WO2021197112A1 - 一种数据传输的方法及装置 - Google Patents

一种数据传输的方法及装置 Download PDF

Info

Publication number
WO2021197112A1
WO2021197112A1 PCT/CN2021/082179 CN2021082179W WO2021197112A1 WO 2021197112 A1 WO2021197112 A1 WO 2021197112A1 CN 2021082179 W CN2021082179 W CN 2021082179W WO 2021197112 A1 WO2021197112 A1 WO 2021197112A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
tunnel
multicast
data
access network
Prior art date
Application number
PCT/CN2021/082179
Other languages
English (en)
French (fr)
Inventor
贾建鑫
吴问付
宗在峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21780851.8A priority Critical patent/EP4117338A4/en
Publication of WO2021197112A1 publication Critical patent/WO2021197112A1/zh
Priority to US17/953,500 priority patent/US20230029292A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0009Control or signalling for completing the hand-off for a plurality of users or terminals, e.g. group communication or moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0007Control or signalling for completing the hand-off for multicast or broadcast services, e.g. MBMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for data transmission.
  • a key research problem (Key Issue) of the 5MBS research topic is Service Contunity.
  • Service Contunity when there are both access network equipment that supports multicast/broadcast functions and those that do not support multicast/broadcast functions.
  • access network equipment when a terminal device is switched from a source access network device to a target access network device, how to ensure the continuity of the multicast/broadcast service of the terminal device is an urgent problem to be solved.
  • This application provides a method and device for data transmission.
  • the terminal device is connected to the network by the source.
  • the equipment is switched to the target access network equipment, the continuity of the multicast/broadcast service is ensured.
  • an embodiment of the present application provides a data transmission method.
  • the method includes: a source access network device receives a first end marker (end data packet) from a first core network device through a first tunnel, wherein the first tunnel is used to transmit data of a first multicast/broadcast service,
  • the first end marker includes first information, and the first information is used to determine a first terminal device;
  • the source access network device determines that the first end marker acts on the first terminal device according to the first information.
  • Terminal device in response to receiving the first end marker, the source access network device stops forwarding the data of the first multicast/broadcast service to the target access network device through the forwarding tunnel of the first terminal device .
  • the core network device can construct the first end marker, and the first end marker can be delivered to the source access network device through the first multicast session tunnel, where the first end marker contains the first information, and the first information is used for Instructing the first terminal device, the source access network device determines that the first end marker acts on the first terminal device according to the first information, and the source access network device determines that the first end mareker is a target to the first terminal device
  • the last data packet forwarded by the access network device that is, the end data packet, prevents the source access network device from receiving the first multicast service (first multicast service) after receiving the first end marker in the first multicast session tunnel.
  • the data of the multicast service corresponding to the session tunnel is affected by other terminal devices, which ensures the continuity of the first multicast service of the first terminal device, and also ensures that the first terminal device of the other terminal device on the source access network device side is the first. Continuity of multicast services.
  • the forwarding tunnel includes: a first forwarding tunnel or a second forwarding tunnel; the first forwarding tunnel is a forwarding corresponding to the first multicast/broadcast service of the first terminal device Tunnel; the second forwarding tunnel is a forwarding tunnel corresponding to a protocol data unit (protocol data unit, PDU) session of the first terminal device.
  • a protocol data unit protocol data unit, PDU
  • the source access network device in the embodiment of the present application can forward the multicast service data of the first terminal device to the target access network device through the forwarding tunnel corresponding to the multicast session tunnel, and can also forward the multicast service data of the first terminal device through the PDU session of the first terminal device.
  • the corresponding forwarding tunnel forwards the multicast service data of the first terminal device to the target access network application device, which meets the data forwarding requirements of different scenarios, and provides multiple options for ensuring the continuity of the multicast service of the first terminal device that is switched
  • the implementation scheme has a wide range of applicable scenarios and strong applicability.
  • the method further includes: The first core network device receives the data of the first multicast/broadcast service; the source access network device copies and transmits it to the target access network device through the first forwarding tunnel or the second forwarding tunnel Forward first data, where the first data is part or all of the data of the first multicast/broadcast service received by the source access network device through the first tunnel; the source access network device Stopping forwarding the data of the first multicast/broadcast service to the target access network device through the forwarding tunnel of the first terminal device includes: the source access network device stops accessing to the target through the forwarding tunnel The network device forwards the first data.
  • the source access network device receives the data of the first multicast service from the first tunnel, copies and forwards the copied first data to the target access network device, and stops copying and stops after receiving the first end marker Forward the copied first data to the target access network. While ensuring the continuity of the first multicast service of the first terminal device, the continuity of other terminal devices receiving the data of the first multicast service under the source access network device is not affected by the cut-off first terminal device.
  • the source access network device copies and forwards the first data to the target access network device through the second forwarding tunnel, and further includes: the source access network device passes through the The first tunnel receives the first quality of service flow identifier QFI corresponding to the first data from the first core network device; the source access network device determines the second QFI corresponding to the first QFI according to the first mapping relationship QFI, the first mapping relationship includes the QFI when the data of the first multicast/broadcast service is transmitted through the first tunnel and the data of the first multicast/broadcast service is transmitted through the tunnel of the PDU session The corresponding relationship of the QFI at the time; the source access network device copies the first data; the source access network device sends the copied data to the target access network device through the second forwarding tunnel The first data and the second QFI.
  • the source access network device can forward the copied data to the target access network device through the forwarding tunnel corresponding to the PDU session.
  • the first data provides a data transmission method of the multicast service of the first terminal device between the source access network device that supports the multicast function and the target access network device that does not support the multicast function.
  • the method further includes: the source access network device receives the first mapping relationship from the session management function network element SMF.
  • the method further includes: the source access network device sending the first end marker to the target access network device.
  • the method further includes: the source access network device receives a second end marker from a second core network device through a second tunnel; wherein, the second tunnel is the PDU of the first terminal device Session tunnel, the PDU session is associated with the first multicast/broadcast service; when both the second end marker and the first end marker reach the source access network device, the source access The network device sends the first end marker or the second end marker to the target access network device through the forwarding tunnel.
  • the second core network device and the first core network device may be the same device.
  • the source access network device sending the first end marker to the target access network device includes: the source access network device sends the first end marker through The first forwarding tunnel is sent to the target access network device; or the source access network device sends the first end marker to the target access network device through the second forwarding tunnel.
  • the source access network device sending the second end marker to the target access network device includes: the source access network device sends the second end marker through The second forwarding tunnel is sent to the target access network device.
  • the method further includes: the source access network device sending a first message, where the first message includes the first information, so that the first core network device generates the first message according to the first information.
  • the first end marker
  • the first request information further includes information about the first multicast/broadcast service.
  • the first information is also used to indicate a PDU session of the first terminal device, and the PDU session is associated with the first multicast/broadcast service.
  • the first core network device is a session management function network element SMF, or the first core network device is a multicast/broadcast user plane network element, or the first core network device is The multicast/broadcast service control plane network element, or the first core network device is a user plane network element UPF.
  • SMF session management function network element
  • UPF user plane network element
  • the second core network device is UPF or SMF.
  • an embodiment of the present application provides a data transmission method.
  • the method includes: a target access network device receives first data of a first multicast/broadcast service through a forwarding tunnel of a first terminal device; the target access network device transmits to the first terminal device in a point-to-point manner through an air interface The first data of the first multicast/broadcast service; the target access network device receives the end data packet end marker through the forwarding tunnel; the target access network device stops receiving the first data packet through the forwarding tunnel 1.
  • Data of multicast/broadcast services are examples of multicast/broadcast services.
  • the target access network device sends the first data of the first multicast/broadcast service received from the source access network through the forwarding tunnel of the first terminal device to the first terminal device, avoiding the first terminal device During the period of time since the source access network device is disconnected, the first multicast/broadcast service is interrupted.
  • the first multicast/broadcast service stops receiving the first multicast/broadcast through the forwarding tunnel.
  • Broadcast service data means that the first terminal device can send the data of the first multicast/broadcast service received from the core network device to the first terminal device, realizing the first multicast/broadcast service of the first terminal device Continuity.
  • the forwarding tunnel includes: a first forwarding tunnel or a second forwarding tunnel; the first forwarding tunnel is a forwarding corresponding to the first multicast/broadcast service of the first terminal device Tunnel; the second forwarding tunnel is a forwarding tunnel corresponding to the protocol data unit PDU session of the first terminal device; the PDU session of the first terminal device is associated with the first multicast/broadcast service.
  • the end marker includes: a first end marker or a second end marker; the first end marker is received by the source access network device from the first core network device through the first tunnel The second end marker is the source access network device received from the second core network device through the second tunnel; the first tunnel is used to transmit the first access network device to the source access network device A tunnel for multicast/broadcast service data, and the second tunnel is a tunnel for transmitting data of the PDU session of the first terminal device to the source access network device.
  • the first end marker includes first information, and the first information is used by the source access network device to determine the first terminal device.
  • the first information is also used to indicate a PDU session of the first terminal device, and the PDU session of the first terminal device is associated with the first multicast/broadcast service.
  • the method before the target access network device receives the first data of the first multicast/broadcast service through the forwarding tunnel of the first terminal device, the method further includes: The source access network device receives the first information, and determines, according to the first information, that the PDU session of the first terminal is associated with the first multicast/broadcast service.
  • the sending of the first data by the target access network device to the first terminal includes:
  • the target access network device sends the first data to the first terminal device through a PDU session, and the PDU session is a PDU session of the first terminal device.
  • the target access network device receives the first data of the first multicast/broadcast service through the first forwarding tunnel; the target access network device sends the first data to the first multicast/broadcast service through a PDU session.
  • Sending the first data by the terminal device includes: the target access network device receives the first data and the first quality of service flow identifier QFI corresponding to the first data; The mapping relationship determines the second QFI corresponding to the first QFI; wherein the first mapping relationship includes the QFI and the first group when the data of the first multicast/broadcast service is transmitted through the first tunnel The corresponding relationship of the QFI when the data of the broadcast/broadcast service is transmitted through the tunnel of the PDU session; the target access network device sends the first data to the first terminal device.
  • the method further includes: the target access network device receives the second data of the first multicast/broadcast service through a third tunnel, and caches the second data, the third tunnel Is a tunnel for the PDU session of the first terminal device, or the third tunnel is a tunnel for receiving the first multicast/broadcast service; the target access network device receives the end marker through the forwarding tunnel, and The method includes: the target access network device sends the buffered second data to the first terminal device.
  • the third tunnel is a tunnel for receiving the first multicast/broadcast service; the target access network device sends the buffered second data to the first terminal device , Further including: the target access network device receives the second data and the third QFI corresponding to the second data through the tunnel of the first multicast/broadcast service; the target access network device is based on the first multicast/broadcast service tunnel; A mapping relationship determines the fourth QFI corresponding to the third QFI; wherein the first mapping relationship includes the data of the first multicast/broadcast service when the data of the first multicast/broadcast service is sent through the tunnel of the first multicast/broadcast service The corresponding relationship between QFI and QFI when the data of the first multicast/broadcast service is transmitted through the tunnel of the PDU session; the target access network device sends all data to the first terminal device according to the fourth QFI The second data.
  • an embodiment of the present application provides a data transmission method.
  • the method includes: a first core network device generates a first end data packet end marker, where the first end marker includes first information, and the first information is used to determine a first terminal device; and through a first tunnel, The first end marker is sent to the source access network device; wherein, the first tunnel is used to transmit the data of the first multicast/broadcast service.
  • the first core network device generates the first end marker containing the first information.
  • the first information is used to determine the first terminal device.
  • the source access network device may determine that the first end marker acts on the first terminal device according to the first information, so as to determine that it is the switched first terminal device to forward the data of the first multicast/broadcast service, Ensure the continuity of the first multicast/broadcast service of the first terminal device, and at the same time prevent other terminal devices on the source access network device side that receive the data of the first multicast/broadcast service from being affected by the first end marker, that is, Ensure the continuity of the first multicast/broadcast service of other terminal equipment.
  • the method further includes: the first core network device receives a second message from a third core network device, and the second message is used to instruct the first core network device to generate and send the first core network device.
  • the first core network device receives a second message from a third core network device, and the second message is used to instruct the first core network device to generate and send the first core network device.
  • One end marker is used to instruct the first core network device to generate and send the first core network device.
  • the second message includes the first information.
  • the second message is also used to instruct the first core network device to send the first end marker through the first tunnel; and further includes: the first core network device determines the first end marker according to the second message A tunnel.
  • the second message includes information about the first tunnel, and/or information about the first multicast/broadcast service.
  • the first core network device is a session management function network element SMF, and the first core network device is the third core network device; or the first core network device is a multicast /Broadcast user plane network element, the third core network device is a multicast/broadcast control plane network element; or the first core network device is a user plane network element UPF or the multicast/broadcast control plane network element,
  • the third core network device is SMF.
  • the first core network device is a UPF or a multicast user plane function
  • the multicast user plane function is a multicast/broadcast user plane network element
  • the first core network The device sends the first data of the first multicast/broadcast service to the source access network device through a first tunnel, where the first tunnel is a tunnel for transmitting the data of the first multicast/broadcast service;
  • the first core network device sends the second data of the first multicast/broadcast service to the target access network device through a third tunnel; wherein, the third tunnel is the second data of the first terminal device The tunnel of the PDU session, or the third tunnel is the tunnel of the first multicast/broadcast service.
  • the third tunnel is a tunnel for the PDU session of the first terminal device; the first core network device sends the first core network device to the target access network device through the third tunnel.
  • a multicast/broadcast service data including: when the first core network device determines to send the second data through the tunnel of the PDU session, the third QFI corresponding to the second data; the first core The network device determines the fourth QFI corresponding to the third QFI according to the first mapping relationship, where the first mapping relationship includes that the data of the first multicast/broadcast service passes through the tunnel of the first multicast/broadcast service The corresponding relationship between the QFI when sending and the QFI when the data of the first multicast/broadcast service is sent through the tunnel of the PDU session; the first core network device accesses the target through the third tunnel The network device sends the second data and the fourth QFI.
  • the first core network device is a UPF
  • the third core network device is an SMF
  • the method further includes: the first core network device receives a third message from the third core network device , The third message is used to instruct the first core network device to generate and send the second end marker; the first core network device generates the second end marker, and connects the second end marker through the second tunnel The second end marker is sent to the source access network device; wherein, the second tunnel is a tunnel of the PDU session of the first terminal device, and the PDU session is associated with the first multicast/broadcast service.
  • an embodiment of the present application provides a data transmission method.
  • the method includes: a third core network device generates a second message; the second message includes the first information; the third core network device sends the second message to the first core network device, and the second message
  • the message is used to instruct the first core network device to generate and send the first end data packet end marker; the first end marker includes the first information, and the first information is used to determine the first terminal device.
  • the second message is also used to instruct the first core network device to send the first end marker to the source access network device through the first tunnel, and the first The tunnel is used to transmit the data of the first multicast/broadcast service.
  • the second message includes information about the first tunnel; or, the second message includes information about the first multicast/broadcast service.
  • the first core network device is a session management function network element SMF, and the first core network device and the third core network device are the same device; or the first core network device Is a multicast/broadcast user plane network element, the third core network device is a multicast/broadcast service control plane network element; or the first core network device is a user plane network element UPF or the multicast/broadcast service The control plane network element, and the third core network device is an SMF.
  • the first core network device is UPF
  • the third core network device is SMF
  • the method further includes: the third core network device sending a third message to the first core network device The third message is used to instruct the first core network device to generate and send a second end marker to the source access network device through a second tunnel; wherein, the second tunnel is the PDU of the first terminal device A tunnel for a session, where the PDU session is associated with the first multicast/broadcast service.
  • an embodiment of the present application provides a data transmission method.
  • the method includes: a source access network device receives a second end marker from a first core network device through a third tunnel; wherein, the third tunnel is a transmission tunnel of a protocol data unit PDU session of the first terminal device, and the PDU The session is associated with the first multicast/broadcast service; in response to receiving the second end marker, the source access network device determines to stop passing through the first terminal device according to the PDU session and the second end marker The forwarding tunnel of sends the data of the first multicast/broadcast service to the target access network device.
  • the source access network device receives the second end marker from the first core network device through the transmission tunnel of the PDU session of the first terminal device, and in response to receiving the second end marker, according to the PDU session and the The second end marker determines to stop sending the data of the first multicast/broadcast service to the target access network device through the forwarding tunnel of the first terminal device.
  • the continuity of the broadcast/broadcast service, while preventing other terminal devices on the source access network device side that receive the data of the first multicast/broadcast service from being affected by the first end marker, that is, the first group of other terminal devices is guaranteed Continuity of broadcasting/broadcasting services.
  • the forwarding tunnel includes: a first forwarding tunnel or a second forwarding tunnel; the first forwarding tunnel is a forwarding corresponding to the first multicast/broadcast service of the first terminal device Tunnel; the second forwarding tunnel is a forwarding tunnel corresponding to the PDU session of the first terminal device.
  • the method further includes: the source access network device receives the second end marker from the first core network device through the first tunnel.
  • a core network device receives the data of the first multicast/broadcast service, and the first tunnel is used to transmit the data of the first multicast/broadcast service to the source access network device;
  • the source The access network device replicates and sends the first data to the target access network device through the first forwarding tunnel or the second forwarding tunnel, where the first data is the source access network device passing through Part or all of the data of the first multicast/broadcast service received by the first tunnel; the source access network device stops forwarding the data to the target access network device through the forwarding tunnel of the first terminal device
  • the data of the first multicast/broadcast service includes: the source access network device stops forwarding the first data to the target access network device through the forwarding tunnel.
  • the source access network device receives the data of the first multicast service from the first tunnel, copies and forwards the copied first data to the target access network device, and stops copying and stops after receiving the first end marker Forward the copied first data to the target access network. While ensuring the continuity of the first multicast service of the first terminal device, the continuity of other terminal devices receiving the data of the first multicast service under the source access network device is not affected by the cut-off first terminal device.
  • the source access network device replicates and sends the first data to the target access network device through the second forwarding tunnel, which further includes: the source access network device passes through The first tunnel receives the first quality of service flow identifier QFI corresponding to the first data from the first core network device; the source access network device determines the first QFI corresponding to the first QFI according to the first mapping relationship
  • the second QFI, the first mapping relationship includes the QFI when the data of the first multicast/broadcast service is transmitted through the first tunnel and the data of the first multicast/broadcast service through the PDU session The corresponding relationship of QFI during tunnel transmission; the source access network device copies the first data; the source access network device sends the copied data to the target access network device through the second forwarding tunnel The first data and the second QFI.
  • the method further includes: the source access network device receives the first mapping relationship from the session management function network element SMF.
  • the method further includes: the source access network device copies the second end marker and sends the copied second end marker to the target access network through the first forwarding tunnel equipment;
  • an embodiment of the present application provides a data transmission method.
  • the method includes: a target access network device receives a first number of a first multicast/broadcast service through a forwarding tunnel of a first terminal device, and sends the first multicast to the first terminal device in a point-to-point manner through an air interface /First data of the broadcast service, receive an end data packet end marker through the forwarding tunnel, and stop receiving the data of the first multicast/broadcast service through the forwarding tunnel.
  • the forwarding tunnel includes: a first forwarding tunnel or a second forwarding tunnel; the first forwarding tunnel is a forwarding corresponding to the first multicast/broadcast service of the first terminal device Tunnel; the second forwarding tunnel is a forwarding tunnel corresponding to the protocol data unit PDU session of the first terminal device; the PDU session of the first terminal device is associated with the first multicast/broadcast service.
  • the target access network device sending the first data to the first terminal includes the target access network device sending the first data to the first terminal device through a PDU session.
  • the PDU session is a PDU session of the first terminal device.
  • the target access network device receives the first data of the first multicast/broadcast service through the first forwarding tunnel; the target access network device sends the first data to the first multicast/broadcast service through a PDU session.
  • Sending the first data by the terminal device includes: the target access network device receives the first data and the first quality of service flow identifier QFI corresponding to the first data through the first forwarding tunnel; the target The access network device determines the second QFI corresponding to the first QFI according to the first mapping relationship; wherein, the first mapping relationship includes the data when the data of the first multicast/broadcast service is transmitted through the first tunnel The corresponding relationship between the QFI and the QFI when the data of the first multicast/broadcast service is transmitted through the tunnel of the PDU session; the target access network device sends the first data to the first terminal device.
  • the method further includes: the target access network device receives the second data of the first multicast/broadcast service through a third tunnel, and caches the second data, the third tunnel Is the tunnel of the PDU session of the first terminal device, or the third tunnel is the tunnel of the first multicast/broadcast service; the target access network device receives the end marker through the forwarding tunnel, and further includes : The target access network device sends the buffered second data to the first terminal device.
  • the third tunnel is the tunnel of the first multicast/broadcast service; the target access network device sends the buffered second data to the first terminal device,
  • the method includes: the target access network device receives the second data and the third QFI corresponding to the second data through the tunnel of the first multicast/broadcast service; the target access network device according to the first mapping The relationship determines the fourth QFI corresponding to the third QFI; wherein the first mapping relationship includes the QFI and the QFI when the data of the first multicast/broadcast service is sent through the tunnel of the first multicast/broadcast service The corresponding relationship of the QFI when the data of the first multicast/broadcast service is transmitted through the tunnel of the PDU session; the target access network device sends the first terminal device to the first terminal device according to the fourth QFI Two data.
  • an embodiment of the present application provides a data transmission method.
  • the method includes: a first core network device generates a second end data packet end marker; the first core network device sends the second end marker to a source access network device through a second tunnel; wherein, the first core network device sends the second end marker to the source access network device;
  • the second tunnel is a tunnel for a protocol data unit PDU session of the first terminal device, and the PDU session is associated with the first multicast/broadcast service.
  • the first core network device instructs the source access network device to forward the data of the first multicast/broadcast service to the switched first terminal device through the existing second tunnel and the second end marker, saving resource overhead, and at the same time Ensure the continuity of the first multicast/broadcast service of the first terminal device, and at the same time prevent other terminal devices on the source access network device side that receive the data of the first multicast/broadcast service from being affected by the first end marker, that is, Ensure the continuity of the first multicast/broadcast service of other terminal equipment.
  • the method further includes: the first core network device receives third information from a third core network device, and the third information is used to instruct the first core network device to generate and send the first core network device. Two end marker.
  • the first core network device is a session management function network element SMF, and the first core network device and the third core network device are the same device; or the first core network device It is a user plane network element UPF, and the third core network device is an SMF.
  • the first core network device is a UPF or a multicast user plane function
  • the multicast user plane function is a multicast/broadcast user plane network element
  • the first core network The device sends the first data of the first multicast/broadcast service to the source access network device through a first tunnel, and the first tunnel is used to transmit the first group to the source access network device A tunnel for broadcasting/broadcasting service data
  • the first core network device sends the third data of the first multicast/broadcasting service to the target access network device through the third tunnel, wherein
  • the third tunnel is a tunnel for the PDU session of the first terminal device, or the third tunnel is a tunnel for the target access network device to receive the first multicast/broadcast service.
  • the first core network device sends the third data of the first multicast/broadcast service to the target access network device through the tunnel of the PDU session, and further includes: When the first core network device determines to send the second data through the tunnel of the first multicast/broadcast service, the third QFI corresponding to the second data; the first core network device according to the first mapping relationship , Determine a fourth QFI corresponding to the third QFI, and the first mapping relationship includes the QFI and the QFI when the data of the first multicast/broadcast service is sent through the tunnel of the first multicast/broadcast service The corresponding relationship of QFI when the data of the first multicast/broadcast service is transmitted through the tunnel of the PDU session;
  • the first core network device sends the second data and the fourth QFI to the target access network device through the third tunnel.
  • the present application provides a device, which may be a source access network device or a chip for the source access network device.
  • the device has the function of implementing the embodiments of the first aspect or the fifth aspect described above. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • this application provides a device, which may be a target access network device, or a chip used for the target access network device.
  • the device has the function of realizing each embodiment of the second aspect or the sixth aspect described above. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • this application provides a device, which may be a first core network device or a chip for the first core network device.
  • the device has the function of realizing the above-mentioned third aspect or the seventh aspect of the embodiments.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • this application provides a device, which may be a third core network device or a chip for the third core network device.
  • the device has the function of implementing the embodiments of the fourth aspect or the eighth aspect described above. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a device including: a processor and a memory; the memory is used to store computer-executable instructions, and when the device is running, the processor executes the computer-executable instructions stored in the memory to enable the The device executes the methods described in the above aspects.
  • the present application provides an apparatus, including: including units or means for performing each step of the above-mentioned aspects.
  • the present application provides a device including a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit and execute the methods described in the foregoing aspects.
  • the processor includes one or more.
  • the present application provides a device including a processor, which is configured to be connected to a memory and used to call a program stored in the memory to execute the methods described in the foregoing aspects.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • an embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium includes instructions. When the instructions are executed, any one of the first to seventh aspects is implemented. Various possible designs are described in the method.
  • the embodiments of the present application also provide a computer program product including instructions, which when run on a computer, enable the computer to execute various possible design methods in any one of the first to seventh aspects. The method described.
  • FIG. 1 is a schematic diagram of a system architecture to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic diagram of a data transmission process provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of another data transmission process provided by an embodiment of this application.
  • Figure 4 is a schematic diagram of an application scenario provided by this application.
  • FIG. 5 is a schematic flowchart corresponding to a data transmission method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart corresponding to another data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart corresponding to another data transmission method provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart corresponding to a complete method of data transmission provided by an embodiment of the present application.
  • Figures 9 to 13 are schematic diagrams of the processes corresponding to the method for constructing an end marker provided by an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a device provided by this application.
  • FIG. 15 is a schematic structural diagram of another device provided by this application.
  • Fig. 1 exemplarily shows a system architecture to which the embodiments of the present application are applicable.
  • the system architecture includes terminal equipment, access network equipment, access and mobility management functions (AMF), session management functions (Session Management Function, SMF), and user plane functions ( user plane function (UPF), policy control function (PCF), multicast control plane function (multicast control plane function, MCF), multicast user plane function (multicast user plane function, MUF), application functions, data Network (data network, DN).
  • AMF access network equipment
  • SMF Session Management Function
  • UPF user plane function
  • PCF policy control function
  • MCF multicast control plane function
  • MUF multicast user plane function
  • application functions data Network (data network, DN).
  • the N4 interface is the reference point between SMF and UPF, used to transmit information such as tunnel identification information of the N3 connection, data buffer indication information, and downlink data notification messages;
  • the N6 interface is The reference point between UPF and DN is used to transmit service data, etc.;
  • the N7 interface is the reference point between SMF and PCF;
  • the N11 interface is the reference point between AMF and SMF.
  • the names of these interfaces and network elements may not change, or may be replaced by other names, which is not limited in this application.
  • Terminal equipment also called user equipment (UE), terminal (Terminal), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • Terminal devices can be referred to as terminals for short, which can be deployed on land, including indoors, outdoors, and/or handheld or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a user equipment (UE), and the UE includes a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, and/or wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • Wireless terminals in power grids, wireless terminals in smart cities, and/or wireless terminals in smart homes, etc.
  • the device used to implement the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal device as an example to describe the technical solutions provided in the embodiments of the present application.
  • Access network equipment which may be a radio access network (RAN) node that connects terminal equipment to the wireless network.
  • RAN nodes are: next generation access network equipment (next generation NodeB, gNB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), access network equipment controller (base station controller, BSC), access network equipment transceiver station (base transmitter station, BTS), home access network equipment (For example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), or wireless fidelity (WiFi) access point (AP), etc.
  • the access network equipment may take many forms, such as macro access network equipment, micro access network equipment, relay station, and access point.
  • the access network device involved in the embodiment of the present application may be an access network device in a 5G system, or a future 6th generation (6G) access network device in a future communication system.
  • the access network equipment in the 5G system may also be called a transmission reception point (TRP) or a generation Node B (gNB or gNodeB).
  • the device used to implement the function of the access network device may be the access network device, or a device capable of supporting the access network device to implement the function, such as a chip system.
  • the device can be installed in the access network device. Connected to the network equipment.
  • the device used to implement the functions of the access network equipment is the access network equipment as an example to describe the technical solutions provided in the embodiments of the present application.
  • Access and mobility management functions Mainly used for mobility management and access management, etc.
  • AMF can be used to implement other functions in addition to session management in the functions of a mobility management entity (MME), for example, functions such as lawful interception, or access authorization (or authentication).
  • MME mobility management entity
  • Session management function Mainly used for session management, such as session establishment, modification, release, and terminal equipment Internet Protocol (IP) address allocation and management, selection of manageable user plane functions, policy control, or The terminal point of the charging function interface and downlink data notification, etc.
  • IP Internet Protocol
  • UPF User plane function
  • I-UPF intermediate-UPF
  • anchor-UPF anchor-UPF
  • A-UPF anchor-UPF
  • I-UPF can be connected to the access network equipment
  • A-UPF is the UPF of the session anchor
  • A-UPF can also be called PDU session anchor (PDU session anchor, PSA)
  • PDU session anchor PDU session anchor, PSA
  • A-UPF can also be connected to the access network equipment.
  • Network equipment is connected.
  • PCF Policy control function
  • Application function It mainly supports the interaction with the core network of the 3rd generation partnership project (3rd generation partnership project, 3GPP) to provide services, such as influencing data routing decisions, policy control functions, or to the network side Provide some third-party services.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • 3GPP 3rd generation partnership project
  • the AF may be a service provider (content provider, CP).
  • Data network A network used to provide data transmission, such as an Internet network.
  • Multicast user plane function (multicast user plane function, MUF): mainly used to transmit multicast service data, that is, to send multicast service data received from the data network to the UPF or base station.
  • the MUF can also be other devices or units with the above-mentioned functions, for example, it can be a Multicast/broadcast-User Plane Function (MB-UPF)
  • M-UPF Multicast/broadcast-User Plane Function
  • Multicast control plane function Multicast control plane function, MCF: Mainly used to control multicast services or multicast sessions, for example, to extract PCC information related to multicast services from PCF, Broadcast Service Function (multicast broadcast service function) obtains description information related to the multicast service (for example, the description of the multicast service).
  • the PCC information may be, for example, a PCC Rule (PCC rule).
  • the MCF may be connected to an application server in a data network, for example, a content provider/service provider (CP/SP), so as to receive multicast service related information (for example, a description of a multicast service).
  • CP/SP content provider/service provider
  • the MCF can also be other devices or units with the above-mentioned functions, for example, it can be a multicast/broadcast-session management function (MB-SMF)
  • M-SMF multicast/broadcast-session management function
  • the network element used to implement the control plane function of the multicast service can be an independent network element, or a module (or device) that supports the realization of this function, and the module can be a physical module or a virtual Module, this module can be integrated into a policy control network element or a session management network element, which is not limited in the embodiment of the present application.
  • the network element used to implement the user plane function of the multicast service can be an independent network element or a module (or device) that supports the realization of this function.
  • the module can be a physical module or a virtual module. This module can be integrated into the user plane network element, which is not limited in the embodiment of the present application.
  • FIG. 1 is only for illustration, and there may be multiple UEs, RANs, AMFs, SMFs, UPFs, MUFs, and MCFs (not shown in FIG. 1).
  • the remaining network elements are core network network elements.
  • the network elements described in the embodiments of the present application may be hardware, or may also be functionally divided software or a structure combining the above two.
  • the network element described in the embodiment of the present application may also be referred to as a functional entity, for example, a policy control network element may also be referred to as a policy control functional entity.
  • the name of each network element is not limited in the embodiment of this application, and those skilled in the art can replace the name of the above-mentioned network element with another name to perform the same function.
  • the system architecture shown above can be applied to communication systems of various wireless access technologies, for example, long term evolution (LTE) communication systems, fifth generation (5th generation, 5G) communication systems, and others Possible communication systems, such as future communication systems, such as the future 6th generation (6G) system, etc.
  • LTE long term evolution
  • 5G fifth generation
  • 6G 6th generation
  • 5G can also be called new radio (NR).
  • At least one (piece, species) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or Multiple, where "plurality" means two or more.
  • access and mobility management functions, session management functions, user plane functions, multicast user plane functions, multicast control plane functions, and access network equipment in the embodiments of the present application may be as shown in Figure 1 respectively.
  • AMF, SMF, UPF, MUF, MCF and access network equipment It may also be a network element or device with the functions of the aforementioned AMF, SMF, UPF, MUF, MCF and access network equipment in the future communication system.
  • the access and mobility management function, session management, user plane function, multicast user plane function, multicast control plane function, and access network equipment are respectively AMF, SMF, and SMF in Figure 1 UPF, MUF, MCF, and access network equipment are taken as examples for description.
  • the terminal equipment is called UE, and the access network equipment is referred to as RAN or base station for short. That is, the AMF described later in this application can be replaced with the access and mobility management function, and the SMF can be replaced with the session management function.
  • UPF can be replaced with user plane function
  • MUF can be replaced with multicast user plane function or multicast user plane function
  • MCF can be replaced with multicast control plane function or multicast control plane function
  • UE can be replaced with terminal equipment
  • RAN or base station can be replaced with access network equipment.
  • Unicast can be understood as "point to point” (point to point, PTP) communication. Unicast has multiple meanings, as follows:
  • unicast service means that the data of the service is sent to a single terminal device.
  • unicast refers to sending service data to terminal devices through PDU sessions.
  • the unicast mode in the sending mode determined by the SMF refers to sending the data of the multicast service to the terminal device through the PDU session.
  • unicast refers to a unicast tunnel between the source network element and the target network element (that is, the IP address of the target network element is a unicast IP address).
  • the air interface point-to-point mode refers to the wireless access network sending service data to a single terminal device, which can be understood as the wireless access network sending service data to a single terminal device through the air interface radio bearer in the unicast mode.
  • Figure 1 shows a schematic diagram of the data transmission process in unicast mode.
  • the transmission process is shown in Figure 2. It can be used to transmit unicast service data as well as multicast service data (via unicast mode).
  • each of three UEs corresponds to a different PDU session.
  • the three different service data sent by the service provider can be sent to the UE through their corresponding PDU sessions.
  • the service transmission path from CP/SP to RAN may include the transmission path between CP/SP and UPF, and the transmission path between UPF and RAN.
  • the transmission path between UPF and RAN can be called PDU session tunnel, and different PDU sessions have different PDU session tunnels.
  • the three PDU session tunnels in this schematic diagram correspond to three UEs respectively.
  • the RAN can send service data to UE1, UE2, and UE3 in unicast mode, that is, PTP mode.
  • the service data of each UE may be different (for example, the target address is the IP address of each UE), and the service data of each UE may be sent to each UE through its independent transmission path.
  • Multicast can also be called “multicast” and can be understood as “point to multi-point” (PTM) communication.
  • Multicast has multiple meanings, as follows:
  • the multicast service means that the data of the service is sent to multiple terminal devices.
  • multicast refers to sending multicast service data to terminal devices through a multicast session.
  • the multicast session includes: unicast tunnels or multicast tunnels between network elements, and air interface wireless in unicast mode. Air interface wireless bearer in bearer or multicast mode.
  • the multicast mode in the sending mode determined by the SMF refers to sending the data of the multicast service to the terminal device through the multicast session.
  • multicast refers to a multicast tunnel between the source network element and the target network element (that is, the IP address of the target network element is a multicast IP address).
  • a multicast session tunnel for multicast services can be established between the access network equipment and the core network equipment.
  • the multicast service data is transmitted in the multicast session tunnel, and the access network equipment receives the multicast service through the multicast session tunnel.
  • the data can be sent to multiple terminal devices that join the multicast service.
  • the air interface multicast mode refers to a piece of service data sent by the wireless access network, and multiple terminal devices can receive it at the same time and/or at the same frequency.
  • a multicast session tunnel can correspond to a multicast service one-to-one.
  • One multicast service can include one or more multicast service streams, and multiple multicast service streams can correspond to one or more multicast service quality.
  • service, QoS) flow that is, the multicast service data in the multicast session tunnel can be transmitted in the form of a multicast QoS flow, which is not limited in the embodiment of the present application.
  • a multicast session can include one or more multicast QoS streams. In other words, the multicast service can be transmitted in one or more multicast QoS streams in the multicast session tunnel.
  • the multicast service can be described by the information of the multicast service.
  • the information of the multicast service includes at least the description information of the multicast service.
  • the description information of the multicast service may include the description information of one or more multicast service streams.
  • the description information of the multicast service stream includes at least one of the following : The quality of service index (QoS flow identifier, QFI) that the multicast service flow should have, the characteristic information of the multicast service flow (such as the destination address, destination port number, source address, etc.) of the multicast service flow, and the information of the multicast service flow QoS requirements (eg, jitter, delay, packet loss rate, bandwidth, etc.).
  • QoS requirements of the multicast service flow are used to establish the multicast QoS flow.
  • the PDU session tunnel corresponds to the UE, and the service data in the PDU session tunnel can be transmitted in the form of unicast QoS flow.
  • the PDU session tunnel may also be used to transmit the unicast QoS flow mapped to the multicast QoS flow corresponding to the multicast service.
  • the PDU session is at the UE level, and the multicast session is at the service level.
  • One PDU session of one UE can be associated with multiple multicast sessions, that is, the UE can join at least one multicast service through the PDU session.
  • a multicast session can provide services for a multicast service.
  • a multicast session includes unicast or multicast tunnels from the data network to the core network equipment to the wireless access network, and the wireless access network allocated for sending the Unicast or multicast air interface resources for multicast services.
  • the information of the multicast service may also contain the information of the terminal device. For example, it may include the identification of one or more terminal devices and the terminal device that allow (or request) to join the multicast service. The identity of the group, etc.
  • Figure 3 shows a schematic diagram of the data transmission process in multicast mode.
  • the transmission process shown in Figure 3 can be used for transmission.
  • Multicast service data can be used for transmission.
  • multicast service data can be sent from the CP/SP to UE1, UE2, and UE3.
  • the multicast service transmission path from CP/SP to RAN may include the transmission path between CP and UPF and the transmission path between UPF and RAN.
  • the transmission path from the UPF to the RAN can transmit multicast service data through a tunnel, for example, a tunnel based on a general tunnel protocol (general tunnel protocol, GTP) is adopted.
  • GTP general tunnel protocol
  • the transmission path between the UPF and the RAN may be called a multicast session tunnel, and the multicast session tunnel is shared by UE1, UE2, and UE3.
  • the RAN can send the above multicast service data to UE 1, UE 2, and UE 3 through PTM, that is, only one copy of the data needs to be sent, and all 3 UEs can receive it.
  • PTM Packet Transfer Protocol
  • only one copy of the multicast service data is sent on the transmission path from the CP to the UE, and multiple UEs can receive it at the same time.
  • the multicast method can be used to transmit service data to all target nodes at one time, or to only transmit service data to specific objects. Therefore, in the multicast method, a point-to-multiple node can be achieved between one sending node and multiple receiving nodes. Point transmission, thus solving the problem of low efficiency in unicast mode.
  • the access network equipment supporting the multicast function can be understood as the access network equipment supporting the multicast transmission of multicast service data
  • the access network equipment not supporting the multicast function can be understood as the access network equipment not supporting the group
  • the multicast service data is transmitted in a broadcast mode, or the access network device only supports the transmission of multicast service data or PDU session data in a unicast mode.
  • the network service of the terminal equipment can be realized through the PDU session.
  • the multicast service data can be received from the core network through the multicast session tunnel and sent to multiple terminal devices that join the multicast service.
  • the multicast service data arrives at the RAN, it passes through the service data adaptation protocol (SDAP) layer, the packet data convergence protocol (PDCP) layer, and the radio link control (radio link) layer of the RAN.
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • radio link control radio link control
  • RLC control
  • MAC media access control
  • PHY physical
  • the multicast session may also be used to send broadcast service data to the terminal device, which is not limited in the embodiment of the present application.
  • Multicast in this application is a broad concept, and can include multicast or broadcast, that is, the embodiments of this application can be applied to both multicast service transmission and broadcast service transmission.
  • the multicast control plane network element in the embodiment of this application can also be used to control broadcast services, and the multicast user plane network element can also be used to transmit broadcast service related data.
  • the "multicast” mentioned in this application can be replaced with "Multicast or broadcast”. Therefore, the various data transmission modes introduced by taking the multicast service as an example in the embodiment of the present application can also be applied to the broadcast service.
  • Figure 4 shows a communication scenario. As shown in FIG. 4, the communication scenario includes at least two access network devices and at least one terminal device.
  • This application uses FIG. 4 as an example to introduce an embodiment of this application.
  • the access network device may be used to transmit PDU session data to the terminal device in a unicast manner, and may also be used to transmit multicast service data to the terminal device in a multicast manner or a unicast manner.
  • the scenario shown in Figure 4 includes a source access network device and a target access network device.
  • the source access network device and the terminal device have established a connection (such as an RRC connection), which can be understood as the terminal device is attached to the source access network device; and the terminal device needs to be switched from the source access network device to the target access network device .
  • the terminal device and the source access network device can transmit specific data.
  • the terminal device when the terminal device is attached to the source access network device, it can periodically send a signal measurement report to the source access network device.
  • the source access network device determines whether the terminal device needs to be based on the signal measurement report of the terminal device. Switch to another access network device, and select the target access network device to be switched for the terminal device according to the signal measurement report. After the terminal device is disconnected or detached from the source access network device, it cannot transmit specific data with the source access network device, for example, the data transmission of the multicast service received by the terminal device at the source access network device.
  • the terminal device receives multicast service data through the source access network device.
  • the multicast service of the terminal device may be interrupted, and The multicast services of other terminals that receive the multicast service data through the source access network device may also be interrupted. Therefore, when a terminal device is switched from a source access network device to a target access network device, how to ensure that the continuity of the multicast service of the terminal device and other terminal devices is not affected is a problem that needs to be solved.
  • the embodiments of the present application provide multiple data transmission methods to ensure the continuity of the multicast service of the terminal device.
  • FIG. 5 is a schematic diagram of a process corresponding to a data transmission method provided by an embodiment of the application.
  • the multicast service that UE1 joins in the source access network device is the first multicast service.
  • Step S501 The source access network device receives the first end data packet end marker from the first core network device through the first tunnel.
  • the first tunnel is a multicast session tunnel, and the first tunnel is used to transmit data of the first multicast service.
  • the first end marker includes first information, and the first information is used to determine the first terminal device.
  • the first information is the identity of UE1.
  • the first information is the temporary identifier of the UE1 agreed upon by the source access network device and the core network device.
  • the agreed manner may be that when the source access network device generates the temporary identity of the UE1 and sends a handover request message of UE1 to the target access network device, the handover request message carries the temporary identity, and then the target access network device sends the temporary identity to the target access network device.
  • the AMF sends the N2 path switch request message
  • the N2 path switch request message carries the temporary identifier.
  • the temporary identifier is carried, which is used by the SMF to construct the first end marker containing the first information. If the first end marker is constructed by UPF, then SMF will notify UPF. If the first end marker is constructed by MCF, SMF will notify MCF. If the first end marker is constructed by MUF, MCF can be notified by SMF. MCF To notify the MUF, the above notification method is only an example, and the embodiment of the present application does not limit this.
  • the source access network device receives the second end marker from the first core network device through the second tunnel, and the second end marker may not include the foregoing first information.
  • the second tunnel is a PDU session tunnel, and the PDU session tunnel is used to transmit the PDU session data of UE1.
  • Step S502 The source access network device determines according to the first information that the first end marker acts on the UE1.
  • first end marker acts on UE1
  • the first end marker acts on UE1 and does not act on other terminal devices participating in the first multicast service.
  • the multicast service is at the service level. If the source access network device has other terminal devices receiving the data of the first multicast service, after the source access network device receives the first end marker, due to the first end marker An end marker does not act on other terminal devices, and other terminal devices can continue to receive the data of the first multicast service.
  • Step S503 The source access network device stops sending data of the first multicast service to the target access network device through the forwarding tunnel of UE1.
  • the source access network device stops sending data of the first multicast service to the target access network device through the forwarding tunnel of UE1.
  • the first end marker is the last data packet sent to the target access network device through the forwarding tunnel of UE1, when the source access network device receives the first end marker, it stops receiving the first end marker.
  • the data of the first multicast service received after an end marker is copied, and the forwarding to the target access network device is stopped.
  • the forwarding tunnel of UE1 includes a first forwarding tunnel and a second forwarding tunnel.
  • the first forwarding tunnel is the forwarding tunnel corresponding to the first multicast service of UE1 and is used to forward the data of the first multicast service of UE1;
  • the second forwarding tunnel is the forwarding tunnel corresponding to the PDU session of UE1 and is used to forward the PDU of UE1.
  • Session data after receiving the first end marker, the source access network device may send the first end marker to the destination access network device through the first forwarding tunnel; optionally, the source access network device may After the first end marker and the second end marker, the first end marker or the second end marker is sent to the destination access network device through the first forwarding tunnel.
  • the forwarding tunnel of UE1 is the foregoing second forwarding tunnel, and the second forwarding tunnel is used to forward the PDU session data of UE1 and the first multicast service data of UE1.
  • the source access network device after receiving the first end marker and the second end marker, sends the first end marker or the second end marker to the destination access network device through the first forwarding tunnel.
  • the method may further include:
  • S501a The source access network device receives the data of the first multicast service from the first core network device through the first tunnel.
  • the data of the first multicast service includes the first quality of service flow identifier QFI.
  • the first QFI may be understood as the QFI when the data of the first multicast service is transmitted through the multicast service tunnel.
  • the source access network device receives the PDU session data from the first core network device through the foregoing second tunnel.
  • S501b The source access network device sends the data of the first multicast service to the target access network device through the forwarding tunnel of UE1.
  • the source access network device copies the first data, and sends the copied first data to the target access network device through the forwarding tunnel of the UE1.
  • the first data is part or all of the data of the first multicast service received by the source access network.
  • the data of the first multicast service in S501b and S503 may be replaced with the first data.
  • the source access network device sends the data of the first multicast service to the target access network device through the first forwarding tunnel.
  • the source access network device sends the PDU session data to the target access network device through the second forwarding tunnel.
  • UE1 has joined the first multicast service in the source access network device.
  • the source access network device still uses the first multicast session
  • the tunnel receives the multicast data of the first multicast service.
  • the source access network device copies the received multicast service data and forwards the received multicast service data to the target access network device through the forwarding tunnel of the UE1.
  • the source access network device may directly forward the received data of the first multicast service to the target access network equipment.
  • the source access network device will give some or all of the data required by UE1 after receiving the data of the first multicast service.
  • the multicast service data is copied and the copied multicast service data is forwarded to the target access network device through the multicast session forwarding tunnel.
  • the source access network determines the second QFI corresponding to the first QFI according to the first mapping relationship.
  • the first mapping relationship includes the corresponding relationship between the first QFI and the second QFI.
  • the second QFI is the QFI when the data of the first multicast service is transmitted through the PDU session tunnel.
  • the source access network device replaces the first QFI in the data of the first multicast service with the second QFI, and the source access network sends the data part of the first multicast service and the data part of the first multicast service to the target access network device through the second forwarding tunnel.
  • the second QFI is the QFI when the data of the first multicast service is transmitted through the PDU session tunnel.
  • the method may further include:
  • Step S504 The source access network device sends the first end marker or the second end marker to the target access network device through the forwarding tunnel of UE1.
  • the source access network device may only forward the second end marker to the target access network device through the multicast session forwarding tunnel or the PDU session forwarding tunnel.
  • the source access network device can copy the first end marker to obtain the third end marker, and respectively use the multicast session forwarding tunnel and the PDU session forwarding tunnel to combine the first end marker and the third end marker. Forward to the target access network device.
  • the source access network device can copy the second end marker to obtain the fourth end marker, and use the multicast session forwarding tunnel and the PDU session forwarding tunnel to transfer the second end marker and the fourth end marker. Forward to the target access network device.
  • Step S505 The target access network device stops receiving the data of the first multicast service of the first terminal device through the forwarding tunnel of the UE1.
  • the target access network device stops receiving data of the first multicast service of the first terminal device through the first forwarding tunnel.
  • the target access network device stops receiving data of the first multicast service of the first terminal device through the second forwarding tunnel.
  • the target access network device executes the execution operation that has been specified in the 3GPP technical specifications after receiving the end marker of the PDU session.
  • the target access network device stops receiving data of the first multicast service of the first terminal device through the second forwarding tunnel.
  • the target access network device when the target access network device receives the first end marker through the multicast session forwarding tunnel, it can be determined according to the first information contained in the first end marker that the first end marker acts on UE1, and it can also be determined according to the multicast session forwarding tunnel.
  • the first end marker acts on UE1, and the target access network device stops receiving data of the first multicast service of UE1 from the source access network device.
  • the multicast service and the multicast session tunnel may be associated, for example, the PDU session may have a one-to-one correspondence with the terminal device and the multicast service of the terminal device. That is, a certain PDU session of UE1 is associated with the first multicast service (that is, UE1 joins the multicast service through the PDU session).
  • the target access network device receives the first end marker through the PDU session forwarding tunnel, and can determine that the first end marker acts on UE1 according to the first information contained in the first end marker or the PDU session forwarding tunnel, and according to the PDU session
  • the association relationship of the first multicast service determines the first multicast service associated with the PDU session of UE1
  • the target access network device determines that the first end marker is the last data packet of the first multicast service of UE1
  • the target access network stops receiving the data of the first multicast service of the UE1 from the source access network device.
  • the core network device constructs an enhanced first end marker and delivers it to the source access network device through the first multicast session tunnel.
  • the source access network device determines the first end marker according to the first information contained in the first end marker.
  • the end mareker acts on UE1, the source access network device stops forwarding the data of the first multicast service to the target access network device through the forwarding tunnel of UE1, and the data of the first multicast service of other UEs under the source access network device can still be Send and receive normally to prevent the continuity of the first multicast service of other UEs receiving the data of the first multicast service from being affected by the source access network device side, and ensure the continuity of the first multicast service of UE1.
  • the continuity of the first multicast service of other UEs on the device side of the source access network is also guaranteed.
  • the core network device can construct a first end marker, and the first end marker can be delivered to the source through the first multicast session tunnel.
  • Access network equipment where the first end marker includes first information, the first information is used to indicate UE1, and the source access network equipment determines that the first end marker acts on UE1 according to the first information, so as to prevent the source access network equipment from being in the first
  • a multicast session tunnel receives the first end marker, it affects other UEs that are receiving data of the first multicast service (the multicast service corresponding to the first multicast session tunnel), and ensures the first multicast of UE1
  • the continuity of the service also ensures the continuity of the first multicast service of other UEs on the device side of the source access network.
  • the forwarding tunnel is a PDU session forwarding tunnel.
  • the source access network device forwards the data of the first multicast service to the target access network device through the PDU session forwarding tunnel (ie, The source access network device copies the multicast service data (multicast QoS stream) in the multicast session tunnel, and then maps it to the unicast QoS stream in the PDU session for forwarding), then after receiving the first end marker, The source access network device stops copying the multicast service data (ie, multicast QoS flow) from the first multicast session tunnel, stops mapping the multicast QoS flow into a unicast QoS flow, and stops forwarding the tunnel to the PDU session through UE1.
  • the target access network device forwards the data of the first multicast service.
  • FIG. 6 is a schematic flowchart corresponding to another data transmission method provided by an embodiment of the application, as shown in FIG. 6, including:
  • Step S601 The source access network device receives a second end marker from the first core network device through the second tunnel.
  • the second tunnel is a PDU session tunnel of the first terminal device, and the second tunnel is used to transmit data of the PDU session of the first terminal device.
  • the source access network device only receives the second end marker. Therefore, the second end marker here can be used to represent the end data packet of the first multicast service of UE1, and can also be used to represent the end data packet of the PDU session of UE1.
  • the first core network device constructs the second end marker.
  • the third construction condition may include the complete transmission path of the first multicast service between the target access network device and the core network device, and the PDU session of UE1 between the target access network device and the core network device The complete transmission path.
  • Step S602 The source access network device determines according to the PDU session and the second end marker to stop sending the data of the first multicast service to the target access network device through the forwarding tunnel of UE1.
  • the source access network device stops sending data of the first multicast service to the target access network device through the forwarding tunnel of UE1.
  • the source access network device can determine this according to the PDU session and the second end marker.
  • the second end marker can act on the first multicast service of UE1.
  • the forwarding tunnel of UE1 includes a first forwarding tunnel and a second forwarding tunnel.
  • the first forwarding tunnel is the forwarding tunnel corresponding to the first multicast service of UE1 and is used to forward the data of the first multicast service of UE1;
  • the second forwarding tunnel is the forwarding tunnel corresponding to the PDU session of UE1 and is used to forward the PDU of UE1.
  • Session data After receiving the second end marker, the source access network device sends the second end marker to the destination access network device through the first forwarding tunnel; optionally, the source access network device receives the second end marker. After the end marker, the second end marker is sent to the destination access network device through the second forwarding tunnel.
  • the forwarding tunnel of UE1 is the foregoing second forwarding tunnel, and the second forwarding tunnel is used to forward the PDU session data of UE1 and the first multicast service data of UE1.
  • the source access network device After receiving the second end marker, the source access network device sends the second end marker to the destination access network device through the second forwarding tunnel.
  • S601 before S601, it may further include: S601a and S601b.
  • the process steps of S601a and S601b are the same as those of S501a and S501b in FIG. 5, which will not be repeated here.
  • Step S603 The source access network device sends the second end marker to the target access network device through the forwarding tunnel of UE1.
  • Step S604 The target access network device stops receiving the data of the first multicast service of the first terminal device through the forwarding tunnel of the UE1.
  • the target access network device stops receiving data of the first multicast service of the first terminal device through the first forwarding tunnel.
  • the target access network device stops receiving data of the first multicast service of the first terminal device through the second forwarding tunnel.
  • the target access network device stops receiving data of the first multicast service of the first terminal device through the second forwarding tunnel.
  • the core network device only constructs the second end marker, and sends it to the source access network device through the first PDU session tunnel, and the source access network device receives After the second end marker, the source access network device needs to stop copying the group from the first multicast session tunnel in addition to the execution of the end marker (ie, the second end marker) of the received PDU session specified in the 3GPP technical specifications.
  • Broadcast service data ie, multicast QoS flow
  • the source access network device forwards the data through the PDU session of UE1 through the tunnel or
  • the multicast session forwarding tunnel forwards the second end marker to the target access network device.
  • the target access network device after the target access network device receives the second end marker through the PDU session forwarding tunnel or multicast session tunnel of UE1, in addition to executing the received PDU session end marker specified in the 3GPP technical specifications In addition to performing operations, it is also necessary to stop receiving the data of the first multicast service forwarded by the source access network device through the multicast session forwarding tunnel.
  • the source access network device executes the PDU session end marker (that is, the second end marker) that has been specified in the 3GPP technical specifications.
  • multicast service data ie, multicast QoS flow
  • stop mapping the multicast QoS flow to a unicast QoS flow and stop forwarding the tunnel through the PDU session of UE1
  • the data of the first multicast service is forwarded to the target access network device.
  • the source access network device forwards the second end marker to the target access network device through the PDU session forwarding tunnel of UE1.
  • the target access network device After receiving the second end marker through the PDU session forwarding tunnel of UE1, in addition to the execution of the end marker of the received PDU session specified in the 3GPP technical specifications, it is also necessary to stop receiving the source access network device forwarding through the PDU session forwarding tunnel.
  • the data of the first multicast service ie, the unicast QoS flow mapped by the multicast QoS flow).
  • FIG. 7 is a schematic flowchart corresponding to another data transmission method provided by an embodiment of the application. As shown in FIG. 7, it includes:
  • step S701 UE1 sends a measurement report to the source access network device. Accordingly, the source access network device receives the measurement report sent by the UE, and the source access network device selects the target access network device to be handed over for the UE according to the measurement report.
  • Step S702 The source access network device sends a handover request message to the target access network device, and correspondingly, the target access network device receives the handover request message sent by the source access network device.
  • the handover request message includes but is not limited to part or all of the following information:
  • the first information the PDU session information of UE1, the QFI of the service flow that the source access network device wants to forward through the forwarding tunnel of UE1, the forwarding tunnel information of the source access network device, and the instruction information of multicast session forwarding tunnel establishment.
  • the first information may be the identity of UE1, or the temporary identity of UE1, and may also be other information used to determine UE1, which is not limited in the embodiment of the present application.
  • the first information is the index value of the first correspondence, and the first correspondence includes the index value, the PDU session of UE1, UE1, and the first multicast service associated with the PDU session of UE1.
  • the PDU session information may include the PDU session identifier and the QoS information of the unicast QoS flow of the service included in the PDU session.
  • the QoS information of the unicast QoS flow may include the QFI and QoS parameters of the unicast QoS flow.
  • the PDU session information of UE1 also includes the multicast service information associated with the PDU session, where the multicast service information may include a multicast service identifier and a multicast service
  • the QoS information of the multicast QoS stream, the QoS information of the multicast QoS stream may include the QFI and QoS parameters of the multicast QoS stream.
  • the multicast service associated (or included) in the PDU session of UE1 refers to, for example, when UE1 applies to join the multicast service by the source access network device, the multicast service information is saved to UE1's In the context of the PDU session, that is, the PDU session that stores the multicast service information, this article does not limit how the multicast service and the PDU session are associated.
  • the indication information may be an indication cell used to indicate that a multicast session needs to be established between the source access network device and the target access network device.
  • the forwarding tunnel of the tunnel (it can be a direct forwarding tunnel or an indirect forwarding tunnel).
  • the forwarding tunnel information of the source access network device where the forwarding tunnel may include a multicast session forwarding tunnel and/or a PDU session forwarding tunnel, and correspondingly, the forwarding tunnel information may include multicast session forwarding tunnel information and/or PDU session
  • the tunnel information is forwarded, and the vocabulary that is repeatedly quoted in the following will not be repeated.
  • the target access network device can establish a multicast session forwarding tunnel with the source access network device according to the multicast session forwarding tunnel information of the source access network device and the multicast session forwarding tunnel information of the target access network device itself.
  • the multicast session forwarding tunnel and the PDU session forwarding tunnel may be GTP-U tunnels.
  • the source access network device hopes to forward the QFI of the service flow through the forwarding tunnel, where the forwarding tunnel may include a PDU session tunnel and/or a multicast session forwarding tunnel.
  • the forwarding tunnel may include a multicast session forwarding tunnel and a PDU session forwarding tunnel.
  • the handover request message may include the QFI of the unicast QoS flow that the source access network device wishes to forward through the PDU session tunnel forwarding; and the QFI of the multicast QoS flow that the source access network device wishes to forward tunnel forwarded through the multicast session.
  • the switching request message may include the QFI of the unicast QoS flow mapped by the QFI of the multicast QoS flow, and may also include the QFI of the multicast QoS flow.
  • Step S703 The target access network device sends a handover response message to the source access network device, and correspondingly, the source access network device receives the handover response message sent by the target access network device.
  • the handover response message includes but is not limited to some or all of the following information:
  • the radio bearer configuration information configured by the target access network device for the UE1, the target access network device supports the QoS flow identifier QFI forwarded through the forwarding tunnel, and the forwarding tunnel endpoint identifier of the target access network device.
  • the target access network device prepares radio resources for UE1 according to the QoS information of the service flow contained in the handover request message.
  • the target access network device can determine the number of air interface wireless data bearers (Data Radio Bearer, DRB) and the mapping relationship between each QFI to DRB according to the QoS parameters corresponding to the QFI of each service flow.
  • DRB Data Radio Bearer
  • the target access The network access device can also determine the configuration parameters corresponding to the DRB according to the QoS parameters corresponding to the QFI mapped by each DRB (for example, whether the radio link control (RLC) layer corresponding to the DRB adopts the confirmation mode or not Confirmation mode, etc.), and finally, the target access network device creates a corresponding DRB.
  • RLC radio link control
  • the target access network device supports the QoS flow identification QFI forwarded through the forwarding tunnel.
  • the multicast function is supported for the target access network device. If the multicast QoS flow supports forwarding through the forwarding tunnel, the switching response is in progress It may include the QFI of the multicast QoS flow that the target access network device supports forwarding.
  • the target access network device if the switching request message carries the QFI of the unicast QoS flow corresponding to the QFI of the multicast QoS flow, the target access network device is in the switching response It may include the QFI of the unicast QoS flow corresponding to the QFI of the multicast QoS flow that the target access network device supports to forward.
  • Step S704 After receiving the handover response message, the source access network device sends a handover command message to UE1. Accordingly, UE1 receives the handover command message from the source access network device. After receiving the handover command message, UE1 communicates with the source. The connected device is disconnected.
  • the handover command message may include the radio bearer configuration information configured by the target access network device for the UE1, which is used for the UE1 to access the target access network device according to the radio bearer configuration information.
  • Step S705 UE1 accesses the target access network device.
  • Step S706a The source access network device receives the data of the first multicast service sent by the core network device.
  • Step S706b The source access network device sends the first data to the target access network device through the forwarding tunnel of UE1.
  • the target access network device receives the first group sent by the source access network device through the multicast session forwarding tunnel.
  • the first data of the broadcast service is not limited to the broadcast service.
  • the first data may be the QFI multicast service data of the multicast QoS flow corresponding to the first multicast service that the source access network device supports forwarding supported by the target access network device contained in the handover response message, that is, the first data
  • One piece of data may be part or all of the data of the first multicast service received by the source access network device from the core network device.
  • An optional implementation manner is that the source access network device sends the first data to the target access network device through the multicast session forwarding tunnel. Specifically, the source access network device copies the first data, and sends the copied first data to the target access network device through the multicast session forwarding tunnel.
  • the forwarding process may include: the source access network device receives the first multicast service from the core network device The data of the service is copied, and the first data of the first multicast service is copied to obtain the second data.
  • the source access network device sends the second data to the target access network device through the multicast session forwarding tunnel.
  • the forwarding process may include:
  • the source access network device receives the data of the first multicast service from the device, and copies the first data of the first multicast service to obtain the second data.
  • the first data is a GTP-U message
  • the GTP-U message includes a header and a data part
  • the header of the message includes a QFI domain.
  • the source access network device performs mapping processing on the second data, maps the multicast QoS flow into a unicast QoS flow, and then forwards the tunnel transmission through the PDU session.
  • the mapping process is as follows: the source access network device determines the QFI included in the second data, and determines the QFI of the unicast QoS flow corresponding to the QFI included in the second data according to the first mapping relationship.
  • the first The QFI contained in the second data is called the first QFI
  • the QFI of the unicast QoS flow corresponding to the QFI contained in the second data is called the second QFI.
  • the source access network device replaces the first QFI in the second data with the second QFI.
  • QFI The first mapping relationship includes the corresponding relationship between the QFI of the multicast QoS flow and the QFI of the unicast QoS flow.
  • the first mapping relationship may be generated by SMF.
  • the SMF determines the first mapping relationship according to the QFI of the unicast QoS flow included in the PDU session of UE1 and the QFI of the QoS flow included in the first multicast service, and sends it to Source access network equipment.
  • the QFI of the unicast QoS flow determined by the SMF is different from the QFI of the existing unicast QoS flow (the unicast QoS flow included in the PDU session of UE1).
  • QFI of a unicast QoS flow is (10-64)
  • the first mapping relationship may be Table 1 below, as shown in Table 1 below, which is an example of the first mapping relationship provided in the embodiment of this application.
  • mapping The foregoing process of determining the QFI of a unicast QoS flow based on the QFI of a multicast QoS flow can be referred to as mapping.
  • the corresponding relationship between the QFI of the multicast QoS flow and the QFI of the unicast QoS flow is called the first Mapping relations.
  • one multicast QoS flow can be mapped to one unicast QoS flow, or multiple multicast QoS flows can be mapped to one unicast QoS flow, and the embodiment of the present application does not limit how to map.
  • the session management function network element can first map the multicast QoS flow to the unicast QoS flow, and inject it into the PDU session for transmission. This is because when the terminal device is in the source access network device, it has requested the transmission through the PDU session. The service requests the multicast service again. Among them, the service transmitted through the PDU session is transmitted in the PDU session tunnel, and the multicast service is transmitted in the multicast session tunnel. The service continuity of the terminal equipment can be guaranteed. The so-called service continuity includes the continuity of the service in the PDU session and the continuity of the multicast service.
  • the terminal device switches from the source access network device to the target access network device, if the multicast QoS flow in the multicast session tunnel of the source access network device is not mapped into the source access network device’s PDU session first,
  • the so-called multicast session tunnel refers to a piece of data received in the tunnel.
  • the air interface of the network access device can be sent to the UE in a point-to-multipoint manner, so the multicast service of the terminal device will be interrupted, and service continuity cannot be maintained.
  • the multicast QoS flow can be mapped to the unicast QoS flow in the source access network equipment (that is, before the terminal equipment is switched to the target access network equipment), and the unicast switching is performed.
  • the session management function network element knows the multicast capability information of the target access network device during the handover process, it can operate according to whether the target access network device supports multicast, so as to communicate with the target access network device in an appropriate manner. Add terminal equipment to the multicast service.
  • step S707 when the target access network device receives the data of the first multicast service forwarded by the source access network device, UE1 may not have access to the target access network device, then the target access network device The network access device may buffer the received data of the first multicast service. After UE1 accesses the target access network device, the target access network device sends the buffered data of the first multicast service to UE1 in order.
  • the target access network device sends the data of the first multicast service to UE1 through the air interface of the PDU session of UE1.
  • the PDU session of the UE1 may be a PDU session associated with the first multicast service, or another PDU session of the UE1, which is not limited in the embodiment of the present application.
  • the target access network device when the target access network device receives the second data (including the first QFI) of the first multicast service from the source access network device through the multicast session forwarding tunnel, the target access network device needs to perform according to the first mapping Relationship, the second QFI corresponding to the first QFI contained in the second data is determined, the DRB configuration corresponding to the second QFI is determined according to the second mapping relationship, the second data is decapsulated, and the GPT-U header is removed. The data part is mapped to the corresponding DRB, and then sent to UE1.
  • the target access network device when the target access network device supports the multicast function, the target access network device may also send the second data to the UE1 in a point-to-multipoint manner.
  • Step S707 The target access network device sends an N2 path switching request to the AMF, and accordingly, the AMF receives the N2 path switching request.
  • the N2 path switching request may include but is not limited to one or more of the following:
  • the first information The first information, the tunnel information of the target access network device, the QFI of the unicast QoS flow for successful and failed switching in the PDU session, the QFI of the multicast QoS flow for successful and failed switching, and the multicast associated with the PDU session of UE1
  • the above-mentioned QFI may be encapsulated in an N2SM message.
  • the first information is used to uniquely identify the handover UE1.
  • the tunnel information of the target access network device may include PDU session tunnel information and/or multicast session tunnel information, where the PDU session tunnel information of the target access network device is used to establish UE1 between the UPF and the target access network device PDU session tunnel.
  • the multicast session tunnel information of the target access network device is used by the first core network device to establish a multicast session tunnel with the target access network device according to the multicast session tunnel information of the target access network device.
  • the first core network device establishes a multicast session tunnel with the target access network device.
  • the core network equipment can be UPF or MUF.
  • the QFI of the unicast QoS flow that is successfully switched is the QFI of the unicast QoS flow that the target access network device supports forwarding.
  • the QFI of the broadcast QoS flow is the QFI of the unicast QoS flow carried in the handover request message by the source access network device, and the QFI of the unicast QoS flow that the target access network device does not support forwarding.
  • the first indication information can be used to indicate whether the target access network device is running (or exists) the first multicast service of UE1.
  • the first indication information is an indication value of at least 1 bit. Taking 1 bit as an example, for example, the bit value on the 1 bit is 1, indicating that the first multicast service is running, and the bit value on the 1 bit is If it is 0, it means that the first multicast service is not running. It should be noted that the information indicated by the indication value is only an example, and the embodiment of the present application does not limit the content of the indication corresponding to the numerical value of the indication value.
  • the target access network device supports the multicast function and is running the first multicast service
  • the core network device can access the target
  • the network device sends the data of the first multicast service.
  • the complete transmission path of the first multicast service includes a transmission tunnel from MUF to UPF to the target access network device, and the tunnel can be used to transmit the first group Broadcast business data.
  • the SMF can determine to connect to the target through the PDU session tunnel or other transmission methods.
  • the network access device sends the data of the first multicast service, which will be described in detail below.
  • the indication information for establishing a multicast session forwarding tunnel may be an indication cell used to notify SMF that a forwarding tunnel for the multicast session tunnel needs to be established between the source access network device and the target access network device.
  • the target access network device supports the multicast function. Assume that in step S708, the SMF determines that the target access network device supports the multicast function and is running the first multicast service.
  • Step S708 The AMF sends a PDU session update request to the SMF, and correspondingly, the SMF receives the PDU session update request sent by the AMF.
  • the PDU session update request may include, but is not limited to, part or all of the information included in the aforementioned N2 handover request.
  • the PDU session update request sent by the AMF to the SMF also includes the capability information of the target access network device.
  • step S709 the SMF is constructed or the SMF notifies the first core network device to construct a first end marker, and sends the first end marker to the source access network device.
  • step S710 to step S712 refer to the process steps of step S501 to step S505 in FIG. 5, which will not be repeated here.
  • the core network device can send the first multicast session tunnel to the target access network device through the second multicast session tunnel.
  • Data of the multicast service may receive the data of the first multicast service from the source access network device, and may also receive the data of the first multicast service from the core network device.
  • the data received from the source access network device is the data of the first multicast service before the first end marker is constructed, and the data received from the core network device is the first group received after the second multicast session tunnel is established.
  • Broadcast business data In order to avoid disorder, the target access network device caches the two parts of data in different queues.
  • the multicast data received from the source access network device is cached in queue 1, and the group received from the core network device The broadcast data is buffered to queue 2.
  • the target access network device should send the multicast data of queue 1 to UE1 in an orderly manner.
  • the target access network device finishes sending the multicast data in queue 1, and after receiving the first end marker, it sends the multicast data in queue 2 to UE1.
  • the target access network equipment that does not support the multicast function and the target access network equipment that supports the multicast function it is reflected in the update process of the user plane tunnel with the core network equipment, which can be the core Whether the network device can establish the second multicast session tunnel with the target access network device, if the target access network device does not support the multicast function, the above-mentioned related information and procedures for establishing the second multicast session tunnel do not need to be executed.
  • the core network device side also generates the end marker. The difference.
  • the process of constructing an end marker in different scenarios by the core network device is introduced.
  • step S710 The method of constructing the end marker on the core network device side in step S710 will be described in detail below in conjunction with the content shown in FIG. 8 to FIG. 10.
  • the method of constructing the first end marker by the first core network device will be introduced by taking the target access network device supporting the multicast function in the first solution as an example:
  • the first core network device constructs the first end marker.
  • the first construction condition may include that there is a complete transmission path of the first multicast service between the target access network device and the core network device, or in other words, the target access network device can receive or has received the first multicast service.
  • the data of the multicast service When the data of the multicast service.
  • the first core network device here may be one of SMF, UPF, MUF, or MCF.
  • FIG. 11 is a schematic diagram of the process corresponding to a method for constructing the first end marker provided by an embodiment of the application. As shown in FIG. 11, it includes:
  • Step S801 the SMF receives the PDU session update request sent by the AMF;
  • the PDU session update request includes, but is not limited to, the multicast capability information of the target access network device, the information of the second multicast session tunnel and the indication of the multicast session tunnel forwarding tunnel establishment, and the information of the second multicast session tunnel Contains the second multicast session tunnel endpoint identifier of the target access network device and the first information.
  • step S802 the SMF sends an N4 session update request to the UPF, and the corresponding UPF receives the N4 session update request sent by the SMF.
  • the N4 session update request includes the tunnel information of the target access network device and the tunnel information allocated by the SMF to the UPF, that is, the second multicast session tunnel endpoint identifier of the target access network device and the second multicast session of the UPF Tunnel endpoint identifier.
  • step S802 is only an example.
  • the tunnel information of the target access network device and the tunnel information allocated by the SMF to the UPF can also be carried in other messages or dedicated signaling, which is not limited in the embodiment of the application.
  • the existing signaling is used to carry new information, so as to save signaling overhead.
  • step S803 the UPF establishes a second multicast session tunnel with the target access network device according to the tunnel information of the target access network device and the tunnel information allocated to the UPF by the SMF, and the UPF sends an N4 session update response to the SMF.
  • the SMF receives the N4 session update response sent by the UPF.
  • Step S804 If the tunnel between the UPF and the MUF has not been established, the SMF sends a third message to the MCF.
  • the third message is used to instruct the MCF to notify the MUF to establish the tunnel with the UPF, and the corresponding MCF receives the third message from the SMF.
  • the third message includes, but is not limited to, the tunnel information of the tunnel between the UPF and the MUF, where the tunnel information includes the tunnel endpoint identifier of the tunnel between the UPF and the MUF, which is allocated by the SMF for the UPF.
  • step S804 is an optional step and does not have to be performed. It should be understood that SMF can know whether a tunnel is established between UPF and MUF. The premise of this step is that SMF determines that a tunnel connection is not established between UPF and MUF. If there is a tunnel between UPF and MUF, this step does not need to be performed . In addition, when this step needs to be executed, the present application does not strictly limit the execution order of step S804. It can be executed after step S802, or before step S802, or it can be executed at the same time as step S802 and step S804. The embodiment of the application does not limit this.
  • step S805 the MCF sends a fourth message to the MUF.
  • the fourth message includes the tunnel endpoint identifier assigned by the MCF to the MUF and the tunnel endpoint identifier of the UPF.
  • the MCF receives the fourth message sent by the MCF.
  • Step S806 The MUF establishes a tunnel with the UPF according to the fourth message. After the tunnel establishment is completed, it sends a first response message to the MCF. Correspondingly, the MCF receives the first response message.
  • step S807 the MCF sends a second response message to the SMF, and correspondingly, the SMF receives the second response message.
  • the SMF should determine that there is a tunnel connection between the MUF and the UPF according to the third message, and the SMF should determine that there is a second multicast session tunnel connection between the UPF and the target access network device according to the N4 session update response.
  • Step S808 The SMF generates and sends a first end marker, and the first end marker includes the first information.
  • the path for sending the first end marker may be SMF ⁇ UPF ⁇ source access network device.
  • FIG. 9 is a schematic flowchart corresponding to another method of constructing a first end marker provided by an embodiment of the application, as shown in FIG. 9, including:
  • steps S901 to S907 are the same as the execution steps of steps S801 to S807 in FIG.
  • Step S908 The SMF sends a second message to the UPF.
  • the second message is used to instruct the UPF to construct and send the first end marker, and the corresponding UPF receives the second message from the SMF.
  • the second message includes but is not limited to the first message.
  • Step S909 After receiving the second message, the UPF generates and sends the first end marker.
  • the SMF may directly send a second message to the UPF.
  • the second message includes but is not limited to the first information and the first message. 2.
  • Tunnel information of the multicast session tunnel After the establishment of the second multicast session tunnel is completed, the UPF generates and sends the first end marker containing the first information. UPF can also send N4 session update response to SMF.
  • FIG. 10 is a schematic flowchart corresponding to another method of constructing a first end marker provided by an embodiment of the application, as shown in FIG. 10, including:
  • step S1001 to step S1006 are the same as that of step S801 to step S806 in FIG.
  • Step S1004 The SMF sends a fifth message to the MCF.
  • the fifth message is used to instruct the MCF to notify the MUF to establish a tunnel with the UPF, and the corresponding MCF receives the fifth message from the SMF.
  • Step S1005 The MCF sends a second message to the MUF.
  • the second message may be used to instruct the MUF to construct and send a first end marker, where the first end marker includes the first information.
  • the second message includes but is not limited to: the first information and UPF tunnel information.
  • the MUF sends the first end marker to the source access network device through the tunnel with the UPF and the first multicast session tunnel.
  • the path for sending the first end marker may be MUF ⁇ UPF ⁇ source access network device.
  • Step S1006 MUF generates and sends a first end marker containing the first information.
  • FIG. 11 is a schematic flowchart corresponding to another method of constructing a first end marker provided by an embodiment of the application, as shown in FIG. 11, including:
  • the steps S1101 to S1003 are the same as the steps S901 to S903 in FIG.
  • Step S1104 The SMF sends a second message to the MCF.
  • the second message is used to instruct the MCF to generate and send the first end marker after the first configuration condition is met.
  • the MCF receives the second message from the SMF.
  • the second message includes but is not limited to the first information and UPF tunnel information.
  • Step S1105 The MCF sends a fourth message to the MUF.
  • the fourth message includes the tunnel endpoint identifier assigned by the MCF to the MUF and the tunnel endpoint identifier of the UPF.
  • the MCF receives the fourth message sent by the MCF.
  • Step S1106 The MUF establishes a tunnel with the UPF according to the fourth message. After the tunnel establishment is completed, it sends a first response message to the MCF. Correspondingly, the MCF receives the first response message.
  • Step S1107 After receiving the N4 session update response and the first response message, the MCF generates and sends a first end marker, where the first end marker includes the first information.
  • the path for sending the first end marker may be MCF ⁇ MUF ⁇ UPF ⁇ source access network device.
  • the foregoing first configuration condition refers to the response information received by the core network device in different scenarios.
  • the second core network device can be SMF or UPF. Take SMF to construct the second end marker as an example for description.
  • the N4 session update request is also It includes the information of the second PDU session tunnel, that is, the endpoint identifier of the PDU session tunnel of the target access network device, and the endpoint identifier of the PDU session tunnel allocated by the SMF for the UPF.
  • the UPF after receiving the N4 session update request, the UPF establishes a second PDU session tunnel with the target access network device according to the information of the second PDU session tunnel, the UPF sends the N4 session update response to the SMF, and the SMF receives the N4 session update response After that, the second end marker is generated and constructed.
  • the second construction condition here may be that the SMF receives the N4 session update response.
  • the process of constructing the first end marker by the first core network device will be described by taking the first solution and the target access network device not supporting the multicast function as an example.
  • the first core network device constructs the first end marker For the manner in which the first core network device constructs the first end marker, reference may be made to the related description of the foregoing embodiment 2. Take Figure 8 as an example. The difference is that since the target access network device does not support the multicast function, in step S802, The tunnel information of the target access network device and the tunnel information allocated to the UPF by the SMF contained in the N4 session update request are respectively the second PDU session tunnel endpoint identifier of the target access network device and the second PDU session tunnel endpoint identifier of the UPF. In step S803, the UPF establishes a second PDU session tunnel with the target access network device, and the UPF sends an N4 session update response to the SMF. For the rest of the process, please refer to the detailed description of FIG. 8, which will not be repeated here.
  • the method for constructing the second end marker by the second core network device will be introduced by taking the second solution and the target access network device supporting the multicast function as an example:
  • the second core network device constructs a second end marker.
  • the third construction condition may include the complete transmission path of the first multicast service between the target access network device and the core network device, and the PDU session of UE1 between the target access network device and the core network device The complete transmission path.
  • the second core network device here can be SMF or UPF.
  • FIG. 12 is a schematic diagram of the flow corresponding to a method for constructing the second end marker provided by an embodiment of the application, as shown in FIG. 12, including:
  • Step S1201 the SMF receives the PDU session update request sent by the AMF;
  • the PDU session update request includes, but is not limited to, the multicast capability information of the target access network device, the second PDU session tunnel information, the second multicast session tunnel information, and the multicast session tunnel forwarding tunnel establishment instruction.
  • the information of the second PDU session tunnel includes the second PDU session tunnel endpoint identifier of the target access network device, and the information of the second multicast session tunnel includes the second multicast session tunnel endpoint identifier of the target access network device.
  • step S1202 the SMF sends an N4 session update request to the UPF, and the corresponding UPF receives the N4 session update request sent by the SMF.
  • the N4 session update request includes the tunnel information of the target access network device and the tunnel information allocated by the SMF to the UPF, that is, the second PDU session tunnel endpoint identifier of the target access network device and the second PDU session tunnel endpoint of the UPF Identifier, and the second multicast session tunnel endpoint identifier of the target access network device and the second multicast session tunnel endpoint identifier of the UPF.
  • the UPF establishes a second PDU session tunnel with the target access network device according to the second PDU session tunnel endpoint identifier of the target access network device and the UPF second PDU session tunnel endpoint identifier.
  • the UPF establishes a second multicast session tunnel with the target access network device according to the second multicast session tunnel endpoint identifier of the target access network device and the UPF second multicast session tunnel endpoint identifier.
  • step S1203 the UPF sends an N4 session update response to the SMF.
  • the SMF receives the N4 session update response sent by the UPF.
  • the N4 session update response is used to indicate that the establishment of the second multicast session tunnel and the second PDU session tunnel is completed.
  • step S1204 to step 1207 are the same as that of step S804 to step S807 in FIG. 8, and will not be repeated here.
  • Step S1208 SMF generates and sends a second end marker.
  • the path for SMF to send the second end marker may be SMF ⁇ UPF ⁇ source access network device.
  • step S1208 after receiving the third message, the SMF sends a fifth message to the UPF to indicate the UPF. Generate and send the second end marker.
  • the third message includes the first PDU session tunnel information.
  • the path for the UPF to send the second end marker may be that the UPF sends the second end marker to the source access network device through the first PDU session tunnel.
  • the second core network device constructs a second end marker.
  • the fourth construction condition may include that the UPF has a transmission tunnel corresponding to the first multicast service (a tunnel between MUF and UPF), and that there is a UE1 PDU session between the target access network device and the core network device.
  • the complete transmission path (the second PDU session tunnel), and the multicast service data of UE1 has been injected into the PDU session of UE1 for transmission.
  • the second core network device here can be SMF or UPF.
  • Fig. 13 is a schematic diagram of the process corresponding to a way of constructing a second end marker provided by an embodiment of the application, as shown in Fig. 13, including:
  • Step S1301 The SMF receives the PDU session update request sent by the AMF;
  • the PDU session update request includes, but is not limited to, the multicast capability information of the target access network device and the information of the second PDU session tunnel, and the information of the second PDU session tunnel includes the second PDU session tunnel of the target access network device. Endpoint ID.
  • step S1302 the SMF sends an N4 session update request to the UPF, and the corresponding UPF receives the N4 session update request sent by the SMF.
  • the N4 session update request includes, but is not limited to, the tunnel information of the target access network device and the tunnel information allocated by the SMF to the UPF, and the first mapping relationship.
  • the tunnel information of the target access network device and the tunnel information allocated by the SMF to the UPF include: the second PDU session tunnel endpoint identifier of the target access network device and the second PDU session tunnel endpoint identifier allocated by the SMF for the UPF.
  • the first mapping relationship is used for UPF after receiving the multicast service data of the first multicast service sent by the MUF, according to the first mapping relationship, the QFI of the multicast QoS flow corresponding to the service data of the first multicast service, and Determine the QFI of the unicast QoS flow corresponding to the QFI of the multicast QoS flow according to the first mapping relationship, replace the QFI of the multicast QoS flow with the QFI of the determined unicast QoS flow, and inject the obtained unicast QoS flow into UE1 PDU session tunnel.
  • step S1303 the SMF sends an N4 session update response to the UPF, and the corresponding UPF receives the N4 session update response sent by the SMF.
  • Step S1304 if the tunnel for transmitting multicast service data between the MUF and the UPF has not been established yet, the SMF sends a fifth message to the MCF.
  • the fifth message is used to instruct the MCF to notify the MUF to establish a tunnel with the UPF, corresponding to The MCF receives the fifth message from the SMF.
  • the fifth message includes but is not limited to: contains the tunnel endpoint identifier allocated by the SMF for the UPF.
  • Step S1305 The MCF sends a sixth message to the MUF.
  • the sixth message may be used to instruct the MUF to establish a tunnel with the UPF.
  • the sixth message includes but is not limited to: contains the tunnel endpoint identifier assigned by the MCF for the MUF and the tunnel endpoint identifier of the UPF.
  • Step S1306 After the establishment of the tunnel between the MUF and the UPF is completed, the MUF sends a third response message to the MCF, and correspondingly, the MCF receives the third response message.
  • the third response message is used to indicate that the MUF and the UPF have a tunnel connection.
  • step S1307 the MCF sends the fourth indication response to the SMF, and correspondingly, the SMF receives the fourth indication response.
  • the fourth response message is used to indicate to the SMF that the MUF and the UPF have a tunnel connection.
  • step S1306 is only an example.
  • the tunnel information of the target access network device and the tunnel information allocated by the SMF to the UPF can also be carried in other messages or dedicated signaling, which is not limited in the embodiment of the application.
  • the existing signaling is used to carry new information to achieve the goal of saving signaling overhead.
  • Step S1308 After receiving the fourth indication response sent by the MCF, the SMF generates and sends a second end marker.
  • the path for sending the second end marker may be SMF ⁇ UPF ⁇ source access network device.
  • the SMF can construct a second end marker after receiving the N4 session update response sent by the UPF.
  • the manner in which the target access network device forwards the data of the first multicast service to the UE1 is described in detail.
  • Example 1 The target access network device supports the multicast function
  • the source access network device receives the data of the first multicast service from the multicast session tunnel, and the source access network device copies the data of the first multicast service to obtain second data, and the second data includes the first QFI,
  • the first QFI is a multicast QoS flow QFI, and the source access network device forwards the second data to the target access network device through the multicast session forwarding tunnel. After the target access network device receives the second data forwarded by the forwarding tunnel, it is sent to UE1 through the air interface of the PDU session of UE1.
  • the target access network device determines the first QFI contained in the second data according to the first mapping relationship
  • the corresponding second QFI (ie, unicast QFI) determines the DRB configuration corresponding to the second QFI (ie, the DRB ID corresponding to the unicast QFI) according to the second mapping relationship, and then decapsulates the second data, After removing the GPT-U header, map the data part of the second data to the corresponding DRB, and then send it to UE1.
  • the second mapping relationship is the mapping relationship between QFI and DRB of the unicast QoS flow.
  • Example 2 The target access network device does not support the multicast function
  • the source access network device receives the data of the first multicast service from the multicast session tunnel, and the source access network device copies the data of the first multicast service to obtain second data, and the second data includes the first QFI,
  • the first QFI is the multicast QoS flow QFI.
  • the source access network device determines the second QFI corresponding to the first QFI according to the first mapping relationship and replaces the first QFI with the second QFI. After that, the source access network device uses the PDU session
  • the forwarding tunnel forwards the third data (that is, the second data in which the first QFI is replaced with the second QFI, that is, the data part of the third data and the second data are the same) to the target access network device.
  • the target access network device receives the data of the first multicast service forwarded by the forwarding tunnel, there are many ways to send it to the UE1.
  • the data is sent through the air interface of the PDU session of the UE1.
  • the PDU session may be a PDU session associated with the first multicast service of UE1, or another PDU session of UE1, which is not limited in the embodiment of the present application.
  • the target access network device supports the multicast function, it can also be sent through the air interface of the multicast session (that is, in a point-to-multipoint manner).
  • each network element described above includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the device 1400 may exist in the form of software or hardware.
  • the device 1400 may include: a processing unit 1402 and a communication unit 1403.
  • the communication unit 1403 may include a receiving unit and a sending unit.
  • the processing unit 1402 is used to control and manage the actions of the device 1400.
  • the communication unit 1403 is used to support the communication between the device 1400 and other network entities.
  • the device 1400 may further include a storage unit 1401 for storing program codes and data of the device 1400.
  • the processing unit 1402 may be a processor or a controller, for example, a general-purpose central processing unit (CPU), a general-purpose processor, a digital signal processing (digital signal processing, DSP), and an application specific integrated circuit (application specific integrated circuit). circuits, ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the storage unit 1401 may be a memory.
  • the communication unit 1403 is an interface circuit of the device for receiving signals from other devices.
  • the communication unit 1403 is an interface circuit used by the chip to receive signals from other chips or devices, or an interface circuit used by the chip to send signals to other chips or devices.
  • the apparatus 1400 may be an access network device (such as a source access network device, a target access network device) in any of the foregoing embodiments, and may also be a chip for an access network device.
  • the processing unit 1402 may be, for example, a processor
  • the communication unit 1403 may be, for example, a transceiver.
  • the transceiver may include a radio frequency circuit
  • the storage unit may be, for example, a memory.
  • the processing unit 1402 may be a processor, for example, and the communication unit 1403 may be an input/output interface, a pin, or a circuit, for example.
  • the processing unit 1402 can execute computer-executable instructions stored in the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located in the source access network device. Storage units outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the apparatus 1400 may be a core network device (such as a first core network device and a third core network device) in any of the foregoing embodiments, and may also be a chip used for a core network device.
  • the processing unit 1402 may be, for example, a processor
  • the communication unit 1403 may be, for example, a transceiver.
  • the transceiver may include a radio frequency circuit
  • the storage unit may be, for example, a memory.
  • the processing unit 1402 may be a processor, for example, and the communication unit 1403 may be an input/output interface, a pin, or a circuit, for example.
  • the processing unit 1402 can execute computer-executable instructions stored in the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located in the source access network device. Storage units outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the apparatus 1400 is the source access network device in the above example, and the communication unit 1403 of the source access network device includes a sending unit and a receiving unit.
  • the receiving unit is specifically configured to receive the second end data packet end marker from the first core network device through the second tunnel; wherein, the second tunnel is a transmission tunnel of the protocol data unit PDU session of the first terminal device, and the PDU The session is associated with the first multicast/broadcast service;
  • the processing unit 1402 is further configured to, in response to receiving the second end marker, determine to stop passing through the first terminal device according to the PDU session and the second end marker The forwarding tunnel sends the data of the first multicast/broadcast service to the target access network device.
  • the forwarding tunnel includes: a first forwarding tunnel or a second forwarding tunnel; the first forwarding tunnel is corresponding to the first multicast/broadcast service of the first terminal device Forwarding tunnel; the second forwarding tunnel is a forwarding tunnel corresponding to the PDU session of the first terminal device.
  • the receiving unit is specifically configured to receive the data of the first multicast/broadcast service from the first core network device through a first tunnel, and the first tunnel is configured to send data to the source A tunnel through which the access network device transmits the data of the first multicast/broadcast service;
  • the processing unit 1402 is specifically configured to copy the first data, and the sending unit is specifically configured to pass through the first forwarding tunnel or the second forwarding
  • the tunnel sends first data copied to the target access network device, where the first data is the data of the first multicast/broadcast service received by the source access network device through the first tunnel Part or all; controlling the sending unit to stop forwarding the data of the first multicast/broadcast service to the target access network device through the forwarding tunnel of the first terminal device includes: controlling the sending unit to stop forwarding the data of the first multicast/broadcast service through the forwarding tunnel to the The target access network device forwards the first data.
  • the receiving unit is specifically configured to receive the first quality of service flow identifier QFI corresponding to the first data from the first core network device through the first tunnel; the processing unit 1402 specifically It is used to determine the second QFI corresponding to the first QFI according to the first mapping relationship, where the first mapping relationship includes the QFI and the QFI when the data of the first multicast/broadcast service is transmitted through the first tunnel.
  • the receiving unit is further configured to receive the first mapping relationship from the session management function network element SMF.
  • the processing unit 1402 copies the second end marker and sends the copied second end marker to the target access network device through the first forwarding tunnel;
  • the apparatus 1400 is the target access network device in the above example, and the communication unit 1403 of the target access network device includes a sending unit and a receiving unit.
  • the receiving unit is configured to receive the first data of the first multicast/broadcast service through the forwarding tunnel of the first terminal device;
  • the sending unit is configured to send the first multicast/broadcast service to the first terminal device in a point-to-point manner through an air interface / First data of the broadcast service;
  • the receiving unit is further configured to receive the end data packet end marker through the forwarding tunnel;
  • the processing unit 1402 is configured to control the sending unit to stop receiving the first multicast/broadcast through the forwarding tunnel Business data.
  • the forwarding tunnel includes: a first forwarding tunnel or a second forwarding tunnel; the first forwarding tunnel is corresponding to the first multicast/broadcast service of the first terminal device A forwarding tunnel; the second forwarding tunnel is a forwarding tunnel corresponding to a protocol data unit PDU session of the first terminal device; the PDU session of the first terminal device is associated with the first multicast/broadcast service.
  • the sending unit is specifically configured to send the first data to the first terminal device through a PDU session, and the PDU session is a PDU session of the first terminal device.
  • the receiving unit is specifically configured to receive the first data of the first multicast/broadcast service through the first forwarding tunnel; and is also configured to receive the first data through the first forwarding tunnel.
  • the processing unit 1402 is specifically configured to determine the second QFI corresponding to the first QFI according to the first mapping relationship; wherein, the first mapping relationship includes The corresponding relationship between the QFI when the data of the first multicast/broadcast service is transmitted through the first tunnel and the QFI when the data of the first multicast/broadcast service is transmitted through the tunnel of the PDU session; a sending unit , Specifically used to send the first data to the first terminal device.
  • the receiving unit is further configured to receive the second data of the first multicast/broadcast service through a third tunnel, and buffer the second data, where the third tunnel is the A tunnel for a PDU session of the first terminal device, or the third tunnel is a tunnel for the first multicast/broadcast service;
  • the sending unit is further configured to send the buffered second data to the first terminal device.
  • the third tunnel is a tunnel of the first multicast/broadcast service
  • a receiving unit specifically configured to receive the second data and the third QFI corresponding to the second data through the tunnel of the first multicast/broadcast service;
  • the processing unit 1402 is specifically configured to determine the fourth QFI corresponding to the third QFI according to the first mapping relationship; wherein, the first mapping relationship includes the data of the first multicast/broadcast service passing through the first group The corresponding relationship between the QFI when the broadcast/broadcast service is transmitted through the tunnel and the QFI when the data of the first multicast/broadcast service is transmitted through the tunnel of the PDU session; according to the fourth QFI to the first terminal device Send the second data.
  • the device 1400 is the first core network device in the above example, and the processing unit 1402 of the first core network device is specifically configured to generate a first end data packet end marker, where the first end marker is The end marker includes first information, and the first information is used to determine the first terminal device; the communication unit 1403 includes a sending unit and a receiving unit.
  • the sending unit is specifically configured to send the first end marker to the source access network device through a first tunnel; wherein, the first tunnel is used to transmit data of the first multicast/broadcast service.
  • the receiving unit is further configured to receive a second message from a third core network device, where the second message is used to instruct the processing unit 1402 to generate and send the first end marker.
  • the second message includes the first information.
  • the second message is also used to instruct the processing unit 1402 to send the first end marker through the first tunnel;
  • the processing unit 1402 is further configured to determine the first tunnel according to the second message.
  • the second message includes information about the first tunnel, and/or information about the first multicast/broadcast service.
  • the first core network device is a session management function network element SMF
  • the first core network device is the third core network device
  • the first core network device is a group Broadcast/broadcast user plane network element
  • the third core network device is a multicast/broadcast control plane network element
  • the first core network device is a user plane network element UPF or the multicast/broadcast control plane network element
  • the third core network device is an SMF.
  • the first core network device is a UPF or a multicast user plane function
  • the multicast user plane function is a multicast/broadcast user plane network element
  • the sending unit is further configured to send first data of the first multicast/broadcast service to the source access network device through a first tunnel, where the first tunnel is for transmitting the first multicast/broadcast service The data tunnel; send the second data of the first multicast/broadcast service to the target access network device through a third tunnel; wherein, the third tunnel is the PDU session of the first terminal device Or the third tunnel is the tunnel of the first multicast/broadcast service.
  • the third tunnel is a tunnel of a PDU session of the first terminal device
  • the processing unit 1402 is specifically configured to determine the third QFI corresponding to the second data when the second data is sent through the tunnel of the PDU session; and determine the fourth QFI corresponding to the third QFI according to the first mapping relationship.
  • the first mapping relationship includes the QFI when the data of the first multicast/broadcast service is sent through the tunnel of the first multicast/broadcast service and the QFI when the data of the first multicast/broadcast service passes through the tunnel.
  • the sending unit is specifically configured to send the second data and the fourth QFI to the target access network device through the third tunnel.
  • the first core network device is UPF
  • the third core network device is SMF
  • the receiving unit is further configured to receive a third message from the third core network device, where the third message is used to instruct the processing unit 1402 to generate and send the second end marker;
  • the processing unit 1402 is further configured to generate the second end marker, and control the sending unit to send the second end marker to the source access network device through a second tunnel; wherein, the second tunnel is the first For the tunnel of the PDU session of the terminal device, the PDU session is associated with the first multicast/broadcast service.
  • the device 1400 is the third core network device in the above example, and the processing unit 1402 of the third core network device is specifically configured to generate a second message; the second message includes the first Information; the communication unit 1403 includes a sending unit and a receiving unit.
  • the sending unit is specifically configured to send the second message to the first core network device, where the second message is used to instruct the processing unit 1402 to generate and send the first end data packet end marker; the first end marker includes The first information, the first information is used to determine the first terminal device.
  • the second message is also used to instruct the processing unit 1402 to send the first end marker to the source access network device through the first tunnel, and the first tunnel is used for Transmitting the data of the first multicast/broadcast service.
  • the second message includes information about the first tunnel; or, the second message includes information about the first multicast/broadcast service.
  • the first core network device is a session management function network element SMF, and the first core network device and the third core network device are the same device; or the first core network The device is a multicast/broadcast user plane network element, the third core network device is a multicast/broadcast service control plane network element; or the first core network device is a user plane network element UPF or the multicast/broadcast The service control plane network element, and the third core network device is an SMF.
  • the first core network device is UPF
  • the third core network device is SMF
  • the sending unit is further configured to send a third message to the first core network device, where the third message is used to instruct the processing unit 1402 to generate and send a second end marker to the source access network device through the second tunnel;
  • the second tunnel is a tunnel of the PDU session of the first terminal device, and the PDU session is associated with the first multicast/broadcast service.
  • the apparatus 1400 is the source access network device in the above example, and the communication unit 1403 of the source access network device includes a sending unit and a receiving unit.
  • the receiving unit is specifically configured to receive the second end data packet end marker from the first core network device through the second tunnel; wherein, the second tunnel is a transmission tunnel of the protocol data unit PDU session of the first terminal device, and the PDU The session is associated with the first multicast/broadcast service;
  • the processing unit 1402 is specifically configured to, in response to receiving the second end marker, determine to stop passing through the first terminal device according to the PDU session and the second end marker The forwarding tunnel of sends the data of the first multicast/broadcast service to the target access network device.
  • the forwarding tunnel includes: a first forwarding tunnel or a second forwarding tunnel; the first forwarding tunnel is corresponding to the first multicast/broadcast service of the first terminal device Forwarding tunnel; the second forwarding tunnel is a forwarding tunnel corresponding to the PDU session of the first terminal device.
  • the receiving unit is further configured to receive data of the first multicast/broadcast service from the first core network device through a first tunnel, and the first tunnel is used to transmit data to the first core network device.
  • the processing unit 1402 is also configured to copy and control the sending unit to the target through the first forwarding tunnel or the second forwarding tunnel.
  • the access network device sends the first data, where the first data is part or all of the data of the first multicast/broadcast service received by the source access network device through the first tunnel; control The sending unit stops forwarding the first data to the target access network device through the forwarding tunnel.
  • the receiving unit is further configured to receive a first quality of service flow identifier QFI corresponding to the first data from the first core network device through the first tunnel;
  • the processing unit 1402 is further configured to determine a second QFI corresponding to the first QFI according to a first mapping relationship, where the first mapping relationship includes that the data of the first multicast/broadcast service is transmitted through the first tunnel.
  • the sending unit is further configured to send the copied first data and the second QFI to the target access network device through the second forwarding tunnel.
  • the receiving unit is further configured to receive the first mapping relationship from the session management function network element SMF.
  • the processing unit 1402 is further configured to copy the second end marker and control the sending unit to send the copied second end marker to the target access through the first forwarding tunnel.
  • the apparatus 1400 is the target access network device in the foregoing example, and the communication unit 1403 of the target access network device includes a sending unit and a receiving unit.
  • the receiving unit is specifically configured to receive the first data of the first multicast/broadcast service through the forwarding tunnel of the first terminal device;
  • the sending unit is specifically configured to send the first data to the first terminal device in a point-to-point manner through an air interface.
  • the first data of the multicast/broadcast service receives an end marker through the forwarding tunnel;
  • the processing unit 1402 is specifically configured to control the sending unit to stop receiving the data of the first multicast/broadcast service through the forwarding tunnel .
  • the forwarding tunnel includes:
  • the first forwarding tunnel or the second forwarding tunnel; the first forwarding tunnel is the forwarding tunnel corresponding to the first multicast/broadcast service of the first terminal device; the second forwarding tunnel is the first terminal The forwarding tunnel corresponding to the protocol data unit PDU session of the device; the PDU session of the first terminal device is associated with the first multicast/broadcast service.
  • the sending unit is specifically configured to send the first data to the first terminal device through a PDU session, and the PDU session is a PDU session of the first terminal device.
  • the sending unit is specifically configured to receive the first data of the first multicast/broadcast service through the first forwarding tunnel; the receiving unit is specifically configured to receive the first data of the first multicast/broadcast service through the first forwarding tunnel.
  • the processing unit 1402 is specifically configured to determine the second QFI corresponding to the first QFI according to the first mapping relationship; wherein, the first QFI
  • the mapping relationship includes the corresponding relationship between the QFI when the data of the first multicast/broadcast service is transmitted through the first tunnel and the QFI when the data of the first multicast/broadcast service is transmitted through the tunnel of the PDU session
  • the sending unit is also used to send the first data to the first terminal device.
  • the receiving unit is further configured to receive the second data of the first multicast/broadcast service through a third tunnel, and buffer the second data, where the third tunnel is the A tunnel for a PDU session of the first terminal device, or the third tunnel is a tunnel for the first multicast/broadcast service; the sending unit is further configured to send the buffered second data to the first terminal equipment.
  • the third tunnel is the tunnel of the first multicast/broadcast service;
  • the receiving unit is specifically configured to receive the second tunnel through the tunnel of the first multicast/broadcast service.
  • Data and a third QFI corresponding to the second data a processing unit 1402, specifically configured to determine a fourth QFI corresponding to the third QFI according to a first mapping relationship; wherein, the first mapping relationship includes the first The corresponding relationship between the QFI when the data of the multicast/broadcast service is transmitted through the tunnel of the first multicast/broadcast service and the QFI when the data of the first multicast/broadcast service is transmitted through the tunnel of the PDU session; Sending the second data to the first terminal device according to the fourth QFI.
  • the apparatus 1400 is the target access network device in the above example, and the processing unit 1402 of the target access network device is specifically configured to generate the second end data packet end marker; the communication unit 1403 includes a sending unit And receiving unit.
  • the sending unit is specifically configured to send the second end marker to the source access network device through a second tunnel; wherein, the second tunnel is a tunnel for a protocol data unit PDU session of the first terminal device, and the PDU The session is associated with the first multicast/broadcast service.
  • the receiving unit is further configured to receive third information from a third core network device, where the third information is used to instruct the first core network device to generate and send the second end marker .
  • the first core network device is a session management function network element SMF, and the first core network device and the third core network device are the same device; or the first core network The device is a user plane network element UPF, and the third core network device is an SMF.
  • the first core network device is a UPF or a multicast user plane function
  • the multicast user plane function is a multicast/broadcast user plane network element
  • the sending unit is also used to pass the A tunnel for sending first data of the first multicast/broadcast service to the source access network device, and the first tunnel is used for transmitting the first multicast/broadcast service to the source access network device A tunnel for service data; also used to send third data of the first multicast/broadcast service to the target access network device through the third tunnel, where the third tunnel is the first A tunnel for a PDU session of a terminal device, or the third tunnel is a tunnel for the target access network device to receive the first multicast/broadcast service.
  • the processing unit 1402 is further configured to determine the third QFI corresponding to the second data when the second data is sent through the tunnel of the first multicast/broadcast service; A mapping relationship, determining the fourth QFI corresponding to the third QFI, the first mapping relationship including the QFI when the data of the first multicast/broadcast service is sent through the tunnel of the first multicast/broadcast service Correspondence with the QFI when the data of the first multicast/broadcast service is transmitted through the tunnel of the PDU session; the sending unit is further configured to send the data to the target access network device through the third tunnel The second data and the fourth QFI.
  • the apparatus may be the access network device in the above embodiment (such as the source access network device and the target access network device in the above example), or the core Network equipment (such as the first core network equipment and the third core network equipment in the above example),
  • the device 1500 includes a processor 1502, a communication interface 1503, and a memory 1501.
  • the device 1500 may further include a communication line 1504.
  • the communication interface 1503, the processor 1502, and the memory 1501 may be connected to each other through a communication line 1504;
  • the communication line 1504 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture). , Referred to as EISA) bus and so on.
  • the communication line 1504 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in Fig. 15, but it does not mean that there is only one bus or one type of bus.
  • the processor 1502 may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the program of the present application.
  • the communication interface 1503 using any device such as a transceiver, is used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Wired access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Wired access network etc.
  • the memory 1501 may be a ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory can exist independently and is connected to the processor through a communication line 1504. The memory can also be integrated with the processor.
  • the memory 1501 is used to store computer-executable instructions for executing the solution of the present application, and the processor 1502 controls the execution.
  • the processor 1502 is configured to execute computer-executable instructions stored in the memory 1501, so as to implement the session processing method provided in the foregoing embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the program product can use any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Type programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the program product for configuring parameters may adopt a portable compact disk read-only memory (CD-ROM) and include program code, and may run on a server device.
  • CD-ROM portable compact disk read-only memory
  • the program product of this application is not limited to this.
  • the readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with information transmission, devices, or devices.
  • the readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and readable program code is carried therein. This propagated data signal can take many forms, including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the readable signal medium may also be any readable medium other than a readable storage medium, and the readable medium may send, propagate, or transmit a program for use by or in combination with a periodic network action system, apparatus, or device.
  • the program code contained on the readable medium can be transmitted by any suitable medium, including, but not limited to, wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • the program code used to perform the operations of the present application can be written in any combination of one or more programming languages.
  • the programming languages include object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural programming languages. Programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computing device, partly on the user's device, executed as an independent software package, partly on the user's computing device and partly executed on the remote computing device, or entirely on the remote computing device or server Executed on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device.
  • LAN local area network
  • WAN wide area network
  • the embodiment of the present application also provides a computing device readable storage medium for the information synchronization method, that is, the content is not lost after a power failure.
  • the storage medium stores a software program, including program code.
  • the program code runs on a computing device, the software program can implement any of the above embodiments of the present application when it is read and executed by one or more processors.
  • Information synchronization scheme When the program code runs on a computing device, the software program can implement any of the above embodiments of the present application when it is read and executed by one or more processors.
  • this application may take the form of a computer program product on a computer-usable or computer-readable storage medium, which has a computer-usable or computer-readable program code implemented in the medium to be used or used by the instruction execution system. Used in conjunction with the instruction execution system.
  • a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, transmit, or transmit a program for use by an instruction execution system, apparatus, or device, or in combination with an instruction execution system, Device or equipment use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输的方法及装置,该方法包括:源接入网设备通过第一终端设备的PDU会话的传输隧道从核心网设备接收结束数据包end marker,该PDU会话与第一组播/广播业务关联;响应于该end marker,源接入网设备根据PDU会话和第一组播/广播业务的关联,确定该end marker作用于该第一终端设备的第一组播/广播业务,从而停止通过第一终端设备的转发隧道向目标接入网设备发送第一组播/广播业务的数据。

Description

一种数据传输的方法及装置
相关申请的交叉引用
本申请要求在2020年03月31日提交中国专利局、申请号为202010246676.4、申请名称为“一种数据传输的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输的方法及装置。
背景技术
随着移动互联网的发展,移动高清视频业务呈现井喷态势。用户逐渐从传统的通过固定电视收看热点节目的方式转变为通过手机终端与移动互联网收看热点节目,因此,视频业务对移动网络的冲击愈发强烈,若可以通过空口组播的方式优化视频业务的传输将会大幅减少视频流量对移动网络的冲击。
在前几代移动通信技术中,例如第3代(the 3rd generation,3G)移动通信技术和第4代(the 4th generation,4G)移动通信技术,组播方案的推广遇到了较大的困难。具体地,现有组播方案需要在现有的通信架构基础上添加支持组播的专有网元和接口,并且还需要专有的组播信道支持,不但增加了运营商角的开销,还提高了终端的复杂度。
为克服上述困难,在第5代(the 5th generation,5G)移动通信网络架构的基础上支持组播/广播功能(5G Multicast Broadcast Service,5MBS)成为一个关键研究课题。
其中,5MBS研究课题的一个关键研究问题(Key Issue)是业务连续性(Service Contunity),针对该研究问题,当同时存在支持组播/广播功能的接入网设备与不支持组播/广播功能的接入网设备场景中,终端设备由源接入网设备切换至目标接入网设备时,如何保证终端设备组播/广播业务的连续性是一个亟待解决的问题。
发明内容
本申请提供一种数据传输的方法及装置,在同时存在支持组播/广播功能的接入网设备与不支持组播/广播功能的接入网设备的场景中,终端设备由源接入网设备切换至目标接入网设备时,保证组播/广播业务的连续性。
第一方面,本申请实施例提供了一种数据传输方法。该方法包括:源接入网设备通过第一隧道从第一核心网设备接收第一end marker(结束数据包),其中,所述第一隧道用于传输第一组播/广播业务的数据,所述第一end marker包含第一信息,所述第一信息用于确定第一终端设备;所述源接入网设备根据所述第一信息确定所述第一end marker作用于所述第一终端设备;响应于接收到所述第一end marker,所述源接入网设备停止通过所述第一终端设备的转发隧道向目标接入网设备转发所述第一组播/广播业务的数据。
通过上述方法,核心网设备可以构造第一end marker,第一end marker可以通过第一组播会话隧道下发至源接入网设备,其中,第一end marker包含第一信息,第一信息用于指示第一终端设备,用于源接入网设备根据第一信息确定第一end marker作用于第一终端 设备,源接入网设备确定该第一end mareker是需要向第一终端设备的目标接入网设备转发的最后一个数据包,即结束数据包,避免源接入网设备在第一组播会话隧道接收到第一end marker后,对正在接收第一组播业务(第一组播会话隧道对应的组播业务)的数据的其他终端设备收到影响,保证了第一终端设备的第一组播业务的连续性,同时还保证了源接入网设备侧其他终端设备的第一组播业务的连续性。
在一种可能的设计中,所述转发隧道包括:第一转发隧道或第二转发隧道;所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的协议数据单元(protocol data unit,PDU)会话对应的转发隧道。
通过上述方法,本申请实施例源接入网设备可以通过组播会话隧道对应的转发隧道向目标接入网设备转发第一终端设备的组播业务数据,还可以通过第一终端设备的PDU会话对应的转发隧道向目标接入网申设备转发第一终端设备的组播业务数据,满足了不同场景的数据转发需求,对于保证切换的第一终端设备的组播业务的连续性提供了多种实施方案,适用场景广泛,应用性强。
在一种可能的设计中,所述源接入网设备通过第一隧道从第一核心网设备接收第一end marker之前,还包括:所述源接入网设备通过所述第一隧道从所述第一核心网设备接收所述第一组播/广播业务的数据;所述源接入网设备复制并通过所述第一转发隧道或所述第二转发隧道向所述目标接入网设备转发第一数据,所述第一数据为所述源接入网设备通过所述第一隧道接收到的所述第一组播/广播业务的数据的部分或全部;所述源接入网设备停止通过所述第一终端设备的转发隧道向目标接入网设备转发所述第一组播/广播业务的数据包括:所述源接入网设备停止通过所述转发隧道向所述目标接入网设备转发所述第一数据。
通过上述方法,源接入网设备从第一隧道接收第一组播业务的数据,复制并向目标接入网设备转发复制的第一数据,在接收到第一end marker后,停止复制并停止向目标接入网转发复制的第一数据。在保证第一终端设备的第一组播业务的连续性,同时保证源接入网设备下接收第一组播业务的数据的其他终端设备的连续性不受切断的第一终端设备的影响。
在一种可能的设计中,所述源接入网设备复制并通过所述第二转发隧道向所述目标接入网设备转发第一数据,还包括:所述源接入网设备通过所述第一隧道从所述第一核心网设备接收所述第一数据对应的第一服务质量流标识QFI;所述源接入网设备根据第一映射关系,确定所述第一QFI对应的第二QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;所述源接入网设备对所述第一数据进行复制;所述源接入网设备通过所述第二转发隧道向所述目标接入网设备发送复制的所述第一数据和所述第二QFI。
通过上述方法,对于支持组播功能的目标接入网设备和不支持组播功能的目标接入网设备,源接入网设备可以通过PDU会话对应的转发隧道向目标接入网设备转发复制的第一数据,提供了支持组播功能的源接入网设备与不支持组播功能的目标接入网设备之间的第一终端设备的组播业务的数据的传输方式。
在一种可能的设计中,还包括:所述源接入网设备从会话管理功能网元SMF接收所述第一映射关系。
在一种可能的设计中,还包括:所述源接入网设备将所述第一end marker发送至所述目标接入网设备。
在一种可能的设计中,还包括:所述源接入网设备通过第二隧道从第二核心网设备接收第二end marker;其中,所述第二隧道为第一终端设备的所述PDU会话的隧道,所述PDU会话与所述第一组播/广播业务关联;在所述第二end marker和所述第一end marker都到达所述源接入网设备时,所述源接入网设备通过所述转发隧道将所述第一end marker或所述第二end marker发送至所述目标接入网设备。
可选的,第二核心网设备和第一核心网设备可以是同一设备。
在一种可能的设计中,所述源接入网设备将所述第一end marker发送至所述目标接入网设备,包括:所述源接入网设备将所述第一end marker,通过所述第一转发隧道发送至所述目标接入网设备;或所述源接入网设备将所述第一end marker,通过所述第二转发隧道发送至所述目标接入网设备。
在一种可能的设计中,所述源接入网设备将所述第二end marker发送至所述目标接入网设备,包括:所述源接入网设备将所述第二end marker,通过所述第二转发隧道发送至所述目标接入网设备。
在一种可能的设计中,还包括:述源接入网设备发送第一消息,所述第一消息包含所述第一信息,以便所述第一核心网设备根据所述第一信息生成所述第一end marker。
在一种可能的设计中,所述第一请求信息还包括所述第一组播/广播业务的信息。
在一种可能的设计中,所述第一信息还用于指示所述第一终端设备的PDU会话,所述PDU会话与所述第一组播/广播业务关联。
在一种可能的设计中,所述第一核心网设备为会话管理功能网元SMF,或所述第一核心网设备为组播/广播用户面网元,或所述第一核心网设备为组播/广播业务控制面网元,或所述第一核心网设备为用户面网元UPF。
在一种可能的设计中,所述第二核心网设备为UPF或SMF时。
第二方面,本申请实施例提供了一种数据传输方法。该方法包括:目标接入网设备通过第一终端设备的转发隧道接收第一组播/广播业务的第一数据;所述目标接入网设备通过空口点对点的方式向所述第一终端设备发送所述第一组播/广播业务的第一数据;所述目标接入网设备通过所述转发隧道接收结束数据包end marker;所述目标接入网设备停止通过所述转发隧道接收所述第一组播/广播业务的数据。
通过上述方法,目标接入网设备将通过第一终端设备的转发隧道从源接入网申接收到的第一组播/广播业务的第一数据发送给第一终端设备,避免第一终端设备从断开源接入网设备这段时间内,第一组播/广播业务中断,在通过第一终端设备的转发隧道接收到end marker时,停止通过所述转发隧道接收所述第一组播/广播业务的数据,意味着第一终端设备可以将从核心网设备接收到的第一组播/广播业务的数据发送给第一终端设备,实现了第一终端设备的第一组播/广播业务的连续性。
在一种可能的设计中,所述转发隧道包括:第一转发隧道或第二转发隧道;所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的协议数据单元PDU会话对应的转发隧道;所述第一终端设备的PDU会话与所述第一组播/广播业务关联。
在一种可能的设计中,所述end marker包括:第一end marker或第二end marker;所 述第一end marker为所述源接入网设备通过第一隧道从第一核心网设备接收到的;所述第二end marker为所述源接入网设备通过第二隧道从第二核心网设备接收到的;所述第一隧道为用于向所述源接入网设备传输所述第一组播/广播业务的数据的隧道,所述第二隧道为用于向所述源接入网设备传输所述第一终端设备的PDU会话的数据的隧道。
在一种可能的设计中,所述第一end marker包含第一信息,所述第一信息用于所述源接入网设备确定所述第一终端设备。
在一种可能的设计中,所述第一信息还用于指示所述第一终端设备的PDU会话,所述第一终端设备的PDU会话与所述第一组播/广播业务关联。
在一种可能的设计中,所述目标接入网设备通过第一终端设备的转发隧道接收第一组播/广播业务的第一数据之前,还包括:所述目标接入网设备从所述源接入网设备接收所述第一信息,并根据所述第一信息确定所述第一终端的PDU会话与所述第一组播/广播业务关联。
在一种可能的设计中,所述目标接入网设备向所述第一终端发送所述第一数据,包括:
所述目标接入网设备通过PDU会话向所述第一终端设备发送所述第一数据,所述PDU会话是所述第一终端设备的PDU会话。
在一种可能的设计中,所述目标接入网设备通过所述第一转发隧道接收第一组播/广播业务的第一数据;所述目标接入网设备通过PDU会话向所述第一终端设备发送所述第一数据,包括:所述目标接入网设备接收所述第一数据和所述第一数据对应的第一服务质量流标识QFI;所述目标接入网设备根据第一映射关系确定所述第一QFI对应的第二QFI;其中,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;所述目标接入网设备向所述第一终端设备发送所述第一数据。
在一种可能的设计中,还包括:所述目标接入网设备通过第三隧道接收所述第一组播/广播业务的第二数据,并缓存所述第二数据,所述第三隧道为所述第一终端设备的PDU会话的隧道,或所述第三隧道为接收所述第一组播/广播业务的隧道;所述目标接入网设备通过所述转发隧道接收end marker,还包括:所述目标接入网设备将缓存的所述第二数据发送给所述第一终端设备。
在一种可能的设计中,所述第三隧道为接收所述第一组播/广播业务的隧道;所述目标接入网设备将缓存的所述第二数据发送给所述第一终端设备,还包括:所述目标接入网设备通过所述第一组播/广播业务的隧道接收所述第二数据和所述第二数据对应的第三QFI;所述目标接入网设备根据第一映射关系确定所述第三QFI对应的第四QFI;其中,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一组播/广播业务的隧道发送时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;所述目标接入网设备根据所述第四QFI向所述第一终端设备发送所述第二数据。
第三方面,本申请实施例提供了一种数据传输方法。该方法包括:第一核心网设备生成第一结束数据包end marker,其中,所述第一end marker包含第一信息,所述第一信息用于确定第一终端设备;并通过第一隧道,将所述第一end marker发送至源接入网设备;其中,所述第一隧道用于传输所述第一组播/广播业务的数据。
通过上述方法,第一核心网设备生成包含第一信息的第一end marker,第一信息用于确定第一终端设备,当第一核心网设备通过共享的第一组播/广播会话隧道发送至源接入网 设备时,源接入网设备可以根据第一信息确定第一end marker作用于第一终端设备,以此确定为切换的第一终端设备转发第一组播/广播业务的数据,保证第一终端设备的第一组播/广播业务的连续性,同时避免源接入网设备侧其他接收第一组播/广播业务的数据的终端设备不受第一end marker的影响,也即保证了其他终端设备的第一组播/广播业务的连续性。
在一种可能的设计中,还包括:所述第一核心网设备从第三核心网设备接收第二消息,所述第二消息用于指示所述第一核心网设备生成并发送所述第一end marker。
在一种可能的设计中,所述第二消息包括所述第一信息。
所述第二消息还用于指示所述第一核心网设备通过所述第一隧道发送所述第一end marker;还包括:所述第一核心网设备根据所述第二消息确定所述第一隧道。
所述第二消息包括所述第一隧道的信息,和/或所述第一组播/广播业务的信息。
在一种可能的设计中,所述第一核心网设备为会话管理功能网元SMF,所述第一核心网设备为所述第三核心网设备;或所述第一核心网设备为组播/广播用户面网元,所述第三核心网设备为组播/广播控制面网元;或所述第一核心网设备为用户面网元UPF或所述组播/广播控制面网元,所述第三核心网设备为SMF。
在一种可能的设计中,所述第一核心网设备为UPF或组播用户面功能,所述组播用户面功能为组播/广播用户面网元;还包括:所述第一核心网设备通过第一隧道,向所述源接入网设备发送所述第一组播/广播业务的第一数据,所述第一隧道为传输所述第一组播/广播业务的数据的隧道;所述第一核心网设备通过第三隧道,向所述目标接入网设备发送所述第一组播/广播业务的第二数据;其中,所述第三隧道为所述第一终端设备的PDU会话的隧道,或所述第三隧道为所述第一组播/广播业务的隧道。
在一种可能的设计中,所述第三隧道为所述第一终端设备的PDU会话的隧道;所述第一核心网设备通过第三隧道,向所述目标接入网设备发送所述第一组播/广播业务的数据,包括:所述第一核心网设备确定通过所述PDU会话的隧道发送所述第二数据时,所述第二数据对应的第三QFI;所述第一核心网设备根据第一映射关系,确定所述第三QFI对应的第四QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一组播/广播业务的隧道发送时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道发送时的QFI的对应关系;所述第一核心网设备通过所述第三隧道向所述目标接入网设备发送所述第二数据和所述第四QFI。
在一种可能的设计中,所述第一核心网设备为UPF,所述第三核心网设备为SMF;还包括:所述第一核心网设备从所述第三核心网设备接收第三消息,所述第三消息用于指示所述第一核心网设备生成并发送所述第二end marker;所述第一核心网设备生成所述第二end marker,并通过第二隧道将所述第二end marker发送至所述源接入网设备;其中,所述第二隧道为第一终端设备的所述PDU会话的隧道,所述PDU会话与第一组播/广播业务关联。
第四方面,本申请实施例提供了一种数据传输方法。该方法包括:第三核心网设备生成第二消息;所述第二消息包括所述第一信息;所述第三核心网设备向第一核心网设备发送所述第二消息,所述第二消息用于指示所述第一核心网设备生成并发送所述第一结束数据包end marker;所述第一end marker包含所述第一信息,所述第一信息用于确定第一终端设备。
在一种可能的设计中,所述第二消息还用于指示所述第一核心网设备通过所述第一隧 道向所述源接入网设备发送所述第一end marker,所述第一隧道用于传输所述第一组播/广播业务的数据。
在一种可能的设计中,所述第二消息包括所述第一隧道的信息;或者,所述第二消息包括第一组播/广播业务的信息。
在一种可能的设计中,所述第一核心网设备为会话管理功能网元SMF,所述第一核心网设备和所述第三核心网设备为同一设备;或所述第一核心网设备为组播/广播用户面网元,所述第三核心网设备为组播/广播业务控制面网元;或所述第一核心网设备为用户面网元UPF或所述组播/广播业务控制面网元,所述第三核心网设备为SMF。
在一种可能的设计中,所述第一核心网设备为UPF,所述第三核心网设备为SMF;还包括:所述第三核心网设备向所述第一核心网设备发送第三消息,所述第三消息用于指示所述第一核心网设备生成并通过第二隧道向源接入网设备发送第二end marker;其中,所述第二隧道为第一终端设备的所述PDU会话的隧道,所述PDU会话与第一组播/广播业务关联。
第五方面,本申请实施例提供了一种数据传输方法。该方法包括:源接入网设备通过第三隧道从第一核心网设备接收第二end marker;其中,所述第三隧道为第一终端设备的协议数据单元PDU会话的传输隧道,所述PDU会话与第一组播/广播业务关联;响应于接收到所述第二end marker,所述源接入网设备根据所述PDU会话和所述第二end marker确定停止通过所述第一终端设备的转发隧道向目标接入网设备发送所述第一组播/广播业务的数据。
通过上述方法,源接入网设备通过第一终端设备的PDU会话的传输隧道从第一核心网设备接收第二end marker,并响应于接收到第二end marker,根据所述PDU会话和所述第二end marker确定停止通过所述第一终端设备的转发隧道向目标接入网设备发送所述第一组播/广播业务的数据。可以通过已有第三隧道和第二end marker指示源接入网设备向切换的第一终端设备转发第一组播/广播业务的数据,节省资源开销,同时保证第一终端设备的第一组播/广播业务的连续性,同时避免源接入网设备侧其他接收第一组播/广播业务的数据的终端设备不受第一end marker的影响,也即保证了其他终端设备的第一组播/广播业务的连续性。
在一种可能的设计中,所述转发隧道包括:第一转发隧道或第二转发隧道;所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的PDU会话对应的转发隧道。
在一种可能的设计中,所述源接入网设备通过第三隧道从第一核心网设备接收第二end marker之前,还包括:所述源接入网设备通过第一隧道从所述第一核心网设备接收所述第一组播/广播业务的数据,所述第一隧道用于向所述源接入网设备传输所述第一组播/广播业务的数据的隧道;所述源接入网设备复制并通过所述第一转发隧道或所述第二转发隧道向所述目标接入网设备发送所述第一数据,所述第一数据为所述源接入网设备通过所述第一隧道接收到的所述第一组播/广播业务的数据的部分或全部;所述源接入网设备停止通过所述第一终端设备的转发隧道向目标接入网设备转发所述第一组播/广播业务的数据包括:所述源接入网设备停止通过所述转发隧道向所述目标接入网设备转发所述第一数据。
通过上述方法,源接入网设备从第一隧道接收第一组播业务的数据,复制并向目标接入网设备转发复制的第一数据,在接收到第一end marker后,停止复制并停止向目标接入 网转发复制的第一数据。在保证第一终端设备的第一组播业务的连续性,同时保证源接入网设备下接收第一组播业务的数据的其他终端设备的连续性不受切断的第一终端设备的影响。
在一种可能的设计中,所述源接入网设备复制并通过所述第二转发隧道向所述目标接入网设备发送所述第一数据,还包括:所述源接入网设备通过所述第一隧道从所述第一核心网设备接收所述第一数据对应的第一服务质量流标识QFI;所述源接入网设备根据第一映射关系,确定所述第一QFI对应的第二QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;所述源接入网设备对所述第一数据进行复制;所述源接入网设备通过所述第二转发隧道向所述目标接入网设备发送复制的所述第一数据和所述第二QFI。
在一种可能的设计中,还包括:所述源接入网设备从会话管理功能网元SMF接收所述第一映射关系。
在一种可能的设计中,还包括:所述源接入网设备复制所述第二end marker并通过所述第一转发隧道将复制的所述第二end marker发送至所述目标接入网设备;
第六方面,本申请实施例提供了一种数据传输方法。该方法包括:目标接入网设备通过第一终端设备的转发隧道接收第一组播/广播业务的第一数,并通过空口点对点的方式向所述第一终端设备发送所述第一组播/广播业务的第一数据,通过所述转发隧道接收结束数据包end marker,并停止通过所述转发隧道接收所述第一组播/广播业务的数据。
在一种可能的设计中,所述转发隧道包括:第一转发隧道或第二转发隧道;所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的协议数据单元PDU会话对应的转发隧道;所述第一终端设备的PDU会话与所述第一组播/广播业务关联。
在一种可能的设计中,所述目标接入网设备向所述第一终端发送所述第一数据,包括所述目标接入网设备通过PDU会话向所述第一终端设备发送所述第一数据,所述PDU会话是所述第一终端设备的PDU会话。
在一种可能的设计中,所述目标接入网设备通过所述第一转发隧道接收第一组播/广播业务的第一数据;所述目标接入网设备通过PDU会话向所述第一终端设备发送所述第一数据,包括:所述目标接入网设备通过所述第一转发隧道接收所述第一数据和所述第一数据对应的第一服务质量流标识QFI;所述目标接入网设备根据第一映射关系确定所述第一QFI对应的第二QFI;其中,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;所述目标接入网设备向所述第一终端设备发送所述第一数据。
在一种可能的设计中,还包括:所述目标接入网设备通过第三隧道接收所述第一组播/广播业务的第二数据,并缓存所述第二数据,所述第三隧道为所述第一终端设备的PDU会话的隧道,或所述第三隧道为所述第一组播/广播业务的隧道;所述目标接入网设备通过所述转发隧道接收end marker,还包括:所述目标接入网设备将缓存的所述第二数据发送给所述第一终端设备。
在一种可能的设计中,所述第三隧道为所述第一组播/广播业务的隧道;所述目标接入网设备将缓存的所述第二数据发送给所述第一终端设备,包括:所述目标接入网设备通过 所述第一组播/广播业务的隧道接收所述第二数据和所述第二数据对应的第三QFI;所述目标接入网设备根据第一映射关系确定所述第三QFI对应的第四QFI;其中,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一组播/广播业务的隧道发送时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;所述目标接入网设备根据所述第四QFI向所述第一终端设备发送所述第二数据。
第七方面,本申请实施例提供了一种数据传输方法。该方法包括:第一核心网设备生成第二结束数据包end marker;所述第一核心网设备通过第二隧道,将所述第二end marker发送至源接入网设备;其中,所述第二隧道为第一终端设备的协议数据单元PDU会话的隧道,所述PDU会话与第一组播/广播业务关联。
通过上述方法,第一核心网设备通过已有的第二隧道和第二end marker指示源接入网设备向切换的第一终端设备转发第一组播/广播业务的数据,节省资源开销,同时保证第一终端设备的第一组播/广播业务的连续性,同时避免源接入网设备侧其他接收第一组播/广播业务的数据的终端设备不受第一end marker的影响,也即保证了其他终端设备的第一组播/广播业务的连续性。
在一种可能的设计中,还包括:所述第一核心网设备从第三核心网设备接收第三信息,所述第三信息用于指示所述第一核心网设备生成并发送所述第二end marker。
在一种可能的设计中,所述第一核心网设备为会话管理功能网元SMF,所述第一核心网设备和所述第三核心网设备为同一设备;或所述第一核心网设备为用户面网元UPF,所述第三核心网设备为SMF。
在一种可能的设计中,所述第一核心网设备为UPF或组播用户面功能,所述组播用户面功能为组播/广播用户面网元;还包括:所述第一核心网设备通过第一隧道,向所述源接入网设备发送所述第一组播/广播业务的第一数据,所述第一隧道用于向所述源接入网设备传输所述第一组播/广播业务的数据的隧道;还包括:所述第一核心网设备通过所述第三隧道,向所述目标接入网设备发送所述第一组播/广播业务的第三数据,其中,所述第三隧道为所述第一终端设备的PDU会话的隧道,或所述第三隧道为所述目标接入网设备接收所述第一组播/广播业务的隧道。
在一种可能的设计中,所述第一核心网设备通过所述PDU会话的隧道,向所述目标接入网设备发送所述第一组播/广播业务的第三数据,还包括:所述第一核心网设备确定通过所述第一组播/广播业务的隧道发送所述第二数据时,所述第二数据对应的第三QFI;所述第一核心网设备根据第一映射关系,确定所述第三QFI对应的第四QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一组播/广播业务的隧道发送时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;
所述第一核心网设备通过所述第三隧道向所述目标接入网设备发送所述第二数据和所述第四QFI。
第八方面,本申请提供一种装置,该装置可以是源接入网设备,还可以是用于源接入网设备的芯片。该装置具有实现上述第一方面或第五方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第九方面,本申请提供一种装置,该装置可以是目标接入网设备,还可以是用于目标接入网设备的芯片。该装置具有实现上述第二方面或第六方面的各实施例的功能。该功能 可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十方面,本申请提供一种装置,该装置可以是第一核心网设备,还可以是用于第一核心网设备的芯片。该装置具有实现上述第三方面或第七方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十一方面,本申请提供一种装置,该装置可以是第三核心网设备,还可以是用于第三核心网设备的芯片。该装置具有实现上述第四方面或第八方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十二方面,本申请提供一种装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述各方面所述的方法。
第十三方面,本申请提供一种装置,包括:包括用于执行上述各方面的各个步骤的单元或手段(means)。
第十四方面,本申请提供一种装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述各方面所述的方法。该处理器包括一个或多个。
第十五方面,本申请提供一种装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述各方面所述的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第十六方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质包括指令,当该指令被执行时,实现上述第一方面至第七方面中任意一个方面的各种可能的设计所述的方法。
第十七方面,本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第七方面中任意一个方面的各种可能的设计所述的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例适用的一种系统架构示意图;
图2为本申请实施例提供的一种数据传输流程示意图;
图3为本申请实施例提供的另一种数据传输流程示意图;
图4为本申请提供的一种应用场景示意图;
图5本申请实施例提供的一种数据传输方法所对应的流程示意图;
图6本申请实施例提供的另一种数据传输方法所对应的流程示意图;
图7为本申请实施例提供的另一种数据传输方法所对应的流程示意图;
图8本申请实施例提供的一种数据传输的完整方法所对应的流程示意图;
图9~图13为本申请实施例提供的构造end marker的方法所对应的流程示意图;
图14为本申请提供的一种装置的结构示意图;
图15为本申请提供的另一种装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于设备实施例或系统实施例中。
图1示例性示出了本申请实施例适用的一种系统架构。如图1所示,该系统架构包括终端设备、接入网设备、接入和移动性管理功能(access and mobility management function,AMF)、会话管理功能(Session Management Function,SMF)、用户面功能(user plane function,UPF)、策略控制功能(policy control function,PCF)、组播控制面功能(multicast control plane function,MCF)、组播用户面功能(multicast user plane function,MUF)、应用功能、数据网络(data network,DN)。
作为示例,在图1所示架构中,N4接口为SMF和UPF之间的参考点,用于传输例如N3连接的隧道标识信息、数据缓存指示信息、以及下行数据通知消息等信息;N6接口为UPF和DN之间的参考点,用于传输业务数据等;N7接口为SMF和PCF之间的参考点;N11接口为AMF与SMF之间的参考点。当然,在未来通信中,这些接口以及各网元的名称可以不变,或者也可以用其他名称代替,本申请对此不限定。
下面分别对上述设备或网元进行介绍。
1)终端设备,又称之为用户设备(user equipment,UE)、终端(Terminal)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,可以是一种具有无线收发功能的设备。终端设备可以简称为终端,其可以部署在陆地上,包括室内、室外、和/或手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、和/或智慧家庭(smart home)中的无线终端等等。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)接入网设备,可以是将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:下一代接入网设备(next generation NodeB,gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、接入网设备控制器(base station controller,BSC)、接入网设备收发台(base transceiver station,BTS)、家庭接入网设备(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,WiFi)接入点(access point,AP)等。其中,接入网设备可能有多种形式,比如宏接入网设备、微接入网设备、中继站和接入点等。本申请实施例涉及到的接入网设备可以是5G系统中的接入网设备,或未来的通信系统中未来的第六代(6th generation,6G)接入网设备。其中,5G系统中的接入网设备 还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(generation Node B,gNB或gNodeB)。
本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备,也可以是能够支持接入网设备实现该功能的装置,例如芯片系统,该装置可以被安装在接入网设备中。在本申请实施例提供的技术方案中,以用于实现接入网设备的功能的装置是接入网设备为例,描述本申请实施例提供的技术方案。
3)接入与移动性管理功能:主要用于移动性管理和接入管理等。具体地,AMF可以用于实现移动性管理实体(mobility management entity,MME)的功能中除会话管理之外的其它功能,例如,合法监听、或接入授权(或鉴权)等功能。
4)会话管理功能:主要用于会话管理,如会话建立、修改、释放,以及终端设备的网络互连协议(Internet Protocol,IP)地址分配和管理、选择可管理用户面功能、策略控制、或收费功能接口的终结点以及下行数据通知等。
5)用户面功能(user plane function,UPF):用于分组路由和转发、或用户面数据的服务质量(quality of service,QoS)处理等。UPF具体分为中间-UPF(intermediate-UPF,I-UPF)和锚点UPF(anchor-UPF,A-UPF)。其中,I-UPF可与接入网设备连接,A-UPF为会话锚点的UPF,A-UPF又可以称为PDU会话锚点(PDU session anchor,PSA),A-UPF也可与接入网设备相连。
6)策略控制功能(policy control function,PCF):用于指导网络行为的统一策略框架,为控制平面功能网元(例如AMF、SMF网元等)提供策略规则信息等。
7)应用功能(application function,AF):主要支持与第三代合作伙伴计划(3rd generation partnership project,3GPP)核心网交互来提供服务,例如,影响数据路由决策、策略控制功能、或者向网络侧提供第三方的一些服务。可理解为第三方服务器,例如,Internet中的应用服务器,提供相关业务信息,包括向PCF提供业务对应的服务质量需求信息,以及向PSA-UPF发送业务的用户面数据信息。AF可以是服务提供商(content provider,CP)。
8)数据网络(data network,DN):用于提供传输数据的网络,例如,Internet网络等。
9)组播用户面功能(multicast user plane function,MUF):主要用于传递组播业务数据,即,将从数据网络接收到的组播业务数据发送给UPF或基站。
该MUF还可以是其他具有上述功能的设备或单元,例如可以是组播/广播用户面功能(Multicast/broadcast-User Plane Function,MB-UPF)
10)组播控制面功能(multicast control plane function,MCF):主要用于对组播业务或组播会话进行控制,例如,从PCF提取组播业务相关的PCC信息,从NEF或MBSF(Multicast/Broadcast Service Function,组播广播服务功能)获取组播业务相关的描述信息(例如,组播业务的描述)。PCC信息例如可以是PCC Rule(PCC规则)。MCF可以与数据网络中的应用服务器对接,例如与服务提供商(content provider/Service Provider,CP/SP)对接,以便接收组播业务相关信息(例如组播业务的描述)。
该MCF还可以是其他具有上述功能的设备或单元,例如可以是组播/广播会话管理功能(Multicast/broadcast-Session Management Function,MB-SMF)
需要说明的是,用于实现组播业务的控制面功能的网元可以是独立的网元,也可以是支持实现该功能的模块(或装置),该模块可以是实体模块,也可以是虚拟模块,该模块可以集成到策略控制网元或会话管理网元中,本申请实施例对此不作限定。
同样的,用于实现组播业务的用户面功能的网元可以是独立的网元,也可以是支持实现该功能的模块(或装置),该模块可以是实体模块,也可以是虚拟模块,该模块可以集成到用户面网元中,本申请实施例对此不作限定。
需要说明的是:(1)图1仅为示意,上述UE、RAN、AMF、SMF、UPF、MUF和MCF均可能为多个(图1中未示出)。其中,图1中所示的网元或设备中,除UE、RAN和DN之外,剩余的网元均为核心网网元。
(2)本申请实施例中所述的网元可以是硬件,或者也可以是从功能上划分的软件或者以上二者结合后的结构。本申请实施例中所述的网元也可以称为功能实体,比如策略控制网元也可以称为策略控制功能实体。各个网元的名称在本申请实施例中不做限定,本领域技术人员可以将上述网元的名称更换为其它名称而执行相同的功能。
(3)上述所示意的系统架构可以适用于各种无线接入技术的通信系统中,例如,长期演进(long term evolution,LTE)通信系统、第五代(5th generation,5G)通信系统以及其它可能的通信系统中,例如未来的通信系统中,如未来的第六代(6th generation,6G)系统等。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
(4)本申请实施例中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也不表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个,其中,“多个”是指两个或两个以上。
需要说明的是,本申请实施例中的接入与移动性管理功能、会话管理功能、用户面功能、组播用户面功能、组播控制面功能、接入网设备可以分别是图1所示的AMF、SMF、UPF、MUF、MCF和接入网设备。也可以是未来通信系统中的具有上述AMF、SMF、UPF、MUF、MCF和接入网设备的功能的网元或设备。
为方便说明,本申请后续,以接入与移动性管理功能、会话管理、用户面功能、组播用户面功能、组播控制面功能、接入网设备分别为图1中的AMF、SMF、UPF、MUF、MCF和接入网设备为例进行说明。进一步地,将终端设备称为UE,将接入网设备简称为RAN或基站,即本申请后续所描述的AMF均可替换为接入与移动性管理功能,SMF均可替换为会话管理功能,UPF均可替换为用户面功能,MUF均可替换为组播用户面功能或组播用户面功能,MCF均可替换为组播控制面功能或组播控制面功能,UE均可替换为终端设备,RAN或基站均可以替换为接入网设备。
下面先对本申请实施例所涉及的相关技术特征进行介绍。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
(1)单播;
单播可以理解为“点对点”(point to point,PTP)通信。单播包含多层含义,具体如下:
在业务层面,单播业务是指该业务的数据是发送给单个终端设备的。在核心网业务层面,单播是指通过PDU会话向终端设备发送业务数据。在本申请文件中,SMF所确定的发送方式中的单播方式是指通过PDU会话向终端设备发送组播业务的数据。
针对网元(或设备)间的单播,单播是指源网元与目标网元之间为单播隧道(即,目标网元的IP地址为单播IP地址)。对于空口而言,空口点对点方式是指无线接入网向单个终端设备发送业务数据,可以理解为无线接入网通过单播模式的空口无线承载向单个终端设备发送业务数据。
下面以PDU会话和图1所示的系统架构为例,提供单播方式的数据传输流程,请参考图2,图2示出了单播方式的数据传输流程示意图,图2所示的传输流程既可以用于传输单播业务数据,也可以用于传输组播业务数据(通过单播的方式)。
在图2中,3个UE(比如UE1、UE2和UE3)中的每个UE分别对应一个不同的PDU会话。业务提供商(CP/SP)发送的三份不同的业务数据可以通过各自对应的PDU会话发送给UE。具体地,从CP/SP至RAN的业务传输路径可以包含CP/SP与UPF之间的传输路径、以及UPF与RAN之间的传输路径。UPF与RAN之间的传输路径可以称为PDU会话隧道,不同的PDU会话具有不同的PDU会话隧道。本示意图中的3条PDU会话隧道分别对应3个UE。在空口上,RAN可以以单播的方式,即PTP方式,分别向UE1、UE2和UE3发送业务数据。在该示意图中,每个UE的业务数据可以均不相同(例如,目标地址分别为各UE的IP地址),且各个UE的业务数据可以通过各个UE各自独立的传输路径分别发送给各UE。
(2)组播;
组播也可以称为“多播”,可以理解为“点对多点”(point to multi-point,PTM)通信。组播包含多层含义,具体如下:
在业务层面,组播业务是指该业务的数据发送给多个终端设备。在核心网业务层面,组播是指通过组播会话向终端设备发送组播业务的数据,其中,组播会话包括:网元间的单播隧道或组播隧道、以及单播模式的空口无线承载或组播模式的空口无线承载。在本申请实施例中,SMF所确定的发送方式中的组播方式是指通过组播会话向终端设备发送组播业务的数据。
针对网元间的组播,组播是指源网元与目标网元之间为组播隧道(即,目标网元的IP地址为组播IP地址)。接入网设备与核心网设备之间可以建立关于组播业务的组播会话隧道,组播会话隧道内传输的是组播业务数据,接入网设备通过组播会话隧道接收到的组播业务数据可以发送给加入该组播业务的多个终端设备。对于空口而言,空口组播模式是指无线接入网发送的一份业务数据,多个终端设备可同时和/或同频接收。
具体的,组播会话隧道可以与组播业务一一对应,一个组播业务可以包括一个或多个组播业务流,多个组播业务流可以对应一个或多个组播服务质量(quality of service,QoS)流,也就是,组播会话隧道内的组播业务数据可以以组播QoS流的形式传输,本申请实施例对此不作限定。一个组播会话可以包括一个或多个组播QoS流。换而言之,组播业务可以在组播会话隧道中以一条或多条组播QoS流的方式进行传输。
组播业务可以通过组播业务的信息来描述。组播业务的信息至少包括组播业务的描述信息,该组播业务的描述信息中可以包括一个或多个组播业务流的描述信息,其中,组播 业务流的描述信息包括下列至少一项:该组播业务流应该具备的服务质量索引(QoS flow identifier,QFI)、组播业务流的特征信息(如组播业务的目的地址、目的端口号、源地址等)、组播业务流的QoS需求(如,抖动、时延、丢包率、带宽、等)。组播业务流的QoS需求用于建立组播QoS流。PDU会话隧道与UE相对应,PDU会话隧道内的业务数据可以以单播QoS流的形式传输。本申请实施例中,PDU会话隧道还可以用于传输组播业务对应的组播QoS流所映射的单播QoS流。需要说明的是,PDU会话是UE级别的,组播会话是业务级别的。一个UE的一个PDU会话可以与多个组播会话关联,即,该UE可以通过该PDU会话加入至少一个组播业务。一个组播会话可以为一个组播业务提供服务,一个组播会话包括从数据网络到核心网设备再到无线接入网的单播或组播隧道、以及无线接入网分配的用于发送该组播业务的单播或组播空口资源。
除了组播业务的描述信息之外,组播业务的信息中还可以包含终端设备的信息,例如,可以包括允许(或请求)加入该组播业务的一个或多个终端设备的标识、终端设备组的标识等。
以图1所示的系统架构为例,提供组播方式的数据传输流程,请参考图3,图3示出了组播方式的数据传输流程示意图,图3所示的传输流程可以用于传输组播业务数据。
在图3中,组播业务数据可以从CP/SP发送至UE 1、UE 2和UE 3。其中,从CP/SP至RAN的组播业务传输路径可以包含CP与UPF之间的传输路径、以及UPF与RAN之间的传输路径。UPF到RAN的传输路径可以通过隧道传输组播业务数据,例如,采用基于通用隧道协议(general tunnel protocol,GTP)的隧道。UPF与RAN之间的传输路径可以称为组播会话隧道,该组播会话隧道是UE 1、UE 2和UE 3共享的。在空口上,RAN可以通过PTM方式向UE 1、UE 2和UE 3发送上述组播业务数据,即只需要发送一份数据,3个UE均可接收。在图2的示例中,组播业务数据在从CP一直到UE的传输路径上均只发送一份,多个UE可同时接收。
采用组播方式,既可以实现一次向所有目标节点传输业务数据,也可以只对特定对象传送业务数据,因此,在组播方式中,一个发送节点和多个接收节点之间可以实现点到多点的传输,从而解决了单播方式效率低的问题。
上述为单播与组播的相关介绍。可以理解地,接入网设备支持组播功能可以理解为接入网设备支持以组播方式传输组播业务数据,接入网设备不支持组播功能可以理解为接入网设备不支持以组播方式传输组播业务数据,或者接入网设备仅支持以单播方式传输组播业务数据或者PDU会话数据。对于不支持组播功能的接入网设备,可以通过PDU会话实现终端设备的网络业务。对于支持组播功能的接入网设备,可以通过组播会话隧道从核心网接收组播业务数据并发送给加入该组播业务的多个终端设备。应理解,组播业务数据到达RAN之后,经过RAN的服务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层、物理(physical,PHY)层的处理,发送给每个接收组播业务数据的UE。
需要说明的是,组播会话还可以用于向终端设备发送广播业务数据,本申请实施例对此不作限定。本申请的“组播”是广义上的概念,可以包括组播(multicast)或广播(broadcast),即本申请实施例既可以应用于组播业务传输,也可以应用于广播业务传输。本申请实施例中的组播控制面网元还可以用于广播业务的控制,组播用户面网元还可以用于传递广播业 务相关数据,本申请中提及的“组播”可以替换为“组播或广播”。因此,本申请实施例以组播业务为例所介绍的各种数据传输的方式同样可以应用于广播业务。
图4示出了一种通信场景。如图4所示,该通信场景中包括至少两个接入网设备和至少一个终端设备。本申请以图4为例对本申请实施例进行介绍。
其中,接入网设备可以用于以单播方式向终端设备传输PDU会话数据、还可以用于以组播方式或者单播方式向终端设备传输组播业务数据。图4所示的场景中包括源接入网设备和目标接入网设备。其中,源接入网设备与终端设备已建立有连接(如RRC连接),可以理解为终端设备附着于源接入网设备;且终端设备需要从源接入网设备切换至目标接入网设备。在终端设备与源接入网设备建立连接后,终端设备与源接入网设备可以进行特定数据的传输。
一种可能的场景中,终端设备附着于源接入网设备期间,可以周期性向源接入网设备发送信号测量报告,源接入网设备根据终端设备的信号测量报告判断是否需要将该终端设备切换至其他接入网设备,并根据该信号测量报告为该终端设备选择待切换的目标接入网设备。当终端设备与源接入网设备断开连接或去附着后,便不能与源接入网设备进行特定数据的传输,例如,终端设备在源接入网设备接收的组播业务的数据传输。
图4所示的场景中,终端设备通过源接入网设备接收组播业务数据,当终端设备从源接入网设备切换至目标接入网设备时,终端设备的组播业务可能中断,且通过源接入网设备接收组播业务数据的其他终端的组播业务也可能中断。因此在终端设备由源接入网设备切换至目标接入网设备的过程中,如何保证该终端设备以及其他终端设备的组播业务的连续性不受影响,是需要被解决的问题。
鉴于此,本申请实施例提供了多种数据传输的方法,用于保证终端设备的组播业务的连续性。
请参考图5,图5为本申请实施例提供的一种数据传输方法所对应的流程示意图,本文描述的方案中均假设UE1在源接入网设备加入的组播业务为第一组播业务。如图5所示,包括:
步骤S501,源接入网设备通过第一隧道从第一核心网设备接收第一结束数据包end marker。
其中,第一隧道为组播会话隧道,该第一隧道用于传输第一组播业务的数据。
其中,第一end marker包含第一信息,该第一信息用于确定第一终端设备。
示例性地,第一信息为UE1的标识。再比如,第一信息是源接入网设备与核心网设备约定的该UE1的临时标识。示例性地,约定方式可以是源接入网设备生成该UE1的临时标识并向目标接入网设备发送UE1的切换请求消息时,切换请求消息携带该临时标识,之后,目标接入网设备向AMF发送N2路径切换请求消息时,N2路径切换请求消息携带该临时标识,随后,AMF向SMF发送PDU会话上下文更新请求时,携带该临时标识,用于SMF构造包含第一信息的第一end marker,若由UPF构造第一end marker,则再由SMF通知UPF,若由MCF来构造第一end marker,则由SMF通知MCF,若由MUF构造第一end marker,则可以由SMF通知MCF,MCF来通知MUF,上述通知方式仅为示例,本申请实施例对此不作限定。
可选的,源接入网设备通过第二隧道从第一核心网设备接收第二end marker,该第二end marker可以不包括上述第一信息。其中,第二隧道为PDU会话隧道,该PDU会话隧 道用于传输UE1的PDU会话数据。
步骤S502,源接入网设备根据第一信息确定该第一end marker作用于UE1。
其中,第一end marker作用于UE1可以理解为该第一end marker作用于UE1,而不作用于参与第一组播业务的其他终端设备。
可以理解的是,组播业务是业务级别的,若源接入网设备还存在其它终端设备在接收第一组播业务的数据,源接入网设备在接收到第一end marker后,由于第一end marker不作用于其他终端设备,其它终端设备还可以继续接收到第一组播业务的数据。
步骤S503,源接入网设备停止通过UE1的转发隧道向目标接入网设备发送第一组播业务的数据。
具体的,响应于接收到第一end maker,源接入网设备停止通过UE1的转发隧道向目标接入网设备发送第一组播业务的数据。
可以理解的是,由于第一end marker为通过UE1的转发隧道向目标接入网设备发送的最后一个数据包,因此,当源接入网设备收到第一end marker后,停止对接收到第一end marker后接收到的第一组播业务的数据进行复制,并停止转发给目标接入网设备。
在第一种可选的实现方式中,UE1的转发隧道包括第一转发隧道和第二转发隧道。第一转发隧道为UE1的第一组播业务对应的转发隧道,用于转发UE1的第一组播业务的数据;第二转发隧道为UE1的PDU会话对应的转发隧道,用于转发UE1的PDU会话数据。可选的,源接入网设备可以在接收到第一end marker之后,将第一end marker通过第一转发隧道发送给目的接入网设备;可选的,源接入网设备可以在接收到第一end marker和第二end marker之后,将第一end marker或第二end marker通过第一转发隧道发送给目的接入网设备。
在第二种可选的实现方式中,UE1的转发隧道为上述第二转发隧道,该第二转发隧道用于转发UE1的PDU会话数据和UE1的第一组播业务数据。可选的,源接入网设备在接收到第一end marker和第二end marker之后,将第一end marker或第二end marker通过第一转发隧道发送给目的接入网设备。
上述图5所示的方法中,S501之前还可以包括:
S501a:源接入网设备通过第一隧道从第一核心网设备接收第一组播业务的数据。
具体的,该第一组播业务的数据包含第一服务质量流标识QFI。该第一QFI可以理解为第一组播业务的数据通过组播业务隧道传输时的QFI。
可选的,源接入网设备通过上述第二隧道从第一核心网设备接收PDU会话数据。
S501b:源接入网设备通过UE1的转发隧道向目标接入网设备发送第一组播业务的数据。
可选的,源接入网设备复制第一数据,并通过UE1的转发隧道向目标接入网设备发送复制的第一数据。第一数据为源接入网接收到的第一组播业务的数据的部分或者全部。S501b和S503中第一组播业务的数据可以替换为第一数据。
对应于上述S503中第一种可选的实现方式,源接入网设备通过第一转发隧道向目标接入网设备发送第一组播业务的数据。可选的,源接入网设备通过第二转发隧道向目标接入网设备发送PDU会话数据。
可以理解的是,UE1在源接入网设备加入了第一组播业务,在UE1由源接入网设备切换至目标接入网设备过程中,源接入网设备仍通过第一组播会话隧道接收到第一组播业务 的组播数据,对于切换的UE1,源接入网设备将接收到的组播业务数据进行复制并通过UE1的上述转发隧道转发至目标接入网设备。
示例性地,在源接入网设备侧,若仅UE1在接收第一组播业务的数据,则源接入网设备可以直接将接收到的第一组播业务的数据转发至目标接入网设备。再示例性地,若多个UE在源接入网设备接收第一组播业务的数据,则源接入网设备在接收到第一组播业务的数据后,对UE1所需的部分或全部组播业务数据进行复制并将复制的组播业务数据通过组播会话转发隧道转发至目标接入网设备。
对应于上述S503中第二种可选的实现方式,源接入网根据第一映射关系,确定第一QFI对应的第二QFI,第一映射关系包含第一QFI与第二QFI的对应关系,第二QFI为第一组播业务的数据通过PDU会话隧道传输时的QFI。源接入网设备将第一组播业务的数据中的第一QFI替换为第二QFI,源接入网通过第二转发隧道向目标接入网设备发送第一组播业务的数据部分和该第二QFI。
上述图5所示的方法中,S503之后还可以包括:
步骤S504,源接入网设备通过UE1的转发隧道将第一end marker或第二end marker发送至目标接入网设备。
示例性地,作为另外一种实现方式,源接入网设备可以仅将第二end marker通过组播会话转发隧道或者PDU会话转发隧道转发至目标接入网设备。作为另外一种实现方式,源接入网设备可以对第一end marker进行复制,得到第三end marker,分别通过组播会话转发隧道和PDU会话转发隧道,将第一end marker和第三end marker转发至目标接入网设备。作为另外一种实现方式,源接入网设备可以对第二end marker进行复制,得到第四end marker,分别通过组播会话转发隧道和PDU会话转发隧道,将第二end marker和第四end marker转发至目标接入网设备。
步骤S505,目标接入网设备停止通过UE1的转发隧道接收第一终端设备的第一组播业务的数据。
对应于上述S503中第一种可选的实现方式,目标接入网设备停止通过第一转发隧道接收第一终端设备的第一组播业务的数据。可选的,目标接入网设备停止通过第二转发隧道接收第一终端设备的第一组播业务的数据。可选的,目标接入网设备接收到第二end marker时,执行3GPP技术规范已规定的接收到PDU会话end marker后的执行操作。
对应于上述S503中第二种可选的实现方式,目标接入网设备停止通过第二转发隧道接收第一终端设备的第一组播业务的数据。
示例性地,目标接入网设备通过组播会话转发隧道接收第一end marker,可以根据第一end marker包含的第一信息确定第一end marker作用于UE1,还可以根据组播会话转发隧道确定第一end marker作用于UE1,目标接入网设备停止从源接入网设备接收UE1的第一组播业务的数据。
再示例性地,如前所述,组播业务与组播会话隧道可以是关联的,例如PDU会话与终端设备以及终端设备的组播业务可以是一一对应的关系。也就是,UE1的某个PDU会话与第一组播业务为关联的(即,UE1通过该PDU会话加入组播业务)。因此,目标接入网设备通过PDU会话转发隧道接收第一end marker,可以根据第一end marker包含的第一信息,或PDU会话转发隧道,确定第一end marker作用于UE1,并根据PDU会话与第一组播业务的关联关系,确定UE1的PDU会话关联的第一组播业务,目标接入网设备确定第 一end marker为UE1的第一组播业务的最后一个数据包,目标接入网设备停止从源接入网设备接收UE1的第一组播业务的数据。上述方法,核心网设备构造增强的第一end marker并通过第一组播会话隧道下发至源接入网设备,源接入网设备根据第一end marker包含的第一信息,确定该第一end mareker作用于UE1,源接入网设备停止通过UE1的转发隧道向目标接入网设备转发第一组播业务的数据,源接入网设备下其他UE的第一组播业务的数据还可以正常发送接收,避免源接入网设备侧对正在接收第一组播业务的数据的其他UE的第一组播业务的连续性受到影响,保证了UE1的第一组播业务的连续性,同时还保证了源接入网设备侧其他UE的第一组播业务的连续性。
综上,在图5所示的实施例(称为方案一)中,核心网设备可以构造第一结束数据包(end marker),第一end marker可以通过第一组播会话隧道下发至源接入网设备,其中,第一end marker包含第一信息,第一信息用于指示UE1,源接入网设备根据第一信息确定第一end marker作用于UE1,避免源接入网设备在第一组播会话隧道接收到第一end marker后,对正在接收第一组播业务(第一组播会话隧道对应的组播业务)的数据的其他UE造成影响,保证了UE1的第一组播业务的连续性,同时还保证了源接入网设备侧其他UE的第一组播业务的连续性。
示例性地,转发隧道为PDU会话转发隧道,示例性地,在UE1的切换过程中,源接入网设备通过PDU会话转发隧道向目标接入网设备转发第一组播业务的数据(即,源接入网设备将组播会话隧道中的组播业务数据(组播QoS流)进行复制,然后映射到PDU会话中的单播QoS流进行转发),则在接收到第一end marker后,源接入网设备停止从第一组播会话隧道复制组播业务数据(即,组播QoS流),停止将组播QoS流映射为单播QoS流,并停止通过UE1的PDU会话转发隧道向目标接入网设备转发第一组播业务的数据。
请参考图6,图6为本申请实施例提供的另一种数据传输方法所对应的流程示意图,如图6所示,包括:
步骤S601,源接入网设备通过第二隧道从第一核心网设备接收第二end marker。
其中,第二隧道为第一终端设备的PDU会话隧道,该第二隧道用于传输第一终端设备的PDU会话的数据。
一种可实现的方式,源接入网设备仅接收到第二end marker。因此,这里的第二end marker除可以用于表示UE1的第一组播业务的结束数据包之外,还可以用于表示UE1的PDU会话的结束数据包。
对应的,在具备第三构造条件时,第一核心网设备构造第二end marker。示例性地,第三构造条件可以包括,目标接入网设备与核心网设备之间具有第一组播业务的完整传输路径,以及目标接入网设备与核心网设备之间具有UE1的PDU会话的完整传输路径。
步骤S602,源接入网设备根据PDU会话和第二end marker确定停止通过UE1的转发隧道向目标接入网设备发送第一组播业务的数据。
具体的,响应于第二end marker,源接入网设备停止通过UE1的转发隧道向目标接入网设备发送第一组播业务的数据。
由于PDU会话隧道与UE1和UE1的PDU会话可以是一一对应的关系,而PDU会话与第一组播业务为关联的,因此,源接入网设备可以根据PDU会话和第二end marker确定该第二end marker可以作用于UE1的第一组播业务。
在一种可选的实现方式中,UE1的转发隧道包括第一转发隧道和第二转发隧道。第一 转发隧道为UE1的第一组播业务对应的转发隧道,用于转发UE1的第一组播业务的数据;第二转发隧道为UE1的PDU会话对应的转发隧道,用于转发UE1的PDU会话数据。可选的,源接入网设备在接收到第二end marker之后,将第二end marker通过第一转发隧道发送给目的接入网设备;可选的,源接入网设备在接收到第二end marker之后,将第二end marker通过第二转发隧道发送给目的接入网设备。
在第二种可选的实现方式中,UE1的转发隧道为上述第二转发隧道,该第二转发隧道用于转发UE1的PDU会话数据和UE1的第一组播业务数据。源接入网设备在接收到第二end marker之后,将第二end marker通过第二转发隧道发送给目的接入网设备。
上述图6所示的方法中,S601之前还可以包括:S601a和S601b,S601a和S601b与图5中的S501a和S501b的流程步骤相同,此处不再赘述。
步骤S603,源接入网设备通过UE1的转发隧道,将第二end marker发送至目标接入网设备。
步骤S604,目标接入网设备停止通过UE1的转发隧道接收第一终端设备的第一组播业务的数据。
对应于上述S602中第一种可选的实现方式,目标接入网设备停止通过第一转发隧道接收第一终端设备的第一组播业务的数据。可选的,目标接入网设备停止通过第二转发隧道接收第一终端设备的第一组播业务的数据。
对应于上述S602中第二种可选的实现方式,目标接入网设备停止通过第二转发隧道接收第一终端设备的第一组播业务的数据。
综上,在图6所示的实施例(方案二)中,核心网设备仅构造第二end marker,并通过第一PDU会话隧道下发至源接入网设备,源接入网设备接收到第二end marker后,源接入网设备除执行3GPP技术规范已规定的接收到PDU会话end marker(即,第二end marker)的执行操作外,还需停止从第一组播会话隧道复制组播业务数据(即,组播QoS流),并停止通过组播会话转发隧道向目标接入网设备转发第一组播业务的数据,之后,源接入网设备通过UE1的PDU会话转发隧道或组播会话转发隧道将第二end marker转发至目标接入网设备。
对应的,一种可选的实施方式,目标接入网设备通过UE1的PDU会话转发隧道或组播会话隧道接收到第二end marker后,除了执行3GPP技术规范已规定的接收到PDU会话end marker的执行操作外,还需停止通过组播会话转发隧道接收源接入网设备转发的第一组播业务的数据。另一种可选的实施方式,源接入网设备接收到第二end marker后,源接入网设备除执行3GPP技术规范已规定的接收到PDU会话end marker(即,第二end marker)的执行操作外,还需停止从第一组播会话隧道复制组播业务数据(即,组播QoS流),停止将组播QoS流映射为单播QoS流,并停止通过UE1的PDU会话转发隧道向目标接入网设备转发第一组播业务的数据,之后,源接入网设备通过UE1的PDU会话转发隧道将第二end marker转发至目标接入网设备,对应的,目标接入网设备通过UE1的PDU会话转发隧道接收到第二end marker后,除了执行3GPP技术规范已规定的接收到PDU会话end marker的执行操作外,还需停止通过PDU会话转发隧道接收源接入网设备转发的第一组播业务的数据(即,由组播QoS流映射的单播QoS流)。
请参考图7,图7为本申请实施例提供的另一种数据传输方法所对应的流程示意图, 如图7所示,包括:
步骤S701,UE1向源接入网设备发送测量报告,相应的,源接入网设备接收UE发送的测量报告,源接入网设备根据该测量报告为UE选择待切换的目标接入网设备。
步骤S702:源接入网设备向目标接入网设备发送切换请求消息,相应的,目标接入网设备接收源接入网设备发送的切换请求消息。
示例性地,该切换请求消息包含但不限于下列信息中的部分或全部:
第一信息、UE1的PDU会话信息、源接入网设备希望通过UE1的转发隧道转发的业务流的QFI、源接入网设备的转发隧道信息、组播会话转发隧道建立的指示信息。
下面分别对上述涉及的信息进行解释说明:
1)第一信息,如前所述,可以是UE1的标识,或UE1的临时标识,还可以是其他用于确定UE1的信息,本申请实施例对此不作限定。例如,第一信息为第一对应关系的索引值,该第一对应关系包括索引值、UE1、UE1的PDU会话以及该UE1的PDU会话所关联的第一组播业务。
2)PDU会话信息,示例性地,PDU会话信息可以包括PDU会话标识和PDU会话包含的业务的单播QoS流的QoS信息。其中,单播QoS流的QoS信息可以包括该单播QoS流的QFI和QoS参数。可选的,若UE1的PDU会话关联有组播业务时,UE1的PDU会话信息还包括该PDU会话所关联的组播业务信息,其中,组播业务信息可以包括组播业务标识和组播业务的组播QoS流的QoS信息,组播QoS流的QoS信息可以包括组播QoS流的QFI和QoS参数。
示例性的,UE1的PDU会话所关联(或者说包含)的组播业务是指,例如,UE1在源接入网设备申请加入该组播业务时,将该组播业务的信息保存至UE1的PDU会话的上下文中,即保存有组播业务信息的PDU会话,本文对组播业务与PDU会话如何进行关联,不做限定。
3)组播会话转发隧道建立的指示信息,示例性的,该指示信息可以是一个指示信元,用于指示,需要建立源接入网设备与目标接入网设备之间的针对组播会话隧道的转发隧道(可以是直接转发隧道或间接转发隧道)。
4)源接入网设备的转发隧道信息,其中,转发隧道可以包括组播会话转发隧道和/或PDU会话转发隧道,相应的,转发隧道信息可以包括组播会话转发隧道信息和/或PDU会话转发隧道信息,下文中重复引用的词汇不再作重复说明。
对应的,目标接入网设备可以根据源接入网设备的组播会话转发隧道信息和目标接入网设备自身的组播会话转发隧道信息,与源接入网设备建立组播会话转发隧道。可以参见PDU会话转发隧道的建立方式,此处不作重复说明。示例性地,组播会话转发隧道和PDU会话转发隧道可以是GTP-U隧道。
5)源接入网设备希望通过转发隧道转发的业务流的QFI,其中,转发隧道可以包括PDU会话隧道和/或组播会话转发隧道。对应于目标接入网设备支持组播功能,转发隧道可以包括组播会话转发隧道和PDU会话转发隧道。示例性地,该切换请求消息可以包括源接入网设备希望通过PDU会话转发隧道转发的单播QoS流的QFI;希望通过组播会话转发隧道转发的组播QoS流的QFI。再示例性地,对应于目标接入网设备不支持组播功能,除了源接入网设备希望通过PDU会话转发隧道转发的单播QoS流的QFI,当源接入网设备通过PDU会话转发隧道转发组播业务的数据时,该切换请求消息可以包括由组播QoS 流的QFI映射的单播QoS流的QFI,还可以包括该组播QoS流的QFI。
步骤S703:目标接入网设备向源接入网设备发送切换响应消息,相应的,源接入网设备接收目标接入网设备发送的切换响应消息。
示例性地,该切换响应消息包括但不限于下列信息中的部分或全部:
目标接入网设备为UE1配置的无线承载配置信息、目标接入网设备支持通过转发隧道转发的QoS流标识QFI,目标接入网设备的转发隧道端点标识。
下面分别对上述切换响应消息中包含的信息进行解释说明:
1)目标接入网设备为UE1配置的无线承载配置信息,示例性地,目标接入网设备根据切换请求消息包含的业务流的QoS信息为UE1准备无线资源。具体的,目标接入网设备可以根据每个业务流的QFI所对应的QoS参数确定空口无线数据承载(Data Radio Bearer,DRB)的数量以及各QFI到DRB之间的映射关系,此外,目标接入网设备还可根据每个DRB所映射的QFI所对应的QoS参数确定该DRB对应的配置参数(例如,该DRB所对应的无线链路控制(Radio Link Control,RLC)层采用确认模式还是非确认模式等),最后,目标接入网设备创建相应的DRB。
2)目标接入网设备支持通过转发隧道转发的QoS流标识QFI,示例性地,对对应于目标接入网设备支持组播功能,若组播QoS流支持通过转发隧道转发,则切换响应中可以包括目标接入网设备支持转发的该组播QoS流的QFI。再示例性地,对应于目标接入网设备不支持组播功能,若切换请求消息携带的为组播QoS流的QFI对应的单播QoS流的QFI,则目标接入网设备在切换响应中可以包括目标接入网设备支持转发的组播QoS流的QFI对应的单播QoS流的QFI。
3)目标接入网设备的转发隧道信息,目标接入网设备上的组播会话转发隧道信息和/或PDU会话转发隧道信息。
步骤S704:源接入网设备收到切换响应消息后,向UE1发送切换命令消息,相应的,UE1接收来自源接入网设备的切换命令消息,UE1接收到该切换命令消息后,与源接入网设备断开连接。
示例性地,该切换命令消息可以包括目标接入网设备为UE1配置的无线承载配置信息,用于UE1根据该无线承载配置信息接入目标接入网设备。
步骤S705:UE1接入目标接入网设备。
步骤S706a:源接入网设备接收核心网设备发送的第一组播业务的数据。
步骤S706b:源接入网设备通过UE1的转发隧道将第一数据发送至目标接入网设备,相应的,目标接入网设备通过组播会话转发隧道接收源接入网设备发送的第一组播业务的第一数据。
其中,第一数据可以是源接入网设备根据切换响应消息中包含的目标接入网设备支持转发的第一组播业务对应的组播QoS流的QFI的组播业务数据,也就是,第一数据可能是源接入网设备从核心网设备接收到的第一组播业务的数据中的部分或全部。
一种可选的实施方式为,源接入网设备通过组播会话转发隧道将第一数据发送至目标接入网设备。具体的,源接入网设备复制第一数据,将复制的第一数据通过组播会话转发隧道发送给目标接入网设备。
示例性地,源接入网设备通过组播会话隧道向目标接入网设备转发第一组播业务的数据时,其转发流程可以包括:源接入网设备从核心网设备接收第一组播业务的数据,并对 第一组播业务的第一数据进行复制,得到第二数据,源接入网设备通过组播会话转发隧道将第二数据发送至目标接入网设备。
另一种可选的实施方式为,源接入网设备通过PDU会话转发隧道向目标接入网设备转发第一组播业务的数据时,其转发流程可以包括:
源接入网设备从设备接收第一组播业务的数据,并对第一组播业务的第一数据进行复制,得到第二数据。示例性地,第一数据为GTP-U报文,GTP-U报文包含头部和数据部分,其中报文头部包含QFI域。第一数据通过第一组播会话隧道下发时,第一数据为组播业务数据,第一数据内包含组播QoS流的QFI,由于第二数据为第一数据的复制数据,因此,第二数据也包含组播QoS流的QFI。
源接入网设备对所述第二数据进行映射处理,将组播QoS流映射为单播QoS流后,再通过PDU会话转发隧道传输。示例性地,映射处理流程为:源接入网设备确定第二数据包含的QFI,根据第一映射关系确定第二数据包含的QFI对应的单播QoS流的QFI,为了方便描述,下文将第二数据包含的QFI称为第一QFI,将第二数据包含的QFI对应的单播QoS流的QFI称为第二QFI,源接入网设备将第二数据中的第一QFI替换为第二QFI。其中,第一映射关系包含组播QoS流的QFI与单播QoS流的QFI的对应关系。
示例性地,该第一映射关系可以由SMF生成,SMF根据UE1的PDU会话包含的单播QoS流的QFI,和第一组播业务包含的QoS流的QFI确定第一映射关系,并发送给源接入网设备。
应理解地是,为了便于区分,SMF所确定的单播QoS流的QFI与已有的单播QoS流(UE1的PDU会话包含的单播QoS流)的QFI不同。
示例性地,假设单播QoS流的QFI可以使用的值为(10-64),若终端设备已经有2个单播业务,例如,优酷视频与微信,其中,优酷视频包括3个单播QoS流,分别是QFI=12、QFI=13、QFI=16,微信包括2个单播QoS流,分别是QFI=11、QFI=12,那么这两个单播业务共对应4个单播QoS流,QFI分别是QFI=11、QFI=12、QFI=13、QFI=16。因此,单播QoS流的QFI还剩50个QFI值可以使用,SMF将组播QoS流的QFI映射到未使用的单播QoS流的QFI。
举例来说,假设第一组播业务包含的组播QoS流的QFI包括QFI=1、QFI=2、QFI=3。UE1的单播业务包含的单播QoS流的QFI为QFI=11,QFI=2,QFI=3和QFI=16。则第一映射关系可能为下表1,如下表1所示,为本申请实施例提供的第一映射关系的示例。
表1
组播QoS流的QFI 单播QoS的QFI
1 14
2 15
3 17
上述根据组播QoS流的QFI确定单播QoS流的QFI的过程即可以称为映射,本申请实施例将组播QoS流的QFI与单播QoS流的QFI之间的对应关系称为第一映射关系。在具体实现时,一个组播QoS流可映射为一个单播QoS流,或者,多个组播QoS流可映射为一个单播QoS流,本申请实施例对于如何映射不作限制。
应理解,会话管理功能网元可以先将组播QoS流映射为单播QoS流,注入到PDU会 话中进行传输,这是因为当终端设备在源接入网设备既请求了通过PDU会话传输的业务又请求了组播业务,其中,通过PDU会话传输的业务在PDU会话隧道中传输,组播业务在组播会话隧道中传输,终端设备的服务连续性可以得到保证。所谓的服务连续性包括PDU会话中的业务的连续性以及组播业务的连续性。但是,由于终端设备从源接入网设备切换至目标接入网设备,如果不先将源接入网设备组播会话隧道中的组播QoS流映射进源接入网设备的PDU会话所在的PDU会话隧道中的单播QoS流,如果切换之后目标接入网设备不支持组播(即,无法建立组播会话隧道,所谓组播会话隧道是指该隧道中收到的一份数据,接入网设备空口可以以点到多点的方式发送给UE),那么终端设备的组播业务会发生中断,无法保持服务连续性。因此,为了保证终端设备的业务连续性,可以先在源接入网设备(即在终端设备切换至目标接入网设备之前)将组播QoS流映射到单播QoS流,以单播切换进行,然后会话管理功能网元在切换流程中知道目标接入网设备的组播能力信息之后,可以再根据目标接入网设备是否支持组播进行操作,以便以合适的方式在目标接入网设备将终端设备加入该组播业务。
一种可能的实现中,在步骤S707中,目标接入网设备接收到源接入网设备转发的第一组播业务的数据时,UE1可能还未接入目标接入网设备,则目标接入网设备可以将接收到的第一组播业务的数据进行缓存,当UE1接入目标接入网设备后,目标接入网设备将缓存的第一组播业务的数据按顺序发送给UE1。
具体的,目标接入网设备将第一组播业务的数据通过UE1的PDU会话的空口发送给UE1。该UE1的PDU会话可以是与第一组播业务关联的PDU会话,也可以是UE1的其他PDU会话,本申请实施例对此不作限定。
示例性地,当目标接入网设备通过组播会话转发隧道从源接入网设备接收第一组播业务的第二数据(包含第一QFI)时,目标接入网设备需要根据第一映射关系,确定第二数据包含的第一QFI对应的第二QFI,根据第二映射关系,确定第二QFI对应的DRB配置,对该第二数据进行解封装,去掉GPT-U头部后,将数据部分映射到对应的DRB上,然后发送给UE1。
再示例性地,目标接入网设备支持组播功能时,目标接入网设备还可以通过点到多点的方式向UE1发送第二数据。
步骤S707:目标接入网设备向AMF发送N2路径切换请求,相应的,AMF接收该N2路径切换请求。
具体的,N2路径切换请求可以包括但不限于以下列中的一项或多项:
第一信息、目标接入网设备的隧道信息、PDU会话中切换成功以及切换失败的单播QoS流的QFI、切换成功及切换失败的组播QoS流QFI、UE1的PDU会话所关联的组播业务在目标接入网设备是否存在的第一指示信息、需建立组播会话转发隧道的指示信息。
示例性地,上述QFI可以封装在N2SM消息中。
下面分别对上述切换响应消息中可能包含的信息进行解释说明:
1)第一信息,用于唯一标识切换的UE1。
2)目标接入网设备的隧道信息,可以包括PDU会话隧道信息和/或组播会话隧道信息,其中,目标接入网设备的PDU会话隧道信息,用于UPF与目标接入网设备建立UE1的PDU会话隧道。
目标接入网设备的组播会话隧道信息,用于第一核心网设备根据该目标接入网设备的 组播会话隧道信息与目标接入网设备建立组播会话隧道,示例性地,第一核心网设备可以是UPF或MUF。
3)切换成功及切换失败的组播QoS流QFI,其中,切换成功的组播QoS流的QFI,为目标接入网设备支持转发的组播QoS流的QFI,切换失败的组播QoS流的QFI为源接入网设备在切换请求消息中携带的组播QoS流的QFI中,目标接入网设备不支持转发的组播QoS流的QFI。
4)PDU会话中切换成功以及切换失败的单播QoS流的QFI,其中,切换成功的单播QoS流的QFI,为目标接入网设备支持转发的单播QoS流的QFI,切换失败的单播QoS流的QFI为源接入网设备在切换请求消息中携带的单播QoS流的QFI中,目标接入网设备不支持转发的单播QoS流的QFI。
5)第一指示信息,可用于指示目标接入网设备是否正在运行(或者说存在)UE1的第一组播业务。
示例性地,该第一指示信息为至少1bit位的指示值,以1bit位为例,例如该1bit位上的比特值为1,表示正在运行第一组播业务,该1bit位上的比特值为0,表示未运行第一组播业务。需要说明的是,上述指示值指示的信息仅为举例,本申请实施例对指示值的数值对应的指示的内容不作限定。
例如,目标接入网设备支持组播功能且正在运行第一组播业务,则表示核心网设备与目标接入网设备具备第一组播业务的完整传输路径,核心网设备可以向目标接入网设备发送第一组播业务的数据。示例性地,对应于目标接入网设备支持组播功能,第一组播业务的完整传输路径包括MUF至UPF至目标接入网设备之间具有传输隧道,该隧道可以用于传输第一组播业务的数据。
结合能力指示信息,若能力指示信息指示目标接入网设备不支持组播功能,则SMF在接收到AMF发送的PDU会话更新请求时,SMF可以确定通过PDU会话隧道或利用其他传输方式向目标接入网设备发送第一组播业务的数据,下文将会进行具体描述。
6)建立组播会话转发隧道的指示信息,可以是一个指示信元,用于通知SMF,源接入网设备与目标接入网设备之间需建立针对组播会话隧道的转发隧道。
在实施例1中,目标接入网设备支持组播功能,假设步骤S708,SMF确定目标接入网设备支持组播功能且正在运行第一组播业务。
步骤S708:AMF向SMF发送PDU会话更新请求,相应的,SMF接收AMF发送的PDU会话更新请求。
具体的,PDU会话更新请求可以包括但不限于上述N2切换请求包含的部分或全部信息。
此外,若切换的UE的PDU会话关联组播业务,则AMF向SMF发送的PDU会话更新请求中还包含目标接入网设备的能力信息。
步骤S709,SMF构造或者SMF通知第一核心网设备构造第一end marker,并将该第一end marker发送给源接入网设备。
步骤S710~步骤S712,可以参见图5中的步骤S501~步骤S505的流程步骤,在此不再赘述。
需要说明的是,在目标接入网设备与核心网设备建立了第二组播会话隧道时,核心网设备(UPF或MUF)可以通过第二组播会话隧道向目标接入网设备发送第一组播业务的 数据,此处,目标接入网设备可能从源接入网设备接收到第一组播业务的数据,以及还可能从核心网设备接收到第一组播业务的数据,示例性地,从源接入网设备接收到的数据为构造第一end marker之前的第一组播业务的数据,从核心网设备接收到的数据为第二组播会话隧道建立后接收的第一组播业务的数据。为了避免乱序,目标接入网设备将两部分数据分别缓存在不同的队列,例如,将从源接入网设备接收到的组播数据缓存到队列1,将从核心网设备接收到的组播数据缓存到队列2。此时,目标接入网设备应有序的将队列1的组播数据发送给UE1。目标接入网设备将队列的1的组播数据发送完毕后,收到第一end marker后,向UE1发送队列2中的组播数据。其中,发送队列2中的组播数据方式可以参见发送队列1的组播数据的相关描述,此处不再赘述。
应理解的是,对于不支持组播功能的目标接入网设备和支持组播功能的目标接入网设备,体现在与核心网设备之间的用户面隧道的更新流程上,可以是,核心网设备是否能够与目标接入网设备建立第二组播会话隧道,若目标接入网设备不支持组播功能,则上述关于建立第二组播会话隧道的相关信息及流程不需要执行。
应理解的是,对于目标接入网设备是否支持组播功能,以及支持组播功能的目标接入网设备是否存在UE1的第一组播业务等场景,核心网设备侧生成end marker的方式也有所不同。接下来通过图8至图10所示的内容,介绍核心网设备在不同场景中构造end marker的过程。
下面结合图8至图10所示的内容,对步骤S710中核心网设备侧构造end marker的方式进行详细介绍。
以下实施例中,将以方案一中目标接入网设备支持组播功能为例,对第一核心网设备构造第一end marker的方式进行介绍:
在具备第一构造条件时,第一核心网设备构造第一end marker。示例性地,第一构造条件可以包括,目标接入网设备与核心网设备之间具有第一组播业务的完整传输路径,或者说,目标接入网设备能够接收或已接收到的第一组播业务的数据时。
这里的第一核心网设备可以是SMF、UPF、MUF或MCF中的一个。
首先对SMF构造第一end marker的方式进行介绍,请参考图11,图11为本申请实施例提供的一种构造第一end marker的方式所对应的流程示意图,如图11所示,包括:
步骤S801,SMF接收AMF发送的PDU会话更新请求;
示例性地,PDU会话更新请求包含但不限于目标接入网设备的组播能力信息,第二组播会话隧道的信息和组播会话隧道转发隧道建立的指示,第二组播会话隧道的信息包含目标接入网设备的第二组播会话隧道端点标识,第一信息。
步骤S802,SMF向UPF发送N4会话更新请求,对应的UPF接收SMF发送的N4会话更新请求。
示例性地,N4会话更新请求包含目标接入网设备的隧道信息和SMF分配给UPF的隧道信息,即,目标接入网设备的第二组播会话隧道端点标识和UPF的第二组播会话隧道端点标识。
需要说明的是,步骤S802仅为举例,上述目标接入网设备的隧道信息和SMF分配给UPF的隧道信息还可以承载于其他消息中或专有信令中,本申请实施例对此不作限定,此处为使用现有信令承载新的信息,以达到节省信令开销的目的。
步骤S803,UPF根据目标接入网设备的隧道信息和SMF分配给UPF的隧道信息,与 目标接入网设备建立第二组播会话隧道,UPF向SMF发送N4会话更新响应。对应的,SMF接收UPF发送的N4会话更新响应。
步骤S804,若UPF与MUF之间的隧道还未建立,SMF向MCF发送第三消息,第三消息用于指示MCF通知MUF建立与UPF之间的隧道,对应的MCF从SMF接收第三消息。
第三消息包括但不限于UPF与MUF之间的隧道的隧道信息,其中,隧道信息包括SMF为UPF分配的,关于UPF与MUF之间的隧道的隧道端点标识。
需要说明的是步骤S804为可选的步骤,不是必须执行的。应理解地是,SMF能够知道UPF与MUF之间是否建立有隧道,此步骤的前提是SMF确定UPF与MUF之间未建立隧道连接,若UPF与MUF之间具有隧道,则此步骤不需要执行。另外,在需要执行该步骤时,本申请对步骤S804的执行顺序没有严格限定,可以是则步骤S802之后执行,也可以是在步骤S802之前执行,也可以是步骤S802和步骤S804同时执行。本申请实施例对此不作限定。
步骤S805,MCF向MUF发送第四消息,第四消息包含MCF为MUF分配的隧道端点标识和UPF的隧道端点标识,对应的,MUF接收MCF发送的第四消息。
步骤S806,MUF根据第四消息建立与UPF之间的隧道,隧道建立完成后,向MCF发送第一响应消息,对应的,MCF接收该第一响应消息。
步骤S807,MCF向SMF发送第二响应消息,对应的,SMF接收该第二响应消息。
SMF根据第三消息应确定MUF与UPF之间具备隧道连接,SMF根据N4会话更新响应确定UPF与目标接入网设备之间具备第二组播会话隧道连接。
步骤S808,SMF生成并发送第一end marker,该第一end marker包含第一信息。示例性地,发送第一end marker的路径可以是,SMF→UPF→源接入网设备。
上述为SMF构造并发送第一end marker的完整流程。
下面对UPF构造第一end marker的方式进行介绍:
请参考图9,图9为本申请实施例提供的另一种构造第一end marker的方式所对应的流程示意图,如图9所示,包括:
其中,步骤S901~步骤S907与图8中的步骤S801~步骤S807的执行步骤相同,此处不再赘述,下面仅对不同之处进行说明:
步骤S908,SMF向UPF发送第二消息,第二消息用于指示UPF构造并发送第一end marker,对应的UPF从SMF接收第二消息。
第二消息包括但不限于第一信息。
步骤S909,UPF接收到第二消息后,生成并发送第一end marker。
作为另一种示例,若MUF与UPF之间本身具有连接,不需要重新建立隧道时,在步骤S902中,SMF可以直接向UPF发送第二消息,第二消息包括但不限于第一信息、第二组播会话隧道的隧道信息。UPF在第二组播会话隧道建立完成后,生成并发送包含第一信息的第一end marker。UPF还可以向SMF发送N4会话更新响应。
下面对MUF构造第一end marker的方式进行介绍:
请参考图10图10为本申请实施例提供的另一种构造第一end marker的方式所对应的流程示意图,如图10所示,包括:
其中,步骤S1001~步骤S1006与图11中的步骤S801~步骤S806的执行步骤相同,此处不再赘述,下面仅对不同之处进行说明:
步骤S1004,SMF向MCF发送第五消息,第五消息用于指示MCF通知MUF建立与UPF之间的隧道,对应的MCF从SMF接收第五消息。
步骤S1005,MCF向MUF发送第二消息,该第二消息可以用于指示MUF构造并发送第一end marker,第一end marker包含第一信息。
第二消息包括但不限于:第一信息、UPF的隧道信息。MUF通过与UPF之间的隧道以及第一组播会话隧道将第一end marker发送至源接入网设备。示例性地,发送第一end marker的路径可以是,MUF→UPF→源接入网设备。
步骤S1006,MUF生成并发送包含第一信息的第一end marker。
下面对MCF构造第一end marker的方式进行介绍:
请参考图11,图11为本申请实施例提供的另一种构造第一end marker的方式所对应的流程示意图,如图11所示,包括:
其中,步骤S1101~S1003与图9中的步骤S901~S903的执行步骤相同,此处不再赘述,下面仅对不同之处进行说明:
步骤S1104,SMF向MCF发送第二消息,第二消息用于指示MCF在具备第一构造条件后,生成并发送第一end marker,对应的,MCF从SMF接收第二消息。
示例性地,第二消息包括但不限于第一信息、UPF的隧道信息。
步骤S1105,MCF向MUF发送第四消息,第四消息包含MCF为MUF分配的隧道端点标识和UPF的隧道端点标识,对应的,MUF接收MCF发送的第四消息。
步骤S1106,MUF根据第四消息建立与UPF之间的隧道,隧道建立完成后,向MCF发送第一响应消息,对应的,MCF接收该第一响应消息。
步骤S1107,MCF接收到N4会话更新响应和第一响应消息后,生成并发送第一end marker,该第一end marker包含第一信息。示例性地,发送第一end marker的路径可以是,MCF→MUF→UPF→源接入网设备。
上述第一构造条件是指在不同的场景中,核心网设备接收到的响应信息,具体请参见上述实施例的描述。
对于第二核心网设备构造第二end marker,第二核心网设备可以是SMF或UPF,以SMF构造第二end marker为例进行描述,在图8中的步骤S802中,N4会话更新请求中还包括第二PDU会话隧道的信息,即目标接入网设备的PDU会话隧道的端点标识,SMF为UPF分配的PDU会话隧道的端点标识。对应的,UPF接收到N4会话更新请求后,根据第二PDU会话隧道的信息,与目标接入网设备建立第二PDU会话隧道,UPF向SMF发送N4会话更新响应,SMF接收到N4会话更新响应后,生成并构造第二end marker。
这里的第二构造条件可以是,SMF接收到N4会话更新响应。
以下实施例中,将以方案一和目标接入网设备不支持组播功能为例,对第一核心网设备构造第一end marker的流程进行描述。
对于第一核心网设备构造第一end marker的方式可以参见上述实施例2的相关描述,以图8为例,不同之处在于,由于目标接入网设备不支持组播功能,步骤S802中,N4会话更新请求包含的目标接入网设备的隧道信息和SMF分配给UPF的隧道信息,分别为目 标接入网设备的第二PDU会话隧道端点标识,以及UPF的第二PDU会话隧道端点标识。步骤S803,UPF建立与目标接入网设备之间的第二PDU会话隧道,UPF向SMF发送N4会话更新响应。其余流程可以参见图8的具体描述,此处不再赘述。
对于第二核心网设备构造第二end marker的方式可以参见上述实施例2的方式,此处不再赘述。
以下实施例中,将以方案二和目标接入网设备支持组播功能为例,对第二核心网设备构造第二end marker的方式进行介绍:
在具备第三构造条件时,第二核心网设备构造第二end marker。示例性地,第三构造条件可以包括,目标接入网设备与核心网设备之间具有第一组播业务的完整传输路径,以及目标接入网设备与核心网设备之间具有UE1的PDU会话的完整传输路径。
这里的第二核心网设备可以是SMF或UPF。
首先对SMF构造第二end marker的方式进行介绍,请参考图12,图12为本申请实施例提供的一种构造第二end marker的方式所对应的流程示意图,如图12所示,包括:
步骤S1201,SMF接收AMF发送的PDU会话更新请求;
示例性地,PDU会话更新请求包含但不限于目标接入网设备的组播能力信息、第二PDU会话隧道的信息,第二组播会话隧道的信息、组播会话隧道转发隧道建立的指示。其中,第二PDU会话隧道的信息包含目标接入网设备的第二PDU会话隧道端点标识、第二组播会话隧道的信息包括目标接入网设备的第二组播会话隧道端点标识。
步骤S1202,SMF向UPF发送N4会话更新请求,对应的UPF接收SMF发送的N4会话更新请求。
示例性地,N4会话更新请求包含目标接入网设备的隧道信息和SMF分配给UPF的隧道信息,即,目标接入网设备的第二PDU会话隧道端点标识和UPF的第二PDU会话隧道端点标识,以及目标接入网设备的第二组播会话隧道端点标识和UPF的第二组播会话隧道端点标识。
UPF根据目标接入网设备的第二PDU会话隧道端点标识和UPF的第二PDU会话隧道端点标识,与目标接入网设备建立第二PDU会话隧道。UPF根据目标接入网设备的第二组播会话隧道端点标识和UPF的第二组播会话隧道端点标识,与目标接入网设备建立第二组播会话隧道。
步骤S1203,UPF向SMF发送N4会话更新响应。对应的,SMF接收UPF发送的N4会话更新响应。
该N4会话更新响应用于指示第二组播会话隧道和第二PDU会话隧道建立完成。
步骤S1204~步骤1207和图8中的步骤S804~步骤S807的执行步骤相同,此处不再赘述。
步骤S1208,SMF生成并发送第二end marker。示例性地,SMF发送第二end marker的路径可以是,SMF→UPF→源接入网设备。
下面对UPF构造第二end marker的方式进行介绍,可以参见图12的流程,不同之处在于,在步骤S1208中,SMF接收到第三消息后,向UPF发送第五消息,用于指示UPF生成并发送第二end marker,示例性地,第三消息包括第一PDU会话隧道信息。示例性地, UPF发送第二end marker的路径可以是,UPF通过第一PDU会话隧道,将第二end marker发送至源接入网设备。
以下实施例中,将以方案二和目标接入网设备不支持组播功能为例,对UE1切换至目标接入网设备后,核心网设备构造end marker的过程进行详细介绍:
下面对第二核心网设备构造第二end marker的方式进行介绍:
在具备第四构造条件时,第二核心网设备构造第二end marker。示例性地,第四构造条件可以包括,UPF具有第一组播业务对应的传输隧道(MUF与UPF之间的隧道),以及目标接入网设备与核心网设备之间具有UE1的PDU会话的完整传输路径(第二PDU会话隧道),且UE1的组播业务数据已注入到UE1的PDU会话中传输。
这里的第二核心网设备可以是SMF或UPF。
以SMF构造第二end marker的方式进行介绍,请参考图13,图13为本申请实施例提供的一种构造第二end marker的方式所对应的流程示意图,如图13所示,包括:
步骤S1301,SMF接收AMF发送的PDU会话更新请求;
示例性地,PDU会话更新请求包含但不限于目标接入网设备的组播能力信息、第二PDU会话隧道的信息,第二PDU会话隧道的信息包含目标接入网设备的第二PDU会话隧道端点标识。
步骤S1302,SMF向UPF发送N4会话更新请求,对应的UPF接收SMF发送的N4会话更新请求。
示例性地,N4会话更新请求包含但不限于目标接入网设备的隧道信息和SMF分配给UPF的隧道信息,和第一映射关系。其中,目标接入网设备的隧道信息和SMF分配给UPF的隧道信息,包括:目标接入网设备的第二PDU会话隧道端点标识和SMF为UPF分配的第二PDU会话隧道端点标识。第一映射关系用于UPF在接收到MUF发送的第一组播业务的组播业务数据后,根据第一映射关系,将第一组播业务的业务数据对应的组播QoS流的QFI,并根据第一映射关系确定组播QoS流的QFI对应的单播QoS流的QFI,将组播QoS流的QFI替换为确定的单播QoS流的QFI,并将得到的单播QoS流注入到UE1的PDU会话隧道。
步骤S1303,SMF向UPF发送N4会话更新响应,对应的UPF接收SMF发送的N4会话更新响应。
步骤S1304,若此时,MUF与UPF之间传输组播业务数据的隧道还未建立,则SMF向MCF发送第五消息,第五消息用于指示MCF通知MUF建立与UPF之间的隧道,对应的MCF从SMF接收第五消息。其中,第五消息包括但不限于:包含SMF为UPF分配的隧道端点标识。
步骤S1305,MCF向MUF发送第六消息,该第六消息可以用于指示MUF建立与UPF之间的隧道。其中,第六消息包括但不限于:包含MCF为MUF分配的隧道端点标识和UPF的隧道端点标识。
步骤S1306,MUF建立与UPF之间的隧道建立完成后,MUF向MCF发送第三响应消息,对应的,MCF接收该第三响应消息。示例性地,第三响应消息用于指示MUF与UPF具有隧道连接。
步骤S1307,MCF向SMF发送该第四指示响应,对应的,SMF接收该第四指示响应。第四响应消息用于向SMF指示MUF与UPF具有隧道连接。
需要说明的是,步骤S1306仅为举例,上述目标接入网设备的隧道信息和SMF分配给UPF的隧道信息还可以承载于其他消息中或专有信令中,本申请实施例对此不作限定,此处为使用现有信令承载新的信息,以达到节省信令开销的目标。
步骤S1308,SMF接收到MCF发送的第四指示响应后,生成并发送第二end marker。示例性地,发送第二end marker的路径可以是,SMF→UPF→源接入网设备。
上述为SMF构造并发送第二end marker的完整流程。
再示例性地,SMF确定UPF与MUF之间具有连接,则以图13为例,在步骤S1302,SMF收到UPF发送的N4会话更新响应之后便可构造第二end marker。
以下实施例中,对目标接入网设备向UE1转发第一组播业务的数据的方式进行详细说明。
下面对通过UE1的PDU会话的空口以点对点的发送方式进行介绍。以下述两个示例,进行描述。
示例一,目标接入网设备支持组播功能;
源接入网设备从组播会话隧道接收第一组播业务的数据,源接入网设备对第一组播业务的数据进行复制后得到的第二数据,该第二数据包含第一QFI,第一QFI为组播QoS流QFI,源接入网设备通过组播会话转发隧道将第二数据转发至目标接入网设备。目标接入网设备收到转发隧道转发的第二数据后,通过UE1的PDU会话的空口发送给UE1,具体的,目标接入网设备根据第一映射关系,确定第二数据包含的第一QFI对应的第二QFI(即,单播QFI),根据第二映射关系,确定第二QFI对应的DRB配置(即,单播QFI对应的DRB ID),之后,对该第二数据进行解封装,去掉GPT-U头部后,将第二数据的数据部分映射到对应的DRB上,然后发送给UE1。第二映射关系为单播QoS流的QFI与DRB的映射关系。
示例2,目标接入网设备不支持组播功能;
源接入网设备从组播会话隧道接收第一组播业务的数据,源接入网设备对第一组播业务的数据进行复制后得到的第二数据,该第二数据包含第一QFI,第一QFI为组播QoS流QFI,源接入网设备根据第一映射关系确定第一QFI对应的第二QFI并将第一QFI替换为第二QFI,之后,源接入网设备通过PDU会话转发隧道将第三数据(即,第一QFI被替换为第二QFI的第二数据,也即,第三数据与第二数据的数据部分是相同的)转发至目标接入网设备。目标接入网设备通过PDU会话隧道从源接入网设备接收到的第一组播业务的数据对应的单播QoS流,目标接入网设备根据第二映射关系,确定第二QFI对应的DRB配置,对该第三数据进行解封装,去掉GPT-U头部后,将数据部分映射到对应的DRB上,然后发送给UE1。
综上,目标接入网设备接收转发隧道转发的第一组播业务的数据后,发送给UE1的方式有多种,例如,上文所述,通过UE1的PDU会话的空口发送。需要说明的是,该PDU会话可以是UE1的第一组播业务关联的PDU会话,也可以是UE1的其他PDU会话,本申请实施例对此不作限定。再例如,当目标接入网设备支持组播功能时,还可以通过组播会话的空口(即,点到多点的方式)发送。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。 本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
如图14所示,为本申请所涉及的数据传输的装置的一种可能的示例性框图,该装置1400可以以软件或硬件的形式存在。该装置1400可以包括:处理单元1402和通信单元1403。作为一种实现方式,该通信单元1403可以包括接收单元和发送单元。处理单元1402用于对装置1400的动作进行控制管理。通信单元1403用于支持该装置1400与其他网络实体的通信。装置1400还可以包括存储单元1401,用于存储装置1400的程序代码和数据。
其中,处理单元1402可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。存储单元1401可以是存储器。通信单元1403是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元1403是该芯片用于从其它芯片或装置接收信号的接口电路,或者,是该芯片用于向其它芯片或装置发送信号的接口电路。
该装置1400可以为上述任一实施例中的接入网设备(如源接入网设备、目标接入网设备),还可以为用于接入网设备的芯片。例如,当装置1400为源接入网设备时,该处理单元1402例如可以是处理器,该通信单元1403例如可以是收发器。可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当装置1400为用于接入网设备的芯片时,该处理单元1402例如可以是处理器,该通信单元1403例如可以是输入/输出接口、管脚或电路等。该处理单元1402可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该源接入网设备内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
该装置1400可以为上述任一实施例中的核心网设备(如第一核心网设备、第三核心网设备),还可以为用于核心网设备的芯片。例如,当装置1400为核心网设备时,该处理单元1402例如可以是处理器,该通信单元1403例如可以是收发器。可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当装置1400为用于接入网设备的芯片时,该处理单元1402例如可以是处理器,该通信单元1403例如可以是输入/输出接口、管脚或电路等。该处理单元1402可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该源接入网设备内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在第一个实施例中,该装置1400为上述示例中的源接入网设备,源接入网设备的通信单元1403包括发送单元和接收单元。接收单元,具体用于通过第二隧道从第一核心网设备接收第二结束数据包end marker;其中,所述第二隧道为第一终端设备的协议数据单元PDU会话的传输隧道,所述PDU会话与第一组播/广播业务关联;处理单元1402还用于响应于接收到所述第二end marker,根据所述PDU会话和所述第二end marker确定停止通过所述第一终端设备的转发隧道向目标接入网设备发送所述第一组播/广播业务的数据。
在一种可能的实现方法中,所述转发隧道包括:第一转发隧道或第二转发隧道;所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的PDU会话对应的转发隧道。
在一种可能的实现方法中,接收单元具体用于通过第一隧道从所述第一核心网设备接收所述第一组播/广播业务的数据,所述第一隧道用于向所述源接入网设备传输所述第一组播/广播业务的数据的隧道;处理单元1402具体用于复制所述第一数据,发送单元具体用于通过所述第一转发隧道或所述第二转发隧道向所述目标接入网设备发送复制到第一数据,所述第一数据为所述源接入网设备通过所述第一隧道接收到的所述第一组播/广播业务的数据的部分或全部;控制发送单元停止通过所述第一终端设备的转发隧道向目标接入网设备转发所述第一组播/广播业务的数据包括:控制发送单元停止通过所述转发隧道向所述目标接入网设备转发所述第一数据。
在一种可能的实现方法中,接收单元,具体用于通过所述第一隧道从所述第一核心网设备接收所述第一数据对应的第一服务质量流标识QFI;处理单元1402,具体用于根据第一映射关系,确定所述第一QFI对应的第二QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;对所述第一数据进行复制;发送单元,具体用于通过所述第二转发隧道向所述目标接入网设备发送复制的所述第一数据和所述第二QFI。
在一种可能的实现方法中,接收单元,还用于从会话管理功能网元SMF接收所述第一映射关系。
在一种可能的实现方法中,处理单元1402复制所述第二end marker并通过所述第一转发隧道将复制的所述第二end marker发送至所述目标接入网设备;
在第二个实施例中,该装置1400为上述示例中的目标接入网设备,目标接入网设备的通信单元1403包括发送单元和接收单元。接收单元,用于通过第一终端设备的转发隧道接收第一组播/广播业务的第一数据;发送单元,用于通过空口点对点的方式向所述第一终端设备发送所述第一组播/广播业务的第一数据;接收单元,还用于通过所述转发隧道接收结束数据包end marker;处理单元1402,用于控制发送单元停止通过所述转发隧道接收所述第一组播/广播业务的数据。
在一种可能的实现方法中,所述转发隧道包括:第一转发隧道或第二转发隧道;所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的协议数据单元PDU会话对应的转发隧道;所述第一终端设备的PDU会话与所述第一组播/广播业务关联。
在一种可能的实现方法中,发送单元,具体用于通过PDU会话向所述第一终端设备发送所述第一数据,所述PDU会话是所述第一终端设备的PDU会话。
在一种可能的实现方法中,接收单元,具体用于通过所述第一转发隧道接收第一组播/广播业务的第一数据;还用于通过所述第一转发隧道接收所述第一数据和所述第一数据对应的第一服务质量流标识QFI;处理单元1402,具体用于根据第一映射关系确定所述第一QFI对应的第二QFI;其中,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;发送单元,具体用于向所述第一终端设备发送所述第一数据。
在一种可能的实现方法中,接收单元,还用于通过第三隧道接收所述第一组播/广播业务的第二数据,并缓存所述第二数据,所述第三隧道为所述第一终端设备的PDU会话的隧道,或所述第三隧道为所述第一组播/广播业务的隧道;
发送单元,还用于将缓存的所述第二数据发送给所述第一终端设备。
在一种可能的实现方法中,所述第三隧道为所述第一组播/广播业务的隧道;
接收单元,具体用于通过所述第一组播/广播业务的隧道接收所述第二数据和所述第二数据对应的第三QFI;
处理单元1402,具体用于根据第一映射关系确定所述第三QFI对应的第四QFI;其中,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一组播/广播业务的隧道发送时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;根据所述第四QFI向所述第一终端设备发送所述第二数据。
在第三个实施例中,该装置1400为上述示例中的第一核心网设备,第一核心网设备的处理单元1402,具体用于生成第一结束数据包end marker,其中,所述第一end marker包含第一信息,所述第一信息用于确定第一终端设备;通信单元1403包括发送单元和接收单元。发送单元,具体用于通过第一隧道,将所述第一end marker发送至源接入网设备;其中,所述第一隧道用于传输所述第一组播/广播业务的数据。
在一种可能的实现方法中,接收单元,还用于从第三核心网设备接收第二消息,所述第二消息用于指示处理单元1402生成并发送所述第一end marker。
在一种可能的实现方法中,所述第二消息包括所述第一信息。
在一种可能的实现方法中,所述第二消息还用于指示处理单元1402通过所述第一隧道发送所述第一end marker;
处理单元1402,还用于根据所述第二消息确定所述第一隧道。
在一种可能的实现方法中,所述第二消息包括所述第一隧道的信息,和/或所述第一组播/广播业务的信息。
在一种可能的实现方法中,所述第一核心网设备为会话管理功能网元SMF,所述第一核心网设备为所述第三核心网设备;或所述第一核心网设备为组播/广播用户面网元,所述第三核心网设备为组播/广播控制面网元;或所述第一核心网设备为用户面网元UPF或所述组播/广播控制面网元,所述第三核心网设备为SMF。
在一种可能的实现方法中,所述第一核心网设备为UPF或组播用户面功能,所述组播用户面功能为组播/广播用户面网元;
发送单元,还用于通过第一隧道,向所述源接入网设备发送所述第一组播/广播业务的第一数据,所述第一隧道为传输所述第一组播/广播业务的数据的隧道;通过第三隧道,向所述目标接入网设备发送所述第一组播/广播业务的第二数据;其中,所述第三隧道为所述 第一终端设备的PDU会话的隧道,或所述第三隧道为所述第一组播/广播业务的隧道。
在一种可能的实现方法中,所述第三隧道为所述第一终端设备的PDU会话的隧道;
处理单元1402,具体用于确定通过所述PDU会话的隧道发送所述第二数据时,所述第二数据对应的第三QFI;根据第一映射关系,确定所述第三QFI对应的第四QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一组播/广播业务的隧道发送时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道发送时的QFI的对应关系;
发送单元,具体用于通过所述第三隧道向所述目标接入网设备发送所述第二数据和所述第四QFI。
在一种可能的实现方法中,所述第一核心网设备为UPF,所述第三核心网设备为SMF;
接收单元,还用于从所述第三核心网设备接收第三消息,所述第三消息用于指示处理单元1402生成并发送所述第二end marker;
处理单元1402,还用于生成所述第二end marker,并控制发送单元通过第二隧道将所述第二end marker发送至所述源接入网设备;其中,所述第二隧道为第一终端设备的所述PDU会话的隧道,所述PDU会话与第一组播/广播业务关联。
在第四个实施例中,该装置1400为上述示例中的第三核心网设备,第三核心网设备的处理单元1402,具体用于生成第二消息;所述第二消息包括所述第一信息;通信单元1403包括发送单元和接收单元。发送单元,具体用于向第一核心网设备发送所述第二消息,所述第二消息用于指示处理单元1402生成并发送所述第一结束数据包end marker;所述第一end marker包含所述第一信息,所述第一信息用于确定第一终端设备。
在一种可能的实现方法中,所述第二消息还用于指示处理单元1402通过所述第一隧道向所述源接入网设备发送所述第一end marker,所述第一隧道用于传输所述第一组播/广播业务的数据。
在一种可能的实现方法中,所述第二消息包括所述第一隧道的信息;或者,所述第二消息包括第一组播/广播业务的信息。
在一种可能的实现方法中,所述第一核心网设备为会话管理功能网元SMF,所述第一核心网设备和所述第三核心网设备为同一设备;或所述第一核心网设备为组播/广播用户面网元,所述第三核心网设备为组播/广播业务控制面网元;或所述第一核心网设备为用户面网元UPF或所述组播/广播业务控制面网元,所述第三核心网设备为SMF。
在一种可能的实现方法中,所述第一核心网设备为UPF,所述第三核心网设备为SMF;
发送单元,还用于向所述第一核心网设备发送第三消息,所述第三消息用于指示所述处理单元1402生成并通过第二隧道向源接入网设备发送第二end marker;其中,所述第二隧道为第一终端设备的所述PDU会话的隧道,所述PDU会话与第一组播/广播业务关联。
在第五个实施例中,该装置1400为上述示例中的源接入网设备,源接入网设备的通信单元1403包括发送单元和接收单元。接收单元,具体用于通过第二隧道从第一核心网设备接收第二结束数据包end marker;其中,所述第二隧道为第一终端设备的协议数据单元PDU会话的传输隧道,所述PDU会话与第一组播/广播业务关联;处理单元1402,具体用于响应于接收到所述第二end marker,根据所述PDU会话和所述第二end marker确定停止通过所述第一终端设备的转发隧道向目标接入网设备发送所述第一组播/广播业务的数据。
在一种可能的实现方法中,所述转发隧道包括:第一转发隧道或第二转发隧道;所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的PDU会话对应的转发隧道。
在一种可能的实现方法中,接收单元,还用于通过第一隧道从所述第一核心网设备接收所述第一组播/广播业务的数据,所述第一隧道用于向所述源接入网设备传输所述第一组播/广播业务的数据的隧道;处理单元1402,还用于复制并控制发送单元通过所述第一转发隧道或所述第二转发隧道向所述目标接入网设备发送所述第一数据,所述第一数据为所述源接入网设备通过所述第一隧道接收到的所述第一组播/广播业务的数据的部分或全部;控制发送单元停止通过所述转发隧道向所述目标接入网设备转发所述第一数据。
在一种可能的实现方法中,接收单元,还用于通过所述第一隧道从所述第一核心网设备接收所述第一数据对应的第一服务质量流标识QFI;
处理单元1402,还用于根据第一映射关系,确定所述第一QFI对应的第二QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;对所述第一数据进行复制;
发送单元,还用于通过所述第二转发隧道向所述目标接入网设备发送复制的所述第一数据和所述第二QFI。
在一种可能的实现方法中,接收单元,还用于从会话管理功能网元SMF接收所述第一映射关系。
在一种可能的实现方法中,处理单元1402,还用于复制所述第二end marker并控制发送单元通过所述第一转发隧道将复制的所述第二end marker发送至所述目标接入网设备;
在第六个实施例中,该装置1400为上述示例中的目标接入网设备,目标接入网设备的通信单元1403包括发送单元和接收单元。接收单元,具体用于通过第一终端设备的转发隧道接收第一组播/广播业务的第一数据;发送单元,具体用于通过空口点对点的方式向所述第一终端设备发送所述第一组播/广播业务的第一数据,通过所述转发隧道接收结束数据包end marker;处理单元1402,具体用于控制发送单元停止通过所述转发隧道接收所述第一组播/广播业务的数据。
在一种可能的实现方法中,所述转发隧道包括:
第一转发隧道或第二转发隧道;所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的协议数据单元PDU会话对应的转发隧道;所述第一终端设备的PDU会话与所述第一组播/广播业务关联。
在一种可能的实现方法中,发送单元,具体用于通过PDU会话向所述第一终端设备发送所述第一数据,所述PDU会话是所述第一终端设备的PDU会话。
在一种可能的实现方法中,发送单元,具体用于通过所述第一转发隧道接收第一组播/广播业务的第一数据;接收单元,具体用于通过所述第一转发隧道接收所述第一数据和所述第一数据对应的第一服务质量流标识QFI;处理单元1402,具体用于根据第一映射关系确定所述第一QFI对应的第二QFI;其中,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;发送单元,还用于向所述第一终端设备发送所述第一数据。
在一种可能的实现方法中,接收单元,还用于通过第三隧道接收所述第一组播/广播业务的第二数据,并缓存所述第二数据,所述第三隧道为所述第一终端设备的PDU会话的隧道,或所述第三隧道为所述第一组播/广播业务的隧道;发送单元,还用于将缓存的所述第二数据发送给所述第一终端设备。
在一种可能的实现方法中,所述第三隧道为所述第一组播/广播业务的隧道;接收单元,具体用于通过所述第一组播/广播业务的隧道接收所述第二数据和所述第二数据对应的第三QFI;处理单元1402,具体用于根据第一映射关系确定所述第三QFI对应的第四QFI;其中,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一组播/广播业务的隧道发送时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;根据所述第四QFI向所述第一终端设备发送所述第二数据。
在第七个实施例中,该装置1400为上述示例中的目标接入网设备,目标接入网设备的处理单元1402,具体用于生成第二结束数据包end marker;通信单元1403包括发送单元和接收单元。发送单元,具体用于通过第二隧道,将所述第二end marker发送至源接入网设备;其中,所述第二隧道为第一终端设备的协议数据单元PDU会话的隧道,所述PDU会话与第一组播/广播业务关联。
在一种可能的实现方法中,接收单元,还用于从第三核心网设备接收第三信息,所述第三信息用于指示所述第一核心网设备生成并发送所述第二end marker。
在一种可能的实现方法中,所述第一核心网设备为会话管理功能网元SMF,所述第一核心网设备和所述第三核心网设备为同一设备;或所述第一核心网设备为用户面网元UPF,所述第三核心网设备为SMF。
在一种可能的实现方法中,所述第一核心网设备为UPF或组播用户面功能,所述组播用户面功能为组播/广播用户面网元;发送单元,还用于通过第一隧道,向所述源接入网设备发送所述第一组播/广播业务的第一数据,所述第一隧道用于向所述源接入网设备传输所述第一组播/广播业务的数据的隧道;还用于通过所述第三隧道,向所述目标接入网设备发送所述第一组播/广播业务的第三数据,其中,所述第三隧道为所述第一终端设备的PDU会话的隧道,或所述第三隧道为所述目标接入网设备接收所述第一组播/广播业务的隧道。
在一种可能的实现方法中,处理单元1402,还用于确定通过所述第一组播/广播业务的隧道发送所述第二数据时,所述第二数据对应的第三QFI;根据第一映射关系,确定所述第三QFI对应的第四QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一组播/广播业务的隧道发送时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;发送单元,还用于通过所述第三隧道向所述目标接入网设备发送所述第二数据和所述第四QFI。
参阅图15所示,为本申请提供的一种装置示意图,该装置可以是上述实施例中的接入网设备(如上述示例中的源接入网设备、目标接入网设备)、或核心网设备(如上述示例中的第一核心网设备、第三核心网设备)、。该装置1500包括:处理器1502、通信接口1503、存储器1501。可选的,装置1500还可以包括通信线路1504。其中,通信接口1503、处理器1502以及存储器1501可以通过通信线路1504相互连接;通信线路1504可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1504可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不 表示仅有一根总线或一种类型的总线。
处理器1502可以是一个CPU,微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口1503,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器1501可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1504与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1501用于存储执行本申请方案的计算机执行指令,并由处理器1502来控制执行。处理器1502用于执行存储器1501中存储的计算机执行指令,从而实现本申请上述实施例提供的会话的处理方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
根据本申请的实施方式的用于配置参数的程序产品,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在服务器设备上运行。然而,本申请的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被信息传输、装置或者器件使用或者与其结合使用。
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由周期网络动作系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、有线、光缆、RF等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本申请操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算 设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算设备,或者,可以连接到外部计算设备。
本申请实施例针对信息同步的方法还提供一种计算设备可读存储介质,即断电后内容不丢失。该存储介质中存储软件程序,包括程序代码,当所述程序代码在计算设备上运行时,该软件程序在被一个或多个处理器读取并执行时可实现本申请实施例上面任何一种信息同步的方案。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (58)

  1. 一种数据传输的方法,其特征在于,包括:
    源接入网设备通过第一隧道从第一核心网设备接收第一结束数据包end marker,其中,所述第一隧道为第一组播/广播业务的传输隧道,所述第一end marker包含第一信息,所述第一信息用于确定第一终端设备;
    所述源接入网设备根据所述第一信息确定所述第一end marker作用于所述第一终端设备;
    响应于接收到所述第一end marker,所述源接入网设备停止通过所述第一终端设备的转发隧道向目标接入网设备转发所述第一组播/广播业务的数据。
  2. 如权利要求1所述的方法,其特征在于,所述转发隧道包括:
    第一转发隧道或第二转发隧道;
    所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的协议数据单元PDU会话对应的转发隧道。
  3. 如权利要求2所述的方法,其特征在于,所述源接入网设备通过第一隧道从第一核心网设备接收第一end marker之前,还包括:
    所述源接入网设备通过所述第一隧道从所述第一核心网设备接收所述第一组播/广播业务的数据;
    所述源接入网设备复制并通过所述第一转发隧道或所述第二转发隧道向所述目标接入网设备转发第一数据,所述第一数据为所述源接入网设备通过所述第一隧道接收到的所述第一组播/广播业务的数据的部分或全部;
    所述源接入网设备停止通过所述第一终端设备的转发隧道向目标接入网设备转发所述第一组播/广播业务的数据包括:所述源接入网设备停止通过所述转发隧道向所述目标接入网设备转发所述第一数据。
  4. 如权利要求3所述的方法,其特征在于,所述源接入网设备复制并通过所述第二转发隧道向所述目标接入网设备转发第一数据,还包括:
    所述源接入网设备通过所述第一隧道从所述第一核心网设备接收所述第一数据对应的第一服务质量流标识QFI;
    所述源接入网设备根据第一映射关系,确定所述第一QFI对应的第二QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;
    所述源接入网设备对所述第一数据进行复制;
    所述源接入网设备通过所述第二转发隧道向所述目标接入网设备发送复制的所述第一数据和所述第二QFI。
  5. 如权利要求4所述的方法,其特征在于,还包括:
    所述源接入网设备从会话管理功能网元SMF接收所述第一映射关系。
  6. 如权利要求1-5任一项所述的方法,其特征在于,还包括:
    所述源接入网设备将所述第一end marker发送至所述目标接入网设备。
  7. 如权利要求1-5任一项所述的方法,其特征在于,还包括:
    所述源接入网设备通过第二隧道从第二核心网设备接收第二end marker;其中,所述 第二隧道为第一终端设备的所述PDU会话的隧道,所述PDU会话与所述第一组播/广播业务关联;
    在所述第二end marker和所述第一end marker都到达所述源接入网设备时,所述源接入网设备通过所述转发隧道将所述第一end marker或所述第二end marker发送至所述目标接入网设备。
  8. 如权利要求1-7任一项所述的方法,其特征在于,还包括:
    所述源接入网设备发送第一消息,所述第一消息包含所述第一信息,以便所述第一核心网设备根据所述第一信息生成所述第一end marker。
  9. 如权利要求8所述的方法,其特征在于,所述第一请求信息还包括所述第一组播/广播业务的信息。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述第一信息还用于指示所述第一终端设备的PDU会话,所述PDU会话与所述第一组播/广播业务关联。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述第一核心网设备为会话管理功能网元SMF,或所述第一核心网设备为组播/广播用户面网元,或所述第一核心网设备为组播/广播控制面网元,或所述第一核心网设备为用户面网元UPF。
  12. 如权利要求7所述的方法,其特征在于,所述第二核心网设备为UPF或SMF。
  13. 一种数据传输的方法,其特征在于,包括:
    目标接入网设备通过第一终端设备的转发隧道接收第一组播/广播业务的第一数据;
    所述目标接入网设备通过空口点对点的方式向所述第一终端设备发送所述第一组播/广播业务的第一数据;
    所述目标接入网设备通过所述转发隧道接收结束数据包end marker;
    所述目标接入网设备停止通过所述转发隧道接收所述第一组播/广播业务的数据。
  14. 如权利要求13所述的方法,其特征在于,所述转发隧道包括:
    第一转发隧道或第二转发隧道;
    所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的协议数据单元PDU会话对应的转发隧道;所述第一终端设备的PDU会话与所述第一组播/广播业务关联。
  15. 如权利要求13或14所述的方法,其特征在于,所述end marker包括:
    第一end marker或第二end marker;
    所述第一end marker为所述源接入网设备通过第一隧道从第一核心网设备接收到的;所述第二end marker为所述源接入网设备通过第二隧道从第二核心网设备接收到的;所述第一隧道为所述源接入网设备的所述第一组播/广播业务的传输隧道,所述第二隧道为用于向所述源接入网设备传输所述第一终端设备的PDU会话的数据的隧道。
  16. 如权利要求15所述的方法,其特征在于,所述第一end marker包含第一信息,所述第一信息用于所述源接入网设备确定所述第一终端设备。
  17. 如权利要求16所述的方法,其特征在于,所述第一信息还用于指示所述第一终端设备的PDU会话,所述第一终端设备的PDU会话与所述第一组播/广播业务关联。
  18. 如权利要求17所述的方法,其特征在于,所述目标接入网设备通过第一终端设备的转发隧道接收第一组播/广播业务的第一数据之前,还包括:
    所述目标接入网设备从所述源接入网设备接收所述第一信息,并根据所述第一信息确 定所述第一终端的PDU会话与所述第一组播/广播业务关联。
  19. 如权利要求13-18任一项所述的方法,其特征在于,所述目标接入网设备向所述第一终端发送所述第一数据,包括:
    所述目标接入网设备通过PDU会话向所述第一终端设备发送所述第一数据,所述PDU会话是所述第一终端设备的PDU会话。
  20. 如权利要求14或19所述的方法,其特征在于,所述目标接入网设备通过所述第一转发隧道接收第一组播/广播业务的第一数据;
    所述目标接入网设备通过PDU会话向所述第一终端设备发送所述第一数据,包括:
    所述目标接入网设备接收所述第一数据和所述第一数据对应的第一服务质量流标识QFI;
    所述目标接入网设备根据第一映射关系确定所述第一QFI对应的第二QFI;其中,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;
    所述目标接入网设备向所述第一终端设备发送所述第一数据。
  21. 一种数据传输的方法,其特征在于,包括:
    第一核心网设备生成第一结束数据包end marker,其中,所述第一end marker包含第一信息,所述第一信息用于确定第一终端设备;
    所述第一核心网设备通过第一隧道,将所述第一end marker发送至源接入网设备;其中,所述第一隧道为所述第一组播/广播业务的传输隧道。
  22. 如权利要求21所述的方法,其特征在于,还包括:
    所述第一核心网设备从第三核心网设备接收第二消息,所述第二消息用于指示所述第一核心网设备生成并发送所述第一end marker。
  23. 如权利要求22所述的方法,其特征在于,所述第二消息包括所述第一信息。
  24. 如权利要求22或23所述的方法,其特征在于,所述第二消息还用于指示所述第一核心网设备通过所述第一隧道发送所述第一end marker;
    还包括:
    所述第一核心网设备根据所述第二消息确定所述第一隧道。
  25. 如权利要求22-24任一项所述的方法,其特征在于,所述第二消息包括所述第一隧道的信息,和/或所述第一组播/广播业务的信息。
  26. 如权利要求21-25任一项所述的方法,其特征在于,所述第一核心网设备为会话管理功能网元SMF,所述第一核心网设备为所述第三核心网设备;或
    所述第一核心网设备为组播/广播用户面网元,所述第三核心网设备为组播/广播控制面网元;或
    所述第一核心网设备为用户面网元UPF或所述组播/广播控制面网元,所述第三核心网设备为SMF。
  27. 如权利要求21-26任一项所述的方法,其特征在于,所述第一核心网设备为UPF或组播/广播用户面网元;
    还包括:
    所述第一核心网设备通过第一隧道,向所述源接入网设备发送所述第一组播/广播业务的第一数据,所述第一隧道为传输所述第一组播/广播业务的数据的隧道;
    所述第一核心网设备通过第三隧道,向所述目标接入网设备发送所述第一组播/广播业务的第二数据;其中,所述第三隧道为所述第一终端设备的PDU会话的隧道,或所述第三隧道为所述第一组播/广播业务的隧道。
  28. 如权利要求27所述的方法,其特征在于,所述第三隧道为所述第一终端设备的PDU会话的隧道;
    所述第一核心网设备通过第三隧道,向所述目标接入网设备发送所述第一组播/广播业务的数据,包括:
    所述第一核心网设备确定通过所述PDU会话的隧道发送所述第二数据时,所述第二数据对应的第三QFI;
    所述第一核心网设备根据第一映射关系,确定所述第三QFI对应的第四QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一组播/广播业务的隧道发送时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道发送时的QFI的对应关系;
    所述第一核心网设备通过所述第三隧道向所述目标接入网设备发送所述第二数据和所述第四QFI。
  29. 如权利要求21-26任一项所述的方法,其特征在于,所述第一核心网设备为UPF,所述第三核心网设备为SMF;
    还包括:
    所述第一核心网设备从所述第三核心网设备接收第三消息,所述第三消息用于指示所述第一核心网设备生成并发送所述第二end marker;
    所述第一核心网设备生成所述第二end marker,并通过第二隧道将所述第二end marker发送至所述源接入网设备;其中,所述第二隧道为第一终端设备的所述PDU会话的隧道,所述PDU会话与第一组播/广播业务关联。
  30. 一种数据传输的方法,其特征在于,包括:
    第三核心网设备生成第二消息;所述第二消息包括所述第一信息;
    所述第三核心网设备向第一核心网设备发送所述第二消息,所述第二消息用于指示所述第一核心网设备生成并发送所述第一结束数据包end marker;所述第一end marker包含所述第一信息,所述第一信息用于确定第一终端设备。
  31. 如权利要求30所述的方法,其特征在于,所述第二消息还用于指示所述第一核心网设备通过所述第一隧道向所述源接入网设备发送所述第一end marker,所述第一隧道用于传输所述第一组播/广播业务的数据。
  32. 如权利要求30或31所述的方法,其特征在于,所述第二消息包括所述第一隧道的信息;或者,所述第二消息包括第一组播/广播业务的信息。
  33. 如权利要求30-32任一项所述的方法,其特征在于,所述第一核心网设备为会话管理功能网元SMF,所述第三核心网设备为所述SMF;或
    所述第一核心网设备为组播/广播用户面网元,所述第三核心网设备为组播/广播控制面网元;或
    所述第一核心网设备为用户面网元UPF或所述组播/广播控制面网元,所述第三核心网设备为SMF。
  34. 如权利要求30-33任一项所述的方法,其特征在于,所述第一核心网设备为UPF, 所述第三核心网设备为SMF;
    还包括:
    所述第三核心网设备向所述第一核心网设备发送第三消息,所述第三消息用于指示所述第一核心网设备生成并通过第二隧道向源接入网设备发送第二end marker;其中,所述第二隧道为第一终端设备的所述PDU会话的隧道,所述PDU会话与第一组播/广播业务关联。
  35. 一种数据传输的方法,其特征在于,包括:
    源接入网设备通过第二隧道从第一核心网设备接收第二结束数据包end marker;其中,所述第二隧道为第一终端设备的协议数据单元PDU会话的传输隧道,所述PDU会话与第一组播/广播业务关联;
    响应于接收到所述第二end marker,所述源接入网设备根据所述PDU会话和所述第二end marker确定停止通过所述第一终端设备的转发隧道向目标接入网设备发送所述第一组播/广播业务的数据。
  36. 如权利要求35所述的方法,其特征在于,所述转发隧道包括:
    第一转发隧道或第二转发隧道;
    所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的PDU会话对应的转发隧道。
  37. 如权利要求36所述的方法,其特征在于,所述源接入网设备通过第三隧道从第一核心网设备接收第二end marker之前,还包括:
    所述源接入网设备通过第一隧道从所述第一核心网设备接收所述第一组播/广播业务的数据,所述第一隧道用于向所述源接入网设备传输所述第一组播/广播业务的数据的隧道;
    所述源接入网设备复制并通过所述第一转发隧道或所述第二转发隧道向所述目标接入网设备发送所述第一数据,所述第一数据为所述源接入网设备通过所述第一隧道接收到的所述第一组播/广播业务的数据的部分或全部;
    所述源接入网设备停止通过所述第一终端设备的转发隧道向目标接入网设备转发所述第一组播/广播业务的数据包括:所述源接入网设备停止通过所述转发隧道向所述目标接入网设备转发所述第一数据。
  38. 如权利要求37所述的方法,其特征在于,所述源接入网设备复制并通过所述第二转发隧道向所述目标接入网设备发送所述第一数据,还包括:
    所述源接入网设备通过所述第一隧道从所述第一核心网设备接收所述第一数据对应的第一服务质量流标识QFI;
    所述源接入网设备根据第一映射关系,确定所述第一QFI对应的第二QFI,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;
    所述源接入网设备对所述第一数据进行复制;
    所述源接入网设备通过所述第二转发隧道向所述目标接入网设备发送复制的所述第一数据和所述第二QFI。
  39. 如权利要求38所述的方法,其特征在于,还包括:
    所述源接入网设备从会话管理功能网元SMF接收所述第一映射关系。
  40. 如权利要求36-39任一项所述的方法,其特征在于,还包括:
    所述源接入网设备复制所述第二end marker并通过所述第一转发隧道将复制的所述第二end marker发送至所述目标接入网设备。
  41. 一种数据传输的方法,其特征在于,包括:
    目标接入网设备通过第一终端设备的转发隧道接收第一组播/广播业务的第一数据;
    所述目标接入网设备通过空口点对点的方式向所述第一终端设备发送所述第一组播/广播业务的第一数据;
    所述目标接入网设备通过所述转发隧道接收结束数据包end marker;
    所述目标接入网设备停止通过所述转发隧道接收所述第一组播/广播业务的数据。
  42. 如权利要求41所述的方法,其特征在于,所述转发隧道包括:
    第一转发隧道或第二转发隧道;
    所述第一转发隧道是所述第一终端设备的所述第一组播/广播业务对应的转发隧道;所述第二转发隧道是所述第一终端设备的协议数据单元PDU会话对应的转发隧道;所述第一终端设备的PDU会话与所述第一组播/广播业务关联。
  43. 如权利要求41或42所述的方法,其特征在于,所述目标接入网设备向所述第一终端发送所述第一数据,包括:
    所述目标接入网设备通过PDU会话向所述第一终端设备发送所述第一数据,所述PDU会话是所述第一终端设备的PDU会话。
  44. 如权利要求42和43所述的方法,其特征在于,所述目标接入网设备通过所述第一转发隧道接收第一组播/广播业务的第一数据;
    所述目标接入网设备通过PDU会话向所述第一终端设备发送所述第一数据,包括:
    所述目标接入网设备通过所述第一转发隧道接收所述第一数据和所述第一数据对应的第一服务质量流标识QFI;
    所述目标接入网设备根据第一映射关系确定所述第一QFI对应的第二QFI;其中,所述第一映射关系包含所述第一组播/广播业务的数据通过所述第一隧道传输时的QFI与所述第一组播/广播业务的数据通过所述PDU会话的隧道传输时的QFI的对应关系;
    所述目标接入网设备向所述第一终端设备发送所述第一数据。
  45. 一种数据传输的方法,其特征在于,包括:
    第一核心网设备生成第二结束数据包end marker;
    所述第一核心网设备通过第二隧道,将所述第二end marker发送至源接入网设备;其中,所述第二隧道为第一终端设备的协议数据单元PDU会话的隧道,所述PDU会话与第一组播/广播业务关联。
  46. 如权利要求45所述的方法,其特征在于,还包括:
    所述第一核心网设备从第三核心网设备接收第三信息,所述第三信息用于指示所述第一核心网设备生成并发送所述第二end marker。
  47. 如权利要求45或46所述的方法,其特征在于,所述第一核心网设备为会话管理功能网元SMF,所述第一核心网设备和所述第三核心网设备为同一设备;或
    所述第一核心网设备为用户面网元UPF,所述第三核心网设备为SMF。
  48. 一种网络设备,其特征在于,所述网络设备包括:
    通信单元,用于通过第一隧道从第一核心网设备接收第一结束数据包end marker,其中,所述第一隧道用于传输第一组播/广播业务的数据,所述第一end marker包含第一信息, 所述第一信息用于确定第一终端设备;
    处理单元,用于根据所述第一信息确定所述第一end marker作用于所述第一终端设备;响应于接收到所述第一end marker,停止通过所述第一终端设备的转发隧道向目标接入网设备转发所述第一组播/广播业务的数据。
  49. 一种网络设备,其特征在于,所述网络设备包括:
    通信单元,用于通过第一终端设备的转发隧道接收第一组播/广播业务的第一数据;通过空口点对点的方式向所述第一终端设备发送所述第一组播/广播业务的第一数据;通过所述转发隧道接收结束数据包end marker;
    处理单元,用于控制所述通信单元停止通过所述转发隧道接收所述第一组播/广播业务的数据。
  50. 一种核心网设备,其特征在于,所述网络设备包括:
    处理单元,用于生成第一结束数据包end marker,其中,所述第一end marker包含第一信息,所述第一信息用于确定第一终端设备;
    通信单元,用于通过第一隧道,将所述第一end marker发送至源接入网设备;其中,所述第一隧道用于传输所述第一组播/广播业务的数据。
  51. 一种核心网设备,其特征在于,所述网络设备包括:
    处理单元,用于生成第二消息;所述第二消息包括所述第一信息;
    通信单元,用于向第一核心网设备发送所述第二消息,所述第二消息用于指示处理单元生成并发送所述第一结束数据包end marker;所述第一end marker包含所述第一信息,所述第一信息用于确定第一终端设备。
  52. 一种网络设备,其特征在于,所述网络设备包括:
    通信单元,用于通过第二隧道从第一核心网设备接收第二结束数据包end marker;其中,所述第二隧道为第一终端设备的协议数据单元PDU会话的传输隧道,所述PDU会话与第一组播/广播业务关联;
    处理单元,用于响应于接收到所述第二end marker,根据所述PDU会话和所述第二end marker确定停止通过所述第一终端设备的转发隧道向目标接入网设备发送所述第一组播/广播业务的数据。
  53. 一种网络设备,其特征在于,所述网络设备包括:
    通信单元,用于通过第一终端设备的转发隧道接收第一组播/广播业务的第一数据;通过空口点对点的方式向所述第一终端设备发送所述第一组播/广播业务的第一数据;通过所述转发隧道接收结束数据包end marker;
    处理单元,用于控制所述通信单元停止通过所述转发隧道接收所述第一组播/广播业务的数据。
  54. 一种核心网设备,其特征在于,所述网络设备包括:
    处理单元,用于生成第二结束数据包end marker;
    通信单元,用于通过第二隧道,将所述第二end marker发送至源接入网设备;其中,所述第二隧道为第一终端设备的协议数据单元PDU会话的隧道,所述PDU会话与第一组播/广播业务关联。
  55. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述处理器用于执行存储在所述存储器上的指令,当所述指令被运行时,使得所述装置执行如权利要求1 至12中任一项所述的方法,或者权利要求13至20中任一项所述的方法,或者权利要求21至29中任一项所述的方法,或者权利要求35至40中任一项所述的方法,或者权利要求41至44中任一项所述的方法。
  56. 一种核心网设备,其特征在于,所述网络设备包括处理器和存储器,所述处理器用于执行存储在所述存储器上的指令,当所述指令被执行时,使得所述装置执行如权利要求21至29中任一项所述的方法,或者权利要求30至34中任一项所述的方法,或者权利要求45至47中任一项所述的方法。
  57. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令被执行时,实现如权利要求1至47中任一项所述的方法。
  58. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至47任一项所述的方法。
PCT/CN2021/082179 2020-03-31 2021-03-22 一种数据传输的方法及装置 WO2021197112A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21780851.8A EP4117338A4 (en) 2020-03-31 2021-03-22 DATA TRANSMISSION METHOD AND DEVICE
US17/953,500 US20230029292A1 (en) 2020-03-31 2022-09-27 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010246676.4A CN113473525B (zh) 2020-03-31 2020-03-31 一种数据传输的方法及装置
CN202010246676.4 2020-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/953,500 Continuation US20230029292A1 (en) 2020-03-31 2022-09-27 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2021197112A1 true WO2021197112A1 (zh) 2021-10-07

Family

ID=77865737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082179 WO2021197112A1 (zh) 2020-03-31 2021-03-22 一种数据传输的方法及装置

Country Status (4)

Country Link
US (1) US20230029292A1 (zh)
EP (1) EP4117338A4 (zh)
CN (1) CN113473525B (zh)
WO (1) WO2021197112A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965891B (zh) * 2020-07-20 2023-03-28 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
US11818609B2 (en) * 2021-12-03 2023-11-14 Nokia Technologies Oy Mobility in cellular communication networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567919A1 (en) * 2017-01-05 2019-11-13 LG Electronics Inc. -1- Method and device for transmitting rule for qos flow to drb mapping
WO2019243901A1 (en) * 2018-06-19 2019-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing anchor change for ethernet pdu sessions and related network entities/nodes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11044643B2 (en) * 2017-01-11 2021-06-22 Telefonaktiebolaget Lm Ericsson (Publ) 5G QoS flow to radio bearer remapping
CN108966282B (zh) * 2017-03-24 2019-11-19 华为技术有限公司 数据传输方法和装置
CN110351030B (zh) * 2018-04-03 2022-07-12 华为技术有限公司 报文传输方法、装置和系统
CN113507718B (zh) * 2018-06-25 2023-11-10 华为技术有限公司 通信方法和通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567919A1 (en) * 2017-01-05 2019-11-13 LG Electronics Inc. -1- Method and device for transmitting rule for qos flow to drb mapping
WO2019243901A1 (en) * 2018-06-19 2019-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing anchor change for ethernet pdu sessions and related network entities/nodes

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on architectural enhancements for 5G multicast-broadcast services (Release 17)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.757, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. V0.3.0, 29 January 2020 (2020-01-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 37, XP051860857 *
HUAWEI, HISILICON: "KI#7, New Solution: Inter-RAN node MBS Session Handover", 3GPP DRAFT; S2-2003966, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Elbonia; 20200601 - 20200612, 22 May 2020 (2020-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051889974 *
HUAWEI, HISILICON: "Solution to KI1: Establishment of MBS session for multicast", 3GPP DRAFT; S2-1911645, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Reno, NV, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051821724 *
See also references of EP4117338A4 *
ZTE: "KI#7 update the sol#26 to keep align with sol#10", 3GPP DRAFT; S2-2007592, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Electronic, Elbonia; 20201012 - 20201023, 2 October 2020 (2020-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051938631 *

Also Published As

Publication number Publication date
CN113473525A (zh) 2021-10-01
EP4117338A4 (en) 2023-08-16
EP4117338A1 (en) 2023-01-11
CN113473525B (zh) 2023-11-10
US20230029292A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2020147761A1 (zh) 一种pdu会话切换方法及其装置
WO2021164564A1 (zh) 传输组播业务的方法和装置
AU2015401354B2 (en) Evolved multimedia broadcast/multicast service embms system and management method
WO2021057794A1 (zh) 配置业务的方法、通信装置和通信系统
WO2021032131A1 (zh) 一种用户面信息上报方法及装置
US20230029292A1 (en) Data transmission method and apparatus
WO2018127219A1 (zh) 一种减少中断时延的方法、装置及用户设备
WO2020001562A1 (zh) 一种通信方法及装置
WO2022012506A1 (zh) 通信方法和通信装置
WO2021088661A1 (zh) 通信方法、装置及设备
WO2020147543A1 (zh) 一种pdu会话激活方法、寻呼方法及其装置
WO2021135650A1 (zh) 通信方法及装置
WO2022089164A1 (zh) 多路径传输方法和通信装置
WO2021223745A1 (zh) 组播业务切换的方法和装置
WO2021088941A1 (zh) 通信方法、设备及系统
WO2021097858A1 (zh) 一种通信方法及装置
WO2018228311A1 (zh) 数据分流方法和装置
WO2020063867A1 (zh) 一种切换方法及基站
WO2016061823A1 (zh) 缓存状态报告的触发方法、装置以及通信系统
WO2019223405A1 (zh) 报文传输方法和装置
WO2016187751A1 (zh) 无线承载建立方法和设备
WO2021174377A1 (zh) 切换方法和通信装置
WO2021228066A1 (zh) 一种通信方法、装置及存储介质
WO2022017403A1 (zh) 通信方法及装置
WO2021147672A1 (zh) 会话处理方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021780851

Country of ref document: EP

Effective date: 20221005

NENP Non-entry into the national phase

Ref country code: DE