处理货箱数量可以反映货箱供给情况。从而,第三阈值可以理解为操作台在一定时间内所能承担最大货箱供给量或拣货量。
在此实施例中,在为候选货箱分配搬运机器人时,判断该候选货箱被分配搬运机器人后,目标操作台对应的已处理货箱数量是否超过上限(第三阈值)即可。若目标操作台对应的已处理货箱数量未超过上限,则说明目标操作台的货箱供给量还未达到所能承担的最大量,因此,可以为候选货箱分配搬运机器人。通过货箱供给上限(第三阈值)约束各个操作台的货箱供给平衡,能够提高整体的拣货出库效率。
在一些实施例中,前述步骤S40具体包括:
S41:获取分配名额,该分配名额为第三阈值减去目标操作台对应的在途货箱数量;
S42:若目标操作台对应的已分配货箱数量加1后,未超过分配名额,则为候选 货箱分配搬运机器人。
其中,分配名额为第三阈值(货箱供给上限)减去目标操作台对应的在途货箱数量。可以理解的是,该分配名额能够反映目标操作台对应的已分配货箱数量的上限。也就是说,为该候选货箱分配搬运机器人后,目标操作台对应的已分配货箱数量不能超过该分配名额。
具体地,若目标操作台对应的已分配货箱数量加1后,未超过该分配名额,则为候选货箱分配搬运机器人。
在此实施例中,通过用分配名额限制操作台对应的已分配货箱数量,以约束各个操作台的货箱供给平衡,能够提高整体的拣货出库效率。
在一些实施例中,请参阅图9,前述方法S100或S200还包括:
S50:在为候选货箱分配搬运机器人后,更新目标操作台对应的已分配货箱数量。
在此实施例中,每为一个候选货箱分配完搬运机器人后,更新目标操作台对应的已分配货箱数量,具体地,更新后的已分配货箱数量为更新前的已分配货箱数量加1。
可以理解的是,随着仓储系统的运行,各操作台对应的已分配货箱数量、在途货箱数量、已处理货箱数量等相关变量均在不断变化,通过更新这些相关变量,能够保证仓储系统顺利在线运行。
基于上述实施例提供的货箱搬运任务分配方法,本申请实施例还提供一种货箱搬运任务分配装置。该分配装置可以由控制设备所实现,用以执行上述货箱搬运任务分配方法的一个或者多个步骤。图10为本申请实施例提供的货箱搬运任务分配装置。如图10所示,该分配装置400包括:第一获取模块410、第二货箱模块420和第一分配模块430。
其中,第一获取模块410用于用于获取候选货箱。第二获取模块420用于获取输送线上多个操作台对应的已处理货箱数量,已处理货箱数量包括在途货箱数量和已分配货箱数量,其中,在途货箱数量包括已占用搬运机器人的货箱数量和输送线上未完成拣货的货箱数量,已分配货箱数量包括已分配但还未占用搬运机器人的货箱数量。第一分配模块430用于若多个操作台对应的已处理货箱数量满足预设均衡条件,则为候选货箱分配搬运机器人,以使搬运机器人将候选货箱搬运至输送线、传输至对应的目标操作台。
在一些实施例中,第一分配模块430具体用于根据多个操作台对应的已处理货箱数量,确定优先操作台集合;在优先操作台集合为空集的情况下,为候选货箱分配搬 运机器人。
在一些实施例中,第一分配模块430还用于在优先操作台集合为非空集的情况下,若目标操作台在优先操作台集合中,则为候选货箱分配搬运机器人。
在一些实施例中,第一分配模块430还具体用于获取多个操作台的已处理货箱数量中的最大值;遍历多个操作台,若当前操作台的已处理货箱数量和最大值的差大于或等于第一阈值,则将当前操作台纳入优先操作台集合,在多个操作台遍历完成后,得到优先操作台集合。
在一些实施例中,该分配装置400还包括触发模块440,触发模块440用于若多个操作台对应的在途货箱数量均大于或等于第二阈值,则为候选货箱分配搬运机器人。若多个操作台中存在在途货箱数量小于第二阈值的操作台,则执行前述根据多个操作台对应的已处理货箱数量,确定优先操作台集合的步骤。
在一些实施例中,该分配装置400还包括第二分配模块450,该第二分配模块450具体用于若候选货箱分配搬运机器人后,目标操作台对应的已处理货箱数量小于或等于第三阈值,则为候选货箱分配搬运机器人。
在一些实施例中,第二分配模块450具体用于获取分配名额,分配名额为第三阈值减去目标操作台对应的在途货箱数量。若目标操作台对应的已分配货箱数量加1后,未超过分配名额,则为候选货箱分配搬运机器人。
在一些实施例中,该分配装置400还包括更新模块460,更新模块用于在为候选货箱分配搬运机器人后,更新目标操作台对应的已分配货箱数量。
本领域技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所述的计算机软件可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存 储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
图11为本申请实施例提供的一种控制设备的结构示意图。如图11所示,本申请实施例的控制设备400可以包括:至少一个处理器401、存储器402。处理器401连接到存储器402,例如处理器401可以通过总线连接到存储器402。
处理器401被配置为支持该控制设备400执行货箱搬运任务分配方法中相应的功能。该处理器401可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。上述硬件芯片可以是专用集成电路(application specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器402作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本申请实施例中货箱搬运任务分配方法对应的程序指令/模块。处理器401通过运行存储在存储器402中的非暂态软件程序、指令以及模块,可以实现上述任意一个方法实施例中的货箱搬运任务分配方法。
存储器402可以包括易失性存储器(volatile memory,VM),例如随机存取存储器(random access memory,RAM);存储器1002也可以包括非易失性存储器(non-volatile memory,NVM),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器402还可以包括上述种类的存储器的组合。
本实施例提供的控制设备的实现原理和技术效果可以参见前述各实施例,此处不再赘述。
本申请实施例还提供一种仓储系统,包括多个搬运机器人、通过输送线连接的多个操作台和前述任意一个实施例中的控制设备。
其中,多个搬运机器人用于获取控制设备分配的候选货箱并将候选货箱搬运至输送线,输送线用于将候选货箱传输至对应的目标操作台,以供拣货员进行拣货。
本申请实施例提供的仓储系统中,控制设备、通过输送线连接的多个操作台和多个机器人的具体工作原理、过程及有益效果可以参见前述实施例,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令用于使计算机设备执行本申请实施例提供的货箱 搬运任务分配方法,例如,如图2-图9所示出的货箱搬运任务分配方法。
在一些实施例中,存储介质可以是FRAM、ROM、PROM、EPROM、EE PROM、闪存、磁表面存储器、光盘、或CD-ROM等存储器;也可以是包括上述存储器之一或任意组合的各种设备。
在一些实施例中,可执行指令可以采用程序、软件、软件模块、脚本或代码的形式,按任意形式的编程语言(包括编译或解释语言,或者声明性或过程性语言)来编写,并且其可按任意形式部署,包括被部署为独立的程序或者被部署为模块、组件、子例程或者适合在计算环境中使用的其它单元。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种货箱搬运任务分配方法,其特征在于,包括:
    获取候选货箱;
    获取输送线上多个操作台对应的已处理货箱数量;所述已处理货箱数量包括在途货箱数量和已分配货箱数量,其中,所述在途货箱数量包括已占用搬运机器人的货箱数量和输送线上未完成拣货的货箱数量,所述已分配货箱数量包括已分配但还未占用搬运机器人的货箱数量;
    若所述多个操作台对应的已处理货箱数量满足预设均衡条件,则为所述候选货箱分配搬运机器人,以使搬运机器人将所述候选货箱搬运至所述输送线、传输至对应的目标操作台。
  2. 根据权利要求1所述的方法,其特征在于,所述若所述多个操作台对应的已处理货箱数量满足预设均衡条件,则为所述候选货箱分配搬运机器人,包括:
    根据所述多个操作台对应的已处理货箱数量,确定优先操作台集合;
    在所述优先操作台集合为空集的情况下,为所述候选货箱分配搬运机器人。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述优先操作台集合为非空集的情况下,若所述目标操作台在所述优先操作台集合中,则为所述候选货箱分配搬运机器人。
  4. 根据权利要求3所述方法,其特征在于,若当前候选货箱对应的目标操作台不在优先操作台集合中,则不为所述当前候选货箱分配搬运机器人,而对下一个候选货箱进行处理。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述多个操作台对应的已处理货箱数量,确定优先操作台集合,包括:
    获取所述多个操作台的已处理货箱数量中的最大值;
    遍历所述多个操作台,若当前操作台的已处理货箱数量和所述最大值的差大于或等于第一阈值,则将所述当前操作台纳入所述优先操作台集合,在所述多个操作台遍历完成后,得到所述优先操作台集合。
  6. 根据权利要求2-5任意一项所述的方法,其特征在于,在所述根据所述多个操作台对应的已处理货箱数量,确定优先操作台集合之前,还包括:
    若所述多个操作台对应的在途货箱数量均大于或等于第二阈值,则为所述候选货箱分配搬运机器人;
    若所述多个操作台中存在在途货箱数量小于所述第二阈值的操作台,则执行所述根据所述多个操作台对应的已处理货箱数量,确定优先操作台集合的步骤。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述候选货箱分配搬运机器人后,所述目标操作台对应的已处理货箱数量小于或等于第三阈值,则为所述候选货箱分配搬运机器人。
  8. 根据权利要求7所述的方法,其特征在于,所述若所述候选货箱分配搬运机器人后,所述目标操作台对应的已处理货箱数量小于或等于第三阈值,则为所述候选货箱分配搬运机器人,包括:
    获取分配名额,所述分配名额为所述第三阈值减去所述目标操作台对应的在途货箱数量;
    若所述目标操作台对应的已分配货箱数量加1后,未超过所述分配名额,则为所述候选货箱分配搬运机器人。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    在为所述候选货箱分配搬运机器人后,更新所述目标操作台对应的已分配货箱数量。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述候选货箱为已占用操作台槽位的订单中等待被处理的货箱中的一个或多个,所述等待被处理的货箱为未被进行分配处理的货箱。
  11. 根据权利要求10所述的方法,其特征在于,所述获取候选货箱包括:
    为每个所述等待被处理的货箱打分;和
    获取得分最高的货箱作为候选货箱。
  12. 根据权利要求11所述的方法,其特征在于,所述为每个所述等待被处理的货箱打分的步骤中,根据出库截止时间、对应工作站的拣货效率和出库效率中的至少一者对每个所述等待被处理的货箱进行打分。
  13. 一种货箱搬运任务分配装置,其特征在于,包括:
    第一获取模块,用于获取候选货箱;
    第二获取模块,用于获取输送线上多个操作台对应的已处理货箱数量;所述已处理货箱数量包括在途货箱数量和已分配货箱数量,其中,所述在途货箱数量包括已占用搬运机器人的货箱数量和输送线上未完成拣货的货箱数量,所述已分配货箱数量包括已分配但还未占用搬运机器人的货箱数量;
    第一分配模块,用于若所述多个操作台对应的已处理货箱数量满足预设均衡条件,则为所述候选货箱分配搬运机器人,以使搬运机器人将所述候选货箱搬运至所述输送线、传输至对应的目标操作台。
  14. 一种控制设备,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述控制设备执行如权利要求1-12任意一项所述的方法。
  15. 一种仓储系统,其特征在于,包括多个搬运机器人、通过输送线连接的多个操作台和如权利要求14所述的控制设备;
    所述多个搬运机器人用于获取所述控制设备分配的候选货箱并将所述候选货箱搬运至所述输送线,所述输送线用于将所述候选货箱传输至对应的目标操作台。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求1-12任意一项所述的方法。
  17. 一种计算机能够执行的程序,使所述计算机执行权利要求1至12中任一项所述的方法的步骤。
PCT/CN2023/106094 2022-08-04 2023-07-06 货箱搬运任务分配方法、装置、设备、系统及存储介质 WO2024027454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210934432.4A CN115303691A (zh) 2022-08-04 2022-08-04 货箱搬运任务分配方法、装置、设备、系统及存储介质
CN202210934432.4 2022-08-04

Publications (1)

Publication Number Publication Date
WO2024027454A1 true WO2024027454A1 (zh) 2024-02-08

Family

ID=83859444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106094 WO2024027454A1 (zh) 2022-08-04 2023-07-06 货箱搬运任务分配方法、装置、设备、系统及存储介质

Country Status (2)

Country Link
CN (1) CN115303691A (zh)
WO (1) WO2024027454A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115303691A (zh) * 2022-08-04 2022-11-08 深圳市库宝软件有限公司 货箱搬运任务分配方法、装置、设备、系统及存储介质
CN117772636B (zh) * 2024-02-20 2024-06-28 杭州海康威视系统技术有限公司 一种现金分拣系统及现金分拣方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169957A (ja) * 2000-12-02 2002-06-14 Yuichi Ishizaka 不良債権土地処理のためのデータ処理システム及び装置
CN106966100A (zh) * 2017-05-15 2017-07-21 北京京东尚科信息技术有限公司 货物入库方法和系统
CN113335811A (zh) * 2021-05-14 2021-09-03 深圳市海柔创新科技有限公司 任务均衡方法、控制终端及其分拣系统
CN114723119A (zh) * 2022-03-30 2022-07-08 南京轩世琪源软件科技有限公司 一种优化工业运输装载空间的方法及系统
CN115303691A (zh) * 2022-08-04 2022-11-08 深圳市库宝软件有限公司 货箱搬运任务分配方法、装置、设备、系统及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169957A (ja) * 2000-12-02 2002-06-14 Yuichi Ishizaka 不良債権土地処理のためのデータ処理システム及び装置
CN106966100A (zh) * 2017-05-15 2017-07-21 北京京东尚科信息技术有限公司 货物入库方法和系统
CN113335811A (zh) * 2021-05-14 2021-09-03 深圳市海柔创新科技有限公司 任务均衡方法、控制终端及其分拣系统
CN114723119A (zh) * 2022-03-30 2022-07-08 南京轩世琪源软件科技有限公司 一种优化工业运输装载空间的方法及系统
CN115303691A (zh) * 2022-08-04 2022-11-08 深圳市库宝软件有限公司 货箱搬运任务分配方法、装置、设备、系统及存储介质

Also Published As

Publication number Publication date
CN115303691A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US11544645B2 (en) Inventory scheduling method and device and non-transitory computer readable storage medium
WO2024027454A1 (zh) 货箱搬运任务分配方法、装置、设备、系统及存储介质
CN113859839B (zh) 仓储管理的方法、装置、设备、介质及仓储系统
CN109255569B (zh) 库内理货方法、装置、服务器和存储介质
CN110245890B (zh) 货品分拣方法及货品分拣系统
US20200299063A1 (en) Article picking method, server and system
WO2022206290A1 (zh) 订单处理方法、装置、设备、系统、介质及产品
CN112678409B (zh) 货物处理方法、装置、设备、系统、存储介质及程序产品
CN111915257B (zh) 货箱处理方法、装置、控制设备、系统及存储介质
CN113184430A (zh) 货到人机器人拣选系统、方法及装置
CN111861325A (zh) 一种仓储系统和仓储控制方法
CN113233068A (zh) 货物拣选方法、装置、计算机设备及存储介质
WO2022206308A1 (zh) 订单分配方法、装置、设备及存储介质
JP2019206415A (ja) 物品搬送システム、オーダー管理装置、及び、物品搬送システムの制御方法
WO2022206421A1 (zh) 任务分配方法、装置、控制终端和仓储系统
WO2023124951A1 (zh) 料箱处理方法、装置、设备、仓储系统及存储介质
WO2022121534A1 (zh) 库存物品拣选系统、方法
CN112330249A (zh) 仓储管理系统及方法
CN110334993B (zh) 一种对播种货位进行管控的方法、装置及计算机设备
CN113978993A (zh) 料箱调度方法、装置、调度设备、仓储系统及存储介质
WO2022135088A1 (zh) 仓储机器人的控制方法、装置、设备及存储介质
CN112330120A (zh) 库位分配方法、装置、设备、系统及存储介质
WO2023051152A1 (zh) 理库方法、装置、设备、仓储系统、介质及程序产品
CN114803243B (zh) 货物出库方法、装置、系统与电子设备
CN111382969B (zh) 订单处理方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849163

Country of ref document: EP

Kind code of ref document: A1