WO2019223405A1 - 报文传输方法和装置 - Google Patents

报文传输方法和装置 Download PDF

Info

Publication number
WO2019223405A1
WO2019223405A1 PCT/CN2019/078047 CN2019078047W WO2019223405A1 WO 2019223405 A1 WO2019223405 A1 WO 2019223405A1 CN 2019078047 W CN2019078047 W CN 2019078047W WO 2019223405 A1 WO2019223405 A1 WO 2019223405A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
message
dual
tunnel
packet
Prior art date
Application number
PCT/CN2019/078047
Other languages
English (en)
French (fr)
Inventor
朱方园
李岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019223405A1 publication Critical patent/WO2019223405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation

Definitions

  • the present application relates to the field of communications, and in particular, to a method and device for message transmission.
  • 5th generation 5th generation mobile communication technology
  • 5G enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-high-reliability
  • low-latency communication ultra-reliable and low latency communications
  • URLLC's features include high reliability, low latency, and high availability, which can be applied to the following various scenarios and applications: industrial applications and control, traffic safety and control, remote manufacturing, remote training, remote surgery, etc.
  • a single base station or a dual base station can be used for URLLC services to achieve highly reliable packet transmission.
  • an independent user plane tunnel is established between two different radio access network (RAN) network elements and user plane function (UPF) network elements, so that the two Data transmission.
  • RAN radio access network
  • UPF user plane function
  • the single-base station method two independent user plane tunnels are established between the same RAN network element and the UPF network element, thereby transmitting data packets in two ways.
  • the UPF network element cannot distinguish whether the wireless access network side adopts a dual base station or a single base station for dual transmission. As a result, the UPF network element cannot determine how to process URLLC service packets, thereby reducing the user experience.
  • the embodiments of the present application provide a message transmission method and device, which are used to implement how a UPF network element can determine how to process a URLLC service message when a message is transmitted through two channels.
  • an embodiment of the present application provides a message transmission method.
  • the method includes: a session management function network element receives first indication information, and the first indication information is used to indicate that a dual tunnel is associated with a single access network element or with a single access network element; Dual access network element association; the session management function network element sends the second instruction information to the user plane function network element according to the first instruction information, and the second instruction information is used to trigger the user plane function network element to be the first message and the first message.
  • the two packets add the same sequence number to the first protocol layer; wherein the first packet and the second packet are packets transmitted through the dual tunnel.
  • the RAN network element determines whether the dual tunnel is associated with the single RAN network element or the dual RAN network element, and sends the corresponding instruction information to the SMF network element through the AMF network element, and triggers
  • the UPF network element adds the same sequence number to the first packet and the second packet at the first protocol layer.
  • the UPF network element can determine how to add a sequence number to the downstream message.
  • the second indication information is the first indication information.
  • the session management function network element sends the first instruction information to the user plane function network element, and the user plane function network element decides to add the same sequence number to the first packet and the second packet at the first protocol layer. .
  • the method further includes: the session management function network element determines the second indication information according to the first indication information.
  • the network element that implements the session management function instructs the user plane function network element to add the same sequence number to the first packet and the second packet at the first protocol layer.
  • the session management function network element sending the second instruction information to the user plane function network element includes: the session management function network element sends a forwarding rule to the user plane function network element, and the forwarding rule includes the second instruction information .
  • This embodiment provides a message passing manner of the second indication information.
  • the method further includes: the session management function network element instructs the user plane function network element to copy the data packet to obtain a first packet and a second packet.
  • the session management function network element instructs the user plane function network element to copy a downlink message.
  • the first protocol layer is a protocol layer located between the single access network element and the user plane function network element. .
  • This embodiment provides a way of determining how to add a protocol layer of the same sequence number when a dual tunnel is associated with a network element of a single access network.
  • the first protocol layer is a protocol layer located between the terminal device and the user plane function network element. This embodiment provides a way how to determine a first protocol layer when a dual tunnel is associated with a dual access network element.
  • an embodiment of the present application provides a message transmission method, including: a user plane function network element adds the same sequence number to a first message layer and a second message at a first protocol layer; the user plane function network element passes The dual tunnel transmits the first message and the second message.
  • the RAN network element determines whether the dual tunnel is associated with the single RAN network element or the dual RAN network element, and sends the corresponding instruction information to the SMF network element through the AMF network element, and triggers
  • the UPF network element adds the same sequence number to the first packet and the second packet at the first protocol layer.
  • the UPF network element can determine how to add a sequence number to the downstream message.
  • the method further includes: the user plane function network element receives indication information from the session management function network element, and the indication information is used to trigger the user plane function network element to be the first message and the second message in the first message.
  • the protocol layer adds the same sequence number; wherein the user plane function network element adds the same sequence number to the first message and the second message at the first protocol layer, including: the user plane function network element is the first message according to the instruction information.
  • the message and the second message are added with the same sequence number in the first protocol layer.
  • This embodiment provides that the session management function network element triggers the user plane function network element to add the same sequence number to the first packet and the second packet at the first protocol layer.
  • the indication information is used to indicate that the dual tunnel is associated with a single-access network element or is associated with a dual-access network element.
  • the session management function network element sends the first instruction information to the user plane function network element, and the user plane function network element decides to add the same sequence number to the first packet and the second packet at the first protocol layer. .
  • the user plane function network element when the indication information indicates that the dual tunnel is associated with a single access network element, adds the first packet and the second packet to the first protocol layer according to the indication information.
  • the same sequence number includes: according to the instruction information, the user plane function network element adds the same sequence number to the protocol layer between the access network element and the user plane function network element for the first packet and the second packet.
  • the user plane function network element when the indication information indicates that the dual tunnel is associated with the dual access network element, adds the first packet and the second packet to the first protocol layer according to the indication information.
  • the same sequence number includes: according to the instruction information, the user plane function network element adds the same sequence number to the first packet and the second packet at the protocol layer between the terminal device and the user plane function network element.
  • the user plane function network element receiving the second instruction information from the session management function network element includes: the user plane function network element receiving the forwarding rule from the session management function network element, and the forwarding rule includes the second indication information .
  • This embodiment provides a message passing manner of the second indication information.
  • the method further includes: the user plane function network element copies a data packet according to an instruction of the session management function network element to obtain a first packet and a second packet.
  • the session management function network element instructs the user plane function network element to copy a downlink message.
  • an embodiment of the present application provides a message transmission method, including: determining, by an access network element, that a dual tunnel is associated with a single access network element or with a dual access network element;
  • the access and mobility management function network element sends first indication information, and the first indication information is used to indicate that the dual tunnel is associated with a single access network element or is associated with a dual access network element.
  • the RAN network element determines whether the dual tunnel is associated with the single RAN network element or the dual RAN network element, and sends the corresponding instruction information to the SMF network element through the AMF network element, and triggers
  • the UPF network element adds the same sequence number to the first packet and the second packet at the first protocol layer. When the message is transmitted through two channels, the UPF network element can determine how to add a sequence number to the downstream message.
  • the dual tunnel is associated with a single access network element, and the single access network element is an access network element; the method further includes: the access network element passes the first tunnel in the dual tunnel Receive a first downlink message from a user plane function network element, and receive a second downlink message from a user plane function network element through a second tunnel in a dual tunnel, where the first downlink message and the second downlink message are in The first protocol layer has the same sequence number; the network element of the access network sends a data packet in the first downlink message or the second downlink message to the terminal device.
  • This embodiment provides an implementation manner of how a single access network element forwards a downlink packet through a dual tunnel when the dual tunnel is associated with a single access network element.
  • an embodiment of the present application provides a message transmission method, including: determining, by an access network element, that a dual tunnel is associated with a single access network element, and the single access network element is an access network element; access The network element receives the first downlink message from the user plane function network element through the first tunnel in the dual tunnel, and receives the second downlink message from the user plane function network element through the second tunnel in the dual tunnel.
  • the downlink message and the second downlink message have the same sequence number at the first protocol layer; the access network element sends the data packet in the first downlink message or the second downlink message to the terminal device.
  • a protocol layer between a terminal device and a UPF network element is added to a RAN network element, so that whether a dual tunnel is associated with a single RAN network element or a dual RAN network element, the UPF Network elements can copy messages at this protocol layer and add the same sequence number at this protocol layer.
  • the UPF network element can determine how to add a sequence number to the downstream message.
  • the method further includes: determining, by the network element of the access network, the first downlink packet and the second downlink packet at the same sequence number at the first protocol layer, and The data packets encapsulated in the upper layer of the first protocol layer in the second downlink message are the same.
  • the first protocol layer is a protocol layer located between the terminal device, the access network network element, and the user plane function network element.
  • This embodiment provides an implementation manner of adding a protocol layer with the same sequence number.
  • the first downlink message or the second downlink message sent by the access network element to the terminal device includes a first protocol layer.
  • This implementation manner can reduce the logic complexity of the terminal device processing downlink data packets when the terminal device switches from a scenario in which a dual tunnel is associated with a single base station to a scenario in which a dual tunnel is associated with a dual base station.
  • the access network element receives the first uplink packet from the terminal device; when the first uplink packet includes a protocol located between the terminal device, the access network element, and the user plane function network element Layer, the access network element copies the first uplink packet to obtain the second uplink packet; or, when the first uplink packet does not include the protocol layer between the terminal device, the access network element, and the user plane function network element , The access network element adds a first protocol layer and duplicates the first uplink packet to obtain a second uplink packet; the access network element sends the first uplink packet and the second uplink packet to the user plane function network element through a dual tunnel Message.
  • This embodiment provides an implementation manner of how an access network element forwards an uplink packet to a user plane function network element.
  • an embodiment of the present application provides a message transmission method, including: the access network element determines that the dual tunnel is associated with a single access network element, and the single access network element is an access network element; access The network element receives the first uplink packet from the terminal device.
  • the access network element copies the first uplink packet.
  • the message obtains the second uplink message; or when the first uplink message does not include the protocol layer between the terminal device, the access network element, and the user plane function network element, the access network element adds the first protocol layer And copy the first uplink message to obtain a second uplink message; the access network element sends the first uplink message and the second uplink message to the user plane function network element through the dual tunnel.
  • a protocol layer between a terminal device and a UPF network element is added to a RAN network element, so that whether a dual tunnel is associated with a single RAN network element or a dual RAN network element, the UPF Network elements can copy / deduplicate packets at this protocol layer.
  • the UPF network element can determine to receive the uplink message.
  • an embodiment of the present application provides a communication apparatus for performing the foregoing first aspect and the methods described in various possible implementation manners of the first aspect.
  • an embodiment of the present application provides a second communication apparatus, configured to execute the second aspect and the methods described in various possible implementation manners of the second aspect.
  • an embodiment of the present application provides a communication apparatus for performing the foregoing third aspect and the methods described in various possible implementation manners of the third aspect.
  • an embodiment of the present application provides a second communication device, configured to execute the fourth aspect and the methods described in various possible implementation manners of the fourth aspect.
  • a communication device for performing the foregoing fifth aspect and the methods described in various possible implementation manners of the fifth aspect.
  • an embodiment of the present application provides a communication system, including the communication device according to the sixth aspect, the communication device according to the seventh aspect, and any one of the eighth, ninth, or tenth aspects. Communication device as described above.
  • an embodiment of the present application provides a communication device, including a processor and a memory.
  • the memory is used to store a program, and the processor calls the program stored in the memory to execute the foregoing first aspect and various possibilities of the first aspect.
  • an embodiment of the present application provides a storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the foregoing first aspect and the methods described in various possible implementation manners of the first aspect are performed, or The method described in the second aspect and the various possible implementation manners of the second aspect, or the method described in the third aspect and the various possible implementation manners of the third aspect, or the fourth and fourth aspects described above, The method according to various possible implementations of the aspect, or the method according to the fifth aspect and the various possible implementations of the fifth aspect.
  • an embodiment of the present application provides a computer program product.
  • the communication device When the computer program product runs on a communication device, the communication device is caused to perform the foregoing first aspect and the methods described in various possible implementation manners of the first aspect. Or execute the method described in the second aspect and the various possible implementation manners of the second aspect, or perform the method described in the third aspect and the various possible implementation manners of the third aspect, or perform the fourth aspect and The method described in various possible implementation manners of the fourth aspect, or the method described in the fifth possible implementation manner and the various possible implementation manners of the fifth aspect described above
  • an embodiment of the present application provides a chip system, including: a processor, configured to support a communication device to perform the foregoing first aspect and the methods described in various possible implementation manners of the first aspect, or to perform the foregoing second aspect Method according to various possible embodiments of the second aspect and the second aspect, or performing the method described in the third possible aspect and the various possible embodiments of the third aspect, or performing various methods of the fourth aspect and the fourth aspect described above The method according to the possible embodiment, or the method according to the fifth aspect and the various possible embodiments of the fifth aspect.
  • FIG. 1 is a schematic architecture diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a mobile phone according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 5 is a first schematic diagram of a protocol stack according to an embodiment of the present application.
  • FIG. 6 is a first schematic diagram of signaling interaction of a message transmission method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of performing dual transmission through a dual RAN network element according to an embodiment of the present application.
  • FIG. 8 is a second schematic diagram of signaling interaction of a message transmission method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of performing dual transmission through a single RAN network element according to an embodiment of the present application.
  • FIG. 10 is a third schematic diagram of signaling interaction of a message transmission method according to an embodiment of the present application.
  • FIG. 11 is a fourth schematic diagram of signaling interaction of a message transmission method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram 5 of signaling interaction of a message transmission method according to an embodiment of the present application.
  • FIG. 13 is a sixth schematic diagram of signaling interaction of a message transmission method according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a terminal device switching from a dual RAN network element to a single RAN network element according to an embodiment of the present application;
  • FIG. 15 is a schematic signaling interaction diagram VII of a message transmission method according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a terminal device switching from a single RAN network element to a dual RAN network element according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of signaling interaction of a message transmission method according to an embodiment of the present application.
  • 18A is a schematic diagram of a signaling interaction of a message transmission method according to an embodiment of the present application.
  • FIG. 18B is a schematic diagram 10 of a signaling interaction of a message transmission method according to an embodiment of the present application.
  • 18C is a schematic diagram 11 of a signaling interaction of a message transmission method according to an embodiment of the present application.
  • 19 is a second schematic diagram of a protocol stack according to an embodiment of the present application.
  • 20 is a schematic diagram 12 of signaling interaction of a message transmission method according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram 13 of a signaling interaction of a message transmission method according to an embodiment of the present application.
  • 22 is a first schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 23 is a second schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 24 is a first schematic structural diagram of another communication device according to an embodiment of the present application.
  • 25 is a second schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 26 is a first schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 27 is a second schematic structural diagram of another communication device according to an embodiment of the present application.
  • the embodiment of the present application is described by using a scenario of a 5G network in a wireless communication network as an example. It should be noted that the solution in the embodiment of the present application can also be applied to other wireless communication networks, and the corresponding names can also be used in other wireless communication networks The corresponding function names in the replacement.
  • the communication system architecture includes: a terminal device 101, a (radio) access network ((R) AN) network element 102, and an access and mobility management function ( Access and mobility management (AMF) network element 103, session management function (SMF) network element 104, and user plane function (UPF) network element 105.
  • R radio access network
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the interface names between the various network elements in the figure are only examples, and the interface names may be other names in the specific implementation, which is not specifically limited in the embodiment of the present application.
  • the interface between the terminal device 101 and the AMF network element 103 may be an N1 interface
  • the interface between the RAN network element 102 and the AMF network element 103 may be an N2 interface
  • the interface between the RAN network element 102 and the UPF network element 105 It can be N3 interface
  • the interface between UPF network element 105 and SMF network element 104 can be N4 interface
  • the interface between AMF network element 103 and SMF network element 104 can be N11 interface
  • UPF network element 105 and data network (data The network (DN) interface can be an N6 interface.
  • the terminal device 101 involved in the embodiment of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem; it may also include a subscriber unit (subscriber unit), cellular phone, smart phone, wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handheld), knee Laptop computer, cordless phone or wireless local loop (WLL) station, machine type communication (MTC) terminal, user equipment (UE), mobile Station (mobile station, MS), terminal device (terminal device), or relay user equipment.
  • the relay user equipment may be, for example, a 5G residential gateway (RG).
  • RG 5G residential gateway
  • the devices mentioned above may be collectively referred to as terminal devices.
  • the mobile phone may include: a radio frequency (RF) circuit 100, a memory 120, other input devices 130, a display screen 140, a sensor 150, an audio circuit 160, an I / O subsystem 170, a processor 180, And power supply 190 and other components.
  • RF radio frequency
  • the structure of the mobile phone shown in the figure does not constitute a limitation on the mobile phone, and may include more or fewer parts than shown in the figure, or combine some parts, or disassemble some parts, or Different component arrangements.
  • the display screen 140 belongs to a user interface (UI), and the display screen 140 may include a display panel 141 and a touch panel 142.
  • the mobile phone may further include a functional module or device such as a camera, a Bluetooth module, and the details are not described herein again.
  • the processor 180 is connected to the RF circuit 100, the memory 120, the audio circuit 160, the I / O subsystem 170, and the power supply 190, respectively.
  • the I / O subsystem 170 is connected to other input devices 130, a display screen 140, and a sensor 150, respectively.
  • the RF circuit 100 may be used to receive and send signals during sending and receiving information or during a call. In particular, after receiving downlink information from a network device, it is sent to the processor 180 for processing.
  • the memory 120 may be used to store software programs and modules.
  • the processor 180 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 120, for example, methods and functions of the terminal device in the embodiments of the present application.
  • the other input devices 130 may be used to receive inputted numeric or character information, and generate keyboard signal inputs related to user settings and function control of the mobile phone.
  • the display screen 140 may be used to display information input by the user or information provided to the user and various menus of the mobile phone, and may also accept user input.
  • the sensor 150 may be a light sensor, a motion sensor, or other sensors.
  • the audio circuit 160 may provide an audio interface between the user and the mobile phone.
  • the I / O subsystem 170 is used to control input and output external devices.
  • the external devices may include other device input controllers, sensor controllers, and display controllers.
  • the processor 180 is a control center of the mobile phone 200, and uses various interfaces and lines to connect various parts of the entire mobile phone.
  • the power supply 190 (such as a battery) is used to supply power to the above components.
  • the power supply can be logically connected to the processor 180 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption through the power management system.
  • the terminal device 101 may receive a signal from the RAN network element 102 through the RF circuit 100.
  • the RAN network element 102 is a device that provides wireless access to the terminal device 101.
  • the RAN network element 102 includes, but is not limited to, an eNodeB, a wireless fidelity (Wi-Fi) access point, a worldwide microwave interoperability (microwave access) base station, and the like.
  • the RAN network element 102 in the embodiment of the present application may include a single RAN network element or a dual RAN network element.
  • the dual RAN network element includes a primary radio access network (M-RAN) network element and a secondary radio access network (S-RAN) network element.
  • M-RAN primary radio access network
  • S-RAN secondary radio access network
  • a single RAN network element or a dual RAN network element can communicate with a UPF network element through a dual tunnel.
  • the base station 102 may include an indoor baseband processing unit (building baseband unit (BBU) 301) and a remote radio module (remote radio unit (RRU) 302).
  • the RRU 302 is connected to the antenna system (ie, antenna) 303, and the BBU is connected.
  • 301 and RRU 302 can be disassembled and used as required.
  • the BBU 301 may include a processor 331, a memory 332, and a bus system 333.
  • the processor 331 and the memory 332 of the BBU 301 are connected to each other through the bus system 333.
  • the above bus system may be a peripheral component interconnect standard bus or an extended industry standard structure bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the RRU 302 may include an RF circuit 334, and the base station 102 may further include an optical fiber 335, a coaxial cable 336, and an antenna 337.
  • the RF circuit 334 in the RRU 302 and the BBU 301 are connected to each other through an optical fiber 335, and the RF circuit 334 and the antenna 337 in the RRU 302 are connected to each other through a coaxial cable 336.
  • the base station may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, and the like.
  • the RAN network element 102 described in the embodiment of the present application is used for transmitting data between the terminal device 101 and the core network device.
  • the AMF network element 103 can be responsible for mobility management in the mobile network, such as user location update, user registration network, user switching, etc.
  • the SMF network element 104 can be responsible for session management in the mobile network, such as session establishment, modification, and release, and specific functions such as assigning IP addresses to users, and selecting UPF network elements that provide message forwarding functions.
  • the UPF network element 105 may be responsible for processing user packets, such as forwarding and charging.
  • the AMF network element 103, the SMF network element 104, and the UPF network element 105 can be collectively referred to as a core network element.
  • the following uses a network device as an example to describe the structure of these core network elements. It is not limited that each core network element must have units or devices as shown in the following figure, and may have more or fewer units or devices.
  • the network device 400 may include at least one processor 401, a communication line 402, a memory 403, and at least one communication interface 404.
  • the processor 401 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the program of the solution of the present application. integrated circuit.
  • the communication line 402 may include a path for transmitting information between the aforementioned components.
  • the communication interface 404 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • the memory 403 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions
  • the dynamic storage device can also be electrically erasable and programmable read-only memory (EEPROM-ready-only memory (EEPROM)), compact disc (read-only memory (CD-ROM)) or other optical disk storage, optical disk storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory may exist independently, and is connected to the processor through the communication line 402.
  • the memory can also be integrated with the processor.
  • the memory 403 is configured to store computer execution instructions (which may be referred to as application code) for executing the solution of the present application, and is controlled and executed by the processor 401.
  • the processor 401 is configured to execute computer execution instructions stored in the memory 403, so as to implement the method provided in the following embodiments of the present application.
  • This application is applicable to highly reliable message transmission.
  • a single base station solution or a dual base station solution can be used for URLLC services to implement highly reliable message transmission.
  • Solution 1 dual base station solution:
  • the RAN network element includes a master radio access network (M-RAN) network element and a secondary radio access network (S-RAN) network element.
  • M-RAN master radio access network
  • S-RAN secondary radio access network
  • An independent user plane tunnel is established between two different RAN network elements and the UPF network element to transmit the same data message.
  • the terminal device can receive two downlink packets containing the same data packet and deduplicate the downlink packets accordingly.
  • the UPF network element can receive two uplink packets containing the same data packet and deduplicate the uplink packets accordingly.
  • the M-RAN network element and the S-RAN network element may respectively assign different tunnel identifiers to respective user plane tunnels, and both of the M-RAN network elements send the control plane signaling to the core network.
  • the RAN network element can receive two downlink packets containing the same data packet, and deduplicate the downlink packets accordingly.
  • the UPF network element can receive two uplink packets containing the same data packet and deduplicate the uplink packets accordingly.
  • the RAN network element allocates different tunnel identities to the two user plane tunnels, and the RAN network element sends the control plane signaling to the core network.
  • the UPF network element when the UPF network element sends downlink data, the message is copied to obtain two downlink messages containing the same data packet, and the downlink report is sent through two different user plane tunnels. Text. Then, even if packet loss occurs in one user plane tunnel, the downlink packets of the other user plane tunnel are not affected.
  • the RAN network element can decide whether to perform the dual base station solution or the single base station solution. Packet transmission in two user plane tunnels.
  • the UPF network element cannot distinguish whether the wireless access network side adopts a dual base station or a single base station solution. Therefore, the UPF network element cannot determine how to add a sequence number to a downlink packet. Such uncertainty will affect the processing of URLLC service packets, thereby reducing the user experience.
  • the core network can determine whether the radio access network side adopts a dual base station or a single base station for dual transmission according to the instruction information sent by the RAN network element, and then instruct the UPF network element to The downstream data is added with the same serial number.
  • the following message transmission scheme is applicable to the protocol stack shown in FIG. 5.
  • the terminal device, the RAN network element, and the UPF network element in FIG. 5 may be the terminal device 101, the (R) AN network element 102, and the UPF network element 105 in FIG.
  • the protocol layer between the terminal device and the UPF network element includes a network control protocol (NCP) layer and a packet data unit (PDU) layer; between the terminal device and the RAN network element
  • the protocol layer includes the L1 layer, the media access control (MAC) layer, the radio link control (RLC) layer, and the packet data convergence protocol (PDCP) layer; the RAN network element
  • the protocol layers with UPF network elements include L1, L2, user datagram protocol (UDP) / internet protocol (IP) layer, and GPRS tunneling protocol-user plane (GPRS) plane, GTP-U) layer.
  • the functions of the NCP layer include the realization of high-reliability transmission of messages, and deduplication processing can be performed on messages containing the same sequence number, which will be further described in conjunction with FIGS. 6 to 17 later.
  • the protocol layer that can implement the functions of the NCP layer may also have other names, for example, a traffic control protocol (traffic control protocol, TFCP) layer or a high reliability protocol (HRP) layer, which is not limited herein.
  • TFCP traffic control protocol
  • HRP high reliability protocol
  • two-way transmission can be performed through dual RAN network elements (ie, scheme one); FIG. 7 will be further shown in conjunction with FIG. 6, How does a UPF network element add the same sequence number to downlink data in a dual RAN network element scenario.
  • two-way transmission may be performed through a single RAN network element (i.e., scheme two); FIG. 9 will further show the UPF network element pair in the single RAN network element scenario in conjunction with FIG. How to add the same serial number to downstream data.
  • the process can include the following steps:
  • the terminal device sends a non-access stratum (NAS) message to the AMF network element through the currently accessed RAN network element.
  • NAS non-access stratum
  • the currently accessed RAN network element may be a RAN network element that is subsequently used as an M-RAN network element.
  • the NAS message includes a PDU session establishment request message, which is used to request the core network to establish a PDU session for the terminal device.
  • the PDU session establishment request message includes a PDU session identifier (PDU ID) assigned by the terminal device for the session, single network slice selection assistance information (S-NSSAI), data corresponding to the session, and data.
  • PDU ID PDU session identifier
  • S-NSSAI single network slice selection assistance information
  • Network name data network name, DNN
  • the S-NSSAI is used to indicate the slice type corresponding to the session.
  • the DNN is used to indicate the data network corresponding to the session.
  • the AMF network element selects the SMF network element and invokes the SMF session creation request service operation (Nsmf_PDUSession_CreateSMContextRequest).
  • the service operation carries a PDU session establishment request message.
  • the subsequent session establishment process includes: the SMF network element selects the UPF network element, etc., which are not described in detail here.
  • the SMF network element invokes a service operation (Namf_Communication_N1N2MessageTransfer) of the N1N2 message transfer of the AMF network element.
  • the SMF network element sends N1 session management information (N1 session management information) and N2 session management information (N2 session management information) to the AMF network element.
  • N1SM information includes a session accept message sent to the terminal device.
  • the N2SM information includes user plane tunnel information, quality of service (QoS) parameters, session types, etc. that are sent to the RAN network element.
  • QoS parameter may include a QoS flow identifier (QFI).
  • the SMF network element can determine whether the terminal device accesses the URLLC service according to the QoS parameters, the subscription data, and the policy, that is, the service associated with the session is the URLLC service.
  • the user plane tunnel information sent to the RAN network element includes the core network dual tunnel information CN_tunnel_info-1 and CN_tunnel_info-2. For example, if the SMF network element judges that the session is associated with the URLLC service, it allocates two pieces of core network side tunnel information as the core network dual tunnel information, that is, CNtunnelinfo-1 and CNtunnelinfo-2, and the core network dual tunnel The information is contained in N2SM information.
  • the AMF network element sends an N2 PDU session request (N2 PDU session request) message to the RAN network element currently accessed by the terminal device.
  • N2 PDU session request N2 PDU session request
  • the message includes the above N1 SM information and N2 SM information.
  • S605 The RAN network element currently accessed by the terminal device initiates a wireless connection establishment process with the terminal device.
  • the RAN network element sends N1 SM information to the terminal device.
  • the following steps S606-S611 describe the process after the RAN network element currently accessed by the terminal device decides to add the S-RAN network element. That is, the RAN network element currently accessed by the terminal device becomes an M-RAN network element.
  • the RAN network element currently accessed by the terminal device can determine whether to add an S-RAN network element after receiving the N2 PDU session request message of S604, or it can also determine whether to add an S-RAN network element after S605. Applications are not restricted here.
  • the judgment condition for the M-RAN network element to decide to add the S-RAN network element may include any one of the following: QFI included in the N2 SM information corresponds to QoS corresponding to high reliability requirements; S-NSSAI included in the N2 SM information The corresponding slice type is URLLC slice; the N2SM message contains the tunnel information of two different UPF network elements.
  • the M-RAN network element learns from the QFI contained in the N2 SM information that the QoS corresponding to the session has a high reliability requirement, or when the M-RAN network element learns from the S-NSSAI contained in the N2 SM information
  • the session is associated with a URLLC slice, or when the M-RAN network element learns that the session has high reliability requirements based on the tunnel information of two different UPF network elements contained in the N2SM information, the M-RAN network element needs to The session provided high-reliability support, and it was decided to add S-RAN network elements.
  • the M-RAN network element can also determine that it needs to provide high-reliability support for the session according to the instruction information from the SMF network element.
  • the M-RAN network element determines according to the current wireless signal quality (for example, obtained from a measurement report sent by the terminal device) that there are other RAN network elements (i.e. Yuan), the following step S606 is performed.
  • the M-RAN network element sends an increase request message to the S-RAN network element.
  • the message includes the PDU session identifier. If only some service flows in the session initiated by the terminal device belong to the URLLC service, the message also includes the service flow identifier corresponding to the URLLC service.
  • the S-RAN network element sends an increase response message to the M-RAN network element.
  • This message includes S-RAN network element tunnel information (tunnel info).
  • the S-RAN network element can store the correspondence between the S-RAN network element tunnel information and the PDU session identifier.
  • the tunnel information may include a tunnel endpoint identifier (TEID).
  • the M-RAN network element sends a radio resource control (radio resource control, RRC) connection reconfiguration message to the terminal device.
  • RRC radio resource control
  • S609 The terminal device sends an RRC connection reconfiguration completion message to the M-RAN network element.
  • the M-RAN network element triggers the terminal device to perform an RRC connection to the S-RAN network element.
  • the M-RAN network element sends a reconfiguration completion message to the S-RAN network element.
  • This message indicates that the terminal device successfully completed the reconfiguration process.
  • the S-RAN network element and the terminal device perform a random access process.
  • the terminal equipment establishes an RRC connection with the S-RAN network element.
  • the M-RAN network element sends an N2 PDU session response (N2 PDU session response) message to the AMF network element.
  • N2 PDU session response N2 PDU session response
  • This message includes N2 SM information, where N2 SM information includes M-RAN network element tunnel information and S-RAN network element tunnel information.
  • the AMF network element invokes a service operation (Nsmf_PDUSession_UpdateSMContext) of the update session management context request of the SMF network element to trigger the SMF to update the session management context.
  • Nsmf_PDUSession_UpdateSMContext a service operation of the update session management context request of the SMF network element to trigger the SMF to update the session management context.
  • the input of the AMF network element invoking the service operation includes the above N2SM information. That is, through this step, the AMF network element sends N2SM information including M-RAN network element tunnel information and S-RAN network element tunnel information to the SMF network element.
  • the SMF network element sends an N4 session modification request (N4 session modification request) message to the UPF network element.
  • N4 session modification request N4 session modification request
  • the message includes the M-RAN network element tunnel information, S-RAN network element tunnel information, and packet forwarding rules.
  • the message forwarding rule is used to instruct the UPF network element to generate two downlink packets containing the same data packet and send them to the terminal device through a two-way tunnel when receiving the URLLC packet. In this way, the terminal device can receive two downlink messages containing the same data packet.
  • the terminal device of this solution receives two downlink messages containing the same data packet, and the terminal device needs to identify which downlink messages are duplicates, further, duplicate the duplicate messages to deduplicate the messages.
  • the UPF network element receives two uplink packets containing the same data packet, and the UPF network element needs to identify which uplink packets are duplicated, and further, deduplicate the duplicated packets. Therefore, a layer above the GTP-U on the UPF side, that is, the protocol layer (for example, the NCP layer in FIG. 5) between the terminal device and the UPF network element, is required to assign the same sequence to repeated messages. Number, so that the terminal device or the UPF network element deduplicates NCP packets with the same sequence number.
  • Figure 7 uses the following example to copy / de-duplicate packets at the NCP layer, and details the processing of downstream packets by each network element.
  • the UPF network element when the UPF network element receives an IP packet from a data network (DN), the IP packet includes the IP address (UE IP) and data (data) of a terminal device to receive the packet.
  • the UPF network element identifies which terminal device the message needs to be sent to based on the stored PDU session context and the UE IP, and encapsulates the IP message into a PDU message, and then the UPF network element generates two sequence numbers (SN) The same NCP message.
  • one of the methods is: After the UPF network element adds the NCP sequence number to the PDU message, the NCP message is copied into two copies. Another method is that the UPF network element first copies the PDU message into two copies, and then adds the same NCP serial number respectively.
  • the UPF network element encapsulates the two NCP layer packets at the GTP-U layer.
  • the GTP-U layer header includes the M-RAN network element tunnel. Endpoint identifier (TEID) and TEID of the S-RAN network element.
  • TEID Endpoint identifier
  • the UPF network element further encapsulates the two GTP packets in the UDP / IP layer, the L2 layer, and the L1 layer in order to generate a first downlink message and a second downlink message. .
  • the first downlink message and the second downlink message have the same sequence number (that is, the above-mentioned NCP sequence number).
  • the UPF network element can send the first downlink packet and the second downlink packet to the M-RAN network element and the S- respectively through the tunnels previously established with the M-RAN network element and the S-RAN network element, respectively.
  • RAN network element Therefore, the M-RAN network element and the S-RAN network element respectively receive the same downlink data.
  • the M-RAN network element decapsulates the L1, L2, UDP / IP layer in order according to the protocol stack shown in Figure 5, and obtains the GTP layer.
  • the GTP-U layer obtains the first downstream packet after decapsulation, and then encapsulates it according to the air interface protocol (for example, the 5G AN protocol layer: L1 layer, MAC layer, RLC layer, and PDCP layer).
  • the message is forwarded to the terminal device.
  • the S-RAN network element decapsulates the L1, L2, UDP / IP layers in order according to the protocol stack shown in FIG. 5, and obtains the GTP layer, which is obtained at the GTP-U layer.
  • the packet After decapsulating the second downstream packet, the packet is encapsulated according to the air interface protocol, and the encapsulated packet is forwarded to the terminal device.
  • the terminal device After receiving the two-way message, the terminal device decapsulates the L1 layer, the MAC layer, the RLC layer, and the PDCP layer in order according to the protocol stack shown in FIG. 5, and finally obtains two NCP messages (including NCP header messages). NCP messages with the same sequence number are then deduplicated. Finally, the terminal device obtains an NCP message and obtains the data contained in the NCP message.
  • the terminal equipment and UPF network elements there is no restriction on the terminal equipment and UPF network elements to perform message copying / deduplication at the NCP layer.
  • it may also be above the GTP layer and can be Other protocol layers that implement message replication / deduplication.
  • message copying / deduplication can also be performed at a traffic control protocol (TFCP) layer or a high reliability protocol (HRP) layer.
  • TFCP traffic control protocol
  • HPR high reliability protocol
  • the UPF network element needs to assign the same sequence number to the repeated packets at the protocol layer between the terminal device and the UPF network element.
  • FIG. 8 For example, the flow of a single RAN network element adopting dual transmission is shown in FIG. 8.
  • FIG. 8 will be described in combination with FIG. 6.
  • the process can include the following steps:
  • the terminal device sends a NAS message to the AMF network element through the RAN network element.
  • the RAN network element in this step is equivalent to the M-RAN network element in step S601.
  • S601 in FIG. 6 For other contents, reference may be made to the description of S601 in FIG. 6, and details are not described herein.
  • the AMF network element selects the SMF network element and invokes a session creation request service-oriented operation (Nsmf_PDUSession_CreateSMContextRequest) of the SMF network element.
  • Nsmf_PDUSession_CreateSMContextRequest a session creation request service-oriented operation of the SMF network element.
  • the SMF network element invokes a service operation (Namf_Communication_N1N2MessageTransfer) of the N1N2 message transfer of the AMF network element.
  • This step may refer to the description of S603 in FIG. 6, and is not repeated here.
  • the AMF network element sends an N2 PDU session request (N2 PDU session request) message to the RAN network element.
  • N2 PDU session request N2 PDU session request
  • the message includes the above N1 SM information and N2 SM information.
  • the RAN network element learns that the QoS corresponding to the session needs high reliability requirements according to the QoS parameters contained in the N2 SM information, such as QoS flow identifier (QFI); or the RAN network element according to the S-NSSAI included in the N2 SM information It is learned that the session is associated with the URLLC slice; or, when the RAN network element learns that the session has high reliability requirements based on the tunnel information of two different UPF network elements contained in the N2SM information, the RAN network element needs to access the URLLC Sliced sessions provide high reliability support. In addition, the RAN network element may also determine that high-reliability support for the session is required according to the instruction information from the SMF network element.
  • QFI QoS flow identifier
  • the RAN network element determines according to the current wireless signal quality (for example, obtained from a measurement report sent by the terminal device) that there are no other RAN network elements at the current location that can meet high-reliability dual transmission, or when the RAN network element itself can To support dual link establishment, it is decided to adopt a single base station reliability mechanism.
  • the current wireless signal quality for example, obtained from a measurement report sent by the terminal device
  • the RAN network element After the RAN network element decides to adopt a single base station reliability mechanism, it assigns two different tunnel information (tunnel info).
  • the RAN network element initiates a wireless connection establishment process with the terminal device.
  • the RAN network element sends an N2PDU session response (N2PDU session response) message to the AMF network element.
  • N2PDU session response N2PDU session response
  • This message includes N2SM information, where the N2SM information includes two different tunnel information allocated by the RAN network element.
  • the AMF network element invokes a service operation (Nsmf_PDUSession_UpdateSMContext) of updating the session management context of the SMF network element to trigger the SMF to update the session management context.
  • a service operation Nsmf_PDUSession_UpdateSMContext
  • the input of the AMF network element to call the service operation includes N2SM information. That is to say, through this step, the AMF network element sends N2 SM information including two pieces of tunnel information to the SMF network element.
  • the SMF network element sends an N4 session modification request (N4 session modification request) message to the UPF network element.
  • N4 session modification request N4 session modification request
  • the inputs of the AMF network element invoking the service operation include two different tunnel information and packet forwarding rules allocated by the RAN network element.
  • the message forwarding rule is used to enable the UPF network element to generate two downlink packets containing the same data packet and send them to the RAN network element through two channels when receiving the URLLC packet. In this way, the RAN network element can receive two downlink packets containing the same data packet.
  • the message is transmitted to the RAN network element through the air interface protocol, and the RAN network element generates the message with two uplink messages containing the same data packet and It is sent to the UPF network element through a two-way tunnel. In this way, the UPF network element can receive two uplink packets containing the same data packet.
  • the RAN network element if the RAN network element is to be used to deduplicate downlink packets, the RAN network element must be from the protocol layer between the UPF network element and the RAN network element. (For example, the GTP-U layer) identifies which messages are duplicated, so that the UPF network element is required to generate two messages (for example, GTP messages) with the same sequence number at the corresponding protocol layer.
  • the GTP-U layer identifies which messages are duplicated, so that the UPF network element is required to generate two messages (for example, GTP messages) with the same sequence number at the corresponding protocol layer.
  • Figure 9 uses the following example to copy / de-duplicate packets at the GTP-U layer, and details the processing of downstream packets by each network element.
  • the UPF network element when the UPF network element receives an IP packet from the data network, the IP packet includes the IP address (UE IP) and data of the terminal device to receive the packet.
  • the UPF network element identifies which terminal device the message needs to be sent to according to the stored PDU session context and the UE IP, and encapsulates the IP message into a PDU message.
  • the UPF network element then copies the message into two GTP messages with the same sequence number. For example, one method is as follows: After a UPF network element adds a GTP sequence number to a PDU message, the GTP message is copied into two copies. Another method is that the UPF network element first copies the PDU message into two copies, and then adds the same GTP sequence number respectively.
  • the sequence numbers of the two GTP packets are the same.
  • the UPF network element then encapsulates the two GTP-layer packets at the GTP-U layer.
  • the GTP-U layer header includes the tunnel endpoint identifier TEID of one of the two tunnels. -1 and TEID-2.
  • TEID-1 of one tunnel is allocated by the RAN network element, and TEID-2 of the other tunnel is also allocated by the RAN network element.
  • the UPF network element further encapsulates the two GTP packets in the UDP / IP layer, the L2 layer, and the L1 layer in order to generate a first downlink message and a second downlink message .
  • the first downlink message and the second downlink message have the same sequence number (that is, the above-mentioned GTP sequence number).
  • the UPF network element can send the first downlink packet and the second downlink packet to the RAN network element through the two tunnels previously established with the RAN network element. Therefore, the RAN network element receives the same downlink data through two different tunnels.
  • the RAN network element decapsulates the L1, L2, and UDP / IP layers in sequence according to the protocol stack shown in Figure 5. And get the GTP layer, deduplicate the GTP packets with the same sequence number, and then encapsulate the deduplicated packets according to the air interface protocol layer (for example, 5G AN protocol layer: L1 layer, MAC layer, RLC layer and PDCP layer), and forward the encapsulated message to the terminal device. Finally, the terminal device obtains a message and obtains the data contained in the message.
  • the air interface protocol layer for example, 5G AN protocol layer: L1 layer, MAC layer, RLC layer and PDCP layer
  • the UPF network element needs to allocate the same sequence for repeated messages at the protocol layer between the terminal device and the UPF network element.
  • the UPF network element generates two NCP messages with the same sequence number
  • the UPF network element needs to be located between the single RAN network element and the UPF network element.
  • Protocol layer to assign the same sequence number to repeated messages for example, a UPF network element generates two GTP messages containing the same sequence number).
  • the core network will receive two different tunnel identifiers from the RAN network element, it cannot be distinguished whether the radio access network side uses dual RAN network elements or single RAN network elements for dual transmission. Furthermore, the UPF network element cannot determine whether to generate two NCP messages containing the same sequence number or to generate two GTP messages containing the same sequence number. Therefore, different two-way mechanisms will affect the way the UPF network element replicates and processes downlink data packets.
  • the message transmission scheme according to the embodiment of the present invention is to realize that the RAN network element determines the reliability mechanism for the URLLC service, indicates the type of mechanism adopted by the core network, and triggers the SMF network element to indicate which protocol layer the UPF network element should use for data.
  • the message is copied, so as to realize the two-way data transmission of the URLLC service and the message deduplication.
  • the dual-RAN network elements described in the embodiments of the present application include M-RAN network elements and S-RAN network elements, or include the first RAN network element and the second RAN network element, and the specific name of the RAN network element is not limited in this embodiment of the present application. .
  • the tunnel described in this embodiment of the present application may refer to a tunnel for a PDU session between a UPF network element and a RAN network element.
  • the dual tunnel may include a first tunnel and a second tunnel.
  • the data packets in the packets transmitted by the first tunnel and the second tunnel are the same.
  • the first downlink message and the second downlink message described in the embodiment of the present application are downlink messages transmitted through two tunnels, wherein the first downlink message is transmitted through the first tunnel and the second downlink message passes through the first tunnel. Two tunnel transmissions.
  • the first uplink message and the second uplink message described in the embodiment of the present application are uplink messages transmitted through two tunnels, wherein the first uplink message is transmitted through the first tunnel and the second uplink message is transmitted through the second tunnel. transmission.
  • the association between the dual tunnel and the single RAN network element in the embodiment of the present application means that there is a dual tunnel between a UPF network element and a RAN network element, and a message is transmitted through the dual tunnel between the UPF network element and the RAN network element.
  • the association between the dual tunnel and the dual RAN network element described in the embodiment of the present application means that there is a first tunnel between the M-RAN network element (or the first RAN network element) and the UPF network element, and the UPF network element and the M- RAN network elements transmit uplink / downlink messages through a first tunnel; a second tunnel exists between the S-RAN network element (or the second RAN network element) and the UPF network element, and the UPF network element and the S-RAN network Units transmit uplink / downlink messages through a second tunnel.
  • An embodiment of the present application provides a message transmission method.
  • a RAN network element determines that a dual tunnel is associated with a single RAN network element or is associated with a dual RAN network element, and sends an indication to the SMF network element that the dual tunnel is associated with a single RAN network element or The indication information associated with the dual RAN network element.
  • the UPF network element copies the data packet and assigns the same sequence number to the two data packets at the first protocol layer of the encapsulated data packet. If the dual tunnel is associated with a single RAN network element, the same packet deduplication can be performed by the RAN network element; if the dual tunnel is associated with a dual RAN network element, the same data packet deduplication is performed by the terminal device.
  • the method includes at least steps S1001-S1005.
  • the RAN network element determines whether the dual tunnel is associated with a single RAN network element or is associated with a dual RAN network element.
  • the RAN network element determines whether the dual tunnel is associated with the single RAN network element or the dual RAN network element according to whether there is a second RAN network element that meets a preset condition at the current location.
  • the RAN network element capable of satisfying high-reliability dual transmission is a second RAN network element that satisfies a preset condition.
  • the measurement report sent by the terminal device may be used to indicate the signal quality between the terminal device and the second RAN network element.
  • the first RAN network element may determine whether the second RAN network element meets the highly reliable dual transmission according to the measurement report sent by the terminal device.
  • the first RAN network element determines that the dual tunnel is associated with the dual RAN network element, and the first RAN network element can be used as the M-RAN network element.
  • Two RAN network elements can be used as S-RAN network elements. If there is no second RAN network element meeting the preset condition at the current location, the first RAN network element determines that the dual tunnel is associated with a single RAN network element, and the first RAN network element is the single RAN network element.
  • the RAN network element sends the first instruction information to the SMF network element through the AMF network element.
  • the first indication information is used to indicate that the dual tunnel is associated with a single RAN network element or is associated with a dual RAN network element.
  • the RAN network element may be the first RAN network element or the M-RAN network element described above.
  • the SMF network element receives the first indication information.
  • the SMF network element sends the second instruction information to the UPF network element according to the first instruction information.
  • the second indication information is used to trigger the UPF network element to add the same sequence number to the first downlink message and the second downlink message at the first protocol layer.
  • the first downlink message and the second downlink message are messages transmitted through a dual tunnel.
  • the first protocol layer is a protocol layer (for example, a GTP-U layer) located between the single RAN network element and the UPF network element. That is, when the first indication information indicates that the dual tunnel is associated with a single RAN network element, the second indication information is used to trigger the UPF network element to add the same for the first downlink message and the second downlink message at the GTP-U layer. Serial number.
  • the first protocol layer is a protocol layer (for example, an NCP layer, a TFCP layer, or an HRP layer) located between the terminal device and the UPF network element. That is, when the first indication information indicates that the dual tunnel is associated with the dual RAN network element, the second indication information is used to trigger the UPF network element to be the first downlink packet and the second downlink packet at the NCP layer (or TFCP layer). Or HRP layer) add the same serial number.
  • a protocol layer for example, an NCP layer, a TFCP layer, or an HRP layer
  • the SMF network element may send a forwarding rule to the UPF network element, where the forwarding rule includes the second indication information.
  • the forwarding rule is also used to instruct the UPF network element to transmit to the terminal device through the dual tunnel when receiving the URLLC service packet.
  • the UPF network element may receive the second indication information.
  • the UPF network element may receive a forwarding rule containing the second indication information from the SMF network element.
  • the forwarding rule may be included in an N4 session modification request (N4 session modification request) message.
  • the second indication information may be the first indication information.
  • the SMF network element sends the received first indication information as the second indication information to the UPF network element, and the UPF network element decides the first protocol layer and executes it as the first downlink message and the second downlink The message adds the same sequence number to the first protocol layer.
  • the UPF network element determines that the protocol layer (for example, the GTP-U layer) between the single RAN network element and the UPF network element is the first The line message and the second downlink message add the same sequence number to the first protocol layer.
  • the UPF network element determines that the protocol layer (for example, the NCP layer, the TFCP layer, or the HRP layer) between the terminal device and the UPF network element is the first downlink. The same sequence number is added to the first protocol layer of the message and the second downlink message.
  • the protocol layer for example, the NCP layer, the TFCP layer, or the HRP layer
  • the SMF network element determines the second instruction information according to the first instruction information. For example, when the first indication information indicates that the dual tunnel is associated with a single RAN network element, the SMF network element determines that the protocol layer (for example, the GTP-U layer) of the UPF network element between the single RAN network element and the UPF network element is The first downlink message and the second downlink message are added with the same sequence number.
  • the content of the second indication information may be identification information of a protocol layer (for example, a GTP-U layer) between the single RAN network element and the UPF network element.
  • the second indication information may be: GTP-U.
  • the SMF network element determines that the protocol layer (for example, NCP layer, TFCP layer, or HRP layer) of the UPF network element between the terminal device and the UPF network element is the first One downlink message and the second downlink message are added with the same sequence number.
  • the content of the second indication information may be identification information of a protocol layer (for example, an NCP layer) between the terminal device and the UPF network element.
  • the second indication information may be: NCP.
  • the SMF network element may further instruct the UPF network element to copy the data packet to obtain the first downlink packet and the second downlink packet.
  • the SMF network element may instruct the UPF network element to copy the data packet to obtain the first downlink packet and the second downlink packet through the foregoing forwarding rule.
  • the same serial number can be obtained through copying or allocation.
  • one method is: After the UPF network element adds a sequence number to the message, the message is copied into two copies. Another method is that the UPF network element first copies the message into two copies, and then adds the same serial number respectively.
  • the UPF network element adds the same sequence number to the first downlink message and the second downlink message at the first protocol layer.
  • the UPF network element can identify which terminal the packet is sent to according to the stored session context and the UE IP in the IP packet. device.
  • the UPF network element may copy a data packet (that is, data in an IP packet) according to an instruction of the SMF network element to obtain a first downlink packet and a second downlink packet.
  • the UPF network element may add the same sequence number to the first downlink packet and the second downlink packet at the first protocol layer according to the second indication information.
  • the UPF network element when the second instruction information indicates that the UPF network element is the first downlink message and the second downlink message at the protocol layer (for example, the GTP-U layer) between the single RAN network element and the UPF network element.
  • the UPF network element is the protocol layer (for example, GTP-U layer) between the first downlink message and the second downlink message between the single RAN network element and the UPF network element.
  • the UPF network element adds the TEID of the first tunnel and the TEID of the second tunnel to the GTP-U header of the first downlink message and the second downlink message, respectively, as described in FIG. 9.
  • the second instruction information indicates that the UPF network element is at the protocol layer (for example, the NCP layer, the TFCP layer, or the HRP layer) between the terminal device and the UPF network element
  • the same is added to the first downlink message and the second downlink message.
  • the UPF network element adds the first downlink message and the second downlink message to the protocol layer (for example, NCP layer, TFCP layer, or HRP layer) between the terminal device and the UPF network element.
  • the UPF network element adds the TEID of the first tunnel and the TEID of the second tunnel to the GTP-U headers of the first downlink message and the second downlink message, respectively, as described in FIG. 7.
  • the UPF network element may, according to the second indication information, determine whether the first downlink packet and the second downlink packet are located between the terminal device and the UPF network element.
  • the protocol layer for example, NCP layer, TFCP layer, or HRP layer
  • the UPF network element adds the TEID of the first tunnel and the TEID of the second tunnel to the GTP-U headers of the first downlink message and the second downlink message, respectively, as described in FIG. 7.
  • the UPF network element may locate the first downlink packet and the second downlink packet between the RAN network element and the UPF network element according to the second indication information.
  • the protocol layer for example, GTP-U layer
  • the UPF network element adds the TEID of the first tunnel and the TEID of the second tunnel to the GTP-U header of the first downlink message and the second downlink message, respectively, as described in FIG. 9.
  • the UPF network element transmits the first downlink message and the second downlink message through the dual tunnel.
  • the UPF network element transmits the first downlink packet through the first tunnel in the dual tunnel, and transmits the second downlink packet through the second tunnel in the dual tunnel.
  • the UPF network element sends a first downlink packet to the RAN network element through the first tunnel in the dual tunnel, and sends a second downlink packet to the RAN network element through the second tunnel in the dual tunnel.
  • the method may further include steps S1006-S1007.
  • the UPF network element sends a first downlink message to the M-RAN network element through the first tunnel in the dual tunnel, and sends it to the S-RAN network element through the second tunnel in the dual tunnel.
  • the method may further include steps S1008-S1010.
  • the RAN network element receives the first downlink packet from the UPF network element through the first tunnel in the dual tunnel, and receives the second downlink packet from the UPF network element through the second tunnel in the dual tunnel.
  • the message and the second downlink message are duplicated.
  • the RAN network element may determine the first downlink packet and the second downlink packet according to the same sequence number of the first downlink packet and the second downlink packet at the first protocol layer.
  • the data packets encapsulated in the upper layer of the first protocol layer are the same.
  • the RAN network element may deduplicate the first downlink message and the second downlink message having the same sequence number at the GTP layer, and obtain a packet encapsulated in the first downlink message or the second downlink message. Data packets above the GTP layer.
  • the RAN network element sends the data packet in the first downlink message or the second downlink message to the terminal device.
  • the terminal device receives a data packet in the first downlink message or the second downlink message.
  • the data packet is the data packet encapsulated in the upper layer of the GTP layer of the first downlink message or the second downlink message.
  • the M-RAN network element receives the first downlink message from the UPF network element through the first tunnel in the dual tunnel, and then sends the first downlink message to the terminal device.
  • the S-RAN network element receives the second downlink message from the UPF network element through the second tunnel in the dual tunnel, and then sends the second downlink message to the terminal device.
  • the first downlink message and the second downlink message include a first protocol layer.
  • the terminal device receives the first uplink message and the second downlink message.
  • the terminal device deduplicates the first downlink message and the second downlink message.
  • the terminal device determines the data encapsulated in the upper layer of the first protocol layer in the first and second downlink packets according to the same sequence number of the first and second downlink packets at the first protocol layer. Packets are the same, and then the first downlink message and the second downlink message having the same sequence number at the NCP layer (or the TFCP layer or the HRP layer) are deduplicated, and the first downlink message or the second downlink message encapsulated in the first downlink message or the second A packet at the upper layer of the NCP layer (or TFCP layer or HRP layer) of the downlink message.
  • the RAN network element determines that the dual tunnel is associated with the single RAN network element or the dual RAN network element, and sends corresponding instruction information to the AMF network element, and the instruction information is finally sent to
  • the SMF network element triggers the UPF network element to add the same sequence number to the first packet and the second packet at the first protocol layer.
  • the UPF network element can determine how to add a sequence number to the downstream message.
  • 11 and 12 are two implementations of the message transmission scheme shown in FIG. 10.
  • the RAN network element in the single RAN network element scenario or the M-RAN network element in the dual RAN network element scenario transmits the first instruction information and the two different RANs to the SMF network element through different messages.
  • the RAN network element in the single RAN network element scenario or the M-RAN network element in the dual RAN network element scenario transmits the first instruction information and two different RANs to the SMF network element through the same message.
  • Side tunnel information. 11 and 12 will be described in combination with FIG. 6, FIG. 8, and FIG. 10.
  • the process includes the following steps:
  • the terminal device sends a NAS message to the AMF network element through the currently accessed RAN network element.
  • the AMF network element After selecting the SMF network element, the AMF network element sends the QFI, DNN, S-NSSAI and other information of the PDU session included in the received NAS message to the SMF network element.
  • the SMF network element determines that the session is a URLLC service session according to at least one of the QFI, DNN, and S-NSSAI information of the PDU session.
  • the SMF network element may determine that the session is a URLLC service session according to the S-NSSAI corresponding to the URLLC slice; in another possible implementation manner, the SMF network element may be based on the DNN and The URLLC service associates and determines that the session is a URLLC service session. In another possible implementation manner, the SMF network element may determine that the session is a URLLC service session according to the PDU session identifier corresponding to the QFI with high reliability requirements. Wait, the embodiments of the present application are not limited.
  • the SMF network element sends the indication information indicating that the session is a session of the URLLC service to the RAN network element through the AMF network element.
  • the indication information indicating that the session is a URLLC service session may be at least one of QFI, DNN, and S-NSSAI information of a PDU session; or a flag bit or an indicator that separately indicates that the session is a URLLC service.
  • the indication information indicating that the session is a URLLC service session may be included in the N2 session management information (N2 SM information).
  • the SMF network element sends the N2 session management information to the AMF network element by calling the service operation of the AMF network element (Namf_Communication_N1N2MessageTransfer ) To send.
  • the AMF network element After receiving the N2 session management information, the AMF network element sends the N2PDU session request (N2PDU session request) message to the RAN network element.
  • N2PDU session request N2PDU session request
  • the RAN network element determines whether the dual tunnel is associated with a single RAN network element or the dual RAN network element according to the instruction information.
  • the RAN network element may determine that the session is a session of the URLLC service according to the instruction information involved in the foregoing steps S1102 to S1103. Further, in order to provide high-reliability transmission for the session, the RAN network element may also determine whether the dual tunnel is associated with the single RAN network element or is associated with the dual RAN network element according to the manner mentioned in FIG. 6 or FIG. Don't repeat.
  • the RAN network element sends the first instruction information to the SMF network element through the AMF network element.
  • the first indication information may be included in N2 session management information (N2 SM information).
  • N2 SM information N2 session management information
  • the N2 session management information may be included in the N2PDU session request confirmation. (N2 PDU session request ACK) message.
  • N2 PDU session request ACK N2 PDU session request ACK
  • the AMF network element sends the first indication information to the SMF network element
  • the N2 session management information may be sent by calling a service operation of the SMF network element (Nsmf_PDUSession_UpdateSMContext request). Accordingly, the SMF network element receives the first indication information.
  • the SMF network element may send a response message to the AMF network element, and the response message is used to respond to the PDU session update session management context request message.
  • the SMF network element may send a PDU session update SM context response (Nsmf_PDUSession_UpdateSMContext response) message to the AMF network element.
  • the SMF network element sends N1 session management information (N1, SM info) and N2 session management information (N2, SM info) to the RAN network element through the AMF network element.
  • N1, SM info N1 session management information
  • N2 session management information N2, SM info
  • the N2 session management information includes two UPF tunnel information allocated by the SMF network element, namely, tunnel-1 and tunnel-2.
  • the N1 session management information and N2 session management information may be sent by calling a service operation of the AMF network element (Namf_Communication_N1N2MessageTransfer).
  • the N1 session management information may include a session accept message sent to the terminal device;
  • the N2 session management information may include user plane tunnel information, a PDU session identifier, at least one QFI (QFI (s)), at least one QoS profile (QoS profile (s)), session aggregation maximum bit rate (session-AMBR), PDU session type (PDU session type), and so on.
  • the N1 session management information and N2 session management information may be included in an N2PDU session request (N2PDU session request) message.
  • the RAN network element receives N1 session management information and N2 session management information.
  • the RAN network element may send a response message to the AMF network element, and the response message is used to respond to the N2 PDU session request message.
  • the response message may be an N2PDU session response (N2PDU session response) message.
  • the SMF network element may only include N2 session management information for triggering the RAN network element to initiate high-reliability transmission for the session in step S1103.
  • N2 session management information and N1 session management information in step S1103, and the N2 session management information includes instruction information indicating that the session is a URLLC service session, and core network dual tunnel information (CN tunnel information- 1 and CN (tunnel info-2), quality of service (QoS) parameters, session types and other parameters.
  • Step S1106 may be omitted.
  • the RAN network element initiates a wireless connection establishment process with the terminal device.
  • the RAN network element may send N1 session management information to the terminal device.
  • the N1 session management information may be included in a PDU session establishment acceptance message, and the PDU session establishment acceptance message may be included in the AN specific resource establishment. (AN specific resource setup) message.
  • the RAN network element obtains the tunnel information of the dual tunnel.
  • the RAN network element acts as an M-RAN network element and performs an S-RAN network element discovery process (refer to the description of steps S606 and S607 in FIG. 6).
  • the M-RAN network element allocates the tunnel information of the first tunnel in the dual tunnel
  • the S-RAN network element allocates the tunnel information of the second tunnel in the dual tunnel.
  • the RAN network element allocates the tunnel information of the first tunnel and the tunnel information of the second tunnel in the dual tunnel.
  • the tunnel information of different first tunnels and the tunnel information of the second tunnel may be different TEIDs.
  • the RAN network element sends the dual-tunnel tunnel information to the SMF network element through the AMF network element.
  • the RAN network element may be an M-RAN network element, that is, the M-RAN network element sends the tunnel information of the first tunnel to the AMF network element and The tunnel information of the second tunnel, and the tunnel information of the first tunnel and the tunnel information of the second tunnel may be contained in one message or in different messages.
  • the RAN network element may include an M-RAN network element and an S-RAN network element, that is, the M-RAN network element sends the first to the AMF network element.
  • the S-RAN network element sends the tunnel information of the second tunnel to the AMF network element.
  • the dual-tunnel tunnel information (the tunnel information of the first tunnel and the tunnel information of the second tunnel) may be included in the N2 session management information (N2SM info), N2 session management information may be included in an N2 session response (N2 PDU, session, response) message.
  • N2SM info N2 session management information
  • N2 PDU N2 session response
  • the dual-tunnel tunnel information may be included in the N2 session management information (N2 SM information)
  • the N2 session management information may be invoked as a service operation of the SMF network element ( Nsmf_PDU (session, updateSM, context, request).
  • the SMF network element may send a response message to the AMF network element, and the response message is used to respond to the PDU session update session management context request.
  • the SMF network element may send a PDU session update SM context response (Nsmf_PDU session update SM context response) message to the AMF network element.
  • the SMF network element sends the dual-tunnel tunnel information and the forwarding rule to the UPF network element according to the first instruction information.
  • the tunnel information and forwarding rules of the dual tunnel may be included in an N4 session modification request (N4 session modification request) message.
  • the forwarding rule includes second instruction information determined by the SMF network element according to the first instruction information. For details, refer to the foregoing embodiment of the present application, and is not repeated here.
  • the method for transmitting a message may include the following steps:
  • the terminal device sends a NAS message to the AMF network element through the currently accessed RAN network element.
  • the AMF network element After selecting the SMF network element, the AMF network element sends the QFI, DNN, S-NSSAI and other information of the PDU session included in the received NAS message to the SMF network element.
  • the SMF network element determines that the session is a URLLC service session according to at least one of the QFI, DNN, and S-NSSAI information of the PDU session.
  • the SMF network element sends the indication information indicating that the session is a URLLC service session to the RAN network element through the AMF network element.
  • Steps S1202 and S1203 may refer to the description of steps S1102 and S1103 in FIG. 11, and are not repeated here.
  • the RAN network element determines whether the dual tunnel is associated with the single RAN network element or the dual RAN network element according to the indication information, and generates first indication information according to the determination result to obtain tunnel information of the dual tunnel.
  • the RAN network element determines whether the dual tunnel is associated with a single RAN network element or with a dual RAN network element is referred to the description in the previous embodiment of this application, and is not repeated here.
  • step S1108 For how the RAN network element obtains the tunnel information of the dual tunnel, refer to the description of step S1108 in FIG. 6, FIG. 8, or FIG. 11, which is not repeated here.
  • the RAN network element sends the first instruction information and the dual tunnel tunnel information to the SMF network element through the AMF network element.
  • the first indication information and the dual-tunnel tunnel information may be included in N2 session management information (N2, SM Info).
  • N2 session management information N2 session management information
  • the AMF network element sends the first indication information and the dual-tunnel tunnel information to the SMF network element
  • the N2 session management information may be sent by calling a service operation of the SMF network element (Nsmf_PDUSession_UpdateSMContext request).
  • the SMF network element may send a response message to the AMF network element, and the response message is used to respond to the PDU session update session management context request message.
  • the SMF network element may send a PDU session update SM context response (Nsmf_PDUSession_UpdateSMContext response) message to the AMF network element.
  • the SMF network element receives the first indication information and the tunnel information of the dual tunnel.
  • the SMF network element sends the second instruction information and the dual-tunnel tunnel information to the UPF network element according to the first instruction information.
  • the second indication information may be included in a forwarding rule.
  • the forwarding rule and the tunnel information of the dual tunnel may be included in an N4 session modification request (N4 session modification request) message.
  • the UPF network element receives the second indication information and the tunnel information of the dual tunnel.
  • the SMF network element sends the N1 session management information (N1 SM information) and the N2 session management information (N2 SM information) to the RAN network element through the AMF network element.
  • N1 SM information N1 session management information
  • N2 SM information N2 session management information
  • This step is similar to step S1106, and is not repeated here.
  • S1208 The RAN network element initiates a wireless connection establishment process with the terminal device.
  • This step is similar to step S1107, and is not repeated here.
  • the above message transmission method is also applicable to the transmission of uplink messages.
  • the RAN network element can copy the data packet and assign the same sequence number to the two data packets at the first protocol layer of the encapsulated data packet, as shown in FIG. 13
  • the steps S1301-S1303 and S1306 are shown.
  • the terminal device can copy the data packet and assign the same sequence number to the two data packets at the first protocol layer of the encapsulated data packet, as shown in steps S1304-S1306 in FIG. 13. E.g:
  • the terminal device sends a first uplink packet to the single RAN network element.
  • the single-RAN network element receives a first uplink packet from a terminal device.
  • the first uplink message may include a protocol layer between the terminal device and the UPF network element.
  • the protocol layer between the terminal device and the UPF network element may be an NCP layer.
  • the RAN network element determines that the dual tunnel is associated with a single RAN network element, copies the first uplink packet to obtain a second uplink packet, and adds the same sequence number to the first protocol packet and the second uplink packet at the first protocol layer .
  • the RAN network element is the foregoing single RAN network element.
  • the RAN network element can learn that the current dual tunnel is associated with the single RAN network element after receiving the first uplink packet, and Duplicate the first uplink message to obtain a second uplink message, and add the same sequence number at the first protocol layer for the first uplink message and the second uplink message.
  • the first protocol layer may be a GTP layer.
  • the RAN network element may copy the data packet at the GTP layer, and add the same sequence number at the GTP layer for the first uplink packet and the second uplink packet.
  • the RAN network element may also add a GTP header to the first uplink packet according to the TEID of the first tunnel; and add a GTP header to the second uplink packet according to the TEID of the second tunnel.
  • the RAN network element sends the first uplink packet and the second uplink packet to the UPF network element through the dual tunnel.
  • the RAN network element sends the first uplink packet to the UPF network element through the first tunnel in the dual tunnel, and sends the second uplink packet to the UPF network element through the second tunnel in the dual tunnel.
  • the UPF network element receives the first uplink packet through the first tunnel in the dual tunnel, and receives the second uplink packet through the second tunnel in the dual tunnel.
  • the UPF network element receives the first uplink packet and the second uplink packet through the dual tunnel.
  • the terminal device In a scenario where a dual tunnel is associated with a dual RAN network element, the terminal device generates a first uplink packet and a second uplink packet with the same sequence number at the first protocol layer, and sends the first uplink packet to the M-RAN network element. Message, sending a second uplink message to the S-RAN network element.
  • the M-RAN network element receives the first uplink message from the terminal device, and the S-RAN network element receives the second uplink message from the terminal device.
  • the first uplink packet and the second uplink packet have the same sequence number in the first protocol layer, and the data packets encapsulated in the upper layer of the first protocol layer in the first uplink packet and the second uplink packet are the same.
  • the first protocol layer may be an NCP layer, a TFCP layer, or an HRP layer.
  • the M-RAN network element determines that the dual tunnel is associated with the dual RAN network element, and sends the first uplink packet to the UPF network element through the first tunnel in the dual tunnel; the S-RAN network element determines that the dual tunnel is associated with the dual RAN network element , Sending a second uplink packet to the UPF network element through a second tunnel in the dual tunnel.
  • the M-RAN network element can learn the current dual tunnel and dual RAN network after receiving the first uplink packet. Meta-association, so that there is no need to do the processing in step S1302, the first uplink packet can be sequentially encapsulated according to the L1, L2, UDP / IP layer and GTP-U layer through the double tunnel according to the protocol stack shown in FIG. The first tunnel in the network sends a first uplink packet to the UPF network element.
  • the S-RAN network element is the second RAN network element in the dual RAN network element, the S-RAN network element can learn that the current dual tunnel is associated with the dual RAN network element after receiving the second uplink packet, and there is no need to do
  • the processing in step S1302 may be performed in accordance with the protocol stack shown in FIG. 5 to sequentially encapsulate the first uplink packet according to the L1 layer, L2 layer, UDP / IP layer, and GTP-U layer through the second tunnel in the dual tunnel.
  • the UPF network element sends a second uplink packet.
  • the UPF network element receives the first uplink packet through the first tunnel in the dual tunnel, and receives the second uplink packet through the second tunnel in the dual tunnel.
  • the UPF network element After the UPF network element receives the first uplink packet and the second uplink packet through the dual tunnel, it uses the same sequence number at the first protocol layer according to the first uplink packet and the second uplink packet. It is determined that the data packets encapsulated in the upper layer of the first protocol layer in the first uplink packet and the second uplink packet are the same.
  • the UPF network element may obtain a data packet in the first uplink packet or the second uplink packet.
  • step S1306 reference may be made to the description of step S1005 in FIG. 10, and details are not described herein again.
  • the terminal equipment may switch from a highly reliable scenario with dual RAN network elements associated with dual tunnels to a highly reliable single RAN network element. Scenes. In this way, the RAN network element of the current serving terminal device needs to re-determine the association between the dual tunnel and the single RAN network element.
  • the dual tunnel on the source side is associated with the dual RAN network element (including the source M-RAN network element and the source S-RAN network element).
  • the terminal device switches from the dual RAN network element to the target RAN network element due to movement and other reasons.
  • the source M-RAN network element adopts Xn interface-based handover, and the source M-RAN network element and the target RAN network element establish a forwarding path.
  • the source S-RAN network element establishes a forwarding path with the target RAN network element.
  • this embodiment of the present application provides another method for packet transmission.
  • the method includes:
  • the M-RAN network element in the dual RAN network element selects the target RAN network element, and initiates the terminal device to switch from the source side to the target side.
  • a terminal device establishes a dual tunnel connection with the core network through a highly reliable scenario of dual RAN network elements on the source side. Due to the mobility of the terminal device, the terminal device moves from the service area of the dual RAN network element to the target area, resulting in dual The M-RAN network element in the RAN network element needs to select a suitable target RAN network element on the target side to continue to provide highly reliable support for the terminal device, so that the terminal device switches from the dual tunnel on the source side to the dual tunnel on the target side.
  • the target RAN network element sends the first indication information and the dual-tunnel tunnel information to the SMF network element through the AMF network element.
  • the first indication information indicates that the dual tunnel is associated with a single RAN network element.
  • the first indication information and the dual tunnel information may be included in the N2SM information.
  • the N2SM information may be contained in an N2 path switch request (N2 path switch request) message.
  • N2 path switch request N2 path switch request
  • the N2 session management information may be sent by calling a service operation of the SMF network element (Nsmf_PDUSession_UpdateSMContext request).
  • This step is similar to step S1205, and is not repeated here.
  • the SMF network element may send a response message to the AMF network element, and accordingly, the AMF network element may receive the response message.
  • the SMF network element sends the second instruction information to the UPF network element according to the first instruction information.
  • the AMF network element sends a handover confirmation message to the target RAN network element.
  • the handover confirmation message may be an N2 path switch request confirmation (N2 path switch request ACK) message.
  • N2 path switch request ACK N2 path switch request confirmation
  • the AMF network element may send a handover confirmation message to the RAN network element. And there is no execution order of step S1504 and step S1503.
  • the target RAN network element receives the handover confirmation message and learns that the handover procedure is successful.
  • the target RAN network element sends a resource release request message to the source M-RAN network element to trigger the source M-RAN network element to release the context, and the source M-RAN network element triggers the source S-RAN network element to release the context.
  • S1506 The terminal device initiates a registration update process.
  • the terminal device may be switched from a single RAN network element to a dual RAN network element.
  • the dual tunnel associated with the single RAN network element is switched to the dual tunnel associated with the dual RAN network element.
  • the dual tunnel on the source side is associated with a single RAN network element.
  • the terminal device switches from the source RAN network element to the target M-RAN network element due to movement, etc., where the source RAN network element adopts Xn-based handover, and the source RAN network element establishes a forwarding path with the target M-RAN network element, and The target M-RAN network element performs a selection process of the target S-RAN network element.
  • this embodiment of the present application provides another method for packet transmission.
  • the method includes:
  • a single RAN network element selects a target M-RAN network element, and initiates a handover of the terminal device from the source side to the target side.
  • the terminal device establishes a dual tunnel connection with the core network through a highly reliable scenario of a single RAN network element on the source side. Due to the mobility of the terminal device, the terminal device moves from the service area of the single RAN network element to the target area, resulting in A single RAN network needs to select a suitable target RAN network element on the target side to continue to provide highly reliable support for terminal equipment.
  • the target RAN network element is an M-RAN network element in a dual base station, and a target S-RAN network element is selected by the target M-RAN network element, so that the terminal device switches from the dual tunnel on the source side to the dual tunnel on the target side.
  • the target M-RAN network element sends the first indication information and the dual-tunnel tunnel information to the SMF network element through the AMF network element.
  • the first indication information indicates that the dual tunnel is associated with the dual RAN network element.
  • step S1502 This step is similar to step S1502 and will not be repeated here.
  • the SMF network element sends the second instruction information to the UPF network element according to the first instruction information.
  • This step is similar to step S1503, and is not repeated here.
  • the AMF network element sends a handover confirmation message to the target M-RAN network element.
  • the target M-RAN network element receives the handover confirmation message and learns that the handover procedure is successful.
  • the target M-RAN network element sends a resource release request message to the source RAN network element to trigger the source RAN network element to release the context.
  • S1706 The terminal device initiates a registration update process.
  • an embodiment of the present application discloses a message transmission method. As shown in FIG. 18A, the method includes:
  • the SMF network element receives the first instruction information.
  • the first indication information is used to indicate that the dual tunnel is associated with a single-access network element or is associated with a dual-access network element.
  • the SMF network element sends the second instruction information to the UPF network element according to the first instruction information.
  • the second indication information is used to trigger the UPF network element to add the same sequence number to the first packet and the second packet at the first protocol layer; wherein the first packet and the second packet are packets transmitted through the dual tunnel. .
  • the second indication information may be the first indication information.
  • the SMF network element may determine the second instruction information according to the first instruction information.
  • the SMF network element sending the second instruction information to the UPF network element may include: the SMF network element sending the forwarding rule to the UPF network element, and the forwarding rule may include the second instruction information.
  • the first protocol layer is a protocol layer located between the single RAN network element and the UPF network element.
  • the first protocol layer is a protocol layer located between the terminal device and the UPF network element.
  • an SMF network element receives indication information indicating that a dual tunnel is associated with a single access network element or an association with a dual access network element, and accordingly triggers a UPF network element to be in the
  • the first and second packets transmitted in the dual tunnel are added with the same sequence number at the first protocol layer.
  • the UPF network element can determine how to add a sequence number to the downstream message.
  • the method may further include S1803:
  • the SMF network element instructs the UPF network element to copy the data packet to obtain the first packet and the second packet.
  • an embodiment of the present application discloses a message transmission method. As shown in FIG. 18B, the method includes:
  • the UPF network element receives the instruction information from the SMF network element.
  • the indication information is used to trigger the UPF network element to add the same sequence number to the first packet and the second packet at the first protocol layer.
  • the indication information is used to indicate that the dual tunnel is associated with a single RAN network element or is associated with a dual RAN network element.
  • the receiving of the instruction information by the UPF network element from the SMF network element includes: the UPF network element receives the forwarding rule from the SMF network element, and the forwarding rule includes the instruction information.
  • the UPF network element adds the same sequence number to the first packet and the second packet at the first protocol layer according to the instruction information.
  • the UPF network element when the indication information indicates that the dual tunnel is associated with a single RAN network element, the UPF network element adds the same packet to the first packet and the second packet at the first protocol layer according to the indication information.
  • the sequence number includes: According to the instruction information, the UPF network element adds the same sequence number to the protocol layer between the RAN network element and the UPF network element for the first packet and the second packet.
  • the UPF network element when the indication information indicates that the dual tunnel is associated with the dual RAN network element, the UPF network element adds the same sequence number to the first packet and the second packet at the first protocol layer according to the indication information. Including, according to the instruction information, the UPF network element adds the same sequence number to the first packet and the second packet at the protocol layer between the terminal device and the UPF network element.
  • the UPF network element transmits the first message and the second message through the dual tunnel.
  • the message transmission method disclosed in the embodiment of the present application can be a first message and a second message by the UPF network element receiving the indication of the SMF network element, or associating with the dual RAN network element or the single RAN network element according to the dual tunnel.
  • the same sequence number is added to the first protocol layer, and the first message and the second message are transmitted through the dual tunnel.
  • the UPF network element can determine how to add a sequence number to the downstream message.
  • the method may further include: the UPF network element copies the data packet according to an instruction of the SMF network element to obtain a first message and a second message.
  • an embodiment of the present application discloses a message transmission method. As shown in FIG. 18C, the method includes:
  • the RAN network element determines whether the dual tunnel is associated with a single RAN network element or is associated with a dual RAN network element.
  • the RAN network element sends the first indication information to the AMF network element.
  • the first indication information is used to indicate that the dual tunnel is associated with a single RAN network element or is associated with a dual RAN network element.
  • the dual tunnel is associated with a single RAN network element, and the single RAN network element is the foregoing RAN network element.
  • the method may further include S1823, S1824, and S1825:
  • the RAN network element receives the first downlink message from the UPF network element through the first tunnel in the dual tunnel, and receives the second downlink message from the UPF network element through the second tunnel in the dual tunnel.
  • the first downlink message and the second downlink message have the same sequence number at the first protocol layer.
  • the RAN network element determines, based on the same sequence number of the first downlink message and the second downlink message at the first protocol layer, that the first downlink message and the second downlink message are encapsulated in the upper layer of the first protocol layer.
  • the packets are the same.
  • the first protocol layer is a protocol layer located between the RAN network element and the UPF network element.
  • the RAN network element sends the data packet in the first downlink message or the second downlink message to the terminal device.
  • the RAN network element determines whether the dual tunnel is associated with a single RAN network element or the dual RAN network element, and sends corresponding instruction information to the SMF network element through the AMF network, and triggers a UPF.
  • the network element adds the same sequence number to the first packet and the second packet at the first protocol layer.
  • the UPF network element can determine how to add a sequence number to the downstream message.
  • the terminal equipment, RAN, and UPF in FIG. 19 may be the terminal equipment 101, (R) AN network element 102, and UPF network element 105 in FIG.
  • the protocol layer between the terminal device and the UPF network element includes the NCP layer and the PDU layer
  • the protocol layer between the terminal device and the RAN network element includes the L1 layer, the MAC layer, the RLC layer, the PDCP layer, and the NCP layer
  • the protocol layers between the RAN network element and the UPF network element include L1 layer, L2 layer, UDP / IP layer, GTP-U layer and NCP layer.
  • the difference between the protocol stack shown in FIG. 19 and the protocol stack shown in FIG. 5 is that the NCP layer is added to the GTP layer in the RAN network element, that is, the RAN network element also supports NCP Floor. Therefore, regardless of whether the dual tunnel is associated with a single RAN network element or the dual RAN network element, the UPF network element can perform message duplication / deduplication at the NCP layer. Therefore, the UPF network element may not need to know that the dual tunnel is associated with a single RAN network element or is associated with a dual RAN network element.
  • the UPF network element When transmitting a downlink message, the UPF network element generates two downlink messages with the same sequence number at the NCP layer and transmits them to the RAN network element. If the dual tunnel is associated with the dual RAN network element, the dual RAN network element sends the downlink packets received at the NCP layer with the same sequence number to the terminal equipment respectively, and the terminal equipment deduplicates the same message. If the dual tunnel is associated with a single RAN network element, and after a single RAN network element receives two packets with the same sequence number at the NCP layer, since the RAN network element supports the NCP layer, it can be determined that the downlink packet is a duplicate packet. , So the same message is deduplicated.
  • the NCP layer in the protocol stack can also be replaced with a TFCP layer or an HRP layer.
  • the following takes the NCP layer as an example to introduce the corresponding message transmission scheme.
  • the message transmission method includes the following steps:
  • the UPF network element adds the same sequence number to the first downlink message and the second downlink message at the first protocol layer.
  • the first message and the second message are messages transmitted through the dual tunnel.
  • the first protocol layer is a protocol layer located between the terminal device / RAN / UPF (for example, the NCP layer in FIG. 19).
  • the UPF network element can copy the data packet at the NCP layer, add the same sequence number at the NCP layer for the first downstream packet and the second downstream packet, and add a GTP header to the first upstream packet according to the TEID of the first tunnel.
  • the TEID of the second tunnel adds a GTP header to the second uplink packet.
  • the process of adding the same serial number is described in the previous embodiment of the present application, and is not repeated here.
  • the UPF network element transmits the first downlink message and the second downlink message through the dual tunnel.
  • a UPF network element transmits a first downlink message through a first tunnel in a dual tunnel, and transmits a second downlink message through a second tunnel in a dual tunnel.
  • the method may further include steps S2006-S2010.
  • steps S2006-S2010 reference may be made to the description of steps S1008-S1010 in FIG. 10, and details are not described herein again.
  • the method may further include steps S2003-S2005.
  • the RAN network element receives the first downlink message from the UPF network element through the first tunnel in the dual tunnel, and receives the second downlink message from the UPF network element through the second tunnel in the dual tunnel.
  • the RAN network element determines the dual The tunnel is associated with a single RAN network element.
  • the single RAN network element is the RAN network element.
  • the RAN network element deduplicates the first downlink message and the second downlink message having the same sequence number at the first protocol layer to obtain a data packet in the first downlink message or the second downlink message.
  • the RAN network element may determine the first downlink packet and the second downlink packet according to the same sequence number of the first downlink packet and the second downlink packet at the first protocol layer.
  • the data packets encapsulated in the upper layer of the first protocol layer are the same.
  • the RAN network element may deduplicate the first downlink message and the second downlink message having the same sequence number at the NCP layer (or the TFCP layer or the HRP layer), and obtain the first downlink message and the second downlink message encapsulated in the first downlink message.
  • the RAN network element sends a data packet in the first downlink message or the second downlink message to the terminal device.
  • the data packet is the data packet encapsulated in the upper layer of the NCP layer (or, the TFCP layer or the HRP layer) of the first downlink message or the second downlink message.
  • the RAN network element may determine the first downlink packet and the second downlink packet according to the same sequence number of the first downlink packet and the second downlink packet at the first protocol layer.
  • the data packets encapsulated in the upper layer of the first protocol layer are the same.
  • the RAN network element may remove the encapsulated GTP header, and the first RAN network element having the same sequence number at the NCP layer (or the TFCP layer or the HRP layer) may be removed.
  • the downlink packet and the second downlink packet are deduplicated, and a data packet encapsulated in the upper layer of the NCP layer (or the TFCP layer or the HRP layer) of the first downlink packet or the second downlink packet is obtained.
  • the first downlink packet or the second downlink packet sent by the RAN network element to the terminal device may include a first protocol layer.
  • the first protocol layer is an NCP layer and a TFCP layer.
  • the first downlink message or the second downlink message may include the NCP layer, the TFCP layer, or the HRP layer.
  • the inclusion of the first protocol layer can reduce the logical complexity of the terminal device processing downlink data packets when the terminal device switches from a scenario where the dual tunnel is associated with a single base station to a scenario where the dual tunnel is associated with a dual base station.
  • the first downlink packet or the second downlink packet sent by the RAN network element to the terminal device may not include the first protocol layer. Not including the first protocol layer can reduce the overhead of air interface signaling. This is because in a scenario where a dual tunnel is associated with a single RAN network element, the RAN network element has determined the first downlink packet and the second downlink packet according to the same sequence number at the first protocol layer. The data packets encapsulated in the upper layer of the first protocol layer in the second downlink message are the same. Further, the terminal device no longer needs to determine whether the downlink messages are the same according to the sequence number of the first protocol layer. Therefore, the RAN network element sends the same to the terminal device.
  • the first downlink message or the second downlink message may not include the first protocol layer.
  • the terminal device receives a data packet in the first downlink message or the second downlink message.
  • the first downlink message or the second downlink message received by the terminal device from the RAN network element is a message after the RAN network element has been deduplicated, and the terminal device does not need to perform the deduplication action.
  • a protocol layer between a terminal device and a UPF network element is added to a RAN network element, so that whether a dual tunnel is associated with a single RAN network element or a dual RAN network element, the UPF Network elements can copy / de-duplicate packets at this protocol layer, and add the same sequence number at this protocol layer.
  • the UPF network element can determine how to add a sequence number to the downstream message.
  • the above message transmission method is also applicable to the transmission of uplink messages.
  • the RAN network element can copy the data packet and assign the same sequence number to the two data packets at the first protocol layer of the encapsulated data packet, as shown in FIG. 21 Steps S2101-S2103 and S2106.
  • the terminal device can copy the data packet and assign the same sequence number to the two data packets at the first protocol layer of the encapsulated data packet. As shown in steps S2104-S2106 in FIG. For steps S2104-S2106, reference may be made to the description of steps S1304-S1306 in FIG. 13, and details are not described herein again. E.g:
  • the terminal device sends a first uplink packet to the single RAN network element.
  • the first uplink packet may include a protocol layer between the terminal device, the RAN network element, and the UPF network element, that is, the first protocol layer is included. Regardless of whether the dual tunnel is associated with a single RAN network element or the dual RAN network element, the first uplink packet can include the first protocol layer, which can reduce the switching of the terminal device from the scenario where the dual tunnel is associated with the single RAN network element to the dual tunnel. In a scenario associated with dual RAN network elements, the logical complexity of the processing of the uplink data message by the terminal device. In another possible implementation manner, the first uplink packet may not include the protocol layer between the terminal device, the RAN network element, and the UPF network element, that is, it does not include the first protocol layer. Not including the first protocol layer can reduce the overhead of air interface signaling.
  • the single RAN network element receives the first uplink message from the terminal device.
  • the RAN network element determines that the dual tunnel is associated with a single RAN network element.
  • the RAN network element copies the first uplink packet to obtain the second Uplink message; or, when the first uplink message does not include the protocol layer between the terminal device, the RAN network element and the UPF network element, the RAN network element adds the first protocol layer and copies the first uplink message to obtain the second uplink Message.
  • the RAN network element is the foregoing single RAN network element.
  • the RAN network element can learn that the current dual tunnel is associated with the single RAN network element after receiving the first uplink packet.
  • the protocol layer and the first protocol layer between the terminal device and the UPF network element may be an NCP layer, a TFCP layer, or an HRP layer.
  • the RAN network element may copy the data packet at the NCP layer, the TFCP layer or the HRP layer, and the first uplink packet and the second uplink packet are NCP layer, TFCP layer or HRP layer add the same serial number.
  • the RAN network element may also add a GTP header to the first uplink packet according to the TEID of the first tunnel; and add a GTP header to the second uplink packet according to the TEID of the second tunnel.
  • the RAN network element when the first uplink packet does not include the NCP layer, the TFCP layer, or the HRP layer, the RAN network element adds the NCP layer, the TFCP layer, or the HRP layer to the first uplink packet, and duplicates the NCP layer, the TFCP layer, or the HRP layer Data packet, and add the same sequence number at the NCP layer, TFCP layer, or HRP layer for the first uplink message and the second uplink message.
  • the RAN network element may also add a GTP header to the first uplink packet according to the TEID of the first tunnel; and add a GTP header to the second uplink packet according to the TEID of the second tunnel.
  • the single RAN network element adds a first protocol layer to the first uplink packet. And duplicate the first uplink message to obtain a second uplink message. Therefore, when the first uplink message does not include the first protocol layer, it will not affect the RAN network element to generate the first uplink message and the second uplink message with the same sequence number at the first protocol layer, so the air interface signaling can be reduced. s expenses.
  • the RAN network element sends the first uplink packet and the second uplink packet to the UPF network element through the dual tunnel.
  • This step is similar to S1303 and will not be repeated here.
  • the RAN network element may not send the first indication information to the SMF network element. .
  • step S1822 in FIG. 18C can be omitted. In other words, step S1822 in FIG. 18C may be an optional step.
  • a protocol layer between a terminal device and a UPF network element is added to a RAN network element, so that whether a dual tunnel is associated with a single RAN network element or a dual RAN network element, the UPF Network elements can copy / deduplicate packets at this protocol layer.
  • the UPF network element can determine to receive the uplink message.
  • An embodiment of the present application further provides a communication device, which may be used to perform a function of a RAN network element in the foregoing method.
  • the communication device may be divided into functional modules according to the foregoing method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in this application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 22 shows a possible structural diagram of a communication device involved in the foregoing embodiment.
  • the communication device 22 may include a receiving unit 2211, a determining unit 2212, and a sending unit. Unit 2213, copy unit 2214.
  • the above units are used to support the communication device to execute the related method of the RAN network element in any of the drawings of FIGS. 6, 8, 10-13, 15, 17-18C, 20, and 21.
  • the communication device provided in this application is used to execute the corresponding method provided above. Therefore, for its corresponding features and achievable beneficial effects, reference may be made to the beneficial effects in the corresponding methods provided above. To repeat. It should be noted that the above units are optional.
  • the communication device 22 may include a determining unit 2212, a sending unit 2213, and optionally, the communication device 22 may further include a receiving unit 2211.
  • the communication device 22 may include a receiving unit 2211, a determining unit 2212, and a sending unit 2213.
  • the communication device 22 may further include a copying unit 2214.
  • the receiving unit 2211 is configured to support the communication device 22 to execute the processes S601, S604, S605, S606, S607, S609, S611 in FIG. 6, or the processes S801, S804, S805 in FIG. 8, or the processes in FIG. 10
  • the determination unit 2212 is used by The supporting communication device 22 executes process S1001 in FIG. 10, or process S1104 in FIG. 11, or process S1204 in FIG. 12, or process S1302 in FIG. 13, or process S1821, S1824 in FIG. 18C, or FIG. 20
  • the process S2003 in the process, or the process S2102 in FIG. 21; the sending unit 2213 is used to support the communication device 22 to perform the processes S601, S605, S606, S607, S608, S610, S611, S612, or the process in FIG.
  • the determining unit 2212 is configured to determine whether the dual tunnel is associated with a single RAN network element or the dual RAN network element; and the sending unit 2213 is configured to send first indication information to the AMF network element. The information is used to indicate that the dual tunnel determined by the determining unit 2212 is associated with a single-access network element or associated with a dual-access network element.
  • the determining unit 2212 is configured to determine whether the dual tunnel is associated with a single RAN network element or the dual RAN network element; and the sending unit 2213 is configured to send first indication information to the AMF network element. The information is used to indicate that the dual tunnel determined by the determining unit 2212 is associated with a single-access network element or associated with a dual-access network element.
  • the dual tunnel is associated with a single RAN network element, and the single RAN network element is the communication device 22; the communication device 22 may further include a receiving unit 2211; the receiving unit 2211 is configured to pass through the first tunnel in the dual tunnel.
  • a tunnel receives a first downlink message from a UPF network element, and receives a second downlink message from a UPF network element through a second tunnel in the dual tunnel.
  • the first downlink message and the second downlink message are in the first
  • the protocol layer has the same sequence number; the sending unit 2213 is further configured to send to the terminal device a data packet in the first downlink message or the second downlink message received by the receiving unit 2211.
  • the determining unit 2212 is configured to determine that the dual tunnel is associated with a single RAN network element, and the single RAN network element is the communication device 22; the receiving unit 2211 is configured to determine whether the dual tunnel is determined by the determining unit 2212.
  • the first tunnel receives the first downlink packet from the UPF network element, and receives the second downlink packet from the UPF network element through the second tunnel in the dual tunnel, where the first downlink packet and the second downlink packet are in the first A protocol layer has the same sequence number;
  • a sending unit 2213 is configured to send a data packet in the first downlink message or the second downlink message to the terminal device.
  • the determining unit 2212 is further configured to determine the first downlink packet and the second downlink packet according to the same sequence number of the first downlink packet and the second downlink packet at the first protocol layer.
  • the data packets encapsulated in the upper layer of the first protocol layer are the same.
  • the first protocol layer is a protocol layer located between the RAN network element and the UPF network element.
  • the first downlink message or the second downlink message sent by the sending unit 2213 to the terminal device includes a first protocol layer.
  • the communication device 22 further includes a copying unit 2214: a receiving unit 2211, further configured to receive the first uplink packet from the terminal device; and a copying unit 2214, configured to receive the first uplink packet received by the receiving unit 2211.
  • the message includes the protocol layer between the terminal device and the UPF network element, and the first uplink message is copied to obtain the second uplink message; or when the first uplink message does not include the protocol between the terminal device and the UPF network element Layer, adding a first protocol layer, and copying the first uplink message to obtain a second uplink message; the sending unit 2213 is further configured to send the first uplink message copied by the copy unit 2214 and the second uplink message to the UPF network element through a dual tunnel Upstream message.
  • a determining unit 2212 is configured to determine that the dual tunnel is associated with a single RAN network element, and the single RAN network element is a communication device 22; a receiving unit 2211 is configured to receive a first uplink packet from a terminal device; A copying unit 2214, configured to copy the first uplink packet to obtain a second uplink packet when the first uplink packet received by the receiving unit 2211 includes a protocol layer between the terminal device and the UPF network element; or The message does not include the protocol layer between the terminal device and the UPF network element. The first protocol layer is added, and the first uplink message is copied to obtain the second uplink message.
  • the sending unit 2213 is configured to determine the The tunnel sends the first uplink packet and the second uplink packet copied by the copying unit 2214 to the UPF network element.
  • FIG. 23 is another schematic structural diagram of a communication device involved in the foregoing embodiment.
  • the communication device 23 includes a processing module 2322 and a communication module 2323.
  • the communication device 23 may further include a storage module 2321.
  • the above modules are used to support the communication device to execute the related method of the RAN network element in any of the drawings of Figs. 6, 8, 10-13, 15, 17-18C, 20, and 21.
  • the communication device provided in this application is used to execute the corresponding method provided above. Therefore, for its corresponding features and achievable beneficial effects, reference may be made to the beneficial effects in the corresponding methods provided above. To repeat.
  • the processing module 2322 is configured to control and manage the actions of the communication device 23 or execute corresponding processing functions, for example, the functions of the determining unit 2212 and the copying unit 2214.
  • the communication module 2323 is configured to support the communication device 23 to perform the functions of the receiving unit 2211 and the sending unit 2213 described above.
  • the storage module 2321 is configured to store program codes and / or data of the communication device.
  • the processing module 2322 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific). integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the disclosure of this application.
  • the processor may also be a combination that realizes computing functions, for example, a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 2323 may be a transceiver, a transceiver circuit, Bluetooth, a network interface, or a communication interface.
  • the storage module 2321 may be a memory.
  • the processing module 2322 may be the processor 331 in the BBU 301 in FIG. 3, the communication module 2323 may be the RF circuit 334 in the RRU 302 in FIG. 3, and the storage module 2321 may be the BBU in FIG. 3.
  • Memory 332 in 301 one or more programs are stored in the memory, and the one or more programs include instructions that, when executed by the communication device, cause the communication device to execute FIGS. 6, 8, 10-13, 15, 17-18C, 20, 21 Related method of RAN network element in any figure.
  • An embodiment of the present application further provides a communication device, including a processor and a memory, where the memory is used to store a program, and the processor calls a program stored in the memory to cause the communication device to execute FIGS. 6, 8, 10-13, Related methods of the RAN network element in any of the drawings of 15, 17-18C, 20, and 21.
  • An embodiment of the present application further provides a computer storage medium storing one or more programs, where a computer program is stored, and when the computer program is executed by a processor, the communication device executes FIG. 6, 8, 10-13, 15, Related methods of the RAN network element in any of the drawings of 17-18C, 20, and 21.
  • the embodiment of the present application further provides a computer program product containing instructions, and when the computer program product is run on a communication device, the communication device is caused to execute FIG. 6, 8, 10-13, 15, 17-18C, 20, 21 Related method of RAN network element in any figure.
  • An embodiment of the present application provides a chip system, and the chip system includes a processor for supporting a communication device to execute the RAN network in any one of FIGS. 6, 8, 10-13, 15, 17-18C, 20, and 21. Meta-related methods. For example, the RAN network element determines that the dual tunnel is associated with a single RAN network element or is associated with a dual RAN network element; the RAN network element sends first indication information to the AMF network element, and the first indication information is used to indicate that the dual tunnel is associated with a single RAN network element or Associated with dual RAN network elements.
  • the chip system further includes a memory, which is used to store program instructions and data necessary for the terminal device.
  • the chip system may include a chip, an integrated circuit, or a chip and other discrete devices, which are not specifically limited in the embodiments of the present application.
  • the communication device, computer storage medium, computer program product, or chip system provided in this application is used to execute the corresponding methods provided above. Therefore, for the beneficial effects that can be achieved, reference may be made to the corresponding corresponding methods provided above. The beneficial effects in the method are not repeated here.
  • the communication device may be a RAN network element, or may be a component (a chip or a circuit, etc.) applicable to the RAN network element.
  • An embodiment of the present application further provides a communication device, which can be used to perform the functions of the SMF network element in the foregoing method.
  • the communication device may be divided into functional modules according to the foregoing method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in this application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 24 shows a possible structural diagram of a communication device involved in the foregoing embodiment.
  • the communication device 24 may include a receiving unit 2411 and a sending unit 2412. Alternatively, it may further include a determining unit 2413.
  • the above units are used to support the communication device to execute the related method of the SMF network element in any of the drawings of FIGS. 6, 8, 10-13, 15, 17-18C, 20, and 21.
  • the communication device provided in this application is used to execute the corresponding method provided above. Therefore, for its corresponding features and achievable beneficial effects, reference may be made to the beneficial effects in the corresponding methods provided above. To repeat.
  • the receiving unit 2411 is configured to support the communication device 24 to perform processes S602 and S613 in FIG. 6 or processes S802 and S807 in FIG. 8 or process S1002 in FIG. 10 or processes S1101 and S1105 in FIG. 11. 12, S1109, or processes S1201, S1205 in FIG. 12, or processes S1502, S1506 in FIG. 15, or processes S1702, S1706 in FIG. 17, or process S1801 in FIG. 18A; the sending unit 2412 is used to support the communication device 24 Perform process S603, S614 in FIG. 6, or process S803, S808 in FIG. 8, or process S1003 in FIG. 10, or process S1103, S1106, S1110 in FIG. 11, or process S1203, S1206, in FIG.
  • a determining unit 2413 is configured to support the communication device 24 to execute the process S1102 in FIG. 11, or FIG. Process S1202 in 12.
  • the receiving unit 2411 is configured to receive first indication information, and the first indication information is used to indicate that the dual tunnel is associated with a single RAN network element or associated with a dual RAN network element; and the sending unit 2412 is configured to The first instruction information received by the receiving unit 2411 sends the second instruction information to the UPF network element.
  • the second instruction information is used to trigger the UPF network element to add the same sequence number to the first packet and the second packet at the first protocol layer. ;
  • the first message and the second message are messages transmitted through a dual tunnel.
  • the second indication information is the first indication information.
  • the communication device 24 further includes a determining unit 2413, configured to determine the second instruction information sent by the sending unit 2412 according to the first instruction information received by the receiving unit 2411.
  • the sending unit 2412 is specifically configured to send a forwarding rule to a UPF network element, and the forwarding rule includes second indication information.
  • the sending unit 2412 is further configured to instruct the UPF network element to copy the data packet to obtain a first packet and a second packet.
  • the first protocol layer is a protocol layer located between the single RAN network element and the UPF network element.
  • the first protocol layer is a protocol layer located between the terminal device and the UPF network element.
  • FIG. 25 is another schematic structural diagram of a communication device involved in the foregoing embodiment.
  • the communication device 25 includes a processing module 2522 and a communication module 2523.
  • the communication device 25 may further include a storage module 2521.
  • the above modules are used to support the communication device to execute the related method of the SMF network element in any of the drawings of FIGS. 6, 8, 10-13, 15, 17-18C, 20, and 21.
  • the communication device provided in this application is used to execute the corresponding method provided above. Therefore, for its corresponding features and achievable beneficial effects, reference may be made to the beneficial effects in the corresponding methods provided above. To repeat.
  • the processing module 2522 is configured to control and manage the action of the communication device 25 or execute a corresponding processing function, for example, to execute a function of the determining unit 2413.
  • the communication module 2523 is configured to support the communication device 25 to perform the functions of the receiving unit 2411 and the sending unit 2412.
  • the storage module 2521 is configured to store program code and / or data of the communication device.
  • the processing module 2522 may be a processor or a controller.
  • the processing module 2522 may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), or an application-specific integrated circuit. integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the disclosure of this application.
  • the processor may also be a combination that realizes computing functions, for example, a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 2523 may be a transceiver, a transceiver circuit, Bluetooth, a network interface, or a communication interface.
  • the storage module 2521 may be a memory.
  • the processing module 2522 may be the processor 401 in FIG. 4, the communication module 2523 may be the communication interface 404 in FIG. 4, and the storage module 2521 may be the memory 403 in FIG. 4.
  • one or more programs are stored in the memory, and the one or more programs include instructions that, when executed by the communication device, cause the communication device to execute FIGS. 6, 8, 10-13, 15, 17-18C, 20, 21 Related method of SMF network element in any figure.
  • An embodiment of the present application further provides a communication device, including a processor and a memory, where the memory is used to store a program, and the processor calls a program stored in the memory to cause the communication device to execute FIGS. 6, 8, 10-13, Related methods of SMF network elements in any of the drawings of 15, 17-18C, 20, and 21.
  • An embodiment of the present application further provides a computer storage medium storing one or more programs, where a computer program is stored, and when the computer program is executed by a processor, the communication device executes FIG. 6, 8, 10-13, 15, The related method of the SMF network element in any of the drawings of 17-18C, 20, and 21.
  • the embodiment of the present application further provides a computer program product containing instructions, and when the computer program product is run on a communication device, the communication device is caused to execute FIG. 6, 8, 10-13, 15, 17-18C, 20, 21 Related method of SMF network element in any figure.
  • An embodiment of the present application provides a chip system, and the chip system includes a processor for supporting a communication device to execute the SMF network in any one of FIGS. 6, 8, 10-13, 15, 17-18C, 20, and 21.
  • Meta-related methods For example, the SMF network element receives the first instruction information, and the first instruction information is used to indicate that the dual tunnel is associated with the single RAN network element or is associated with the dual RAN network element.
  • the SMF network element sends the second instruction information to the UPF network element according to the first instruction information.
  • the second indication information is used to trigger the UPF network element to add the same sequence number to the first packet and the second packet at the first protocol layer; wherein the first packet and the second packet are packets transmitted through the dual tunnel. Text.
  • the chip system further includes a memory, which is used to store program instructions and data necessary for the terminal device.
  • the chip system may include a chip, an integrated circuit, or a chip and other discrete devices, which are not specifically limited in the embodiments of the present application.
  • the communication device, computer storage medium, computer program product, or chip system provided in this application is used to execute the corresponding methods provided above. Therefore, for the beneficial effects that can be achieved, reference may be made to the corresponding corresponding methods provided above. The beneficial effects in the method are not repeated here.
  • the foregoing communication device may be an SMF network element, or may be a component (a chip or a circuit, etc.) applicable to the SMF network element.
  • An embodiment of the present application further provides a communication device, which may be used to perform a function of a UPF network element in the foregoing method.
  • the communication device may be divided into functional modules according to the foregoing method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in this application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 26 shows a possible structural diagram of a communication device involved in the foregoing embodiment.
  • the communication device 26 may include: an adding unit 2612, a sending unit 2613, and Alternatively, it may further include a receiving unit 2611, a copying unit 2614, and a determining unit 2615.
  • the above units are used to support the communication device to execute the related method of the UPF network element in any of the drawings of FIGS. 6, 8, 10-13, 15, 17-18C, 20, and 21.
  • the communication device provided in this application is used to execute the corresponding method provided above. Therefore, for its corresponding features and achievable beneficial effects, reference may be made to the beneficial effects in the corresponding methods provided above. To repeat.
  • the adding unit 2612 is used to support the communication device 26 to execute the process S1004 in FIG. 10, or the process S1812 in FIG. 18B, or the process S2001 in FIG. 20; the sending unit 2613 is used to support the communication device 26 to execute the FIG. The process S1005, or the process S1813 in FIG. 18B, or the process S2002 in FIG. 20; the receiving unit 2611 is used to support the communication device 26 to execute the process S601 in FIG. 6, or the process S808 in FIG. 8, or the process in FIG. 10 Process S1003, or process S1100 in FIG. 11, or process S1206 in FIG. 12, or process S1303, S1305 in FIG. 13, or process S1503 in FIG. 15, or process S1703 in FIG. 17, or FIG.
  • the adding unit 2612 is configured to add the same sequence number to the first packet and the second packet at the first protocol layer; the sending unit 2613 is configured to add the same through the dual tunnel transmission adding unit 2612 The first message and the second message after the serial number.
  • the communication device further includes a receiving unit 2611; the receiving unit 2611 is configured to receive instruction information from the SMF network element, and the instruction information is used to trigger the adding unit 2612 to send the first message and the second message to each other.
  • the first protocol layer adds the same sequence number; the adding unit 2612 is specifically configured to add the same sequence number to the first packet and the second packet at the first protocol layer according to the instruction information received by the receiving unit 2611.
  • the indication information is used to indicate that the dual tunnel is associated with a single RAN network element or is associated with a dual RAN network element.
  • the adding unit 2612 is specifically configured to, according to the indication information, that the first packet and the second packet are located between the RAN network element and the The protocol layers between UPF network elements add the same sequence number.
  • the adding unit 2612 is specifically configured to, according to the indication information, that the first packet and the second packet are located in the terminal device and the UPF.
  • the protocol layer between the network elements adds the same serial number.
  • the receiving unit 2611 is specifically configured to receive a forwarding rule from an SMF network element, and the forwarding rule includes indication information.
  • the communication device 26 further includes a copying unit 2614, configured to copy a data packet according to an instruction of the SMF network element to obtain a first message and a second message.
  • FIG. 27 is another schematic structural diagram of a communication device involved in the foregoing embodiment.
  • the communication device 27 includes a processing module 2722 and a communication module 2723.
  • the communication device 27 may further include a storage module 2721.
  • the above modules are used to support the communication device to execute the related method of the UPF network element in any of the drawings of FIGS. 6, 8, 10-13, 15, 17-18C, 20, and 21.
  • the communication device provided in this application is used to execute the corresponding method provided above. Therefore, for its corresponding features and achievable beneficial effects, reference may be made to the beneficial effects in the corresponding methods provided above. To repeat.
  • the processing module 2722 is configured to control and manage the actions of the communication device 27 or execute corresponding processing functions, for example, the functions of the adding unit 2612, the copying unit 2614, and the determining unit 2615.
  • the communication module 2723 is configured to support the communication device 27 to perform the functions of the receiving unit 2611 and the sending unit 2613 described above.
  • the storage module 2721 is configured to store program code and / or data of the communication device.
  • the processing module 2722 may be a processor or a controller.
  • the processing module 2722 may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), or an application-specific integrated circuit. integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the disclosure of this application.
  • the processor may also be a combination that realizes computing functions, for example, a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 2723 may be a transceiver, a transceiver circuit, Bluetooth, a network interface, or a communication interface.
  • the storage module 2721 may be a memory.
  • the processing module 2722 may be the processor 401 in FIG. 4, the communication module 2723 may be the communication interface 404 in FIG. 4, and the storage module 2721 may be the memory in FIG. 4.
  • One or more programs are stored in the memory, and the one or more programs include instructions that, when executed by the communication device, cause the communication device to execute FIG. 6, 8, 10-13, 15, 17-18C, 20, 21 Related method of UPF network element in any figure.
  • An embodiment of the present application further provides a communication device, including a processor and a memory, where the memory is used to store a program, and the processor calls a program stored in the memory to cause the communication device to execute FIGS. 6, 8, 10-13, Related methods of UPF network elements in any of the drawings of 15, 17-18C, 20, and 21.
  • An embodiment of the present application further provides a computer storage medium storing one or more programs, where a computer program is stored, and when the computer program is executed by a processor, the communication device executes FIG. 6, 8, 10-13, 15, The related method of the UPF network element in any of the drawings of 17-18C, 20, and 21.
  • the embodiment of the present application further provides a computer program product containing instructions, and when the computer program product is run on a communication device, the communication device is caused to execute FIG. 6, 8, 10-13, 15, 17-18C, 20, 21 Related method of UPF network element in any figure.
  • An embodiment of the present application provides a chip system.
  • the chip system includes a processor, and is configured to support a communication device to execute the UPF network in any of the drawings of FIGS. 6, 8, 10-13, 15, 17-18C, 20, and 21. Meta-related methods.
  • the UPF network element adds the same sequence number to the first packet and the second packet at the first protocol layer; the UPF network element transmits the first packet and the second packet through the dual tunnel.
  • the chip system further includes a memory, which is used to store program instructions and data necessary for the terminal device.
  • the chip system may include a chip, an integrated circuit, or a chip and other discrete devices, which are not specifically limited in the embodiments of the present application.
  • the communication device, computer storage medium, computer program product, or chip system provided in this application is used to execute the corresponding methods provided above. Therefore, for the beneficial effects that can be achieved, reference may be made to the corresponding corresponding methods provided above. The beneficial effects in the method are not repeated here.
  • the foregoing communication device may be a UPF network element, or a component (a chip or a circuit, etc.) applicable to the UPF network element.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or includes one or more data storage devices such as servers, data centers, and the like that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种报文传输方法和装置,涉及通信领域,用于实现报文通过双路传输时,UPF网元能够确定如何处理URLLC业务报文。报文传输方法包括:会话管理功能网元接收第一指示信息,第一指示信息用于指示双隧道与单接入网网元关联或与双接入网网元关联;会话管理功能网元根据第一指示信息,向用户面功能网元发送第二指示信息,第二指示信息用于触发用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号;其中,第一报文和第二报文为通过双隧道传输的报文。

Description

报文传输方法和装置
本申请要求于2018年5月21日提交中国专利局、申请号为201810491291.7、申请名称为“报文传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种报文传输方法和装置。
背景技术
第五代移动通信技术(5th generation,5G)的三大场景包括:增强移动宽带(enhanced mobile broadband,eMBB)、大规模物联网通信(massive machine type communications,mMTC)、超高可靠低时延通信(ultra-reliable and low latency communications,URLLC)。其中,URLLC的特点包括高可靠性、低时延、极高的可用性,可以应用于以下各类场景及应用:工业应用和控制、交通安全和控制、远程制造、远程培训、远程手术等。
例如,可以通过单基站或双基站的方式为URLLC业务来实现高可靠性的报文传输。在双基站方式中,在两个不同的无线接入网(radio access network,RAN)网元与用户面功能(user plane function,UPF)网元之间各建立一条独立的用户面隧道,从而双路传输数据报文。在单基站的方式中,同一个RAN网元与UPF网元之间建立两条独立的用户面隧道,从而双路传输数据报文。然而,UPF网元无法区分无线接入网侧是采用双基站还是单基站的方式进行双路传输,从而导致UPF网元无法确定如何处理URLLC业务报文,进而降低用户体验。
发明内容
本申请实施例提供一种报文传输方法和装置,用于实现报文通过双路传输时,UPF网元能够确定如何处理URLLC业务报文。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供一种报文传输方法,该方法包括:会话管理功能网元接收第一指示信息,第一指示信息用于指示双隧道与单接入网网元关联或与双接入网网元关联;会话管理功能网元根据第一指示信息,向用户面功能网元发送第二指示信息,第二指示信息用于触发用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号;其中,第一报文和第二报文为通过双隧道传输的报文。本申请实施例提供的报文传输方法,由RAN网元确定双隧道与单RAN网元关联或与双RAN网元关联,并将对应的指示信息通过AMF网元发送给SMF网元,并触发UPF网元为第一报文和第二报文在第一协议层添加相同的序列号。实现了报文通过双路传输时,UPF网元能够确定如何为下行报文添加序列号。
在一种可能的实施方式中,第二指示信息为第一指示信息。该实施方式中实现了会话管理功能网元向用户面功能网元发送第一指示信息,由用户面功能网元决策为第一报文和第二报文在第一协议层添加相同的序列号。
在一种可能的实施方式中,还包括:会话管理功能网元根据第一指示信息确定第 二指示信息。该实施方式中实现了会话管理功能网元指示用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号。
在一种可能的实施方式中,会话管理功能网元向用户面功能网元发送第二指示信息,包括:会话管理功能网元向用户面功能网元发送转发规则,转发规则包括第二指示信息。该实施方式中提供了第二指示信息的一种消息传递方式。
在一种可能的实施方式中,还包括:会话管理功能网元指示用户面功能网元复制数据包,以得到第一报文和第二报文。该实施方式中提供了由会话管理功能网元指示用户面功能网元复制下行报文。
在一种可能的实施方式中,当第一指示信息指示双隧道与单接入网网元关联时,第一协议层为位于单接入网网元和用户面功能网元之间的协议层。该实施方式提供了双隧道与单接入网网元关联时如何确定添加相同序列号的协议层的一种方式。
在一种可能的实施方式中,当第一指示信息指示双隧道与双接入网网元关联时,第一协议层为位于终端设备和用户面功能网元之间的协议层。该实施方式提供了双隧道与双接入网网元关联时如何确定第一协议层的一种方式。
第二方面,本申请实施例提供一种报文传输方法,包括:用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号;用户面功能网元通过双隧道传输第一报文和第二报文。本申请实施例提供的报文传输方法,由RAN网元确定双隧道与单RAN网元关联或与双RAN网元关联,并将对应的指示信息通过AMF网元发送给SMF网元,并触发UPF网元为第一报文和第二报文在第一协议层添加相同的序列号。实现了报文通过双路传输时,UPF网元能够确定如何为下行报文添加序列号。
在一种可能的实施方式中,还包括:用户面功能网元从会话管理功能网元接收指示信息,指示信息用于触发用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号;其中,用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号,包括:用户面功能网元根据指示信息,为第一报文和第二报文在第一协议层添加相同的序列号。该实施方式提供了由会话管理功能网元触发用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号。
在一种可能的实施方式中,指示信息用于指示双隧道与单接入网网元关联或与双接入网网元关联。该实施方式中实现了会话管理功能网元向用户面功能网元发送第一指示信息,由用户面功能网元决策为第一报文和第二报文在第一协议层添加相同的序列号。
在一种可能的实施方式中,当指示信息指示双隧道与单接入网网元关联时,用户面功能网元根据指示信息,为第一报文和第二报文在第一协议层添加相同的序列号,包括:用户面功能网元根据指示信息,为第一报文和第二报文在位于接入网网元和用户面功能网元之间的协议层添加相同的序列号。该实施方式提供了双隧道与单接入网网元关联时如何确定添加相同序列号的协议层的一种方式。
在一种可能的实施方式中,当指示信息指示双隧道与双接入网网元关联时,用户面功能网元根据指示信息,为第一报文和第二报文在第一协议层添加相同的序列号,包括:用户面功能网元根据指示信息,为第一报文和第二报文在位于终端设备和用户面功能网元之间的协议层添加相同的序列号。该实施方式提供了双隧道与双接入网网 元关联时如何确定添加相同序列号的协议层的一种方式。
在一种可能的实施方式中,用户面功能网元从会话管理功能网元接收第二指示信息,包括:用户面功能网元从会话管理功能网元接收转发规则,转发规则包括第二指示信息。该实施方式中提供了第二指示信息的一种消息传递方式。
在一种可能的实施方式中,还包括:用户面功能网元根据会话管理功能网元的指示,复制数据包,以得到第一报文和第二报文。该实施方式中提供了由会话管理功能网元指示用户面功能网元复制下行报文。
第三方面,本申请实施例提供一种报文传输方法,包括:接入网网元确定双隧道与单接入网网元关联或与双接入网网元关联;接入网网元向接入和移动性管理功能网元发送第一指示信息,第一指示信息用于指示双隧道与单接入网网元关联或与双接入网网元关联。本申请实施例提供的报文传输方法,由RAN网元确定双隧道与单RAN网元关联或与双RAN网元关联,并将对应的指示信息通过AMF网元发送给SMF网元,并触发UPF网元为第一报文和第二报文在第一协议层添加相同的序列号。实现了报文通过双路传输时,UPF网元能够确定如何为下行报文添加序列号。
在一种可能的实施方式中,双隧道与单接入网网元关联,单接入网网元为接入网网元;方法还包括:接入网网元通过双隧道中的第一隧道从用户面功能网元接收第一下行报文,通过双隧道中的第二隧道从用户面功能网元接收第二下行报文,其中,第一下行报文和第二下行报文在第一协议层具有相同的序列号;接入网网元向终端设备发送第一下行报文或第二下行报文中的数据包。该实施方式提供了双隧道与单接入网网元关联时,单接入网网元如何通过双隧道转发下行报文的一种实现方式。
第四方面,本申请实施例提供一种报文传输方法,包括:接入网网元确定双隧道与单接入网网元关联,单接入网网元为接入网网元;接入网网元通过双隧道中的第一隧道从用户面功能网元接收第一下行报文,通过双隧道中的第二隧道从用户面功能网元接收第二下行报文,其中,第一下行报文和第二下行报文在第一协议层具有相同的序列号;接入网网元向终端设备发送第一下行报文或第二下行报文中的数据包。本申请实施例提供的报文传输方法,RAN网元中的增加了终端设备和UPF网元之间的协议层,使得不管是双隧道与单RAN网元关联还是与双RAN网元关联,UPF网元都可以在该协议层进行报文复制,并在该协议层添加相同序列号。实现报文通过双路传输时,UPF网元能够确定如何为下行报文添加序列号。
在一种可能的实施方式中,该方法还包括:接入网网元根据第一下行报文和第二下行报文在第一协议层相同的序列号,确定第一下行报文和第二下行报文中封装在第一协议层上层的数据包相同。该实施方式提供了双隧道与单RAN网元关联时,RAN网元可以据此对下行报文进行去重。
在一种可能的实施方式中,第一协议层为位于终端设备、接入网网元和用户面功能网元之间的协议层。该实施方式提供了添加相同的序列号的协议层的一种实现方式。
在一种可能的实施方式中,接入网网元向终端设备发送的第一下行报文或第二下行报文包括第一协议层。该实施方式可以降低终端设备从双隧道与单基站关联的场景切换到双隧道与双基站关联的场景时,终端设备对下行数据报文处理的逻辑复杂度。
在一种可能的实施方式中,接入网网元从终端设备接收第一上行报文;当第一上 行报文包括位于终端设备、接入网网元与用户面功能网元之间的协议层,接入网网元复制第一上行报文得到第二上行报文;或者,当第一上行报文不包括位于终端设备、接入网网元与用户面功能网元之间的协议层,接入网网元添加第一协议层,并复制第一上行报文得到第二上行报文;接入网网元通过双隧道向用户面功能网元发送第一上行报文和第二上行报文。该实施方式提供了接入网网元如何向用户面功能网元转发上行报文的一种实现方式。
第五方面,本申请实施例提供一种报文传输方法,包括:接入网网元确定双隧道与单接入网网元关联,单接入网网元为接入网网元;接入网网元从终端设备接收第一上行报文;当第一上行报文包括位于终端设备、接入网网元与用户面功能网元之间的协议层,接入网网元复制第一上行报文得到第二上行报文;或者,当第一上行报文不包括位于终端设备、接入网网元与用户面功能网元之间的协议层,接入网网元添加第一协议层,并复制第一上行报文得到第二上行报文;接入网网元通过双隧道向用户面功能网元发送第一上行报文和第二上行报文。本申请实施例提供的报文传输方法,RAN网元中的增加了终端设备和UPF网元之间的协议层,使得不管是双隧道与单RAN网元关联还是与双RAN网元关联,UPF网元都可以在该协议层进行报文复制/去重。实现报文通过双路传输时,UPF网元能够确定接收上行报文。
第六方面,本申请实施例提供一种通信装置,用于执行上述第一方面和第一方面的各种可能实施方式所述的方法。
第七方面,本申请实施例提供一种第二通信装置,用于执行上述第二方面和第二方面的各种可能实施方式所述的方法。
第八方面,本申请实施例提供一种通信装置,用于执行上述第三方面和第三方面的各种可能实施方式所述的方法。
第九方面,本申请实施例提供一种第二通信装置,用于执行上述第四方面和第四方面的各种可能实施方式所述的方法。
第十方面,提供了一种通信装置,用于执行上述第五方面和第五方面的各种可能实施方式所述的方法。
第十一方面,本申请实施例提供一种通信系统,包括如第六方面所述的通信装置、第七方面所述的通信装置,以及第八、第九或第十方面中任一方面所述的通信装置。
第十二方面,本申请实施例提供一种通信装置,包括:处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行上述第一方面和第一方面的各种可能实施方式所述的方法,或者执行上述第二方面和第二方面的各种可能实施方式所述的方法,或者执行上述第三方面和第三方面的各种可能实施方式所述的方法,或者执行上述第四方面和第四方面的各种可能实施方式所述的方法,或者执行上述第五方面和第五方面的各种可能实施方式所述的方法。
第十三方面,本申请实施例提供一种存储介质,其上存储有计算机程序,计算机程序被处理器执行时执行上述第一方面和第一方面的各种可能实施方式所述的方法,或者执行上述第二方面和第二方面的各种可能实施方式所述的方法,或者执行上述第三方面和第三方面的各种可能实施方式所述的方法,或者执行上述第四方面和第四方面的各种可能实施方式所述的方法,或者执行上述第五方面和第五方面的各种可能实 施方式所述的方法。
第十四方面,本申请实施例提供一种计算机程序产品,当该计算机程序产品在通信装置上运行时,使得通信装置执行上述第一方面和第一方面的各种可能实施方式所述的方法,或者执行上述第二方面和第二方面的各种可能实施方式所述的方法,或者执行上述第三方面和第三方面的各种可能实施方式所述的方法,或者执行上述第四方面和第四方面的各种可能实施方式所述的方法,或者执行上述第五方面和第五方面的各种可能实施方式所述的方法
第十五方面,本申请实施例提供一种芯片系统,包括:处理器,用于支持通信装置执行上述第一方面和第一方面的各种可能实施方式所述的方法,或者执行上述第二方面和第二方面的各种可能实施方式所述的方法,或者执行上述第三方面和第三方面的各种可能实施方式所述的方法,或者执行上述第四方面和第四方面的各种可能实施方式所述的方法,或者执行上述第五方面和第五方面的各种可能实施方式所述的方法。
第六方面至第十五方面的技术效果可以参照第一方面至第五方面所述内容。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种手机的结构示意图;
图3为本申请实施例提供的一种基站的结构示意图;
图4为本申请实施例提供的一种网络设备的结构示意图;
图5为本申请实施例提供的一种协议栈的示意图一;
图6为本申请实施例提供的一种报文传输方法的信令交互示意图一;
图7为本申请实施例提供的通过双RAN网元进行双路传输的示意图;
图8为本申请实施例提供的一种报文传输方法的信令交互示意图二;
图9为本申请实施例提供的通过单RAN网元进行双路传输的示意图;
图10为本申请实施例提供的一种报文传输方法的信令交互示意图三;
图11为本申请实施例提供的一种报文传输方法的信令交互示意图四;
图12为本申请实施例提供的一种报文传输方法的信令交互示意图五;
图13为本申请实施例提供的一种报文传输方法的信令交互示意图六;
图14为本申请实施例提供的终端设备从双RAN网元切换至单RAN网元的示意图;
图15为本申请实施例提供的一种报文传输方法的信令交互示意图七;
图16为本申请实施例提供的终端设备从单RAN网元切换至双RAN网元的示意图;
图17为本申请实施例提供的一种报文传输方法的信令交互示意图八;
图18A为本申请实施例提供的一种报文传输方法的信令交互示意图九;
图18B为本申请实施例提供的一种报文传输方法的信令交互示意图十;
图18C为本申请实施例提供的一种报文传输方法的信令交互示意图十一;
图19为本申请实施例提供的一种协议栈的示意图二;
图20为本申请实施例提供的一种报文传输方法的信令交互示意图十二;
图21为本申请实施例提供的一种报文传输方法的信令交互示意图十三;
图22为本申请实施例提供的一种通信装置的结构示意图一;
图23为本申请实施例提供的一种通信装置的结构示意图二;
图24为本申请实施例提供的另一种通信装置的结构示意图一;
图25为本申请实施例提供的另一种通信装置的结构示意图二;
图26为本申请实施例提供的又一种通信装置的结构示意图一;
图27为本申请实施例提供的又一种通信装置的结构示意图二。
具体实施方式
本申请实施例以无线通信网络中5G网络的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
参照图1中所示,本申请实施例提供的通信系统架构包括:终端设备101、无线接入网((radio)access network,(R)AN)网元102、接入和移动性管理功能(access and mobility management function,AMF)网元103、会话管理功能(session management function,SMF)网元104、用户面功能(user plane function,UPF)网元105。
需要说明的是,图中的各个网元之间的接口名字只是一个示例,具体实现中接口名字可能为其他名字,本申请实施例对此不作具体限定。例如,终端设备101与AMF网元103之间的接口可以为N1接口,RAN网元102与AMF网元103之间的接口可以为N2接口,RAN网元102与UPF网元105之间的接口可以为N3接口,UPF网元105与SMF网元104之间的接口可以为N4接口,AMF网元103与SMF网元104之间的接口可以为N11接口,UPF网元105与数据网络(data network,DN)之间的接口可以为N6接口。
本申请实施例中所涉及到的终端设备101可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端、用户设备(user equipment,UE)、移动台(mobile station,MS)、终端设备(terminal device)或者中继用户设备等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。为方便描述,上面提到的设备可以统称为终端设备。
以终端设备101为手机为例,对手机的硬件架构进行说明。如图2所示,手机可以包括:射频(radio frequency,RF)电路100、存储器120、其他输入设备130、显示屏140、传感器150、音频电路160、I/O子系统170、处理器180、以及电源190等部件。本领域技术人员可以理解,图中所示的手机的结构并不构成对手机的限定,可以包括比图示更多或者更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领域技术人员可以理解显示屏140属于用户界面(user interface,UI),显示屏140可以包括显示面板141和触摸面板142。尽管未示出,手机还可以包括摄像头、蓝牙模块等功能模块或器件,在此不再赘述。
进一步地,处理器180分别与RF电路100、存储器120、音频电路160、I/O子系统170、以及电源190连接。I/O子系统170分别与其他输入设备130、显示屏140、传感器150连接。其中,RF电路100可用于在收发信息或通话过程中对信号的接收和发送,特别地,接收来自网络设备的下行信息后,发送给处理器180处理。存储器120可用于存储软件程序以及模块。处理器180通过运行存储在存储器120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理,例如执行本申请实施例中终端设备的方法和功能。其他输入设备130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键盘信号输入。显示屏140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单,还可以接受用户输入。传感器150可以为光传感器、运动传感器或者其他传感器。音频电路160可提供用户与手机之间的音频接口。I/O子系统170用来控制输入输出的外部设备,外部设备可以包括其他设备输入控制器、传感器控制器、显示控制器。处理器180是手机200的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。电源190(比如电池)用于给上述各个部件供电,优选的,电源可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。在本申请实施例中终端设备101可以通过RF电路100从RAN网元102接收信号。
RAN网元102为向终端设备101提供无线接入的设备。RAN网元102包括但不限于eNodeB、无线保真(wireless fidelity,Wi-Fi)接入点、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)基站等。本申请实施例中的RAN网元102可以包括单RAN网元,或者包括双RAN网元。例如,双RAN网元包括主无线接入网(master radio access network,M-RAN)网元和辅无线接入网(secondary radio access network,S-RAN)网元。单RAN网元或者双RAN网元可以与UPF网元通过双隧道传输报文。
以RAN网元102为基站为例,对基站的硬件架构进行说明。如图3所示,基站102可以包括室内基带处理单元(building baseband unit,BBU)301和远端射频模块(remote radio unit,RRU)302,RRU 302和天馈系统(即天线)303连接,BBU 301和RRU 302可以根据需要拆开使用。其中,BBU 301可以包括处理器331、存储器332及总线系统333,BBU 301的处理器331、存储器332通过总线系统333相互连接。上述总线系统可以是外设部件互连标准总线或扩展工业标准结构总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。RRU 302可以包括RF电路334,基站102还可以包括光纤335、同轴电缆336、天线337。RRU 302中的RF电路334与BBU 301之间通过光纤335相互连接,RRU 302中的RF电路334与天线337之间通过同轴电缆336相互连接。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。本申请实施例所述的RAN网元102用于终端设备101与核心网设备之间传输数据。
AMF网元103可以负责移动网络中的移动性管理,如用户位置更新、用户注册网 络、用户切换等。
SMF网元104可以负责移动网络中的会话管理,如会话建立、修改、释放,具体功能如为用户分配IP地址、选择提供报文转发功能的UPF网元等。
UPF网元105可以负责对用户报文进行处理,如转发、计费等。
AMF网元103、SMF网元104、UPF网元105这些网元可以统称为核心网网元,下面以一种网络设备为例,对这些核心网网元的结构进行说明,本申请实施例并不限定各核心网网元必须具有如下图中所示的单元或器件,可以具有更多或更少的单元或器件。
如图4所示,网络设备400可以包括至少一个处理器401,通信线路402,存储器403以及至少一个通信接口404。处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。通信线路402可包括一通路,在上述组件之间传送信息。通信接口404,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路402与处理器相连接。存储器也可以和处理器集成在一起。其中,存储器403用于存储执行本申请方案的计算机执行指令(可以称之为应用程序代码),并由处理器401来控制执行。处理器401用于执行存储器403中存储的计算机执行指令,从而实现本申请下述实施例提供的方法。
本申请可适用于高可靠性的报文传输。例如,可以通过单基站方案或双基站方案为URLLC业务来实现高可靠性的报文传输。
方案一,双基站方案:
在该方案中,RAN网元包括主无线接入网(master radio access network,M-RAN)网元和辅无线接入网(secondary radio access network,S-RAN)网元。在两个不同的RAN网元与UPF网元之间各建立一条独立的用户面隧道来传输相同的数据报文。这样,终端设备可以接收到两份包含相同数据包的下行报文,并据此对下行报文进行去重。UPF网元可以接收到两份包含相同数据包的上行报文,并据此对上行报文进行去重。方案一中,M-RAN网元与S-RAN网元可以分别为各自的用户面隧道分配不同的隧道标识,且均由M-RAN网元通过控制面信令发送给核心网。
方案二,单基站方案:
在该方案中,在同一个RAN网元与UPF网元之间建立两条独立的用户面隧道来传输相同的数据报文。这样,RAN网元可以接收到两份包含相同数据包的下行报文, 并据此对下行报文进行去重。UPF网元可以接收到两份包含相同数据包的上行报文,并据此对上行报文进行去重。方案二中,RAN网元为两个用户面隧道分配不同的隧道标识,且由该RAN网元通过控制面信令发送给核心网。
通过上述两个方案中的任一方案,当UPF网元发送下行数据的时候,将报文进行复制得到两份包含相同数据包的下行报文,并通过两个不同的用户面隧道发送下行报文。那么,即便其中一条用户面隧道产生了丢包,另一条用户面隧道的下行报文不受影响。
当终端设备发起会话建立流程,以建立终端设备与核心网之间的用户面连接时,为了实现报文传输的高可靠性,可以由RAN网元来决定通过双基站方案还是单基站方案来进行两个用户面隧道的报文传输。然而,UPF网元无法区分无线接入网侧是采用双基站还是单基站方案,因此导致UPF网元无法确定如何为下行报文添加序列号。这样的不确定性会影响URLLC业务报文的处理,进而降低用户体验。通过本申请实施例的报文传输方案,可以使得核心网根据RAN网元发送的指示信息判断无线接入网侧是采用双基站还是单基站的方式进行双路传输,进而指示UPF网元如何对下行数据添加相同的序列号。
在一个实施例中,以下报文传输方案适用于如图5所示的协议栈。图5中的终端设备、RAN网元、UPF网元可以是图1中的终端设备101、(R)AN网元102、UPF网元105。如图5所示,终端设备与UPF网元之间的协议层包括网络控制协议(network control protocol,NCP)层和分组数据单元(packet data unit,PDU)层;终端设备与RAN网元之间的协议层包括L1层、媒体介入控制(media access control,MAC)层、无线链路层控制(radio link control,RLC)层和分组数据汇聚协议(packet data convergence protocol,PDCP)层;RAN网元与UPF网元之间的协议层包括L1层、L2层、用户数据报协议(user datagram protocol,UDP)/互联网协议(internet protocol,IP)层和GPRS隧道协议-用户面(GPRS tunnelling protocol-user plane,GTP-U)层。其中,NCP层的功能包括实现报文的高可靠性传输,对包含相同序列号的报文可以进行去重处理,这将结合后面的图6至图17做进一步描述。可以实现NCP层功能的协议层还可以具有其他的名称,例如,流量控制协议(traffic flow control protocol,TFCP)层或者高可靠协议(high reliability protocol,HRP)层,本申请在此并不限制。
基于图5的协议栈,在URLLC场景,如图6中的信令交互示意图所示,可以通过双RAN网元(即方案一)进行双路传输;图7将结合图6,进一步示出,双RAN网元场景中UPF网元对下行数据如何添加相同的序列号。或者,如图8中的信令交互示意图所示,可以通过单RAN网元(即方案二)进行双路传输;图9将结合图8,进一步示出单RAN网元场景中UPF网元对下行数据如何添加相同的序列号。
例如,双RAN网元采用双路传输的流程如图6中所示。该流程可以包括如下步骤:
S601、终端设备通过当前接入的RAN网元向AMF网元发送非接入层(non-access stratum,NAS)消息。
例如,当前接入的RAN网元可以是后续作为M-RAN网元的RAN网元。
该NAS消息中包括PDU会话建立请求消息,用于请求核心网为终端设备建立PDU会话。例如,该PDU会话建立请求消息中包括终端设备为该会话分配的PDU会话标 识(PDU session ID)、该会话对应的单网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)、数据网络名称(data network name,DNN)。其中,S-NSSAI用于指示该会话对应的切片类型。DNN用于指示该会话对应的数据网络。
S602、AMF网元选择SMF网元并调用SMF的会话创建请求服务化操作(Nsmf_PDUSession_CreateSMContextRequest)。
该服务化操作携带PDU会话建立请求消息。
接下来的会话建立流程包括:SMF网元选择UPF网元等,不在此赘述。
S603、SMF网元调用AMF网元的N1N2消息传递的服务化操作(Namf_Communication_N1N2MessageTransfer)。
通过调用该服务化操作,SMF网元向AMF网元发送N1会话管理信息(N1 session management information,N1 SM info)和N2会话管理信息(N2 SM info)。例如,N1 SM信息包括发送给终端设备的会话接受消息。N2 SM信息包括发送给RAN网元的用户面隧道信息、服务质量(quality of service,QoS)参数、会话类型等。例如,QoS参数可以包括QoS流标识(QoS flow identifier,QFI)。
需要说明的是,SMF网元可以根据QoS参数、签约数据、策略等确定终端设备访问的是否是URLLC业务,也就是说,与该会话关联的业务为URLLC业务。其中,发送给RAN网元的用户面隧道信息包括核心网双隧道信息CN tunnel info-1和CN tunnel info-2。例如,如果SMF网元判断该会话关联的是URLLC业务,则分配两份核心网侧隧道信息作为核心网双隧道信息,即CN tunnel info-1和CN tunnel info-2,并将核心网双隧道信息包含在N2 SM信息中。
S604、AMF网元向终端设备当前接入的RAN网元发送N2 PDU会话请求(N2 PDU session request)消息。
该消息中包括上述N1 SM信息、N2 SM信息。
S605、终端设备当前接入的RAN网元发起与终端设备之间的无线连接建立过程。
在该过程中,该RAN网元向终端设备发送N1 SM信息。
下面的步骤S606-S611描述的是终端设备当前接入的RAN网元决定增加S-RAN网元后的过程。即,终端设备当前接入的RAN网元成为M-RAN网元。例如,终端设备当前接入的RAN网元可以在收到S604的N2 PDU会话请求消息后就判断是否增加S-RAN网元,或者,也可以在S605后判断是否增加S-RAN网元,本申请在此并不限制。
其中,M-RAN网元决定增加S-RAN网元的判断条件可以包括以下中的任一项:N2 SM信息中包含的QFI对应高可靠性需求的QoS;N2 SM信息中包含的S-NSSAI对应的切片类型为URLLC切片;N2 SM信息中包含两个不同的UPF网元的隧道信息。也就是说,当M-RAN网元根据N2 SM信息中包含的QFI获知该会话对应的QoS具有高可靠性的需求,或者,当M-RAN网元根据N2 SM信息中包含的S-NSSAI获知该会话与URLLC切片关联,或者,当M-RAN网元根据N2 SM信息中包含的两个不同的UPF网元的隧道信息获知该会话具有高可靠性需求,则M-RAN网元需要对该会话提供高可靠性支持,从而决定增加S-RAN网元。此外,M-RAN网元还可以根据来自SMF 网元的指示信息确定需要对该会话提供高可靠性支持。当M-RAN网元根据当前的无线信号质量(例如,通过终端设备发送的测量报告获取)确定当前位置存在能满足高可靠性的双路传输的其他RAN网元(即下述S-RAN网元),则执行下述步骤S606。
S606、M-RAN网元向S-RAN网元发送增加请求消息。
该消息中包括PDU会话标识。如果终端设备发起的会话中只有一些业务流属于URLLC业务,则该消息中还包括URLLC业务对应的业务流标识。
S607、S-RAN网元向M-RAN网元发送增加响应消息。
该消息中包括S-RAN网元隧道信息(tunnel info)。同时,S-RAN网元可以存储S-RAN网元隧道信息与该PDU会话标识的对应关系。例如,隧道信息可以包括隧道端点标识(tunnel endpoint identifier,TEID)。
S608、M-RAN网元向终端设备发送无线资源控制(radio resource control,RRC)连接重配置消息。
S609、终端设备向M-RAN网元发送RRC连接重配置完成消息。
通过RRC连接重配置的过程,M-RAN网元触发终端设备向S-RAN网元进行RRC连接。
S610、M-RAN网元向S-RAN网元发送重配置完成消息。
该消息表示终端设备成功完成重配置过程。
S611、S-RAN网元与终端设备之间进行随机接入流程。
通过随机接入过程,终端设备与S-RAN网元建立了RRC连接。
S612、M-RAN网元向AMF网元发送N2 PDU会话响应(N2 PDU session response)消息。
该消息中包括N2 SM信息,其中N2 SM信息包括M-RAN网元隧道信息、S-RAN网元隧道信息。
S613、AMF网元调用SMF网元的更新会话管理上下文请求的服务化操作(Nsmf_PDUSession_UpdateSMContext),以触发SMF更新会话管理上下文。
AMF网元调用该服务化操作的输入包括上述N2 SM信息。也就是说,通过该步骤,AMF网元将包括M-RAN网元隧道信息、S-RAN网元隧道信息的N2 SM信息发送给SMF网元。
S614、SMF网元向UPF网元发送N4会话修改请求(N4session modification request)消息。
该消息中包括上述M-RAN网元隧道信息、S-RAN网元隧道信息,以及报文转发规则。报文转发规则用于指示UPF网元在接收到URLLC的报文时,生成两份包含相同数据包的下行报文并通过双路隧道发送给终端设备。这样,该终端设备就可以收到两份包含相同数据包的下行报文。
需要说明的是,由于该方案的终端设备收到两份包含相同数据包的下行报文,且终端设备需要分别识别哪些下行报文是重复的,进一步地,对重复报文做报文去重。类似的,UPF网元收到两份包含相同数据包上行报文,且UPF网元需要分别识别哪些上行报文是重复的,进一步地,对重复报文做报文去重。因此需要在UPF侧的GTP-U之上层的某一层,即,位于终端设备和UPF网元之间的协议层(例如,图5中的NCP 层),来为重复报文分配相同的序列号,从而来实现终端设备或UPF网元对相同序列号的NCP报文进行去重。
图7将以下行方向在NCP层做报文的复制/去重为例,对各网元对下行报文的处理进行详细介绍。
例如,当UPF网元接收到来自数据网络(data network,DN)的IP报文,该IP报文包括待接收该报文的终端设备的IP地址(UE IP)和数据(data)。UPF网元根据存储的PDU会话上下文和UE IP识别出该报文需要发给哪个终端设备并将该IP报文封装成PDU报文,然后UPF网元生成两份序列号(sequence number,SN)相同的NCP报文。例如,其中一种方法是:UPF网元为PDU报文添加NCP序列号之后,将该NCP报文复制成两份。另一种方法是,UPF网元先将PDU报文复制成两份,再分别添加相同的NCP序列号。无论哪种方案,这样两份NCP报文的序列号是一样的。UPF网元再将两份NCP层的报文分别在GTP-U层进行封装,在封装后的两份GTP报文中,GTP-U层的头(header)分别包括M-RAN网元的隧道端点标识(tunnel endpoint identifier,TEID)和S-RAN网元的TEID。之后,按照图5所示的协议栈,UPF网元再将两份GTP报文依次进行UDP/IP层、L2层、L1层的封装,从而生成第一下行报文和第二下行报文。显然,第一下行报文和第二下行报文具有相同的序列号(即,上述NCP序列号)。这样,UPF网元可以通过之前分别与M-RAN网元和S-RAN网元建立好的隧道,分别将第一下行报文和第二下行报文发送给M-RAN网元和S-RAN网元。因而,M-RAN网元和S-RAN网元分别接收到相同的下行数据。
在报文传输过程中,M-RAN网元收到第一下行报文后,按照图5所示的协议栈,依次对L1、L2、UDP/IP层解封装,并得到GTP层,在GTP-U层获取到解封装后的第一下行报文之后,再按照空口协议进行封装(例如,5G AN协议层:L1层、MAC层、RLC层和PDCP层),并将封装后的报文向终端设备转发。类似的,S-RAN网元收到第二下行报文后,按照图5所示的协议栈,依次对L1、L2、UDP/IP层解封装,并得到GTP层,在GTP-U层获取到解封装后的第二下行报文之后,再按照空口协议进行封装,并将封装后的报文向终端设备转发。终端设备收到双路报文之后按照图5所示的协议栈,依次对L1层、MAC层、RLC层和PDCP层解封装,最后得到两份NCP报文(包含NCP头的报文),然后将具有相同的序列号的NCP报文去重。最后,终端设备得到一份NCP报文,得到该NCP报文中包含的数据。
需要说明的是,对于双RAN网元的可靠性方案中,不限制终端设备和UPF网元必须在NCP层进行报文复制/去重,在方案实施上也可能是GTP层之上的且可以实现报文复制/去重的其他协议层。例如,还可以在流量控制协议(traffic flow control protocol,TFCP)层或者高可靠协议(high reliability protocol,HRP)层进行报文复制/去重。换句话说,对于双RAN网元的可靠性方案,UPF网元需要在位于终端设备和UPF网元之间的协议层来为重复报文分配相同的序列号。
对于单RAN网元采用双路传输,该方案与前一个方案的区别在于,当RAN网元自身可以支持双链路建立(和/或,当前位置不存在能满足高可靠性的双路传输的其他RAN网元)时,那么也可以通过单RAN网元的方式实现URLLC业务的高可靠性要求。该方案采用RAN网元与核心网的UPF网元建立的两个不同的用户面隧道。其中, 该用户面隧道的两个TEID都是由一个RAN网元分配的,然后UPF网元基于不同的隧道信息分别向两个的隧道发送相同的数据报文。RAN网元收到相同的报文之后先进行去重,然后在空口侧可以采用高可靠性技术将报文发送给终端设备。
例如,单RAN网元采用双路传输的流程如图8中所示。图8将结合图6进行描述。该流程可以包括如下步骤:
S801、终端设备通过RAN网元向AMF网元发送NAS消息。
该步骤中的RAN网元等同于步骤S601中的M-RAN网元,其他内容可参考图6中的S601的描述,不在此赘述。
S802、AMF网元选择SMF网元并调用SMF网元的会话创建请求服务化操作(Nsmf_PDUSession_CreateSMContextRequest)。
该步骤可参考图6中的S602的描述,不在此赘述。
S803、SMF网元调用AMF网元的N1N2消息传递的服务化操作(Namf_Communication_N1N2MessageTransfer)。
该步骤可参考图6中的S603的描述,不在此赘述。
S804、AMF网元向RAN网元发送N2 PDU会话请求(N2 PDU session request)消息。
类似的,该消息中包括上述N1 SM信息、N2 SM信息。
RAN网元根据N2 SM信息中包含的QoS参数例如QoS流标识(QoS flow identifier,QFI)获知该会话对应的QoS需要高可靠性需求;或者,RAN网元根据N2 SM信息中包含的S-NSSAI获知该会话与URLLC切片关联;或者,当RAN网元根据N2 SM信息中包含的两个不同的UPF网元的隧道信息获知该会话具有高可靠性需求,则RAN网元需要对接入到URLLC切片的会话提供高可靠性支持。此外,RAN网元还可以根据来自SMF网元的指示信息确定需要对该会话提供高可靠性支持。当RAN网元根据当前的无线信号质量(例如,通过终端设备发送的测量报告获取)确定当前位置不存在能满足高可靠性的双路传输的其他RAN网元,或者,当RAN网元自身可以支持双链路建立,则决定采用单基站可靠性机制。
RAN网元决定采用单基站可靠性机制后,分配的两个不同的隧道信息(tunnel info)。
S805、RAN网元发起与终端设备之间的无线连接建立过程。
S806、RAN网元向AMF网元发送N2PDU会话响应(N2PDU session response)消息。
该消息中包括N2 SM信息,其中,N2 SM信息包括RAN网元分配的两个不同的隧道信息。
S807、AMF网元调用SMF网元的更新会话管理上下文的服务化操作(Nsmf_PDUSession_UpdateSMContext),以触发SMF更新会话管理上下文。
AMF网元调用该服务化操作的输入包括N2 SM信息。也就是说,通过该步骤,AMF网元将包括两份隧道信息的N2 SM信息发送给SMF网元。
S808、SMF网元向UPF网元发送N4会话修改请求(N4 session modification request)消息。
AMF网元调用该服务化操作的输入包括上述RAN网元分配的两个不同的隧道信 息以及报文转发规则。其中,报文转发规则用于使UPF网元在接收到URLLC的报文时,生成两份包含相同数据包的下行报文并将其通过双路发送给RAN网元。这样,该RAN网元就可以收到两份包含相同数据包的下行报文。
此外,对于上行数据,当终端设备的应用产生URLLC的报文时,将该报文通过空口协议传输给RAN网元,RAN网元将该报文生成两份包含相同数据包的上行报文并通过双路隧道发送给UPF网元。这样,该UPF网元可以收到两份包含相同数据包的上行报文。
根据图5中所示的协议栈,对于上述单RAN网元的方案,如果要实现RAN网元去重下行报文,则RAN网元要从位于UPF网元与RAN网元之间的协议层(例如,GTP-U层)识别出哪些报文是重复的,这样就要求UPF网元在相应的协议层生成两份具有相同的序列号的报文(例如,GTP报文)。
图9将以下行方向在GTP-U层做报文的复制/去重为例,对各网元对下行报文的处理进行详细介绍。
例如,当UPF网元接收到来自数据网络的IP报文,该IP报文包括待接收该报文的终端设备的IP地址(UE IP)和数据(data)。UPF网元根据存储的PDU会话上下文和UE IP识别出该报文需要发给哪个终端设备并将该IP报文封装成PDU报文。然后UPF网元将该报文复制成两份序列号相同的GTP报文。例如,其中一种方法是:UPF网元为PDU报文添加GTP序列号之后,将该GTP报文复制成两份。另一种方法是,UPF网元先将PDU报文复制成两份,再分别添加相同的GTP序列号。无论哪种方案,这样两份GTP报文的序列号是一样的。UPF网元再将两份GTP层的报文分别在GTP-U层进行封装,在封装后的两份GTP报文中,GTP-U层的头分别包括双隧道中一个隧道的隧道端点标识TEID-1和TEID-2。其中一个隧道的TEID-1是RAN网元分配的,另一个隧道的TEID-2也是RAN网元分配的。之后,按照图5所示的协议栈,UPF网元再将两份GTP报文依次进行UDP/IP层、L2层、L1层的封装,从而生成第一下行报文和第二下行报文。显然,第一下行报文和第二下行报文具有相同的序列号(即,上述GTP序列号)。这样UPF网元可以通过之前跟RAN网元建立好的两个隧道将第一下行报文和第二下行报文发送给RAN网元。因而,RAN网元分别通过两个不同的隧道接收到相同的下行数据。
在报文传输过程中,RAN网元在GTP层接收到第一下行报文和第二下行报文之后,按照图5所示的协议栈,依次对L1、L2、UDP/IP层解封装,并得到GTP层,将相同的序列号的GTP报文去重,之后再按照空口协议层对去重之后的报文进行封装(例如,5G AN协议层:L1层、MAC层、RLC层和PDCP层),并将封装后的报文向终端设备转发。最后,终端设备得到一份报文,并得到该报文中包含的数据。
对比图7和图9后可以看出,在图7所示的双RAN网元方案中,UPF网元需要在位于终端设备和UPF网元之间的协议层来为重复报文分配相同的序列号(例如,UPF网元生成两份包含相同序列号的NCP报文),而在图9所示的单RAN网元方案中,UPF网元需要在位于该单RAN网元和UPF网元之间的协议层来为重复报文分配相同的序列号(例如,UPF网元是生成两份包含相同序列号的GTP报文)。但是对于网络侧设备而言,虽然核心网会从RAN网元接收收到两个不同的隧道标识,但是无法区分 无线接入网侧是采用双RAN网元或单RAN网元进行双路传输,进而,UPF网元就无法判断是生成两份包含相同序列号的NCP报文或生成两份包含相同序列号的GTP报文。因此不同双路机制,会影响UPF网元对下行数据报文的复制处理方式。
本发明实施例的报文传输方案要实现的是:RAN网元确定对URLLC业务采用可靠性机制,指示核心网采用的机制类型,触发SMF网元指示UPF网元应该在哪一个协议层对数据报文进行复制,从而实现URLLC业务双路的数据传输以及报文去重。
在介绍本申请实施例的报文传输方案之前,首先对本申请可能涉及的名词进行解释说明,具体如下:
本申请实施例所述的双RAN网元包括M-RAN网元和S-RAN网元,或者包括第一RAN网元和第二RAN网元,本申请实施例不限定RAN网元的具体名称。
本申请实施例所述的隧道可以指UPF网元与RAN网元之间用于进行PDU会话的隧道。双隧道可以包括第一隧道和第二隧道。其中,第一隧道和第二隧道传输的报文中的数据包相同。
本申请实施例所述的第一下行报文和第二下行报文为通过双隧道传输的下行报文,其中,第一下行报文通过第一隧道传输,第二下行报文通过第二隧道传输。本申请实施例所述的第一上行报文和第二上行报文为通过双隧道传输的上行报文,其中,第一上行报文通过第一隧道传输,第二上行报文通过第二隧道传输。
本申请实施例所述的双隧道与单RAN网元关联是指:UPF网元与一个RAN网元之间存在双隧道,UPF网元与该RAN网元之间通过双隧道传输报文。本申请实施例所述的双隧道与双RAN网元关联是指:M-RAN网元(或称第一RAN网元)与UPF网元之间存在第一隧道,并且UPF网元与M-RAN网元之间通过第一隧道传输上/下行报文;S-RAN网元(或称第二RAN网元)与UPF网元之间存在第二隧道,并且UPF网元与S-RAN网元之间通过第二隧道传输上/下行报文。
本申请实施例提供了一种报文传输方法,由RAN网元确定双隧道与单RAN网元关联或与双RAN网元关联,并且向SMF网元发送指示双隧道与单RAN网元关联或与双RAN网元关联的指示信息。在传输下行报文时,由UPF网元进行数据包复制并在封装数据包的第一协议层为两个数据包分配相同序列号。如果双隧道与单RAN网元关联,可以由RAN网元进行相同报文去重;如果双隧道与双RAN网元关联,由终端设备进行相同数据包去重。
参照图10中所示,该方法至少包括步骤S1001-S1005。
S1001、RAN网元确定双隧道与单RAN网元关联或与双RAN网元关联。
在一种可能的实施方式中,如果RAN网元与UPF网元之间建立的会话属于URLLC业务的会话(例如,RAN网元通过上述步骤S604或S804中的N2 SM信息获知该会话属于URLLC业务的会话),则该RAN网元(即,第一RAN网元)根据当前位置是否存在满足预设条件的第二RAN网元,确定双隧道与单RAN网元关联或与双RAN网元关联。其中,能满足高可靠性的双路传输的RAN网元为满足预设条件的第二RAN网元。例如,终端设备发送的测量报告可以用于指示终端设备与第二RAN网元之间的信号质量。第一RAN网元可以根据终端设备发送的测量报告,判断第二RAN网元是否满足高可靠性的双路传输。
示例性的,如果当前位置存在满足预设条件的第二RAN网元,则第一RAN网元确定双隧道与双RAN网元关联,并且第一RAN网元可以作为M-RAN网元,第二RAN网元可以作为S-RAN网元。如果当前位置不存在满足预设条件的第二RAN网元,则第一RAN网元确定双隧道与单RAN网元关联,第一RAN网元为该单RAN网元。
S1002、RAN网元通过AMF网元向SMF网元发送第一指示信息。
第一指示信息用于指示双隧道与单RAN网元关联或与双RAN网元关联。双隧道与双RAN网元关联时,该RAN网元可以为前文所述的第一RAN网元或M-RAN网元。
相应地,SMF网元接收第一指示信息。
S1003、SMF网元根据第一指示信息向UPF网元发送第二指示信息。
第二指示信息用于触发UPF网元为第一下行报文和第二下行报文在第一协议层添加相同的序列号。其中,第一下行报文和第二下行报文为通过双隧道传输的报文。
例如,当第一指示信息指示双隧道与单RAN网元关联时,第一协议层为位于该单RAN网元和UPF网元之间的协议层(例如,GTP-U层)。也就是说,当第一指示信息指示双隧道与单RAN网元关联时,第二指示信息用于触发UPF网元为第一下行报文和第二下行报文在GTP-U层添加相同的序列号。
例如,当第一指示信息指示双隧道与双RAN网元关联时,第一协议层为位于终端设备和UPF网元之间的协议层(例如,NCP层、TFCP层或HRP层)。也就是说,当第一指示信息指示双隧道与双RAN网元关联时,第二指示信息用于触发UPF网元为第一下行报文和第二下行报文在NCP层(或TFCP层或HRP层)添加相同的序列号。
例如,SMF网元可以向UPF网元发送转发规则,该转发规则包括第二指示信息。转发规则还用于指示UPF网元在接收到URLLC业务的报文时,通过双隧道传输给终端设备。相应地,UPF网元可以接收第二指示信息。例如,UPF网元可以从SMF网元接收包含该第二指示信息的转发规则。示例性的,该转发规则可以包含在N4会话修改请求(N4session modification request)消息中。
在一种可能的实施方式中,第二指示信息可以为第一指示信息。也就是说,SMF网元将收到的第一指示信息作为第二指示信息,向UPF网元发送,由UPF网元来决策第一协议层并执行为第一下行报文和第二下行报文在第一协议层添加相同的序列号。例如,当第一指示信息指示双隧道与单RAN网元关联时,UPF网元确定在位于该单RAN网元和UPF网元之间的协议层(例如,GTP-U层)为第一下行报文和第二下行报文在第一协议层添加相同的序列号。当第一指示信息指示双隧道与双RAN网元关联时,UPF网元确定在位于终端设备和UPF网元之间的协议层(例如,NCP层、TFCP层或HRP层)为第一下行报文和第二下行报文在第一协议层添加相同的序列号。
在另一种可能的实施方式中,SMF网元收到第一指示信息后,根据第一指示信息确定第二指示信息。例如,当第一指示信息指示双隧道与单RAN网元关联时,SMF网元确定UPF网元在位于该单RAN网元和UPF网元之间的协议层(例如,GTP-U层)为第一下行报文和第二下行报文添加相同的序列号。相应的,第二指示信息的内容可以是单RAN网元和UPF网元之间的协议层(例如,GTP-U层)的标识信息,例如,第二指示信息可以为:GTP-U。当第一指示信息指示双隧道与双RAN网元关联时,SMF网元确定UPF网元在位于终端设备和UPF网元之间的协议层(例如,NCP层、TFCP 层或HRP层)为第一下行报文和第二下行报文添加相同的序列号。相应的,第二指示信息的内容可以是终端设备和UPF网元之间的协议层(例如,NCP层)的标识信息,例如,第二指示信息可以为:NCP。UPF网元收到第二指示信息后,根据SMF网元的指示为第一下行报文和第二下行报文在相应的第一协议层添加相同的序列号。
在一种可能的实施方式中,SMF网元还可以指示UPF网元复制数据包以得到第一下行报文和第二下行报文。例如,SMF网元可以通过上述转发规则,指示UPF网元复制数据包以得到第一下行报文和第二下行报文。
需要说明的是,该相同的序列号可以通过复制得到或者通过分配得到。例如,一种方法是:UPF网元为报文添加序列号之后,将该报文复制成两份。另一种方法是,UPF网元先将报文复制成两份,再分别添加相同的序列号。
S1004、UPF网元为第一下行报文和第二下行报文在第一协议层添加相同的序列号。
结合前面图7或图9中的描述,如果UPF网元接收到来自数据网络IP报文,UPF网元可以根据存储的会话上下文和IP报文中的UE IP识别出该报文发给哪个终端设备。
在一种可能的实施方式中,UPF网元可以根据SMF网元的指示,复制数据包(即,IP报文中的数据)以得到第一下行报文和第二下行报文。
在一种可能的实施方式中,UPF网元可以根据第二指示信息,为第一下行报文和第二下行报文在第一协议层添加相同的序列号。
如上所述,当第二指示信息指示UPF网元在位于该单RAN网元和UPF网元之间的协议层(例如,GTP-U层)为第一下行报文和第二下行报文添加相同的序列号时,相应的,UPF网元为第一下行报文和第二下行报文在位于该单RAN网元和UPF网元之间的协议层(例如,GTP-U层)添加相同的序列号。此外,UPF网元分别在第一下行报文和第二下行报文的GTP-U头中添加第一隧道的TEID和第二隧道的TEID,可参考图9的描述。
当第二指示信息指示UPF网元在位于终端设备和UPF网元之间的协议层(例如,NCP层、TFCP层或HRP层)为第一下行报文和第二下行报文添加相同的序列号时,相应的,UPF网元为第一下行报文和第二下行报文在位于该终端设备和UPF网元之间的协议层(例如,NCP层、TFCP层或HRP层)添加相同的序列号。此外,UPF网元分别在第一下行报文和第二下行报文的GTP-U头中添加第一隧道的TEID和第二隧道的TEID,可参考图7的描述。
当第二指示信息指示双隧道与双RAN网元关联时,UPF网元可以根据第二指示信息,为第一下行报文和第二下行报文在位于终端设备和UPF网元之间的协议层(例如,NCP层、TFCP层或HRP层)添加相同的序列号。此外,UPF网元分别在第一下行报文和第二下行报文的GTP-U头中添加第一隧道的TEID和第二隧道的TEID,可参考图7的描述。
当第二指示信息指示双隧道与单RAN网元关联时,UPF网元可以根据第二指示信息,为第一下行报文和第二下行报文在位于RAN网元和UPF网元之间的协议层(例如,GTP-U层)添加相同的序列号。此外,UPF网元分别在第一下行报文和第二下行报文的GTP-U头中添加第一隧道的TEID和第二隧道的TEID,可参考图9的描述。
S1005、UPF网元通过双隧道传输第一下行报文和第二下行报文。
在一种可能的实施方式中,UPF网元通过双隧道中的第一隧道传输第一下行报文,通过双隧道中的第二隧道传输第二下行报文。
如果双隧道与单RAN网元关联,UPF网元通过双隧道中的第一隧道向RAN网元发送第一下行报文,通过双隧道中的第二隧道向RAN网元发送第二下行报文,该方法还可以包括步骤S1006-S1007。
如果双隧道与双RAN网元关联,UPF网元通过双隧道中的第一隧道向M-RAN网元发送第一下行报文,通过双隧道中的第二隧道向S-RAN网元发送第二下行报文,该方法还可以包括步骤S1008-S1010。
S1006、RAN网元通过双隧道中的第一隧道从UPF网元接收第一下行报文,通过双隧道中的第二隧道从UPF网元接收第二下行报文后,对第一下行报文和第二下行报文去重。
在一种可能的实施方式中,RAN网元可以根据第一下行报文和第二下行报文在第一协议层相同的序列号,确定第一下行报文和第二下行报文中封装在第一协议层上层的数据包相同。
示例性的,RAN网元可以对在GTP层具有相同序列号的第一下行报文和第二下行报文进行去重,并获取封装在第一下行报文或第二下行报文的GTP层上层的数据包。
S1007、RAN网元向终端设备发送第一下行报文或第二下行报文中的数据包。
相应地,终端设备接收第一下行报文或第二下行报文中的数据包。该数据包为上述封装在第一下行报文或第二下行报文的GTP层上层的数据包。
S1008、M-RAN网元通过双隧道中的第一隧道从UPF网元接收第一下行报文后,向终端设备发送第一下行报文。
S1009、S-RAN网元通过双隧道中的第二隧道从UPF网元接收第二下行报文后,向终端设备发送第二下行报文。
其中,该第一下行报文和第二下行报文中包括第一协议层。
相应地,终端设备接收第一上行报文和第二下行报文。
S1010、终端设备对第一下行报文和第二下行报文去重。
例如,终端设备根据第一下行报文和第二下行报文在第一协议层相同的序列号,确定第一下行报文和第二下行报文中封装在第一协议层上层的数据包相同,进而对在NCP层(或TFCP层或HRP层)具有相同序列号的第一下行报文和第二下行报文进行去重,并获取封装在第一下行报文或第二下行报文的NCP层(或TFCP层或HRP层)上层的数据包。
本申请实施例提供的报文传输方法,由RAN网元确定双隧道与单RAN网元关联或与双RAN网元关联,并将对应的指示信息发送给AMF网元,该指示信息最终发送给SMF网元,并触发UPF网元为第一报文和第二报文在第一协议层添加相同的序列号。实现了报文通过双路传输时,UPF网元能够确定如何为下行报文添加序列号。
图11和图12为图10所示报文传输方案的两种实现方式。在图11的实现方式中,单RAN网元场景下的RAN网元或双RAN网元场景下的M-RAN网元通过不同的消息向SMF网元传递第一指示信息和两份不同的RAN侧隧道信息。在图12的实现方式中,单RAN网元场景下的RAN网元或双RAN网元场景下的M-RAN网元通过同一条消息 向SMF网元传递第一指示信息和两份不同的RAN侧隧道信息。图11和图12将结合图6、图8和图10进行描述。
如图11所示,该流程包括如下步骤:
S1101、终端设备通过当前接入的RAN网元向AMF网元发送NAS消息。
例如,可参考图6中步骤S601-S603的描述。AMF网元在选择SMF网元后,将收到的NAS消息中包含的PDU会话的QFI、DNN、S-NSSAI等信息发送至SMF网元。
S1102、SMF网元根据PDU会话的QFI、DNN、S-NSSAI信息中的至少一者确定该会话为URLLC业务的会话。
在一种可能的实施方式中,SMF网元可以根据该S-NSSAI与URLLC切片相对应确定该会话为URLLC业务的会话;在另一种可能的实施方式中,SMF网元可以根据该DNN与URLLC业务相关联确定该会话为URLLC业务的会话;在又一种可能的实施方式中,SMF网元可以根据该PDU会话标识与高可靠性需求的QFI相对应确定该会话为URLLC业务的会话,等等,本申请实施例并不限定。
S1103、SMF网元通过AMF网元向RAN网元发送指示该会话为URLLC业务的会话的指示信息。
示例性的,指示该会话为URLLC业务的会话的指示信息可以为PDU会话的QFI、DNN、S-NSSAI信息中的至少一者;或者是单独指示该会话为URLLC业务的标志位或指示符。
指示该会话为URLLC业务的会话的指示信息可以包含在N2会话管理信息(N2 SM info)中,SMF网元向AMF网元发送该N2会话管理信息可以通过调用AMF网元的服务化操作(Namf_Communication_N1N2MessageTransfer)来发送。
AMF网元收到N2会话管理信息后通过N2PDU会话请求(N2 PDU session request)消息发送给RAN网元。
S1104、RAN网元根据该指示信息确定双隧道与单RAN网元关联或与双RAN网元关联。
RAN网元可以根据上述步骤S1102至S1103涉及的指示信息来确定确定该会话为URLLC业务的会话。进一步地,为了为该会话提供高可靠性传输,则RAN网元也可以根据图6或图8中提到的方式来确定双隧道与单RAN网元关联或与双RAN网元关联,此处不再重复。
S1105、RAN网元通过AMF网元向SMF网元发送第一指示信息。
第一指示信息参考本申请前面实施例中的描述,此处不再重复。
示例性的,该第一指示信息可以包含在N2会话管理信息(N2 SM info)中,在RAN网元向AMF网元发送第一指示信息时,该N2会话管理信息可以包含在N2PDU会话请求确认(N2 PDU session request ACK)消息中。在AMF网元向SMF网元发送第一指示信息时,该N2会话管理信息可以通过调用SMF网元的服务化操作(Nsmf_PDUSession_UpdateSMContext request)来发送。相应地,SMF网元接收第一指示信息。
相应地,SMF网元可以向AMF网元发送响应消息,该响应消息用于对PDU会话更新会话管理上下文请求消息进行响应。示例性的,SMF网元可以向AMF网元发送 PDU会话更新SM上下文响应(Nsmf_PDUSession_UpdateSMContext response)消息。
S1106、SMF网元通过AMF网元向RAN网元发送N1会话管理信息(N1 SM info)和N2会话管理信息(N2 SM info)。
由于SMF网元获知RAN网元满足双隧道的高可靠性传输,则N2会话管理信息中包括SMF网元分配的两个UPF隧道信息,即tunnel-1和tunnel-2。
示例性的,在SMF网元向AMF网元发送N1会话管理信息和N2会话管理信息时,N1会话管理信息和N2会话管理信息可以通过调用AMF网元的服务化操作(Namf_Communication_N1N2MessageTransfer)来发送。其中,N1会话管理信息可以包括发送给终端设备的会话接受消息;N2会话管理信息可以包括发送给RAN网元的用户面隧道信息、PDU会话标识、至少一个QFI(QFI(s))、至少一个QoS配置文件(QoS profile(s)),会话聚合最大比特速率(session aggregate maximum bit rate,session-AMBR)、PDU会话类型(PDU session type)等等。
示例性的,在AMF网元向RAN网元发送N1会话管理信息和N2会话管理信息时,N1会话管理信息和N2会话管理信息可以包含在N2PDU会话请求(N2 PDU session request)消息中。
相应地,RAN网元接收N1会话管理信息和N2会话管理信息。
相应地,RAN网元可以向AMF网元发送响应消息,该响应消息用于对N2 PDU会话请求消息进行响应。示例性的,该响应消息可以为N2PDU会话响应(N2 PDU session response)消息。
需要说明的是,考虑到如果当前RAN网元的空口质量不佳,或者空口信令拥塞无法满足高可靠性传输,则该会话建立失败,导致核心网双隧道信息(CN tunnel info-1和CN tunnel info-2)等参数传输资源浪费;因此,SMF网元可以在S1103步骤中仅仅包含用于触发该RAN网元为会话启动高可靠性传输的N2会话管理信息。
另一种实现方法是:S1103步骤中N2会话管理信息和N1会话管理信息,且N2会话管理信息中包括了指示该会话为URLLC业务的会话的指示信息、核心网双隧道信息(CN tunnel info-1和CN tunnel info-2),服务质量(quality of service,QoS)参数、会话类型等参数。则步骤S1106可以省略。
S1107、RAN网元发起与终端设备之间的无线连接建立过程。
示例性的,RAN网元可以向终端设备发送N1会话管理信息,该N1会话管理信息可以包含在PDU会话建立接受(PDU session establishment accept)消息中,PDU会话建立接受消息可以包含在AN特定资源建立(AN specific resource setup)消息中。
S1108、RAN网元获取双隧道的隧道信息。
例如,如果双隧道与双RAN网元关联,则该RAN网元作为M-RAN网元,执行S-RAN网元发现流程(可参考图6中步骤S606和S607的描述)。并且,M-RAN网元分配双隧道中的第一隧道的隧道信息,S-RAN网元分配双隧道中的第二隧道的隧道信息。
如果双隧道与单RAN网元关联,则该RAN网元分配双隧道中的第一隧道的隧道信息和第二隧道的隧道信息。例如,不同的第一隧道的隧道信息与第二隧道的隧道信息可以是不同的TEID。
S1109、RAN网元通过AMF网元向SMF网元发送双隧道的隧道信息。
在一种可能的实施方式中,如果双隧道与双RAN网元关联,则该RAN网元可以为M-RAN网元,即M-RAN网元向AMF网元发送第一隧道的隧道信息和第二隧道的隧道信息,并且第一隧道的隧道信息和第二隧道的隧道信息可以包含在一个消息中或者包含在不同消息中。
在另一种可能的实施方式中,如果双隧道与双RAN网元关联,该RAN网元可以包括M-RAN网元和S-RAN网元,即M-RAN网元向AMF网元发送第一隧道的隧道信息,S-RAN网元向AMF网元发送第二隧道的隧道信息。
示例性的,在RAN网元向AMF网元发送双隧道的隧道信息时,双隧道的隧道信息(第一隧道的隧道信息和第二隧道的隧道信息)可以包含在N2会话管理信息(N2 SM info)中,N2会话管理信息可以包含在N2会话响应(N2 PDU session response)消息中。在AMF网元向SMF网元发送双隧道的隧道信息时,双隧道的隧道信息可以包含在N2会话管理信息(N2 SM info)中,N2会话管理信息可以通过调用SMF网元的服务化操作(Nsmf_PDU session updateSM context request)来发送。
相应地,SMF网元可以向AMF网元发送响应消息,该响应消息用于对PDU会话更新会话管理上下文请求进行响应。示例性的,SMF网元可以向AMF网元发送PDU会话更新SM上下文响应(Nsmf_PDU session updateSM context response)消息。
S1110、SMF网元根据第一指示信息向UPF网元发送双隧道的隧道信息以及转发规则。
示例性的,双隧道的隧道信息以及转发规则可以包含在N4会话修改请求(N4 session modification request)消息中。
转发规则包括SMF网元根据第一指示信息确定的第二指示信息,具体见本申请前面所述实施例,在此不再重复。
参照图12中所示,该报文传输方法可以包括以下步骤:
S1201、终端设备通过当前接入的RAN网元向AMF网元发送NAS消息。
例如,可参考图6中步骤S601-S603的描述。AMF网元在选择SMF网元后,将收到的NAS消息中包含的PDU会话的QFI、DNN、S-NSSAI等信息发送至SMF网元。
S1202、SMF网元根据PDU会话的QFI、DNN、S-NSSAI信息中的至少一者确定该会话为URLLC业务的会话。
S1203、SMF网元通过AMF网元向RAN网元发送指示该会话为URLLC业务的会话的指示信息。
步骤S1202和S1203可参考图11中步骤S1102和S1103的描述,在此不再重复。
S1204、RAN网元根据该指示信息确定双隧道与单RAN网元关联或与双RAN网元关联,并且根据确定结果生成第一指示信息,获取双隧道的隧道信息。
RAN网元如何确定双隧道与单RAN网元关联或与双RAN网元关联参考本申请前面实施例中的描述,此处不再重复。
RAN网元如何获取双隧道的隧道信息可参考图6、图8或图11中步骤S1108的描述,在此不再重复。
S1205、RAN网元通过AMF网元向SMF网元发送第一指示信息以及双隧道的隧 道信息。
示例性的,第一指示信息以及双隧道的隧道信息可以包含在N2会话管理信息(N2 SM info)中,在RAN网元向AMF网元发送第一指示信息以及双隧道的隧道信息时,该N2会话管理信息可以包含在N2PDU会话请求确认(N2PDU session request ACK)消息中。在AMF网元向SMF网元发送第一指示信息以及双隧道的隧道信息时,该N2会话管理信息可以通过调用SMF网元的服务化操作(Nsmf_PDUSession_UpdateSMContext request)来发送。
相应地,SMF网元可以向AMF网元发送响应消息,该响应消息用于对PDU会话更新会话管理上下文请求消息进行响应。示例性的,SMF网元可以向AMF网元发送PDU会话更新SM上下文响应(Nsmf_PDUSession_UpdateSMContext response)消息。
相应地,SMF网元接收第一指示信息以及双隧道的隧道信息。
S1206、SMF网元根据第一指示信息向UPF网元发送第二指示信息以及双隧道的隧道信息。
第二指示信息以及双隧道的隧道信息参考本申请前面实施例中的描述,此处不再重复。
示例性的,该第二指示信息可以包含在转发规则中。该转发规则以及双隧道的隧道信息可以包含在N4会话修改请求(N4 session modification request)消息中。相应地,UPF网元接收第二指示信息以及双隧道的隧道信息。
S1207、SMF网元通过AMF网元向RAN网元发送N1会话管理信息(N1 SM info)和N2会话管理信息(N2 SM info)。
该步骤与步骤S1106类似,在此不再重复。
S1208、RAN网元发起与终端设备之间的无线连接建立过程。
该步骤与步骤S1107类似,在此不再重复。
类似的,上述报文传输方法同样适用于上行报文的传输。在传输上行报文时,如果双隧道与单RAN网元关联,可以由RAN网元进行数据包复制并在封装数据包的第一协议层为两个数据包分配相同序列号,如图13中的步骤S1301-S1303和S1306所示。如果双隧道与双RAN网元关联,可以由终端设备进行数据包复制并在封装数据包的第一协议层为两个数据包分配相同序列号,如图13中的步骤S1304-S1306所示。例如:
S1301、在双隧道与单RAN网元关联的场景下,终端设备向该单RAN网元发送第一上行报文。
相应地,该单RAN网元从终端设备接收第一上行报文。
第一上行报文可以包括终端设备与UPF网元之间的协议层。示例性的,终端设备与UPF网元之间的协议层可以为NCP层。
S1302、RAN网元确定双隧道与单RAN网元关联,复制第一上行报文得到第二上行报文,为第一上行报文和第二上行报文在第一协议层添加相同的序列号。
其中,该RAN网元即为上述单RAN网元。
例如,由于RAN网元在上述步骤S1001、S1104或S1204确定了双隧道与单RAN网元关联,RAN网元收到第一上行报文后可获知当前的双隧道与单RAN网元关联,进而复制第一上行报文得到第二上行报文,为第一上行报文和第二上行报文在第一协 议层添加相同的序列号。
示例性的,第一协议层可以为GTP层。RAN网元可以在GTP层复制数据包,为第一上行报文和第二上行报文在GTP层添加相同的序列号。RAN网元还可以根据第一隧道的TEID为第一上行报文添加GTP头;根据第二隧道的TEID为第二上行报文添加GTP头。
添加相同序列号的过程见本申请前面所述实施例,在此不再重复。
S1303、RAN网元通过双隧道向UPF网元发送第一上行报文和第二上行报文。
例如,RAN网元通过双隧道中的第一隧道向UPF网元发送第一上行报文,通过双隧道中的第二隧道向UPF网元发送第二上行报文。
在一种可能的实施方式中,UPF网元通过双隧道中的第一隧道接收第一上行报文,通过双隧道中的第二隧道接收第二上行报文。
相应地,UPF网元通过双隧道接收第一上行报文和第二上行报文。
S1304、在双隧道与双RAN网元关联的场景下,终端设备生成在第一协议层具有相同序列号的第一上行报文和第二上行报文,向M-RAN网元发送第一上行报文,向S-RAN网元发送第二上行报文。
相应地,M-RAN网元从终端设备接收第一上行报文,S-RAN网元从终端设备接收第二上行报文。
第一上行报文和第二上行报文在第一协议层具有相同的序列号,并且第一上行报文和第二上行报文中封装在第一协议层上层的数据包相同。
示例性的,第一协议层可以为NCP层、TFCP层或HRP层。
S1305、M-RAN网元确定双隧道与双RAN网元关联,通过双隧道中的第一隧道向UPF网元发送第一上行报文;S-RAN网元确定双隧道与双RAN网元关联,通过双隧道中的第二隧道向UPF网元发送第二上行报文。
例如,由于M-RAN网元在上述步骤S1001、S1104或S1204确定了双隧道与双RAN网元关联,M-RAN网元收到第一上行报文后可获知当前的双隧道与双RAN网元关联,进而无需做步骤S1302中的处理,可按照图5所示的协议栈,对第一上行报文逐次按照L1层、L2层、UDP/IP层和GTP-U层封装之后通过双隧道中的第一隧道向UPF网元发送第一上行报文。
由于S-RAN网元为双RAN网元中的第二RAN网元,因此,S-RAN网元收到第二上行报文后可获知当前的双隧道与双RAN网元关联,也无需做步骤S1302中的处理,可按照图5所示的协议栈,对第一上行报文逐次按照L1层、L2层、UDP/IP层和GTP-U层封装之后通过双隧道中的第二隧道向UPF网元发送第二上行报文。
相应地,UPF网元通过双隧道中的第一隧道接收第一上行报文,通过双隧道中的第二隧道接收第二上行报文。
S1306、对于上述任一场景,UPF网元通过双隧道接收到第一上行报文和第二上行报文后,根据第一上行报文和第二上行报文在第一协议层相同的序列号,确定第一上行报文和第二上行报文中封装在第一协议层上层的数据包相同。
相应地,UPF网元可以获取第一上行报文或第二上行报文中的数据包。
步骤S1306可参考图10中步骤S1005的描述,此处不再赘述。
由于终端设备的移动性会导致终端设备在不同RAN网元之间切换,参照图14中所示,终端设备可能从与双隧道关联的双RAN网元高可靠场景切换至单RAN网元高可靠场景。这样,就需要当前服务终端设备的RAN网元重新确定双隧道与单RAN网元关联。
需要说明的是,在切换之前,源侧的双隧道与双RAN网元(包括源M-RAN网元和源S-RAN网元)关联。终端设备由于移动等原因从双RAN网元切换至目标RAN网元,其中,源M-RAN网元采用基于Xn接口的切换,并且源M-RAN网元与目标RAN网元建立一条转发路径,源S-RAN网元与目标RAN网元建立一条转发路径。
基于上述切换的场景,本申请实施例提供了另一种报文传输方法。参照图15中所示,该方法包括:
S1501、双RAN网元中的M-RAN网元选择目标RAN网元,发起终端设备从源侧切换到目标侧。
例如,终端设备在源侧通过双RAN网元的高可靠场景建立了与核心网的双隧道连接,由于终端设备的移动性,终端设备从双RAN网元的服务区域移动到目标区域,导致双RAN网元中的M-RAN网元需要在目标侧选择一个合适的目标RAN网元,继续为终端设备提供高可靠支持,实现终端设备从源侧的双隧道切换到目标侧的双隧道。
S1502、目标RAN网元通过AMF网元向SMF网元发送第一指示信息以及双隧道的隧道信息。
此时该第一指示信息指示双隧道与单RAN网元关联。
示例性的,在目标RAN网元向AMF网元发送第一指示信息以及双隧道的隧道信息时,第一指示信息以及双隧道的隧道信息可以包含在N2 SM信息中。N2 SM信息可以包含在N2路径切换请求(N2 path switch request)消息中。在AMF网元向SMF网元发送第一指示信息以及双隧道的隧道信息时,该N2会话管理信息可以通过调用SMF网元的服务化操作(Nsmf_PDUSession_UpdateSMContext Request)来发送。
该步骤与步骤S1205类似,在此不再重复。
需要说明的是,在该步骤后,SMF网元可以向AMF网元发送响应消息,相应地,AMF网元可以接收响应消息。
S1503、SMF网元根据第一指示信息向UPF网元发送第二指示信息。
第二指示信息参考本申请前面实施例中的描述,此处不再重复。
S1504、AMF网元向目标RAN网元发送切换确认消息。
示例性的,该切换确认消息可以为N2路径切换请求确认(N2 path switch request ACK)消息。
需要说明的是,AMF网元可以在接收如步骤S1502所述的响应消息后,向RAN网元发送切换确认消息。并且步骤S1504与步骤S1503无先后执行顺序。
相应地,目标RAN网元接收切换确认消息,并且获知切换流程成功。
S1505、目标RAN网元向源M-RAN网元发送资源释放请求消息,以触发源M-RAN网元释放上下文,由源M-RAN网元触发源S-RAN网元释放上下文。
S1506、终端设备发起注册更新流程。
类似的,参照图16中所示,终端设备可能从单RAN网元切换至双RAN网元, 此时,与单RAN网元关联的双隧道切换为与双RAN网元关联的双隧道。
需要说明的是,在切换之前,源侧的双隧道与单RAN网元关联。终端设备由于移动等原因从源RAN网元切换至目标M-RAN网元,其中,源RAN网元采用基于Xn的切换,并且源RAN网元与目标M-RAN网元建立一条转发路径,并且目标M-RAN网元执行目标S-RAN网元的选择流程。
基于上述切换的场景,本申请实施例提供了另一种报文传输方法。参照图17中所示,该方法包括:
S1701、单RAN网元选择目标M-RAN网元,发起终端设备从源侧切换到目标侧。
具体地,终端设备在源侧通过单RAN网元的高可靠场景建立了与核心网的双隧道连接,由于终端设备的移动性,终端设备从单RAN网元的服务区域移动到目标区域,导致单RAN网需要在目标侧选择一个合适的目标RAN网元,继续为终端设备提供高可靠支持。
该目标RAN网元为双基站中的M-RAN网元,并由目标M-RAN网元选择一个目标S-RAN网元,实现终端设备从源侧的双隧道切换到目标侧的双隧道。
S1702、目标M-RAN网元通过AMF网元向SMF网元发送第一指示信息以及双隧道的隧道信息。
此时,该第一指示信息指示双隧道与双RAN网元关联。
该步骤与步骤S1502类似,在此不再重复。
S1703、SMF网元根据第一指示信息向UPF网元发送第二指示信息。
该步骤与步骤S1503类似,此处不再重复。
S1704、AMF网元向目标M-RAN网元发送切换确认消息。
相应地,目标M-RAN网元接收切换确认消息,并且获知切换流程成功。
S1705、目标M-RAN网元向源RAN网元发送资源释放请求消息,以触发源RAN网元释放上下文。
S1706、终端设备发起注册更新流程。
因此,结合上述图5至图17的描述,本申请实施例公开了一种报文传输方法,如图18A所示,该方法包括:
S1801、SMF网元接收第一指示信息。
其中,第一指示信息用于指示双隧道与单接入网网元关联或与双接入网网元关联。
S1802、SMF网元根据第一指示信息,向UPF网元发送第二指示信息。
第二指示信息用于触发UPF网元为第一报文和第二报文在第一协议层添加相同的序列号;其中,第一报文和第二报文为通过双隧道传输的报文。
在一种可能的实施方式中,第二指示信息可以为第一指示信息。在另一种可能的实施方式中,SMF网元可以根据第一指示信息确定第二指示信息。
在一种可能的实施方式中,SMF网元向UPF网元发送第二指示信息可以包括:SMF网元向UPF网元发送转发规则,转发规则可以包括第二指示信息。
例如,当第一指示信息指示双隧道与单RAN网元关联时,第一协议层为位于单RAN网元和UPF网元之间的协议层。当第一指示信息指示双隧道与双RAN网元关联时,第一协议层为位于终端设备和UPF网元之间的协议层。
本申请实施例公开的报文传输方法,由SMF网元接收指示双隧道与单接入网网元关联或与双接入网网元关联的指示信息,并据此触发UPF网元为在该双隧道中传输的第一报文和第二报文在第一协议层添加相同的序列号。实现报文通过双路传输时,UPF网元能够确定如何为下行报文添加序列号。
在一种可能的实施方式中,如图18A所示,该方法还可以包括S1803:
S1803、SMF网元指示UPF网元复制数据包,以得到第一报文和第二报文。
此外,本申请实施例公开了一种报文传输方法,如图18B所示,该方法包括:
S1811、UPF网元从SMF网元接收指示信息。
该指示信息用于触发UPF网元为第一报文和第二报文在第一协议层添加相同的序列号。
在一种可能的实施方式中,指示信息用于指示双隧道与单RAN网元关联或与双RAN网元关联。
在一种可能的实施方式中,UPF网元从SMF网元接收指示信息,包括:UPF网元从SMF网元接收转发规则,转发规则包括指示信息。
S1812、UPF网元根据指示信息,为第一报文和第二报文在第一协议层添加相同的序列号。
在一种可能的实施方式中,当指示信息指示双隧道与单RAN网元关联时,所述UPF网元根据指示信息,为第一报文和第二报文在第一协议层添加相同的序列号,包括:UPF网元根据指示信息,为第一报文和第二报文在位于RAN网元和UPF网元之间的协议层添加相同的序列号。
在一种可能的实施方式中,当指示信息指示双隧道与双RAN网元关联时,UPF网元根据指示信息,为第一报文和第二报文在第一协议层添加相同的序列号,包括:UPF网元根据指示信息,为第一报文和第二报文在位于终端设备和UPF网元之间的协议层添加相同的序列号。
S1813、UPF网元通过双隧道传输第一报文和第二报文。
本申请实施例公开的报文传输方法,UPF网元可以接收SMF网元的指示,或者根据双隧道与双RAN网元关联或与单RAN网元关联,为第一报文和第二报文在第一协议层添加相同的序列号,并通过双隧道传输第一报文和第二报文。实现了报文通过双路传输时,UPF网元能够确定如何为下行报文添加序列号。
可选的,该方法还可以包括:UPF网元根据SMF网元的指示,复制数据包,以得到第一报文和第二报文。
此外,本申请实施例公开了一种报文传输方法,如图18C所示,该方法包括:
S1821、RAN网元确定双隧道与单RAN网元关联或与双RAN网元关联。
S1822、RAN网元向AMF网元发送第一指示信息。
其中,第一指示信息用于指示双隧道与单RAN网元关联或与双RAN网元关联。
在一种可能的实施方式中,双隧道与单RAN网元关联,所述单RAN网元为上述RAN网元。如图18C所示,该方法还可以包括S1823、S1824和S1825:
S1823、RAN网元通过双隧道中的第一隧道从UPF网元接收第一下行报文,通过双隧道中的第二隧道从UPF网元接收第二下行报文。
其中,第一下行报文和第二下行报文在第一协议层具有相同的序列号。
S1824、RAN网元根据第一下行报文和第二下行报文在第一协议层相同的序列号,确定第一下行报文和第二下行报文中封装在第一协议层上层的数据包相同。
在一种可能的实施方式中,第一协议层为位于RAN网元和UPF网元之间的协议层。
S1825、RAN网元向终端设备发送第一下行报文或第二下行报文中的数据包。
本申请实施例公开的报文传输方法,由RAN网元确定双隧道与单RAN网元关联或与双RAN网元关联,并将对应的指示信息通过AMF网发送给SMF网元,并触发UPF网元为第一报文和第二报文在第一协议层添加相同的序列号。实现了报文通过双路传输时,UPF网元能够确定如何为下行报文添加序列号。
在另一个实施例中,以下报文传输方案适用于如图19所示的协议栈。图19中的终端设备、RAN、UPF可以是图1中的终端设备101、(R)AN网元102、UPF网元105。如图19所示,终端设备与UPF网元之间的协议层包括NCP层和PDU层;终端设备与RAN网元之间的协议层包括L1层、MAC层、RLC层、PDCP层和NCP层;RAN网元与UPF网元之间的协议层包括L1层、L2层、UDP/IP层、GTP-U层和NCP层。
对比图5和图19可以看出,图19所示协议栈与图5所示协议栈的差别在于:RAN网元中的GTP层上增加了NCP层,也就是说,RAN网元也支持NCP层。因此,不管是双隧道与单RAN网元关联还是与双RAN网元关联,UPF网元都可以在NCP层进行报文复制/去重。所以,UPF网元可以无需知道双隧道与单RAN网元关联或与双RAN网元关联。在传输下行报文时,UPF网元生成两份在NCP层具有相同序列号的下行报文并向RAN网元传输。如果双隧道与双RAN网元关联,双RAN网元将各自接收到的在NCP层具有相同序列号的下行报文分别发送给终端设备,并由终端设备对相同报文进行去重。如果双隧道与单RAN网元关联,单RAN网元接收到两份在NCP层具有相同序列号的报文之后,由于该RAN网元支持NCP层,可以判断出该下行报文是重复报文,于是对相同报文进行去重。
此外,协议栈中NCP层也可以替换为TFCP层或HRP层。以下以NCP层为例介绍相应的报文传输方案。
参照图20中所示,该报文传输方法包括如下步骤:
S2001、UPF网元为第一下行报文和第二下行报文在第一协议层添加相同的序列号。
其中,所述第一报文和所述第二报文为通过所述双隧道传输的报文。
示例性的,第一协议层为位于终端设备/RAN/UPF之间的协议层(例如,图19中的NCP层)。UPF网元可以在NCP层复制数据包,为第一下行报文和第二下行报文在NCP层添加相同的序列号,根据第一隧道的TEID为第一上行报文添加GTP头,根据第二隧道的TEID为第二上行报文添加GTP头。添加相同序列号的过程见本申请前面所述实施例,在此不再重复。
S2002、UPF网元通过双隧道传输第一下行报文和第二下行报文。
例如,UPF网元通过双隧道中的第一隧道传输第一下行报文,通过双隧道中的第二隧道传输第二下行报文。
如果双隧道与双RAN网元关联,该方法还可以包括步骤S2006-S2010。步骤S2006-S2010可参考图10中步骤S1008-S1010的描述,此处不再赘述。如果双隧道与单RAN网元关联,该方法还可以包括步骤S2003-S2005。
S2003、RAN网元通过双隧道中的第一隧道从UPF网元接收第一下行报文,通过双隧道中的第二隧道从UPF网元接收第二下行报文后,RAN网元确定双隧道与单RAN网元关联。
其中,所述单RAN网元即为该RAN网元。
S2004、RAN网元对在第一协议层具有相同序列号的第一下行报文和第二下行报文进行去重,得到第一下行报文或第二下行报文中的数据包。
在一种可能的实施方式中,RAN网元可以根据第一下行报文和第二下行报文在第一协议层相同的序列号,确定第一下行报文和第二下行报文中封装在第一协议层上层的数据包相同。
示例性的,RAN网元可以对在NCP层(或者,TFCP层或HRP层)具有相同序列号的第一下行报文和第二下行报文进行去重,并获取封装在第一下行报文或第二下行报文的NCP层(或者,TFCP层或HRP层)上层的数据包。
S2005、RAN网元向终端设备发送第一下行报文或第二下行报文中的数据包。
该数据包为上述封装在第一下行报文或第二下行报文的NCP层(或者,TFCP层或HRP层)上层的数据包。
在一种可能的实施方式中,RAN网元可以根据第一下行报文和第二下行报文在第一协议层相同的序列号,确定第一下行报文和第二下行报文中封装在第一协议层上层的数据包相同。
示例性的,RAN网元在接收到第一下行报文和第二下行报文后,可以去掉封装的GTP头,对在NCP层(或TFCP层或HRP层)具有相同序列号的第一下行报文和第二下行报文进行去重,并获取封装在第一下行报文或第二下行报文的NCP层(或TFCP层或HRP层)上层的数据包。
在一种可能的实施方式中,RAN网元向终端设备发送的第一下行报文或第二下行报文可以包括第一协议层,示例性的,第一协议层为NCP层、TFCP层或HRP层时,第一下行报文或第二下行报文可以包括NCP层、TFCP层或HRP层。包括第一协议层可以降低终端设备从双隧道与单基站关联的场景切换到双隧道与双基站关联的场景时,终端设备对下行数据报文处理的逻辑复杂度。
在另一种可能的实施方式中,RAN网元向终端设备发送的第一下行报文或第二下行报文也可以不包括第一协议层。不包括第一协议层可以降低空口信令的开销。这是由于双隧道与单RAN网元关联的场景下,RAN网元已经根据第一下行报文和第二下行报文在第一协议层相同的序列号,确定第一下行报文和第二下行报文中封装在第一协议层上层的数据包相同,进一步地,终端设备无需再根据第一协议层的序列号来判断下行报文是否相同,因此,RAN网元向终端设备发送的第一下行报文或第二下行报文也可以不包括第一协议层。相应地,终端设备接收第一下行报文或第二下行报文中的数据包。这样,终端设备从RAN网元收到的第一下行报文或第二下行报文就是由RAN网元已经去重之后的报文,终端设备无需再执行去重动作。
本申请实施例提供的报文传输方法,RAN网元中的增加了终端设备和UPF网元之间的协议层,使得不管是双隧道与单RAN网元关联还是与双RAN网元关联,UPF网元都可以在该协议层进行报文复制/去重,并在该协议层添加相同序列号。实现报文通过双路传输时,UPF网元能够确定如何为下行报文添加序列号。
[根据细则91更正 15.03.2019] 
类似的,上述报文传输方法同样适用于上行报文的传输。在传输上行报文时,如果双隧道与单RAN网元关联,可以由RAN网元进行数据包复制并在封装数据包的第一协议层为两个数据包分配相同序列号,如图21中的步骤S2101-S2103及S2106。如果双隧道与双RAN网元关联,可以由终端设备进行数据包复制并在封装数据包的第一协议层为两个数据包分配相同序列号。如图21中的步骤S2104-S2106。步骤S2104-S2106可参考图13中步骤S1304-S1306的描述,此处不再赘述。例如:
S2101、在双隧道与单RAN网元关联的场景下,终端设备向该单RAN网元发送第一上行报文。
在一种可能的实施方式中,第一上行报文可以包括终端设备、RAN网元与UPF网元之间的协议层,即包括第一协议层。无论双隧道与单RAN网元关联还是与双RAN网元关联,第一上行报文都可以包括第一协议层,这样可以降低终端设备从双隧道与单RAN网元关联的场景切换到双隧道与双RAN网元关联的场景时,终端设备对上行数据报文处理的逻辑复杂度。在另一种可能的实施方式中,第一上行报文可以不包括终端设备、RAN网元与UPF网元之间的协议层,即不包括第一协议层。不包括第一协议层可以降低空口信令的开销。
相应地,单RAN网元从终端设备接收第一上行报文。
S2102、RAN网元确定双隧道与单RAN网元关联,当第一上行报文包括终端设备、RAN网元与UPF网元之间的协议层,RAN网元复制第一上行报文得到第二上行报文;或者,当第一上行报文不包括终端设备、RAN网元与UPF网元之间的协议层,RAN网元添加第一协议层,并复制第一上行报文得到第二上行报文。
其中,该RAN网元即为上述单RAN网元。
例如,由于RAN网元在上述步骤S1001、S1104或S1204确定了双隧道与单RAN网元关联,RAN网元收到第一上行报文后可获知当前的双隧道与单RAN网元关联。
所述终端设备与UPF网元之间的协议层以及第一协议层可以为NCP层、TFCP层或HRP层。
示例性的,当第一上行报文包括NCP层、TFCP层或HRP层,RAN网元可以在NCP层、TFCP层或HRP层复制数据包,为第一上行报文和第二上行报文在NCP层、TFCP层或HRP层添加相同的序列号。RAN网元还可以根据第一隧道的TEID为第一上行报文添加GTP头;根据第二隧道的TEID为第二上行报文添加GTP头。
示例性的,当第一上行报文不包括NCP层、TFCP层或HRP层,RAN网元为第一上行报文添加NCP层、TFCP层或HRP层,在NCP层、TFCP层或HRP层复制数据包,并为第一上行报文和第二上行报文在NCP层、TFCP层或HRP层添加相同的序列号。RAN网元还可以根据第一隧道的TEID为第一上行报文添加GTP头;根据第二隧道的TEID为第二上行报文添加GTP头。
添加相同序列号的过程见本申请前面所述实施例,在此不再重复。
从上述步骤可以看出,当S2101步骤中,终端设备向RAN网元发送的第一上行报文不包括第一协议层时,单RAN网元会为第一上行报文添加添加第一协议层并复制第一上行报文得到第二上行报文。所以,第一上行报文不包括第一协议层时,不会影响RAN网元生成在第一协议层相同的序列号的第一上行报文和第二上行报文,因此可以降低空口信令的开销。
S2103、RAN网元通过双隧道向UPF网元发送第一上行报文和第二上行报文。
该步骤与S1303类似,在此不再重复。
因此,结合图19至图21的描述,当终端设备、RAN网元和UPF网元都支持NCP层(或TFCP层或HRP层)时,RAN网元可以不向SMF网元发送第一指示信息。
对于RAN侧而言,图18C中的步骤S1822可以省略。或者说,图18C中的步骤S1822可以是一个可选的步骤。
本申请实施例提供的报文传输方法,RAN网元中的增加了终端设备和UPF网元之间的协议层,使得不管是双隧道与单RAN网元关联还是与双RAN网元关联,UPF网元都可以在该协议层进行报文复制/去重。实现报文通过双路传输时,UPF网元能够确定接收上行报文。
本申请实施例还提供一种通信装置,可以用于执行上述方法中RAN网元的功能。本申请实施例可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图22示出了上述实施例中所涉及的通信装置的一种可能的结构示意图,通信装置22可以包括:接收单元2211、确定单元2212、发送单元2213、复制单元2214。上述各单元用于支持通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中RAN网元的相关方法。本申请提供的通信装置用于执行上文所提供的对应的方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。需要说明的是,上述单元是可选的。示例性的,通信装置22可以包括确定单元2212、发送单元2213,可选的,通信装置22还可以包括接收单元2211。或者,通信装置22可以包括接收单元2211、确定单元2212、发送单元2213,可选的,通信装置22还可以包括复制单元2214。
示例性的,接收单元2211用于支持通信装置22执行图6中的过程S601、S604、S605、S606、S607、S609、S611,或图8中的过程S801、S804、S805,或图10中的过程S1006,或图11中的过程S1101、S1103、S1106,或图12中的过程S1201、S1203、S1207、S1208,或图13中的过程S1301、S1304,或图15中的过程S1501、S1504、S1505、S1506,或图17中的过程S1701、S1704、S1705、S1706,或图18C中的过程S1823,图20中的过程S2004、S2006、S2008,或图21中的过程S2101、S2104;确定单元2212用于支持通信装置22执行图10中的过程S1001,或图11中的过程S1104,或图12中的过程S1204,或图13中的过程S1302,或图18C中的过程S1821、S1824, 或图20中的过程S2003,或图21中的过程S2102;发送单元2213用于支持通信装置22执行图6中的过程S601、S605、S606、S607、S608、S610、S611、S612,或图8中的过程S801、S805、S806,或图10中的过程S1002、S1007-S1009,或图11中的过程S1101、S1105、S1107、S1109,或图12中的过程S1201、S1205、S1208,或图13中的过程S1303、S1305,或图15中的过程S1501、S1502、S1504、S1505、S1506,或图17中的过程S1701、S1702、S1705、S1706,或图18C中的过程S1822、S1825,或图20中的过程S2005、S2007、S2009,或图21中的过程S2103、S2105;复制单元2214用于支持通信装置22执行图13中的过程S1302,或图21中的过程S2102。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
一种可能的实施方式中,确定单元2212,用于确定双隧道与单RAN网元关联或与双RAN网元关联;发送单元2213,用于向AMF网元发送第一指示信息,第一指示信息用于指示确定单元2212确定的双隧道与单接入网网元关联或与双接入网网元关联。
一种可能的实施方式中,确定单元2212,用于确定双隧道与单RAN网元关联或与双RAN网元关联;发送单元2213,用于向AMF网元发送第一指示信息,第一指示信息用于指示确定单元2212确定的双隧道与单接入网网元关联或与双接入网网元关联。
在一种可能的实施方式中,双隧道与单RAN网元关联,单RAN网元为该通信装置22;通信装置22还可以包括接收单元2211;接收单元2211,用于通过双隧道中的第一隧道从UPF网元接收第一下行报文,通过双隧道中的第二隧道从UPF网元接收第二下行报文,其中,第一下行报文和第二下行报文在第一协议层具有相同的序列号;发送单元2213,还用于向终端设备发送接收单元2211接收的第一下行报文或第二下行报文中的数据包。
在一种可能的实施方式中,确定单元2212,用于确定双隧道与单RAN网元关联,单RAN网元为通信装置22;接收单元2211,用于通过确定单元2212确定的双隧道中的第一隧道从UPF网元接收第一下行报文,通过双隧道中的第二隧道从UPF网元接收第二下行报文,其中,第一下行报文和第二下行报文在第一协议层具有相同的序列号;发送单元2213,用于向终端设备发送第一下行报文或第二下行报文中的数据包。
在一种可能的实施方式中,确定单元2212,还用于根据第一下行报文和第二下行报文在第一协议层相同的序列号,确定第一下行报文和第二下行报文中封装在第一协议层上层的数据包相同。
在一种可能的实施方式中,第一协议层为位于RAN网元和UPF网元之间的协议层。
在一种可能的实施方式中,发送单元2213向终端设备发送的第一下行报文或第二下行报文包括第一协议层。
在一种可能的实施方式中,通信装置22还包括复制单元2214:接收单元2211,还用于从终端设备接收第一上行报文;复制单元2214,用于当接收单元2211接收的第一上行报文包括位于终端设备与UPF网元之间的协议层,复制第一上行报文得到第 二上行报文;或者,当第一上行报文不包括位于终端设备与UPF网元之间的协议层,添加第一协议层,并复制第一上行报文得到第二上行报文;发送单元2213,还用于通过双隧道向UPF网元发送复制单元2214复制的第一上行报文和第二上行报文。
在一种可能的实施方式中,确定单元2212,用于确定双隧道与单RAN网元关联,单RAN网元为通信装置22;接收单元2211,用于从终端设备接收第一上行报文;复制单元2214,用于当接收单元2211接收的第一上行报文包括位于终端设备与UPF网元之间的协议层,复制第一上行报文得到第二上行报文;或者,当第一上行报文不包括位于终端设备与UPF网元之间的协议层,添加第一协议层,并复制第一上行报文得到第二上行报文;发送单元2213,用于通过确定单元2212确定的双隧道向UPF网元发送复制单元2214复制的第一上行报文和第二上行报文。
图23示出了上述实施例中所涉及的通信装置的又一种可能的结构示意图。通信装置23包括:处理模块2322、通信模块2323。可选的,通信装置23还可以包括存储模块2321。上述各模块用于支持通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中RAN网元的相关方法。本申请提供的通信装置用于执行上文所提供的对应的方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
一种可能的方式,处理模块2322用于对通信装置23的动作进行控制管理或者执行相应的处理功能,例如执行确定单元2212和复制单元2214的功能。通信模块2323用于支持通信装置23执行上述接收单元2211、发送单元2213的功能。存储模块2321用于存储通信装置的程序代码和/或数据。
其中,处理模块2322可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated Circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块2323可以是收发器、收发电路、蓝牙、网络接口或通信接口等。存储模块2321可以是存储器。
一种可能的方式,处理模块2322可以为图3中的BBU 301中的处理器331,通信模块2323可以为图3中的RRU 302中的RF电路334,存储模块2321可以为图3中的BBU 301中的存储器332。其中,一个或多个程序被存储在存储器中,一个或多个程序包括指令,指令当被通信装置执行时使通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中RAN网元的相关方法。
本申请实施例还提供一种通信装置,包括:处理器和存储器,所述存储器用于存储程序,所述处理器调用存储器存储的程序,以使通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中RAN网元的相关方法。
本申请实施例还提供一种存储一个或多个程序的计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,使通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中RAN网元的相关方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在通信装置上运行时,使得通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中RAN网元的相关方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中RAN网元的相关方法。例如RAN网元确定双隧道与单RAN网元关联或与双RAN网元关联;RAN网元向AMF网元发送第一指示信息,第一指示信息用于指示双隧道与单RAN网元关联或与双RAN网元关联。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的通信装置、计算机存储介质、计算机程序产品或者芯片系统均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
可以理解的是,上述通信装置,可以是RAN网元,也可以是可用于RAN网元的部件(芯片或者电路等)。
本申请实施例还提供一种通信装置,可以用于执行上述方法中SMF网元的功能。本申请实施例可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图24示出了上述实施例中所涉及的通信装置的一种可能的结构示意图,通信装置24可以包括:接收单元2411、发送单元2412,可选的,还可以包括确定单元2413。上述各单元用于支持通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中SMF网元的相关方法。本申请提供的通信装置用于执行上文所提供的对应的方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
示例性的,接收单元2411用于支持通信装置24执行图6中的过程S602、S613,或图8中的过程S802、S807,或图10中的过程S1002,或图11中的过程S1101、S1105、S1109,或图12中的过程S1201、S1205,或图15中的过程S1502、S1506,或图17中的过程S1702、S1706,或图18A中的过程S1801;发送单元2412用于支持通信装置24执行图6中的过程S603、S614,或图8中的过程S803、S808,或图10中的过程S1003,或图11中的过程S1103、S1106、S1110,或图12中的过程S1203、S1206、S1207,或图15中的过程S1503、S1506,图17中的过程S1703、S1706,或图18A中的过程S1802、S1803;确定单元2413用于支持通信装置24执行图11中的过程S1102,或图12中的过程S1202。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
一种可能的实施方式中,接收单元2411,用于接收第一指示信息,第一指示信息用于指示双隧道与单RAN网元关联或与双RAN网元关联;发送单元2412,用于根据 接收单元2411接收的第一指示信息,向UPF网元发送第二指示信息,第二指示信息用于触发UPF网元为第一报文和第二报文在第一协议层添加相同的序列号;其中,第一报文和第二报文为通过双隧道传输的报文。
在一种可能的实施方式中,第二指示信息为第一指示信息。
在一种可能的实施方式中,通信装置24还包括确定单元2413,用于根据接收单元2411接收的第一指示信息确定发送单元2412发送的第二指示信息。
在一种可能的实施方式中,发送单元2412,具体用于向UPF网元发送转发规则,转发规则包括第二指示信息。
在一种可能的实施方式中,发送单元2412,还用于指示UPF网元复制数据包,以得到第一报文和第二报文。
在一种可能的实施方式中,当第一指示信息指示双隧道与单RAN网元关联时,第一协议层为位于单RAN网元和UPF网元之间的协议层。
在一种可能的实施方式中,当第一指示信息指示双隧道与双RAN网元关联时,第一协议层为位于终端设备和UPF网元之间的协议层。
图25示出了上述实施例中所涉及的通信装置的又一种可能的结构示意图。通信装置25包括:处理模块2522、通信模块2523。可选的,通信装置25还可以包括存储模块2521。上述各模块用于支持通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中SMF网元的相关方法。本申请提供的通信装置用于执行上文所提供的对应的方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
一种可能的方式,处理模块2522用于对通信装置25的动作进行控制管理或者执行相应的处理功能,例如执行确定单元2413的功能。通信模块2523用于支持通信装置25执行上述接收单元2411、发送单元2412的功能。存储模块2521用于存储通信装置的程序代码和/或数据。
其中,处理模块2522可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated Circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块2523可以是收发器、收发电路、蓝牙、网络接口或通信接口等。存储模块2521可以是存储器。
一种可能的方式,处理模块2522可以为图4中的处理器401,通信模块2523可以为图4中的通信接口404,存储模块2521可以为图4中的存储器403。其中,一个或多个程序被存储在存储器中,一个或多个程序包括指令,指令当被通信装置执行时使通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中SMF网元的相关方法。
本申请实施例还提供一种通信装置,包括:处理器和存储器,所述存储器用于存储程序,所述处理器调用存储器存储的程序,以使通信装置执行图6、8、10-13、15、 17-18C、20、21中任一附图中SMF网元的相关方法。
本申请实施例还提供一种存储一个或多个程序的计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,使通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中SMF网元的相关方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在通信装置上运行时,使得通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中SMF网元的相关方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中SMF网元的相关方法。例如SMF网元接收第一指示信息,第一指示信息用于指示双隧道与单RAN网元关联或与双RAN网元关联SMF网元根据第一指示信息,向UPF网元发送第二指示信息,第二指示信息用于触发UPF网元为第一报文和第二报文在第一协议层添加相同的序列号;其中,第一报文和第二报文为通过双隧道传输的报文。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的通信装置、计算机存储介质、计算机程序产品或者芯片系统均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
可以理解的是,上述通信装置,可以是SMF网元,也可以是可用于SMF网元的部件(芯片或者电路等)。
本申请实施例还提供一种通信装置,可以用于执行上述方法中UPF网元的功能。本申请实施例可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图26示出了上述实施例中所涉及的通信装置的一种可能的结构示意图,通信装置26可以包括:添加单元2612、发送单元2613,可选的,还可以包括接收单元2611、复制单元2614、确定单元2615。上述各单元用于支持通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中UPF网元的相关方法。本申请提供的通信装置用于执行上文所提供的对应的方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
示例性的,添加单元2612用于支持通信装置26执行图10中的过程S1004,或图18B中的过程S1812,或图20中的过程S2001;发送单元2613用于支持通信装置26执行图10中的过程S1005,或图18B中的过程S1813,或图20中的过程S2002;接收单元2611用于支持通信装置26执行图6中的过程S601,或图8中的过程S808,或图10中的过程S1003,或图11中的过程S1100,或图12中的过程S1206,或图13中的 过程S1303、S1305,或图15中的过程S1503,或图17中的过程S1703,或图18A中的过程S1802、S1803,或图18B中的过程S1811,或图21中的过程S2103、S2105;复制单元2614用于支持通信装置26执行图10中的过程S1004、或图18B中的S1803,或图20中的过程S2001;确定单元2615用于支持通信装置26执行图13中的过程S1306、或图21中的过程S2106。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
一种可能的实施方式中,添加单元2612,用于为第一报文和第二报文在第一协议层添加相同的序列号;发送单元2613,用于通过双隧道传输添加单元2612添加相同的序列号后的第一报文和第二报文。
在一种可能的实施方式中,通信装置还包括接收单元2611;接收单元2611,用于从SMF网元接收指示信息,指示信息用于触发添加单元2612为第一报文和第二报文在第一协议层添加相同的序列号;添加单元2612,具体用于根据接收单元2611接收的指示信息,为第一报文和第二报文在第一协议层添加相同的序列号。
在一种可能的实施方式中,指示信息用于指示双隧道与单RAN网元关联或与双RAN网元关联。
在一种可能的实施方式中,当指示信息指示双隧道与单RAN网元关联时,添加单元2612,具体用于根据指示信息,为第一报文和第二报文在位于RAN网元和UPF网元之间的协议层添加相同的序列号。
在一种可能的实施方式中,当指示信息指示双隧道与双RAN网元关联时,添加单元2612,具体用于根据指示信息,为第一报文和第二报文在位于终端设备和UPF网元之间的协议层添加相同的序列号。
在一种可能的实施方式中,接收单元2611,具体用于从SMF网元接收转发规则,转发规则包括指示信息。
在一种可能的实施方式中,通信装置26还包括复制单元2614,用于根据SMF网元的指示,复制数据包,以得到第一报文和第二报文。
图27示出了上述实施例中所涉及的通信装置的又一种可能的结构示意图。通信装置27包括:处理模块2722、通信模块2723。可选的,通信装置27还可以包括存储模块2721。上述各模块用于支持通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中UPF网元的相关方法。本申请提供的通信装置用于执行上文所提供的对应的方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
一种可能的方式,处理模块2722用于对通信装置27的动作进行控制管理或者执行相应的处理功能,例如执行添加单元2612、复制单元2614、确定单元2615的功能。通信模块2723用于支持通信装置27执行上述接收单元2611、发送单元2613的功能。存储模块2721用于存储通信装置的程序代码和/或数据。
其中,处理模块2722可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated Circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件 部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块2723可以是收发器、收发电路、蓝牙、网络接口或通信接口等。存储模块2721可以是存储器。
一种可能的方式,处理模块2722可以为图4中的处理器401,通信模块2723可以为图4中的通信接口404,存储模块2721可以为图4中的存储器。其中一个或多个程序被存储在存储器中,一个或多个程序包括指令,指令当被通信装置执行时使通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中UPF网元的相关方法。
本申请实施例还提供一种通信装置,包括:处理器和存储器,所述存储器用于存储程序,所述处理器调用存储器存储的程序,以使通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中UPF网元的相关方法。
本申请实施例还提供一种存储一个或多个程序的计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,使通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中UPF网元的相关方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在通信装置上运行时,使得通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中UPF网元的相关方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持通信装置执行图6、8、10-13、15、17-18C、20、21中任一附图中UPF网元的相关方法。例如UPF网元为第一报文和第二报文在第一协议层添加相同的序列号;UPF网元通过双隧道传输第一报文和第二报文。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的通信装置、计算机存储介质、计算机程序产品或者芯片系统均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
可以理解的是,上述通信装置,可以是UPF网元,也可以是可用于UPF网元的部件(芯片或者电路等)。
应理解,在本申请的各种实施例中,“第一”、“第二”、等仅是为了指代不同的对象,并不表示对指代的对象有其它限定。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种报文传输方法,其特征在于,包括:
    会话管理功能网元接收第一指示信息,所述第一指示信息用于指示双隧道与单接入网网元关联或与双接入网网元关联;
    所述会话管理功能网元根据所述第一指示信息,向用户面功能网元发送第二指示信息,所述第二指示信息用于触发所述用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号;
    其中,所述第一报文和所述第二报文为通过所述双隧道传输的报文。
  2. 根据权利要求1所述的方法,其特征在于,所述第二指示信息为所述第一指示信息。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    所述会话管理功能网元根据所述第一指示信息确定所述第二指示信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述会话管理功能网元向用户面功能网元发送第二指示信息,包括:
    所述会话管理功能网元向用户面功能网元发送转发规则,所述转发规则包括所述第二指示信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,还包括:
    所述会话管理功能网元指示所述用户面功能网元复制数据包,以得到所述第一报文和所述第二报文。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,当所述第一指示信息指示所述双隧道与单接入网网元关联时,所述第一协议层为位于所述单接入网网元和所述用户面功能网元之间的协议层。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,当所述第一指示信息指示所述双隧道与双接入网网元关联时,所述第一协议层为位于终端设备和所述用户面功能网元之间的协议层。
  8. 一种报文传输方法,其特征在于,包括:
    用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号;
    所述用户面功能网元通过双隧道传输所述第一报文和所述第二报文。
  9. 根据权利要求8所述的方法,其特征在于,还包括:所述用户面功能网元从会话管理功能网元接收指示信息,所述指示信息用于触发所述用户面功能网元为所述第一报文和第二报文在所述第一协议层添加相同的序列号;
    其中,所述用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号,包括:所述用户面功能网元根据所述指示信息,为所述第一报文和所述第二报文在所述第一协议层添加相同的序列号。
  10. 根据权利要求9所述的方法,其特征在于,所述指示信息用于指示所述双隧道与单接入网网元关联或与双接入网网元关联。
  11. 根据权利要求10所述的方法,其特征在于,当所述指示信息指示所述双隧道与单接入网网元关联时,所述用户面功能网元根据所述指示信息,为所述第一报文和所述第二报文在所述第一协议层添加相同的序列号,包括:
    所述用户面功能网元根据所述指示信息,为所述第一报文和所述第二报文在位于接入网网元和用户面功能网元之间的协议层添加相同的序列号。
  12. 根据权利要求10所述的方法,其特征在于,当所述指示信息指示所述双隧道与双接入网网元关联时,所述用户面功能网元根据所述指示信息,为所述第一报文和所述第二报文在所述第一协议层添加相同的序列号,包括:
    所述用户面功能网元根据所述指示信息,为所述第一报文和所述第二报文在位于终端设备和用户面功能网元之间的协议层添加相同的序列号。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述用户面功能网元从会话管理功能网元接收指示信息,包括:
    所述用户面功能网元从所述会话管理功能网元接收转发规则,所述转发规则包括所述指示信息。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,还包括:
    所述用户面功能网元根据所述会话管理功能网元的指示,复制数据包,以得到所述第一报文和所述第二报文。
  15. 一种报文传输方法,其特征在于,包括:
    接入网网元确定双隧道与单接入网网元关联或与双接入网网元关联;
    所述接入网网元向接入和移动性管理功能网元发送第一指示信息,所述第一指示信息用于指示所述双隧道与单接入网网元关联或与双接入网网元关联。
  16. 根据权利要求15所述的方法,其特征在于,所述双隧道与单接入网网元关联,所述单接入网网元为所述接入网网元;
    所述方法还包括:
    所述接入网网元通过所述双隧道中的第一隧道从用户面功能网元接收第一下行报文,通过所述双隧道中的第二隧道从所述用户面功能网元接收第二下行报文,其中,所述第一下行报文和第二下行报文在第一协议层具有相同的序列号;
    所述接入网网元向终端设备发送所述第一下行报文或所述第二下行报文中的数据包。
  17. 一种报文传输方法,其特征在于,包括:
    接入网网元确定双隧道与单接入网网元关联,所述单接入网网元为所述接入网网元;
    所述接入网网元通过所述双隧道中的第一隧道从用户面功能网元接收第一下行报文,通过所述双隧道中的第二隧道从所述用户面功能网元接收第二下行报文,其中,所述第一下行报文和第二下行报文在第一协议层具有相同的序列号;
    所述接入网网元向终端设备发送所述第一下行报文或所述第二下行报文中的数据包。
  18. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    所述接入网网元根据所述第一下行报文和所述第二下行报文在所述第一协议层相同的序列号,确定所述第一下行报文和第二下行报文中封装在所述第一协议层上层的数据包相同。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,所述第一协议层 为位于所述接入网网元和用户面功能网元之间的协议层。
  20. 根据权利要求19所述的方法,其特征在于,所述接入网网元向所述终端设备发送的所述第一下行报文或所述第二下行报文包括所述第一协议层。
  21. 根据权利要求16至20中任一项所述的方法,其特征在于,还包括:
    所述接入网网元从所述终端设备接收第一上行报文;
    当所述第一上行报文包括位于所述终端设备与用户面功能网元之间的协议层,所述接入网网元复制所述第一上行报文得到第二上行报文;或者,当所述第一上行报文不包括位于所述终端设备与用户面功能网元之间的协议层,所述接入网网元添加所述第一协议层,并复制所述第一上行报文得到第二上行报文;
    所述接入网网元通过所述双隧道向所述用户面功能网元发送所述第一上行报文和所述第二上行报文。
  22. 一种通信装置,其特征在于,包括:
    接收单元,用于接收第一指示信息,所述第一指示信息用于指示双隧道与单接入网网元关联或与双接入网网元关联;
    发送单元,用于根据所述接收单元接收的第一指示信息,向用户面功能网元发送第二指示信息,所述第二指示信息用于触发所述用户面功能网元为第一报文和第二报文在第一协议层添加相同的序列号;
    其中,所述第一报文和所述第二报文为通过所述双隧道传输的报文。
  23. 根据权利要求22所述的通信装置,其特征在于,所述通信装置还包括确定单元,用于根据所述接收单元接收的第一指示信息确定所述发送单元发送的第二指示信息。
  24. 根据权利要求22或23所述的通信装置,其特征在于,当所述第一指示信息指示所述双隧道与单接入网网元关联时,所述第一协议层为位于所述单接入网网元和所述用户面功能网元之间的协议层。
  25. 根据权利要求22或23所述的通信装置,其特征在于,当所述第一指示信息指示所述双隧道与双接入网网元关联时,所述第一协议层为位于终端设备和所述用户面功能网元之间的协议层。
  26. 一种通信装置,其特征在于,包括:
    添加单元,用于为第一报文和第二报文在第一协议层添加相同的序列号;
    发送单元,用于通过双隧道传输所述添加单元添加相同的序列号后的所述第一报文和所述第二报文。
  27. 根据权利要求26所述的通信装置,其特征在于,所述通信装置还包括接收单元;
    所述接收单元,用于从会话管理功能网元接收指示信息,所述指示信息用于触发所述添加单元为所述第一报文和第二报文在所述第一协议层添加相同的序列号;
    所述添加单元,具体用于根据所述接收单元接收的指示信息,为所述第一报文和所述第二报文在所述第一协议层添加相同的序列号。
  28. 一种通信装置,其特征在于,包括:
    确定单元,用于确定双隧道与单接入网网元关联或与双接入网网元关联;
    发送单元,用于向接入和移动性管理功能网元发送第一指示信息,所述第一指示信息用于指示所述确定单元确定的所述双隧道与单接入网网元关联或与双接入网网元关联。
  29. 一种通信装置,其特征在于,包括:
    确定单元,用于确定双隧道与单接入网网元关联,所述单接入网网元为所述通信装置;
    接收单元,用于通过所述确定单元确定的双隧道中的第一隧道从用户面功能网元接收第一下行报文,通过所述双隧道中的第二隧道从所述用户面功能网元接收第二下行报文,其中,所述第一下行报文和第二下行报文在第一协议层具有相同的序列号;
    发送单元,用于向终端设备发送所述第一下行报文或所述第二下行报文中的数据包。
  30. 一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-7任一项所述的方法,或者实现权利要求8-14任一项所述的方法,或者实现权利要求15或16所述的方法,或者实现权利要求17-21任一项所述的方法。
PCT/CN2019/078047 2018-05-21 2019-03-13 报文传输方法和装置 WO2019223405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810491291.7 2018-05-21
CN201810491291.7A CN110519864B (zh) 2018-05-21 2018-05-21 报文传输方法和装置

Publications (1)

Publication Number Publication Date
WO2019223405A1 true WO2019223405A1 (zh) 2019-11-28

Family

ID=68616546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078047 WO2019223405A1 (zh) 2018-05-21 2019-03-13 报文传输方法和装置

Country Status (2)

Country Link
CN (1) CN110519864B (zh)
WO (1) WO2019223405A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4090126A4 (en) * 2020-02-12 2023-11-22 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543191A (zh) * 2020-04-17 2021-10-22 华为技术有限公司 一种通信方法及通信装置
CN114339847A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010036154A1 (en) * 2008-09-23 2010-04-01 Telefonaktiebolaget L M Ericsson (Publ) Rlc segmentation for carrier aggregation
CN103490972A (zh) * 2013-09-27 2014-01-01 迈普通信技术股份有限公司 多链路隧道报文传输方法及系统
WO2015077959A1 (zh) * 2013-11-28 2015-06-04 华为技术有限公司 一种帧号的发送、接收方法和设备
CN105704197A (zh) * 2014-11-28 2016-06-22 电信科学技术研究院 一种数据传输方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017182927A1 (en) * 2016-04-19 2017-10-26 Nokia Technologies Oy Split bearer dual/multiple connectivity retransmission diversity
CN107592329B (zh) * 2016-07-08 2021-01-22 电信科学技术研究院 一种数据处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010036154A1 (en) * 2008-09-23 2010-04-01 Telefonaktiebolaget L M Ericsson (Publ) Rlc segmentation for carrier aggregation
CN103490972A (zh) * 2013-09-27 2014-01-01 迈普通信技术股份有限公司 多链路隧道报文传输方法及系统
WO2015077959A1 (zh) * 2013-11-28 2015-06-04 华为技术有限公司 一种帧号的发送、接收方法和设备
CN105704197A (zh) * 2014-11-28 2016-06-22 电信科学技术研究院 一种数据传输方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4090126A4 (en) * 2020-02-12 2023-11-22 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND DEVICE

Also Published As

Publication number Publication date
CN110519864A (zh) 2019-11-29
CN110519864B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
JP7164670B2 (ja) データ伝送方法およびデータ伝送装置
JP7135100B2 (ja) パケット伝送方法、装置、およびシステム
JP2020523836A (ja) マスタ基地局始動のセカンダリ基地局解放とセカンダリ基地局始動のセカンダリ基地局変更手続きとの間の競合状態の回避
WO2021164564A1 (zh) 传输组播业务的方法和装置
US11778693B2 (en) Support of protocol data unit session types in the network
US11856632B2 (en) Method and apparatus for implementing a forwarding path on a user plane function network element
WO2014183715A1 (zh) 一种网关更新信息通知方法及控制器
JP2020532245A (ja) データ伝送方法、デバイス、およびデータ伝送システム
WO2019223405A1 (zh) 报文传输方法和装置
WO2020253551A1 (zh) 通信方法和通信装置
WO2021223745A1 (zh) 组播业务切换的方法和装置
WO2022012506A1 (zh) 通信方法和通信装置
JP7028522B2 (ja) 伝送方法及び伝送装置
CN109429279A (zh) 一种选择无线接入网设备的方法及装置
WO2022007484A1 (zh) 重定向方法、网络设备、终端设备及可读存储介质
CN116746085A (zh) 传输数据的方法和装置
WO2021197112A1 (zh) 一种数据传输的方法及装置
WO2022253137A1 (zh) 接入业务的方法、装置和系统
WO2023071866A1 (zh) 指示信息的传输方法、消息传输方法及相关装置
WO2024093833A1 (zh) 一种通信方法和通信装置
WO2024067015A1 (zh) 通信方法、通信装置及通信系统
WO2024027390A1 (zh) 一种基于接入回传一体化iab的通信方法及装置
WO2024041422A1 (zh) 通信方法、装置、终端及核心网节点
WO2023138452A1 (zh) 通信方法、装置及系统
WO2022218099A1 (zh) 组播通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807697

Country of ref document: EP

Kind code of ref document: A1