WO2024027439A1 - 压缩机和制冷设备 - Google Patents

压缩机和制冷设备 Download PDF

Info

Publication number
WO2024027439A1
WO2024027439A1 PCT/CN2023/105566 CN2023105566W WO2024027439A1 WO 2024027439 A1 WO2024027439 A1 WO 2024027439A1 CN 2023105566 W CN2023105566 W CN 2023105566W WO 2024027439 A1 WO2024027439 A1 WO 2024027439A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
liquid reservoir
housing
cylinder
oil
Prior art date
Application number
PCT/CN2023/105566
Other languages
English (en)
French (fr)
Inventor
朱晓涵
闫卓
邓志洪
李建东
黄庆洋
陈锐
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Publication of WO2024027439A1 publication Critical patent/WO2024027439A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • This application relates to the technical field of compressors, specifically a compressor and refrigeration equipment.
  • the liquid reservoir of a traditional compressor is set on the side of the casing, which causes the compressor to occupy a large radial space and produce large vibration and noise when in use.
  • the compressor sucks in gaseous refrigerant for compression.
  • the compression process is completed in the cylinder.
  • a certain amount of lubricating oil must exist in the cylinder.
  • some types of lubricating oil are miscible with the refrigerant.
  • oil discharge volume When a large amount of refrigerant gas is discharged from the cylinder, it will also take away part of the lubricating oil (called oil discharge volume).
  • the present application aims to solve, at least to a certain extent, one of the technical problems in the related art.
  • this application proposes a compressor that aims to reduce the lateral size of the compressor and improve the reliability of the compressor.
  • a compressor proposed in this application includes: a casing with an oil reservoir formed at the bottom of the casing; a cylinder located in the casing, and the casing is provided with an air suction port connected to the cylinder; And; a liquid reservoir, the liquid reservoir is located at the lower end or the upper end of the housing, the air outlet of the liquid reservoir is connected to the cylinder via the suction port, and the inner diameter of the housing is The inner diameter of the liquid reservoir is consistent; the height of the liquid reservoir is H, the maximum vertical distance from the center of the suction port to the bottom of the oil reservoir is h, and the relationship between h and H satisfies: 0.1 ⁇ h/H ⁇ 2.
  • This application also provides a refrigeration equipment, including the compressor as mentioned above.
  • the housing and the connection cover are integrally formed.
  • the liquid reservoir includes a cylinder with openings at both ends and a lower cylinder cover.
  • the lower cylinder cover covers the lower opening of the cylinder; the lower cylinder cover is connected to the cylinder.
  • the lower end opening of the body is welded and connected, or the lower cylinder cover and the cylinder body are integrally formed.
  • the housing and the liquid reservoir are welded to the connection cover.
  • the compressor further includes a connecting pipe, one end of which extends into the liquid reservoir, and the other end is connected to the suction port for transporting refrigerant.
  • the connecting pipe includes a first pipe section and a second pipe section, the first pipe section is located in the liquid reservoir, one end of the first pipe section is bent toward the top of the liquid reservoir, and the third pipe section is bent towards the top of the liquid reservoir.
  • the other end of one pipe section extends out of the liquid reservoir, one end of the second pipe section is connected to the extended part of the first pipe section, and the other end of the second pipe section is connected to the suction port.
  • the first pipe section and the second pipe section are integrally formed.
  • the first pipe section is provided with an oil return hole.
  • the opening direction of the oil return hole is toward the bottom of the liquid reservoir.
  • the equivalent diameter of the oil return hole is d 1
  • the equivalent cross-sectional diameter of the connecting pipe is d 2
  • the relationship between d 1 and d 2 satisfies: 0.1% ⁇ ((d 1 ) 2 /(d 2 ) 2 )*100% ⁇ 1.5%.
  • the hole length of the oil return hole is La
  • the hole diameter of the oil return hole is Lb
  • the hole length La and the hole diameter Lb satisfy the relationship: 0.5 ⁇ La/Lb ⁇ 4.
  • the effective volume of the liquid reservoir is V
  • the volume between the height surface where the oil return hole is located and the bottom of the liquid reservoir is v
  • the relationship between v and V satisfies :0.015V ⁇ v ⁇ 0.5V.
  • Figure 1 is a schematic structural diagram of an embodiment of the compressor of the present application
  • Figure 2 is a graph showing the relationship between the h/H ratio and the maximum vibration of the compressor
  • Figure 3 is a graph showing the relationship between the ratio of h/H and the oil delivery volume of the compressor
  • Figure 4 is a schematic structural diagram of another embodiment of the compressor of the present application.
  • Figure 5 is a graph showing the relationship between the ratio of (d 1 ) 2 /(d 2 ) 2 and the exhaust temperature of the compressor;
  • Figure 6 is an enlarged view of point A in Figure 1;
  • Figure 7 is an enlarged view of B in Figure 4.
  • Figure 8 is a graph showing the relationship between the ratio of v/V and the cooling capacity of the compressor
  • Figure 9 is a graph showing the relationship between the ratio of v/V and the input force of the compressor.
  • Compressors are generally divided into piston compressors, screw compressors, centrifugal compressors, linear compressors, etc.
  • Piston compressors generally consist of a housing, motor, cylinder, piston, control equipment (starter and thermal protector) and cooling system. There are three cooling methods: oil cooling, air cooling and natural cooling.
  • the linear compressor has no shaft, cylinder block, sealing and heat dissipation structure.
  • reciprocating type is the most commonly used compressor in small and medium-sized commercial refrigeration systems.
  • Screw compressors are primarily used in large commercial and industrial systems.
  • Rotary compressors and scroll compressors are mainly used in household and small-capacity commercial air conditioning units, while centrifugal compressors are widely used in air conditioning systems of large buildings.
  • household refrigerators and air conditioner compressors are all positive displacement type, which can be divided into reciprocating type and rotary type.
  • Reciprocating compressors use a piston, crank, connecting rod mechanism or piston, crank, slide tube mechanism, while rotary compressors mostly use rolling rotor compressors.
  • the liquid reservoir of a traditional compressor is set on the side of the casing, which causes the compressor to occupy a large radial space and produce large vibration and noise when in use.
  • the compressor sucks in gaseous refrigerant for compression.
  • the compression process is completed in the cylinder.
  • a certain amount of lubricating oil must exist in the cylinder.
  • some types of lubricating oil are miscible with the refrigerant.
  • oil discharge volume When a large amount of refrigerant gas is discharged from the cylinder, it will also take away part of the lubricating oil (called oil discharge volume).
  • the present application aims to improve the structural compactness of the liquid reservoir 30 and the housing 10 , reduce the lateral size of the compressor 100 , and improve the reliability of the compressor 100 .
  • the compressor 100 includes: a casing 10, a cylinder 20 and a liquid reservoir 30.
  • An oil reservoir 12 is formed at the bottom of the casing 10; the cylinder 20 is provided on the casing.
  • the housing 10 is provided with an air suction port 11 that communicates with the cylinder 20; the liquid reservoir 30 is provided at the lower end or the upper end of the housing 10, and the air outlet of the liquid reservoir 30 33 is connected with the cylinder 20 via the suction port 11, and the inner diameter of the housing 10 is connected with the liquid storage
  • the inner diameter of the device 30 is consistent.
  • the height of the liquid reservoir 30 is H
  • the maximum vertical distance from the center of the suction port 11 to the bottom of the oil reservoir 12 is h
  • the relationship between h and H satisfies: 0.1 ⁇ h/H ⁇ 2 .
  • the center of the suction port 11 is the same as the center of the air inlet 21 of the cylinder 20.
  • the center of the suction port 11 refers to the center of the circle, and the square suction port 11 refers to the intersection of the diagonals.
  • the liquid reservoir 30 is disposed at the lower end of the housing 10 .
  • the liquid reservoir 30 is provided at the upper end of the housing 10 .
  • the inner diameter of the housing 10 is consistent with the inner diameter of the liquid reservoir 30.
  • the consistent inner diameter is defined as a box within a certain range, that is, the relationship between the inner diameter r1 of the housing 10 and the inner diameter r2 of the liquid reservoir 30 satisfies :0.98 ⁇ r 1 /r 2 ⁇ 1.02. That is, within a certain range, the inner diameter of the housing 10 can be larger than the inner diameter of the liquid reservoir 30. If r 1 /r 2 > 1.02, the structure of the housing 10 and the liquid reservoir 30 needs to be changed or additional parts need to be added to avoid nesting problems. ; Alternatively, the inner diameter of the liquid reservoir 30 can be larger than the inner diameter of the housing 10. If r 1 /r 2 ⁇ 0.98, the structure of the liquid reservoir 30 and the housing 10 needs to be changed or other parts need to be added to avoid nesting problems. This in turn requires increased design costs and increased manufacturing difficulty.
  • the embodiment of the present application can improve the structural compactness of the liquid reservoir 30 and the housing 10 and reduce the lateral diameter of the compressor 100 size, thereby reducing the overall size of the compressor 100, which is conducive to miniaturization of the compressor 100 and increases the cabinet installation capacity.
  • the inner diameter of the housing 10 can be adjusted without increasing the inner diameter of the housing 10 or increasing the original height of the reservoir.
  • the height of 30 improves the problem of the oil discharge volume of the compressor 100, or, without changing the height and capacity of the liquid reservoir 30, the height of the oil reservoir can be increased, so that a larger amount of oil can be filled in the housing 10.
  • lubricating oil to avoid the problem of excessive drop in the oil level due to the discharge of part of the lubricating oil. In this way, even if part of the lubricating oil is discharged from the casing 10 with the refrigerant gas, the oil level of the oil reservoir in the casing 10 will not significantly decrease.
  • the oil content greatly reduces the amount of lubricating oil circulating in the refrigeration cycle device, effectively improving the heat exchange efficiency and energy efficiency index of the refrigeration cycle device.
  • the maximum condensing pressure of the compressor 100 is greater than 3 MPa.
  • liquid backflow refers to the phenomenon or process in which the liquid refrigerant in the evaporator returns to the compressor 100 through the suction circuit when the compressor 100 is running. It is caused by the refrigerant flowing back into the compressor 100 in liquid form and mixing with the lubricating oil.
  • the lubricating oil is diluted to a low enough level, the bearings cannot be fully lubricated, resulting in increased wear. This will cause the current of the compressor 100 to increase, and the noise and vibration to increase. Eventually, the compressor 100 will be damaged and the performance of the compressor 100 will decrease.
  • the maximum condensing pressure of the compressor 100 is less than 3 MPa.
  • the height of the liquid reservoir 30 can be greatly reduced, thereby reducing the size of the compressor 100 in the height direction, thereby reducing the overall size of the compressor 100 .
  • the technical solution of the present application adopts a casing 10, a cylinder 20 and a liquid reservoir 30.
  • An oil reservoir 12 is formed at the bottom of the casing 10; the cylinder 20 is provided in the casing 10, and the casing 10 is provided with a The air suction port 11 of the cylinder 20 is connected; the liquid reservoir 30 is provided at the lower end or the upper end of the housing 10; the air outlet 33 of the liquid reservoir 30 communicates with the cylinder through the air suction port 11.
  • the inner diameter of the housing 10 is consistent with the inner diameter of the liquid reservoir; the height of the liquid reservoir 30 is H, and the maximum vertical distance from the center of the suction port 11 to the bottom of the oil reservoir is The distance is h, and the relationship between h and H satisfies: 0.1 ⁇ h/H ⁇ 2.
  • the height of 30 can improve the problem of the oil discharge volume of the compressor 100, or, without changing the height and capacity of the liquid reservoir 30, the problem of the oil discharge volume of the compressor 100 can be improved by increasing the height of the oil reservoir, thereby effectively improving refrigeration. Heat transfer efficiency and energy efficiency index of the circulation device.
  • the housing 10 also includes a connecting cover 13.
  • the connecting cover 13 is used to connect the housing 10 and the liquid reservoir 30.
  • the housing 10 It can be set up with openings at both ends. On the one hand, it is convenient to install internal components.
  • the connecting cover 13 cooperates with the housing 10 to form an oil reservoir 12.
  • the housing 10 is connected from the cylinder 20
  • the height from the center of the air inlet 21 to the edge of the lower opening is h 1
  • one end of the connecting cover 13 is open, like a bowl
  • the height from the lower end of the housing 10 to the bottom of the connecting cover 13 is h 2 , h
  • the bottom of the shell is generally over-curved.
  • the height from the center of the suction port 11 to the lower edge of the shell 10 can be measured only from the outside of the shell 10, and Connect the side wall height of the cover 13 to simplify the measurement process.
  • the housing 10 is provided with an open upper end to facilitate the placement of the driving device, the cylinder 20, etc., and the housing 10 and the connecting cover 30 are integrally formed.
  • the oil reservoir is located at the lower end of the housing 10 , and the upper opening periphery of the liquid reservoir 30 is welded to the lower end periphery of the housing 10 to ensure the sealing of the liquid reservoir 30 .
  • the liquid reservoir 30 includes a cylinder 31 with openings at both ends and a lower cylinder cover 32.
  • the lower cylinder cover 32 covers the lower opening of the cylinder 31.
  • the lower cylinder head 32 is welded to the lower opening of the cylinder 31 .
  • the lower cylinder head 32 and the cylinder block 31 are integrally formed.
  • the liquid reservoir 30 includes a cylinder 31 open at both ends and a lower cylinder cover 32 .
  • the lower end of the cylinder 31 is connected to the lower cylinder cover 32 .
  • the edge of the upper open end of the cylinder 31 is connected to the bottom of the cover 13 .
  • the periphery is welded to ensure sealing; in order to facilitate the measurement of the height of the liquid reservoir 30, the height H 1 is from the edge of the upper opening to the edge of the lower opening of the cylinder 31.
  • the height of H 1 is approximately the height of H.
  • connection cover 13 is welded to the housing 10 and the liquid reservoir 30 .
  • h 1 is not less than the distance from the center of the air inlet 21 of the cylinder 20 to the bottom of the cylinder 20.
  • the compressor 100 also includes a connecting pipe 50.
  • One end of the connecting pipe 50 extends into the liquid reservoir 30, and the other end is connected to the air inlet 21 of the cylinder 20 to facilitate refrigerant transportation.
  • the bottom of the side of the liquid reservoir 30 is provided with an exhaust port.
  • One end of the connecting pipe 50 extends out of the liquid reservoir 30 through the exhaust port and is bent upward to increase the air intake of the connecting pipe 50. height to avoid the suction of liquid refrigerant.
  • the exhaust port of the liquid reservoir 30 is located at the top of the side, that is, close to the upper opening of the liquid reservoir 30 , to increase the height of the air inlet of the connecting pipe 50 to avoid inhalation of liquid refrigerant.
  • the connecting pipe 50 includes a first pipe section 51 and a second pipe section 52.
  • the first pipe section 51 is located in the liquid reservoir 30.
  • One end of the first pipe section 51 is bent toward the top of the liquid reservoir 30, and the other end of the first pipe section 51 is bent toward the top of the liquid reservoir 30.
  • One end is connected to the exhaust port and extends out of the exhaust port.
  • One end of the second pipe section 52 is sleeved and connected to the extended part of the first pipe section 51 , and the other end is connected to the air inlet 21 of the cylinder 20 .
  • first pipe section 51 and the second pipe section 52 can also be integrally formed, such as cast Manufacturing, injection molding, etc.
  • the first pipe section 51 is provided with an oil return hole 511 to facilitate replenishing the lubricating oil taken away by circulation in the reservoir 30 into the oil reservoir 12 .
  • the oil return hole 511 may be disposed above the first pipe section 51; in another embodiment, the oil return hole 511 may be disposed on the side of the first pipe.
  • the opening of the oil return hole 511 faces the bottom of the liquid reservoir 30 .
  • the oil return hole 511 is provided in the first pipe section 51 near the air outlet 33 .
  • the lubricating oil deposited at the bottom of the reservoir 30 can enter the connecting pipe 50 through the oil return hole 511 and be sucked into the housing 10 by the cylinder 20
  • the internal oil storage tank replenishes the lubricating oil in the oil storage tank, effectively improving the heat exchange efficiency and energy efficiency index of the refrigeration cycle device.
  • the liquid lubricating oil in the oil-air mixture entering the reservoir 30 falls to the bottom of the reservoir 30 under the action of gravity, and passes through the oil return hole 511 on the connecting pipe 50 so that the lubricating oil located at the bottom of the reservoir 30 can be Return to the oil storage tank, thereby realizing the circulation of lubricating oil in the oil storage tank and the liquid reservoir 30.
  • the equivalent diameter of the oil return hole 511 is d 1 , (the equivalent diameter refers to the diameter of a circular pipe with the same hydraulic radius), and the equivalent cross-sectional diameter of the connecting pipe 50 is d 2 , d 1 and d 2 satisfies: 0.1% ⁇ ((d 1 ) 2 /(d 2 ) 2 )*100% ⁇ 1.5%.
  • the oil return amount of the compressor is intuitively reflected in the change of the exhaust temperature.
  • the liquid return will cause ⁇ T to be too small, (d 1 ) 2 /(d 2 ) 2 ⁇ 0.1%, or, (d 1 ) 2 /(d 2 ) 2 >1.5%, ⁇ T is too small, in addition to the decrease in compressor performance, it will also cause the oil pool temperature to be too low, causing the oil viscosity in the compressor to decrease, and insufficient lubrication of the friction pair to cause reliability risks.
  • the hole length of the oil return hole (511) is La
  • the hole diameter of the oil return hole (511) is Lb
  • the hole length La and the hole diameter Lb satisfy the relationship: 0.5 ⁇ La/Lb ⁇ 4.
  • the effective volume of the liquid reservoir 30 component is V
  • the oil return hole 511 is located at a height equal to that of the The volume between the bottoms of the liquid reservoir 30 is v, and v satisfies: 0.015V ⁇ v ⁇ 0.5V.
  • the effective volume V refers to the volume from the inlet of the first pipe section 511 close to the connection cover 13 to the bottom of the liquid reservoir 30 .
  • the refrigerant filling amount of the refrigeration equipment is D
  • the relationship between the effective volume V of the liquid reservoir 30 and D satisfies: 0.5D ⁇ V ⁇ D
  • the density of the liquid refrigerant is ⁇
  • the liquid container 30 stores more than 50% of the total refrigerant liquid volume to ensure the maximum margin in the refrigerant deposition state. The performance of the compressor 100 is thereby improved.
  • the compressor 100 also includes a muffler 60.
  • the muffler 60 is connected to the cylinder 20.
  • the setting of the muffler 60 ensures the sealing of the high-pressure gas in the cylinder 20 and ensures the airtightness of the muffler chamber. , to avoid leakage of high-pressure gas, thereby improving the performance stability of the refrigeration compressor 100, and thereby improving the performance of the compressor 100. Thereby, the performance stability of the refrigeration compressor 100 is improved, thereby improving the performance of the compressor 100 .
  • the inner diameter of the casing 10 is d 3
  • the volume enclosed between the parts above the upper end surface of the cylinder 20 and below the upper end surface of the upper muffler 60 and the periphery of the casing 10 is v 1
  • the refrigerant charging amount of the air conditioner is D ,satisfy: [ ⁇ (h 1 +h 2 ) ⁇ (d 3 ) 2 /4+v1]/[ ⁇ (h 1 +h 2 ) ⁇ (d 3 ) 2 /4+v 1 +D] ⁇ 0.18
  • the compressor 100 can be a single-cylinder 20 compressor 100; of course, the compressor 100 can also be a dual-cylinder 20 compressor 100.
  • the relevant parameters h 1 /v 1
  • the corresponding position of the lower cylinder 20 is the measurement object.
  • the refrigeration equipment includes a compressor 100.
  • the specific structure of the compressor 100 refers to the above-mentioned embodiments. Since this refrigeration equipment adopts all the technical solutions of all the above-mentioned embodiments, it at least has the characteristics of the above-mentioned embodiments. All the beneficial effects brought by the technical solutions will not be repeated here.
  • Refrigeration equipment can be divided into compression refrigeration equipment, absorption refrigeration equipment, steam injection refrigeration equipment, heat pump refrigeration equipment and electrothermal refrigeration devices, etc.
  • the refrigeration equipment mainly consists of a compressor 100, an expansion valve, an evaporator, a condenser, accessories, and pipelines.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more, unless otherwise explicitly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be directly connected or indirectly connected through an intermediate medium. It can be the internal connection between two elements or the interaction between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)

Abstract

本申请公开一种压缩机和制冷设备,其中,该压缩机(100)包括壳体(10)、气缸(20)以及储液器(30),壳体(10)底部形成有储油池(12);气缸(20)设于壳体(10)内,壳体(10)开设有与气缸(20)连通的吸气口(11);储液器(30)设于壳体(10)的下端或上端,储液器(30)的出气口(33)经由吸气口(11)与气缸(20)相连通,壳体的内径与储液器的内径相一致;储液器的高度为H,吸气口(11)的中心到储油池底部的最大垂直距离为h,h与H的关系满足:0.1<h/H<2。本申请技术方案能减小压缩机(100)的横向尺寸,并提升压缩机的可靠性。

Description

压缩机和制冷设备
相关申请的交叉引用
本申请要求广东美芝制冷设备有限公司于2022年08月04日提交的、名称为“压缩机和制冷设备”的、中国专利申请号“202210930093.2”的优先权。
技术领域
本申请涉及压缩机技术领域,具体涉及一种压缩机和制冷设备。
背景技术
传统的压缩机的储液器设置在壳体的侧面,导致压缩机占用的径向空间大,并且在使用时会产生较大的振动和噪音。压缩机吸入气态冷媒进行压缩,压缩过程是在气缸完成,而气缸中为了保持运行部件的良好润滑,必须存在一定的量的润滑油,这个过程中,部分种类的润滑油与冷媒相溶,伴随着大量冷媒气体在被排出气缸的同时也会带走部分润滑油(称为吐油量)。吐油量过大会在冷凝器内部形成油膜,阻碍冷媒的散热,进而影响制冷设备的制冷效果,吐油量太大压缩机因为没有油来润滑会损坏压缩机气缸,冷冻油不但起润滑还有密封作用,故压缩机底部的油池中油面位置下降,易导致压缩机因润滑不良而产生故障。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请提出一种压缩机,旨在减小压缩机的横向尺寸,并提升压缩机的可靠性。
本申请提出的一种压缩机,包括:壳体,所述壳体底部形成有储油池;气缸,设于所述壳体内,所述壳体开设有与所述气缸连通的吸气口;以及;储液器,所述储液器设于所述壳体的下端或上端,所述储液器的出气口经由所述吸气口与所述气缸相连通,所述壳体的内径与所述储液器的内径相一致;所述储液器的高度为H,所述吸气口的中心到所述储油池底部的最大垂直距离为h,所述h与H的关系满足:0.1<h/H<2。
本申请还提供一种制冷设备,包括如上所述的压缩机。
在本申请的一些实施例中,所述壳体包括连接盖体,所述储液器上端开口设置,所述连接盖体封盖所述储液器的上端开口,所述储油池的底部为所述连接盖体的底部;其中,所述吸气口的中心到所述壳体下端的高度为h1,所述壳体下端到所述连接盖体底部的高度为h2,h、h1和h2关系满足:h=h1+h2
在本申请的一些实施例中,所述壳体与所述连接盖体为一体成型设置。
在本申请的一些实施例中,所述储液器包括两端开口的缸体和下缸盖,所述下缸盖封盖所述缸体的下端开口;所述下缸盖与所述缸体的下端开口焊接连接,或者,所述下缸盖与所述缸体为一体成型设置。
在本申请的一些实施例中,所述壳体和所述储液器与所述连接盖体焊接连接。
在本申请的一些实施例中,所述压缩机还包括连接管,所述连接管一端伸入储液器内,另一端与所述吸气口相连接,以供冷媒输送。
在本申请的一些实施例中,所述连接管包括第一管段和第二管段,所述第一管段位于储液器内,所述第一管段的一端弯曲朝向储液器顶端,所述第一管段的另一端部分伸出所述储液器外,所述第二管段的一端连接于第一管段伸出部分,所述第二管段的另一端与所述吸气口相连接。
在本申请的一些实施例中,所述第一管段和所述第二管段为一体成型设置。
在本申请的一些实施例中,所述第一管段设有回油孔。
在本申请的一些实施例中,所述回油孔的开口方向朝向所述储液器的底部。
在本申请的一些实施例中,所述回油孔的当量直径为d1,所述连接管的截面当量直径为d2,d1和d2之间满足:0.1%<((d1)2/(d2)2)*100%≤1.5%。
在本申请的一些实施例中,所述回油孔的孔长为La,回油孔的孔径为Lb,孔长La和孔径Lb满足关系:0.5<La/Lb≤4。
在本申请的一些实施例中,所述储液器的有效容积为V,所述回油孔所在高度面到所述储液器底部之间的容积为v,其中,v与V的关系满足:0.015V<v<0.5V。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1为本申请压缩机一实施例的结构示意图;
图2为h/H的比值与压缩机的最大振动之间的关系曲线图;
图3为h/H的比值与压缩机的吐油量之间的关系曲线图;
图4为本申请压缩机另一实施例的结构示意图;
图5为(d1)2/(d2)2的比值与压缩机的排气温度之间的关系曲线图;
图6为图1中A处的放大图;
图7为图4中B处的放大图;
图8为v/V的比值与压缩机的制冷量之间的关系曲线图;
图9为v/V的比值与压缩机的入力之间的关系曲线图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
本申请提出一种压缩机的实施例。压缩机一般分为活塞压缩机,螺杆压缩机,离心压缩机,直线压缩机等。活塞压缩机一般由壳体、电动机、缸体、活塞、控制设备(启动器和热保护器)及冷却系统组成。冷却方式有油冷和风冷,自然冷却三种。直线压缩机没有轴,没有缸体、密封和散热结构。制冷和空调行业中采用的压缩机有5大类型:往复式、螺杆式、回转式、涡旋式和离心式,其中往复式是小型和中型商用制冷系统中应用最多的一种压缩机。螺杆式压缩机主要用于大型商用和工业系统。回转式压缩机、涡旋式压缩机主要用于家用和小容量商用空调装置,离心式压缩机则广泛用于大型楼宇的空调系统。如今家用冰箱和空调器压缩机都是容积式,其中又可分为往复式和旋转式。往复式压缩机使用的是活塞、曲柄、连杆机构或活塞、曲柄、滑管机构,旋转式使用的多是滚动转子压缩机。在商用空调上,又多是离心式、涡旋式、螺杆式。
传统的压缩机的储液器设置在壳体的侧面,导致压缩机占用的径向空间大,并且在使用时会产生较大的振动和噪音。压缩机吸入气态冷媒进行压缩,压缩过程是在气缸完成,而气缸中为了保持运行部件的良好润滑,必须存在一定的量的润滑油,这个过程中,部分种类的润滑油与冷媒相溶,伴随着大量冷媒气体在被排出气缸的同时也会带走部分润滑油(称为吐油量)。吐油量过大会在冷凝器内部形成油膜,阻碍冷媒的散热,进而影响制冷设备的制冷效果,吐油量太大压缩机因为没有油来润滑会损坏压缩机气缸,冷冻油不但起润滑还有密封作用,故压缩机底部的油池中油面位置下降,易导致压缩机因润滑不良而产生故障。针对于上述故障,常采用扩大压缩机壳体的内径或增加油池的高度,进而在壳体内充注过量的冷冻润滑油,以避免由于部分冷冻润滑油排出而造成油面位置过度下降的问题,然而上述解决方案一方面会增加压缩机的成本;另一方面无法减少冷媒气体中所包含的润滑油量,导致大量冷冻润滑油在系统中循环,直接降低系统的换热效率和能效指数。
本申请旨在提高储液器30与壳体10的结构紧凑性,减小该压缩机100的横向尺寸,并提升压缩机100的可靠性。
参照图1,在本申请一实施例中,该压缩机100包括:壳体10、气缸20以及储液器30,所述壳体10底部形成有储油池12;气缸20设于所述壳体10内,所述壳体10开设有与所述气缸20连通的吸气口11;所述储液器30设于所述壳体10的下端或上端,所述储液器30的出气口33经由所述吸气口11与所述气缸20相连通,所述壳体10的内径与所述储液 器30的内径一致。
所述储液器30的高度为H,所述吸气口11的中心到所述储油池12底部的最大垂直距离为h,所述h与H的关系满足:0.1<h/H<2。
吸气口11的中心与气缸20的进气口21的中心相同,在圆形吸气口11中,吸气口11的中心指圆心处,方形吸气口11指对角线相交处。
在一实施例中,储液器30设置在壳体10的下端。
在另一实施例中,储液器30设置在壳体10的上端。
所述壳体10的内径与所述储液器30的内径一致,内径一致的定义为在一定范围内箱体,即壳体10的内径r1与储液器30的内径r2的关系满足:0.98≤r1/r2≤1.02。即在一定范围内,壳体10的内径可以大于储液器30的内径,若r1/r2>1.02,导致壳体10与储液器30需要改变结构或增加其余零件避免出现套设问题;或者,储液器30的内径可以大于壳体10的内径,若r1/r2<0.98,导致储液器30与壳体10需要改变结构或增加其余零件避免出现套设问题。进而需要增加设计成本、制造难度提高。
通过将储液器30设于所述壳体10的下方或上方,可大幅减少压缩机100所需的径向安装空间。相比于现有技术中储液器30设于所述本体部周侧的方案,本申请的实施例可以提高储液器30与壳体10的结构紧凑性,减小该压缩机100的横向尺寸,从而减小压缩机100的整机尺寸,利于实现压缩机100的小型化,提高了装柜量。
通过使储油池的高度h和储液器30的高度H满足关系:0.1<h/H<2,从而在不扩大壳体10内径或不增加油池原高度的前提下,通过调整储液器30的高度改善压缩机100吐油量的问题,或者,在不改变储液器30高度和容量的前提下,增加储油池的高度,进而在可在壳体10内充注更大储量的润滑油,以避免由于部分润滑油排出而造成油面位置过度下降的问题,如此,即使有部分润滑油随冷媒气体排出壳体10,壳体10内储油池的油面位置也不会大幅下降,进而有效稳定壳体10的储油池内的油面位置,防止油面位置降幅过大而影响气缸20压缩过程中的润滑性能,同时可有效降低经气缸20压缩排出的冷媒气体中的润滑油含量,使得制冷循环装置中循环的润滑油量大幅降低,有效提高制冷循环装置的换热效率和能效指数。
例如,在一实施例中,该压缩机100最大冷凝压力大于3MPa。
参照2和图3,在固定储液器30高度的前提下:
如图2所示,当h/H>2时,储油池12的高度h远高于储液器30的高度H,一方面整机高度增加比较明显,且储油池12的加高导致气缸20上移,压缩机100整体重心同步上移,导致振动恶化,使用时会产生较大的振动和噪音;另一方面,此时压缩机100内要保证油面高度,需要封大量油,增加压缩机100的成本,经济性较差。
如图3所示,而当h/H<0.1时,一方面随储油池12空间减小,油平面明显上升,导致吐油量进一步恶化。即部分种类的润滑油与冷媒相溶,伴随着大量冷媒气体在被排出气缸20的同时也会带走部分润滑油(称为吐油量)。吐油量太大压缩机100因为没有油来润滑会损坏压缩机100气缸20,易导致压缩机100因润滑不良而产生故障。另一方面,储液器30与气缸20距离越近,由热效应引起的气缸20滑片槽/内径变形会引起滑片磨损甚至卡死等可靠性风险。
例如,在固定储油池高度的前提下:
当h/H>2时,储液器30高度偏小,存液量不足,会导致压缩机100回液,性能下降。可参考的,通常,回液是指压缩机100运行时蒸发器中的液态冷媒,通过吸气回路回到压缩机100的现象或过程。由冷媒以液体的形式回流到压缩机100中与润滑油混合导致的。当润滑油被稀释到足够低的程度,轴承不能充分润滑而导致磨损加剧,进而会出现压缩机100电流升高、噪声及振动变大的现象,最终压缩机100损坏,压缩机100性能下降。
而当h/H<0.1时,一方面储液器30高度偏大,导致过多的冷媒造成浪费,另一方面影响制冷效果。
在另一实施例中,该压缩机100最大冷凝压力小于3MPa。在该使用场景中,可大幅降低储液器30的高度,从而减小压缩机100高度方向的尺寸,从而减小压缩机100的整机尺寸。
本申请技术方案通过采用壳体10、气缸20以及储液器30,所述壳体10底部形成有储油池12;气缸20设于所述壳体10内,所述壳体10开设有与所述气缸20连通的吸气口11;所述储液器30设于所述壳体10的下端或上端,所述储液器30的出气口33经由所述吸气口11与所述气缸20相连通,所述壳体的内径与所述储液器的内径相一致;所述储液器30的高度为H,所述吸气口11的中心到所述储油池底部的最大垂直距离为h,所述h与H的关系满足:0.1<h/H<2。通过将储液器30设于所述壳体10的下方或上方,可大幅减少压缩机100所需的径向安装空间。通过使储油池的高度h和储液器30的高度H满足关系:0.1<h/H<2,从而在不扩大壳体10内径或不增加油池原高度的前提下,通过调整储液器30的高度改善压缩机100吐油量的问题,或者,在不改变储液器30高度和容量的前提下,通过增加储油池的高度改善压缩机100吐油量的问题,从而有效提高制冷循环装置的换热效率和能效指数。
将储液器30置于压缩机100的壳体10下方之后,储油池处于高压区,储液器30处于低压区。参照图4,在一实施例中,为了方便安装,壳体10还包括连接盖体13,连接盖体13用于连接壳体10和所述储液器30,在该方案中,壳体10可设置为两端开口设置,一方面便于安装内部零部件,连接盖体13与壳体10配合形成储油池12,壳体10从气缸20的 进气口21中心到下端开口的边缘高度为h1,连接盖体13的一端为开口设置,如碗状,所述壳体10下端到所述连接盖体13底部的高度为h2,h、h1和h2关系满足:h=h1+h2。如此,只需计算(h1+h2)与H关系,使之满足条件:0.1<(h1+h2)/H<2即可。另外,壳体底部一般呈弧形过度,为了便于测量储油池12的高度,在实际测量过程中,可只从壳体10外侧测量吸气口11的中心到壳体10下端边缘高度,和连接盖体13的侧壁高度,简化测量过程。
在另一实施例中,壳体10为上端开口设置,方便安置驱动装置和气缸20等,所述壳体10与所述连接盖体30为一体成型设置。储油池位于壳体10的下端,储液器30的上方开口周缘与壳体10的下端周缘焊接连接,保证储液器30的密封。
为了方便对储液器30的安装和装配,所述储液器30包括两端开口的缸体31和下缸盖32,所述下缸盖32封盖所述缸体31的下端开口。
在一实施例中,所述下缸盖32与所述缸体31的下端开口焊接连接。
在另一实施例中,所述下缸盖32与所述缸体31为一体成型设置。
结合参照图4,储液器30包括两端开口的缸体31和下缸盖32,缸体31的下端与下缸盖32相连接,缸体31的上端开口的边缘与连接盖体13下方周缘焊接连接,以保证密封性;为了便于测量储液器30的高度,缸体31的上端开口的边缘到下端开口的边缘为高度H1,H1的高度近似于H的高度,如此,只需计算(h1+h2)与H1的关系,使之满足0.1<(h1+h2)/H1<2即可,从而方便测量与计算储液器30的高度和储油池12的高度之间的关系。
连接盖体13与壳体10及储液器30焊接连接。为避免连接盖体13与壳体10焊接所产生的应力等因素对气缸20的工作产生影响,h1不小于气缸20的进气口21中心到气缸20底部的距离。
压缩机100还包括连接管50,连接管50一端伸入储液器30内,另一端与气缸20的进气口21相连通,以便于冷媒输送。
在一实施例中,储液器30的侧边的底部设有排气口,连接管50的一端通过该排气口伸出储液器30内,并向上弯折,提高连接管50进气的高度,以避免液态冷媒的吸入产生。
在其他实施例中,储液器30的排气口设于侧边的顶部,即靠近储液器30的上端开口的位置,提高连接管50进气的高度,以避免液态冷媒的吸入产生。
为了方便连接管50的安装,连接管50包括第一管段51和第二管段52,第一管段51位于储液器30内,所述第一管段51的一端弯曲朝向储液器30顶端,另一端与排气口相连接并伸出排气口,第二管段52一端套设连接于第一管段51伸出部分,另一端与气缸20的进气口21相连接。
为了保证密封性,在储液器30的排气口与第一管段51之间的间隙做密封处理。
不失一般性地,在其他方案中,第一管段51和第二管段52也可是一体成型设置,如铸 造、注塑等。
为了提高压缩机100的效率和可靠性,第一管段51设有回油孔511,以便于将储液器30中的经循环带走的润滑油补充到储油池12中。在一实施例中,回油孔511可设于第一管段51的上方;在另一实施例中,回油孔511可设置在第一管道的侧方。
为了回油效果好,在一实施例中,回油孔511的开口朝向储液器30的底部。该回油孔511设置在第一管段51靠近出气口33位置。
如此,在不扩大壳体10内径或不增加油池原高度的前提下,使得沉积在储液器30底部的润滑油可通过回油孔511进入连接管50,被气缸20吸入进入到壳体10内储油池从而补充储油池内的润滑油,有效提高制冷循环装置的换热效率和能效指数。进入储液器30内的油气混合物中的液态润滑油在重力的作用下落至储液器30的底部,通过连接管50上的回油孔511以使位于储液器30底部的润滑油能被入回到储油池,进而实现润滑油在储油池和储液器30中的循环。
为了保证回油的顺畅性、避免对压缩机100的性能。
参照图5和图6,所述回油孔511的当量直径为d1,(当量直径是指水力半径相等的圆管直径),所述连接管50的截面当量直径为d2,d1和d2之间满足:0.1%<((d1)2/(d2)2)*100%≤1.5%。
为了保证少量回液,避免对压缩机产生液击,0.1%≤(d1)2/(d2)2≤1.5%。
压缩机的回油量,直观体现在排气温度的变化,回液会导致△T偏小,(d1)2/(d2)2<0.1%,或者,(d1)2/(d2)2>1.5%,△T偏小,除压缩机性能下降外,还会导致油池温度偏低,引起压缩机内油粘度降低,摩擦副润滑不够发生可靠性风险。
参照图7,为了保证回油的顺畅以及压缩机的性能,所述回油孔(511)的孔长为La,回油孔(511)的孔径为Lb,孔长La和孔径Lb满足关系:0.5<La/Lb≤4。
按短孔回液流量CqAr(2▽P/ρ)1/2,▽P为短孔内外两侧的压差,Ar为回油孔511的面积,由计算可知,通过短孔的实际回液流量:(d1)2/(d2)2×Cq应当小于1.5%×吸气质量流量,才能保证压缩机100在轻微回液下的性能。(d1)2/(d2)2×Cq大于0.1%的流量则保证了回油顺畅。因此,将回油孔511设置为短孔,保证回油量以及回油的顺畅。
参照图1和图4,为保证回油孔511回油效果,避免对压缩机100的性能影响,所述储液器30部件的有效容积为V,所述回油孔511所在高度面与所述储液器30底部之间的容积为v,所述v满足:0.015V<v<0.5V。
有效容积V指:第一管段511靠近连接盖体13的入口处到储液器30底部的容积。
结合参照图8当v<0.015V时,即当v偏小时,存液量不足,在系统带液运行时,会导致压缩机100回液,存在液击风险,影响压缩机100性能,即回液所导致的性能下降。
结合参照图9,当v>0.5V时,存油容积偏大,导致回油孔511回油困难,运行一段时间后,导致储油池内油面下降,进一步导致摩擦副润滑不足,入力增加。
当压缩机100设置在制冷设备时内,制冷设备的冷媒充注量为D,所述储液器30有效容积V与D的关系满足:0.5D<Vρ<D,液态冷媒密度为ρ,储液器30按全部冷媒存液量50%以上,以保证冷媒沉积状态下的最大余度。从而提高压缩机100的性能。
为提高压缩机100的性能,压缩机100还包括消音器60,消音器60与气缸20相连接,通过消音器60的设置保证气缸20内的高压气体的密封性,保证消音腔的气密性,避免高压气体发生泄漏,从而提高制冷压缩机100的性能稳定性,进而提高压缩机100的使用性能。从而提高制冷压缩机100的性能稳定性,进而提高压缩机100的使用性能。
所述壳体10内径为d3,气缸20上端面以上零件到上消音器60上端面以下,与壳体10外围之间围成的容积为v1,所述空调的冷媒充注量为D,满足:
[Π(h1+h2)×(d3)2/4+v1]/[Π(h1+h2)×(d3)2/4+v1+D]≥0.18
通过保证最小封油量与系统冷媒充注量,以满足稀释度要求,进而保证泵体可靠性要求。
不失一般性地,压缩机100可以为单气缸20压缩机100;当然压缩机100也可为双气缸20压缩机100,在双气缸20压缩机100的方案中,相关参数(h1/v1)均为下气缸20对应位置为测量对象。
本申请还提出一种制冷设备,该制冷设备包括压缩机100,该压缩机100的具体结构参照上述实施例,由于本制冷设备采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
制冷设备可分为压缩制冷设备、吸收制冷设备、蒸汽喷射制冷设备、热泵制冷设备和电热制冷装置等。制冷设备主要由压缩机100、膨胀阀、蒸发器、冷凝器和附件、管路组成。如冰箱、空调等等。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种压缩机,其中,包括:
    壳体,所述壳体底部形成有储油池;
    气缸,设于所述壳体内,所述壳体开设有与所述气缸连通的吸气口;以及;
    储液器,所述储液器设于所述壳体的下端或上端,所述储液器的出气口经由所述吸气口与所述气缸相连通,所述壳体的内径与所述储液器的内径相一致;
    所述储液器的高度为H,所述吸气口的中心到所述储油池底部的最大垂直距离为h,h与H的关系满足:0.1<h/H<2。
  2. 如权利要求1所述的压缩机,其中,所述壳体包括连接盖体,所述储液器上端开口设置,所述连接盖体封盖所述储液器的上端开口,所述储油池的底部为所述连接盖体的底部;其中,所述吸气口的中心到所述壳体下端的高度为h1,所述壳体下端到所述连接盖体底部的高度为h2,h、h1和h2关系满足:h=h1+h2
  3. 如权利要求2所述的压缩机,其中,所述壳体与所述连接盖体为一体成型设置。
  4. 如权利要求2-3中任一项所述的压缩机,其中,所述储液器包括两端开口的缸体和下缸盖,所述下缸盖封盖所述缸体的下端开口;
    所述下缸盖与所述缸体的下端开口焊接连接,或者,所述下缸盖与所述缸体为一体成型设置。
  5. 如权利要求2或4所述的压缩机,其中,所述壳体和所述储液器与所述连接盖体焊接连接。
  6. 如权利要求1-5中任一项所述的压缩机,其中,所述压缩机还包括连接管,所述连接管一端伸入储液器内,另一端与所述吸气口相连接,以供冷媒输送。
  7. 如权利要求5所述的压缩机,其中,所述连接管包括第一管段和第二管段,所述第一管段位于储液器内,所述第一管段的一端弯曲朝向储液器顶端,所述第一管段的另一端部分伸出所述储液器外,所述第二管段的一端连接于第一管段伸出部分,所述第二管段的另一端与所述吸气口相连接。
  8. 如权利要求7所述的压缩机,其中,所述第一管段和所述第二管段为一体成型设置。
  9. 如权利要求7或8所述的压缩机,其中,所述第一管段设有回油孔。
  10. 如权利要求9所述的压缩机,其中,所述回油孔的开口方向朝向所述储液器的底部。
  11. 如权利要求10所述的压缩机,其中,所述回油孔的当量直径为d1,所述连接管的截面当量直径为d2,d1和d2之间满足:0.1%<((d1)2/(d2)2)*100%≤1.5%。
  12. 如权利要求11所述的压缩机,其中,所述回油孔的孔长为La,回油孔的孔径为Lb, 孔长La和孔径Lb满足关系:0.5<La/Lb≤4。
  13. 如权利要求12所述的压缩机,其中,所述储液器的有效容积为V,所述回油孔所在高度面到所述储液器底部之间的容积为v,其中,v与V的关系满足:0.015V<v<0.5V。
  14. 一种制冷设备,其中,包括:如权利要求1-13中任一项所述的压缩机。
PCT/CN2023/105566 2022-08-04 2023-07-03 压缩机和制冷设备 WO2024027439A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210930093.2 2022-08-04
CN202210930093.2A CN117552982A (zh) 2022-08-04 2022-08-04 压缩机和制冷设备

Publications (1)

Publication Number Publication Date
WO2024027439A1 true WO2024027439A1 (zh) 2024-02-08

Family

ID=89766953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105566 WO2024027439A1 (zh) 2022-08-04 2023-07-03 压缩机和制冷设备

Country Status (2)

Country Link
CN (2) CN117552982A (zh)
WO (1) WO2024027439A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337737A (ja) * 1999-05-26 2000-12-08 Mitsubishi Heavy Ind Ltd 空気調和機およびアキュムレータ
CN110966201A (zh) * 2019-12-12 2020-04-07 珠海格力节能环保制冷技术研究中心有限公司 压缩机润滑油回流结构、压缩机
JP2020109283A (ja) * 2019-01-07 2020-07-16 三菱重工サーマルシステムズ株式会社 ロータリ圧縮機
CN113550903A (zh) * 2021-08-23 2021-10-26 广东美芝制冷设备有限公司 压缩机及制冷设备
CN214837127U (zh) * 2021-01-20 2021-11-23 广东美芝制冷设备有限公司 旋转式压缩机和制冷设备
WO2022071450A1 (ja) * 2020-09-30 2022-04-07 株式会社富士通ゼネラル 密閉型圧縮機
CN217873273U (zh) * 2022-08-04 2022-11-22 广东美芝制冷设备有限公司 压缩机和制冷装置
CN217926303U (zh) * 2022-08-04 2022-11-29 广东美芝制冷设备有限公司 压缩机和制冷设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337737A (ja) * 1999-05-26 2000-12-08 Mitsubishi Heavy Ind Ltd 空気調和機およびアキュムレータ
JP2020109283A (ja) * 2019-01-07 2020-07-16 三菱重工サーマルシステムズ株式会社 ロータリ圧縮機
CN110966201A (zh) * 2019-12-12 2020-04-07 珠海格力节能环保制冷技术研究中心有限公司 压缩机润滑油回流结构、压缩机
WO2022071450A1 (ja) * 2020-09-30 2022-04-07 株式会社富士通ゼネラル 密閉型圧縮機
CN214837127U (zh) * 2021-01-20 2021-11-23 广东美芝制冷设备有限公司 旋转式压缩机和制冷设备
CN113550903A (zh) * 2021-08-23 2021-10-26 广东美芝制冷设备有限公司 压缩机及制冷设备
CN217873273U (zh) * 2022-08-04 2022-11-22 广东美芝制冷设备有限公司 压缩机和制冷装置
CN217926303U (zh) * 2022-08-04 2022-11-29 广东美芝制冷设备有限公司 压缩机和制冷设备

Also Published As

Publication number Publication date
CN117514802A (zh) 2024-02-06
CN117552982A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US20120017636A1 (en) Refrigeration cycle apparatus
CN217926303U (zh) 压缩机和制冷设备
WO2024027439A1 (zh) 压缩机和制冷设备
CN106382227A (zh) 多级压缩式旋转压缩机及具有其的制冷循环装置
CN217873273U (zh) 压缩机和制冷装置
CN204239180U (zh) 活塞式压缩机
JPS61128075A (ja) 冷凍サイクル
CN110345075A (zh) 涡旋压缩机和热泵系统
WO2023060816A1 (zh) 一种低压腔旋转式压缩机及空调器
CN112746970A (zh) 油池回油结构、压缩机及空调器
CN2844799Y (zh) 一种能够适用于各种冷媒封入量的空调通用储液器
CN203453066U (zh) 一种卧式压缩机
CN206801885U (zh) 一种用于转子式压缩机的下消音器
CN218953565U (zh) 一种具有润滑油冷却结构的转子式压缩机
CN112049799A (zh) 一种排气消音结构、涡旋压缩机以及冷冻设备
JP3140201B2 (ja) 密閉形電動圧縮機
CN114198306B (zh) 压缩机、换热系统以及具有其的空调器
EP1954944A1 (en) A compressor
CN106812701B (zh) 压缩机壳体以及卧式压缩机
CN218717519U (zh) 压缩机和制冷设备
CN114109834B (zh) 压缩机导油组件和压缩机
CN217354755U (zh) 压缩机回油结构、滚动转子式压缩机、空调器
CN114294232B (zh) 一种降低排油率的油分离装置及旋转压缩机
CN110848135B (zh) 卧式压缩机及热交换工作设备
JP5353445B2 (ja) 密閉型圧縮機および冷凍冷蔵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849149

Country of ref document: EP

Kind code of ref document: A1