WO2024027390A1 - 一种基于接入回传一体化iab的通信方法及装置 - Google Patents

一种基于接入回传一体化iab的通信方法及装置 Download PDF

Info

Publication number
WO2024027390A1
WO2024027390A1 PCT/CN2023/103371 CN2023103371W WO2024027390A1 WO 2024027390 A1 WO2024027390 A1 WO 2024027390A1 CN 2023103371 W CN2023103371 W CN 2023103371W WO 2024027390 A1 WO2024027390 A1 WO 2024027390A1
Authority
WO
WIPO (PCT)
Prior art keywords
donor
iab node
message
iab
node
Prior art date
Application number
PCT/CN2023/103371
Other languages
English (en)
French (fr)
Inventor
朱世超
孙飞
朱元萍
史玉龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027390A1 publication Critical patent/WO2024027390A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to a communication method and device based on integrated access backhaul IAB.
  • the fifth generation (5th generation, 5G) mobile communication system puts forward more stringent requirements for various network performance indicators.
  • 5G fifth generation
  • a large number of small stations need to be densely deployed, and on the other hand, network coverage needs to be provided in remote areas.
  • the cost of providing optical fiber backhaul in these two scenarios is high and the construction is difficult. Therefore, the economical and convenient integrated access and backhaul (IAB) technology emerged as the times require.
  • the IAB node In the IAB network, the IAB node (IAB-node) can provide wireless access services for user equipment (UE).
  • UE user equipment
  • the UE's business data is sent by the IAB node to the IAB host (IAB-donor) through the wireless backhaul link.
  • the IAB node may migrate, that is, the IAB node switches from one IAB host to another IAB host.
  • IAB nodes can be divided into full migration (Full migration) and partial migration (Partial migration).
  • Full migration Full migration
  • Partial migration partial migration
  • the current design of complete migration is not perfect, so it is necessary to design the relevant implementation of complete migration of IAB nodes.
  • This application provides a communication method based on access backhaul integrated IAB, which can support the implementation of full migration of IAB nodes.
  • a communication method based on access backhaul integrated IAB includes: the first host node centralized unit Donor-CU1 sends a message for the first host node centralized unit Donor-CU2 to the second host node centralized unit Donor-CU2.
  • An IAB node requests Internet Protocol IP address configuration and/or returns a first message for Adaptation Protocol BAP configuration.
  • the first BAP configuration, X and Y are positive integers.
  • one set of first IP address configurations among X sets of first IP address configurations and one first BAP configuration among Y first BAP configurations are used to switch the mobile terminal MT of the first IAB node from Donor-CU1 to Donor After -CU2, establish an F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node.
  • Donor-CU1 requests IP address configuration and/or BAP configuration from Donor-CU2 for the first IAB node.
  • the X sets of IP address configurations and/or Y BAP configurations returned by Donor-CU2 enable the MT of the first IAB node to switch from Donor-CU1 to Donor-CU2, between Donor-CU2 and the first DU of the first IAB node.
  • the F1 connection can be established, so that Donor-CU2 and the first IAB node can communicate with F1-C and F1-U, supporting the implementation of the full migration solution, so that the traffic of the terminal device can be migrated to Donor-CU2 and the first IAB Destination path transmission between nodes.
  • the method further includes: Donor-CU1 receiving third information from Donor-CU2, the third information indicating each of the X sets of first IP address configurations and the Yth set of first IP address configurations.
  • Donor-CU2 instructs each set of first IP address configuration and/or each first BAP configuration of the DU, enabling the first IAB node to accurately use the IP address configuration and first BAP configuration of each DU , thereby being consistent with the understanding of the Donor-CU2 side, thereby enabling the subsequent F1 connection between Donor-CU2 and the first DU of the first IAB node to be correctly established.
  • the method further includes: Donor-CU1 sends a third message to the first IAB node.
  • the third message includes a second IP address configuration and a second BAP configuration.
  • the second IP address configuration and the second BAP configuration are used to establish a cross-topology F1 connection between Donor-CU2 and the first DU of the first IAB node through the first host node distributed unit Donor-DU1.
  • a cross-topology F1 connection between Donor-CU2 and the first DU of the first IAB node through Donor-CU1 can be established, so that the terminal device can Switch to the first DU of the first IAB node to achieve full migration of the IAB node.
  • the method further includes: Donor-CU1 receiving fourth information from Donor-CU2.
  • the fourth information indicates that the second switching command message sent by Donor-CU1 to the first IAB node carries the switching condition of the MT of the first IAB node, and the second switching command message instructs the MT of the first IAB node to perform switching.
  • the method further includes: Donor-CU1 receiving fourth information from Donor-CU2.
  • the fourth information instructs Donor-CU1 to send the first switching command message to at least one terminal device under the second DU of the first IAB node, and then send the second switching command message to the first IAB node;
  • the first switching command message instructs the terminal device From the second DU of the first IAB node to the first DU of the first IAB node, the second switching command message instructs the MT of the first IAB node to perform switching.
  • Donor-CU1 can be instructed to send a second switching command message to the first IAB node after sending the first switching command message to at least one terminal device, so that the migration of the IAB node conforms to the Full Nested migration process.
  • Donor-CU1 sends the second message to the first IAB node, including: after Donor-CU1 sends the first switching command message to at least one terminal device under the second DU of the first IAB node, The first IAB node sends the second message.
  • the first switching command message instructs the terminal device to switch from the second DU of the first IAB node to the first DU of the first IAB node, and the second message instructs the MT of the first IAB node to perform the switching.
  • the method further includes: Donor-CU1 receiving fourth information from Donor-CU2.
  • the fourth information instructs Donor-CU1 to send the second switching command message to the first IAB node after receiving the notification message from Donor-CU2; the notification message is used to notify Donor-CU2 to receive the second DU of the first IAB node.
  • a handover completion message of at least one terminal device indicates that the terminal device completes the handover from the second DU of the first IAB node to the first DU of the first IAB node, and the second handover command message indicates MT execution of the first IAB node. switch.
  • Donor-CU1 sends a second switching command message to the first IAB node after Donor-CU2 receives the switching completion message of at least one terminal device, so that the migration of the IAB node conforms to the Gradual Bottom-up migration process.
  • Donor-CU1 sends the second message to the first IAB node, including: after receiving the notification message from Donor-CU2, Donor-CU1 sends the second message to the first IAB node. Instruct the MT of the first IAB node to perform handover.
  • the notification message is used to notify Donor-CU2 to receive the switching completion message of at least one terminal device under the second DU of the first IAB node.
  • a communication method based on the access backhaul integrated IAB includes: the second host node centralized unit Donor-CU2 receives the communication from the first host node centralized unit Donor-CU1 for The first IAB node requests a first message for IP address configuration and/or BAP configuration, and sends the X sets of first IP address configurations and Y first BAP configurations to Donor-CU1, where X and Y are positive integers.
  • one set of first IP address configurations among X sets of first IP address configurations and one first BAP configuration among Y first BAP configurations are used to switch the mobile terminal MT of the first IAB node from Donor-CU1 to Donor After -CU2, establish an F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node.
  • Donor-CU2 returns X sets of IP address configurations and/or Y BAP configurations to Donor-CU1 based on Donor-CU1's request, so that after the MT of the first IAB node switches from Donor-CU1 to Donor-CU2, Donor -The F1 connection between CU2 and the first DU of the first IAB node can be established, thereby enabling Donor-CU2 and the first IAB node to communicate with F1-C and F1-U, supporting the implementation of the full migration solution, allowing the terminal The device's traffic can be migrated to the target path between Donor-CU2 and the first IAB node.
  • the method also includes: Donor-CU2 sends third information to Donor-CU1, and the third information indicates each set of first IP address configurations and Y first sets of X sets of first IP address configurations.
  • the method also includes: Donor-CU2 sending fourth information to Donor-CU1.
  • the fourth information indicates that the second switching command message sent by Donor-CU1 to the first IAB node carries the switching condition of the MT of the first IAB node, and the second switching command message instructs the MT of the first IAB node to perform switching.
  • the method also includes: Donor-CU2 sending fourth information to Donor-CU1.
  • the fourth information instructs Donor-CU1 to send the first switching command message to at least one terminal device under the second DU of the first IAB node, and then send the second switching command message to the first IAB node;
  • the first switching command message instructs the terminal device From the second DU of the first IAB node to the first DU of the first IAB node, the second switching command message instructs the MT of the first IAB node to perform switching.
  • the method also includes: Donor-CU2 sending fourth information to Donor-CU1.
  • the fourth information instructs Donor-CU1 to send the second switching command message to the first IAB node after receiving the notification message from Donor-CU2; the notification message is used to notify Donor-CU2 to receive the second DU of the first IAB node.
  • a handover completion message of at least one terminal device, the handover completion message indicates that the terminal device completes the handover from the second DU of the first IAB node to the first DU of the first IAB node, and the second handover command message indicates MT execution of the first IAB node. switch.
  • the method also includes: after receiving the fifth information from Donor-CU1, Donor-CU2 sends the backhaul link resource configuration information to the intermediate node.
  • the intermediate node includes the second host node distributed unit Donor-DU2, and the IAB node between the first IAB node and Donor-CU2.
  • the fifth information is context information or quality of service QoS information of the terminal device under the first IAB node.
  • the backhaul link resource configuration information is used to establish a backhaul radio link control RLC channel for the first DU of the first IAB node.
  • the method also includes: after receiving the fourth message from Donor-CU1, Donor-CU2 sends the backhaul link resource configuration information to the intermediate node. Or, after sending the fifth message to Donor-CU1, Donor-CU2 sends the backhaul link resource configuration information to the intermediate node.
  • the fourth message is used to request migration of the F1 connection between Donor-CU1 and the second DU of the first IAB node;
  • the fifth message is the response message of the fourth message;
  • the backhaul link resource configuration information is used to provide the first The first DU of the IAB node establishes a backhaul RLC channel;
  • the intermediate nodes include Donor-DU2, and the IAB node between the first IAB node and Donor-CU2.
  • the first message includes first information.
  • the first information indicates the number of IP address configurations and/or BAP configurations requested by Donor-CU1 for the first IAB node.
  • the first message includes second information.
  • the second information indicates at least one DU of the first IAB node, the IP address configuration and/or the BAP configuration requested by Donor-CU1 for at least one DU.
  • the first message is used to request IP address configuration and/or BAP configuration for the first IAB node, including: the first message is used to request IP address configuration and/or BAP configuration for the first IAB node.
  • the first DU requests a set of IP address configurations and/or a set of BAP configurations.
  • the second message is a handover command message for the MT of the first IAB node.
  • the second message further includes a second IP address configuration, a second BAP configuration, and a switching condition of the MT of the first IAB node.
  • the second IP address configuration and the second BAP configuration are used to establish a cross-topology F1 connection between Donor-CU2 and the first DU of the first IAB node through Donor-DU1.
  • the switching condition of the MT of the first IAB node includes: sending a first switching command message to at least one terminal device under the second DU of the first IAB node. , the first switching command message instructs the terminal device to switch from the second DU of the first IAB node to the first DU of the first IAB node. Or, receiving a switching completion message from at least one terminal device under the second DU of the first IAB node, the switching completion message indicates that the terminal device completes the switching from the second DU of the first IAB node to the first DU of the first IAB node. .
  • one of the X sets of first IP address configurations and one of the Y first BAP configurations are used in After the mobile terminal MT of the first IAB node switches from Donor-CU1 to Donor-CU2, an F1 connection is established between Donor-CU2 and the first distributed unit DU of the first IAB node, which is also used to migrate Donor-CU1 and the first distributed unit DU. An F1 connection between the second DU of an IAB node.
  • one of the X sets of first IP address configurations and one of the Y first BAP configurations are used in After the mobile terminal MT of the first IAB node switches from Donor-CU1 to Donor-CU2, an F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node is established, as well as another set of first IP address configuration. And the first BAP is configured to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • one of the X sets of first IP address configurations and one of the Y first BAP configurations are used in After the mobile terminal MT of the first IAB node switches from Donor-CU1 to Donor-CU2, the F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node is established, as well as the set of first IP address configurations. and another of the Y first BAP configurations is used to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • one of the X sets of first IP address configurations and one of the Y first BAP configurations are used in After the mobile terminal MT of the first IAB node switches from Donor-CU1 to Donor-CU2, the F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node is established, and the X sets of first IP addresses are configured Another set of first IP address configurations and another of Y first BAP configurations are used to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • the first message is used to request IP address configuration and/or BAP configuration for the first IAB node, including: the first message is used to request IP address configuration and/or BAP configuration for the first IAB node.
  • the first DU and the second DU request X sets of IP address configurations and Y BAP configurations, X equals 1 or 2, and Y equals 1 or 2.
  • a communication method based on access backhaul integrated IAB includes: the first IAB node receives the sixth information from the first host node centralized unit Donor-CU1, and according to the sixth information Start the first DU of the first IAB node.
  • the sixth information includes at least one set of IP address configuration and/or at least one set of BAP configuration. At least one set of IP address configuration and at least one set of BAP configuration are used to establish the second host node centralized unit Donor-CU2 and the first IAB. F1 connection between the first DU of the node.
  • the first IAB node receives a request for establishing an F1 connection between Donor-CU2 and the first DU of the first IAB node.
  • the IP address is configured and/or the BAP is configured
  • the first DU of the first IAB node is started, so that the terminal device can switch from the second DU of the IAB node to the first DU, thereby ensuring the implementation of the full migration solution.
  • the first IAB node receiving the sixth information from Donor-CU1 includes: the first IAB node receiving the second switching command message from Donor-CU1, and the second switching command message includes the sixth information,
  • the second handover command message instructs the mobile terminal MT of the first IAB node to perform handover.
  • the second switching command message also includes the switching condition of the MT of the first IAB node.
  • the switching condition of the MT of the first IAB node includes: sending a first switching command message to at least one terminal device under the second DU of the first IAB node, and the first switching command message indicates that the terminal device Handover from the second DU of the first IAB node to the first DU of the first IAB node. Or, receiving a switching completion message from at least one terminal device under the second DU of the first IAB node, the switching completion message indicates that the terminal device completes the switching from the second DU of the first IAB node to the first DU of the first IAB node. .
  • a fourth aspect provides a communication device for implementing various methods.
  • the communication device may be the first host node in the first aspect, or a device included in the first host node, such as a chip or a chip system; or the communication device may be the second host node in the second aspect, or the third host node.
  • the communication device includes modules, units, or means (means) corresponding to the implementation method.
  • the modules, units, or means can be implemented by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to functions.
  • the communication device may include a processing module and a transceiver module.
  • This processing module can be used to implement the processing functions in any of the above aspects and any possible implementation manner thereof.
  • the transceiver module may include a receiving module and a sending module, respectively used to implement the receiving function and the sending function in any of the above aspects and any possible implementation manner thereof.
  • the transceiver module can be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device performs the method described in any aspect.
  • the communication device may be the first host node in the first aspect, or a device included in the first host node, such as a chip or a chip system; or the communication device may be the second host node in the second aspect, or the third host node.
  • a sixth aspect provides a communication device, including: a processor and a communication interface; the communication interface is used to receive and/or send signals; the processor is used to execute computer programs or instructions to cause the communication device to execute any methods described in this regard.
  • the communication device may be the first host node in the first aspect, or a device included in the first host node, such as a chip or a chip system; or the communication device may be the second host node in the second aspect, or the third host node.
  • a communication device including: at least one processor; the processor is configured to execute a computer program or instructions stored in a memory, so that the communication device executes the method described in any aspect.
  • the memory may be coupled to the processor, or may be independent of the processor.
  • the communication device may be the first host node in the first aspect, or a device included in the first host node, such as a chip or a chip system; or the communication device may be the second host node in the second aspect, or the third host node.
  • a device included in the second host node such as a chip or a chip system; alternatively, the communication device may be the first IAB node in the third aspect, or a device included in the first IAB node, such as a chip or a chip system.
  • a computer-readable storage medium stores computer programs or instructions, which when run on a communication device, enable the communication device to perform the method described in any aspect.
  • a ninth aspect provides a computer program product containing instructions that, when run on a communication device, enable the communication device to perform the method described in any aspect.
  • a tenth aspect provides a communication device (for example, the communication device may be a chip or a chip system).
  • the communication device includes a processor for implementing the functions involved in any aspect.
  • the communication device includes a memory for storing necessary program instructions and data.
  • the device when it is a system-on-a-chip, it may be composed of a chip or may include chips and other discrete components.
  • the communication device provided in any one of the fourth to tenth aspects is a chip or a chip system
  • the sending action/function of the communication device can be understood as outputting information
  • the receiving action/function of the communication device can be understood as Enter information.
  • the technical effects brought by any design method in the fourth to tenth aspects can be referred to the technical effects brought by different design methods in the first aspect, the second aspect, or the third aspect, and will not be described again here. .
  • FIG. 1 is a schematic structural diagram of an IAB network provided by this application.
  • FIG. 2 is a schematic diagram of an interface between an IAB node and an IAB host provided by this application;
  • FIG. 3 is a schematic diagram of a control plane protocol stack in an IAB network provided by this application.
  • Figure 4 is a schematic diagram of a user plane protocol stack in an IAB network provided by this application.
  • FIG. 5 is a schematic diagram of IAB node migration provided by this application.
  • FIG. 6 is a schematic diagram of partial migration of an IAB node provided by this application.
  • Figure 7a is a schematic flow chart of full migration of IAB nodes provided by this application.
  • FIG. 7b is a schematic flowchart of another full migration of IAB nodes provided by this application.
  • Figure 7c is another schematic flow chart of full migration of IAB nodes provided by this application.
  • Figure 8 is a schematic structural diagram of a communication system provided by this application.
  • FIG. 9 is a schematic flow chart of an IAB-based communication method provided by this application.
  • FIG. 10 is a schematic flow chart of another IAB-based communication method provided by this application.
  • FIG 11 is a schematic flow chart of another IAB-based communication method provided by this application.
  • Figure 12 is a schematic flow chart of yet another IAB-based communication method provided by this application.
  • Figure 13 is a schematic structural diagram of a communication device provided by this application.
  • Figure 14 is a schematic structural diagram of another communication device provided by this application.
  • A/B can mean A or B; "and/or” in this application only means It is an association relationship that describes associated objects. It means that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A and B Can be singular or plural.
  • plural means two or more than two.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish identical or similar items with basically the same functions and effects. Those skilled in the art can understand that words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It can be understood that in the various embodiments of the present application, the size of the sequence numbers of each process does not mean the order of execution. The execution order of each process should be determined by its functions and internal logic, and should not be determined by the execution order of the embodiments of the present application. The implementation process constitutes no limitation.
  • IAB integrated access and backhaul
  • IAB-node IAB node
  • IAB-donor IAB node
  • the IAB node can provide wireless access services for user equipment (UE), and the UE's service data is sent by the IAB node to the IAB host through a wireless backhaul link.
  • IAB nodes can connect to the IAB host or connect to the IAB host through other IAB nodes.
  • the IAB node may include at least one mobile terminal (MT) and at least one distributed unit (DU).
  • the IAB node may be an entity.
  • the IAB node includes at least one MT function and at least one DU function.
  • the IAB node may also include multiple entities.
  • the IAB node includes at least one MT entity and at least one DU entity.
  • the MT entity and the DU entity can communicate with each other, for example, through network cables.
  • an IAB node When an IAB node faces its parent node (the parent node can be the IAB host or other IAB node), it can be used as a terminal device, that is, the terminal role of the IAB node. In this case, it is the MT function or MT entity that provides the terminal role for the IAB node.
  • the parent node can be the IAB host or other IAB node
  • it can be used as a terminal device, that is, the terminal role of the IAB node.
  • the MT function or MT entity that provides the terminal role for the IAB node.
  • an IAB node faces its child nodes (the child nodes can be other IAB nodes or terminal devices)
  • it When an IAB node faces its child nodes (the child nodes can be other IAB nodes or terminal devices), it can serve as a network device, that is, the network device role of the IAB node. In this case, it is the DU function or DU entity that provides the network device role for the IAB no
  • the IAB host is an access network element with complete base station functions.
  • the IAB host may include a centralized unit (CU) and at least one distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • the interface between CU and DU is the F1 interface.
  • the two ends of the F1 interface are CU and DU respectively.
  • the opposite end of CU's F1 interface is DU, and the opposite end of DU's F1 interface is CU.
  • the MT of the IAB node is referred to as IAB-MT for short, and the DU of the IAB node is referred to as IAB-DU.
  • the CU hosted by IAB is referred to as Donor-CU (Donor-CU), and the DU hosted by IAB is referred to as Donor-DU (Donor-DU).
  • the IAB network supports multi-hop networking and multi-connection networking to ensure the reliability of service transmission.
  • the IAB node regards the IAB node that provides the backhaul service as a parent node, and accordingly, the IAB node can be regarded as a child node of its parent node.
  • the terminal device can regard the IAB node connected to it as a parent node, and accordingly, the IAB node can also regard the terminal device connected to itself as a child node.
  • the IAB node that the terminal directly accesses can be called an access IAB node.
  • An IAB node can regard the IAB host it is connected to as a parent node.
  • the IAB host can also regard the IAB node connected to itself as a child node.
  • the parent node of IAB node 1 includes the IAB host.
  • IAB node 1 is the parent node of IAB node 2 or IAB node 3.
  • the parent node of terminal device 1 includes IAB node 4.
  • the child nodes of IAB node 4 include terminal device 1 or terminal device 2.
  • IAB node 4 is the access IAB node of terminal equipment 1 and terminal equipment 2.
  • IAB node 5 is the access IAB node of terminal device 2.
  • transmission path 1 "IAB host-IAB node 1-IAB node 2-IAB node 5-terminal device 2"
  • transmission path 2 IAB host-IAB node 1-IAB node 2-IAB node 4-terminal device 2
  • transmission path 3 is "IAB host-IAB node 1-IAB node 3-IAB node 4-terminal device 2".
  • a transmission path between the terminal device and the IAB host may include one or more IAB nodes.
  • Each IAB node needs to maintain a wireless backhaul link (BL) oriented to the parent node and a wireless link oriented to the child node. If the child node of the IAB node is a terminal device, the wireless link between the IAB node and the child node (that is, the terminal device) is a wireless access link (access link, AL). If the child node of an IAB node is another IAB node, the wireless link between the IAB node and the child node (ie, other IAB node) is a wireless backhaul link.
  • BL wireless backhaul link
  • AL access link
  • terminal device 1 accesses IAB node 4 through a wireless access link
  • IAB node 4 is connected to IAB node 3 through a wireless backhaul link
  • IAB node 3 is connected to IAB node 1 through a wireless backhaul link
  • IAB node 1 is connected to the IAB host through a wireless backhaul link.
  • IAB-DU is logically connected to Donor-CU through the F1 interface.
  • the connection between IAB-DU and Donor-CU is realized through the Uu interface between the MT of each hop IAB node and the IAB-DU of its parent node on the transmission path.
  • IAB-DU is ultimately able to communicate with Donor-CU, it can be considered that there is an F1 interface logically between IAB-DU and Donor-CU.
  • the F1 interface includes the F1 interface control plane (F1-C) and the F1 interface user plane (F1-U).
  • F1-C the F1 interface control plane
  • F1-U the F1 interface user plane
  • the IAB host can perform interface management of IAB nodes, context-related configuration of terminal devices, and management of IAB-DU, etc.
  • F1-U user plane data transmission, downlink transmission status feedback, etc. can be carried out between the IAB host and the IAB node.
  • FIGs 3 and 4 are respectively a schematic diagram of the control plane protocol stack and a schematic diagram of the user plane protocol stack in the IAB network provided by the embodiment of the present application.
  • a wireless backhaul link (the interface is a Uu interface) is established between IAB node 2 and IAB node 1, and between IAB node 1 and the DU hosted by the IAB.
  • the peer-to-peer protocol stacks at both ends of the wireless backhaul link may include a backhaul adaptation protocol (BAP) layer, a radio link control (RLC) layer, and a medium access control (medium access control) layer.
  • MAC medium access control
  • PHY physical
  • the peer-to-peer control plane protocol stacks at both ends of the Uu interface between the terminal device and the IAB host include the radio resource control (RRC) layer and the packet data convergence protocol (PDCP) layer. , RLC layer, MAC layer, and PHY layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the control plane protocol stack of the Uu interface on the IAB side can be located on DU and CU respectively.
  • the PHY layer, MAC layer and RLC layer are located in the DU
  • the RRC layer and PDCP layer are located in the CU.
  • F1-C interface between the DU of IAB node 2 and the CU of the IAB host.
  • One end of the F1-C interface is located on the DU of IAB node 2, and the other end is located on the CU of the IAB host.
  • the control plane protocol stacks at both ends of the F1-C interface include the F1 application protocol (F1AP) layer, the stream control transmission protocol (SCTP) layer and the Internet protocol (IP) layer. of at least one.
  • the peer-to-peer user plane protocol stacks at both ends of the Uu interface between the terminal device and the IAB host include the service data adaptation protocol (SDAP) layer, PDCP layer, RLC layer, and MAC layer. and PHY layer.
  • SDAP service data adaptation protocol
  • the IAB host includes CU and DU
  • the user plane protocol stack of the Uu interface on the IAB host side can be located in DU and CU respectively.
  • the PHY layer, MAC layer and RLC layer are located in DU
  • the SDAP layer and PDCP layer are located in CU.
  • FI-U interface between the DU of IAB node 2 and the IAB host.
  • One end of the F1-U interface is located on the DU of IAB node 2, and the other end is located on the CU of the IAB host.
  • the equivalent user plane protocol layers at both ends of the F1-U interface include the general packet radio service tunneling protocol for the user plane (GTP-U) layer, user datagram protocol (UDP) ) layer and at least one of the IP layer.
  • GTP-U general packet radio service tunneling protocol for the user plane
  • UDP user datagram protocol
  • the BAP layer is a new protocol layer introduced for the wireless backhaul link in the IAB network. As shown in Figure 3 or Figure 4, the starting and ending points of the BAP layer may be located at the DU of the IAB node counted by the terminal device and the DU of the IAB host.
  • the BAP layer can be used to implement functions such as routing of data packets on wireless backhaul links and bearer mapping.
  • Donor-CU can assign a unique BAP address (BAP address) to each IAB node and Donor-DU it controls, which is used to uniquely identify each IAB node and Donor-DU in the network.
  • BAP address unique BAP address
  • the IAB node also needs to have an IP address, and the IP address on the IAB-DU side is related to Donor-DU.
  • the BAP address of the IAB node or Donor-DU can be associated with multiple BAP path identifiers (identifiers, IDs).
  • the BAP address and BAP path ID can be collectively referred to as the BAP routing ID (BAP routing ID).
  • the BAP layer protocol stack of the source node can add a BAP header to the data packet.
  • the BAP header may include a target BAP address and a BAP path identifier, respectively indicating the BAP address of the target node (access IAB node in the downlink direction, Donor-DU in the uplink direction) and the path taken to reach the target node.
  • Donor-CU can configure routing tables for each IAB node it controls.
  • the routing table includes the mapping relationship between the BAP routing address and the next hop BAP address.
  • the IAB node can search the routing table to determine the next hop node, and forward the data packet to the next hop IAB node.
  • the BAP layer can also be used to implement mapping between the ingress backhaul RLC channel (backhaul RLC channel, BH RLC CH) and the egress BH RLC CH.
  • the mapping rules between the ingress BH RLC CH and the egress BH RLC CH can be configured by Donor-CU.
  • the mapping between the ingress BH RLC CH and the egress BH RLC CH can essentially be understood as a more fine-grained routing. Based on determining the BAP address of the next hop node, the BH RLC CH is further selected.
  • the parent node and IAB host connected to the IAB node may change.
  • IAB node 3 can switch from the source parent node (IAB node 1) to the target parent node (IAB node 2).
  • IAB-MT3 switches from the cell under IAB-DU1 to IAB- A community under DU2.
  • the IAB host connected to the IAB node changes from IAB host 1 to IAB host 2.
  • IAB node 3 switches from the source IAB host (IAB host 1) to the target IAB host (IAB host 2).
  • This scenario can be called IAB node migration, or cross-host migration, or cross-Donor-CU migration.
  • the IAB node where migration occurs can be called a boundary node.
  • IAB node 3 in Figure 5 can be called a boundary node.
  • cross-Donor-CU migration of IAB nodes can be divided into two implementation methods: partial migration (partial migration) and full migration (full migration). To put it simply, during partial migration, IAB-MT switches across Donor-CUs, but IAB-DU still maintains an F1 connection with the source Donor-CU. In full migration, IAB-MT switches across Donor-CUs, and IAB-DU needs to establish an F1 connection with the target Donor-CU.
  • the source Donor-CU can be called F1 endpoint CU (F1-terminating CU)
  • the target Donor-CU can be called non-F1 endpoint CU (non-F1-terminating CU).
  • the F1 connection can be understood as the connection on the F1 interface.
  • Part of the migration is mainly for load balancing scenarios.
  • the movement range of the border node is large, it is inappropriate for the border node to still maintain the F1 connection with the source Donor-CU.
  • the anchor point of the F1 connection of the border node needs to be migrated to the target Donor-CU. Therefore, full migration is mainly oriented to the border. Migration caused by the movement of nodes.
  • partial migration and full migration can also be applied to migration caused by other reasons, and this application does not specifically limit this.
  • FIG. 6 is a schematic diagram of partial migration provided by an embodiment of the present application.
  • IAB-MT2 and Donor-CU1 Before partial migration, between IAB-MT2 and Donor-CU1 There is an RRC connection, an F1 interface exists between IAB-DU2 and Donor-CU1, and the communication path between IAB-DU2 and Donor-CU1 is the source path: After partial migration, an RRC connection is established between IAB-MT2 and Donor-CU2, the F1 interface between IAB-DU2 and Donor-CU1 still exists, and there is no F1 interface between IAB-DU2 and Donor-CU2.
  • the communication path between IAB-DU2 and Donor-CU1 becomes the target path:
  • the target path can be understood as a cross-topology path
  • the cross-topology path can refer to a path including two IAB nodes managed by Donor-CU.
  • Donor-CU2 After partial migration, data transmission on the target path does not pass through Donor-CU2, and Donor-CU1 and Donor-DU2 communicate through the IP network. Although the data transmission on the target path does not pass through Donor-CU2, Donor-DU2, IAB-MT3, IAB-DU3, and IAB-MT2 are controlled by Donor-CU2, and the configuration on them for serving cross-topology traffic is completed by Donor-CU2 .
  • cross-topology traffic can be understood as traffic transmitted through cross-topology paths.
  • the IP address on the IAB-DU side is related to Donor-DU, when the border node migrates across Donor-CU, Donor-DU changes, and the IP address on the IAB-DU side needs to change accordingly.
  • the IP address of the IAB-DU2 anchor under Donor-DU2 can be sent from Donor-CU2 to Donor-CU1, and then from Donor-CU1 to IAB node 2.
  • the BAP address and default BAP configuration of IAB node 2 can be sent by Donor-CU2 to Donor-CU1, and then sent by Donor-CU1 to IAB node 2.
  • the default BAP configuration is used to exchange the first F1-C message between IAB node 2 and Donor-CU1 through the target path.
  • Donor-CU2 can send more BAP configurations of user plane data in the target path to Donor-CU1, and then Donor-CU1 sends it to IAB node 2 through the cross-topology F1-C interface between Donor-CU1 and IAB node 2.
  • the cross-topology F1 interface can be understood as: the F1 interface (or F1 connection) is implemented through a cross-topology path.
  • FIG. 7a, FIG. 7b, and FIG. 7c are flowcharts of the three implementation methods provided by the embodiments of the present application respectively.
  • IAB node 3 the border node
  • IAB-DU3a and IAB-DU3b two (logical) DUs (denoted IAB-DU3a and IAB-DU3b).
  • RRC connection between IAB-MT3 and Donor-CU1
  • F1 interface between IAB-DU3a and Donor-CU1.
  • the curves in Figures 7a, 7b, and 7c represent possible transmission paths in each step.
  • the cross-topology F1-C connection between IAB-DU3b and Donor-CU2 is established through step 0 (the cross-topology F1-U connection is not established, and cross-topology traffic transmission is not performed), so that Terminal equipment under IAB-DU3a can switch to IAB-DU3b.
  • HO handover
  • the terminal device After sending a handover (HO) command (command, Com) to the terminal device under IAB-DU3a in step 1, the terminal device performs handover in step 2.
  • Donor-CU1 sends a switching command to IAB point 3, causing IAB-MT3 to switch from IAB-DU1 to IAB-DU2, and sends a switching completion (HO complete) message to Donor-CU2.
  • the switching completion message of the terminal device is sent to Donor-CU2 through IAB-DU3b.
  • the cross-topology F1-C connection and F1-U connection between IAB-DU3b and Donor-CU2 are established through step 0, so that the terminal equipment under IAB-DU3a can switch to IAB-DU3b realizes cross-topology control plane and user plane communication between IAB-DU3b and Donor-CU2.
  • Donor-CU1 sends a switching command to the terminal device. After the terminal device performs the switching, the switching completion message is transmitted to Donor-CU2 through the cross-topology path between IAB-DU3b and Donor-CU2.
  • steps 4 to 6 Donor-CU1 sends a switching command to IAB point 3, causing IAB-MT3 to switch from IAB-DU1 to IAB-DU2, and sends a switching completion message to Donor-CU2.
  • Gradual Top-down is similar to partial migration.
  • IAB-MT3 is switched, and the cross-topology F1-C connection and F1-U connection between IAB-DU3 and Donor-CU1 are established, as well as IAB-DU3b F1-C connection and F1-U connection to Donor-CU2.
  • Donor-CU1 sends a switching command to the terminal device through the cross-topology connection between IAB-DU3 and Donor-CU1 to realize the switching of the terminal device from IAB-DU3a to IAB-DU3b.
  • the communication system includes a first host node, a second host node and a first IAB node.
  • the first IAB first connects to the first host node, and then the first IAB node can migrate to connect to the second host node.
  • the communication system may also include at least one terminal device accessing the first IAB node.
  • one or more IAB nodes may exist between the first IAB node and the first host node.
  • an IAB node 1 is used as an example, and the IAB node 1 includes IAB-MT1 and IAB-DU1 for illustration.
  • an IAB node 2 is taken as an example, and the IAB node 2 includes IAB-MT2 and IAB-DU2. Be explained.
  • the first host node or the second host node may include but is not limited to: next generation base station (generation nodeB, gNB), evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (home evolved Node B or home Node B), transmission point ( transmission and reception point or transmission point), road side unit (RSU) with base station function, baseband unit (BBU), radio frequency remote unit (Remote Radio Unit, RRU), active antenna unit ( active antenna unit (AAU), one or a group of antenna panels, or nodes with base station functions in subsequent evolution systems.
  • generation nodeB, gNB next generation base station
  • eNB evolved node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station home evolved Node B or home Node B
  • the first host node may include a host CU function and a host DU function.
  • the first host node may be understood as one entity.
  • the first host node may include a host CU entity and a host DU entity.
  • the first host node may be divided into two entities.
  • the second host node reference may be made to the first host node, which will not be described again here.
  • the host CU function or host CU entity of the first host node is called the first host node centralized unit Donor-CU1
  • the host DU function or host DU entity of the first host node is called It is the first host node distributed unit Donor-DU1.
  • the host CU function or host CU entity of the second host node is called the second host node centralized unit Donor-CU2
  • the host DU function or host DU entity of the second host node is called the second host node distributed unit Donor- DU2.
  • the first host node may also be called the first IAB host
  • the second host node may also be called the second IAB host. All the features of the aforementioned IAB host are applicable to the first host node and the second host node.
  • the first IAB node may be an entity including an MT function, a first DU function, and a second DU function.
  • the first IAB node may include an MT entity, a first DU entity, and a second DU entity.
  • the first DU entity and the second DU entity can share hardware resources, that is, one DU entity is used to implement the functions of two logical DUs; or the first DU entity and the second DU entity can also use different hardware resources. This application discusses this No specific restrictions are made.
  • the following embodiments of this application will refer to the MT function or MT entity of the first IAB node as the MT of the first IAB node, and the first DU function or the first DU entity of the first IAB node as the first IAB.
  • the first DU of the node is referred to as the second DU function or the second DU entity of the first IAB node for short as the second DU of the first IAB node.
  • all the features of the aforementioned IAB node are applicable to the first IAB node.
  • the terminal equipment is sometimes also called user equipment (UE), mobile station, terminal, etc.
  • Terminal devices can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things (IoT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc. This application does not limit the specific name and implementation form of the terminal device.
  • the execution subject can perform some or all of the steps in the embodiment of the present application. These steps or operations are only examples. The embodiment of the present application can also perform other operations or variations of various operations. In addition, various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.
  • the IAB-based communication method includes the following steps:
  • Donor-CU1 sends the first message to Donor-CU2.
  • Donor-CU2 receives the first message from Donor-CU1.
  • the first message is used to request IP address configuration and/or BAP configuration for the first IAB node.
  • the IP address configuration may include traffic granularity (ie, per traffic) IP addresses.
  • the BAP configuration may include a BAP address and a default BAP (default BAP) configuration.
  • the default BAP configuration may include an RLC channel identifier. The RLC channel indicated by the RCL channel identifier may be used for interaction between the first IAB node and Donor-CU2.
  • the first IAB node Before step S901, the first IAB node is connected to Donor-CU1, or the first IAB node is controlled by Donor-CU1.
  • the same topology F1 interface can be understood as: the F1 interface (or F1 connection) is implemented through the same topology path.
  • the same topology path can refer to: the included IAB A path in which nodes are all managed by the same Donor-CU.
  • the same topology path between the second DU of the first IAB node and Donor-CU1 is:
  • the MT of the first IAB node may send a measurement report (measurement report, MR) to Donor-CU1.
  • Donor-CU1 can determine whether the MT of the first IAB node needs to be switched based on the measurement report.
  • the first message is sent to Donor-CU2.
  • Donor-CU1 determines that the MT of the first IAB node needs to be switched from Donor-CU1 to Donor-CU2
  • Donor-CU1 and Donor-CU2 can perform a handover preparation process for the MT of the first IAB node, for example, Donor-CU1 may send a switching request regarding the MT of the first IAB node to Donor-CU2, for requesting to switch the MT of the first IAB node to Donor-CU2.
  • Donor-CU2 can send a switching response to Donor-CU1, and the switching response can carry the IP address of Donor-CU2.
  • the first message may be sent during the above handover preparation process for the MT of the first IAB node, or may be sent before or after the handover preparation process, which is not specifically limited in this application.
  • Donor-CU2 sends X sets of first IP address configurations and/or Y first BAP configurations to Donor-CU1.
  • Donor-CU1 receives the X sets of first IP addresses and/or Y first BAP configurations from Donor-CU2.
  • X and Y are positive integers.
  • a set of IP address configurations may include at least one IP address, and the at least one IP address corresponds to at least one type (or one) of traffic. That is, a set of IP address configurations includes IP addresses at the granularity of traffic.
  • Donor-CU2 when Donor-CU2 sends X sets of first IP address configurations and Y first BAP configurations to Donor-CU1, there is a correspondence between the X sets of first IP address configurations and the Y first BAP configurations. Relationship, which indicates that a certain set of IP addresses needs to be used in combination with its corresponding first BAP configuration. For example, if the IP address of a DU of the first IAB node is the IP address in the first IP address configuration #1, then the BAP configuration of the DU is the first BAP configuration corresponding to the first IP address configuration #1.
  • one of the X sets of first IP address configurations and one of the Y BAP configurations are used to switch the MT of the first IAB node from Donor-CU1 to Donor-CU2.
  • an F1 connection (or F1 interface) is established between Donor-CU2 and the first DU of the first IAB node.
  • the set of first IP address configuration and the first BAP configuration are used to establish the same topology F1 connection between Donor-CU2 and the first DU of the first IAB node.
  • the X sets of first IP address configurations and/or Y first BAP configurations may be determined through negotiation between Donor-CU2 and Donor-DU2.
  • the X sets of first IP address configurations may be sent to Donor-CU2 after being determined by Donor-DU2; the Y first BAP configurations may be determined by Donor-CU2, which is not specifically limited in this application.
  • Donor-CU1 sends the second message to the first IAB node.
  • the first IAB node receives the second message from Donor-CU1.
  • the second message includes the above-mentioned X sets of first IP address configurations and/or Y first BAP configurations.
  • the second message may be a switching command message for the MT of the first IAB node.
  • the second message may be an RRC message other than the handover command message, which is not specifically limited in this application.
  • the first IAB node starts the first DU of the first IAB node.
  • the trigger condition for starting the first DU of the first IAB node is: the first IAB node receives the sixth information.
  • the first IAB node starts the first DU of the first IAB node according to the sixth information.
  • the sixth information includes at least one set of IP addresses and/or at least one set of BAP configurations. The at least one set of IP address configurations and at least one set of BAP configurations are used to establish an F1 connection (or F1 interface) (same topology or across topology) between Donor-CU2 and the first DU of the first IAB node.
  • the first IAB node can determine whether the second message includes the above sixth information. Since among the X sets of first IP address configurations and/or Y first BAP configurations in the above second message, there is a set of first IP address configurations and/or a first BAP configuration used to establish Donor-CU2 and the first Cross-topology F1 connection (or F1 interface) between the first DU of the IAB node. Therefore, after receiving the second message, the first IAB node can start the first DU of the first IAB node.
  • activating the first DU of the first IAB node can also be described as: enabling or enabling or validating or activating the first DU of the first IAB node.
  • activating the first DU of the first IAB node may include: activating or preparing or validating a cell managed by the first DU.
  • the operation administration and maintenance network element can configure two sets of cells for the first IAB node in advance, where one set of cells is managed by the first DU of the first IAB node, and the other set is managed by the first DU of the first IAB node.
  • the cells managed by each DU can be activated or take effect when the DU is started.
  • the first DU of the first IAB node starts, it is activated or quasi-
  • the cells under the first DU that are ready or effective may be specifically indicated by Donor-CU2, that is, Donor-CU2 may indicate which cells under the first DU are activated or prepared or effective.
  • Donor-CU1 requests IP address configuration and/or BAP configuration from Donor-CU2 as the first IAB node.
  • the X sets of IP address configurations and/or Y BAP configurations returned by Donor-CU2 enable the MT of the first IAB node to switch from Donor-CU1 to Donor-CU2, between Donor-CU2 and the first DU of the first IAB node.
  • the F1 connection can be established, so that Donor-CU2 and the first IAB node can communicate with F1-C and F1-U, ensuring the implementation of the full migration solution, so that the traffic of the terminal device can be migrated to Donor-CU2 and the first IAB Destination path transmission between nodes.
  • the first IAB node starts the first DU of the first IAB node after receiving the IP address configuration and/or BAP configuration used to establish the F1 connection between Donor-CU2 and the first DU of the first IAB node, This enables the terminal device to switch from the second DU of the IAB node to the first DU, which also ensures the implementation of the full migration solution.
  • the MT of the first IAB node sends a measurement report to Donor-CU1.
  • Donor-CU1 receives the measurement report of the MT from the first IAB node.
  • Donor-CU1 can determine whether the MT of the first IAB node needs to be switched based on the measurement report.
  • the following steps S1002 and S1003 are executed.
  • Donor-CU1 and Donor-CU2 execute the handover preparation process regarding the MT of the first IAB node. Please refer to the relevant description of the aforementioned switching preparation process, which will not be described again here.
  • Donor-CU1 sends the first message to Donor-CU2.
  • Donor-CU2 receives the first message from Donor-CU1.
  • For the first message please refer to the relevant description in step S901 above, which will not be described again here.
  • Step S1002 may be executed first and then step S1003; or step S1003 may be executed first and then step S1003; or step S1002 and step S1003 may be executed at the same time.
  • the first message is about the handover preparation process of the MT. some news.
  • Donor-CU1 when Donor-CU1 requests IP address configuration and/or BAP configuration for the first IAB node, it may indicate the number of requested IP address configurations and/or BAP configurations, and/or indicate the requested IP address configuration and/or Or the subject corresponding to the BAP configuration, that is, which DU of the first IAB node requests IP address configuration and/or BAP configuration.
  • the first message may include first information and/or second information.
  • the first message may be an existing XN message.
  • the first information indicates the number of IP address configurations and/or BAP configurations requested by Donor-CU1 for the first IAB node. For example, for Full Nested, the first information may instruct Donor-CU1 to request a set of IP address configuration and/or a BAP configuration for the first IAB node.
  • the first message may include information element 1 and information element 2, respectively used to indicate the number of IP address configurations and the number of BAP configurations requested by Donor-CU1.
  • the first message may include information element 3, used to jointly instruct Donor-CU1 to request the number of scheduled IP address configurations and the number of BAP configurations. For example, when the value of cell 3 is 1, it instructs Donor-CU1 to request a set of IP address configuration and a BAP configuration for the first IAB node.
  • the second information indicates at least one DU of the first IAB node.
  • the IP address configuration and/or BAP configuration requested by Donor-CU1 is used for at least one DU indicated by the second information.
  • the second information may indicate the first DU of the first IAB node, indicating that the IP address configuration and/or BAP configuration requested by Donor-CU1 is used for the first DU. In other words, it means that Donor-CU1 requests IP address configuration and/or BAP configuration for the first DU of the first IAB node.
  • the first message may include information element 4, which carries an identifier of the first DU to indicate the first DU of the first IAB node.
  • Donor-CU2 after Donor-CU2 receives the first message and obtains the second information from the first message, it can learn that the first IAB node will perform full migration instead of partial migration.
  • the first message may be a newly defined XN message, and the newly defined XN message itself may have the aforementioned quantity and/or subject indication function.
  • the newly defined XN message may be used to request a set of IP address configuration and/or a BAP configuration for the first DU of the first IAB node.
  • Donor-CU2 sends X sets of first IP address configurations and/or Y first BAP configurations to Donor-CU1.
  • Donor-CU1 receives the X sets of first IP addresses and/or Y first BAP configurations from Donor-CU2.
  • X and Y are positive integers.
  • Donor-CU2 can send a set of first IP address configuration and/or a first BAP configuration to Donor-CU1 for establishing a connection between Donor-CU2 and the first DU of the first IAB node. of cross-topology F1 connections.
  • the X sets of first IP address configurations and Y first BAP configurations can be carried in one message. , or can be carried in multiple messages.
  • X sets of first IP address configurations are carried in one message, and Y sets of first BAP configurations are carried in another message; or, the first IP address configuration and/or the first DU of the first IAB node are used.
  • a BAP configuration is carried in one message, and the first IP address configuration and/or the first BAP configuration for the second DU of the first IAB node is carried in another message, which is not specifically limited in this application.
  • Donor-CU2 can also send third information to Donor-CU1.
  • Donor-CU1 can receive the third information from Donor-CU2.
  • the third information indicates the DU of the first IAB node to which each of the X sets of first IP address configurations sent by Donor-CU2 belongs, and/or indicates the DU of the Y first BAP configurations.
  • Each first BAP configures the DU of the first IAB node to which it belongs.
  • the third information may indicate which DU of the first IAB node is configured for each set of the first IP address it sends, and/or indicates that each first BAP configuration it sends is for the first IAB node. Which DU is configured.
  • the third information may indicate that a set of IP address configurations and/or a BAP configuration sent by Donor-CU2 belong to the first DU of the first IAB node, that is, the first DU for the first IAB node. configured.
  • Donor-CU2 can also send the fourth information to Donor-CU1.
  • Donor-CU1 can receive the fourth information from Donor-CU2.
  • the fourth information may instruct Donor-CU1 to send a second switching command to the first IAB node after sending the first switching command message to at least one terminal device under the second DU of the first IAB node.
  • This application does not limit the at least one terminal device to certain specific terminal devices.
  • the "at least one terminal device” here is only used to limit the number of terminal devices. For example, assuming that there are 10 terminal devices under the second DU of the first IAB node, and the "at least one terminal device" indicated by the fourth information is 8 terminal devices, it can mean that Donor-CU1 sends a request to the second DU of the first IAB node.
  • the second switching command message is sent to the first IAB node.
  • the at least one terminal device may also refer to all terminal devices. That is, the fourth information may instruct Donor-CU1 to send the second switching command message after sending the first switching command message to all terminal devices under the second DU of the first IAB node.
  • the first switching command message instructs the terminal device to switch from the second DU of the first IAB node to the first DU of the first IAB node, or in other words, instructs the terminal device to switch from the second DU of the first IAB node to the first IAB node.
  • the node's first DU switches.
  • the second switching command message instructs the MT of the first IAB node to perform switching, or in other words, the second switching command message is a switching command message for the MT of the first IAB node.
  • the fourth information indicates that the second switching command message sent by Donor-CU1 to the first IAB node carries the switching condition of the MT of the first IAB node.
  • the switching condition of the MT of the first IAB node may include: (the first IAB node or the second DU of the first IAB node) sends a first message to at least one terminal device under the second DU of the first IAB node. Toggle command message.
  • This application does not limit the at least one terminal equipment to some specific terminal equipment.
  • the at least one terminal equipment can be replaced by all terminal equipment, that is, the switching conditions of the MT of the first IAB node can include: (first IAB node or the second DU of the first IAB node) sends the first switching command message to all terminal devices under the second DU of the first IAB node.
  • the above-mentioned steps S1003 and step S1004 can be executed in the same process.
  • the above-mentioned steps S1003 and step S1004 can be executed in the handover preparation process regarding the MT.
  • the above information sent by Donor-CU2 to Donor-CU1 can be carried in the same message or in multiple messages. This application does not specifically limit this.
  • Donor-CU1 sends the second message to the first IAB node.
  • the first IAB node receives the second message from Donor-CU1.
  • the second message includes the above-mentioned X sets of first IP address configurations and/or Y first BAP configurations.
  • the second message may be other RRC messages other than the handover command message for the MT.
  • the second message is not a handover command message for the MT.
  • the second message may also include a second IP address configuration and/or a second BAP configuration.
  • the second IP address configuration and the second BAP configuration are used to establish a cross-topology F1 connection between Donor-CU2 and the first DU of the first IAB node through Donor-DU1.
  • the second IP address configuration and the second BAP configuration are used to establish a connection between Donor-CU2 and the first DU of the first IAB node before the MT of the first IAB node switches from Donor-CU1 to Donor-CU2.
  • F1 connection for example, for Full Nested, the F1 connection here can be an F1-C connection.
  • the second IP address configuration and the second BAP configuration may be determined through negotiation between Donor-CU1 and Donor-DU1.
  • the second IP address configuration may be determined by Donor-DU1
  • the second BAP configuration may be determined by Donor-CU1.
  • the second message may be a switching command message for the MT of the first IAB node, and the second message also includes the switching condition of the MT of the first IAB node.
  • Donor-CU1 also sends a third message to the first IAB node, where the third message includes the second IP address configuration and the second BAP configuration.
  • the third message is an RRC message other than the handover command message for the MT. Furthermore, the third message is sent to the first IAB node before the second message.
  • Donor-CU1 sends the second message to the first IAB node, which may include: Donor-CU1 sends the first message to at least one terminal device under the second DU of the first IAB node. After switching the command message, send the second message to the first IAB node.
  • This application does not limit the at least one terminal device to some specific terminal device.
  • the at least one terminal device may be replaced by all terminal devices. Reference may be made to the relevant description of the at least one terminal device in the first possible implementation of the fourth information, which will not be described again here.
  • the second message may also be called a second switching command message.
  • the second message may be a switching command message for the MT of the first IAB node, and the second message also includes the second IP address configuration, the second BAP configuration, and the second IP address configuration of the first IAB node.
  • MT switching conditions For the handover condition of the MT of the first IAB node, reference may be made to the relevant description in the second possible implementation of the above fourth information, which will not be described again here.
  • the second message may also be called a second switching command message.
  • the switching condition of the MT of the first IAB node can also be understood as the effective condition of the switching command indicated by the second message.
  • the switching command represented by the second message is the switching command for the MT of the first IAB node.
  • the first IAB node starts the first DU of the first IAB node.
  • the trigger condition for starting the first DU of the first IAB node is: the first IAB node receives the sixth information.
  • the sixth information includes at least one set of IP addresses and/or at least one set of BAP configurations.
  • the at least one set of IP address configurations and at least one set of BAP configurations are used to establish an F1 connection (same topology or across topology) between Donor-CU2 and the first DU of the first IAB node.
  • the sixth information includes at least one of the first IP address configuration, the first BAP configuration, the second IP address configuration, or the second BAP configuration. item.
  • the first IP address configuration and the first BAP configuration are used to establish the same topology F1 connection between Donor-CU2 and the first DU of the first IAB node.
  • the second IP address configuration and the second BAP configuration are used to establish a cross-topology F1 connection between Donor-CU2 and the first DU of the first IAB node.
  • the sixth information includes the second IP address configuration and/or the second BAP configuration. That is, after receiving the third message, the first IAB node can start the first DU of the first IAB node.
  • the sixth information may be considered to be carried in the second message (or called the second switching command message). That is, the first IAB node receiving the sixth information from Donor-CU1 may include: the first IAB node receiving the second message (or called the second switching command message) from Donor-CU1, the message including the sixth information .
  • the second IP address configuration and the second BAP configuration can be used in step S1007.
  • This application does not specifically limit the establishment method of the cross-topology F1-C connection.
  • Donor-CU1 sends the fifth information to Donor-CU2.
  • Donor-CU2 receives the fifth information from Donor-CU1.
  • the fifth information is context information or quality of service (QoS) information of the terminal device under the first IAB node (for example, the second DU of the first IAB node).
  • QoS quality of service
  • the fifth information may be carried in a handover request message for the terminal device, or may be carried in other messages, which is not specifically limited in this application. If the fifth information is carried in other messages, in step S1008, Donor-CU1 also needs to send a switching request message for the terminal device to Donor-CU2. In FIG. 10 , the fifth information is carried in the handover request message for the terminal device as an example for illustration.
  • Donor-CU2 sends the backhaul link resource configuration information to the intermediate node.
  • Donor-CU2 may perform step S1009 after receiving the fifth information.
  • the trigger condition for Donor-CU2 to send backhaul link resource configuration information to the intermediate node may be that Donor-CU2 receives the context information or QoS information of the terminal device.
  • the intermediate nodes include Donor-DU2, and the IAB node between the first IAB node and Donor-CU2 (for example, IAB node 2 shown in Figure 8). It can be understood that Figure 8 is only an example with one IAB node existing between the first IAB node and Donor-CU2. Taking an example to illustrate, in actual applications, there may be multiple IAB nodes between the first IAB node and Donor-CU2, and Donor-CU2 may send backhaul link resource configuration information to the multiple IAB nodes respectively. In addition, the backhaul link resource configuration information sent by Donor-CU2 to different IAB nodes may be the same or different, and this application does not specifically limit this.
  • the backhaul link resource configuration information is used to establish a backhaul RLC channel (BL RLC CH) for the first DU of the first IAB node.
  • Donor-CU2 sends a handover response message for the terminal device to Donor-CU1.
  • Donor-CU1 receives the switching response message from Donor-CU2.
  • step S1010 there is no strict sequence between step S1010 and step S1009.
  • Step S1009 may be executed first and then step S1010; or step S1010 may be executed first and then step S1009; or step S1009 and step S1010 may be executed simultaneously. This application does not specifically limit this.
  • Donor-CU1 sends the first switching command message to the terminal device under the second DU of the first IAB node.
  • the terminal device receives the first switching command message from Donor-CU1.
  • the first switching command message may be sent to the terminal device via Donor-DU1, IAB node 1, the MT of the first IAB node, and the second DU of the first IAB node.
  • the terminal device initiates random access to the first DU of the first IAB node and performs a random access process.
  • the process may also include the following step S1013a.
  • the process may also include the following step S1013b.
  • Donor-CU1 determines to send the first switching command message to at least one terminal device under the second DU of the first IAB node, it sends the second switching command message to the first IAB node.
  • the first IAB node determines to send the first switching command message to at least one terminal device under the second DU of the first IAB node, it determines that the switching condition of the MT of the first IAB node is satisfied, or in other words, the second message takes effect. switching command.
  • this application does not limit at least one terminal device in the above steps S1013a and S1013b to be some specific terminal device.
  • the at least one terminal device can be replaced by all terminal devices. Reference may be made to the relevant description of the at least one terminal device in the first possible implementation of the fourth information, which will not be described again here.
  • step S1013a or step S1013b the following steps S1014 and S1015 may be continued.
  • the MT of the first IAB node initiates random access to the target cell and executes the random access process.
  • the target cell is a cell managed by DU of the target parent node of the first IAB node.
  • This target parent node is managed by Donor-CU2.
  • the target parent node may be IAB node 2
  • the target cell may be a cell managed by the DU of IAB node 2.
  • the first DU of the first IAB node can initiate an F1-C connection establishment request to Donor-CU2 through the intermediate node.
  • the user plane (UP) configuration update sent by Donor-CU2 through the F1-C message can be received, such as receiving the IAB user plane configuration update (IAB UP configuration update) message.
  • the first DU of the first IAB node can communicate with Donor-CU2 through the intermediate node on the F1 control plane and user plane. In other words, the Full Nested migration of the first IAB node is completed.
  • the IP address configuration of the first DU the BAP configuration, the sending timing or effective timing of the MT handover command message, the starting timing of the first DU of the first IAB node, the configuration timing of the BL RLC CH, etc.
  • the implementation details of Nested migration have been designed to ensure the implementation of the Full Nested migration plan.
  • S1101-S1102 are the same as the above-mentioned steps S1001 and S1002. Please refer to the relevant descriptions of steps S1001 and S1002, which will not be described again here.
  • Donor-CU1 sends the first message to Donor-CU2.
  • Donor-CU2 receives the first message from Donor-CU1.
  • the first message may also instruct Donor-CU1 to request a set of IP address configuration and/or a BAP configuration for the first IAB node.
  • the second information may also indicate the first DU of the first IAB node, indicating that Donor-CU1 requests IP address configuration and/or BAP configuration for the first DU of the first IAB node. Please refer to the relevant instructions in step S1003 above, I won’t go into details here.
  • Donor-CU2 sends X sets of first IP address configurations and/or Y first BAP configurations to Donor-CU1.
  • Donor-CU1 receives the X sets of first IP addresses and/or Y first BAP configurations from Donor-CU2.
  • X and Y are positive integers.
  • Donor-CU2 can also send a set of first IP address configuration and/or a first BAP configuration to Donor-CU1 to establish the connection between Donor-CU2 and the first DU of the first IAB node.
  • the third information may also indicate that a set of IP address configurations and/or a BAP configuration sent by Donor-CU2 belong to the first DU of the first IAB node.
  • Donor-CU2 can also send the fourth information to Donor-CU1. Different from Full Nested, in the Gradual Bottom-up process, as the first possible implementation, the fourth information can instruct Donor-CU1 to send a message to the first IAB node after receiving the notification message from Donor-CU2. Second switching command message.
  • the notification message is used to notify Donor-CU2 to receive a handover completion message of at least one terminal device under the second DU of the first IAB node.
  • the switching completion message indicates that the terminal device completes switching from the second DU of the first IAB node to the first DU of the first IAB node.
  • the switching completion message may be a response message to the first switching command.
  • For the second switching command message reference may be made to the relevant description in the process shown in Figure 10, which will not be described again here.
  • At least one terminal device in the process shown in Figure 11 does not limit at least one terminal device in the process shown in Figure 11 to be some specific terminal device.
  • at least one terminal device in the process shown in Figure 11 can be replaced by “all terminal devices”.
  • all terminal devices For detailed description of at least one terminal device, please refer to the relevant description in the process shown in Figure 10, here No longer.
  • the fourth information may indicate that the second switching command message sent by Donor-CU1 to the first IAB node carries the switching condition of the MT of the first IAB node.
  • the switching conditions of the MT of the first IAB node may include: (the first IAB node or the second DU of the first IAB node) receiving the second DU of the first IAB node.
  • the switching completion message of at least one terminal device may include: (the first IAB node or the second DU of the first IAB node) receiving the second DU of the first IAB node.
  • Donor-CU1 sends the second message to the first IAB node.
  • the first IAB node receives the second message from Donor-CU1.
  • This step S1105 is similar to the above step S1005.
  • Donor-CU1 sends the second message to the first IAB node, which may include: Donor-CU1 receives the message from Donor-CU2 After the notification message, the second message is sent to the first IAB node.
  • This notification message is used to notify Donor-CU2 to receive the switching completion message of at least one terminal device under the second DU of the first IAB node.
  • the first IAB node starts the first DU of the first IAB node. It is the same as the above-mentioned step S1006. Please refer to the relevant description in the above-mentioned step S1006, which will not be described again here.
  • S1108-S1112 are the same as the above-mentioned steps S1108-S1112. Please refer to the relevant description of steps S1108-S1112, which will not be described again here.
  • the process may also include the following step S1113a.
  • the process may also include the following step S1113b.
  • Donor-CU1 After receiving the notification message from Donor-CU2, Donor-CU1 sends the second switching command message to the first IAB node.
  • Donor-CU2 may send the notification message to Donor-CU1 after receiving the switching completion message of at least one terminal device under the second DU of the first IAB node.
  • the first IAB node After receiving the switching completion message of at least one terminal device under the second DU of the first IAB node, the first IAB node determines that the switching condition of the MT of the first IAB node is satisfied, or in other words, the switching indicated by the second message takes effect. Order.
  • steps S1114 and S1115 may be continued.
  • step S1114 and step S1115 are the same as the above-mentioned step S1014 and step S1015 respectively. Please refer to the foregoing relevant description, which will not be described again here.
  • the first DU of the first IAB node can communicate with Donor-CU2 through the intermediate node for the F1 control plane and user plane. In other words, the Gradual Bottom-up migration of the first IAB node is completed.
  • Gradual is evaluated from aspects such as the IP address configuration of the first DU, the BAP configuration, the sending timing or effective timing of the MT handover command message, the starting timing of the first DU of the first IAB node, and the configuration timing of the BL RLC CH.
  • the implementation details of Bottom-up migration are designed to ensure the implementation of Gradual Bottom-up migration plan.
  • S1201-S1202 are the same as the above-mentioned steps S1001 and S1002. Please refer to the relevant descriptions of steps S1001 and S1002, which will not be described again here.
  • Donor-CU1 sends the first message to Donor-CU2.
  • Donor-CU2 receives the first message from Donor-CU1.
  • This step S1203 is similar to the above step S1003.
  • the difference is that for Gradual Top-down, in the first possible implementation, the first information and the second information can be implemented in the following way:
  • the first information instructs Donor-CU1 to request two sets of IP address configurations and two BAP configurations for the first IAB node.
  • the second information indicates the first DU and the second DU of the first IAB node. That is, the first information and the second information may jointly indicate that a set of IP address configurations and a BAP configuration are requested for the first DU of the first IAB node, and that a set of IP address configurations and a BAP configuration are requested for the second DU of the first IAB node.
  • a BAP configuration may jointly indicate that a set of IP address configurations and a BAP configuration are requested for the first DU of the first IAB node, and that a set of IP address configurations and a BAP configuration are requested for the second DU of the first IAB node.
  • the first information instructs Donor-CU1 to request two sets of IP address configurations and one BAP configuration for the first IAB node.
  • the second information indicates the first DU and the second DU of the first IAB node. That is, the first information and the second information may jointly indicate that one set of IP address configurations is requested for the first DU and the second DU of the first IAB node, and one set of IP address configurations is requested for the first DU and the second DU of the first IAB node. Shared BAP configuration.
  • the first information instructs Donor-CU1 to request a set of IP address configurations and two BAP configurations for the first IAB node.
  • the second information indicates the first DU and the second DU of the first IAB node. That is, the first information and the second information may jointly indicate that one BAP configuration is requested for the first DU and the second DU of the first IAB node, and a common set is requested for the first DU and the second DU of the first IAB node. IP address configuration.
  • the first message instructs Donor-CU1 to request a set of IP address configuration and a BAP configuration for the first IAB node.
  • the first DU and the second DU of the first IAB node share a set of IP address configurations and a BAP configuration.
  • the first message may not include the second information; or the second information may be 1-bit indication information indicating the first DU and the second DU of the first IAB node, or indicating the first DU of the first IAB node. Share the IP address configuration and BAP configuration with the second DU.
  • the IP address configuration and/or BAP configuration requested by the first IAB node for the second DU of the first IAB node are used to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • it is specifically used to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node from the source path to the target path.
  • the source path is The target path is
  • migrating the F1 between Donor-CU1 and the second DU of the first IAB node to the target path is to implement switching of the terminal device under the second DU of the first IAB node.
  • the first message may be a newly defined XN message, and the newly defined XN message may be used to request X sets of IP address configurations for the first DU and the second DU of the first IAB node. and/or Y BAP configurations, X equals 1 or 2, Y equals 1 or 2.
  • Donor-CU2 can distinguish Full Nested/Gradual Bottom-up and Gradual Top-down based on the number of IP address configurations and/or BAP configurations requested by Donor-CU1.
  • Donor-CU2 sends X sets of first IP address configurations and/or Y first BAP configurations to Donor-CU1.
  • Donor-CU1 receives the X sets of first IP addresses and/or Y first BAP configurations from Donor-CU2.
  • X and Y are positive integers.
  • This step S1204 is similar to the above step S1004, the difference is: for Gradual Top-down, Donor-CU2 can send to Donor-CU1:
  • a set of first IP addresses and a first BAP configuration are used to establish Donor-CU2 and the first distributed unit DU of the first IAB node after the MT of the first IAB node switches from Donor-CU1 to Donor-CU2.
  • Another set of first IP addresses and another first BAP configuration are also used to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • a set of first IP address configuration and the first BAP configuration are used to establish the first distribution of Donor-CU2 and the first IAB node after the MT of the first IAB node switches from Donor-CU1 to Donor-CU2.
  • F1 connection between units DU Another set of first IP address configuration and the first BAP configuration are used to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • the set of first IP address and a first BAP configuration are used to switch the MT of the first IAB node from Donor-CU1 to After Donor-CU2, establish an F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node.
  • the set of first IP address configuration and another first BAP configuration are used to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • a first IP address configuration and/or a first BAP configuration A first IP address configuration and/or a first BAP configuration.
  • the set of first IP addresses and a first BAP configuration are used to establish the first distributed unit of Donor-CU2 and the first IAB node after the MT of the first IAB node switches from Donor-CU1 to Donor-CU2. F1 connection between DUs.
  • the set of first IP address configuration and the first BAP configuration are also used to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • Donor-CU2 can also send third information to Donor-CU1 to indicate the DU of the first IAB node to which each first IP address configuration belongs, and/or the first IAB node to which each first BAP configuration belongs. DU of IAB node. Reference may be made to the relevant descriptions in the process shown in Figure 10, which will not be described again here.
  • Donor-CU2 can also send fourth information to Donor-CU1, and the fourth information instructs Donor-CU1 to immediately issue a switching command message about the MT.
  • Donor-CU2 does not need to send the fourth information. By default, it will immediately issue the switching command message about the MT after receiving the IP address configuration and/or BAP configuration of Donor-CU2.
  • Donor-CU1 sends the second message to the first IAB node.
  • the first IAB node receives the second message from Donor-CU1.
  • the second message includes the above-mentioned X sets of first IP address configurations and/or Y first BAP configurations.
  • the second message in step S1205 is a switching command message for the MT of the first IAB node.
  • the first IAB node starts the first DU of the first IAB node.
  • the trigger condition for starting the first DU of the first IAB node is: the first IAB node receives the sixth information.
  • the sixth information includes the first IP address configuration and/or the first BAP configuration used to establish the cross-topology F1 connection between Donor-CU2 and the first DU of the first IAB node.
  • the MT of the first IAB node initiates random access to the target cell and executes the random access process. Reference may be made to the relevant description in step S1014 above, which will not be described again here.
  • Donor-CU2 may send the backhaul link resource configuration information to the intermediate node after receiving the fourth message from Donor-CU1.
  • Donor-CU2 may send the backhaul link resource configuration information to the intermediate node after sending the fifth message to Donor-CU1.
  • the fourth message is used to request migration of the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • the fourth message may be an IAB transport migration request (IAB transport migration request) message.
  • the fifth message is a response message to the fourth message.
  • the fifth message may be an IAB transport migration response (IAB transport migration response) message.
  • the backhaul link resource configuration information is used to establish the BL RLC CH for the first DU of the first IAB node.
  • the intermediate nodes include Donor-DU2 and the IAB nodes between the first IAB node and Donor-CU2. Reference may be made to the relevant description in step S1009 above, which will not be described again here.
  • Donor-CU1 can send a switching command to the terminal device under the second DU through the cross-topology F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • the terminal device After receiving the handover command, the terminal device initiates random access to the second DU and executes the random access process. Afterwards, the handover completion message may be sent through the same topology F1 connection between the first DU of the first IAB node and Donor-CU2.
  • the IP address configuration of the first DU the BAP configuration, the sending timing of the MT switching command message, the starting timing of the first DU of the first IAB node, and the same topology F1 connection between Donor-CU2 and the first DU
  • the implementation details of Gradual Top-down migration are designed in terms of the establishment timing and other aspects to ensure the implementation of Gradual Top-down migration plan.
  • this application also provides a communication device, which is used to implement the various methods mentioned above, or can realize the functions of the above-mentioned first host node, second host node, or first IAB node.
  • the communication device may be the first host node in the above method embodiment, or a component that can be used in the first host node, such as a chip or a chip system; or the communication device may be the second host node in the above method embodiment. , or a component that can be used in the second host node, such as a chip or a chip system; or the communication device can be the first IAB node in the above method embodiment, or a component that can be used in the first IAB node.
  • the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the communication device into functional modules according to the above method embodiments.
  • functional modules can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 13 shows a schematic structural diagram of a communication device 130 .
  • the communication device 130 includes a processing module 1301 and a transceiver module 1302.
  • the communication device 130 may be used to implement the functions of the above-mentioned first host node, second host node, or first IAB node.
  • the communication device 130 may also include a storage module (not shown in FIG. 13) for storing program instructions and data.
  • the transceiver module 1302 which may also be called a transceiver unit, is used to implement sending and/or receiving functions.
  • the transceiver module 1302 may be composed of a transceiver circuit, a transceiver, a transceiver, or a communication interface.
  • the transceiver module 1302 may include a receiving module and a sending module, respectively configured to perform the receiving and sending types performed by the first host node, the second host node, or the first IAB node in the above method embodiments. Steps, and/or other processes for supporting the technology described herein; the processing module 1301 can be used to perform the processing class performed by the first host node, the second host node, or the first IAB node in the above method embodiment. (e.g., determining, etc.), and/or other processes used to support the techniques described herein.
  • the processing module 1301 is configured to send a first message to Donor-CU2 through the transceiver module 1302.
  • the first message is used to request IP address configuration and/or BAP configuration for the first IAB node.
  • the processing module 1301 is also configured to receive X sets of first IP address configurations and/or Y first BAP configurations from Donor-CU2 through the transceiver module 1302.
  • the processing module 1301 is also configured to send a second message to the first IAB node through the transceiver module 1302.
  • the second message includes X sets of first IP address configurations and/or Y first BAP configurations, where X and Y are positive integers.
  • one of the X sets of first IP address configurations and one of the Y first BAP configurations are used to switch the MT of the first IAB node from Donor-CU1 to Donor-CU2. Afterwards, an F1 connection is established between Donor-CU2 and the first DU of the first IAB node.
  • the processing module 1301 is also configured to receive third information from Donor-CU2 through the transceiver module 1302.
  • the third information indicates each set of first IP address configurations and Y first IP address configurations in X sets of first IP address configurations.
  • the processing module 1301 is also configured to send the third message to the first IAB node through the transceiver module 1302.
  • the third message includes a second IP address configuration and a second BAP configuration.
  • the second IP address configuration and the second BAP configuration are used to establish a cross-topology F1 connection between Donor-CU2 and the first DU of the first IAB node through the first host node distributed unit Donor-DU1.
  • the processing module 1301 is also configured to receive the fourth information from Donor-CU2 through the transceiver module 1302.
  • the fourth information indicates that the second switching command message sent by Donor-CU1 to the first IAB node carries the switching condition of the MT of the first IAB node, and the second switching command message instructs the MT of the first IAB node to perform switching.
  • the processing module 1301 is also configured to receive the fourth information from Donor-CU2 through the transceiver module 1302.
  • the fourth information instructs Donor-CU1 to send the first switching command message to at least one terminal device under the second DU of the first IAB node, and then send the second switching command message to the first IAB node;
  • the first switching command message instructs the terminal device From the second DU of the first IAB node to the first DU of the first IAB node, the second switching command message instructs the MT of the first IAB node to perform switching.
  • the processing module 1301 is specifically configured to send the second message to the first IAB node through the transceiver module 1302 after sending the first switching command message to at least one terminal device under the second DU of the first IAB node.
  • the first switching command message instructs the terminal device to switch from the second DU of the first IAB node to the first DU of the first IAB node, and the second message instructs the MT of the first IAB node to perform the switching.
  • the processing module 1301 is also configured to receive the fourth information from Donor-CU2 through the transceiver module 1302.
  • the fourth information instructs Donor-CU1 to send the second switching command message to the first IAB node after receiving the notification message from Donor-CU2; the notification message is used to notify Donor-CU2 to receive the second DU of the first IAB node.
  • a handover completion message of at least one terminal device indicates that the terminal device completes the handover from the second DU of the first IAB node to the first DU of the first IAB node, and the second handover command message indicates MT execution of the first IAB node. switch.
  • the processing module 1301 is specifically configured to send a second message to the first IAB node through the transceiver module 1302 after receiving the notification message from Donor-CU2.
  • the second message instructs the MT of the first IAB node to perform handover.
  • the notification message is used to notify Donor- CU2 receives a handover completion message of at least one terminal device under the second DU of the first IAB node.
  • the processing module 1301 is configured to receive the first message from Donor-CU1 through the transceiver module 1302.
  • the first message is used to request IP address configuration and/or BAP configuration for the first IAB node.
  • the processing module 1301 is also used to send the X sets of first IP address configurations and Y first BAP configurations to Donor-CU1 through the transceiver module 1302, where X and Y are positive integers.
  • one set of first IP address configurations among X sets of first IP address configurations and one first BAP configuration among Y first BAP configurations are used to switch the mobile terminal MT of the first IAB node from Donor-CU1 to Donor After -CU2, establish an F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node.
  • the processing module 1301 is also configured to send third information to Donor-CU1 through the transceiver module 1302.
  • the third information indicates each set of first IP address configurations and Y first BAPs in X sets of first IP address configurations.
  • the processing module 1301 is also configured to send the fourth information to Donor-CU1 through the transceiver module 1302.
  • the fourth information indicates that the second switching command message sent by Donor-CU1 to the first IAB node carries the switching condition of the MT of the first IAB node, and the second switching command message instructs the MT of the first IAB node to perform switching.
  • the processing module 1301 is also configured to send the fourth information to Donor-CU1 through the transceiver module 1302.
  • the fourth information instructs Donor-CU1 to send the first switching command message to at least one terminal device under the second DU of the first IAB node, and then send the second switching command message to the first IAB node;
  • the first switching command message instructs the terminal device From the second DU of the first IAB node to the first DU of the first IAB node, the second switching command message instructs the MT of the first IAB node to perform switching.
  • the processing module 1301 is also configured to send the fourth information to Donor-CU1 through the transceiver module 1302.
  • the fourth information instructs Donor-CU1 to send the second switching command message to the first IAB node after receiving the notification message from Donor-CU2; the notification message is used to notify Donor-CU2 to receive the second DU of the first IAB node.
  • a handover completion message of at least one terminal device indicates that the terminal device completes the handover from the second DU of the first IAB node to the first DU of the first IAB node, and the second handover command message indicates MT execution of the first IAB node. switch.
  • the processing module 1301 is also configured to send the backhaul link resource configuration information to the intermediate node through the transceiver module 1302 after receiving the fifth information from Donor-CU1.
  • the intermediate node includes the second host node distributed unit Donor-DU2, and the IAB node between the first IAB node and Donor-CU2.
  • the fifth information is context information or quality of service QoS information of the terminal device under the first IAB node.
  • the backhaul link resource configuration information is used to establish a backhaul radio link control RLC channel for the first DU of the first IAB node.
  • the processing module 1301 is also configured to send the backhaul link resource configuration information to the intermediate node through the transceiver module 1302 after receiving the fourth message from Donor-CU1.
  • the processing module 1301 is also configured to send the backhaul link resource configuration information to the intermediate node through the transceiver module 1302 after sending the fifth message to Donor-CU1.
  • the fourth message is used to request migration of the F1 connection between Donor-CU1 and the second DU of the first IAB node; the fifth message is the response message of the fourth message; the backhaul link resource configuration information is used to provide the first
  • the first DU of the IAB node establishes a backhaul RLC channel; the intermediate nodes include Donor-DU2, and the IAB node between the first IAB node and Donor-CU2.
  • the first message includes first information.
  • the first information indicates the number of IP address configurations and/or BAP configurations requested by Donor-CU1 for the first IAB node.
  • the first message includes second information.
  • the second information indicates at least one DU of the first IAB node, the IP address configuration and/or the BAP configuration requested by Donor-CU1 for at least one DU.
  • the first message is used to request an IP address configuration and/or BAP configuration for the first IAB node, including: the first message is used to request a set of IP address configuration and/or a set of IP address configurations for the first DU of the first IAB node.
  • Set BAP configuration is used to request an IP address configuration and/or BAP configuration for the first IAB node, including: the first message is used to request a set of IP address configuration and/or a set of IP address configurations for the first DU of the first IAB node.
  • the second message is a switching command message for the MT of the first IAB node.
  • the second message also includes a second IP address configuration, a second BAP configuration, and a switching condition of the MT of the first IAB node.
  • the second IP address configuration and the second BAP configuration are used to establish a cross-topology F1 connection between Donor-CU2 and the first DU of the first IAB node through Donor-DU1.
  • the switching condition of the MT of the first IAB node includes: sending a first switching command message to at least one terminal device under the second DU of the first IAB node, and the first switching command message instructs the terminal device to switch from the first IAB node to the first terminal device.
  • the node's second DU switches to the first DU of the first IAB node.
  • receiving a switching completion message from at least one terminal device under the second DU of the first IAB node the switching completion message indicates that the terminal device completes the switching from the second DU of the first IAB node to the first DU of the first IAB node.
  • one of the X sets of first IP address configurations and one of the Y first BAP configurations are used for the mobile terminal MT at the first IAB node to switch from Donor-CU1 After arriving at Donor-CU2, establish the F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node, and also be used to migrate between Donor-CU1 and the second DU of the first IAB node. F1 connection.
  • one of the X sets of first IP address configurations and one of the Y first BAP configurations are used for the mobile terminal MT at the first IAB node to switch from Donor-CU1 After arriving at Donor-CU2, establish an F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node, as well as another set of first IP address configuration and the first BAP configuration for migrating Donor-CU1 F1 connection to the second DU of the first IAB node.
  • one of the X sets of first IP address configurations and one of the Y first BAP configurations are used for the mobile terminal MT at the first IAB node to switch from Donor-CU1 After arriving at Donor-CU2, establish an F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node, as well as the set of first IP address configurations and another first among the Y first BAP configurations.
  • the BAP configuration is used to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • one of the X sets of first IP address configurations and one of the Y first BAP configurations are used for the mobile terminal MT at the first IAB node to switch from Donor-CU1 After arriving at Donor-CU2, establish an F1 connection between Donor-CU2 and the first distributed unit DU of the first IAB node, as well as another set of first IP address configurations in the Another first BAP configuration within one BAP configuration is used to migrate the F1 connection between Donor-CU1 and the second DU of the first IAB node.
  • the first message is used to request IP address configuration and/or BAP configuration for the first IAB node, including: the first message is used to request X sets of IP address configurations for the first DU and the second DU of the first IAB node. and Y BAP configurations, X equals 1 or 2, Y equals 1 or 2.
  • the processing module 1301 is configured to receive the sixth information from the first host node centralized unit Donor-CU1 through the transceiver module 1302.
  • the processing module 1301 is also configured to start the first DU of the first IAB node according to the sixth information.
  • the sixth information includes at least one set of IP address configuration and/or at least one set of BAP configuration. At least one set of IP address configuration and at least one set of BAP configuration are used to establish the second host node centralized unit Donor-CU2 and the first IAB. F1 connection between the first DU of the node.
  • the processing module 1301 is configured to receive the second switching command message from Donor-CU1 through the transceiver module 1302.
  • the second switching command message includes the sixth information, the second The handover command message instructs the mobile terminal MT of the first IAB node to perform handover.
  • the second switching command message also includes switching conditions of the MT of the first IAB node.
  • the switching condition of the MT of the first IAB node includes: sending a first switching command message to at least one terminal device under the second DU of the first IAB node, and the first switching command message instructs the terminal device to switch from the first IAB node to the first terminal device.
  • the node's second DU switches to the first DU of the first IAB node.
  • receiving a switching completion message from at least one terminal device under the second DU of the first IAB node the switching completion message indicates that the terminal device completes the switching from the second DU of the first IAB node to the first DU of the first IAB node.
  • the processing module receives/sends information through the transceiver module, which can also be understood as: the processing module controls the transceiver module to receive/send information.
  • the processing module sends information through the transceiver module, which can be understood as: the processing module outputs information to the transceiver module, and the transceiver module sends the information; the processing module receives information through the transceiver module, which can be understood as: the transceiver module receives the information and sends it to the processing module Enter this information.
  • the communication device 130 may be presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to an application-specific integrated circuit (ASIC), a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or others that may provide the above functions. device.
  • ASIC application-specific integrated circuit
  • the function/implementation process of the transceiver module 1302 can be implemented through the input and output interface (or communication interface) of the chip or chip system, and the processing module 1301
  • the function/implementation process can be realized by the processor (or processing circuit) of the chip or chip system.
  • the communication device 130 provided in this embodiment can perform the above method, the technical effects it can obtain can be referred to the above method embodiment, which will not be described again here.
  • the first host node, the second host node, or the first IAB node described in the embodiments of this application can be implemented using the following: one or more field programmable gate arrays (field programmable gate array (FPGA), programmable logic device (PLD), controller, state machine, gate logic, discrete hardware component, any other suitable circuit, or capable of performing the various functions described throughout this application any combination of circuits.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • controller state machine
  • gate logic discrete hardware component
  • any other suitable circuit any combination of circuits.
  • the first host node, the second host node, or the first IAB node in this application can adopt the composition structure shown in Figure 14, or include the components shown in Figure 14.
  • Figure 14 is a schematic diagram of the composition of a communication device 1400 provided by this application.
  • the communication device 1400 includes at least one processor 1401.
  • the communication device also includes a communication interface 1402.
  • the device 1400 can be caused to implement the communication method provided by any of the foregoing embodiments and any possible design thereof.
  • the processor 1401 is used to implement the communication method and any possible design provided by any of the foregoing embodiments through logical circuits or execution of code instructions.
  • the communication interface 1402 can be used to receive program instructions and transmit them to the processor, or the communication interface 1402 can be used for the communication device 1400 to communicate and interact with other communication devices, such as interactive control signaling and/or service data.
  • the communication interface 1402 can be used to receive signals from other devices other than the device 1400 and transmit them to the processor 1401 or to send signals from the processor 1401 to other communication devices other than the device 1400 .
  • the communication interface 1402 may be a code and/or data reading and writing interface circuit, or the communication interface 1402 may be a signal transmission interface circuit between a communication processor and a transceiver, or a pin of a chip.
  • the communication device 1400 may also include at least one memory 1403, which may be used to store required related program instructions and/or data.
  • the memory 1403 may exist independently of the processor 1401 or may be integrated with the processor 1401.
  • the memory 1403 may be located within the communication device 1400 or may be located outside the communication device 1400, without limitation.
  • the communication device 1400 may also include a power supply circuit 1404, which may be used to power the processor 1401.
  • the power supply circuit 1404 may be located in the same chip as the processor 1401, or may be located in another chip other than the chip where the processor 1401 is located.
  • the communication device 1400 may also include a bus 1405, and various parts in the communication device 1400 may be interconnected through the bus 1405.
  • the processor in this application can be a central processing unit (CPU).
  • the processor can also be other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components, etc.
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, etc.
  • the memory in this application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchronously connect dynamic random access memory
  • direct rambus RAM direct rambus RAM, DR RAM
  • the power supply circuit described in the embodiment of this application includes but is not limited to at least one of the following: a power supply line, a power supply electronic system, a power management chip, a power management processor, or a power management control circuit.
  • the above-mentioned communication device 130 may take the form of the communication device 1400 shown in FIG. 14 .
  • the function/implementation process of the processing module 1301 in Figure 13 can be implemented by the processor 1401 in the communication device 1400 shown in Figure 14 calling the computer execution instructions stored in the memory 1403.
  • the function/implementation process of the transceiver module 1302 in Figure 13 can be implemented through the communication interface 1402 in the communication device 1400 shown in Figure 14.
  • first host node does not constitute a specific limitation on the first host node, the second host node, or the first IAB node.
  • first host node, the second host node, or the first IAB node may include more or less components than shown, or some components may be combined, or some components may be split. components, or different arrangements of components.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • embodiments of the present application further provide a communication device, which includes a processor and is configured to implement the method in any of the above method embodiments.
  • the communication device further includes a memory.
  • This memory is used to store necessary computer programs and data.
  • the computer program may include instructions, and the processor may call the instructions in the computer program stored in the memory to instruct the communication device to perform the method in any of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device further includes an interface circuit, which is a code/data reading and writing interface circuit.
  • the interface circuit is used to receive computer execution instructions (computer execution instructions are stored in the memory and may be directly read from memory, or possibly through other devices) and transferred to the processor.
  • the communication device further includes a communication interface, which can be used to communicate with modules external to the communication device.
  • the communication device may be a chip or a chip system.
  • the communication device may be composed of a chip or may include a chip and other discrete devices. This is not specifically limited in the embodiments of the present application.
  • This application also provides a computer-readable storage medium on which a computer program or instructions are stored. When the computer program or instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Components shown as units may or may not be physical units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • computer program instructions When computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于接入回传一体化IAB的通信方法及装置,可以应用于IAB网络,支撑IAB节点的全迁移的实现。该方法包括:第一宿主节点集中式单元Donor-CU1向第二宿主节点集中式单元Donor-CU2发送用于请求IP地址配置和/或BAP配置的第一消息。Donor-CU2接收第一消息并向Donor-CU1发送X套第一IP地址配置和/或Y个第一BAP配置。之后,Donor-CU1通过第二消息向第一IAB节点发送该X套第一IP地址配置和/或Y个第一BAP配置。其中,该X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接。

Description

一种基于接入回传一体化IAB的通信方法及装置
本申请要求于2022年08月01日提交国家知识产权局、申请号为202210915840.5、申请名称为“一种基于接入回传一体化IAB的通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种基于接入回传一体化IAB的通信方法及装置。
背景技术
相较于第四代移动通信系统,第五代(5th generation,5G)移动通信系统针对网络各项性能指标提出了更严苛的要求。为了满足5G系统的性能要求,一方面需要大量密集部署小站,另一方面需要为偏远地区提供网络覆盖。然而在这两种场景下提供光纤回传的成本高,施工难度大,因此经济便捷的接入回传一体化(integrated access and backhaul,IAB)技术应运而生。
在IAB网络中,IAB节点(IAB-node)可以为用户设备(user equipment,UE)提供无线接入服务,UE的业务数据由IAB节点通过无线回传链路发送至IAB宿主(IAB-donor)。在一些场景下,IAB节点可能发生迁移,即IAB节点从某个IAB宿主切换至另一个IAB宿主。
通常,IAB节点的迁移可以分为完全迁移(Full migration)和部分迁移(Partial migration)。然而,目前对完全迁移的设计尚不完善,因此有必要对IAB节点完全迁移的相关实现进行设计。
发明内容
本申请提供一种基于接入回传一体化IAB的通信方法,可以支撑IAB节点的全迁移的实现。
第一方面,提供了一种基于接入回传一体化IAB的通信方法,该方法包括:第一宿主节点集中式单元Donor-CU1向第二宿主节点集中式单元Donor-CU2发送用于为第一IAB节点请求因特网协议IP地址配置和/或回传适配协议BAP配置的第一消息。接收来自Donor-CU2的X套第一IP地址配置和/或Y个第一BAP配置,并向第一IAB节点发送第二消息,该第二消息包括X套第一IP地址配置和/或Y个第一BAP配置,X、Y为正整数。其中,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接。
基于该方案,Donor-CU1为第一IAB节点向Donor-CU2请求IP地址配置和/或BAP配置。Donor-CU2返回的X套IP地址配置和/或Y个BAP配置,使得第一IAB节点的MT从Donor-CU1切换至Donor-CU2之后,Donor-CU2和第一IAB节点的第一DU之间的F1连接能够被建立,从而使得Donor-CU2和第一IAB节点能够进行F1-C和F1-U通信,支撑全迁移方案的实施,使得终端设备的流量能够迁移至Donor-CU2和第一IAB节点之间的目标路径传输。
在一种可能的设计中,该方法还包括:Donor-CU1接收来自Donor-CU2的第三信息,第三信息指示X套第一IP地址配置中的每套第一IP地址配置和Y个第一BAP配置中的每个第一BAP配置所属的第一IAB节点的DU。
基于该可能的设计,Donor-CU2指示每套第一IP地址配置和/或每个第一BAP配置所述的DU,能够使得第一IAB节点准确使用各个DU的IP地址配置和第一BAP配置,从而与Donor-CU2侧理解一致,进而使得后续Donor-CU2和第一IAB节点的第一DU之间的F1连接能够被正确建立。
在一种可能的设计中,该方法还包括:Donor-CU1向第一IAB节点发送第三消息。该第三消息包括第二IP地址配置和第二BAP配置。第二IP地址配置和第二BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间通过第一宿主节点分布式单元Donor-DU1的跨拓扑F1连接。
基于该可能的设计,根据该第二IP地址配置和第二BAP配置,能够建立Donor-CU2和第一IAB节点的第一DU之间通过Donor-CU1的跨拓扑F1连接,从而使得终端设备能够切换至第一IAB节点的第一DU,进而实现IAB节点的全迁移。
在一种可能的设计中,该方法还包括:Donor-CU1接收来自Donor-CU2的第四信息。其中,第四信息指示Donor-CU1向第一IAB节点发送的第二切换命令消息中携带第一IAB节点的MT的切换条件,第二切换命令消息指示第一IAB节点的MT执行切换。
在一种可能的设计中,该方法还包括:Donor-CU1接收来自Donor-CU2的第四信息。第四信息指示Donor-CU1向第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,向第一IAB节点发送第二切换命令消息;第一切换命令消息指示终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU,第二切换命令消息指示第一IAB节点的MT执行切换。
基于该可能的设计,能够指示Donor-CU1在向至少一个终端设备发送第一切换命令消息后,向第一IAB节点发送第二切换命令消息,使得IAB节点的迁移符合Full Nested迁移的流程。
在一种可能的设计中,Donor-CU1向第一IAB节点发送第二消息,包括:Donor-CU1向第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,向第一IAB节点发送第二消息。其中,第一切换命令消息指示终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU,第二消息指示第一IAB节点的MT执行切换。
在一种可能的设计中,该方法还包括:Donor-CU1接收来自Donor-CU2的第四信息。第四信息指示Donor-CU1收到来自Donor-CU2的通知消息后,向第一IAB节点发送第二切换命令消息;通知消息用于通知Donor-CU2收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,切换完成消息指示终端设备完成从第一IAB节点的第二DU至第一IAB节点的第一DU的切换,第二切换命令消息指示第一IAB节点的MT执行切换。
基于该可能的设计,Donor-CU1在Donor-CU2收到至少一个终端设备的切换完成消息后,向第一IAB节点发送第二切换命令消息,使得IAB节点的迁移符合Gradual Bottom-up迁移的流程。
在一种可能的设计中,Donor-CU1向第一IAB节点发送第二消息,包括:Donor-CU1收到来自Donor-CU2的通知消息后,向第一IAB节点发送第二消息,第二消息指示第一IAB节点的MT执行切换。其中,通知消息用于通知Donor-CU2收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息。
第二方面,提供了一种基于接入回传一体化IAB的通信方法,该方法包括:第二宿主节点集中式单元Donor-CU2接收来自第一宿主节点集中式单元Donor-CU1的用于为第一IAB节点请求IP地址配置和/或BAP配置第一消息,并向Donor-CU1发送该X套第一IP地址配置和Y个第一BAP配置,X、Y为正整数。其中,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接。
基于该方案,Donor-CU2基于Donor-CU1的请求向Donor-CU1返回X套IP地址配置和/或Y个BAP配置,使得第一IAB节点的MT从Donor-CU1切换至Donor-CU2之后,Donor-CU2和第一IAB节点的第一DU之间的F1连接能够被建立,从而使得Donor-CU2和第一IAB节点能够进行F1-C和F1-U通信,支撑全迁移方案的实施,使得终端设备的流量能够迁移至Donor-CU2和第一IAB节点之间的目标路径传输。
在一种可能的设计中,该方法还包括:Donor-CU2向Donor-CU1发送第三信息,第三信息指示X套第一IP地址配置中的每套第一IP地址配置和Y个第一BAP配置中的每个第一BAP配置所属的第一IAB节点的DU。
在一种可能的设计中,该方法还包括:Donor-CU2向Donor-CU1发送第四信息。其中,第四信息指示Donor-CU1向第一IAB节点发送的第二切换命令消息中携带第一IAB节点的MT的切换条件,第二切换命令消息指示第一IAB节点的MT执行切换。
在一种可能的设计中,该方法还包括:Donor-CU2向Donor-CU1发送第四信息。第四信息指示Donor-CU1向第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,向第一IAB节点发送第二切换命令消息;第一切换命令消息指示终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU,第二切换命令消息指示第一IAB节点的MT执行切换。
在一种可能的设计中,该方法还包括:Donor-CU2向Donor-CU1发送第四信息。第四信息指示Donor-CU1收到来自Donor-CU2的通知消息后,向第一IAB节点发送第二切换命令消息;通知消息用于通知Donor-CU2收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,切换完成消息指示终端设备完成从第一IAB节点的第二DU至第一IAB节点的第一DU的切换,第二切换命令消息指示第一IAB节点的MT执行切换。
在一种可能的设计中,该方法还包括:Donor-CU2收到来自Donor-CU1的第五信息后,向中间节点发送回传链路资源配置信息。该中间节点包括第二宿主节点分布式单元Donor-DU2,以及第一IAB节点和Donor-CU2之间的IAB节点。第五信息为第一IAB节点下的终端设备的上下文信息或服务质量QoS信息。回传链路资源配置信息用于为第一IAB节点的第一DU建立回传无线链路控制RLC信道。
在一种可能的设计中,该方法还包括:Donor-CU2收到来自Donor-CU1的第四消息后,向中间节点发送回传链路资源配置信息。或者,Donor-CU2向Donor-CU1发送第五消息后,向中间节点发送回传链路资源配置信息。其中,第四消息用于请求迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接;第五消息为第四消息的响应消息;回传链路资源配置信息用于为第一IAB节点的第一DU建立回传RLC信道;中间节点包括Donor-DU2,以及第一IAB节点和Donor-CU2之间的IAB节点。
其中,第二方面中任一种可能的设计所带来的技术效果可参考上述第一方面中的相应设计所带来的技术效果,在此不再赘述。
结合第一方面或第二方面,在一种可能的设计中,第一消息包括第一信息。该第一信息指示Donor-CU1为第一IAB节点请求的IP地址配置和/或BAP配置的数量。
结合第一方面或第二方面,在一种可能的设计中,第一消息包括第二信息。该第二信息指示第一IAB节点的至少一个DU,Donor-CU1请求的IP地址配置和/或BAP配置用于至少一个DU。
结合第一方面或第二方面,在一种可能的设计中,第一消息用于为第一IAB节点请求IP地址配置和/或BAP配置,包括:第一消息用于为第一IAB节点的第一DU请求一套IP地址配置和/或一套BAP配置。
结合第一方面或第二方面,在一种可能的设计中,第二消息为用于第一IAB节点的MT的切换命令消息。
结合第一方面或第二方面,在一种可能的设计中,第二消息还包括第二IP地址配置、第二BAP配置、和第一IAB节点的MT的切换条件。其中,第二IP地址配置和第二BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间通过Donor-DU1的跨拓扑F1连接。
结合第一方面或第二方面,在一种可能的设计中,第一IAB节点的MT的切换条件包括:向第一IAB节点的第二DU下的至少一个终端设备发送了第一切换命令消息,第一切换命令消息指示终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU。或者,收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,切换完成消息指示终端设备完成从第一IAB节点的第二DU至第一IAB节点的第一DU的切换。
结合第一方面或第二方面,在一种可能的设计中,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接,还用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
结合第一方面或第二方面,在一种可能的设计中,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接,以及另一套第一IP地址配置和该一个第一BAP配置用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
结合第一方面或第二方面,在一种可能的设计中,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接,以及该一套第一IP地址配置和Y个第一BAP配置中的另一个第一BAP配置用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
结合第一方面或第二方面,在一种可能的设计中,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接,以及X套第一IP地址配置中的另一套第一IP地址配置和Y个第一BAP配置中的另一个第一BAP配置用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
结合第一方面或第二方面,在一种可能的设计中,第一消息用于为第一IAB节点请求IP地址配置和/或BAP配置,包括:第一消息用于为第一IAB节点的第一DU和第二DU请求X套IP地址配置和Y个BAP配置,X等于1或2,Y等于1或2。
第三方面,提供了一种基于接入回传一体化IAB的通信方法,该方法包括:第一IAB节点接收来自第一宿主节点集中式单元Donor-CU1的第六信息,根据该第六信息启动第一IAB节点的第一DU。其中,第六信息包括至少一套IP地址配置和/或至少一套BAP配置,至少一套IP地址配置和至少一套BAP配置用于建立第二宿主节点集中式单元Donor-CU2和第一IAB节点的第一DU之间的F1连接。
基于该方案,第一IAB节点在收到用于建立Donor-CU2和第一IAB节点的第一DU之间的F1连接的 IP地址配置和/或BAP配置之后,启动第一IAB节点的第一DU,使得终端设备能够从IAB节点的第二DU切换至第一DU,从而保障全迁移方案的实施。
在一种可能的设计中,第一IAB节点接收来自Donor-CU1的第六信息,包括:第一IAB节点接收来自Donor-CU1的第二切换命令消息,第二切换命令消息包括第六信息,第二切换命令消息指示第一IAB节点的移动终端MT执行切换。
在一种可能的设计中,第二切换命令消息还包括第一IAB节点的MT的切换条件。
在一种可能的设计中,第一IAB节点的MT的切换条件包括:向第一IAB节点的第二DU下的至少一个终端设备发送了第一切换命令消息,第一切换命令消息指示终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU。或者,收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,切换完成消息指示终端设备完成从第一IAB节点的第二DU至第一IAB节点的第一DU的切换。
第四方面,提供了一种通信装置用于实现各种方法。该通信装置可以为第一方面中的第一宿主节点,或者第一宿主节点中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面中的第二宿主节点,或者第二宿主节点中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第三方面中的第一IAB节点,或者第一IAB节点中包含的装置,比如芯片或芯片系统。所述通信装置包括实现方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括处理模块和收发模块。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。收发模块可以包括接收模块和发送模块,分别用以实现上述任一方面及其任意可能的实现方式中的接收功能和发送功能。
在一些可能的设计中,收发模块可以由收发电路,收发机,收发器或者通信接口构成。
第五方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行任一方面所述的方法。该通信装置可以为第一方面中的第一宿主节点,或者第一宿主节点中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面中的第二宿主节点,或者第二宿主节点中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第三方面中的第一IAB节点,或者第一IAB节点中包含的装置,比如芯片或芯片系统。
第六方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于接收和/或发送信号;所述处理器用于执行计算机程序或指令,以使该通信装置执行任一方面所述的方法。该通信装置可以为第一方面中的第一宿主节点,或者第一宿主节点中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面中的第二宿主节点,或者第二宿主节点中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第三方面中的第一IAB节点,或者第一IAB节点中包含的装置,比如芯片或芯片系统。
第七方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行任一方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为第一方面中的第一宿主节点,或者第一宿主节点中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面中的第二宿主节点,或者第二宿主节点中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第三方面中的第一IAB节点,或者第一IAB节点中包含的装置,比如芯片或芯片系统。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当其在通信装置上运行时,使得通信装置可以执行任一方面所述的方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置可以执行任一方面所述的方法。
第十方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现任一方面中所涉及的功能。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的程序指令和数据。
在一些可能的设计中,该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
可以理解的是,第四方面至第十方面中任一方面提供的通信装置是芯片或芯片系统时,通信装置的发送动作/功能可以理解为输出信息,通信装置的接收动作/功能可以理解为输入信息。
其中,第四方面至第十方面中任一种设计方式所带来的技术效果可参见第一方面或第二方面或第三方面中不同设计方式所带来的技术效果,在此不再赘述。
附图说明
图1为本申请提供的一种IAB网络的结构示意图;
图2为本申请提供的一种IAB节点和IAB宿主之间的接口的示意图;
图3为本申请提供的一种IAB网络中的控制面协议栈的示意图;
图4为本申请提供的一种IAB网络中的用户面协议栈的示意图;
图5为本申请提供的一种IAB节点迁移的示意图;
图6为本申请提供的一种IAB节点的部分迁移的示意图;
图7a为本申请提供的一种IAB节点全迁移的流程示意图;
图7b为本申请提供的另一种IAB节点全迁移的流程示意图;
图7c为本申请提供的又一种IAB节点全迁移的流程示意图;
图8为本申请提供的一种通信系统的结构示意图;
图9为本申请提供的一种基于IAB的通信方法的流程示意图;
图10为本申请提供的另一种基于IAB的通信方法的流程示意图;
图11为本申请提供的又一种基于IAB的通信方法的流程示意图;
图12为本申请提供的再一种基于IAB的通信方法的流程示意图;
图13为本申请提供的一种通信装置的结构示意图;
图14为本申请提供的另一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“…时”以及“若”均指在某种客观情况下会做出相应的处理,并非是限定时间,且也不要求实现时要有判断的动作,也不意味着存在其它限定。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
在接入回传一体化(integrated access and backhaul,IAB)网络中,包括IAB节点(IAB-node)和IAB 宿主(IAB-donor)。IAB节点可以为用户设备(user equipment,UE)提供无线接入服务,UE的业务数据由IAB节点通过无线回传链路发送至IAB宿主。IAB节点可以接入IAB宿主,也可以通过其他IAB节点连接到IAB宿主。
IAB节点可以包括至少一个移动终端(mobile terminal,MT)和至少一个分布式单元(distributed unit,DU)。IAB节点可以是一个实体,例如该IAB节点包括至少一个MT功能和至少一个DU功能。IAB节点也可以包括多个实体,例如该IAB节点包括至少一个MT实体和至少一个DU实体。其中MT实体和DU实体可以相互通信,例如通过网线相互通信。
IAB节点面向其父节点(父节点可以是IAB宿主或者其他IAB节点)时,可以作为终端设备,即IAB节点的终端角色。这种情况下,为IAB节点提供终端角色的是MT功能或MT实体。IAB节点面向其子节点(子节点可以是其他IAB节点或者终端设备)时,可以作为网络设备,即IAB节点的网络设备角色。这种情况下,为IAB节点提供网络设备角色的是DU功能或DU实体。
IAB宿主为具有完整基站功能的接入网网元。IAB宿主可以包括一个集中式单元(centralized unit,CU)和至少一个分布式单元(distributed unit,DU)。其中,CU和DU之间的接口为F1接口。F1接口的两端分别是CU和DU,CU的F1接口的对端是DU,DU的F1接口的对端是CU。
为了方便描述,本申请下述实施例中,将IAB节点的MT简称为IAB-MT,将IAB节点的DU简称为IAB-DU。将IAB宿主的CU简称为宿主CU(Donor-CU),将IAB宿主的DU简称为宿主DU(Donor-DU)。
IAB网络支持多跳组网和多连接组网以保证业务传输的可靠性。IAB节点将为其提供回传服务的IAB节点视为父节点,相应地,该IAB节点可视为其父节点的子节点。终端设备可以将其接入的IAB节点视为父节点,相应地,IAB节点也可以将接入自己的终端设备视为子节点。终端直接接入的IAB节点可以称之为接入IAB节点。IAB节点可以将自己接入的IAB宿主视为父节点,相应地,IAB宿主也可以将接入自己的IAB节点视为子节点。
示例性的,如图1所示,IAB节点1的父节点包括IAB宿主。IAB节点1又为IAB节点2或者IAB节点3的父节点。终端设备1的父节点包括IAB节点4。IAB节点4的子节点包括终端设备1或者终端设备2。IAB节点4是终端设备1和终端设备2的接入IAB节点。IAB节点5是终端设备2的接入IAB节点。
如图1所示,IAB宿主与终端设备2之间的传输路径存在多种可能,例如传输路径1“IAB宿主-IAB节点1-IAB节点2-IAB节点5-终端设备2”,传输路径2“IAB宿主-IAB节点1-IAB节点2-IAB节点4-终端设备2”,传输路径3“IAB宿主-IAB节点1-IAB节点3-IAB节点4-终端设备2”。
在终端设备和IAB宿主之间的一条传输路径上,可以包括一个或多个IAB节点。每个IAB节点需要维护面向父节点的无线回传链路(backhaul link,BL)和面向子节点的无线链路。若IAB节点的子节点是终端设备,该IAB节点和子节点(即终端设备)之间的无线链路为无线接入链路(access link,AL)。若IAB节点的子节点为其他IAB节点,该IAB节点和子节点(即其他IAB节点)之间的无线链路为无线回传链路。
示例性的,如图1所示,在传输路径“终端设备1→IAB节点4→IAB节点3→IAB节点1→IAB宿主”中,终端设备1通过无线接入链路接入IAB节点4,IAB节点4通过无线回传链路连接到IAB节点3,IAB节点3通过无线回传链路连接到IAB节点1,IAB节点1通过无线回传链路连接到IAB宿主。
如图2所示,IAB-DU在逻辑上通过F1接口连接至Donor-CU。实际上,IAB-DU与Donor-CU的连接是通过传输路径上每一跳IAB节点的MT与其父节点的IAB-DU之间的Uu接口实现的。但由于最终IAB-DU能够与Donor-CU通信,因此可以认为IAB-DU和Donor-CU之间在逻辑上存在F1接口。
F1接口包括F1接口控制面(F1-C)和F1接口用户面(F1-U)。通过F1-C,IAB宿主可以对IAB节点进行接口管理、终端设备的上下文相关配置、IAB-DU的管理等。通过F1-U,IAB宿主和IAB节点之间可以进行用户面数据的传输、下行传输状态反馈等。
图3和图4分别为本申请实施例提供的IAB网络中的控制面协议栈的示意图和用户面协议栈的示意图。图3和图4中的IAB节点2和IAB节点1之间,IAB节点1和IAB宿主的DU之间均建立有无线回传链路(接口为Uu接口)。无线回传链路两端对等的协议栈可以包括回传适配协议(backhaul adaptation protocol,BAP)层,无线链路控制(radio link control,RLC)层,媒体接入控制(medium access control,MAC)层,以及物理(physical,PHY)层。图3和图4中的终端设备和IAB宿主之间存在为Uu接口。Uu接口一端位于终端设备,一端位于IAB宿主。
如图3所示,终端设备和IAB宿主之间的Uu接口两端对等的控制面协议栈包括无线资源控制(radio resource control,RRC)层,分组数据汇聚(packet data convergence protocol,PDCP)层,RLC层,MAC层,以及PHY层。IAB宿主包括CU和DU时,Uu接口在IAB这端的控制面协议栈可以分别位于DU和CU。例如,PHY层,MAC层及RLC层位于DU,RRC层和PDCP层位于CU。
IAB节点2的DU和IAB宿主的CU之间存在F1-C接口。F1-C接口一端位于IAB节点2的DU,一端位于IAB宿主的CU。F1-C接口两端对等的控制面协议栈包括F1应用协议(F1 application protocol,F1AP)层,流控制传输协议(stream control transmission protocol,SCTP)层以及因特网协议(internet protocol,IP)层中的至少一个。
如图4所示,终端设备和IAB宿主之间的Uu接口两端对等的用户面协议栈包括业务数据适配协议(service data adaptation protocol,SDAP)层,PDCP层,RLC层,MAC层,以及PHY层。IAB宿主包括CU和DU时,Uu接口在IAB宿主这端的用户面协议栈可以分别位于DU和CU。例如,PHY层,MAC层及RLC层位于DU,SDAP层和PDCP层位于CU。
IAB节点2的DU和IAB宿主之间存在FI-U接口。F1-U接口一端位于IAB节点2的DU,一端位于IAB宿主的CU。F1-U接口两端对等的用户面协议层包括通用分组无线业务用户面隧道协议(general packet radio service tunnelling protocol for the user plane,GTP-U)层,用户数据报协议(user datagram protocol,UDP)层以及IP层中的至少一个。
BAP层是IAB网络中的无线回传链路引入的新的协议层。如图3或图4所示,BAP层的起止点可以位于终端设备计入的IAB节点的DU和IAB宿主的DU。BAP层可以用于实现数据包在无线回传链路的路由,以及承载映射等功能。Donor-CU可以为其控制的每个IAB节点以及Donor-DU分配唯一的BAP地址(BAP address),用于唯一标识网络中的每个IAB节点和Donor-DU。此外,IAB节点还需要具有IP地址,IAB-DU侧的IP地址与Donor-DU有关。
IAB节点和Donor-DU位于多个传输路径中的情况下,IAB节点或Donor-DU的BAP地址可以关联多个BAP路径标识(identifier,ID)。BAP地址和BAP路径标识(BAP path ID)可以统称为BAP路由标识(BAP routing ID)。源节点(下行方向的Donor-DU,上行方向的接入IAB节点)的BAP层协议栈可以在数据包中添加BAP报头。该BAP报头可以包括目标BAP地址和BAP路径标识,分别指示目标节点(下行方向的接入IAB节点,上行方向的Donor-DU)的BAP地址和到达目标节点所采用的路径。
Donor-CU可以为其控制的每个IAB节点配置路由表。路由表中包括BAP路由地址和下一跳BAP地址的映射关系。IAB节点收到数据包后,可以查找路由表确定下一跳节点,并向下一跳IAB节点转发该数据包。
除路由功能外,BAP层还可以用于实现入口回传RLC信道(backhaul RLC channel,BH RLC CH)和出口BH RLC CH之间的映射。入口BH RLC CH和出口BH RLC CH之间的映射规则可以由Donor-CU配置。入口BH RLC CH和出口BH RLC CH之间的映射本质上可以理解为一种更细粒度的路由,在确定下一跳节点的BAP地址的基础上,进一步选择BH RLC CH。
在一些场景下,例如负载均衡或移动性场景下,IAB节点连接的父节点和IAB宿主可能发生变化。示例性的,如图5所示,IAB节点3可以从源父节点(IAB节点1)切换至目标父节点(IAB节点2),例如,IAB-MT3从IAB-DU1下的小区切换至IAB-DU2下的小区。此外,IAB节点连接的IAB宿主由IAB宿主1变为IAB宿主2,可以认为IAB节点3从源IAB宿主(IAB宿主1)切换至目标IAB宿主(IAB宿主2)。这一场景可以称为IAB节点的迁移,或者跨宿主迁移,或者跨Donor-CU迁移。发生迁移的IAB节点可以称为边界节点(boundary node),例如,图5中的IAB节点3可以称为边界节点。
目前,IAB节点的跨Donor-CU迁移可以分为部分迁移(partial migration)和全迁移(full migration)两种实现方式。简单来说,在部分迁移中,IAB-MT发生跨Donor-CU的切换,但IAB-DU仍然与源Donor-CU保持F1连接。在全迁移中,IAB-MT发生跨Donor-CU的切换,且IAB-DU需要与目标Donor-CU之间建立F1连接。在部分迁移中,源Donor-CU可以称为F1端点CU(F1-terminating CU),目标Donor-CU可以称为非F1端点CU(non-F1-terminating CU)。其中,F1连接可以理解为F1接口上的连接。
部分迁移主要面向以负载均衡为目的的场景。在边界节点的移动范围较大时,边界节点仍然与源Donor-CU保持F1连接是不合适的,边界节点的F1连接的锚点需要迁移至目标Donor-CU上,因此,全迁移主要面向边界节点的移动导致的迁移。当然,部分迁移和全迁移也可以适用于其他原因导致的迁移,本申请对此不作具体限定。
图6为本申请实施例提供的一种部分迁移的示意图。在部分迁移之前,IAB-MT2与Donor-CU1之间 存在RRC连接,IAB-DU2与Donor-CU1之间存在F1接口,IAB-DU2与Donor-CU1之间的通信路径为源路径:发生部分迁移后,IAB-MT2与Donor-CU2之间建立了RRC连接,IAB-DU2与Donor-CU1之间的F1接口仍然存在,且IAB-DU2与Donor-CU2之间不存在F1接口。因此,在部分迁移后,IAB-DU2与Donor-CU1之间的通信路径变为目标路径:其中,该目标路径可以理解为跨拓扑路径,跨拓扑路径可以指:包括两个Donor-CU管理的IAB节点的路径。
部分迁移后,数据在目标路径上的传输并不经过Donor-CU2,且Donor-CU1和Donor-DU2通过IP网络通信。虽然目标路径上的数据传输不经过Donor-CU2,但是Donor-DU2、IAB-MT3、IAB-DU3、IAB-MT2受Donor-CU2控制,其上用于服务跨拓扑流量的配置由Donor-CU2完成。其中,跨拓扑流量可以理解为通过跨拓扑路径传输的流量(traffic)。
由于IAB-DU侧的IP地址与Donor-DU相关,因此,在边界节点发生跨Donor-CU迁移时,Donor-DU发生了变化,IAB-DU侧的IP地址需要进行相应变化。在图6所示的示例中,IAB-DU2锚点(anchor)在Donor-DU2下的IP地址可以由Donor-CU2发给Donor-CU1,再由Donor-CU1发给IAB节点2。
此外,在边界节点发生跨Donor-CU迁移时,由于边界节点连接的Donor-CU发生了变换,其BAP地址和BAP配置也需要相应进行变换。在图6所示的示例中,IAB节点2的BAP地址和默认BAP配置可以由Donor-CU2发给Donor-CU1,再由Donor-CU1发给IAB节点2。其中,默认BAP配置用于IAB节点2与Donor-CU1之间通过目标路径交互第一条F1-C消息。Donor-CU2可以向Donor-CU1发送用户面数据在目标路径中的更多BAP配置,再由Donor-CU1通过Donor-CU1和IAB节点2之间的跨拓扑F1-C接口发送给IAB节点2。其中,跨拓扑F1接口可以理解为:F1接口(或F1连接)通过跨拓扑路径实现。
全迁移可以分为Full Nested、Gradual Bottom-up、Gradual Top-down三种实现方式。示例性的,图7a、图7b、图7c分别为本申请实施例提供的这三种实现方式的流程示意图。在图7a、图7b、和图7c中,假设边界节点(IAB节点3)具有两个(逻辑)DU(记为IAB-DU3a和IAB-DU3b)。在全迁移之前,IAB-MT3与Donor-CU1之间存在RRC连接,IAB-DU3a与Donor-CU1之间存在F1接口。图7a、图7b、和图7c中的曲线表示各个步骤中可能的传输路径。
如图7a所示,在Full Nested中,通过步骤0建立IAB-DU3b与Donor-CU2之间的跨拓扑F1-C连接(不建立跨拓扑F1-U连接,不进行跨拓扑流量传输),使得IAB-DU3a下的终端设备能够切换至IAB-DU3b。在步骤1中向IAB-DU3a下的终端设备发送切换(handover,HO)命令(command,Com)后,终端设备在步骤2中进行切换。在步骤3至步骤5中,Donor-CU1向IAB点3发送切换命令,使得IAB-MT3从IAB-DU1切换至IAB-DU2,并向Donor-CU2发送切换完成(HO complete)消息。在步骤6中,终端设备的切换完成消息通过IAB-DU3b向Donor-CU2发送。
如图7b所示,在Gradual Bottom-up中,通过步骤0建立IAB-DU3b与Donor-CU2之间的跨拓扑F1-C连接和F1-U连接,使得IAB-DU3a下的终端设备能够切换至IAB-DU3b,实现IAB-DU3b与Donor-CU2之间的跨拓扑控制面和用户面通信。在步骤1至步骤3中,Donor-CU1向终端设备发送切换命令,终端设备执行切换后,切换完成消息通过IAB-DU3b与Donor-CU2之间的跨拓扑路径传输至Donor-CU2。之后,在步骤4至步骤6中,Donor-CU1向IAB点3发送切换命令,使得IAB-MT3从IAB-DU1切换至IAB-DU2,并向Donor-CU2发送切换完成消息。
如图7c所示,Gradual Top-down类似于部分迁移,首先进行IAB-MT3的切换,建立IAB-DU3与Donor-CU1之间的跨拓扑F1-C连接和F1-U连接,以及IAB-DU3b与Donor-CU2之间的F1-C连接和F1-U连接。之后,Donor-CU1通过IAB-DU3与Donor-CU1之间的跨拓扑连接向终端设备发送切换命令,实现终端设备从IAB-DU3a至IAB-DU3b的切换。
对于全迁移,目前仅是概括性地提出上述图7a、图7b、图7c所示的流程,对于其中的实现细节并未讨论。基于此,本申请提供一种基于IAB的通信方法,对全迁移的实现细节进行设计,保障全迁移方案的实施。
如图8所示,为本申请提供的方法适用的一种通信系统的结构示意图。该通信系统包括第一宿主节点、第二宿主节点和第一IAB节点。第一IAB首先连接至第一宿主节点,之后,第一IAB节点可以进行迁移,从而连接至第二宿主节点。进一步的,该通信系统还可以包括接入第一IAB节点的至少一个终端设备。
可选的,第一IAB节点和第一宿主节点之间可以存在一个或多个IAB节点,图8中以一个IAB节点1,且该IAB节点1包括IAB-MT1和IAB-DU1为例进行说明。第一IAB节点和第二宿主节点之间也可以存在一个或多个IAB节点,图8中以一个IAB节点2,且该IAB节点2包括IAB-MT2和IAB-DU2为例 进行说明。
可选的,第一宿主节点或第二宿主节点可以包括但不限于:下一代基站(generation nodeB,gNB),演进型节点B(evolved Node B,eNB),无线网络控制器(radio network controller,RNC),节点B(Node B,NB),基站控制器(base station controller,BSC),基站收发台(base transceiver station,BTS),家庭基站(home evolved Node B或者home Node B),传输点(transmission and reception point或者transmission point),具有基站功能的路边单元(road side unit,RSU),基带单元(baseband unit,BBU),射频拉远单元(Remote Radio Unit,RRU),有源天线单元(active antenna unit,AAU),一个或一组天线面板,或后续演进系统中具备基站功能的节点等。
可选的,第一宿主节点可以包括宿主CU功能和宿主DU功能,此时,第一宿主节点可以理解为一个实体。或者,第一宿主节点可以包括宿主CU实体和宿主DU实体,此时,第一宿主节点可以分为两个实体。第二宿主节点的说明可参考第一宿主节点,在此不再赘述。
为了方便描述,本申请下述实施例将第一宿主节点的宿主CU功能或宿主CU实体称为第一宿主节点集中式单元Donor-CU1,将第一宿主节点的宿主DU功能或宿主DU实体称为第一宿主节点分布式单元Donor-DU1。将第二宿主节点的宿主CU功能或宿主CU实体称为第二宿主节点集中式单元Donor-CU2,将第二宿主节点的宿主DU功能或宿主DU实体称为第二宿主节点分布式单元Donor-DU2。此外,第一宿主节点也可以称为第一IAB宿主,第二宿主节点也可以称为第二IAB宿主,前述IAB宿主的全部特征均适用于第一宿主节点和第二宿主节点。
可选的,第一IAB节点可以是一个实体,包括MT功能、第一DU功能、和第二DU功能。或者,第一IAB节点可以包括MT实体、第一DU实体、和第二DU实体。第一DU实体和第二DU实体可以共享硬件资源,即使用一个DU实体实现两个逻辑DU的功能;或者,第一DU实体和第二DU实体也可以使用不同的硬件资源,本申请对此不做具体限定。
为了方便描述,本申请下述实施例将第一IAB节点的MT功能或MT实体简称为第一IAB节点的MT,将第一IAB节点的第一DU功能或第一DU实体简称为第一IAB节点的第一DU,将第一IAB节点的第二DU功能或第二DU实体简称为第一IAB节点的第二DU。此外,前述IAB节点的全部特征均适用于第一IAB节点。
可选的,终端设备有时也称为用户设备(user equipment,UE),移动台,终端等。终端设备可以广泛引用于各种场景,例如设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IoT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请对终端设备的具体名称和实现形式并不做限定。
下面将结合附图,以第一宿主节点、第二宿主节点、第一IAB节点之间的交互为例,对本申请实施例提供的方法进行展开说明。
可以理解的,本申请实施例中,执行主体可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
需要说明的是,本申请下述实施例中各个功能或实体之间的消息名字或消息中各信息的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图9所示,为本申请实施例提供的一种基于IAB的通信方法,该基于IAB的通信方法包括如下步骤:
S901、Donor-CU1向Donor-CU2发送第一消息。相应的,Donor-CU2接收来自Donor-CU1的第一消息。
其中,该第一消息用于为第一IAB节点请求IP地址配置和/或BAP配置。示例性的,IP地址配置可以包括流量粒度(即per traffic)的IP地址。BAP配置可以包括BAP地址和默认BAP(default BAP)配置,该默认BAP配置可以包括RLC信道标识,该RCL信道标识指示的RLC信道可以用于第一IAB节点和Donor-CU2之间的交互。
在该步骤S901之前,第一IAB节点连接至Donor-CU1,或者说第一IAB节点受Donor-CU1控制。第一IAB节点的第二DU和Donor-CU1之间存在F1接口,该F1接口可以称为为同拓扑F1接口。其中,同拓扑F1接口可以理解为:F1接口(或F1连接)通过同拓扑路径实现。同拓扑路径可以指:包括的IAB 节点均由同一Donor-CU管理的路径。示例性的,如图8所示,在该步骤S901之前,第一IAB节点的第二DU和Donor-CU1的同拓扑路径为:
可选的,在步骤S901之前,第一IAB节点的MT可以向Donor-CU1发送测量报告(measurement report,MR)。Donor-CU1收到该测量报告后,可以根据该测量报告确定第一IAB节点的MT是否需要切换。在确定第一IAB节点的MT需要从Donor-CU1向Donor-CU2切换的情况下,向Donor-CU2发送该第一消息。
此外,Donor-CU1在确定第一IAB节点的MT需要从Donor-CU1向Donor-CU2切换的情况下,Donor-CU1和Donor-CU2可以执行关于第一IAB节点的MT的切换准备流程,例如,Donor-CU1可以向Donor-CU2发送关于第一IAB节点的MT的切换请求,用于请求将该第一IAB节点的MT切换至Donor-CU2。Donor-CU2收到该切换请求后可以向Donor-CU1发送切换响应,该切换响应中可以携带Donor-CU2的IP地址。
可选的,该第一消息可以是在上述关于第一IAB节点的MT的切换准备流程中发送的,也可以是在该切换准备流程之前或之后发送的,本申请对此不做具体限定。
S902、Donor-CU2向Donor-CU1发送X套第一IP地址配置和/或Y个第一BAP配置。相应的,Donor-CU1接收来自Donor-CU2的该X套第一IP地址和/或Y个第一BAP配置。X、Y为正整数。
示例性的,一套IP地址配置可以包括至少一个IP地址,该至少一个IP地址和至少一类(或一个)流量(traffic)一一对应。即一套IP地址配置包括以流量为粒度的IP地址。
可选的,Donor-CU2向Donor-CU1发送X套第一IP地址配置和Y个第一BAP配置的情况下,该X套第一IP地址配置和该Y个第一BAP配置之间存在对应关系,该对应关系表示某套IP地址需要和其对应的第一BAP配置作为组合使用。例如,若第一IAB节点的某个DU的IP地址为第一IP地址配置#1中的IP地址,那么该DU的BAP配置即为第一IP地址配置#1对应的第一BAP配置。
其中,该X套第一IP地址配置中的一套第一IP地址配置和该Y个BAP配置中的一个第一BAP配置用于在第一IAB节点的MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一DU之间的F1连接(或F1接口)。换句话说,该一套第一IP地址配置和该一个第一BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间的同拓扑F1连接。
可选的,该X套第一IP地址配置和/或Y个第一BAP配置可以是Donor-CU2和Donor-DU2协商确定的。或者,该X套第一IP地址配置可以是Donor-DU2确定后发送给Donor-CU2的;该Y个第一BAP配置可以是Donor-CU2确定的,本申请对此不作具体限定。
S903、Donor-CU1向第一IAB节点发送第二消息。相应的,第一IAB节点接收来自Donor-CU1的第二消息。其中,该第二消息包括上述X套第一IP地址配置和/或Y个第一BAP配置。
可选的,第二消息可以是用于第一IAB节点的MT的切换命令消息。或者,第二消息可以是切换命令消息之外的其他RRC消息,本申请对此不做具体限定。
S904、第一IAB节点启动第一IAB节点的第一DU。
其中,第一IAB节点的第一DU启动的触发条件为:第一IAB节点收到第六信息。换句话说,第一IAB节点接收第六信息后,根据第六信息启动第一IAB节点的第一DU。其中,该第六信息包括至少一套IP地址和/或至少一套BAP配置。该至少一套IP地址配置和至少一套BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间的(同拓扑或跨拓扑)F1连接(或F1接口)。
需要说明的是,本申请实施例提供的方法还涉及第一信息至第五信息,将在后续实施例中说明,在此不予赘述。
基于上述触发条件,第一IAB节点收到第二消息后,可以判断第二消息中是否包括上述第六信息。由于上述第二消息中的X套第一IP地址配置和/或Y个第一BAP配置中,存在一套第一IP地址配置和/或一个第一BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间的跨拓扑F1连接(或F1接口),因此,第一IAB节点收到第二消息后,可以启动第一IAB节点的第一DU。
可选的,启动第一IAB节点的第一DU,也可以描述为:开启或使能或生效或激活第一IAB节点的第一DU。
可选的,启动第一IAB节点的第一DU,可以包括:激活或准备或生效第一DU管理的小区。示例性的,操作管理和维护网元(operation administration and maintenance,OAM)可以预先为第一IAB节点配置两套小区,其中一套小区由第一IAB节点的第一DU管理,另一套由第一IAB节点的第二DU管理,各个DU管理的小区可以在DU启动时被激活或生效。进一步的,在第一IAB节点的第一DU启动时激活或准 备或生效的第一DU下的小区具体可以是Donor-CU2指示的,即Donor-CU2可以指示激活或准备或生效第一DU下的哪些小区。
基于本申请提供的上述方案,Donor-CU1为第一IAB节点向Donor-CU2请求IP地址配置和/或BAP配置。Donor-CU2返回的X套IP地址配置和/或Y个BAP配置,使得第一IAB节点的MT从Donor-CU1切换至Donor-CU2之后,Donor-CU2和第一IAB节点的第一DU之间的F1连接能够被建立,从而使得Donor-CU2和第一IAB节点能够进行F1-C和F1-U通信,保障全迁移方案的实施,使得终端设备的流量能够迁移至Donor-CU2和第一IAB节点之间的目标路径传输。
此外,第一IAB节点在收到用于建立Donor-CU2和第一IAB节点的第一DU之间的F1连接的IP地址配置和/或BAP配置之后,启动第一IAB节点的第一DU,使得终端设备能够从IAB节点的第二DU切换至第一DU,同样保障了全迁移方案的实施。
下面以上述图9所示的方法应用于全迁移的Full Nested实现为例,对本申请提供的一种Full Nested的迁移流程进行说明。如图10所示,该流程包括如下步骤:
S1001、第一IAB节点的MT向Donor-CU1发送测量报告。相应的,Donor-CU1接收来自第一IAB节点的MT的测量报告。
可选的,Donor-CU1收到测量报告后,可以根据该测量报告确定第一IAB节点的MT是否需要切换。在确定第一IAB节点的MT需要从Donor-CU1向Donor-CU2切换的情况下,执行下述步骤S1002和S1003。
S1002、Donor-CU1和Donor-CU2执行关于第一IAB节点的MT的切换准备流程。可参考前述切换准备流程的相关说明,在此不再赘述。
S1003、Donor-CU1向Donor-CU2发送第一消息。相应的,Donor-CU2接收来自Donor-CU1的第一消息。第一消息可以参考上述步骤S901中的相关说明,在此不再赘述。
可选的,步骤S1002和步骤S1003没有严格的执行顺序。可以先执行步骤S1002再执行步骤S1003;或者,可以先执行步骤S1003再执行步骤S1003;或者,可以同时执行步骤S1002和步骤S1003,该场景下,可以认为第一消息是关于MT的切换准备流程中的某个消息。
可选的,Donor-CU1为第一IAB节点请求IP地址配置和/或BAP配置时,可以指示请求的IP地址配置和/或BAP配置的数量,和/或,指示请求的IP地址配置和/或BAP配置对应的主体,即为第一IAB节点的哪个DU请求IP地址配置和/或BAP配置。
作为第一种可能的实现,第一消息可以包括第一信息和/或第二信息。该场景下,第一消息可以是现有的某种XN消息。
其中,该第一信息指示Donor-CU1为第一IAB节点请求的IP地址配置和/或BAP配置的数量。示例性的,对于Full Nested,第一信息可以指示Donor-CU1为第一IAB节点请求一套IP地址配置和/或一个BAP配置。
示例性的,第一消息可以包括信元1和信元2,分别用于指示Donor-CU1请求的IP地址配置的数量以及BAP配置的数量。或者,第一消息可以包括信元3,用于联合指示Donor-CU1请求调度IP地址配置的数量以及BAP配置的数量。例如,信元3的取值为数值1时,指示Donor-CU1为第一IAB节点请求一套IP地址配置和一个BAP配置。
其中,该第二信息指示第一IAB节点的至少一个DU。Donor-CU1请求的IP地址配置和/或BAP配置用于该第二信息指示的至少一个DU。示例性的,对于Full Nested,第二信息可以指示第一IAB节点的第一DU,表示Donor-CU1请求的IP地址配置和/或BAP配置用于该第一DU。换句话说,表示Donor-CU1为第一IAB节点的第一DU请求IP地址配置和/或BAP配置。
示例性的,第一消息可以包括信元4,在该信元4中承载第一DU的标识,以指示第一IAB节点的第一DU。
可选的,Donor-CU2收到该第一消息,并从第一消息中获取到第二信息后,可以获知第一IAB节点将进行全迁移而不是部分迁移。
作为第二种可能的实现,第一消息可以为新定义的一种XN消息,该新定义的XN消息本身即可具有前述数量和/或主体的指示功能。
示例性的,该新定义的XN消息可以用于为第一IAB节点的第一DU请求一套IP地址配置和/或一个BAP配置。
S1004、Donor-CU2向Donor-CU1发送X套第一IP地址配置和/或Y个第一BAP配置。相应的,Donor-CU1接收来自Donor-CU2的该X套第一IP地址和/或Y个第一BAP配置。X、Y为正整数。
示例性的,对于Full Nested,Donor-CU2可以向Donor-CU1发送一套第一IP地址配置和/或一个第一BAP配置,用于建立Donor-CU2和第一IAB节点的第一DU之间的跨拓扑F1连接。
可选的,Donor-CU2向Donor-CU1发送X套第一IP地址配置和Y个第一BAP配置的情况下,该X套第一IP地址配置和Y个第一BAP配置可以携带在一条消息中,也可以携带在多条消息中。例如,X套第一IP地址配置携带在一条消息中,Y个第一BAP配置携带在另一条消息中;或者,用于第一IAB节点的第一DU的第一IP地址配置和/或第一BAP配置携带在一条消息中,用于第一IAB节点的第二DU的第一IP地址配置和/或第一BAP配置携带在另一条消息中,本申请对此不作具体限定。
可选的,Donor-CU2还可以向Donor-CU1发送第三信息。相应的,Donor-CU1可以接收来自Donor-CU2的该第三信息。其中,该第三信息指示Donor-CU2发送的X套第一IP地址配置中的每套第一IP地址配置所属的第一IAB节点的DU,和/或,指示Y个第一BAP配置中的每个第一BAP配置所属的第一IAB节点的DU。换句话说,第三信息可以指示其发送的每套第一IP地址是给第一IAB节点的哪个DU配置的,和/或,指示其发送的每个第一BAP配置是给第一IAB节点的哪个DU配置的。
示例性的,对于Full Nested,第三信息可以指示Donor-CU2发送的一套IP地址配置和/或一个BAP配置属于第一IAB节点的第一DU,即是给第一IAB节点的第一DU配置的。
可选的,Donor-CU2还可以向Donor-CU1发送第四信息。相应的,Donor-CU1可以接收来自Donor-CU2的该第四信息。
作为第一种可能的实现,该第四信息可以指示Donor-CU1向第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,向第一IAB节点发送第二切换命令消息。本申请并不限定该至少一个终端设备为某些特定的终端设备,此处的“至少一个终端设备”仅用于限定终端设备的数量。例如,假设第一IAB节点的第二DU下共有10个终端设备,第四信息指示的“至少一个终端设备”为8个终端设备时,可以表示Donor-CU1向第一IAB节点的第二DU下的任意8个终端设备发送第一切换命令消息后,向第一IAB节点发送第二切换命令消息。当然,该至少一个终端设备也可以指全部终端设备。即第四信息可以指示Donor-CU1向第一IAB节点的第二DU下的全部终端设备发送第一切换命令消息后,发送该第二切换命令消息。
其中,第一切换命令消息指示该终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU,或者说,指示终端设备从第一IAB节点的第二DU向第一IAB节点的第一DU切换。第二切换命令消息指示第一IAB节点的MT执行切换,或者说,第二切换命令消息为用于第一IAB节点的MT的切换命令消息。
作为第二种可能的实现,该第四信息指示Donor-CU1向第一IAB节点发送的第二切换命令消息中携带第一IAB节点的MT的切换条件。
示例性的,第一IAB节点的MT的切换条件可以包括:(第一IAB节点或第一IAB节点的第二DU)向第一IAB节点的第二DU下的至少一个终端设备发送了第一切换命令消息。本申请并不限定该至少一个终端设备为某些特定的终端设备,此外,该至少一个终端设备可以替换为全部终端设备,即第一IAB节点的MT的切换条件可以包括:(第一IAB节点或第一IAB节点的第二DU)向第一IAB节点的第二DU下的全部终端设备发送了第一切换命令消息。可参考第四信息的第一种可能的实现中对于至少一个终端设备的相关说明,在此不再赘述。
可选的,上述步骤S1003和步骤S1004可以在同一流程中执行,例如,可以在关于MT的切换准备流程中执行上述步骤S1003和步骤S1004。
可选的,Donor-CU2向Donor-CU1发送的上述信息可以携带在同一条消息中,也可以携带在多条消息中,本申请对此不作具体限定。
S1005、Donor-CU1向第一IAB节点发送第二消息。相应的,第一IAB节点接收来自Donor-CU1的第二消息。其中,该第二消息包括上述X套第一IP地址配置和/或Y个第一BAP配置。
作为第一种可能的实现,第二消息可以是用于MT的切换命令消息之外的其他RRC消息。换句话说,第二消息不是用于MT的切换命令消息。
可选的,该第一种可能的实现中,第二消息还可以包括第二IP地址配置和/或第二BAP配置。该第二IP地址配置和第二BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间通过Donor-DU1的跨拓扑F1连接。换句话说,该第二IP地址配置和第二BAP配置用于在第一IAB节点的MT从Donor-CU1切换至Donor-CU2之前,建立Donor-CU2和第一IAB节点的第一DU之间的F1连接。示例性的,对于Full Nested,此处的F1连接可以为F1-C连接。
可选的,该第二IP地址配置和第二BAP配置可以是Donor-CU1和Donor-DU1协商确定的。或者,第二IP地址配置可以是Donor-DU1确定的,该第二BAP配置可以是Donor-CU1确定的。
作为第二种可能的实现,第二消息可以是用于第一IAB节点的MT的切换命令消息,第二消息还包括第一IAB节点的MT的切换条件。并且,Donor-CU1还向第一IAB节点发送第三消息,该第三消息包括第二IP地址配置和第二BAP配置。该第三消息是用于MT的切换命令消息之外的其他RRC消息。此外,该第三消息是在第二消息之前向第一IAB节点发送的。
其中,该第一IAB节点的MT的切换条件可参考上述第四信息的第二种可能的实现中的相关说明,在此不再赘述。
可选的,该第二种可能的实现中,Donor-CU1向第一IAB节点发送第二消息,可以包括:Donor-CU1向第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,向第一IAB节点发送第二消息。本申请并不限定该至少一个终端设备为某些特定的终端设备。该至少一个终端设备可以替换为全部终端设备,可以参考上述第四信息的第一种可能的实现中对于至少一个终端设备的相关说明,在此不再赘述。此外,该可能的实现中,第二消息也可以称为第二切换命令消息。
作为第三种可能的实现,第二消息可以是用于第一IAB节点的MT的切换命令消息,并且,第二消息还包括第二IP地址配置、第二BAP配置、和第一IAB节点的MT的切换条件。该第一IAB节点的MT的切换条件可参考上述第四信息的第二种可能的实现中的相关说明,在此不再赘述。此外,该可能的实现中,第二消息也可以称为第二切换命令消息。
可选的,第一IAB节点的MT的切换条件也可以理解为第二消息表示的切换命令的生效条件。其中,第二消息表示的切换命令即为用于第一IAB节点的MT的切换命令。
S1006、第一IAB节点启动第一IAB节点的第一DU。
其中,第一IAB节点的第一DU启动的触发条件为:第一IAB节点收到第六信息。其中,该第六信息包括至少一套IP地址和/或至少一套BAP配置。该至少一套IP地址配置和至少一套BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间的(同拓扑或跨拓扑)F1连接。启动第一IAB节点的第一DU的说明可参考上述步骤S904中的相关描述,在此不再赘述。
对于步骤S1005中第二消息的第一种实现方式和第三种实现方式,第六信息包括第一IP地址配置、第一BAP配置、第二IP地址配置、或第二BAP配置中的至少一项。其中,第一IP地址配置和第一BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间的同拓扑F1连接。第二IP地址配置和第二BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间的跨拓扑F1连接。
对于步骤S1005中第二消息的第二种实现方式,第六信息包括第二IP地址配置和/或第二BAP配置。即第一IAB节点在收到第三消息后,可以启动第一IAB节点的第一DU。
可选的,对于步骤S1005中第二消息的第二种实现方式和第三种实现方式,可以认为第六信息携带在第二消息(或称为第二切换命令消息)中。即,第一IAB节点接收来自Donor-CU1的第六信息,可以包括:第一IAB节点接收来自Donor-CU1的第二消息(或称为第二切换命令消息),该消息中包括第六信息。
S1007、建立Donor-CU2和第一IAB节点的第一DU之间的跨拓扑F1-C连接。
其中,第二IP地址配置和第二BAP配置可以在该步骤S1007中使用。本申请对跨拓扑F1-C连接的建立方式不作具体限定。
S1008、Donor-CU1向Donor-CU2发送第五信息。相应的,Donor-CU2接收来自Donor-CU1的第五信息。
其中,该第五信息为第一IAB节点(例如第一IAB节点的第二DU)下的终端设备的上下文信息或服务质量(quality of service,QoS)信息。
可选的,该第五信息可以携带在用于终端设备的切换请求(handover request)消息中,也可以携带在其他消息中,本申请对此不作具体限定。第五信息携带在其他消息中的情况下,该步骤S1008中,Donor-CU1还需要向Donor-CU2发送用于终端设备的切换请求消息。图10中以第五信息携带在用于终端设备的切换请求消息中为例进行说明。
S1009、Donor-CU2向中间节点发送回传链路资源配置信息。
可选的,Donor-CU2可以在收到第五信息后执行该步骤S1009。换句话说,Donor-CU2向中间节点发送回传链路资源配置信息的触发条件可以为Donor-CU2收到终端设备的上下文信息或QoS信息。
其中,中间节点包括Donor-DU2,以及第一IAB节点和Donor-CU2之间的IAB节点(例如图8所示的IAB节点2)。可以理解的,图8中仅是示例性的以第一IAB节点和Donor-CU2之间存在一个IAB节点 为例进行说明,实际应用中,第一IAB节点和Donor-CU2之间可以存在多个IAB节点,Donor-CU2可以向该多个IAB节点分别发送回传链路资源配置信息。此外,Donor-CU2发送给不同IAB节点的回传链路资源配置信息可以相同也可以不同,本申请对此不作具体限定。
其中,该回传链路资源配置信息用于为第一IAB节点的第一DU建立回传RLC信道(BL RLC CH)。
S1010、Donor-CU2向Donor-CU1发送用于终端设备的切换响应(handover response)消息。相应的,Donor-CU1接收来自Donor-CU2的该切换响应消息。
需要说明的是,该步骤S1010和步骤S1009没有严格的先后顺序。可以先执行步骤S1009再执行步骤S1010;或者,可以先执行步骤S1010再执行步骤S1009;或者,可以同时执行步骤S1009和步骤S1010。本申请对此不作具体限定。
S1011、Donor-CU1向第一IAB节点的第二DU下的终端设备发送第一切换命令消息。相应的,该终端设备接收来自Donor-CU1的第一切换命令消息。
可选的,该第一切换命令消息可以经由Donor-DU1、IAB节点1、第一IAB节点的MT、第一IAB节点的第二DU发送给终端设备。
S1012、终端设备向第一IAB节点的第一DU发起随机接入,执行随机接入流程。
可选的,上述步骤S1005的第二消息采用第一种可能的实现方式时,该流程还可以包括如下步骤S1013a。上述步骤S1005的第二消息采用第二种可能的实现方式或第三种可能的实现方式时,该流程还可以包括如下步骤S1013b。
S1013a、Donor-CU1确定向第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,向第一IAB节点发送第二切换命令消息。
S1013b、第一IAB节点确定向第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,确定第一IAB节点的MT的切换条件满足,或者说,生效第二消息表示的切换命令。
需要说明的是,本申请并不限定上述步骤S1013a和S1013b中的至少一个终端设备为某些特定的终端设备。此外,该至少一个终端设备可以替换为全部终端设备,可参考上述第四信息的第一种可能的实现中对于至少一个终端设备的相关说明,在此不再赘述。
在步骤S1013a或步骤S1013b之后,可以继续执行下述步骤S1014和步骤S1015。
S1014、第一IAB节点的MT向目标小区发起随机接入,执行随机接入流程。
其中,该目标小区为第一IAB节点的目标父节点的DU管理的小区。该目标父节点由Donor-CU2管理。示例性的,如图8所示,该目标父节点可以为IAB节点2,目标小区为IAB节点2的DU管理的小区。
S1015、建立Donor-CU2和第一IAB节点的第一DU之间的同拓扑F1连接。
可选的,由于步骤S1009中Donor-CU2在中间节点上为第一IAB节点的第一DU建立了BL RLC CH,并且,步骤S1005中收到了第一BAP配置,因此,在第一IAB节点的MT切换完成后,第一IAB节点的第一DU可以通过中间节点向Donor-CU2发起F1-C连接的建立请求。之后,可以接收Donor-CU2通过F1-C消息下发的用户面(user plane,UP)配置更新,例如接收IAB用户面配置更新(IAB UP configuration update)消息。
至此,第一IAB节点的第一DU可以通过中间节点与Donor-CU2进行F1控制面和用户面的通信,换句话说,第一IAB节点的Full Nested迁移完成。
上述方案中,从第一DU的IP地址配置、BAP配置、MT的切换命令消息的发送时机或生效时机、第一IAB节点的第一DU的启动时机、BL RLC CH的配置时机等方面对Full Nested迁移的实现细节进行了设计,可以保障Full Nested迁移方案的实施。
下面以上述图9所示的方法应用于全迁移的Gradual Bottom-up实现为例,对本申请提供的一种Gradual Bottom-up的迁移流程进行说明。如图11所示,该流程包括如下步骤:
S1101-S1102、与上述步骤S1001和步骤S1002相同,可参考步骤S1001和步骤S1002的相关说明,在此不再赘述。
S1103、Donor-CU1向Donor-CU2发送第一消息。相应的,Donor-CU2接收来自Donor-CU1的第一消息。
与上述步骤S1003相同。对于Gradual Bottom-up,第一信息也可以指示Donor-CU1为第一IAB节点请求一套IP地址配置和/或一个BAP配置。第二信息也可以指示第一IAB节点的第一DU,表示Donor-CU1为第一IAB节点的第一DU请求IP地址配置和/或BAP配置。可参考上述步骤S1003中的相关说明, 在此不再赘述。
S1104、Donor-CU2向Donor-CU1发送X套第一IP地址配置和/或Y个第一BAP配置。相应的,Donor-CU1接收来自Donor-CU2的该X套第一IP地址和/或Y个第一BAP配置。X、Y为正整数。
该步骤S1104与上述步骤S1004相同。对于Gradual Bottom-up,Donor-CU2也可以向Donor-CU1发送一套第一IP地址配置和/或一个第一BAP配置,用于建立Donor-CU2和第一IAB节点的第一DU之间的跨拓扑F1连接。第三信息也可以指示Donor-CU2发送的一套IP地址配置和/或一个BAP配置属于第一IAB节点的第一DU。
对于Gradual Bottom-up,Donor-CU2也可以向Donor-CU1发送第四信息。与Full Nested不同的是,在Gradual Bottom-up流程中,作为第一种可能的实现,该第四信息可以指示Donor-CU1在收到来自Donor-CU2的通知消息后,向第一IAB节点发送第二切换命令消息。
其中,该通知消息用于通知Donor-CU2收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息。该切换完成消息指示终端设备完成从第一IAB节点的第二DU至第一IAB节点的第一DU的切换。该切换完成消息可以为第一切换命令的响应消息。第二切换命令消息可参考图10所示流程中的相关说明,在此不再赘述。
本申请并不限定图11所示流程中的至少一个终端设备为某些特定的终端设备。此外,除特殊说明外,在图11所示流程中“至少一个终端设备”可以替换为“全部终端设备”,至少一个终端设备的详细说明可参考图10所示流程中的相关描述,在此不再赘述。
作为第二种可能的实现,该第四信息可以指示Donor-CU1向第一IAB节点发送的第二切换命令消息中携带第一IAB节点的MT的切换条件。
示例性的,对于Gradual Bottom-up,第一IAB节点的MT的切换条件可以包括:(第一IAB节点或第一IAB节点的第二DU)收到所述第一IAB节点的第二DU下的至少一个终端设备的切换完成消息。
S1105、Donor-CU1向第一IAB节点发送第二消息。相应的,第一IAB节点接收来自Donor-CU1的第二消息。
该步骤S1105和上述步骤S1005类似,区别在于:在第二消息的第二种可能的实现中,Donor-CU1向第一IAB节点发送第二消息,可以包括:Donor-CU1收到来自Donor-CU2的通知消息后,向第一IAB节点发送第二消息。该通知消息用于通知Donor-CU2收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息。其余说明可参考上述步骤S1005中的相关描述,在此不再赘述。
S1106、第一IAB节点启动第一IAB节点的第一DU。与上述步骤S1006相同,可参考上述步骤S1006中的相关说明,在此不再赘述。
S1107、建立Donor-CU2和第一IAB节点的第一DU之间的跨拓扑F1-C和F1-U连接。
S1108-S1112、与上述步骤S1108-步骤S1112相同,可参考步骤S1108-步骤S1112的相关说明,在此不再赘述。
可选的,上述步骤S1105的第二消息采用第一种可能的实现方式时,该流程还可以包括如下步骤S1113a。上述步骤S1105的第二消息采用第二种可能的实现方式或第三种可能的实现方式时,该流程还可以包括如下步骤S1113b。
S1113a、Donor-CU1收到来自Donor-CU2的通知消息后,向第一IAB节点发送第二切换命令消息。
可选的,Donor-CU2可以在收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息后,向Donor-CU1发送该通知消息。
S1113b、第一IAB节点收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息后,确定第一IAB节点的MT的切换条件满足,或者说,生效第二消息表示的切换命令。
在步骤S1113a或步骤S1113b之后,可以继续执行步骤S1114和步骤S1115。其中,步骤S1114和步骤S1115分别与上述步骤S1014和步骤S1015相同,可参考前述相关说明,在此不再赘述。
至此,第一IAB节点的第一DU可以通过中间节点与Donor-CU2进行F1控制面和用户面的通信,换句话说,第一IAB节点的Gradual Bottom-up迁移完成。
上述方案中,从第一DU的IP地址配置、BAP配置、MT的切换命令消息的发送时机或生效时机、第一IAB节点的第一DU的启动时机、BL RLC CH的配置时机等方面对Gradual Bottom-up迁移的实现细节进行了设计,可以保障Gradual Bottom-up迁移方案的实施。
下面以上述图9所示的方法应用于全迁移的Gradual Top-down实现为例,对本申请提供的一种Gradual Top-down的迁移流程进行说明。如图12所示,该流程包括如下步骤:
S1201-S1202、与上述步骤S1001和步骤S1002相同,可参考步骤S1001和步骤S1002的相关说明,在此不再赘述。
S1203、Donor-CU1向Donor-CU2发送第一消息。相应的,Donor-CU2接收来自Donor-CU1的第一消息。
该步骤S1203与上述步骤S1003类似,区别在于:对于Gradual Top-down,在第一种可能的实现中,第一信息和第二信息可以采用如下实现方式:
1)第一信息指示Donor-CU1为第一IAB节点请求两套IP地址配置和两个BAP配置。第二信息指示第一IAB节点的第一DU和第二DU。即,第一信息和第二信息可以联合指示:为第一IAB节点的第一DU请求一套IP地址配置和一个BAP配置,以及为第一IAB节点的第二DU请求一套IP地址配置和一个BAP配置。
2)第一信息指示Donor-CU1为第一IAB节点请求两套IP地址配置和一个BAP配置。第二信息指示第一IAB节点的第一DU和第二DU。即,第一信息和第二信息可以联合指示:为第一IAB节点的第一DU和第二DU分别请求一套IP地址配置,以及为第一IAB节点的第一DU和第二DU请求一个共用的BAP配置。
3)第一信息指示Donor-CU1为第一IAB节点请求一套IP地址配置和两个BAP配置。第二信息指示第一IAB节点的第一DU和第二DU。即,第一信息和第二信息可以联合指示:为第一IAB节点的第一DU和第二DU分别请求一个BAP配置,以及为第一IAB节点的第一DU和第二DU请求一套共用的IP地址配置。
4)第一信息指示Donor-CU1为第一IAB节点请求一套IP地址配置和一个BAP配置。该场景下,第一IAB节点的第一DU和第二DU共用一套IP地址配置,以及共用一个BAP配置。此时,第一消息可以不包括第二信息;或者,第二信息可以为1比特的指示信息,指示第一IAB节点的第一DU和第二DU,或者指示第一IAB节点的第一DU和第二DU共用IP地址配置和BAP配置。
其中,第一IAB节点为第一IAB节点的第二DU请求的IP地址配置和/或BAP配置用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。示例性的,具体用于将Donor-CU1和第一IAB节点的第二DU之间的F1连接从源路径迁移至目标路径。基于图8所示的通信系统,该源路径为 该目标路径为
可以理解的,将Donor-CU1和第一IAB节点的第二DU之间的F1迁移至目标路径是为了实现第一IAB节点的第二DU下的终端设备的切换。
在第二种可能的实现中,第一消息可以为新定义的一种XN消息,该新定义的XN消息可以用于为第一IAB节点的第一DU和第二DU请求X套IP地址配置和/或Y个BAP配置,X等于1或2,Y等于1或2。
可选的,结合上述图10和图11所示的流程,Donor-CU2可以根据Donor-CU1请求的IP地址配置和/或BAP配置的数量区分Full Nested/Gradual Bottom-up和Gradual Top-down。
S1204、Donor-CU2向Donor-CU1发送X套第一IP地址配置和/或Y个第一BAP配置。相应的,Donor-CU1接收来自Donor-CU2的该X套第一IP地址和/或Y个第一BAP配置。X、Y为正整数。
该步骤S1204类似于上述步骤S1004,区别在于:对于Gradual Top-down,Donor-CU2可以向Donor-CU1发送:
1)两套第一IP地址配置和/或两个第一BAP配置。
其中,一套第一IP地址和一个第一BAP配置用于在第一IAB节点的MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接。另一套第一IP地址和另一个第一BAP配置还用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
2)两套第一IP地址配置和/或一个第一BAP配置。
其中,一套第一IP地址配置和该一个第一BAP配置用于在第一IAB节点的MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接。另一套第一IP地址配置和该一个第一BAP配置用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
3)一套第一IP地址配置和/或两个第一BAP配置。
其中,该一套第一IP地址和一个第一BAP配置用于在第一IAB节点的MT从Donor-CU1切换至 Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接。该一套第一IP地址配置和另一个第一BAP配置用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
4)一套第一IP地址配置和/或一个第一BAP配置。
其中,该一套第一IP地址和一个第一BAP配置用于在第一IAB节点的MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接。该一套第一IP地址配置和该一个第一BAP配置还用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
可选的,Donor-CU2还可以向Donor-CU1发送第三信息,以指示每套第一IP地址配置所属的第一IAB节点的DU,和/或,每个第一BAP配置所属的第一IAB节点的DU。可参考图10所示流程中的相关说明,在此不再赘述。
可选的,Donor-CU2还可以向Donor-CU1发送第四信息,该第四信息指示Donor-CU1立即下发关于MT的切换命令消息。当然,Donor-CU2也可以不发送第四信息,默认在收到Donor-CU2的IP地址配置和/或BAP配置后,立即下发关于MT的切换命令消息。
S1205、Donor-CU1向第一IAB节点发送第二消息。相应的,第一IAB节点接收来自Donor-CU1的第二消息。其中,该第二消息包括上述X套第一IP地址配置和/或Y个第一BAP配置。
对于Gradual Top-down,该步骤S1205中的第二消息为用于第一IAB节点的MT的切换命令消息。
S1206、第一IAB节点启动第一IAB节点的第一DU。
其中,第一IAB节点的第一DU启动的触发条件为:第一IAB节点收到第六信息。对于Gradual Top-down,该第六信息包括用于建立Donor-CU2和第一IAB节点的第一DU之间的跨拓扑F1连接的第一IP地址配置和/或第一BAP配置。
S1207、第一IAB节点的MT向目标小区发起随机接入,执行随机接入流程。可参考上述步骤S1014中的相关说明,在此不再赘述。
S1208、迁移Donor-CU1和第一IAB节点的第二DU之间的F1-U和F1-C连接。换句话说,建立Donor-CU1和第一IAB节点的第二DU之间的跨拓扑F11-U和F1-C连接。
S1209、建立Donor-CU2和第一IAB节点的第一DU之间的同拓扑F1-U和F1-C连接。
可选的,对于该步骤S1209,Donor-CU2可以在收到来自Donor-CU1的第四消息后,向中间节点发送回传链路资源配置信息。或者,Donor-CU2可以在向Donor-CU1发送第五消息后,向中间节点发送回传链路资源配置信息。
其中,第四消息用于请求迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。例如,第四消息可以为IAB传输迁移请求(IAB transport migration request)消息。第五消息为第四消息的响应消息。例如,第五消息可以为IAB传输迁移响应(IAB transport migration response)消息。
其中,回传链路资源配置信息用于为第一IAB节点的第一DU建立BL RLC CH。中间节点包括Donor-DU2,以及第一IAB节点和Donor-CU2之间的IAB节点。可参考上述步骤S1009中的相关说明,在此不再赘述。
S1210、将第一IAB节点的第二DU下的终端设备切换至第一IAB节点的第一DU。
可选的,Donor-CU1可以通过Donor-CU1和第一IAB节点的第二DU之间的跨拓扑F1连接向第二DU下的终端设备发送切换命令。终端设备接收切换命令后,向第二DU发起随机接入,执行随机接入流程。之后,可以通过第一IAB节点的第一DU和Donor-CU2之间的同拓扑F1连接发送切换完成消息。
在终端设备切换至第二DU后,可以通过第一IAB节点的第一DU和Donor-CU2之间的同拓扑F1连接进行通信。至此,第一IAB节点的Gradual Top-down迁移完成。
上述方案中,从第一DU的IP地址配置、BAP配置、MT的切换命令消息的发送时机第一IAB节点的第一DU的启动时机、Donor-CU2和第一DU之间的同拓扑F1连接的建立时机等方面对Gradual Top-down迁移的实现细节进行了设计,可以保障Gradual Top-down迁移方案的实施。
上述主要对本申请提供的方案进行了介绍。相应的,本申请还提供了通信装置,该通信装置用于实现上述各种方法,或者说,可以实现上述第一宿主节点、第二宿主节点、或第一IAB节点的功能。该通信装置可以为上述方法实施例中的第一宿主节点,或者为可用于第一宿主节点的部件,例如芯片或芯片系统;或者,该通信装置可以为上述方法实施例中的第二宿主节点,或者为可用于第二宿主节点的部件,例如芯片或芯片系统;或者,该通信装置可以为上述方法实施例中的第一IAB节点,或者为可用于第一IAB节点的部件。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。 本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通信装置图13示出了一种通信装置130的结构示意图。该通信装置130包括处理模块1301和收发模块1302。该通信装置130可以用于实现上述第一宿主节点、第二宿主节点、或第一IAB节点的功能。
在一些实施例中,该通信装置130还可以包括存储模块(图13中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块1302,也可以称为收发单元用以实现发送和/或接收功能。该收发模块1302可以由收发电路、收发机、收发器或者通信接口构成。
在一些实施例中,收发模块1302,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由第一宿主节点、第二宿主节点、或第一IAB节点执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块1301,可以用于执行上述方法实施例中由第一宿主节点、第二宿主节点、或第一IAB节点执行的处理类(例如确定等)的步骤,和/或用于支持本文所描述的技术的其它过程。
该通信装置130用于实现上述第一宿主节点的功能时:
处理模块1301,用于通过收发模块1302向Donor-CU2发送第一消息,该第一消息用于为第一IAB节点请求IP地址配置和/或BAP配置。处理模块1301,还用于通过收发模块1302接收来自Donor-CU2的X套第一IP地址配置和/或Y个第一BAP配置。处理模块1301,还用于通过收发模块1302向第一IAB节点发送第二消息,该第二消息包括X套第一IP地址配置和/或Y个第一BAP配置,X、Y为正整数。其中,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一DU之间的F1连接。
可选的,处理模块1301,还用于通过收发模块1302接收来自Donor-CU2的第三信息,第三信息指示X套第一IP地址配置中的每套第一IP地址配置和Y个第一BAP配置中的每个第一BAP配置所属的第一IAB节点的DU。
可选的,处理模块1301,还用于通过收发模块1302向第一IAB节点发送第三消息。该第三消息包括第二IP地址配置和第二BAP配置。第二IP地址配置和第二BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间通过第一宿主节点分布式单元Donor-DU1的跨拓扑F1连接。
可选的,处理模块1301,还用于通过收发模块1302接收来自Donor-CU2的第四信息。其中,第四信息指示Donor-CU1向第一IAB节点发送的第二切换命令消息中携带第一IAB节点的MT的切换条件,第二切换命令消息指示第一IAB节点的MT执行切换。
可选的,处理模块1301,还用于通过收发模块1302接收来自Donor-CU2的第四信息。第四信息指示Donor-CU1向第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,向第一IAB节点发送第二切换命令消息;第一切换命令消息指示终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU,第二切换命令消息指示第一IAB节点的MT执行切换。
可选的,处理模块1301,具体用于在向第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,通过收发模块1302向第一IAB节点发送第二消息。其中,第一切换命令消息指示终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU,第二消息指示第一IAB节点的MT执行切换。
可选的,处理模块1301,还用于通过收发模块1302接收来自Donor-CU2的第四信息。第四信息指示Donor-CU1收到来自Donor-CU2的通知消息后,向第一IAB节点发送第二切换命令消息;通知消息用于通知Donor-CU2收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,切换完成消息指示终端设备完成从第一IAB节点的第二DU至第一IAB节点的第一DU的切换,第二切换命令消息指示第一IAB节点的MT执行切换。
可选的,处理模块1301,具体用于在收到来自Donor-CU2的通知消息后,通过收发模块1302向第一IAB节点发送第二消息,第二消息指示第一IAB节点的MT执行切换。其中,通知消息用于通知Donor- CU2收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息。
该通信装置130用于实现上述第二宿主节点的功能时:
处理模块1301,用于通过收发模块1302接收来自Donor-CU1的第一消息,该第一消息用于为第一IAB节点请求IP地址配置和/或BAP配置。处理模块1301,还用于通过收发模块1302向Donor-CU1发送该X套第一IP地址配置和Y个第一BAP配置,X、Y为正整数。其中,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接。
可选的,处理模块1301,还用于通过收发模块1302向Donor-CU1发送第三信息,第三信息指示X套第一IP地址配置中的每套第一IP地址配置和Y个第一BAP配置中的每个第一BAP配置所属的第一IAB节点的DU。
可选的,处理模块1301,还用于通过收发模块1302向Donor-CU1发送第四信息。其中,第四信息指示Donor-CU1向第一IAB节点发送的第二切换命令消息中携带第一IAB节点的MT的切换条件,第二切换命令消息指示第一IAB节点的MT执行切换。
可选的,处理模块1301,还用于通过收发模块1302向Donor-CU1发送第四信息。第四信息指示Donor-CU1向第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,向第一IAB节点发送第二切换命令消息;第一切换命令消息指示终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU,第二切换命令消息指示第一IAB节点的MT执行切换。
可选的,处理模块1301,还用于通过收发模块1302向Donor-CU1发送第四信息。第四信息指示Donor-CU1收到来自Donor-CU2的通知消息后,向第一IAB节点发送第二切换命令消息;通知消息用于通知Donor-CU2收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,切换完成消息指示终端设备完成从第一IAB节点的第二DU至第一IAB节点的第一DU的切换,第二切换命令消息指示第一IAB节点的MT执行切换。
可选的,处理模块1301,还用于在收到来自Donor-CU1的第五信息后,通过收发模块1302向中间节点发送回传链路资源配置信息。该中间节点包括第二宿主节点分布式单元Donor-DU2,以及第一IAB节点和Donor-CU2之间的IAB节点。第五信息为第一IAB节点下的终端设备的上下文信息或服务质量QoS信息。回传链路资源配置信息用于为第一IAB节点的第一DU建立回传无线链路控制RLC信道。
可选的,处理模块1301,还用于在收到来自Donor-CU1的第四消息后,通过收发模块1302向中间节点发送回传链路资源配置信息。或者,处理模块1301,还用于在向Donor-CU1发送第五消息后,通过收发模块1302向中间节点发送回传链路资源配置信息。其中,第四消息用于请求迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接;第五消息为第四消息的响应消息;回传链路资源配置信息用于为第一IAB节点的第一DU建立回传RLC信道;中间节点包括Donor-DU2,以及第一IAB节点和Donor-CU2之间的IAB节点。
可选的,第一消息包括第一信息。该第一信息指示Donor-CU1为第一IAB节点请求的IP地址配置和/或BAP配置的数量。
可选的,第一消息包括第二信息。该第二信息指示第一IAB节点的至少一个DU,Donor-CU1请求的IP地址配置和/或BAP配置用于至少一个DU。
可选的,第一消息用于为第一IAB节点请求IP地址配置和/或BAP配置,包括:第一消息用于为第一IAB节点的第一DU请求一套IP地址配置和/或一套BAP配置。
可选的,第二消息为用于第一IAB节点的MT的切换命令消息。
可选的,第二消息还包括第二IP地址配置、第二BAP配置、和第一IAB节点的MT的切换条件。其中,第二IP地址配置和第二BAP配置用于建立Donor-CU2和第一IAB节点的第一DU之间通过Donor-DU1的跨拓扑F1连接。
可选的,第一IAB节点的MT的切换条件包括:向第一IAB节点的第二DU下的至少一个终端设备发送了第一切换命令消息,第一切换命令消息指示终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU。或者,收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,切换完成消息指示终端设备完成从第一IAB节点的第二DU至第一IAB节点的第一DU的切换。
可选的,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接,还用于迁移Donor-CU1和第一IAB节点的第二DU之间 的F1连接。
可选的,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接,以及另一套第一IP地址配置和该一个第一BAP配置用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
可选的,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接,以及该一套第一IP地址配置和Y个第一BAP配置中的另一个第一BAP配置用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
可选的,X套第一IP地址配置中的一套第一IP地址配置和Y个第一BAP配置中的一个第一BAP配置用于在第一IAB节点的移动终端MT从Donor-CU1切换至Donor-CU2之后,建立Donor-CU2和第一IAB节点的第一分布式单元DU之间的F1连接,以及X套第一IP地址配置中的另一套第一IP地址配置和Y个第一BAP配置中的另一个第一BAP配置用于迁移Donor-CU1和第一IAB节点的第二DU之间的F1连接。
可选的,第一消息用于为第一IAB节点请求IP地址配置和/或BAP配置,包括:第一消息用于为第一IAB节点的第一DU和第二DU请求X套IP地址配置和Y个BAP配置,X等于1或2,Y等于1或2。
该通信装置130用于实现上述第一IAB节点的功能时:
处理模块1301,用于通过收发模块1302接收来自第一宿主节点集中式单元Donor-CU1的第六信息。处理模块1301,还用于根据该第六信息启动第一IAB节点的第一DU。其中,第六信息包括至少一套IP地址配置和/或至少一套BAP配置,至少一套IP地址配置和至少一套BAP配置用于建立第二宿主节点集中式单元Donor-CU2和第一IAB节点的第一DU之间的F1连接。
可选的,处理模块1301,用于通过收发模块1302包括:处理模块1301,用于通过收发模块1302接收来自Donor-CU1的第二切换命令消息,第二切换命令消息包括第六信息,第二切换命令消息指示第一IAB节点的移动终端MT执行切换。
可选的,第二切换命令消息还包括第一IAB节点的MT的切换条件。
可选的,第一IAB节点的MT的切换条件包括:向第一IAB节点的第二DU下的至少一个终端设备发送了第一切换命令消息,第一切换命令消息指示终端设备从第一IAB节点的第二DU切换至第一IAB节点的第一DU。或者,收到第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,切换完成消息指示终端设备完成从第一IAB节点的第二DU至第一IAB节点的第一DU的切换。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
可选的,本申请中,处理模块通过收发模块接收/发送信息,也可以理解为:处理模块控制收发模块接收/发送信息。或者,处理模块通过收发模块发送信息,可以理解为:处理模块向收发模块输出信息,由收发模块发送该信息;处理模块通过收发模块接收信息,可以理解为:收发模块接收信息,并向处理模块输入该信息。
在本申请中,该通信装置130可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,当图13中的通信装置130是芯片或芯片系统时,收发模块1302的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,处理模块1301的功能/实现过程可以通过芯片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的通信装置130可执行上述方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
作为一种可能的产品形态,本申请实施例所述的第一宿主节点、第二宿主节点、或第一IAB节点,可以使用下述来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
作为又一种可能的产品形态,本申请中的第一宿主节点、第二宿主节点、或第一IAB节点可以采用图14所示的组成结构,或者包括图14所示的部件。图14为本申请提供的一种通信装置1400的组成示意图。
如图14所示,通信装置1400包括至少一个处理器1401。可选的,该通信装置还包括通信接口1402。
当涉及的程序指令在该至少一个处理器1401中执行时,可以使得该装置1400实现前述任一实施例所提供的通信方法及其中任一可能的设计。或者,该处理器1401通过逻辑电路或执行代码指令用于实现前述任一实施例所提供的通信方法及其中任一可能的设计。
通信接口1402,可以用于接收程序指令并传输至所述处理器,或者,通信接口1402可以用于通信装置1400与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。示例性的,该通信接口1402可以用于接收来自该装置1400之外的其它装置的信号并传输至该处理器1401或将来自该处理器1401的信号发送给该装置1400之外的其它通信装置。
可选的,该通信接口1402可以为代码和/或数据读写接口电路,或者,该通信接口1402可以为通信处理器与收发机之间的信号传输接口电路,或者为芯片的管脚。
可选的,该通信装置1400还可以包括至少一个存储器1403,该存储器1403可以用于存储所需的涉及的程序指令和/或数据。需要指出的是,存储器1403可以独立于处理器1401存在,也可以和处理器1401集成在一起。存储器1403可以位于通信装置1400内,也可以位于通信装置1400外,不予限制。
可选的,该通信装置1400还可以包括供电电路1404,该供电电路1404可以用于为该处理器1401供电。该供电电路1404可以与处理器1401位于同一个芯片内,或者,位于处理器1401所在的芯片之外的另一个芯片内。
可选的,该通信装置1400还可以包括总线1405,该通信装置1400中的各个部分可以通过总线1405互联。
可选的,本申请中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、或者分立硬件组件等。通用处理器可以是微处理器,或者该处理器也可以是任何常规的处理器等。
可选的,本申请中的存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic random access memory,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)、或者直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
可选的,本申请实施例所述的供电电路包括但不限于如下至少一个:供电线路,供电子系统、电源管理芯片、功耗管理处理器、或者功耗管理控制电路。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到上述通信装置130可以采用图14所示的通信装置1400的形式。
作为一种示例,图13中的处理模块1301的功能/实现过程可以通过图14所示的通信装置1400中的处理器1401调用存储器1403中存储的计算机执行指令来实现。图13中的收发模块1302的功能/实现过程可以通过图14所示的通信装置1400中的通信接口1402来实现。
需要说明的是,图14所示的结构并不构成对第一宿主节点、第二宿主节点、或第一IAB节点的具体限定。比如,在本申请另一些实施例中,第一宿主节点、第二宿主节点、或第一IAB节点可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
在一些实施例中,本申请实施例还提供一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。
作为一种可能的实现方式,该通信装置还包括存储器。该存储器,用于保存必要的计算机程序和数据。该计算机程序可以包括指令,处理器可以调用存储器中存储的计算机程序中的指令以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。
作为另一种可能的实现方式,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。
作为又一种可能的实现方式,该通信装置还包括通信接口,该通信接口可以用于与该通信装置之外的模块通信。
可以理解的是,该通信装置可以是芯片或芯片系统,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该计算机程序或指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种基于接入回传一体化IAB的通信方法,其特征在于,所述方法包括:
    第一宿主节点集中式单元Donor-CU1向第二宿主节点集中式单元Donor-CU2发送第一消息,所述第一消息用于为第一IAB节点请求因特网协议IP地址配置和/或回传适配协议BAP配置;
    所述Donor-CU1接收来自所述Donor-CU2的X套第一IP地址配置和/或Y个第一BAP配置,X、Y为正整数;
    所述Donor-CU1向所述第一IAB节点发送第二消息,所述第二消息包括所述X套第一IP地址配置和/或所述Y个第一BAP配置;
    其中,所述X套第一IP地址配置中的一套第一IP地址配置和所述Y个第一BAP配置中的一个第一BAP配置用于在所述第一IAB节点的移动终端MT从所述Donor-CU1切换至所述Donor-CU2之后,建立所述Donor-CU2和所述第一IAB节点的第一分布式单元DU之间的F1连接。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息包括第一信息,所述第一信息指示所述Donor-CU1为所述第一IAB节点请求的IP地址配置和/或BAP配置的数量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一消息包括第二信息,所述第二信息指示所述第一IAB节点的至少一个DU,所述Donor-CU1请求的IP地址配置和/或BAP配置用于所述至少一个DU。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述Donor-CU1接收来自所述Donor-CU2的第三信息,所述第三信息指示所述X套第一IP地址配置中的每套第一IP地址配置和所述Y个第一BAP配置中的每个第一BAP配置所属的所述第一IAB节点的DU。
  5. 根据权利要求1所述的方法,其特征在于,所述第一消息用于为第一IAB节点请求IP地址配置和/或BAP配置,包括:
    所述第一消息用于为所述第一IAB节点的第一DU请求一套IP地址配置和/或一套BAP配置。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第二消息为用于所述第一IAB节点的MT的切换命令消息。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述Donor-CU1向所述第一IAB节点发送第三消息,所述第三消息包括第二IP地址配置和第二BAP配置,所述第二IP地址配置和所述第二BAP配置用于建立所述Donor-CU2和所述第一IAB节点的第一DU之间通过第一宿主节点分布式单元Donor-DU1的跨拓扑F1连接。
  8. 根据权利要求6所述的方法,其特征在于,所述第二消息还包括第二IP地址配置、第二BAP配置、和所述第一IAB节点的MT的切换条件;
    其中,所述第二IP地址配置和所述第二BAP配置用于建立所述Donor-CU2和所述第一IAB节点的第一DU之间通过Donor-DU1的跨拓扑F1连接。
  9. 根据权利要求1-6、或8任一项所述的方法,其特征在于,所述方法还包括:所述Donor-CU1接收来自所述Donor-CU2的第四信息;
    其中,所述第四信息指示所述Donor-CU1向所述第一IAB节点发送的第二切换命令消息中携带所述第一IAB节点的MT的切换条件,所述第二切换命令消息指示所述第一IAB节点的MT执行切换。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一IAB节点的MT的切换条件包括:
    向所述第一IAB节点的第二DU下的至少一个终端设备发送了第一切换命令消息,所述第一切换命令消息指示所述终端设备从所述第一IAB节点的第二DU切换至所述第一IAB节点的第一DU;
    或者,收到所述第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,所述切换完成消息指示所述终端设备完成从所述第一IAB节点的第二DU至所述第一IAB节点的第一DU的切换。
  11. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:所述Donor-CU1接收来自所述Donor-CU2的第四信息;
    所述第四信息指示所述Donor-CU1向所述第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,向所述第一IAB节点发送第二切换命令消息;所述第一切换命令消息指示所述终端设备从所述第一IAB节点的第二DU切换至所述第一IAB节点的第一DU,所述第二切换命令消息指示所述第一IAB节点的MT执行切换。
  12. 根据权利要求1-7、或11任一项所述的方法,其特征在于,所述Donor-CU1向所述第一IAB节 点发送第二消息,包括:
    所述Donor-CU1向所述第一IAB节点的第二DU下的至少一个终端设备发送第一切换命令消息后,向所述第一IAB节点发送所述第二消息;
    其中,所述第一切换命令消息指示所述终端设备从所述第一IAB节点的第二DU切换至所述第一IAB节点的第一DU,所述第二消息指示所述第一IAB节点的MT执行切换。
  13. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:所述Donor-CU1接收来自所述Donor-CU2的第四信息;
    所述第四信息指示所述Donor-CU1收到来自所述Donor-CU2的通知消息后,向所述第一IAB节点发送第二切换命令消息;所述通知消息用于通知所述Donor-CU2收到所述第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,所述切换完成消息指示所述终端设备完成从所述第一IAB节点的第二DU至所述第一IAB节点的第一DU的切换,所述第二切换命令消息指示所述第一IAB节点的MT执行切换。
  14. 根据权利要求1-7、或13任一项所述的方法,其特征在于,所述Donor-CU1向所述第一IAB节点发送第二消息,包括:
    所述Donor-CU1收到来自所述Donor-CU2的通知消息后,向所述第一IAB节点发送所述第二消息,所述第二消息指示所述第一IAB节点的MT执行切换;
    其中,所述通知消息用于通知所述Donor-CU2收到所述第一IAB节点的第二DU下的至少一个终端设备的切换完成消息。
  15. 根据权利要求1-4任一项所述的方法,其特征在于,所述一套第一IP地址配置和所述一个第一BAP配置还用于迁移所述Donor-CU1和所述第一IAB节点的第二DU之间的F1连接。
  16. 根据权利要求1-4任一项所述的方法,其特征在于,所述X套第一IP地址配置中的另一套第一IP地址配置和所述一个第一BAP配置用于迁移所述Donor-CU1和所述第一IAB节点的第二DU之间的F1连接。
  17. 根据权利要求1-4任一项所述的方法,其特征在于,所述一套第一IP地址配置和所述Y个第一BAP配置中的另一个第一BAP配置用于迁移所述Donor-CU1和所述第一IAB节点的第二DU之间的F1连接。
  18. 根据权利要求1-4任一项所述的方法,其特征在于,所述X套第一IP地址配置中的另一套第一IP地址配置和所述Y个第一BAP配置中的另一个第一BAP配置用于迁移所述Donor-CU1和所述第一IAB节点的第二DU之间的F1连接。
  19. 根据权利要求1-4、或15-18任一项所述的方法,其特征在于,所述第一消息用于为第一IAB节点请求IP地址配置和/或BAP配置,包括:
    所述第一消息用于为所述第一IAB节点的第一DU和第二DU请求X套IP地址配置和Y个BAP配置,X等于1或2,Y等于1或2。
  20. 一种基于接入回传一体化IAB的通信方法,其特征在于,所述方法包括:
    第二宿主节点集中式单元Donor-CU2接收来自第一宿主节点集中式单元Donor-CU1的第一消息,所述第一消息用于为第一IAB节点请求因特网协议IP地址配置和/或回传适配协议BAP配置;
    所述Donor-CU2向所述Donor-CU1发送X套第一IP地址配置和Y个第一BAP配置,X、Y为正整数;
    其中,所述X套第一IP地址配置中的一套第一IP地址配置和所述Y个第一BAP配置中的一个第一BAP配置用于在所述第一IAB节点的移动终端MT从所述Donor-CU1切换至所述Donor-CU2之后,建立所述Donor-CU2和所述第一IAB节点的第一分布式单元DU之间的F1连接。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述Donor-CU2收到来自所述Donor-CU1的第五信息后,向中间节点发送回传链路资源配置信息,所述中间节点包括第二宿主节点分布式单元Donor-DU2,以及所述第一IAB节点和所述Donor-CU2之间的IAB节点;
    其中,所述第五信息为所述第一IAB节点下的终端设备的上下文信息或服务质量QoS信息;所述回传链路资源配置信息用于为所述第一IAB节点的第一DU建立回传无线链路控制RLC信道。
  22. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述Donor-CU2收到来自所述Donor-CU1的第四消息后,向中间节点发送回传链路资源配置信息; 或者,
    所述Donor-CU2向所述Donor-CU1发送第五消息后,向中间节点发送回传链路资源配置信息;
    其中,所述第四消息用于请求迁移所述Donor-CU1和所述第一IAB节点的第二DU之间的F1连接;所述第五消息为所述第四消息的响应消息;所述回传链路资源配置信息用于为所述第一IAB节点的所述第一DU建立回传RLC信道;所述中间节点包括Donor-DU2,以及所述第一IAB节点和所述Donor-CU2之间的IAB节点。
  23. 一种基于接入回传一体化IAB的通信方法,其特征在于,所述方法包括:
    第一IAB节点接收来自第一宿主节点集中式单元Donor-CU1的第六信息,所述第六信息包括至少一套IP地址配置和/或至少一套BAP配置,所述至少一套IP地址配置和所述至少一套BAP配置用于建立第二宿主节点集中式单元Donor-CU2和所述第一IAB节点的第一DU之间的F1连接;
    所述第一IAB节点根据所述第六信息启动所述第一IAB节点的所述第一DU。
  24. 根据权利要求23所述的方法,其特征在于,第一IAB节点接收来自Donor-CU1的第六信息,包括:
    所述第一IAB节点接收来自所述Donor-CU1的第二切换命令消息,所述第二切换命令消息包括所述第六信息,所述第二切换命令消息指示所述第一IAB节点的移动终端MT执行切换。
  25. 根据权利要求24所述的方法,其特征在于,所述第二切换命令消息还包括所述第一IAB节点的MT的切换条件。
  26. 根据权利要求25所述的方法,其特征在于,所述第一IAB节点的MT的切换条件包括:
    向所述第一IAB节点的第二DU下的至少一个终端设备发送了第一切换命令消息,所述第一切换命令消息指示所述终端设备从所述第一IAB节点的第二DU切换至所述第一IAB节点的第一DU;
    或者,收到所述第一IAB节点的第二DU下的至少一个终端设备的切换完成消息,所述切换完成消息指示所述终端设备完成从所述第一IAB节点的第二DU至所述第一IAB节点的第一DU的切换。
  27. 一种通信装置,其特征在于,所述通信装置包括用于实现如权利要求1至26任一项所述方法的模块。
  28. 一种通信装置,其特征在于,包括:至少一个处理器和通信接口,所述通信接口用于接收和/或发送信号,所述处理器被配置用于使能权利要求1至26中任一项所述的方法被执行。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序指令,当所述计算机程序指令被处理器执行时,使得如权利要求1至26中任一项所述的方法被实现。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括程序指令,当所述程序指令被处理器执行时,使得如权利要求1至26中任一项所述的方法被实现。
PCT/CN2023/103371 2022-08-01 2023-06-28 一种基于接入回传一体化iab的通信方法及装置 WO2024027390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210915840.5A CN117545025A (zh) 2022-08-01 2022-08-01 一种基于接入回传一体化iab的通信方法及装置
CN202210915840.5 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024027390A1 true WO2024027390A1 (zh) 2024-02-08

Family

ID=89788562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103371 WO2024027390A1 (zh) 2022-08-01 2023-06-28 一种基于接入回传一体化iab的通信方法及装置

Country Status (2)

Country Link
CN (1) CN117545025A (zh)
WO (1) WO2024027390A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093286A (zh) * 2019-08-15 2020-05-01 中兴通讯股份有限公司 连接建立方法、装置、集合接入回传节点及存储介质
CN114071617A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 Iab节点组切换中的信息传输方法、装置、网络设备及系统
CN114390602A (zh) * 2020-10-16 2022-04-22 大唐移动通信设备有限公司 连接建立方法、装置、设备及存储介质
WO2022086084A1 (en) * 2020-10-21 2022-04-28 Lg Electronics Inc. Method and apparatus for conflict resolution in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093286A (zh) * 2019-08-15 2020-05-01 中兴通讯股份有限公司 连接建立方法、装置、集合接入回传节点及存储介质
CN114071617A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 Iab节点组切换中的信息传输方法、装置、网络设备及系统
CN114390602A (zh) * 2020-10-16 2022-04-22 大唐移动通信设备有限公司 连接建立方法、装置、设备及存储介质
WO2022086084A1 (en) * 2020-10-21 2022-04-28 Lg Electronics Inc. Method and apparatus for conflict resolution in wireless communication system

Also Published As

Publication number Publication date
CN117545025A (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
WO2019196811A1 (zh) 通信方法和相关装置
JP2021518079A (ja) パケット伝送方法、装置、およびシステム
JP2020519200A (ja) 無線接続制御方法、分散ユニット、集中ユニット、および基地局システム
EP3410752B1 (en) Mobility management method, apparatus and system
US10952265B2 (en) Dynamic resource scaling and VM migration in NG-RAN
US20240129994A1 (en) Communication method and apparatus
WO2021135650A1 (zh) 通信方法及装置
WO2019101092A1 (zh) 一种会话上下文处理的方法、网元和终端设备
EP4221005A1 (en) Multipath transmission method and communication apparatus
WO2022017285A1 (zh) 报文转发方法、装置及系统
EP4247039A1 (en) Computing-aware session management method and communication device
JP2023531787A (ja) Iabネットワーク通信方法及び関連デバイス
WO2020063401A1 (zh) 一种模式切换方法、数据流分流方法及装置
WO2019223405A1 (zh) 报文传输方法和装置
JP7413508B2 (ja) 構成方法、通信装置、および通信システム
CN111491370B (zh) 一种通信方法、网元、系统及存储介质
WO2024027390A1 (zh) 一种基于接入回传一体化iab的通信方法及装置
JP2022506330A (ja) データ転送方法、装置、マスタ基地局及びスレーブ基地局
WO2020211538A1 (zh) 一种数据传输方法及装置
JP7266695B2 (ja) データ伝送方法、装置、及びコンピュータ記憶媒体
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2022141528A1 (zh) 一种确定mec接入点的方法及装置
WO2023024910A1 (zh) 一种通信方法及装置
WO2023131094A1 (zh) 通信方法及通信装置
WO2023134503A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849100

Country of ref document: EP

Kind code of ref document: A1