WO2016187751A1 - 无线承载建立方法和设备 - Google Patents

无线承载建立方法和设备 Download PDF

Info

Publication number
WO2016187751A1
WO2016187751A1 PCT/CN2015/079595 CN2015079595W WO2016187751A1 WO 2016187751 A1 WO2016187751 A1 WO 2016187751A1 CN 2015079595 W CN2015079595 W CN 2015079595W WO 2016187751 A1 WO2016187751 A1 WO 2016187751A1
Authority
WO
WIPO (PCT)
Prior art keywords
srb
drbs
base station
target cell
occupied
Prior art date
Application number
PCT/CN2015/079595
Other languages
English (en)
French (fr)
Inventor
邢平平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580065314.2A priority Critical patent/CN107005987B/zh
Priority to EP15892836.6A priority patent/EP3291620B1/en
Priority to PCT/CN2015/079595 priority patent/WO2016187751A1/zh
Publication of WO2016187751A1 publication Critical patent/WO2016187751A1/zh
Priority to US15/818,388 priority patent/US10314086B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a radio bearer establishing method and device.
  • an interface between a user equipment (User Equipment, UE for short) and a base station belongs to an air interface, which is simply referred to as an air interface.
  • the protocol stack of the air interface is divided into a control plane (Control Plane, abbreviated as CP) and a user plane (User Plane, abbreviated as UP).
  • the establishment of the control plane connection is established between the UE and the base station by establishing a SGI (Sginaling Radio Bearer, SRB for short), and the data radio bearer is established on the basis of the connection establishment of the control plane (Data Radio Bearer, referred to as: DRB) to complete the connection establishment of the user plane.
  • SGI Seling Radio Bearer
  • One SRB can correspond to multiple DRBs, and one DRB corresponds to one type of service data (such as video, web browsing, etc., but does not include broadcast services).
  • the SRB and the DRB can implement information transmission of signaling and data at the radio link control layer, the medium access control layer, and the physical layer through logical channels, transport channels, and physical channels, respectively.
  • each DRB corresponding to the SRB and each service is multiplexed and transmitted on the same transport channel and the same physical channel, if the SRB is one or part of The configuration of the DRB is changed. Because the QoS requirements of each DRB are different, the transport channel and the physical channel need to be reconfigured at the same time. This may result in interruption of all service data between the UE and the base station, which reduces the user experience.
  • the embodiment of the present invention provides a method and a device for establishing a radio bearer, which are used to avoid the problem that all service data between the UE and the base station is interrupted when the configuration of one or a part of the DRB changes in the same cell that the UE accesses. .
  • an embodiment of the present invention provides a base station, including:
  • An SRB establishing unit configured to establish the foregoing with the user equipment UE according to the configuration parameter of the SRB SRB, the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB;
  • a DRB establishing unit configured to establish, according to a configuration parameter of the N DRBs that carry the N services, the N DRBs, where the N is an integer greater than or equal to 2, and the configuration parameters of the N DRBs are used by And indicating a transport channel and a physical channel occupied by the N DRBs;
  • the M channels of the N DRBs occupy different transmission channels and the occupied physical channels are different; the M is an integer greater than or equal to 2, and is less than or equal to an integer of the N, the SRB Different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the method further includes:
  • a sending unit configured to send, by the SRB establishing unit, the configuration parameter of the SRB and the configuration parameter of the N DRBs to the UE before establishing the SRB with the UE according to the configuration parameter of the SRB.
  • the method further includes:
  • a sending unit configured to send the configuration parameters of the N DRBs to the UE by using the SRB before the DRB establishing unit establishes the N DRBs with the UE according to the configuration parameters of the N DRBs.
  • the M cells of the M DRBs are different.
  • the radio access technologies of the M cells of the M DRBs are respectively established with the UE (Radio Access Technology, referred to as RAT) is different.
  • the sending unit is further used in After the RB establishing unit establishes the N DRBs with the UE according to the configuration parameters of the N DRBs, when the UE needs to transmit service data in the target cell, the first time is sent to the UE by using the SRB.
  • the target cell is a cell to which the K DRBs of the N DRBs are to be handed over;
  • the first setup command includes a configuration parameter that the UE establishes a DRB with the target cell, and the UE establishes a DRB configuration with the target cell.
  • the parameter is used to indicate a transport channel and a physical channel occupied by the DRB established by the UE and the target cell, K DRBs established by the UE and the target cell, and, in addition to the K, the N DRBs At least one DRB other than the DRBs occupy different transmission channels and occupy different physical channels.
  • the sending unit is further used in After the RSB establishes the SRB with the UE according to the configuration parameter of the SRB, when the UE needs to transmit control data in the target cell, the SBR sends a second setup command to the UE by using the SRB.
  • the second setup command includes the configuration parameter that the UE establishes an SRB with the target cell, where the target cell is a cell to which the SRB is to be handed over;
  • the configuration parameter of the SRB established by the UE and the target cell is used to indicate a transport channel and a physical channel occupied by the SRB established by the UE and the target cell, and the SRB established by the UE and the target cell is At least one of the N DRBs occupies different transport channels and different occupied physical channels.
  • an embodiment of the present invention provides a UE, including:
  • An SRB establishing unit configured to establish an SRB with the base station according to the configuration parameter of the SRB, where the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB;
  • a DRB establishing unit configured to establish, according to a configuration parameter of the N DRBs that carry the N services, the N DRBs, where the N is an integer greater than or equal to 2, and the configuration parameters of the N DRBs are used by And indicating a transport channel and a physical channel occupied by the N DRBs;
  • the M channels of the N DRBs occupy different transmission channels and the occupied physical channels are different; the M is an integer greater than or equal to 2, and is less than or equal to an integer of the N, the SRB Different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the method further includes:
  • a receiving unit configured to receive configuration parameters of the SRB and configuration parameters of the N DRBs sent by the base station, before the SRB establishing unit establishes the SRB with the base station according to the configuration parameter of the SRB .
  • the method further includes:
  • a receiving unit configured to, according to the configuration parameters of the N DRBs, the DRB establishing unit, The configuration parameters of the N DRBs sent by the base station are received by the SRB before the base station establishes the N DRBs.
  • the M cells of the M DRBs are different.
  • the RATs of the M cells that establish the M DRBs are different from the UE respectively.
  • the receiving unit is further configured to: The configuration parameters of the N DRBs, after establishing the N DRBs with the base station, receiving, by using the SRB, a first setup command sent by the base station, where the first setup command includes establishing, by the UE, a target cell
  • the configuration parameter of the DRB, the target cell is a cell to which the K DRBs of the N DRBs are to be handed over, 1 ⁇ K ⁇ N, the K is an integer, and the UE establishes a configuration parameter of the DRB with the target cell. a transport channel and a physical channel occupied by the K DRBs that are used by the UE to be established with the target cell;
  • the DRB establishing unit is further configured to establish the K DRBs with the target cell according to the first setup command;
  • the transport channel occupied by the K DRBs established by the UE and the target cell is different from the transport channel occupied by at least one DRB of the N DRBs except the K DRBs and
  • the physical channels are different.
  • the receiving unit is further configured to: The configuration parameter of the SRB, after establishing the SRB with the base station, receiving, by the SRB, a second setup command sent by the base station, where the second build command includes a configuration parameter that the UE establishes an SRB with the target cell, where The target cell is a cell to which the SRB is to be handed over; the configuration parameter that the UE establishes an SRB with the target cell is used to indicate a transport channel and a physical channel occupied by the SRB established by the UE and the target cell;
  • the SRB establishing unit is further configured to establish the SRB with the target cell according to the second setup command;
  • an embodiment of the present invention further provides a base station, including:
  • a transceiver for communicating with the outside of the base station
  • a processor configured to establish, according to a configuration parameter of the SRB, the SRB, where the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB, and according to N DRBs that carry N services.
  • a configuration parameter the N DRBs are established with the UE, and the N is an integer greater than or equal to 2, and the configuration parameters of the N DRBs are used to indicate a transport channel and a physical channel occupied by the N DRBs;
  • the M channels of the N DRBs occupy different transmission channels and the occupied physical channels are different; the M is an integer greater than or equal to 2, and is less than or equal to an integer of the N, the SRB Different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the processor is further configured to send, by the transceiver, the UE to the UE before establishing the SRB with the UE according to a configuration parameter of the SRB. Sending the configuration parameters of the SRB and the configuration parameters of the N DRBs.
  • the processor is further configured to pass, by using, the transceiver, before establishing the N DRBs with the UE according to configuration parameters of the N DRBs.
  • the SRB sends configuration parameters of the N DRBs to the UE.
  • the M cells of the M DRBs are different.
  • the RATs of the M cells that establish the M DRBs are different from the UE respectively.
  • the processor is further configured to After the configuration of the N DRBs, after the UE establishes the N DRBs, when the UE needs to transmit service data in the target cell, the transceiver sends a message to the UE through the SRB through the transceiver. a set of the command, the target cell is a cell to which the K DRBs of the N DRBs are to be handed over;
  • the first setup command includes a configuration parameter that the UE establishes a DRB with the target cell, and the configuration parameter of the UE and the target cell establishes a DRB is used.
  • a transmission channel and a physical channel occupied by the DRB that is established by the UE and the target cell, K DRBs established by the UE and the target cell, and, in addition to the K DRBs of the N DRBs The outer ones of the DRBs occupy different transport channels and occupy different physical channels.
  • the processor is further configured to After the configuration of the SRB, after the SRB is established by the UE, when the UE needs to transmit control data in the target cell, the second setup command is sent to the UE by using the SRB through the transceiver.
  • the second setup command includes a configuration parameter that the UE establishes an SRB with the target cell, where the target cell is a cell to which the SRB is to be handed over;
  • the configuration parameter of the SRB established by the UE and the target cell is used to indicate a transport channel and a physical channel occupied by the SRB established by the UE and the target cell, and the SRB established by the UE and the target cell is At least one of the N DRBs occupies different transport channels and different occupied physical channels.
  • the embodiment of the present invention further provides a UE, including:
  • a transceiver for communicating with the outside of the UE
  • a processor configured to establish an SRB with the base station according to the configuration parameter of the SRB, where the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB, and configuration parameters of the N DRBs that carry N services. And establishing, by the base station, the N DRBs, where the N is an integer greater than or equal to 2, and the configuration parameters of the N DRBs are used to indicate a transport channel and a physical channel occupied by the N DRBs;
  • the M channels of the N DRBs occupy different transmission channels and the occupied physical channels are different; the M is an integer greater than or equal to 2, and is less than or equal to an integer of the N, the SRB Different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the processor is further configured to receive the base station by using the transceiver before establishing the SRB with the base station according to a configuration parameter of the SRB.
  • the processor is further configured to pass the transceiver before establishing the N DRBs with the base station according to configuration parameters of the N DRBs. Receiving, by the SRB, configuration parameters of the N DRBs sent by the base station.
  • the M cells of the M DRBs are different.
  • the RATs of the M cells that establish the M DRBs are different from the UE respectively.
  • the processor is further configured to perform according to the N DRBs a configuration parameter, after the Nth DRB is established with the base station, the first setup command sent by the base station is received by the SRB through the transceiver, where the first setup command includes the UE and a target cell Establishing a configuration parameter of the DRB, where the target cell is a cell to which the K DRBs of the N DRBs are to be handed over, 1 ⁇ K ⁇ N, the K is an integer, and the UE establishes a DRB configuration with the target cell.
  • the parameter is used to indicate a transport channel and a physical channel occupied by the K DRBs that are established by the UE and the target cell; and establish the K DRBs with the target cell according to the first setup command;
  • the transport channel occupied by the K DRBs established by the UE and the target cell is different from the transport channel occupied by at least one DRB of the N DRBs except the K DRBs and
  • the physical channels are different.
  • the processor is further configured to perform configuration parameters according to the SRB After the SRB is established with the base station, the second setup command sent by the base station is received by the SRB through the transceiver, where the second setup command includes the configuration parameter that the UE establishes an SRB with the target cell.
  • the target cell is a cell to which the SRB is to be handed over; the configuration parameter that the UE establishes an SRB with the target cell is used to indicate a transport channel and a physical channel occupied by the SRB established by the UE and the target cell; Establishing the SRB with the target cell according to the second setup command;
  • the transport channel occupied by the SRB established by the UE and the target cell is different from the transport channel occupied by at least one of the N DRBs and the occupied physical signal.
  • the road is different.
  • an embodiment of the present invention provides a method for establishing a radio bearer, including:
  • the base station establishes the SRB with the UE according to the configuration parameter of the SRB, where the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB;
  • the base station establishes the N DRBs with the UE according to the configuration parameters of the N DRBs that carry the N services, where the N is an integer greater than or equal to 2, and the configuration parameters of the N DRBs are used to indicate the N The transmission channel and physical channel occupied by the DRBs;
  • the M channels of the N DRBs occupy different transmission channels and the occupied physical channels are different; the M is an integer greater than or equal to 2, and is less than or equal to an integer of the N, the SRB Different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the base station before the base station establishes the SRB with the UE according to the configuration parameter of the SRB, the base station further includes:
  • the base station sends the configuration parameters of the SRB and the configuration parameters of the N DRBs to the UE.
  • the base station before the base station establishes the N DRBs with the UE according to the configuration parameters of the N DRBs, the base station further includes:
  • the M cells of the M DRBs are different.
  • the RATs of the M cells that establish the M DRBs are different from the UE respectively.
  • the base station is configured according to the N DRBs After the setting of the N DRBs with the UE, the configuration parameters further include:
  • the base station When the UE needs to transmit service data in the target cell, the base station sends a first setup command to the UE by using the SRB, where the target cell is a cell to which the K DRBs of the N DRBs are to be handed over;
  • the first setup command includes the UE and the The target cell establishes a configuration parameter of the DRB, and the configuration parameter that the UE establishes a DRB with the target cell is used to indicate a transport channel and a physical channel occupied by the DRB established by the UE and the target cell, where the UE and the The K DRBs established by the target cell are different from the transport channels occupied by at least one of the N DRBs except the K DRBs, and the occupied physical channels are different.
  • the base station is configured according to the SRB After the SRB is established with the UE, the method further includes:
  • the base station When the UE needs to transmit control data in the target cell, the base station sends a second setup command to the UE by using the SRB, where the second setup command includes the configuration parameter that the UE establishes an SRB with the target cell.
  • the target cell is a cell to which the SRB is to be handed over;
  • the configuration parameter of the SRB established by the UE and the target cell is used to indicate a transport channel and a physical channel occupied by the SRB established by the UE and the target cell, and the SRB established by the UE and the target cell is At least one of the N DRBs occupies different transport channels and different occupied physical channels.
  • the embodiment of the present invention further provides a method for establishing a radio bearer, including:
  • the user equipment UE establishes an SRB with the base station according to the configuration parameter of the SRB, where the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB;
  • the UE establishes the N DRBs with the base station according to the configuration parameters of the N DRBs that carry the N services, where the N is an integer greater than or equal to 2, and the configuration parameters of the N DRBs are used to indicate Describe the transport channel and physical channel occupied by the N DRBs;
  • the M channels of the N DRBs occupy different transmission channels and the occupied physical channels are different; the M is an integer greater than or equal to 2, and is less than or equal to an integer of the N, the SRB Different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the method before the establishing, by the UE, the SRB with the base station according to the configuration parameter of the SRB, the method further includes:
  • the UE receives the configuration parameters of the SRB and the configuration parameters of the N DRBs sent by the base station.
  • the UE is configured according to the N DRBs Before the setting of the N DRBs with the base station, the configuration parameters further include:
  • the UE receives, by using the SRB, configuration parameters of the N DRBs sent by the base station.
  • the M cells of the M DRBs are different.
  • the RATs of the M cells that establish the M DRBs are different from the UE respectively.
  • the UE is configured according to the configuration parameters of the N DRBs After the base station establishes the N DRBs, the method further includes:
  • the UE receives the first setup command sent by the base station by using the SRB, where the first setup command includes configuration parameters of the DRB established by the UE and the target cell, where the target cell is K of the N DRBs.
  • the target cell is K of the N DRBs.
  • the UE establishes the K DRBs with the target cell according to the first setup command.
  • the transport channel occupied by the K DRBs established by the UE and the target cell is different from the transport channel occupied by at least one DRB of the N DRBs except the K DRBs and
  • the physical channels are different.
  • the UE establishes a base station with the base station according to the configuration parameter of the SRB After the SRB, it also includes:
  • the UE receives, by using the SRB, a second setup command sent by the base station, where the second setup command includes a configuration parameter that the UE establishes an SRB with a target cell, where the target cell is a cell to which the SRB is to be handed over. And the configuration parameter that the UE establishes an SRB with the target cell, and is used to indicate a transport channel and a physical channel occupied by the SRB established by the UE and the target cell;
  • the UE establishes the SRB with the target cell according to the second setup command
  • the transport channel occupied by the SRB established by the UE and the target cell is different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the radio bearer establishing method and device when the base station and the UE establish a radio bearer, the transport channels occupied by the M DRBs of the UE occupy different transport channels and occupy different physical channels, thereby realizing If the DRB is separated in the same cell, if all or part of the DRB changes, the configuration of all DRBs does not change at the same time, and all service data interruption and communication connection between the UE and the base station are resolved.
  • the problem of words improves the user experience while reducing latency and increasing network throughput.
  • 1 is a mapping diagram of a logical channel, a transport channel, and a physical channel in the prior art
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for establishing a radio bearer according to the present invention
  • FIG. 3 is a first schematic diagram of an air interface protocol stack according to an embodiment of the present invention.
  • FIG. 4 is a second schematic diagram of an air interface protocol stack according to an embodiment of the present invention.
  • FIG. 5 is a third schematic diagram of an air interface protocol stack according to an embodiment of the present invention.
  • Embodiment 6 is a flowchart of Embodiment 2 of a method for establishing a radio bearer according to the present invention
  • FIG. 7 is a flowchart of Embodiment 3 of a method for establishing a radio bearer according to the present invention.
  • Embodiment 8 is a flowchart of Embodiment 4 of a method for establishing a radio bearer according to the present invention.
  • Embodiment 9 is a flowchart of Embodiment 5 of a method for establishing a radio bearer according to the present invention.
  • Embodiment 6 is a flowchart of Embodiment 6 of a method for establishing a radio bearer according to the present invention
  • FIG. 11 is a flowchart of Embodiment 7 of a method for establishing a radio bearer according to the present invention.
  • Embodiment 8 is a flowchart of Embodiment 8 of a method for establishing a radio bearer according to the present invention
  • Embodiment 13 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • Embodiment 2 of a base station is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • Embodiment 15 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • FIG. 16 is a schematic structural diagram of Embodiment 1 of a UE according to the present invention.
  • FIG. 17 is a schematic structural diagram of Embodiment 2 of a UE according to the present invention.
  • FIG. 18 is a schematic structural diagram of Embodiment 3 of a UE according to the present invention.
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • Code Division Multiple Access CDMA
  • CDMA2000 Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • WiMAX global World Interoperability for Microwave Access
  • the base station may be a base station controller (BSC) in the GSM system, the GPRS system or the CDMA system, or an evolved base station (Evolved NodeB, eNB for short) in the LTE system, or may be a WiMAX.
  • BSC base station controller
  • Evolved NodeB, eNB for short evolved base station
  • a network element such as an access service network base station (ASN BS) in the network.
  • ASN BS access service network base station
  • the UE can be a device such as a mobile phone or a tablet.
  • Logical channels, transport channels, and physical channels are described herein.
  • the logical channel is a data transmission service for a radio bearer (ie, SRB and DRB, where the SRB is a radio bearer for transmitting control data, and the DRB is a radio bearer for transmitting service data), and the logical channel can be divided into a control logical channel and a service logical channel.
  • the control logical channel is used to carry control data (ie, control signaling on the SRB), and the service logical channel is used to carry service data (ie, service data on the DRB).
  • the service data in the embodiments of the present invention includes a short message, a voice, and various multimedia services, but does not include a broadcast service; that is, the service data in this embodiment is for one UE, and the broadcast service is for a group. For the UE (ie multiple UEs).
  • the transport channel is used to define the manner and characteristics of data transmission on the air interface (eg, transmission rate, bit error rate, delay, etc.).
  • the physical channel defines the physical resource that the data is transmitted on the air interface, and may specifically include a carrier frequency, a scrambling code, a channelization code (optional), a start and an end time (with a duration). Wait.
  • the logical channel is used to define the type of transmission data. Therefore, the data (control signaling or service data) transmitted between the base station and the UE is first carried on the corresponding logical channel, and the data carried on the logical channel may be independent into blocks.
  • the data stream may also be a stream of data that is mixed together but has a defined start bit.
  • the logical channel carrying the data is multiplexed onto the transmission channel, that is, the specific information of the data carried in the logical channel is added and the transmission format is added, and then the transmission channel carrying the data is multiplexed onto the physical channel, that is,
  • the data carried in the transport channel is related to the carrier, the scrambling code, the spreading code, the start and end times of the UE to which the data belongs and the function of the data, and is finally modulated into an analog radio frequency signal for transmission.
  • FIG. 1 is a mapping diagram of a logical channel, a transport channel, and a physical channel in the prior art.
  • the logical channel occupied by the SRB includes a common control channel (English: Common Control Channel, CCCH for short) and dedicated control. Channel (English: Dedicated Control Channel, DCCH for short), the logical channel occupied by the DRB includes a dedicated traffic channel (English: Dedicated Traffic Channel, DTCH for short). If there are multiple services, such as service 1 and service 2, the service 1 The logical channel occupied by the corresponding DRB is DTCH1, and the logical channel occupied by the DRB corresponding to the service 2 is DTCH2.
  • CCCH, DCCH, DTCH1, and DTCH2 are multiplexed to the same transport channel, that is, the shared channel (English: Share Channel, referred to as SCH)
  • SCH shared channel
  • CCCH, DCCH, DTCH1, and DTCH2 is multiplexed to the same uplink shared channel (English: Uplink-Share Channel, UL-SCH for short).
  • CCCH, DCCH, DTCH1, and DTCH2 are multiplexed to the same downlink shared channel (English: Downlink-Share Channel) , referred to as: DL-SCH).
  • the SCH is multiplexed into the physical shared channel (English: Physical Share Channel, PSCH for short), and in the uplink, the UL-SCH is multiplexed to the physical uplink shared channel (English: Uplink Physical) Share Channel (PUSCH), in the downlink, the DL-SCH is multiplexed to the physical downlink shared channel (English: Downlink Physical Share Channel, PDSCH for short).
  • the physical shared channel English: Physical Share Channel, PSCH for short
  • the UL-SCH is multiplexed to the physical uplink shared channel (English: Uplink Physical) Share Channel (PUSCH)
  • PUSCH Uplink Physical Share Channel
  • the DL-SCH is multiplexed to the physical downlink shared channel (English: Downlink Physical Share Channel, PDSCH for short).
  • the logical channels occupied by the respective DRBs corresponding to each service are usually different, and the logical channels multiplexed by the respective DRBs are usually the same as the occupied transmission channels; for example, the transmission rate and error of the transmission channel The rate and delay are the same.
  • the physical channels occupied by the reused multiplexed transmission channels of the respective DRBs are usually the same; for example, the carrier frequency of the physical channel, the scrambling code, the channelization code (optional), the start and end times (with a period of duration Between) and so on are the same.
  • Each DRB occupies a transmission channel in a manner that the data transmission of each DRB is multiplexed on the transmission channel in a scheduling manner; each DRB occupies a physical channel in a manner that the data transmission of each DRB is multiplexed on the physical channel by scheduling. Therefore, when the configuration of one or a part of the DRB changes, all the DRBs may need to be reconfigured because the QoS requirements of the respective DRBs may not be met at the same time, so that the user experience may not be guaranteed.
  • Embodiment 1 of a method for establishing a radio bearer according to the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • the base station establishes the SRB with the user equipment UE according to the configuration parameter of the SRB, where the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB.
  • the base station establishes the N DRBs with the UE according to the configuration parameters of the N DRBs that carry the N services, where the N is an integer greater than or equal to 2.
  • the configuration parameters of the N DRBs are used to indicate the location.
  • the base station establishes an SRB with the UE according to the configuration parameter of the SRB, and the SRB of the UE is located in the cell controlled by the base station, that is, the UE establishes the SRB with the cell controlled by the base station.
  • the base station may also establish N DRBs with the UE according to the configuration parameters of the N DRBs that carry the N services.
  • the N DRBs of the UE are located in the cell controlled by the base station, that is, the UE establishes the N cells with the cell controlled by the base station.
  • the DRB, the UE may establish the N DRBs with at least one cell controlled by the base station, and the UE may establish at least one DRB with the one cell.
  • the SRB and the N DRBs may be located in the same cell controlled by the base station, or may be located in different cells controlled by the base station, and the N DRBs may be located in the same cell controlled by the base station at the same time, or may be respectively Located in different cells controlled by the base station.
  • the transmission channels occupied by the M DRBs in the N DRBs are different, for example, the transmission rate, the bit error rate, and the delay of the M DRBs.
  • At least one of the N DRBs has different physical channels occupied by the M DRBs, for example, the MSRs occupy different time slots and at least one of the occupied frequencies is different. Since there are different transmission channels occupied by M DRBs in the N DRBs, the physical channels are different, so that DRB separation is achieved, and one or a part of DRBs in N DRBs are not changed, and all DRB configurations are caused. Changes make the user experience lower.
  • each DRB can meet the respective QoS requirements on the respective transport channel and physical channel.
  • N be 3 as an example: there are two DRBs in the three DRBs.
  • the transport channels are different and the occupied physical channels are different, that is, one of the three DRBs is different from the other two DRBs and the occupied physical channels are different; or three of the three DRBs are present.
  • the DRB occupies different transport channels and different physical channels. That is, each of the three DRBs has different transport channels and different occupied physical channels.
  • the transport channel occupied by the SRB and the transport channel occupied by at least one of the N DRBs are different, for example At least one of the transmission rate, the bit error rate, and the delay of the at least one of the SRBs and the at least one of the N DRBs is different; the physical channel occupied by the DRB and the at least one of the N DRBs are occupied by the DRB.
  • the physical channels are different, for example, at least one of the SRB and the N DRBs, and at least one of the occupied time slots and the occupied frequency is different.
  • the configuration change of the SRB does not affect the configuration of the DRB, and does not affect the SRB configuration.
  • the user experience caused by the configuration change of the DRB is reduced.
  • the data transmission of SRB and DRB can meet the respective QoS requirements on the respective transport channel and physical channel. For example, if N is 3, the SRB may be different from the occupied one of the three DRBs and the occupied physical channel, that is, the SRB and the two DRBs of the three DRBs.
  • the transport channels are the same and the occupied physical channels are the same, and the SRB is different from the transport channel occupied by the other one of the three DRBs and the occupied physical channel is different; or, the SRB and the three DRBs
  • the two DRBs occupy different transport channels and the occupied physical channels are different, and the SRB is the same as the transport channel occupied by the other one of the three DRBs and the occupied physical channel is the same; or, the SRB Different from the transmission channel occupied by each of the three DRBs and the occupied physical channel is different.
  • DRB1 and DRB2 are established.
  • the transmission channels occupied by DRB1 and DRB2 are different.
  • the transmission rates allocated for DRB1 and DRB2 are different, or the error rates allocated for DRB1 and DRB2 are different, or the delays allocated for DRB1 and DRB2 are different.
  • the physical channels occupied by DRB1 and DRB2 are different.
  • the frequencies allocated to DRB1 and DRB2 are different.
  • each DRB has different QoS requirements. Therefore, separating each DRB can more flexibly ensure the QoS requirements of each DRB, and does not affect each other, thereby improving the flexibility of data transmission and network throughput on the UP connection.
  • FIG. 3 is a first schematic diagram of an air interface protocol stack according to an embodiment of the present invention.
  • two DRBs ie, DRB1 and DRB2
  • SRB, DRB1, and DRB2 respectively occupy layers (Layer, Abbreviation: L) 2 and L1 different channels, that is, SRB, DRB1, and DRB2 occupy different transport channels and physical channels respectively, indicating that the UE and the radio access network (English: Radio Access Network, RAN for short) (for example)
  • Each DRB between the base stations is configured on a different transport channel and physical channel
  • the SRB and each DRB are configured on different transport channels and physical channels.
  • the SRB carries radio signaling data
  • the radio signaling data includes radio resource control protocol (Radio Resource Control, RRC for short) and L3 signaling (including signaling related to DRB), and the DRB carries radio.
  • RRC Radio Resource Control
  • L2 refers to the Packet Data Convergence Protocol (English: Packet Data Convergence Protocol, PDCP) / Radio Link Control (English: Radio Link Control, RLC) / MAC
  • L1 refers to the physical layer (English: Physical: Layer).
  • the cells that establish the M DRBs with the UE may be the same cell, or may be different cells controlled by the same base station, or may be established in the M cells of the M DRBs with the UE. There may be some cells that are the same cell.
  • a cell that establishes an SRB with the UE and a cell that establishes at least one of the N DRBs with the UE may be the same cell, or may be different cells controlled by the same base station.
  • the radio access technology Radio Access Technology, hereinafter referred to as RAT
  • RAT Radio Access Technology
  • the UE establishes the M cells separately from different cells in the same system.
  • the DRBs, the M DRBs of the UE are respectively configured on different transport channels and physical channels.
  • the at least one DRB is configured on a different transport channel and physical channel.
  • the cell that establishes the SRB with the UE, the cell that establishes the DRB1 with the UE, and the RAT that establishes the DRB2 with the UE are the same; the cell that establishes the SRB with the UE, and the cell that establishes the DRB1 with the UE are the same cell. .
  • the cell that establishes the SRB with the UE, and the cell that establishes the DRB2 with the UE are not the same cell.
  • the RATs of the M cells that establish the M DRBs are different from the UE, for example, the UE and the cells in different systems respectively establish the M DRBs, and the M DRBs of the UE are respectively configured in different On the transport channel and on the physical channel.
  • the at least one DRB is configured on different transport channels and physical channels.
  • the cell that establishes the SRB with the UE is the same as the RAT of the cell that establishes the DRB1 with the UE, and the RAT is RAT1; and the cell that establishes the SRB with the UE, and the RAT of the cell that establishes the DRB2 with the UE,
  • the RAT of the cell in which the UE establishes DRB2 is RAT2.
  • the method for establishing a radio bearer when the base station and the UE establish a radio bearer, the transport channels occupied by the M DRBs of the UE occupy different transport channels and occupy different physical channels, thereby achieving the same
  • the DRB of the UE is separated.
  • the configuration of all DRBs will not be interrupted at the same time, and all service data interruption and communication connection between the UE and the base station will not be interrupted.
  • FIG. 6 is a flowchart of Embodiment 2 of a method for establishing a radio bearer according to the present invention. As shown in FIG. 6, the method in this embodiment may include:
  • the UE establishes an SRB with the base station according to the configuration parameter of the SRB, where the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB.
  • the UE establishes the N DRBs with the base station according to the configuration parameters of the N DRBs that carry the N services, where the N is an integer greater than or equal to 2.
  • the configuration parameters of the N DRBs are used. Indicates a transport channel and a physical channel occupied by the N DRBs.
  • the UE establishes an SRB with the base station according to the configuration parameter of the SRB, and the SRB of the UE is located in the cell controlled by the base station, that is, the UE establishes the SRB with the cell controlled by the base station.
  • the UE may also be configured with the base station according to the configuration parameters of the N DRBs carrying N services.
  • the N DRBs are located, and the DRB of the UE is located in a cell controlled by the base station, that is, the UE establishes N DRBs with the cell controlled by the base station.
  • the SRB and the N DRBs may be located in the same cell controlled by the base station, or may be located in different cells controlled by the base station.
  • the transmission channels occupied by the M DRBs in the N DRBs are different, for example, the transmission rate, the bit error rate, and the delay of the M DRBs.
  • At least one of the N DRBs has different physical channels occupied by the M DRBs, for example, the MSRs occupy different time slots and at least one of the occupied frequencies is different. Since the transmission channels occupied by the M DRBs in the N DRBs are different, the physical channels are also different, thereby implementing DRB separation.
  • the data transmission of each DRB can meet the respective QoS requirements on the respective transport channel and physical channel.
  • the two DRBs occupy different transmission channels and occupy different physical channels, that is, one DRB and the other two DRBs occupy the transmission.
  • the different channels and the occupied physical channels are different; or the three DRBs have different transmission channels and different physical channels, that is, the different transmission channels occupied by the DRBs in the three DRBs and The occupied physical channels are different.
  • the transport channel occupied by the SRB and the transport channel occupied by at least one of the N DRBs are different, for example At least one of the transmission rate, the bit error rate, and the delay of the at least one of the SRBs and the at least one of the N DRBs is different; the physical channel occupied by the DRB and the at least one of the N DRBs are occupied by the DRB.
  • the physical channels are different, for example, at least one of the SRB and the N DRBs, and at least one of the occupied time slots and the occupied frequency is different.
  • the SRB and the DRB occupy different transport channels and the physical channels are different, the SRB and the DRB are separated.
  • the data transmission of SRB and DRB can meet the respective QoS requirements on the respective transport channel and physical channel. For example, if N is 3, the SRB may be different from the occupied one of the three DRBs and the occupied physical channel, that is, the SRB and the two DRBs of the three DRBs.
  • the transport channels are the same and the occupied physical channels are the same, and the SRB is different from the transport channel occupied by the other one of the three DRBs and the occupied physical channel is different; or, the SRB and the three DRBs
  • the two DRBs occupy different transmission channels and the occupied physical channels are different, and the SRB is the same as the transmission channel occupied by the other one of the three DRBs and the The occupied physical channels are the same; or the SRB is different from the transport channel occupied by each of the three DRBs and the occupied physical channel is different.
  • each DRB has different QoS requirements. Therefore, separating each DRB can more flexibly ensure the QoS requirements of each DRB, and does not affect each other, thereby improving the flexibility of data transmission and network throughput on the UP connection.
  • the cells that establish the M DRBs with the UE may be the same cell, or may be different cells controlled by the same base station, or may be established in the M cells of the M DRBs with the UE. There may be some cells that are the same cell.
  • a cell that establishes an SRB with the UE and a cell that establishes at least one of the N DRBs with the UE may be the same cell, or may be different cells controlled by the same base station.
  • the RAT is the same as the RAT in which the UEs of the M DRBs are respectively established, as shown in FIG. 4, and the related description in the first implementation of the method of the present invention is described in detail.
  • the RATs of the M cells of the M DRBs are different from the UEs respectively.
  • FIG. 5 refer to the related description in the first embodiment of the method.
  • the method for establishing a radio bearer when the UE and the base station establish a radio bearer, the MDRs occupied by the UE occupy different transport channels and occupy different physical channels, thereby implementing DRB separation of the same UE.
  • the configuration of all the DRBs does not change at the same time, and the service data interruption between the UE and the base station and the communication connection are dropped, which improves the user experience. Reduced latency, increased network throughput, and increased flexibility in data transfer over UP connections.
  • FIG. 7 is a flowchart of Embodiment 3 of a method for establishing a radio bearer according to the present invention. As shown in FIG. 7, the method in this embodiment includes:
  • the base station sends, to the UE, a configuration parameter of the SRB and a configuration parameter of the N DRBs that carry the N services.
  • the UE receives configuration parameters of the SRB and configuration parameters of the N DRBs sent by the base station.
  • the base station and the UE establish the SRB and the N DRBs according to the configuration parameters of the SRB and the configuration parameters of the N DRBs.
  • the base station may determine the configuration parameters of the SRB of the UE by using a random access procedure of the UE, to establish an SRB, and when the UE needs to perform a service, the UE performs a service negotiation process with the core network device, and the service negotiation process is performed.
  • the core network device notifies the base station to establish N DRBs of the UE that carry N services, and then the base station determines the configuration parameters of the N DRBs. For example, the core network device sends a radio access bearer indication to the base station.
  • the information, the radio access bearer indication information may include: establishing service QoS information such as a rate, a delay, and a bit error rate of the radio access bearer of the UE, and the radio access bearer indication information sent by the base station according to the core network device, N
  • the configuration of the N DRBs of the UE is determined by the difference of the transmission channels occupied by the M DRBs in the DRB and the occupied physical channels are used to establish N DRBs. Therefore, in this embodiment, the configuration parameter of the SRB determined by the base station is used to indicate the transport channel and the physical channel occupied by the SRB.
  • the configuration parameter of the SRB is further used to indicate the logical channel occupied by the SRB;
  • the configuration parameters of each of the DRBs are used to indicate the transport channel and the physical channel occupied by the DRB.
  • the configuration parameter of each DRB is also used to indicate the logical channel occupied by the DBR;
  • the logical channels occupied by the DRBs in the N DRBs are different.
  • the MDRs in the N DRBs occupy different transport channels and occupy different physical channels.
  • the base station configures the M DRBs in the N DRBs. On different transport channels and physical channels, then the UE's DRB achieves separation.
  • the base station determines that the SRB is located in the same cell (for example, the first cell) as the N DRBs
  • the first cell controlled by the base station determines configuration parameters of the SRB of the UE and configuration parameters of the N DRBs. Therefore, the SRB and the N DRBs established by the UE are located in the same cell.
  • the base station determines that the SRB and the N DRBs are located in different cells, for example, the SRB is located in a first cell controlled by the base station, the DRB1 is located in a second cell controlled by the base station, and the DRB2 is located in a third cell controlled by the base station, After the first cell determines the configuration parameter of the SRB of the UE, the first cell determines that the DRB1 needs to be located in the second cell controlled by the base station, and the DRB2 needs to be located in the third cell controlled by the base station, and then the first cell is redirected to the second cell.
  • the DRB2 setup request determines the configuration parameters of the UE's DR2.
  • the first community will Transmitting the radio access bearer indication information received from the core network device to the second cell and the third cell, where the radio access bearer indication information may include: establishing a QoS, a delay, a bit error rate, and the like of the DRB bearer of the UE
  • the second cell determines the configuration parameter of the DRB1 of the UE according to the radio access bearer indication information, and the second cell sends the configuration parameter of the DRB1 of the UE to the first cell
  • the cell obtains the configuration parameter of the DRB2 of the UE from the DRB1 setup response of the UE
  • the third cell determines the configuration parameter of the DRB2 of the UE according to the radio access bearer indication information
  • the third cell further configures the DRB2 configuration parameter of the UE.
  • the method is sent to the first cell in the DRB2 setup response of the UE, and the first cell obtains the configuration parameter of the DRB2 of the UE from the DRB2 setup response of the UE. Therefore, the SRB1 established by the UE is located in the first cell, the DRB1 established by the UE is located in the second cell, and the DRB2 established by the UE is located in the third cell.
  • the base station may generate a radio resource configuration message according to the configuration parameters of the SRB of the UE and the configuration parameters of the N DRBs, the radio resource configuration message. Include the configuration parameters of the SRB and the configuration parameters of the N DRBs, and then the base station sends a radio resource configuration message to the UE through the public connection, so that after receiving the radio resource configuration message, the UE acquires the SRB in the radio resource configuration message.
  • the configuration parameters and the configuration parameters of the N DRBs and then the UE establishes the SRB and the N DRBs according to the configuration parameters of the SRB and the configuration parameters of the N DRBs, and the base station also sets the configuration parameters and the N DRBs of the SRBs sent to the UE.
  • Configuration parameters with the establishment of SRB and N DRB. Therefore, the M DBRs of the N DRBs established by the UE are occupied on different transport channels, and the M DRBs of the N DRBs established by the UE occupy different physical channels. Therefore, the DRB of the UE is separated.
  • the following describes the configuration parameters of the SRB of the UE and the configuration parameters of the N DRBs.
  • the following is a cell indicating the configuration parameters of the SRB of the UE and the configuration parameters of the N DRBs in the radio resource configuration message.
  • the mac-MainConfig for SRB is the transport channel parameter for configuring the SRB.
  • the mac-MainConfig for DRB is the transport channel parameter for configuring the DRB.
  • the physicalconfigDedicated for SRB is the physical channel parameter for configuring the SRB.
  • the physicalconfigDedicated for DRB is the physical channel parameter for configuring the DRB.
  • Other parts are the same as those in the prior art and will not be described here.
  • the transport channels occupied by at least two DRBs in the N DRBs of the UE are different and the occupied transport channels are different, thereby implementing the same UE.
  • the DRB is separated.
  • the configuration of all the DRBs does not change at the same time, and the service data interruption between the UE and the base station and the communication connection drop are not caused.
  • FIG. 8 is a flowchart of Embodiment 4 of a method for establishing a radio bearer according to the present invention. As shown in FIG. 8, the method in this embodiment includes:
  • the base station sends a configuration parameter of the SRB to the UE.
  • the UE receives configuration parameters of the SRB sent by the base station.
  • the base station and the UE establish the SRB according to the configuration parameter of the SRB.
  • the UE may establish an SRB of the UE by using a random access procedure, and the base station determines a configuration parameter of the SRB of the UE by using a random access procedure of the UE, where the configuration parameter of the SRB is used to indicate the transmission occupied by the SRB.
  • the channel and the physical channel further, may indicate a logical channel occupied by the SRB.
  • the base station may send the configuration parameter of the determined SRB to the UE by using a radio resource configuration message, and the UE may establish an SRB with the base station according to the configuration parameter of the SRB.
  • the base station sends, by using an SRB, configuration parameters of N DRBs carrying N services to the UE.
  • the UE receives, by using the SRB, configuration parameters of the N DRBs sent by the base station.
  • the base station and the UE establish the N DRBs according to configuration parameters of the N DRBs.
  • the UE and the core network device perform a service negotiation process. After the service negotiation process is completed, the core network device notifies the base station to establish N DRBs of the UE that carry N services, and then the base station determines the N.
  • the configuration parameters of the DRB for example, the core network device sends the radio access bearer indication information to the base station, where the radio access bearer indication information may include: establishing service QoS information such as a rate, a delay, and a bit error rate of the DRB bearer of the UE.
  • the radio access bearer indication information to be sent, the different transport channels occupied by the M DRBs in the N DRBs, and the occupied physical channels are different, to determine the configuration parameters of the N DRBs of the UE, to establish N DRBs
  • the configuration parameters of the N DRBs determined by the base station are used to indicate the transport channel and the physical channel occupied by the N DRBs, and further may indicate the logical channels occupied by the N DRBs
  • the base station may
  • the configuration parameters of the DRBs are carried in another radio resource configuration message and sent to the UE through the established SRB. Accordingly, the UE can receive the configuration parameters of the N DRBs sent by the base station through the SRB of the UE. Then, the base station and the UE can establish N DRBs according to the configuration parameters of the N DRBs.
  • the M DRBs in the N DRBs may be located in the same cell or different cells controlled by the base station, and the SRBs of the UE and the DRBs of the UE may be located in the same cell or different cells controlled by the base station, specifically
  • the SRBs of the UE and the DRBs of the UE may be located in the same cell or different cells controlled by the base station, specifically
  • the transport channels occupied by at least two DRBs in the N DRBs of the UE are different and the occupied transport channels are different, thereby implementing the same UE.
  • the DRB is separated.
  • the configuration of all the DRBs does not change at the same time, and the service data interruption between the UE and the base station and the communication connection drop are not caused.
  • FIG. 9 is a flowchart of Embodiment 5 of a method for establishing a radio bearer according to the present invention. As shown in FIG. 9, this embodiment is based on any one of Embodiments 1 to 4 of the method of the present invention, and further, After the configuration of the DRB, after the N DRBs are established with the UE, the method in this embodiment may further include:
  • the base station sends a first setup command to the UE by using the SRB, where the first setup command includes the UE establishing a DRB with the target cell.
  • Configuration parameters When the UE needs to transmit service data in the target cell, the base station sends a first setup command to the UE by using the SRB, where the first setup command includes the UE establishing a DRB with the target cell. Configuration parameters.
  • the base station may re-establish the K DRBs of the UE in the target cell, where the target cell is the K DRBs.
  • the cell to be switched to The specific process is as follows.
  • the base station acquires configuration parameters for establishing the DRB between the UE and the target cell, and the UE and the UE
  • the configuration parameter of the target cell establishment DRB is used to indicate the transport channel and the physical channel occupied by the K DRBs established by the UE and the target cell, and further indicates the logical channel occupied by the DRB established by the UE and the target cell.
  • the K DRBs established by the UE and the target cell are different from the transport channels occupied by at least one of the N DRBs except for the K DRBs, and the occupied physical channels are different.
  • the base station may determine that the UE establishes a DRB configuration parameter with the target cell. If the target cell is a cell controlled by another base station, the base station requests the base station controlling the target cell to acquire a configuration parameter that the UE establishes a DRB with the target cell. Then, the base station carries the configuration parameter that the UE establishes the DRB with the target cell, and sends the configuration parameter to the UE through the SRB in the first setup command.
  • the UE receives, by using the SRB, a first setup command sent by the base station, where the first setup command includes a configuration parameter that the UE establishes a DRB with a target cell.
  • the UE establishes K DRBs with the target cell according to the first setup command.
  • the UE receives the first setup command sent by the base station by using the SRB established by the base station, and the UE acquires the configuration that the UE establishes a DRB with the target cell from the first setup command. And the UE establishes a DRB configuration parameter according to the UE and the target cell, and establishes K DRBs with the target cell. If the target cell is a cell controlled by the base station, the UE and the base station establish a new K DRB according to the configuration parameters of the DRB established by the UE and the target cell. If the target cell is a cell controlled by another base station, the UE and the another base station establish a new K DRB according to the configuration parameters of the DRB established by the UE and the target cell.
  • the base station may release resources occupied by the K DRBs of the N DRBs in the source cell, where the source cell is the UE before the UE establishes the DRB with the target cell.
  • the method for establishing a radio bearer when the base station determines that the UE needs to transmit service data in a target cell, the base station sends a first setup command to the UE by using the SRB, where the first The establishing the command includes the configuration parameter that the UE establishes a DRB with the target cell, and the UE establishes at least one DRB with the target cell according to the first setup command. Thereby, it can be realized that at least one DRB of the UE can be newly re-established.
  • Embodiment 6 is a flowchart of Embodiment 6 of a method for establishing a radio bearer according to the present invention. As shown in FIG. 10, this embodiment is based on any one of Embodiments 1 to 4 of the method, and further, the base station is based on SRB.
  • the configuration parameter after establishing the SRB with the UE, the method of this embodiment It can also include:
  • the base station sends a second setup command to the UE by using the SRB, where the second setup command includes the UE establishing an SRB with the target cell.
  • Configuration parameters When the UE needs to transmit control data in the target cell, the base station sends a second setup command to the UE by using the SRB, where the second setup command includes the UE establishing an SRB with the target cell. Configuration parameters.
  • the SRB of the UE is different from the one of the N DRBs, and the physical channel is different. Therefore, the base station may separately re-establish the SRB of the UE in the target cell, where the target cell is The cell to which the SRB is to be handed over.
  • the specific process is as follows.
  • the base station acquires a configuration parameter that the UE establishes an SRB with the target cell, and the UE establishes an SRB configuration parameter with the target cell, where And indicating a transport channel and a physical channel occupied by the SRB established by the UE and the target cell, further indicating a logical channel occupied by the SRB established by the UE and the target cell, and occupying by the SRB established by the UE and the target cell
  • the transmission channel is different from the transmission channel occupied by the DRB
  • the physical channel occupied by the SRB established by the UE and the target cell is different from the physical channel occupied by at least one of the N DRBs.
  • the base station may determine that the UE establishes an SRB configuration parameter with the target cell. If the target cell is a cell controlled by another base station, the base station requests the base station controlling the target cell to acquire the configuration parameter that the UE establishes an SRB with the target cell. Then, the base station carries the configuration parameter that the UE establishes the SRB with the target cell, and the SRB that is established by the UE is sent to the UE in the first setup command.
  • the UE receives a second setup command sent by the base station by using the SRB, where the second setup command includes a configuration parameter that the UE establishes an SRB with a target cell.
  • the UE establishes an SRB with the target cell according to the second setup command.
  • the UE receives the second setup command sent by the base station by using the SRB established by the base station, and the UE acquires, by using the second setup command, the configuration that the UE establishes an SRB with the target cell. And determining, by the UE, the SRB configuration parameter according to the UE and the target cell, and establishing an SRB with the target cell. If the target cell is a cell controlled by the base station, the UE and the base station establish a SRB configuration parameter according to the UE and the target cell, and establish a new SRB. If the target cell is a cell controlled by another base station, the UE and the another base station establish a SRB configuration parameter according to the UE and the target cell, and establish a new SRB.
  • the base station may release the resource occupied by the SRB in the source cell, where the source cell is the cell where the SRB of the UE is located before the UE establishes the SRB with the target cell.
  • the method for establishing a radio bearer when the base station determines that the UE needs to transmit control data in a target cell, the base station sends a second setup command to the UE by using the SRB, where the second The establishing the command includes the configuration parameter that the UE establishes an SRB with the target cell, and the UE establishes an SRB with the target cell according to the second setup command. Therefore, it can be realized that the SRB of the UE can be newly re-established.
  • FIG. 11 is a flowchart of Embodiment 7 of a method for establishing a radio bearer according to the present invention.
  • the method in this embodiment is described by using an SRB and a DRB of a UE in different cells as an example. example.
  • the first cell indicates that the execution subject is a base station that controls the first cell
  • the second cell indicates that the execution subject is a base station that controls the second cell
  • the third cell indicates that the execution subject is a base station that controls the third cell
  • the method in this embodiment may include:
  • the first cell determines the configuration parameter of the SRB of the UE in the random access procedure of the UE, and the first cell determines the two DRBs of the UE after the UE completes the service negotiation process with the core network device.
  • the second cell needs to be established, and the first cell may send a DRB establishment request of the UE to the second cell, request the second cell to allocate resources for the UE, and the second cell determines, after receiving the DRB establishment request of the UE sent by the first cell,
  • the configuration parameters of the two DRBs of the UE are used to generate a DRB setup response of the UE according to the configuration parameters of the DRB of the UE.
  • the DRB setup response of the UE includes configuration parameters of the two DRBs of the UE.
  • the base station serving the first cell is the same as the base station serving the second cell, or the base station serving the first cell is different from the base station serving the second cell.
  • the first cell receives the DRB setup response of the UE sent by the second cell, obtains the configuration parameters of the two DRBs of the UE from the DRB setup response of the UE, and sets the configuration parameters of the SRB with the two DRBs.
  • the configuration parameter is carried in the radio resource configuration message and sent to the UE.
  • the configuration parameters of the SRB are used to indicate the transport channel and the physical channel occupied by the SRB, and the allocation of the two DRBs.
  • the parameter is used to indicate the transport channel and the physical channel occupied by the two DRBs, where the transport channels occupied by the two DRBs are different from the occupied physical channels, and the transport channels occupied by the SRBs are used.
  • the transmission channel occupied by the DRBs is different from the occupied physical channel.
  • the UE and the first cell may establish an SRB according to the configuration parameters of the SRB in the radio resource configuration message, and the UE may also establish two DRBs according to the configuration parameters of the two DRBs carrying the two services in the radio resource configuration message.
  • the transport channels occupied by the two DRBs are different from the occupied physical channels, and the transport channels occupied by the SRBs are different from the transport channels occupied by the two DRBs and the occupied physical channels, thereby implementing various UEs. DRB separation, and separation of SRB from DRB.
  • the two DRBs of the UE are DRB1 and DRB2, and the DRB1 is used to carry data of the first service, and the DRB2 is used to carry data of the second service.
  • the first cell may be configured according to the measurement report of the first cell and the neighboring cell reported by the UE through the SRB of the UE, and the measurement report of the second cell and the neighboring cell, if the first cell learns the quality of the second cell according to the foregoing measurement report.
  • the QoS requirement of the DRB1 of the UE cannot be guaranteed, and the third cell can guarantee the QoS requirement of the DRB1 of the UE.
  • the first cell can switch the DRB of the UE for carrying the data of the first service to the third cell.
  • the configuration parameters of the DRB1 after the handover of the UE may be obtained in the first cell.
  • the configuration parameters of the DRB1 after the UE acquires the DRB1 handover of the UE may be implemented by using S708-S710.
  • the base station serving the third cell is the same as the base station serving the first cell, or the base station serving the third cell is different from the base station serving the first cell.
  • the first cell switches to the target cell of the DRB1 of the UE, in this embodiment, the third cell, and sends a first handover request, where the first handover request is used to request to switch the DRB1 of the UE to the third cell.
  • the third cell receives the first handover request sent by the first cell, where the first handover request is used to request to switch the DRB1 of the UE to the third cell, where the third cell may be configured according to the first handover request.
  • the DRB1 configuration resource of the UE that is, the third cell is determined according to the first handover request.
  • the configuration parameter after the DRB1 of the UE is switched to the third cell, that is, the configuration parameter after the DRB1 handover of the UE, and the configuration parameter after the DRB1 handover of the UE is used to indicate the transmission channel and the physical space occupied by the DRB1 of the UE after handover.
  • the channel, the transport channel occupied by the DRB1 of the UE after the handover is different from the transport channel occupied by the DRB2 of the UE, and the occupied physical channel is different, and the physical channel occupied by the DRB1 of the switched UE and the transmission occupied by the SRB of the UE are used.
  • the channels are different and the physical channels occupied are different.
  • the third cell may generate a first handover response according to the configuration parameter after the DRB1 handover, where the first handover response includes the configuration parameter after the DRB1 handover of the UE, and correspondingly
  • the first cell may receive the first handover response sent by the third cell.
  • the first cell may determine that the third cell has allowed the UE to switch the DRB1 to the third cell, and the first cell may be according to the third cell.
  • the first switching command is generated by the identifier and the configuration parameter of the DRB1 switch of the UE in the first handover response, where the first handover command includes the identifier of the third cell and the configuration parameter after the DRB1 handover of the UE, and the first cell passes the
  • the SRB of the UE sends a first handover command to the UE.
  • the UE may receive the first handover command sent by the first cell by using the SRB of the UE.
  • the UE and the third cell may switch the DRB1 of the UE from the source cell of the DRB1 of the UE to the target handover cell of the DRB1 of the UE according to the first handover command.
  • the DRB1 of the UE The source cell is the second cell, that is, the UE switches the DRB1 of the UE from the second cell to the third cell.
  • the UE may delete the DRB1 with the second cell and establish a DRB1 with the third cell, and the transport channel occupied by the DRB1 established by the UE and the third cell is different from the transport channel occupied by the DRB2 of the UE, and the UE The physical channel occupied by the DRB1 established with the third cell is different from the physical channel occupied by the DRB2 of the UE.
  • the SRB can be carried on a system with large coverage, high reliability, and frequent switching.
  • the DRB can be carried at a high rate, as low a transmission and reception point as possible, and has a low delay.
  • the UE since the DRB and the SRB of the UE are separated, and the DRBs of the UE are separated, the UE does not have to switch the SRB of the UE when switching the DRB of the UE, and does not necessarily switch the other DRBs of the UE.
  • the separate switching between the DRB and the SRB of the UE and the separate switching of the respective DRBs are implemented.
  • the SRB carries a large coverage area at a low frequency point, reduces the number of SRB handovers, and can avoid dropped calls.
  • the DRB covers the cell at a low frequency point and improves the network throughput.
  • the method of this embodiment may further include the following.
  • the third cell sends a first handover complete command to the first cell, where the first handover complete command is used to indicate that the UE successfully switches the DRB1 of the UE to Third cell.
  • the first cell receives the first handover complete command sent by the third cell.
  • the resource that is occupied by the DRB1 of the UE in the second cell is triggered according to the first handover complete command.
  • the first cell receives the first handover complete command sent by the third cell, and can learn that the DRB1 of the UE has successfully switched to the third cell, and the first cell can trigger the release of the UE according to the first handover complete command.
  • the source cell of the DRB1 of the UE is the second cell.
  • the first cell triggers the release of the resource occupied by the DRB1 of the UE in the second cell, for example:
  • the first cell sends a release resource command to the second cell, where the release resource command is used to indicate that the second cell releases the resource occupied by the DRB1 of the UE in the second cell, and the second cell may use the release resource command sent by the first cell.
  • the resources occupied by the DRB1 of the UE in the second cell are released.
  • the first cell may send a first handover request to the third cell, and the third cell sends the first handover response to the first cell after configuring the resource.
  • the first cell then sends a first handover command to the UE through the SRB of the UE, and then the UE switches the DRB1 of the UE to the third cell according to the first handover command, so that the DRB of the UE can be separately switched.
  • FIG. 12 is a flowchart of Embodiment 8 of a method for establishing a radio bearer according to the present invention.
  • the method in this embodiment is described by using an SRB and a DRB of a UE in different cells as an example. example.
  • the first cell indicates that the execution subject is a base station that controls the first cell
  • the second cell indicates that the execution subject is a base station that controls the second cell
  • the fourth cell indicates that the execution subject is a base station that controls the fourth cell
  • the method in this embodiment may include:
  • the first cell determines the configuration parameters of the SRB of the UE in the random access process of the UE, and the configuration parameters of the SRB are used to indicate the transport channel and the physical channel occupied by the SRB, and then carry the configuration parameters of the SRB in the first
  • a radio resource configuration message is sent to the UE, and then the first cell and the UE establish an SRB according to the configuration parameter of the SRB in the first radio resource configuration message.
  • the first cell may send a DRB establishment request of the UE to the second cell, requesting the first cell.
  • the second cell allocates a resource for the UE, and after receiving the DRB establishment request of the UE sent by the first cell, the second cell determines the configuration parameter of the DRB of the UE, and then generates a DRB setup response of the UE according to the configuration parameter of the DRB of the UE, where the UE
  • the DRB setup response includes the configuration parameters of the DRB of the UE.
  • the base station serving the first cell is the same as the base station serving the second cell, or the base station serving the first cell is different from the base station serving the second cell.
  • the first cell receives the DRB setup response of the UE sent by the second cell, and obtains the configuration parameters of the two DRBs of the UE from the DRB setup response of the UE, and carries the configuration parameters of the two DRBs in the
  • the second radio resource configuration message is sent to the UE by using the SRB of the UE, and the configuration parameters of the two DRBs are used to indicate the transport channel and the physical channel occupied by the two DRBs, where the transport channels and occupied by the two DRBs are occupied.
  • the physical channels are different, and the transport channel occupied by the SRB is different from the transport channel occupied by the two DRBs and the occupied physical channel.
  • the second cell and the UE may establish two DRBs of the UE according to the configuration parameters of the two DRBs in the second radio resource configuration message.
  • the transport channels occupied by the two DRBs are different from the occupied physical channels
  • the transport channels occupied by the SRBs are different from the transport channels occupied by the two DRBs and the occupied physical channels, thereby implementing various UEs. DRB separation, and separation of SRB from DRB.
  • the first cell may be configured according to the measurement report of the first cell and the neighboring cell reported by the UE through the SRB of the UE, and the measurement report of the second cell and the neighboring cell, if the first cell learns the quality of the first cell according to the foregoing measurement report.
  • the QoS requirement of the SRB of the UE cannot be guaranteed, and the fourth cell can guarantee the QoS requirement of the SRB of the UE, and then the first cell can switch the SRB of the UE to the fourth cell.
  • the configuration parameters after the SRB handover of the UE may be obtained in the first cell. Specifically, the configuration parameters of the SRB after the first cell acquires the SRB of the UE may be implemented by using S809-S811.
  • the base station serving the fourth cell is the same as the base station serving the first cell, or the base station serving the fourth cell is different from the base station serving the first cell.
  • the first cell switches to the target of the SRB of the UE, in this embodiment, the fourth cell, and sends a second handover request, where the second handover request is used to request that the SRB of the UE be handed over to the fourth cell.
  • the fourth cell receives the second handover request sent by the first cell, where the second handover request is used to request to switch the SRB of the UE to the fourth cell, where the fourth cell may be configured according to the second handover request.
  • the SRB configuration resource of the UE that is, the fourth cell determines, according to the second handover request, the configuration parameter after the SRB of the UE is switched to the fourth cell, that is, the configuration parameter after the SRB handover of the UE, and the configuration parameter after the SRB handover of the UE.
  • the transport channel and the physical channel used by the SRB of the UE after the handover are used, and the transport channel occupied by the SRB of the UE after handover is different from the transport channel occupied by the two DRBs of the UE, and the SRB of the UE after handover is occupied.
  • the physical channel is different from the physical channel occupied by the two DRBs of the UE.
  • the fourth cell may generate a second handover response according to the configuration parameter after the SRB handover, where the second handover response includes the configuration parameter after the SRB handover of the UE, and correspondingly
  • the first cell may receive the second handover response sent by the fourth cell.
  • the first cell may determine that the fourth cell has allowed the UE to switch the SRB to the fourth cell, then the first small The area may generate a second handover command according to the identifier of the fourth cell and the configuration parameter after the SRB handover of the UE in the second handover response, where the second handover command includes the identifier of the fourth cell and the configuration parameter after the SRB handover of the UE
  • the first cell sends a second handover command to the UE through the SRB of the UE.
  • the UE may receive the second handover command sent by the first cell by using the SRB of the UE.
  • the UE and the fourth cell may switch the SRB of the UE from the source cell of the SRB of the UE to the target handover cell of the SRB of the UE according to the second handover command.
  • the source cell of the SRB of the UE is The first cell, that is, the UE switches the SRB of the UE from the first cell to the fourth cell.
  • the UE may delete the SRB with the first cell and establish an SRB with the fourth cell, and the transport channel occupied by the SRB established by the UE and the fourth cell is different from the transport channel occupied by the two DRBs of the UE, and The occupied physical channels are different.
  • the SRB can be carried on a system with large coverage, high reliability, and frequent switching.
  • the DRB can be carried at a high rate, as low a transmission and reception point as possible, and has a low delay.
  • the UE since the SRB of the UE is separated from the DRB, the UE does not have to switch the DRB of the UE when switching the SRB of the UE, thereby implementing separate switching between the SRB and the DRB of the UE.
  • the SRB carries a large coverage area at a low frequency point, reduces the number of SRB handovers, and can avoid dropped calls.
  • the DRB covers the cell at a low frequency point and improves the network throughput.
  • the method of this embodiment may further include the following.
  • the fourth cell sends a second handover complete command to the first cell, where the second handover complete command is used to indicate that the UE successfully switches the SRB of the UE to The fourth cell.
  • the first cell receives the second handover complete command sent by the fourth cell.
  • the resource that is occupied by the SRB of the UE in the first cell is triggered according to the second handover completion command.
  • the first cell receives the second handover complete command sent by the fourth cell, and can learn that the SRB of the UE has successfully switched to the fourth cell, and the first cell can trigger the release of the UE according to the second handover complete command.
  • the SRB is a resource that is occupied by the source cell of the SRB of the UE.
  • the source cell of the SRB of the UE is the first cell. Therefore, the first cell triggers the release of the resources occupied by the SRB of the UE in the first cell.
  • the first cell may send a second handover request to the fourth cell, and the fourth cell allocates the resource and sends the second cell to the first cell.
  • the handover response the first cell sends a second handover command to the UE through the SRB of the UE, and then the UE switches the SRB of the UE to the fourth cell according to the second handover command, so that the SRB of the UE can be separately switched.
  • FIG. 13 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station in this embodiment may include: an SRB establishing unit 11 and a DRB establishing unit 12, where the SRB establishing unit 11 is configured according to the SRB.
  • the SRB is established with the UE
  • the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB
  • the DRB establishing unit 12 is configured to use, according to configuration parameters of N DRBs carrying N services, Establishing, by the UE, the N DRBs, where the N is an integer greater than or equal to 2, and the configuration parameters of the N DRBs are used to indicate a transport channel and a physical channel occupied by the N DRBs;
  • the M channels of the N DRBs occupy different transmission channels and the occupied physical channels are different; the M is an integer greater than or equal to 2, and is less than or equal to an integer of the N, the SRB Different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the base station in this embodiment may be used to perform the technical solution executed by the base station in the foregoing method embodiment of the present invention.
  • the implementation principle and the technical effect are similar.
  • FIG. 14 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention. As shown in FIG. 14, the base station of this embodiment further includes: a sending unit 13 on the basis of the structure shown in FIG.
  • the sending unit 13 is configured to send the configuration parameter of the SRB to the UE before the SRB establishes the SRB with the UE according to the configuration parameter of the SRB according to the configuration parameter of the SRB.
  • the sending unit 13 is configured to send, by the SRB, the UE to the UE, before the establishing, by the DRB establishing unit 12, the N DRBs according to the configuration parameters of the N DRBs. Configuration parameters of the N DRBs.
  • the M cells that establish the M DRBs are different from the UE respectively.
  • the RATs of the M cells that establish the M DRBs respectively are different from the UE.
  • the sending unit 13 is further configured to be used by the DRB establishing unit 12 according to the N DRBs.
  • a configuration parameter after establishing the N DRBs with the UE, when the UE needs to transmit service data in the target cell, sending, by using the SRB, a first setup command to the UE, where the target cell is the N a cell to which K DRBs are to be handed over in the DRB;
  • the first setup command includes a configuration parameter that the UE establishes a DRB with the target cell, and the configuration parameter of the UE and the target cell establishes a DRB is used.
  • a transmission channel and a physical channel occupied by the DRB that is established by the UE and the target cell, K DRBs established by the UE and the target cell, and, in addition to the K DRBs of the N DRBs The outer ones of the DRBs occupy different transport channels and occupy different physical channels.
  • the sending unit 13 is further configured to: after the SRB is established by the SRB establishing unit 11 according to the configuration parameter of the SRB, after the SRB is established by the UE, when the UE needs to transmit control data in the target cell, pass the SRB.
  • the configuration parameter of the SRB established by the UE and the target cell is used to indicate a transport channel and a physical channel occupied by the SRB established by the UE and the target cell, and the SRB established by the UE and the target cell is At least one of the N DRBs occupies different transport channels and different occupied physical channels.
  • the base station in this embodiment may be used to perform the technical solution executed by the base station in the foregoing method embodiment of the present invention.
  • the implementation principle and the technical effect are similar.
  • FIG. 15 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • the base station in this embodiment may include: a transceiver 21 and a processor 22; wherein the transceiver 21 is configured to communicate with the outside of the base station.
  • the processor 22 is configured to establish the SRB with the UE according to the configuration parameter of the SRB, where the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB, and N according to the N services.
  • a configuration parameter of the DRB, the Nth DRB is established with the UE, and the N is an integer greater than or equal to 2.
  • the configuration parameters of the N DRBs are used to indicate a transmission channel and a physical area occupied by the N DRBs. channel;
  • the M DRBs in the N DRBs occupy different transport channels and occupy different physical channels; the M is an integer greater than or equal to 2, and is less than or equal to the An integer of N, the SRB is different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel is different.
  • the processor 22 is further configured to send, by using the transceiver 21, the configuration parameter of the SRB to the UE, before establishing the SRB with the UE according to the configuration parameter of the SRB. And configuration parameters of the N DRBs.
  • the processor 22 is further configured to pass the SSR to the UE through the transceiver 21 before establishing the N DRBs with the UE according to the configuration parameters of the N DRBs.
  • the UE sends configuration parameters of the N DRBs.
  • the M cells that establish the M DRBs are different from the UE respectively.
  • the RATs of the M cells that establish the M DRBs respectively are different from the UE.
  • the processor 22 is further configured to: after the N DRBs are established with the UE according to the configuration parameters of the N DRBs, when the UE needs to transmit service data in the target cell, pass the transceiver.
  • the first establishment command is sent to the UE by using the SRB, where the target cell is a cell to which the K DRBs of the N DRBs are to be handed over;
  • the first setup command includes a configuration parameter that the UE establishes a DRB with the target cell, and the configuration parameter of the UE and the target cell establishes a DRB is used.
  • a transmission channel and a physical channel occupied by the DRB that is established by the UE and the target cell, K DRBs established by the UE and the target cell, and, in addition to the K DRBs of the N DRBs The outer ones of the DRBs occupy different transport channels and occupy different physical channels.
  • the processor 22 is further configured to: after the establishing the SRB with the UE according to the configuration parameter of the SRB, when the UE needs to transmit control data in the target cell, pass the transceiver 21, The SRB sends a second setup command to the UE, where the second setup command includes a configuration parameter that the UE establishes an SRB with the target cell, where the target cell is a cell to which the SRB is to be handed over;
  • the configuration parameter of the SRB established by the UE and the target cell is used to indicate a transport channel and a physical channel occupied by the SRB established by the UE and the target cell, and the SRB established by the UE and the target cell is At least one of the N DRBs occupies different transport channels and different occupied physical channels.
  • the transceiver 21 and the processor 22 in this embodiment may be through a bus or other means.
  • the connection, if connected by a bus, includes a bus in the base station of this embodiment.
  • the base station in this embodiment may further include a memory (not shown) for storing program code for executing the radio bearer establishing method; the processor 22 calls the program code stored in the memory to implement the foregoing solution.
  • a memory not shown
  • the processor 22 calls the program code stored in the memory to implement the foregoing solution.
  • the base station of this embodiment may further include an electronic circuit device and a bus (not shown) for connecting each device.
  • the base station in this embodiment may be used to perform the technical solution executed by the base station in the foregoing method embodiment of the present invention.
  • the implementation principle and the technical effect are similar.
  • FIG. 16 is a schematic structural diagram of Embodiment 1 of a UE according to the present invention.
  • the UE in this embodiment may include: an SRB establishing unit 31 and a DRB establishing unit 32.
  • the SRB establishing unit 31 is configured according to the SRB. a parameter, the SRB is set up with the base station, the configuration parameter of the SRB is used to indicate the transport channel and the physical channel occupied by the SRB, and the DRB establishing unit 32 is configured to use the configuration parameters of the N DRBs carrying the N services.
  • the base station establishes the N DRBs, where the N is an integer greater than or equal to 2, and the configuration parameters of the N DRBs are used to indicate a transport channel and a physical channel occupied by the N DRBs;
  • the M channels of the N DRBs occupy different transmission channels and the occupied physical channels are different; the M is an integer greater than or equal to 2, and is less than or equal to an integer of the N, the SRB Different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the UE in this embodiment may be used to perform the technical solution performed by the UE in the foregoing method embodiment of the present invention.
  • the implementation principle and the technical effect are similar.
  • FIG. 17 is a schematic structural diagram of Embodiment 2 of the UE according to the present invention. As shown in FIG. 17, the UE of this embodiment further includes: a receiving unit 33, based on the structure shown in FIG.
  • the receiving unit 33 is configured to receive, by the SRB establishing unit 31, the configuration parameter of the SRB sent by the base station before establishing the SRB with the base station according to the configuration parameter of the SRB. And configuration parameters of the N DRBs.
  • the receiving unit 33 is configured to establish a unit 32 in the DRB.
  • the configuration parameters of the N DRBs sent by the base station are received by the SRB according to the configuration parameters of the N DRBs before the Nth DRB is established with the base station.
  • the M cells that establish the M DRBs are different from the UE respectively.
  • the RATs of the M cells that establish the M DRBs respectively are different from the UE.
  • the receiving unit 33 is further configured to: after the DRB establishing unit 32 establishes the N DRBs with the base station according to the configuration parameters of the N DRBs, receive, by using the SRB, the first sent by the base station. Establishing a command, where the first setup command includes a configuration parameter that the UE establishes a DRB with the target cell, where the target cell is a cell to which the K DRBs to be switched to, among the N DRBs, 1 ⁇ K ⁇ N, K is an integer, and the configuration parameter of the UE establishing the DRB with the target cell is used to indicate a transport channel and a physical channel occupied by the K DRBs established by the UE and the target cell;
  • the DRB establishing unit 32 is further configured to establish the K DRBs with the target cell according to the first setup command.
  • the transport channel occupied by the K DRBs established by the UE and the target cell is different from the transport channel occupied by at least one DRB of the N DRBs except the K DRBs and
  • the physical channels are different.
  • the receiving unit 33 is further configured to: after the SRB establishing unit 31 establishes the SRB with the base station according to the configuration parameter of the SRB, receive, by using the SRB, a second setup command sent by the base station, where the The second configuration command includes the configuration parameter that the UE establishes an SRB with the target cell, where the target cell is a cell to which the SRB is to be handed over; and the configuration parameter that the UE establishes an SRB with the target cell is used to indicate the UE and the a transport channel and a physical channel occupied by the SRB established by the target cell;
  • the SRB establishing unit 31 is further configured to establish the SRB with the target cell according to the second setup command.
  • the transport channel occupied by the SRB established by the UE and the target cell is different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the UE in this embodiment may be used to perform the technical solution performed by the UE in the foregoing method embodiment of the present invention.
  • the implementation principle and the technical effect are similar.
  • FIG. 18 is a schematic structural diagram of Embodiment 3 of a UE according to the present invention.
  • the UE in this embodiment may include: a transceiver 41 and a processor 42.
  • the transceiver 41 is configured to communicate with the outside of the UE.
  • the processor 42 is configured to establish an SRB with the base station according to the configuration parameter of the SRB, where the configuration parameter of the SRB is used to indicate a transport channel and a physical channel occupied by the SRB, and according to N DRBs that carry N services.
  • a configuration parameter, the Nth DRB is established with the base station, where the N is an integer greater than or equal to 2, and the configuration parameters of the N DRBs are used to indicate a transport channel and a physical channel occupied by the N DRBs;
  • the M channels of the N DRBs occupy different transmission channels and the occupied physical channels are different; the M is an integer greater than or equal to 2, and is less than or equal to an integer of the N, the SRB Different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the processor 42 is further configured to receive, by using the transceiver 41, the configuration of the SRB sent by the base station, before establishing the SRB with the base station according to the configuration parameter of the SRB. Parameters and configuration parameters of the N DRBs.
  • the processor 42 is further configured to receive, by using, the SRB through the transceiver 41 before establishing the N DRBs with the base station according to the configuration parameters of the N DRBs. Configuration parameters of the N DRBs sent by the base station.
  • the M cells that establish the M DRBs are different from the UE respectively.
  • the RATs of the M cells that establish the M DRBs respectively are different from the UE.
  • the processor 42 is further configured to: after the N DRBs are established with the base station according to the configuration parameters of the N DRBs, receive, by the transceiver 41, the first And establishing a command, the first setup command includes a configuration parameter that the UE establishes a DRB with a target cell, where the target cell is a cell to which the K DRBs to be switched to in the N DRBs, 1 ⁇ K ⁇ N, The K is an integer, and the configuration parameter of the UE establishing the DRB with the target cell is used to indicate a transport channel and a physical channel occupied by the K DRBs established by the UE and the target cell; Establishing a command to establish the K DRBs with the target cell.
  • the transport channel occupied by the K DRBs established by the UE and the target cell is different from the transport channel occupied by at least one DRB of the N DRBs except the K DRBs and
  • the physical channels are different.
  • the processor 42 is further configured to establish, with the base station, according to the configuration parameter of the SRB.
  • the second setup command sent by the base station is received by the SeNB through the SeNB, where the second setup command includes the configuration parameter that the UE establishes an SRB with the target cell, where the target cell is the a cell to which the SRB is to be handed over; a configuration parameter that the UE establishes an SRB with the target cell is used to indicate a transport channel and a physical channel occupied by the SRB established by the UE and the target cell; and according to the second establishment Commanding, establishing the SRB with the target cell;
  • the transport channel occupied by the SRB established by the UE and the target cell is different from the transport channel occupied by at least one of the N DRBs and the occupied physical channel.
  • the transceiver 41 and the processor 42 in this embodiment may be connected by using a bus or other manners. If the bus is connected, the UE in this embodiment further includes a bus.
  • the UE of this embodiment may further include a memory (not shown) for storing program code for executing the radio bearer establishing method; the processor 42 calls the program code stored in the memory to implement the foregoing solution.
  • a memory not shown
  • the processor 42 calls the program code stored in the memory to implement the foregoing solution.
  • the UE of the embodiment may further include an electronic circuit device and a bus (not shown) for connecting each device.
  • the UE in this embodiment may be used to perform the technical solution performed by the UE in the foregoing method embodiment of the present invention.
  • the implementation principle and the technical effect are similar.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种无线承载建立方法和设备,该方法包括:基站根据SRB的配置参数,与UE建立SRB;根据承载N个业务的N个DRB的配置参数,与UE建立所述N个DRB,N≥2,且N为整数;其中,N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同,2≤M≤N,且M为整数,SRB与N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。从而实现了同一UE的DRB分离,在UE所入的同一小区中,一个或部分DRB发生变化时,所有DRB的配置不会同时变化,不会导致UE与基站之间的所有业务数据中断以及通信连接掉话,提高了用户体验,同时减少了时延,增加了网络吞吐量。

Description

无线承载建立方法和设备 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种无线承载建立方法和设备。
背景技术
在无线通信网络中,用户设备(User Equipment,简称:UE)与基站之间的接口属于空中接口,简称为空口。该空中接口的协议栈中分为控制面(Control Plane,简称:CP)和用户面(User Plane,简称:UP)。UE和基站之间通过建立信令无线承载(Sginaling Radio Bearer,简称:SRB)来完成控制面的连接建立,并在控制面的连接建立的基础上通过建立数据无线承载(Data Radio Bearer,简称:DRB)来完成用户面的连接建立。一个SRB可以对应多个DRB,一个DRB对应一种业务数据(例如视频、网页浏览等,但不包括广播业务)。SRB和DRB可以通过逻辑信道、传输信道和物理信道来分别实现信令和数据在无线链路控制层、媒体访问控制层以及物理层的信息传递。
然而,现有技术中,由于在UE所接入的同一个小区中,SRB和各个业务所分别对应的各个DRB复用在同一个传输信道和同一个物理信道上传输,若SRB或一个或部分DRB的配置发生了变化,由于每个DRB的Qos要求不同,那么也需要同时重新配置该传输信道和物理信道,可能会导致UE和基站之间所有业务数据中断,降低了用户体验。
发明内容
本发明实施例提供一种无线承载建立方法和设备,用于避免在UE所接入的同一小区中,其中一个或部分DRB的配置发生变化时而导致的UE与基站之间所有业务数据中断的问题。
第一方面,本发明实施例提供一种基站,包括:
SRB建立单元,用于根据SRB的配置参数,与用户设备UE建立所述 SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;
DRB建立单元,用于根据承载N个业务的N个DRB的配置参数,与所述UE建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
在第一方面的第一种可能的实现方式中,还包括:
发送单元,用于在所述SRB建立单元根据所述SRB的配置参数,与所述UE建立所述SRB之前,向所述UE发送所述SRB的配置参数和所述N个DRB的配置参数。
在第一方面的第二种可能的实现方式中,还包括:
发送单元,用于在所述DRB建立单元根据N个DRB的配置参数,与所述UE建立所述N个DRB之前,通过所述SRB向所述UE发送所述N个DRB的配置参数。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区不同。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区的无线接入技术(Radio Access Technology,简称:RAT)不同。
结合第一方面或第一方面的第一种至第四种可能的实现方式中的任意一种,在第一方面的第五种可能的实现方式中,所述发送单元,还用于在所述DRB建立单元根据所述N个DRB的配置参数,与所述UE建立所述N个DRB之后,当所述UE需要在目标小区传输业务数据时,通过所述SRB向所述UE发送第一建立命令,所述目标小区为所述N个DRB中K个DRB待切换到的小区;
其中,1≤K<N,所述K为整数;所述第一建立命令包括所述UE与所述目标小区建立DRB的配置参数,所述UE与所述目标小区建立DRB的配置 参数用于指示所述UE与所述目标小区建立的DRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的K个DRB,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
结合第一方面或第一方面的第一种至第四种可能的实现方式中的任意一种,在第一方面的第六种可能的实现方式中,所述发送单元,还用于在所述SRB建立单元根据所述SRB的配置参数,与所述UE建立所述SRB之后,当所述UE需要在目标小区传输控制数据时,通过所述SRB向所述UE发送第二建立命令,所述第二建立命令包括所述UE与所述目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;
其中,所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
第二方面,本发明实施例提供一种UE,包括:
SRB建立单元,用于根据SRB的配置参数,与基站建立SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;
DRB建立单元,用于根据承载N个业务的N个DRB的配置参数,与所述基站建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
在第二方面的第一种可能的实现方式中,还包括:
接收单元,用于在所述SRB建立单元根据所述SRB的配置参数,与所述基站建立所述SRB之前,接收所述基站发送的所述SRB的配置参数和所述N个DRB的配置参数。
在第二方面的第二种可能的实现方式中,还包括:
接收单元,用于在所述DRB建立单元根据所述N个DRB的配置参数, 与所述基站建立所述N个DRB之前,通过所述SRB接收所述基站发送的所述N个DRB的配置参数。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区不同。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区的RAT不同。
结合第二方面或第二方面的第一种至第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述接收单元,还用于在所述DRB建立单元根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之后,通过所述SRB接收所述基站发送的第一建立命令,所述第一建立命令包括所述UE与目标小区建立DRB的配置参数,所述目标小区为所述N个DRB中K个DRB待切换到的小区,1≤K<N,所述K为整数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的所述K个DRB所占用的传输信道和物理信道;
所述DRB建立单元,还用于根据所述第一建立命令,与所述目标小区建立所述K个DRB;
其中,所述UE与所述目标小区建立的所述K个DRB所占用的传输信道,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及物理信道不同。
结合第二方面或第二方面的第一种至第四种可能的实现方式,在第二方面的第六种可能的实现方式中,所述接收单元,还用于在所述SRB建立单元根据所述SRB的配置参数,与基站建立所述SRB之后,通过所述SRB接收所述基站发送的第二建立命令,所述第二建命令包括所述UE与目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道;
所述SRB建立单元,还用于根据所述第二建立命令,与所述目标小区建立所述SRB;
其中,所述UE与所述目标小区建立的所述SRB所占用的传输信道,与, 所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
第三方面,本发明实施例还提供一种基站,包括:
收发器,用于与所述基站外部进行通信;
处理器,用于根据SRB的配置参数,与UE建立所述SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;以及根据承载N个业务的N个DRB的配置参数,与所述UE建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
在第三方面的第一种可能的实现方式中,所述处理器,还用于在根据所述SRB的配置参数,与所述UE建立所述SRB之前,通过所述收发器向所述UE发送所述SRB的配置参数和所述N个DRB的配置参数。
在第三方面的第二种可能的实现方式中,所述处理器,还用于在根据N个DRB的配置参数,与所述UE建立所述N个DRB之前,通过所述收发器,通过所述SRB向所述UE发送所述N个DRB的配置参数。
结合第三方面或第三方面的第一种可能的实现方式或第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区不同。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区的RAT不同。
结合第三方面或第三方面的第一种至第四种可能的实现方式中的任意一种,在第三方面的第五种可能的实现方式中,所述处理器,还用于在根据所述N个DRB的配置参数,与所述UE建立所述N个DRB之后,当所述UE需要在目标小区传输业务数据时,通过所述收发器,通过所述SRB向所述UE发送第一建立命令,所述目标小区为所述N个DRB中K个DRB待切换到的小区;
其中,1≤K<N,所述K为整数;所述第一建立命令包括所述UE与所述目标小区建立DRB的配置参数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的DRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的K个DRB,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
结合第三方面或第三方面的第一种至第四种可能的实现方式中的任意一种,在第三方面的第六种可能的实现方式中,所述处理器,还用于在根据所述SRB的配置参数,与所述UE建立所述SRB之后,当所述UE需要在目标小区传输控制数据时,通过所述收发器,通过所述SRB向所述UE发送第二建立命令,所述第二建立命令包括所述UE与所述目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;
其中,所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
第四方面,本发明实施例还提供一种UE,包括:
收发器,用于与所述UE外部进行通信;
处理器,用于根据SRB的配置参数,与基站建立SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;以及根据承载N个业务的N个DRB的配置参数,与所述基站建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
在第四方面的第一种可能的实现方式中,所述处理器,还用于在根据所述SRB的配置参数,与所述基站建立所述SRB之前,通过所述收发器接收所述基站发送的所述SRB的配置参数和所述N个DRB的配置参数。
在第四方面的第二种可能的实现方式中,所述处理器,还用于在根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之前,通过所述收发器,通过所述SRB接收所述基站发送的所述N个DRB的配置参数。
结合第四方面或第四方面的第一种可能的实现方式或第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区不同。
结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区的RAT不同。
结合第四方面或第四方面的第一种至第四种可能的实现方式,在第四方面的第五种可能的实现方式中,所述处理器,还用于在根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之后,通过所述收发器,通过所述SRB接收所述基站发送的第一建立命令,所述第一建立命令包括所述UE与目标小区建立DRB的配置参数,所述目标小区为所述N个DRB中K个DRB待切换到的小区,1≤K<N,所述K为整数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的所述K个DRB所占用的传输信道和物理信道;以及根据所述第一建立命令,与所述目标小区建立所述K个DRB;
其中,所述UE与所述目标小区建立的所述K个DRB所占用的传输信道,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及物理信道不同。
结合第四方面或第四方面的第一种至第四种可能的实现方式,在第四方面的第六种可能的实现方式中,所述处理器还用于在根据所述SRB的配置参数,与基站建立所述SRB之后,通过所述收发器,通过所述SRB接收所述基站发送的第二建立命令,所述第二建命令包括所述UE与目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道;以及根据所述第二建立命令,与所述目标小区建立所述SRB;
其中,所述UE与所述目标小区建立的所述SRB所占用的传输信道,与,所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信 道不同。
第五方面,本发明实施例提供一种无线承载建立方法,包括:
基站根据SRB的配置参数,与UE建立所述SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;
基站根据承载N个业务的N个DRB的配置参数,与所述UE建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
在第五方面的第一种可能的实现方式中,所述基站根据所述SRB的配置参数,与所述UE建立所述SRB之前,还包括:
所述基站向所述UE发送所述SRB的配置参数和所述N个DRB的配置参数。
在第五方面的第二种可能的实现方式中,所述基站根据N个DRB的配置参数,与所述UE建立所述N个DRB之前,还包括:
所述基站通过所述SRB向所述UE发送所述N个DRB的配置参数。
结合第五方面或第五方面的第一种可能的实现方式或第五方面的第二种可能的实现方式,在第五方面的第三种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区不同。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区的RAT不同。
结合第五方面或第五方面的第一种至第四种可能的实现方式中的任意一种,在第五方面的第五种可能的实现方式中,所述基站根据所述N个DRB的配置参数,与所述UE建立所述N个DRB之后,还包括:
当所述UE需要在目标小区传输业务数据时,所述基站通过所述SRB向所述UE发送第一建立命令,所述目标小区为所述N个DRB中K个DRB待切换到的小区;
其中,1≤K<N,所述K为整数;所述第一建立命令包括所述UE与所述 目标小区建立DRB的配置参数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的DRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的K个DRB,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
结合第五方面或第五方面的第一种至第四种可能的实现方式中的任意一种,在第五方面的第六种可能的实现方式中,所述基站根据所述SRB的配置参数,与所述UE建立所述SRB之后,还包括:
当所述UE需要在目标小区传输控制数据时,所述基站通过所述SRB向所述UE发送第二建立命令,所述第二建立命令包括所述UE与所述目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;
其中,所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
第六方面,本发明实施例还提供一种无线承载建立方法,包括:
用户设备UE根据SRB的配置参数,与基站建立SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;
所述UE根据承载N个业务的N个DRB的配置参数,与所述基站建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
在第六方面的第一种可能的实现方式中,所述UE根据所述SRB的配置参数,与所述基站建立所述SRB之前,还包括:
所述UE接收所述基站发送的所述SRB的配置参数和所述N个DRB的配置参数。
在第六方面的第二种可能的实现方式中,所述UE根据所述N个DRB的 配置参数,与所述基站建立所述N个DRB之前,还包括:
所述UE通过所述SRB接收所述基站发送的所述N个DRB的配置参数。
结合第六方面或第六方面的第一种可能的实现方式或第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区不同。
结合第六方面的第三种可能的实现方式,在第六方面的第四种可能的实现方式中,与所述UE分别建立所述M个DRB的M个小区的RAT不同。
结合第六方面或第六方面的第一种至第四种可能的实现方式,在第六方面的第五种可能的实现方式中,所述UE根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之后,还包括:
所述UE通过所述SRB接收所述基站发送的第一建立命令,所述第一建立命令包括所述UE与目标小区建立DRB的配置参数,所述目标小区为所述N个DRB中K个DRB待切换到的小区,1≤K<N,所述K为整数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的所述K个DRB所占用的传输信道和物理信道;
所述UE根据所述第一建立命令,与所述目标小区建立所述K个DRB。
其中,所述UE与所述目标小区建立的所述K个DRB所占用的传输信道,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及物理信道不同。
结合第六方面或第六方面的第一种至第四种可能的实现方式,在第六方面的第六种可能的实现方式中,所述UE根据所述SRB的配置参数,与基站建立所述SRB之后,还包括:
所述UE通过所述SRB接收所述基站发送的第二建立命令,所述第二建命令包括所述UE与目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道;
所述UE根据所述第二建立命令,与所述目标小区建立所述SRB;
其中,所述UE与所述目标小区建立的所述SRB所占用的传输信道,与,所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
本发明实施例提供的无线承载建立方法和设备,通过基站和UE在建立无线承载时,UE的M个DRB所占用的传输信道所占用的传输信道不同以及所占用的物理信道也不同,从而实现了同一UE的DRB分离,在UE所入的同一小区中,若一个或部分DRB发生变化时,所有DRB的配置不会同时变化,解决了UE与基站之间的所有业务数据中断以及通信连接掉话的问题,提高了用户体验,同时减少了时延,增加了网络吞吐量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中逻辑信道、传输信道、物理信道的映射关系图;
图2为本发明无线承载建立方法实施例一的流程图;
图3为本发明实施例提供的空口协议栈的第一种示意图;
图4为本发明实施例提供的空口协议栈的第二种示意图;
图5为本发明实施例提供的空口协议栈的第三种示意图;
图6为本发明无线承载建立方法实施例二的流程图;
图7为本发明无线承载建立方法实施例三的流程图;
图8为本发明无线承载建立方法实施例四的流程图;
图9为本发明无线承载建立方法实施例五的流程图;
图10为本发明无线承载建立方法实施例六的流程图;
图11为本发明无线承载建立方法实施例七的流程图;
图12为本发明无线承载建立方法实施例八的流程图;
图13为本发明基站实施例一的结构示意图;
图14为本发明基站实施例二的结构示意图;
图15为本发明基站实施例三的结构示意图;
图16为本发明UE实施例一的结构示意图;
图17为本发明UE实施例二的结构示意图;
图18为本发明UE实施例三的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于各种无线通信系统,例如:全球移动通信系统(Global System for Mobile Communications,简称:GSM)、通用分组无线业务(General Packet Radio Service,简称:GPRS)系统、码分多址(Code Division Multiple Access,简称:CDMA)系统、CDMA2000系统、宽带码分多址(Wideband Code Division Multiple Access,简称:WCDMA)系统、长期演进(Long Term Evolution,简称:LTE)系统或全球微波接入互操作性(World Interoperability for Microwave Access,简称:WiMAX)系统等。
基站,可以是GSM系统、GPRS系统或CDMA系统中的基站控制器(Base Station Controller,简称:BSC),还可以是LTE系统中的演进型基站(Evolved NodeB,简称:eNB),还可以是WiMAX网络中的接入服务网络的基站(Access Service Network Base Station,简称:ASN BS)等网元。UE可以是手机或平板电脑等设备。
在此对逻辑信道、传输信道和物理信道进行说明。
逻辑信道是为无线承载(即SRB和DRB,其中,SRB为传输控制数据的无线承载,DRB为传输业务数据的无线承载)提供数据传输业务,逻辑信道可以分为控制逻辑信道和业务逻辑信道,控制逻辑信道用于承载控制数据(即SRB上的控制信令),业务逻辑信道用于承载业务数据(即DRB上的业务数据)。本发明各实施例中的业务数据包括短信、语音以及各种多媒体业务等,但不包括广播业务;也就是本实施例中的业务数据是针对一个UE而言的,而广播业务是针对一组UE(即多个UE)而言的。
传输信道用于定义数据在空口上传输的方式和特性(例如传输速率、误码率、时延等)。物理信道定义数据在空口上传输的物理资源,具体可以包括载频、扰码、信道化码(可选的)、开始和结束时间(有一段持续时间) 等。
逻辑信道用于定义传输数据的类型,因此,基站与UE之间传输的数据(控制信令或业务数据)先承载在相应的逻辑信道上,承载在逻辑信道上的数据可能是独立成块的数据流,也可能是夹杂在一起但是有确定起始位的数据流。承载有数据的逻辑信道将复用到传输信道上,即对承载在逻辑信道中数据进行特定处理并加上传输格式等指示信息,然后将承载有数据的传输信道复用到物理信道上,即将承载在传输信道中的数据按照该数据所属的UE和该数据的功用确定其载频、扰码、扩频码、开始和结束时间进行相关的操作,并在最终调制为模拟射频信号发射出去。
图1为现有技术中逻辑信道、传输信道、物理信道的映射关系图,如图1所示,SRB所占用的逻辑信道包括公共控制信道(英文:Common Control Channel,简称:CCCH)和专用控制信道(英文:Dedicated Control Channel,简称:DCCH),DRB所占用的逻辑信道包括专用业务信道(英文:Dedicated Traffic Channel,简称:DTCH),若存在多种业务时,例如业务1和业务2,业务1对应的DRB所占用的逻辑信道为DTCH1,业务2对应的DRB所占用的逻辑信道为DTCH2。在逻辑信道复用到传输信道时,CCCH、DCCH、DTCH1和DTCH2复用到同一传输信道,即共享信道(英文:Share Channel,简称:SCH),在上行链路中,CCCH、DCCH、DTCH1和DTCH2复用到同一上行共享信道(英文:Uplink-Share Channel,简称:UL-SCH),在下行链路中,CCCH、DCCH、DTCH1和DTCH2复用到同一下行共享信道(英文:Downlink-Share Channel,简称:DL-SCH)。在传输信道复用到物理信道时,SCH复用于物理共享信道(英文:Physical Share Channel,简称:PSCH),在上行链路中,UL-SCH复用到物理上行共享信道(英文:Uplink Physical Share Channel,简称:PUSCH),在下行链路中,DL-SCH复用到物理下行共享信道(英文:Downlink Physical Share Channel,简称:PDSCH)。
因此,各个业务所对应的各个DRB所占用的逻辑信道通常是不同的,而各个DRB所占用的逻辑信道复用到所占用的传输信道通常是相同的;例如,传输信道的传输速率、误码率和时延都是相同的。另外,各个DRB复用到的所占用的传输信道再次复用所占用的物理信道通常也是相同的;例如,物理信道的载频、扰码、信道化码(可选的)、开始和结束时间(有一段持续时 间)等都是相同的。各个DRB占用传输信道的方式可以为各个DRB的数据传输通过调度的方式复用在传输信道;各个DRB占用物理信道的方式可以为各个DRB的数据传输通过调度的方式复用在物理信道上。因而,当其中一个或部分DRB的配置发生变化,由于可能不能同时满足各个DRB的QoS要求,所有的DRB都可能需要重新配置,从而导致用户体验可能得不到保证。
图2为本发明无线承载建立方法实施例一的流程图,如图2所示,本实施例的方法可以包括:
S101、基站根据SRB的配置参数,与用户设备UE建立所述SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道。
S102、基站根据承载N个业务的N个DRB的配置参数,与所述UE建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道。
本实施例中,基站根据SRB的配置参数,与UE建立SRB,该UE的SRB位于该基站所控制的小区,即该UE与该基站控制的小区建立该SRB。基站也可以根据承载N个业务的N个DRB的配置参数,与UE建立N个DRB,该UE的N个DRB位于该基站所控制的小区,即该UE与该基站控制的小区建立该N个DRB,该UE可以与该基站控制的至少一个小区建立该N个DRB,该UE可以与该一个小区建立至少一个DRB。该SRB与该N个DRB可以同时位于该基站所控制的同一个小区,也可以分别位于该基站所控制的不同小区,该N个DRB可以同时位于该基站所控制的同一个小区,也可以分别位于该基站所控制的不同小区。
不论该N个DRB位于该基站所控制的同一小区还是不同小区,该N个DRB中存在M个DRB所占用的传输信道不同,例如:该M个DRB的传输速率、误码率和时延中至少一个是不同的;该N个DRB中存在M个DRB所占用的物理信道不同,例如该M个DRB所占用的时隙不同和所占用的频率中至少一个是不同的。由于该N个DRB中存在M个DRB所占用的传输信道不同,物理信道也不同,从而实现了DRB分离,不会造成N个DRB中有一个或部分DRB改变而造成所有的DRB的配置都发生变化而使得用户体验降低。各个DRB的数据传输在各自的传输信道和物理信道上,可以满足各自QoS要求。以N为3举例来说:这3个DRB中存在两个DRB所占用的传 输信道不同以及所占用的物理信道不同,即该3个DRB中有1个DRB与另外两个DRB所占用的传输信道不同以及所占用的物理信道不同;或者,该3个DRB中存在3个DRB所占用的传输信道不同以及所占用的物理信道不同,即该3个DRB中各个DRB所占用的传输信道不同以及所占用的物理信道不同。
不论该SRB与该N个DRB中至少一个DRB位于该基站所控制的同一小区还是不同小区,所述SRB所占用的传输信道和所述N个DRB中至少一个DRB所占用的传输信道不同,例如:该SRB和该N个DRB中至少一个DRB的,传输速率、误码率和时延中至少一个是不同的;所述DRB所占用的物理信道和所述N个DRB中至少一个DRB所占用的物理信道不同,例如:SRB和N个DRB中至少一个DRB,所占用的时隙和所占用的频率中至少一个是不同的。由于该UE的SRB和DRB所占用的传输信道不同,物理信道也不同,从而实现了SRB和DRB分离,SRB的配置改变不会影响到DRB的配置,不会导致在SRB配置改变时由于影响到DRB的配置改变而造成的用户体验降低。SRB和DRB的数据传输在各自的传输信道和物理信道上,可以满足各自QoS要求。以N为3举例来说:该SRB可以与这3个DRB中的一个DRB所占用的传输信道不同以及所占用的物理信道不同,即该SRB与该3个DRB中的两个DRB所占用的传输信道相同以及所占用的物理信道相同,而该SRB与该3个DRB中的另外一个DRB所占用的传输信道不同以及所述占用的物理信道不同;或者,该SRB与该3个DRB中的两个DRB所占用的传输信道不同以及所占用的物理信道不相同,而该SRB与该3个DRB中的另外一个DRB所占用的传输信道相同以及所述占用的物理信道相同;或者,该SRB与该3个DRB中的各个DRB所占用的传输信道不同以及所占用的物理信道不相同。
例如:如果UE需要建立2个业务,分别为语音和网页浏览,则建立DRB1和DRB2。DRB1和DRB2所占用的传输信道不同,例如:为DRB1和DRB2分配的传输速率不同,或者,为DRB1和DRB2分配的误码率不同,或者,为DRB1和DRB2分配的时延不同。DRB1和DRB2所占用的物理信道不同,例如:为DRB1和DRB2分配的频率不同。
因此,当该UE的一个或部分DRB的配置发生变化时,只需要重新配置 该一个或部分DRB所占用的传输信道和物理信道即可,可以不需要重新配置该UE的其它DRB所占用的传输信道和物理信道;这样DRB之间不会互相影响,也就不会导致UE与基站之间的所有业务数据中断以及通信连接掉话,从而减少了时延,提高了网络吞吐量。而且各个DRB具有不同的QoS要求,因此,将各个DRB进行分离可以更加灵活地保证各个DRB的QoS要求,而且不会相互影响,提高了UP连接上数据传输的灵活性和网络吞吐量。
图3为本发明实施例提供的空口协议栈的第一种示意图,如图3所示,以两个DRB(即DRB1和DRB2)为例进行说明,SRB、DRB1、DRB2分别占用层(Layer,简称:L)2和L1中不同的信道,也就是SRB、DRB1、DRB2分别占用不同的传输信道和物理信道上,表示UE与无线接入网(英文:Radio Access Network,简称:RAN)(例如基站)之间的各个DRB配置在不同的传输信道和物理信道上,而且,该SRB和各个DRB配置在不同的传输信道和物理信道上。SRB承载无线信令数据,无线信令数据包括无线资源控制协议(英文:Radio Resource Control,简称:RRC)信令以及NAS信令等L3信令(包括与DRB相关的信令),DRB承载无线业务数据。其中,L2指的是分组数据汇聚协议(英文:Packet Data Convergence Protocol,简称:PDCP)/无线链路控制(英文:Radio Link Control,简称:RLC)/MAC,L1是指物理层(英文:Physical Layer)。
可选地,与所述UE分别建立所述M个DRB的小区可以是同一个小区,也可以是同一基站控制的不同小区,或者,与所述UE建立所述M个DRB的M个小区中可以有一部分小区是同一个小区。与所述UE建立SRB的小区和与所述UE建立N个DRB中至少一个DRB的小区可以是同一个小区,也可以是同一基站控制的不同小区。
可选地,与所述UE分别建立所述M个DRB的小区工作的无线接入技术(英文:Radio Access Technology,简称:RAT)相同,例如UE与同系统中的不同小区分别建立该M个DRB,该UE的这M个DRB分别配置在不同的传输信道和物理信道上。与所述UE建立SRB的小区和与所述UE建立N个DRB中至少一个DRB的小区的RAT相同,例如UE与同系统中的不同小区分别建立该SRB和该至少一个DRB,该UE的SRB与该至少一个DRB配置在不同的传输信道和物理信道上。
如图4所示,与UE建立SRB的小区、与UE建立DRB1的小区、与UE建立DRB2的小区的RAT相同;其中,与UE建立SRB的小区,和,与UE建立DRB1的小区为同一小区。但是与UE建立SRB的小区,和,与UE建立DRB2的小区不是同一小区。
可选地,与所述UE分别建立所述M个DRB的M个小区的RAT不同,例如UE与不同系统中的小区分别建立该M个DRB,该UE的这M个DRB分别配置在不同的传输信道和物理信道上。与所述UE建立SRB的小区和与所述UE建立N个DRB中至少一个DRB的小区的RAT不同,例如UE与不同系统中的小区分别建立该SRB和该至少一个DRB,该UE的SRB与该至少一个DRB配置在不同的传输信道和物理信道上。
如图5所示,与UE建立SRB的小区,和,与UE建立DRB1的小区的RAT相同,RAT为RAT1;而与UE建立SRB的小区,和,与UE建立DRB2的小区的RAT不同,与UE建立DRB2的小区的RAT为RAT2。
本发明实施例提供的无线承载建立方法,通过基站和UE在建立无线承载时,UE的M个DRB所占用的传输信道所占用的传输信道不同以及所占用的物理信道也不同,从而实现了同一UE的DRB分离,在UE所入的同一小区中,一个或部分DRB发生变化时,所有DRB的配置不会同时中断变化,不会导致UE与基站之间的所有业务数据中断以及通信连接掉话,提高了用户体验,同时减少了时延,增加了网络吞吐量,还提高了UP连接上数据传输的灵活性。
图6为本发明无线承载建立方法实施例二的流程图,如图6所示,本实施例的方法可以包括:
S201、UE根据SRB的配置参数,与基站建立SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道。
S202、所述UE根据承载N个业务的N个DRB的配置参数,与所述基站建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道。
本实施例中,本实施例中,UE根据SRB的配置参数,与基站建立SRB,该UE的SRB位于该基站所控制的小区,即该UE与该基站控制的小区建立该SRB。UE也可以根据承载N个业务的N个DRB的配置参数,与基站建 立N个DRB,该UE的DRB位于该基站所控制的小区,即该UE与该基站控制的小区建立N个DRB。该SRB与该N个DRB可以位于该基站所控制的同一个小区,也可以位于该基站所控制的不同小区。
不论该N个DRB位于该基站所控制的同一小区还是不同小区,该N个DRB中存在M个DRB所占用的传输信道不同,例如:该M个DRB的传输速率、误码率和时延中至少一个是不同的;该N个DRB中存在M个DRB所占用的物理信道不同,例如该M个DRB所占用的时隙不同和所占用的频率中至少一个是不同的。由于该N个DRB中存在M个DRB所占用的传输信道不同,物理信道也不同,从而实现了DRB分离。各个DRB的数据传输在各自的传输信道和物理信道上,可以满足各自QoS要求。以N为3举例来说:这3个DRB中存在两个DRB所占用的传输信道不同以及所占用的物理信道不同,即该3个DRB中有1个DRB与另外两个DRB所占用的传输信道不同以及所占用的物理信道不同;或者,该3个DRB中存在3个DRB所占用的传输信道不同以及所占用的物理信道不同,即该3个DRB中各个DRB所占用的传输信道不同以及所占用的物理信道不同。
不论该SRB与该N个DRB中至少一个DRB位于该基站所控制的同一小区还是不同小区,所述SRB所占用的传输信道和所述N个DRB中至少一个DRB所占用的传输信道不同,例如:该SRB和该N个DRB中至少一个DRB的,传输速率、误码率和时延中至少一个是不同的;所述DRB所占用的物理信道和所述N个DRB中至少一个DRB所占用的物理信道不同,例如:SRB和N个DRB中至少一个DRB,所占用的时隙和所占用的频率中至少一个是不同的。由于该UE的SRB和DRB所占用的传输信道不同,物理信道也不同,从而实现了SRB和DRB分离。SRB和DRB的数据传输在各自的传输信道和物理信道上,可以满足各自QoS要求。以N为3举例来说:该SRB可以与这3个DRB中的一个DRB所占用的传输信道不同以及所占用的物理信道不同,即该SRB与该3个DRB中的两个DRB所占用的传输信道相同以及所占用的物理信道相同,而该SRB与该3个DRB中的另外一个DRB所占用的传输信道不同以及所述占用的物理信道不同;或者,该SRB与该3个DRB中的两个DRB所占用的传输信道不同以及所占用的物理信道不相同,而该SRB与该3个DRB中的另外一个DRB所占用的传输信道相同以及所述 占用的物理信道相同;或者,该SRB与该3个DRB中的各个DRB所占用的传输信道不同以及所占用的物理信道不相同。
因此,当该UE的一个或部分DRB的配置发生变化时,只需要重新配置该一个或部分DRB所占用的传输信道和物理信道即可,可以不需要重新配置该UE的其它DRB所占用的传输信道和物理信道;这样DRB之间不会互相影响,也就不会导致UE与基站之间的所有业务数据中断以及通信连接掉话,从而减少了时延,提高了网络吞吐量。而且各个DRB具有不同的QoS要求,因此,将各个DRB进行分离可以更加灵活地保证各个DRB的QoS要求,而且不会相互影响,提高了UP连接上数据传输的灵活性和网络吞吐量。
可选地,与所述UE分别建立所述M个DRB的小区可以是同一个小区,也可以是同一基站控制的不同小区,或者,与所述UE建立所述M个DRB的M个小区中可以有一部分小区是同一个小区。与所述UE建立SRB的小区和与所述UE建立N个DRB中至少一个DRB的小区可以是同一个小区,也可以是同一基站控制的不同小区。
可选地,与所述UE分别建立所述M个DRB的小区工作的RAT相同,如图4所示,详细参见本发明方法实施一中的相关记载。
可选地,与所述UE分别建立所述M个DRB的M个小区的RAT不同,如图5所示,详细参见本发明方法实施例一中的相关记载。
本发明实施例提供的无线承载建立方法,UE和基站在建立无线承载时,UE的M个DRB所占用的传输信道不同以及所占用的物理信道也不同,从而实现了同一UE的DRB分离,在UE所入的同一小区中,一个或部分DRB发生变化时,所有DRB的配置不会同时变化,不会导致UE与基站之间的所有业务数据中断以及通信连接掉话,提高了用户体验,同时减少了时延,增加了网络吞吐量,还提高了UP连接上数据传输的灵活性。
图7为本发明无线承载建立方法实施例三的流程图,如图7所示,本实施例的方法包括:
S301、基站向UE发送SRB的配置参数和承载N个业务的N个DRB的配置参数。
S302、所述UE接收所述基站发送的所述SRB的配置参数和所述N个DRB的配置参数。
S303、所述基站与所述UE根据所述SRB的配置参数和所述N个DRB的配置参数,建立所述SRB和所述N个DRB。
本实施例中,基站可以通过UE的随机接入过程,确定该UE的SRB的配置参数,以建立SRB,并且当UE需要进行业务时,UE与核心网设备会进行业务协商过程,业务协商过程完成后,核心网设备会通知该基站建立该UE的承载N个业务的N个DRB,然后该基站再确定该N个DRB的配置参数,例如:核心网设备会向基站发送无线接入承载指示信息,该无线接入承载指示信息可以包括:建立该UE的无线接入承载的速率、时延、误码率等业务QoS信息,基站根据核心网设备发送的无线接入承载指示信息、N个DRB中M个DRB所占用的传输信道不同以及所占用的物理信道不同,来确定该UE的N个DRB的配置参数,以建立N个DRB。因此,本实施例中,基站所确定的SRB的配置参数用于指示该SRB所占用传输信道和物理信道,进一步地,SRB的配置参数还用于指示该SRB所占用的逻辑信道;基站所确定的N个DRB的配置参数中每个DRB的配置参数用于指示该DRB所占用的传输信道和物理信道,进一步地,每个DRB的配置参数还用于指示该DBR所占用的逻辑信道;需要说明的是,N个DRB中各个DRB所占用的逻辑信道不同,N个DRB中M个DRB所占用的传输信道不同以及所占用的物理信道不同,由于基站将N个DRB中M个DRB分别配置在不同的传输信道和物理信道上,那么UE的DRB实现了分离。
可选地,若基站确定SRB与该N个DRB位于同一小区(例如第一小区),则由基站所控制的第一小区确定该UE的SRB的配置参数和N个DRB的配置参数。从而UE所建立的SRB和N个DRB位于同一小区。
可选地,若基站确定该SRB和N个DRB位于不同小区,例如:该SRB位于基站控制的第一小区,DRB1位于该基站所控制的第二小区,DRB2位于基站所控制的第三小区,在第一小区确定该UE的SRB的配置参数后,该第一小区判断DRB1需要位于该基站控制的第二小区以及DRB2需要位于该基站控制的第三小区,则第一小区再向第二小区发送UE的DRB1建立请求以及向第三小区发送DRB2建立请求,第二小区根据第一小区发送的UE的DRB1建立请求确定该UE的DRB1的配置参数,第三小区根据第一小区发送的UE的DRB2建立请求确定该UE的DR2的配置参数。例如:第一小区会 将从核心网设备接收的无线接入承载指示信息发送给第二小区和第三小区,该无线接入承载指示信息可以包括:建立该UE的DRB承载的速率、时延、误码率等QoS信息,第二小区再根据该无线接入承载指示信息确定UE的DRB1的配置参数,第二小区再将该UE的DRB1的配置参数包括在UE的DRB1建立响应中发送给第一小区,第一小区再从UE的DRB1建立响应中获取该UE的DRB2的配置参数,第三小区再根据该无线接入承载指示信息确定UE的DRB2的配置参数,第三小区再将该UE的DRB2的配置参数包括在UE的DRB2建立响应中发送给第一小区,第一小区再从UE的DRB2建立响应中获取该UE的DRB2的配置参数。从而UE所建立的SRB1位于第一小区,UE所建立的DRB1位于第二小区,UE所建立的DRB2位于第三小区。
本实施例中,基站在确定UE的SRB的配置参数和N个DRB的配置参数之后,基站可以根据UE的SRB的配置参数和N个DRB的配置参数生成无线资源配置消息,该无线资源配置消息包括所述SRB的配置参数和所述N个DRB的配置参数,然后基站通过公共连接向UE发送无线资源配置消息,从而使得UE接收到无线资源配置消息后,获取无线资源配置消息中的SRB的配置参数和N个DRB的配置参数,然后UE根据SRB的配置参数和N个DRB的配置参数,与基站建立SRB和N个DRB,基站也根据发送给该UE的SRB的配置参数和N个DRB的配置参数,与该建立SRB和N个DRB。从而UE建立的N个DRB中M个DBR占用在不同的传输信道上,而且UE建立的N个DRB中M个DRB占用在不同的物理信道上,因此,UE的DRB实现了分离。
下面对UE的SRB的配置参数和N个DRB的配置参数进行举例说明,如下所示为无线资源配置消息中指示UE的SRB的配置参数和N个DRB的配置参数的信元。mac-MainConfig for SRB是配置SRB的传输信道参数,mac-MainConfig for DRB是配置DRB的传输信道参数,PhysicalconfigDedicated for SRB是配置SRB的物理信道参数,PhysicalconfigDedicated for DRB是配置DRB的物理信道参数。其它部分与现有技术中的一致,此处不再赘述。
Figure PCTCN2015079595-appb-000001
Figure PCTCN2015079595-appb-000002
Figure PCTCN2015079595-appb-000003
本实施例提供的无线承载建立方法,基站和UE在建立无线承载时,UE的N个DRB中存在至少两个DRB所占用的传输信道不同以及所占用的传输信道不同,从而实现了同一UE的DRB分离,在UE所入的同一小区中,一个或部分DRB发生变化时,所有DRB的配置不会同时变化,不会导致UE与基站之间的所有业务数据中断以及通信连接掉话,提高了用户体验,同时减少了时延,增加了网络吞吐量,还提高了UP连接上数据传输的灵活性。
图8为本发明无线承载建立方法实施例四的流程图,如图8所示,本实施例的方法包括:
S401、基站向UE发送SRB的配置参数。
S402、所述UE接收所述基站发送的所述SRB的配置参数。
S403、所述基站与所述UE根据所述SRB的配置参数,建立所述SRB。
本实施例中,UE可以通过随机接入过程建立该UE的SRB,基站通过UE的随机接入过程确定该UE的SRB的配置参数,该SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道,进一步地,可以指示所述SRB所占用的逻辑信道。然后基站可以将确定好的SRB的配置参数通过无线资源配置消息发送给UE,UE可以根据SRB的配置参数与基站建立SRB。
S404、所述基站通过SRB向所述UE发送承载N个业务的N个DRB的配置参数。
S405、所述UE通过所述SRB接收所述基站发送的所述N个DRB的配置参数。
S406、所述基站与所述UE根据所述N个DRB的配置参数,建立所述N个DRB。
当UE需要进行业务时,UE与核心网设备会进行业务协商过程,业务协商过程完成后,核心网设备会通知基站建立该UE的承载N个业务的N个DRB,然后基站再确定该N个DRB的配置参数,例如:核心网设备会向基站发送无线接入承载指示信息,该无线接入承载指示信息可以包括:建立该UE的DRB承载的速率、时延、误码率等业务QoS信息,基站根据核心网设 备发送的无线接入承载指示信息、N个DRB中M个DRB所占用的传输信道不同以及所占用的物理信道不同,来确定该UE的N个DRB的配置参数,以建立N个DRB,本实施例中,基站所确定的N个DRB的配置参数用于指示该N个DRB所占用的传输信道和物理信道,进一步地还可以指示该N个DRB所占用的逻辑信道,基站可以将该N个DRB的配置参数携带在另一无线资源配置消息并通过已建立的SRB发送给该UE,相应地,UE可以通过该UE的SRB接收基站发送的N个DRB的配置参数。然后基站与UE可以根据该N个DRB的配置参数,建立N个DRB。
需要说明的是,N个DRB中的上述M个DRB可以位于该基站控制的同一个小区或者不同小区,该UE的SRB与该UE的DRB可以位于该基站控制的同一个小区或者不同小区,具体地,可以参见本发明上述方法实施例三中的相关记载,此处不再赘述。
本实施例提供的无线承载建立方法,基站和UE在建立无线承载时,UE的N个DRB中存在至少两个DRB所占用的传输信道不同以及所占用的传输信道不同,从而实现了同一UE的DRB分离,在UE所入的同一小区中,一个或部分DRB发生变化时,所有DRB的配置不会同时变化,不会导致UE与基站之间的所有业务数据中断以及通信连接掉话,提高了用户体验,同时减少了时延,增加了网络吞吐量,还提高了UP连接上数据传输的灵活性。
图9为本发明无线承载建立方法实施例五的流程图,如图9所示,本实施例在本发明方法实施例一至四任一实施例的基础上,进一步地,在所述基站根据N个DRB的配置参数,与所述UE建立所述N个DRB之后,本实施例的方法还可以包括:
S501、当所述UE需要在目标小区传输业务数据时,所述基站通过所述SRB向所述UE发送第一建立命令,所述第一建立命令包括所述UE与所述目标小区建立DRB的配置参数。
本实施例中,由于UE的至少两个DRB所占用的传输信道不同,而且物理信道也不同,因此,基站可以将UE的K个DRB重新建立在目标小区中,该目标小区为该K个DRB待切换到的小区。具体过程如下所述。
当该UE需要在目标小区传输业务数据时,即该UE需要与目标小区建立K个DRB,则基站获取该UE与该目标小区建立DRB的配置参数,该UE与 该目标小区建立DRB的配置参数用于指示该UE与该目标小区建立的K个DRB所占用的传输信道和物理信道,进一步地还指示该UE与该目标小区建立的DRB所占用的逻辑信道,并且该UE与该目标小区建立的K个DRB与所述N个DRB中除K个DRB之外的至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。若该目标小区为该基站控制的一个小区,则该基站可以确定该UE与该目标小区建立DRB的配置参数。若该目标小区为另一基站控制的一个小区,则该基站向控制该目标小区的基站请求获取该UE与该目标小区建立DRB的配置参数。然后该基站将UE与该目标小区建立DRB的配置参数携带在第一建立命令中通过所述SRB发送给所述UE。
S502、所述UE通过所述SRB接收所述基站发送的第一建立命令,所述第一建立命令包括所述UE与目标小区建立DRB的配置参数。
S503、所述UE根据所述第一建立命令,与所述目标小区建立K个DRB。
本实施例中,所述UE通过与所述基站建立的所述SRB接收所述基站发送的第一建立命令,该UE从第一建立命令中获取所述UE与所述目标小区建立DRB的配置参数,然后UE根据所述UE与所述目标小区建立DRB的配置参数,与目标小区建立K个DRB。若目标小区为所述基站控制的一个小区,则所述UE与所述基站根据所述UE与目标小区建立DRB的配置参数,建立新的K个DRB。若目标小区为另一基站控制的一个小区,则所述UE与该另一基站根据所述UE与目标小区建立DRB的配置参数,建立新的K个DRB。
在所述基站确定UE与目标小区建立DRB后,基站可以释放N个DRB的其中K个DRB在源小区中占用的资源,该源小区为所述UE在与目标小区建立DRB之前该UE的进行相同业务的K个DRB所位于的小区。
本发明实施例提供的无线承载建立方法,通过当所述基站确定所述UE需要在目标小区传输业务数据时,所述基站通过所述SRB向所述UE发送第一建立命令,所述第一建立命令包括所述UE与所述目标小区建立DRB的配置参数;所述UE根据所述第一建立命令,与所述目标小区建立至少一个DRB。从而可以实现UE的至少一个DRB可以单独重新建立。
图10为本发明无线承载建立方法实施例六的流程图,如图10所示,本实施例在本发明方法实施例一至四任一实施例的基础上,进一步地,在所述基站根据SRB的配置参数,与所述UE建立所述SRB之后,本实施例的方法 还可以包括:
S601、当所述UE需要在目标小区传输控制数据时,所述基站通过所述SRB向所述UE发送第二建立命令,所述第二建立命令包括所述UE与所述目标小区建立SRB的配置参数。
本实施例中,由于UE的SRB和N个DRB中至少一个DRB所占用的传输信道不同,而且物理信道也不同,因此,基站可以将UE的SRB单独重新建立在目标小区中,该目标小区为该SRB待切换到的小区。具体过程如下所述。
当该UE需要在目标小区传输控制数据时,即该UE需要与目标小区建立SRB,则基站获取该UE与该目标小区建立SRB的配置参数,该UE与该目标小区建立SRB的配置参数用于指示该UE与该目标小区建立的SRB所占用的传输信道和物理信道,进一步地还指示该UE与该目标小区建立的SRB所占用的逻辑信道,并且该UE与该目标小区建立的SRB所占用的传输信道与所述DRB所占用的传输信道不同,该UE与该目标小区建立的SRB所占用的物理信道与所述N个DRB中至少一个DRB所占用的物理信道不同。若该目标小区为该基站控制的一个小区,则该基站可以确定该UE与该目标小区建立SRB的配置参数。若该目标小区为另一基站控制的一个小区,则该基站向控制该目标小区的基站请求获取该UE与该目标小区建立SRB的配置参数。然后该基站将UE与该目标小区建立SRB的配置参数携带在第一建立命令中通过所述UE已建立的所述SRB发送给所述UE。
S602、所述UE通过所述SRB接收所述基站发送的第二建立命令,所述第二建立命令包括所述UE与目标小区建立SRB的配置参数。
S603、所述UE根据所述第二建立命令,与所述目标小区建立SRB。
本实施例中,所述UE通过与所述基站建立的所述SRB接收所述基站发送的第二建立命令,该UE从第二建立命令中获取所述UE与所述目标小区建立SRB的配置参数,然后UE根据所述UE与所述目标小区建立SRB的配置参数,与目标小区建立SRB。若目标小区为所述基站控制的一个小区,则所述UE与所述基站根据所述UE与目标小区建立SRB的配置参数,建立新的SRB。若目标小区为另一基站控制的一个小区,则所述UE与该另一基站根据所述UE与目标小区建立SRB的配置参数,建立新的SRB。
在所述基站确定UE与目标小区建立SRB后,基站可以释放SRB在源小区中占用的资源,该源小区为所述UE在与目标小区建立SRB之前该UE的SRB所位于的小区。
本发明实施例提供的无线承载建立方法,通过当所述基站确定所述UE需要在目标小区传输控制数据时,所述基站通过所述SRB向所述UE发送第二建立命令,所述第二建立命令包括所述UE与所述目标小区建立SRB的配置参数;所述UE根据所述第二建立命令,与所述目标小区建立SRB。从而可以实现UE的SRB可以单独重新建立。
图11为本发明无线承载建立方法实施例七的流程图,如图11所示,本实施例的方法以UE的SRB和DRB建立在不同小区为例进行说明,此处以UE建立两个DRB为例。其中,第一小区表示执行主体为控制第一小区的基站,第二小区表示执行主体为控制第二小区的基站,第三小区表示执行主体为控制第三小区的基站,本实施例的方法可以包括:
S701、确定UE的SRB的配置参数。
S702、发送UE的SRB建立请求。
S703、确定UE的DRB的配置参数。
S704、发送UE的DRB建立响应。
本实施例中,第一小区在UE的随机接入过程中确定UE的SRB的配置参数,并且第一小区在UE与核心网设备完成业务协商过程之后,如果第一小区判决UE的两个DRB需要建立在第二小区,第一小区可以向第二小区发送UE的DRB建立请求,请求第二小区为该UE分配资源,第二小区接收到第一小区发送的UE的DRB建立请求后,确定UE的两个DRB的配置参数,然后根据UE的DRB的配置参数生成UE的DRB建立响应,该UE的DRB建立响应包括该UE的两个DRB的配置参数。服务第一小区的基站与服务第二小区的基站相同,或者,服务第一小区的基站与服务第二小区的基站不同。
S705、发送无线资源配置消息。
本实施例中,第一小区接收到第二小区发送的UE的DRB建立响应,从该UE的DRB建立响应中获取该UE的两个DRB的配置参数,将SRB的配置参数与两个DRB的配置参数携带在无线资源配置消息发送给UE。SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道,两个DRB的配 置参数用于指示所述两个DRB所占用的传输信道和物理信道,其中,这两个DRB所占用的传输信道和所占用的物理信道不同,而且所述SRB所占用的传输信道与这两个DRB所占用的传输信道和所占用的物理信道不同。
S706、根据SRB的配置参数,建立SRB。
S707、根据DRB的配置参数,建立两个DRB。
本实施例,UE与第一小区可以根据无线资源配置消息中SRB的配置参数,建立SRB,UE也可以根据无线资源配置消息中承载两个业务的两个DRB的配置参数,建立两个DRB。建立的两个DRB所占用的传输信道和所占用的物理信道不同,而且所述SRB所占用的传输信道与这两个DRB所占用的传输信道和所占用的物理信道不同,从而实现UE的各个DRB分离、以及SRB与DRB的分离。
本实施例中,在UE的各个无线承载实现分离之后,还可以包括如下所述。其中,UE的两个DRB分别为DRB1和DRB2,DRB1用于承载第一业务的数据,DRB2用于承载第二业务的数据。
第一小区可以根据UE通过UE的SRB上报的第一小区和相邻小区的测量报告,以及,第二小区和相邻小区的测量报告,若第一小区根据上述测量报告获知第二小区的质量不能保证UE的DRB1的QoS要求,而第三小区可以保证UE的DRB1的QoS要求,那么第一小区可以将UE的用于承载第一业务的数据的DRB切换至第三小区。第一小区中可以获取UE的DRB1切换后的配置参数,具体地,第一小区获取UE的DRB1切换后的配置参数可以通过S708-S710来实现。服务第三小区的基站与服务第一小区的基站相同,或者,服务第三小区的基站与服务第一小区的基站不同。
S708、发送第一切换请求。
本实施例中,第一小区向UE的DRB1的目标切换小区,本实施例中为第三小区,发送第一切换请求,第一切换请求用于请求将UE的DRB1切换至第三小区。
S709、根据第一切换请求确定UE的DRB1切换后的配置参数。
本实施例中,第三小区接收到第一小区发送的第一切换请求,该第一切换请求用于请求将UE的DRB1切换至该第三小区,那第三小区可以根据第一切换请求为UE的DRB1配置资源,也就是第三小区根据第一切换请求确 定UE的DRB1切换至该第三小区后的配置参数,也即UE的DRB1切换后的配置参数,UE的DRB1切换后的配置参数用于指示切换后的UE的DRB1所占用的传输信道和物理信道,切换后的UE的DRB1所占用的传输信道与UE的DRB2所占用的传输信道不同以及所占用的物理信道不同,切换后的UE的DRB1所占用的物理信道与UE的SRB所占用的传输信道不同以及所占用的物理信道不同。
S710、发送第一切换响应。
本实施例中,第三小区确定UE的DRB1切换后的配置参数之后,可以根据DRB1切换后的配置参数生成第一切换响应,第一切换响应包括该UE的DRB1切换后的配置参数,相应地,第一小区可以接收第三小区发送的第一切换响应。
S711、通过UE的SRB向UE发送第一切换命令。
本实施例中,第一小区接收到第三小区发送的第一切换响应之后,第一小区可以确定第三小区已经允许该UE将DRB1切换至第三小区,那么第一小区可以根据第三小区的标识和第一切换响应中的UE的DRB1切换后的配置参数生成第一切换命令,该第一切换命令包括第三小区的标识和该UE的DRB1切换后的配置参数,第一小区再通过UE的SRB向UE发送第一切换命令。相应地,UE可以通过UE的SRB接收第一小区发送的第一切换命令。
S712、根据第一切换命令,将UE的DRB1的切换至第三小区。
本实施例中,UE与第三小区可以根据第一切换命令,将UE的DRB1由所述UE的DRB1的源小区切换至所述UE的DRB1的目标切换小区,本实施例中,UE的DRB1的源小区为第二小区,即UE将UE的DRB1由第二小区切换至第三小区。UE可以删除与第二小区之间的DRB1,并建立与第三小区之间的DRB1,而且UE与第三小区建立的DRB1所占用的传输信道和该UE的DRB2所占用的传输信道不同,UE与第三小区建立的DRB1所占用的物理信道和该UE的DRB2所占用的物理信道不同。
SRB可以承载在大覆盖、可靠性高、避免频繁切换的系统上,DRB可以承载在速率高、尽可能低的发射接收点、时延低。本发明实施例中,由于UE的DRB与SRB实现了分离,而且UE的各个DRB实现了分离,UE在切换UE的DRB时不一定要切换UE的SRB,也不定要切换UE的其它DRB,从 而实现了UE的DRB与SRB的分别切换、以及各个DRB的分别切换。SRB承载在低频点大覆盖小区,减少SRB的切换次数,可以避免掉话现象。DRB在低频点小覆盖小区,提高了网络吞吐量。
进一步地,本实施例的方法还可以包括如下所述。
S713、发送第一切换完成命令。
本实施例中,若UE与第三小区完成了UE的DRB1的切换过程,那么第三小区向第一小区发送第一切换完成命令,第一切换完成命令用于指示UE成功切换UE的DRB1至第三小区。相应地,第一小区接收第三小区发送的第一切换完成命令。
S714、根据第一切换完成命令,触发释放UE的DRB1在第二小区中占有的资源。
本实施例中,第一小区接收到第三小区发送的第一切换完成命令,可以获知UE的DRB1已成功切换至第三小区,那么第一小区可以根据第一切换完成命令,触发释放UE的DRB1在该UE的DRB1的源小区中占有的资源,本实施例中UE的DRB1的源小区为第二小区,因此,第一小区触发释放UE的DRB1在第二小区中占有的资源,例如:第一小区向第二小区发送释放资源命令,该释放资源命令用于指示所述第二小区释放UE的DRB1在第二小区中占用的资源,第二小区可以根据第一小区发送的释放资源命令释放该UE的DRB1在第二小区中占有的资源。
本发明实施例提供的无线承载建立方法,UE建立的两个DRB实现分离之后,第一小区可以向第三小区发送第一切换请求,第三小区配置资源后向第一小区发送第一切换响应,第一小区再通过UE的SRB向UE发送第一切换命令,然后UE根据第一切换命令,将UE的DRB1的切换至第三小区,实现了UE的DRB可以单独切换。
图12为本发明无线承载建立方法实施例八的流程图,如图12所示,本实施例的方法以UE的SRB和DRB建立在不同小区为例进行说明,此处以UE建立两个DRB为例。其中,第一小区表示执行主体为控制第一小区的基站,第二小区表示执行主体为控制第二小区的基站,第四小区表示执行主体为控制第四小区的基站,本实施例的方法可以包括:
S801、确定UE的SRB的配置参数。
S802、发送第一无线资源配置消息。
S803、根据第一无线资源配置消息,建立SRB。
本实施例中,第一小区在UE的随机接入过程中确定UE的SRB的配置参数,SRB的配置参数用于指示SRB所占用的传输信道和物理信道,然后将SRB的配置参数携带在第一无线资源配置消息中发送给UE,然后第一小区与UE根据第一无线资源配置消息中的SRB的配置参数,建立SRB。
S804、发送UE的DRB建立请求。
S805、确定UE的DRB的配置参数。
S806、发送UE的DRB建立响应。
本实施例中,第一小区在UE与核心网设备完成业务协商过程之后,如果第一小区判决DRB需要建立在第二小区,第一小区可以向第二小区发送UE的DRB建立请求,请求第二小区为该UE分配资源,第二小区接收到第一小区发送的UE的DRB建立请求后,确定UE的DRB的配置参数,然后根据UE的DRB的配置参数生成UE的DRB建立响应,该UE的DRB建立响应包括该UE的DRB的配置参数。服务第一小区的基站与服务第二小区的基站相同,或者,服务第一小区的基站与服务第二小区的基站不同。
S807、通过该UE的SRB发送第二无线资源配置消息。
本实施例中,第一小区接收到第二小区发送的UE的DRB建立响应,从该UE的DRB建立响应中获取该UE的两个DRB的配置参数,将这两个DRB的配置参数携带在第二无线资源配置消息中通过UE的SRB发送给UE,两个DRB的配置参数用于指示两个DRB所占用的传输信道和物理信道,其中,这两个DRB所占用的传输信道和所占用的物理信道不同,而且所述SRB所占用的传输信道与这两个DRB所占用的传输信道和所占用的物理信道不同。
S808、根据第二无线资源配置消息,建立两个DRB。
本实施例,第二小区与UE可以根据第二无线资源配置消息中的两个DRB的配置参数,建立该UE的两个DRB。建立的两个DRB所占用的传输信道和所占用的物理信道不同,而且所述SRB所占用的传输信道与这两个DRB所占用的传输信道和所占用的物理信道不同,从而实现UE的各个DRB分离、以及SRB与DRB的分离。
本实施例中,在UE的各个无线承载实现分离之后,还可以包括如下所 述。
第一小区可以根据UE通过UE的SRB上报的第一小区和相邻小区的测量报告,以及,第二小区和相邻小区的测量报告,若第一小区根据上述测量报告获知第一小区的质量不能保证UE的SRB的QoS要求,而第四小区可以保证UE的SRB的QoS要求,那么第一小区可以将UE的SRB切换至第四小区。第一小区中可以获取UE的SRB切换后的配置参数,具体地,第一小区获取UE的SRB切换后的配置参数可以通过S809-S811来实现。服务第四小区的基站与服务第一小区的基站相同,或者,服务第四小区的基站与服务第一小区的基站不同。
S809、发送第二切换请求。
本实施例中,第一小区向UE的SRB的目标切换小区,本实施例中为第四小区,发送第二切换请求,第二切换请求用于请求将UE的SRB切换至第四小区。
S810、根据第二切换请求确定UE的SRB切换后的配置参数。
本施例中,第四小区接收到第一小区发送的第二切换请求,该第二切换请求用于请求将UE的SRB切换至该第四小区,那第四小区可以根据第二切换请求为UE的SRB配置资源,也就是第四小区根据第二切换请求确定UE的SRB切换至该第四小区后的配置参数,也即UE的SRB切换后的配置参数,UE的SRB切换后的配置参数用于指示切换后的UE的SRB所占用的传输信道和物理信道,切换后的UE的SRB所占用的传输信道与UE的两个DRB所占用的传输信道不同,切换后的UE的SRB所占用的物理信道与UE的两个DRB所占用的物理信道不同。
S811、发送第二切换响应。
本实施例中,第四小区确定UE的SRB切换后的配置参数之后,可以根据SRB切换后的配置参数生成第二切换响应,第二切换响应包括该UE的SRB切换后的配置参数,相应地,第一小区可以接收第四小区发送的第二切换响应。
S812、通过UE的SRB向UE发送第二切换命令。
本实施例中,第一小区接收到第四小区发送的第二切换响应之后,第一小区可以确定第四小区已经允许该UE将SRB切换至第四小区,那么第一小 区可以根据第四小区的标识和第二切换响应中的UE的SRB切换后的配置参数生成第二切换命令,该第二切换命令包括第四小区的标识和该UE的SRB切换后的配置参数,第一小区再通过UE的SRB向UE发送第二切换命令。相应地,UE可以通过UE的SRB接收第一小区发送的第二切换命令。
S813、根据第二切换命令,将UE的SRB的切换至第四小区。
本实施例中,UE与第四小区可以根据第二切换命令,将UE的SRB由UE的SRB的源小区切换至UE的SRB的目标切换小区,本实施例中,UE的SRB的源小区为第一小区,即UE将UE的SRB由第一小区切换至第四小区。UE可以删除与第一小区之间的SRB,并建立与第四小区之间的SRB,而且UE与第四小区建立的SRB所占用的传输信道与UE的两个DRB所占用的传输信道不同以及所占用的物理信道不同。
SRB可以承载在大覆盖、可靠性高、避免频繁切换的系统上,DRB可以承载在速率高、尽可能低的发射接收点、时延低。本发明实施例中,由于UE的SRB与DRB实现了分离,UE在切换UE的SRB时不一定要切换UE的DRB,从而实现了UE的SRB与DRB的分别切换。SRB承载在低频点大覆盖小区,减少SRB的切换次数,可以避免掉话现象。DRB在低频点小覆盖小区,提高了网络吞吐量。
进一步地,本实施例的方法还可以包括如下所述。
S814、发送第二切换完成命令。
本实施例中,若UE与第四小区完成了UE的SRB的切换过程,那么第四小区向第一小区发送第二切换完成命令,第二切换完成命令用于指示UE成功切换UE的SRB至第四小区。相应地,第一小区接收第四小区发送的第二切换完成命令。
S815、根据第二切换完成命令,触发释放UE的SRB在第一小区中占有的资源。
本实施例中,第一小区接收到第四小区发送的第二切换完成命令,可以获知UE的SRB已成功切换至第四小区,那么第一小区可以根据第二切换完成命令,触发释放UE的SRB在该UE的SRB的源小区中占有的资源,本实施例中UE的SRB的源小区为第一小区,因此,第一小区触发释放UE的SRB在第一小区中占有的资源。
本发明实施例提供的无线承载建立方法,UE建立的SRB与建立的DRB实现分离之后,第一小区可以向第四小区发送第二切换请求,第四小区配置资源后向第一小区发送第二切换响应,第一小区再通过UE的SRB向UE发送第二切换命令,然后UE根据第二切换命令,将UE的SRB的切换至第四小区,实现了UE的SRB可以单独切换。
图13为本发明基站实施例一的结构示意图,如图13所示,本实施例的基站可以包括:SRB建立单元11和DRB建立单元12,其中,SRB建立单元11,用于根据SRB的配置参数,与UE建立所述SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;DRB建立单元12,用于根据承载N个业务的N个DRB的配置参数,与所述UE建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
本实施例的基站,可以用于执行本发明上述方法实施例中基站所执行的技术方案,其实现原理和技术效果类似,详细可以参见本发明上述方法实施例中的相关记载,此处不再赘述。
图14为本发明基站实施例二的结构示意图,如图14所示,本实施例的基站在图13所示结构的基础上,还包括:发送单元13。
在一种可行的实现方式中,发送单元13,用于在SRB建立单元11根据所述SRB的配置参数,与所述UE建立所述SRB之前,向所述UE发送所述SRB的配置参数和所述N个DRB的配置参数。
在另一种可行的实现方式中,发送单元13,用于在DRB建立单元12根据N个DRB的配置参数,与所述UE建立所述N个DRB之前,通过所述SRB向所述UE发送所述N个DRB的配置参数。
可选地,与所述UE分别建立所述M个DRB的M个小区不同。
可选地,与所述UE分别建立所述M个DRB的M个小区的RAT不同。
可选地,发送单元13还用于在DRB建立单元12根据所述N个DRB的 配置参数,与所述UE建立所述N个DRB之后,当所述UE需要在目标小区传输业务数据时,通过所述SRB向所述UE发送第一建立命令,所述目标小区为所述N个DRB中K个DRB待切换到的小区;
其中,1≤K<N,所述K为整数;所述第一建立命令包括所述UE与所述目标小区建立DRB的配置参数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的DRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的K个DRB,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
可选地,发送单元13还用于在SRB建立单元11根据所述SRB的配置参数,与所述UE建立所述SRB之后,当所述UE需要在目标小区传输控制数据时,通过所述SRB向所述UE发送第二建立命令,所述第二建立命令包括所述UE与所述目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;
其中,所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
本实施例的基站,可以用于执行本发明上述方法实施例中基站所执行的技术方案,其实现原理和技术效果类似,详细可以参见本发明上述方法实施例中的相关记载,此处不再赘述。
图15为本发明基站实施例三的结构示意图,如图15所示,本实施例的基站可以包括:收发器21和处理器22;其中,收发器21,用于与所述基站外部进行通信;处理器22,用于根据SRB的配置参数,与UE建立所述SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;以及根据承载N个业务的N个DRB的配置参数,与所述UE建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述 N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
在一种可行的实现方式中,处理器22,还用于在根据所述SRB的配置参数,与所述UE建立所述SRB之前,通过收发器21向所述UE发送所述SRB的配置参数和所述N个DRB的配置参数。
在另一种可行的实现方式中,处理器22,还用于在根据N个DRB的配置参数,与所述UE建立所述N个DRB之前,通过收发器21,通过所述SRB向所述UE发送所述N个DRB的配置参数。
可选地,与所述UE分别建立所述M个DRB的M个小区不同。
可选地,与所述UE分别建立所述M个DRB的M个小区的RAT不同。
可选地,处理器22,还用于在根据所述N个DRB的配置参数,与所述UE建立所述N个DRB之后,当所述UE需要在目标小区传输业务数据时,通过收发器21,通过所述SRB向所述UE发送第一建立命令,所述目标小区为所述N个DRB中K个DRB待切换到的小区;
其中,1≤K<N,所述K为整数;所述第一建立命令包括所述UE与所述目标小区建立DRB的配置参数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的DRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的K个DRB,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
可选地,处理器22,还用于在根据所述SRB的配置参数,与所述UE建立所述SRB之后,当所述UE需要在目标小区传输控制数据时,通过收发器21,通过所述SRB向所述UE发送第二建立命令,所述第二建立命令包括所述UE与所述目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;
其中,所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
可选地,本实施例中的收发器21和处理器22可通过总线或者其它方式 连接,若以总线连接,则本实施例的基站中还包括总线。
可选地,本实施例的基站还可以包括存储器(图中未示出),存储器用于存储执行无线承载建立方法的程序代码;处理器22调用存储器中存储的程序代码以实现上述方案。
需要说明的是,为了实现本实施例的上述方案,本领域技术人员可以理解本实施例的基站还可以包括电子线路设备和用于连接各器件的总线(图中未示出)。
本实施例的基站,可以用于执行本发明上述方法实施例中基站所执行的技术方案,其实现原理和技术效果类似,详细可以参见本发明上述方法实施例中的相关记载,此处不再赘述。
图16为本发明UE实施例一的结构示意图,如图16所示,本实施例的UE可以包括:SRB建立单元31和DRB建立单元32;其中,SRB建立单元31,用于根据SRB的配置参数,与基站建立SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;DRB建立单元32,用于根据承载N个业务的N个DRB的配置参数,与所述基站建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
本实施例的UE,可以用于执行本发明上述方法实施例中UE所执行的技术方案,其实现原理和技术效果类似,详细可以参见本发明上述方法实施例中的相关记载,此处不再赘述。
图17为本发明UE实施例二的结构示意图,如图17所示,本实施例的UE在图16所示结构的基础上,还包括:接收单元33。
在一种可行的实现方式中,接收单元33,用于在SRB建立单元31根据所述SRB的配置参数,与所述基站建立所述SRB之前,接收所述基站发送的所述SRB的配置参数和所述N个DRB的配置参数。
在另一种可行的实现方式中,接收单元33,用于在DRB建立单元32根 据所述N个DRB的配置参数,与所述基站建立所述N个DRB之前,通过所述SRB接收所述基站发送的所述N个DRB的配置参数。
可选地,与所述UE分别建立所述M个DRB的M个小区不同。
可选地,与所述UE分别建立所述M个DRB的M个小区的RAT不同。
可选地,接收单元33,还用于在DRB建立单元32根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之后,通过所述SRB接收所述基站发送的第一建立命令,所述第一建立命令包括所述UE与目标小区建立DRB的配置参数,所述目标小区为所述N个DRB中K个DRB待切换到的小区,1≤K<N,所述K为整数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的所述K个DRB所占用的传输信道和物理信道;
DRB建立单元32,还用于根据所述第一建立命令,与所述目标小区建立所述K个DRB。
其中,所述UE与所述目标小区建立的所述K个DRB所占用的传输信道,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及物理信道不同。
可选地,接收单元33,还用于在SRB建立单元31根据所述SRB的配置参数,与基站建立所述SRB之后,通过所述SRB接收所述基站发送的第二建立命令,所述第二建命令包括所述UE与目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道;
SRB建立单元31,还用于根据所述第二建立命令,与所述目标小区建立所述SRB;
其中,所述UE与所述目标小区建立的所述SRB所占用的传输信道,与,所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
本实施例的UE,可以用于执行本发明上述方法实施例中UE所执行的技术方案,其实现原理和技术效果类似,详细可以参见本发明上述方法实施例中的相关记载,此处不再赘述。
图18为本发明UE实施例三的结构示意图,如图18所示,本实施例的UE可以包括:收发器41和处理器42;其中,收发器41,用于与所述UE外部进行通信;处理器42,用于根据SRB的配置参数,与基站建立SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;以及根据承载N个业务的N个DRB的配置参数,与所述基站建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
在一种可行的实现方式中,处理器42,还用于在根据所述SRB的配置参数,与所述基站建立所述SRB之前,通过收发器41接收所述基站发送的所述SRB的配置参数和所述N个DRB的配置参数。
在另一种可行的实现方式中,处理器42,还用于在根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之前,通过收发器41,通过所述SRB接收所述基站发送的所述N个DRB的配置参数。
可选地,与所述UE分别建立所述M个DRB的M个小区不同。
可选地,与所述UE分别建立所述M个DRB的M个小区的RAT不同。
可选地,处理器42,还用于在根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之后,通过收发器41,通过所述SRB接收所述基站发送的第一建立命令,所述第一建立命令包括所述UE与目标小区建立DRB的配置参数,所述目标小区为所述N个DRB中K个DRB待切换到的小区,1≤K<N,所述K为整数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的所述K个DRB所占用的传输信道和物理信道;以及根据所述第一建立命令,与所述目标小区建立所述K个DRB。
其中,所述UE与所述目标小区建立的所述K个DRB所占用的传输信道,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及物理信道不同。
可选地,处理器42,还用于在根据所述SRB的配置参数,与基站建立所 述SRB之后,通过收发器41,通过所述SRB接收所述基站发送的第二建立命令,所述第二建命令包括所述UE与目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道;以及根据所述第二建立命令,与所述目标小区建立所述SRB;
其中,所述UE与所述目标小区建立的所述SRB所占用的传输信道,与,所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
可选地,本实施例中的收发器41和处理器42可通过总线或者其它方式连接,若以总线连接,则本实施例的UE中还包括总线。
可选地,本实施例的UE还可以包括存储器(图中未示出),存储器用于存储执行无线承载建立方法的程序代码;处理器42调用存储器中存储的程序代码以实现上述方案。
需要说明的是,为了实现本实施例的上述方案,本领域技术人员可以理解本实施例的UE还可以包括电子线路设备和用于连接各器件的总线(图中未示出)。
本实施例的UE,可以用于执行本发明上述方法实施例中UE所执行的技术方案,其实现原理和技术效果类似,详细可以参见本发明上述方法实施例中的相关记载,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (42)

  1. 一种基站,其特征在于,包括:
    信令无线承载SRB建立单元,用于根据SRB的配置参数,与用户设备UE建立所述SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;
    数据无线承载DRB建立单元,用于根据承载N个业务的N个DRB的配置参数,与所述UE建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
    其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  2. 根据权利要求1所述的基站,其特征在于,还包括:
    发送单元,用于在所述SRB建立单元根据所述SRB的配置参数,与所述UE建立所述SRB之前,向所述UE发送所述SRB的配置参数和所述N个DRB的配置参数。
  3. 根据权利要求1所述的基站,其特征在于,还包括:
    发送单元,用于在所述DRB建立单元根据N个DRB的配置参数,与所述UE建立所述N个DRB之前,通过所述SRB向所述UE发送所述N个DRB的配置参数。
  4. 根据权利要求2或3所述的基站,其特征在于,与所述UE分别建立所述M个DRB的M个小区不同。
  5. 根据权利要求4所述的基站,其特征在于,与所述UE分别建立所述M个DRB的M个小区的无线接入技术RAT不同。
  6. 根据权利要求2-5任意一项所述的基站,其特征在于,所述发送单元,还用于在所述DRB建立单元根据所述N个DRB的配置参数,与所述UE建立所述N个DRB之后,当所述UE需要在目标小区传输业务数据时,通过所述SRB向所述UE发送第一建立命令,所述目标小区为所述N个DRB中K个DRB待切换到的小区;
    其中,1≤K<N,所述K为整数;所述第一建立命令包括所述UE与所述目标小区建立DRB的配置参数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的DRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的K个DRB,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  7. 根据权利要求2-5任意一项所述的基站,其特征在于,所述发送单元,还用于在所述SRB建立单元根据所述SRB的配置参数,与所述UE建立所述SRB之后,当所述UE需要在目标小区传输控制数据时,通过所述SRB向所述UE发送第二建立命令,所述第二建立命令包括所述UE与所述目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;
    其中,所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  8. 一种用户设备UE,其特征在于,包括:
    信令无线承载SRB建立单元,用于根据SRB的配置参数,与基站建立SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;
    数据无线承载DRB建立单元,用于根据承载N个业务的N个DRB的配置参数,与所述基站建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
    其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  9. 根据权利要求8所述的UE,其特征在于,还包括:
    接收单元,用于在所述SRB建立单元根据所述SRB的配置参数,与所述基站建立所述SRB之前,接收所述基站发送的所述SRB的配置参数和所述N个DRB的配置参数。
  10. 根据权利要求8所述的UE,其特征在于,还包括:
    接收单元,用于在所述DRB建立单元根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之前,通过所述SRB接收所述基站发送的所述N个DRB的配置参数。
  11. 根据权利要求9或10所述的UE,其特征在于,与所述UE分别建立所述M个DRB的M个小区不同。
  12. 根据权利要求11所述的UE,其特征在于,与所述UE分别建立所述M个DRB的M个小区的无线接入技术RAT不同。
  13. 根据权利要求9-12任意一项所述的UE,其特征在于,所述接收单元,还用于在所述DRB建立单元根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之后,通过所述SRB接收所述基站发送的第一建立命令,所述第一建立命令包括所述UE与目标小区建立DRB的配置参数,所述目标小区为所述N个DRB中K个DRB待切换到的小区,1≤K<N,所述K为整数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的所述K个DRB所占用的传输信道和物理信道;
    所述DRB建立单元,还用于根据所述第一建立命令,与所述目标小区建立所述K个DRB;
    其中,所述UE与所述目标小区建立的所述K个DRB所占用的传输信道,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及物理信道不同。
  14. 根据权利要求9-12任意一项所述的UE,其特征在于,所述接收单元,还用于在所述SRB建立单元根据所述SRB的配置参数,与基站建立所述SRB之后,通过所述SRB接收所述基站发送的第二建立命令,所述第二建命令包括所述UE与目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道;
    所述SRB建立单元,还用于根据所述第二建立命令,与所述目标小区建立所述SRB;
    其中,所述UE与所述目标小区建立的所述SRB所占用的传输信道,与,所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信 道不同。
  15. 一种基站,其特征在于,包括:
    收发器,用于与所述基站外部进行通信;
    处理器,用于根据信令无线承载SRB的配置参数,与用户设备UE建立所述SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;以及根据承载N个业务的N个数据无线承载DRB的配置参数,与所述UE建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
    其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  16. 根据权利要求15所述的基站,其特征在于,所述处理器,还用于在根据所述SRB的配置参数,与所述UE建立所述SRB之前,通过所述收发器向所述UE发送所述SRB的配置参数和所述N个DRB的配置参数。
  17. 根据权利要求15所述的基站,其特征在于,所述处理器,还用于在根据N个DRB的配置参数,与所述UE建立所述N个DRB之前,通过所述收发器,通过所述SRB向所述UE发送所述N个DRB的配置参数。
  18. 根据权利要求16或17所述的基站,其特征在于,与所述UE分别建立所述M个DRB的M个小区不同。
  19. 根据权利要求18所述的基站,其特征在于,与所述UE分别建立所述M个DRB的M个小区的无线接入技术RAT不同。
  20. 根据权利要求16-19任意一项所述的基站,其特征在于,所述处理器,还用于在根据所述N个DRB的配置参数,与所述UE建立所述N个DRB之后,当所述UE需要在目标小区传输业务数据时,通过所述收发器,通过所述SRB向所述UE发送第一建立命令,所述目标小区为所述N个DRB中K个DRB待切换到的小区;
    其中,1≤K<N,所述K为整数;所述第一建立命令包括所述UE与所述目标小区建立DRB的配置参数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的DRB所占用的传输信道和物理 信道,所述UE与所述目标小区建立的K个DRB,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  21. 根据权利要求16-19任意一项所述的基站,其特征在于,所述处理器,还用于在根据所述SRB的配置参数,与所述UE建立所述SRB之后,当所述UE需要在目标小区传输控制数据时,通过所述收发器,通过所述SRB向所述UE发送第二建立命令,所述第二建立命令包括所述UE与所述目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;
    其中,所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  22. 一种用户设备UE,其特征在于,包括:
    收发器,用于与所述UE外部进行通信;
    处理器,用于根据信令无线承载SRB的配置参数,与基站建立SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;以及根据承载N个业务的N个无线数据承载DRB的配置参数,与所述基站建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
    其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  23. 根据权利要求22所述的UE,其特征在于,所述处理器,还用于在根据所述SRB的配置参数,与所述基站建立所述SRB之前,通过所述收发器接收所述基站发送的所述SRB的配置参数和所述N个DRB的配置参数。
  24. 根据权利要求22所述的UE,其特征在于,所述处理器,还用于在根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之前,通过所述收发器,通过所述SRB接收所述基站发送的所述N个DRB的配置参数。
  25. 根据权利要求23或24所述的UE,其特征在于,与所述UE分别建 立所述M个DRB的M个小区不同。
  26. 根据权利要求25所述的UE,其特征在于,与所述UE分别建立所述M个DRB的M个小区的无线接入技术RAT不同。
  27. 根据权利要求23-26任意一项所述的UE,其特征在于,所述处理器,还用于在根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之后,通过所述收发器,通过所述SRB接收所述基站发送的第一建立命令,所述第一建立命令包括所述UE与目标小区建立DRB的配置参数,所述目标小区为所述N个DRB中K个DRB待切换到的小区,1≤K<N,所述K为整数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的所述K个DRB所占用的传输信道和物理信道;以及根据所述第一建立命令,与所述目标小区建立所述K个DRB;
    其中,所述UE与所述目标小区建立的所述K个DRB所占用的传输信道,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及物理信道不同。
  28. 根据权利要求23-26任意一项所述的UE,其特征在于,所述处理器还用于在根据所述SRB的配置参数,与基站建立所述SRB之后,通过所述收发器,通过所述SRB接收所述基站发送的第二建立命令,所述第二建命令包括所述UE与目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道;以及根据所述第二建立命令,与所述目标小区建立所述SRB;
    其中,所述UE与所述目标小区建立的所述SRB所占用的传输信道,与,所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  29. 一种无线承载建立方法,其特征在于,包括:
    基站根据信令无线承载SRB的配置参数,与用户设备UE建立所述SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;
    基站根据承载N个业务的N个数据无线承载DRB的配置参数,与所述UE建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
    其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  30. 根据权利要求29所述的方法,其特征在于,所述基站根据所述SRB的配置参数,与所述UE建立所述SRB之前,还包括:
    所述基站向所述UE发送所述SRB的配置参数和所述N个DRB的配置参数。
  31. 根据权利要求29所述的方法,其特征在于,所述基站根据N个DRB的配置参数,与所述UE建立所述N个DRB之前,还包括:
    所述基站通过所述SRB向所述UE发送所述N个DRB的配置参数。
  32. 根据权利要求29-31任意一项所述的方法,其特征在于,与所述UE分别建立所述M个DRB的M个小区不同。
  33. 根据权利要求32所述的方法,其特征在于,与所述UE分别建立所述M个DRB的M个小区的无线接入技术RAT不同。
  34. 根据权利要求29-33任意一项所述的方法,其特征在于,所述基站根据所述N个DRB的配置参数,与所述UE建立所述N个DRB之后,还包括:
    当所述UE需要在目标小区传输业务数据时,所述基站通过所述SRB向所述UE发送第一建立命令,所述目标小区为所述N个DRB中K个DRB待切换到的小区;
    其中,1≤K<N,所述K为整数;所述第一建立命令包括所述UE与所述目标小区建立DRB的配置参数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的DRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的K个DRB,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  35. 根据权利要求29-33任意一项所述的方法,其特征在于,所述基站根据所述SRB的配置参数,与所述UE建立所述SRB之后,还包括:
    当所述UE需要在目标小区传输控制数据时,所述基站通过所述SRB向 所述UE发送第二建立命令,所述第二建立命令包括所述UE与所述目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;
    其中,所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道,所述UE与所述目标小区建立的SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  36. 一种无线承载建立方法,其特征在于,包括:
    用户设备UE根据信令无线承载SRB的配置参数,与基站建立SRB,所述SRB的配置参数用于指示所述SRB所占用的传输信道和物理信道;
    所述UE根据承载N个业务的N个数据无线承载DRB的配置参数,与所述基站建立所述N个DRB,所述N为大于或等于2的整数,所述N个DRB的配置参数用于指示所述N个DRB所占用的传输信道和物理信道;
    其中,所述N个DRB中存在M个DRB所占用的传输信道不同以及所占用的物理信道不同;所述M为大于或等于2的整数,并且小于或等于所述N的整数,所述SRB与所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
  37. 根据权利要求36所述的方法,其特征在于,所述UE根据所述SRB的配置参数,与所述基站建立所述SRB之前,还包括:
    所述UE接收所述基站发送的所述SRB的配置参数和所述N个DRB的配置参数。
  38. 根据权利要求36所述的方法,其特征在于,所述UE根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之前,还包括:
    所述UE通过所述SRB接收所述基站发送的所述N个DRB的配置参数。
  39. 根据权利要求36-38任意一项所述的方法,其特征在于,与所述UE分别建立所述M个DRB的M个小区不同。
  40. 根据权利要求39所述的方法,其特征在于,与所述UE分别建立所述M个DRB的M个小区的无线接入技术RAT不同。
  41. 根据权利要求36-40任意一项所述的方法,其特征在于,所述UE根据所述N个DRB的配置参数,与所述基站建立所述N个DRB之后,还包括:
    所述UE通过所述SRB接收所述基站发送的第一建立命令,所述第一建立命令包括所述UE与目标小区建立DRB的配置参数,所述目标小区为所述N个DRB中K个DRB待切换到的小区,1≤K<N,所述K为整数,所述UE与所述目标小区建立DRB的配置参数用于指示所述UE与所述目标小区建立的所述K个DRB所占用的传输信道和物理信道;
    所述UE根据所述第一建立命令,与所述目标小区建立所述K个DRB;
    其中,所述UE与所述目标小区建立的所述K个DRB所占用的传输信道,与,所述N个DRB中除所述K个DRB之外的至少一个DRB所占用的传输信道不同以及物理信道不同。
  42. 根据权利要求36-40任意一项所述的方法,其特征在于,所述UE根据所述SRB的配置参数,与基站建立所述SRB之后,还包括:
    所述UE通过所述SRB接收所述基站发送的第二建立命令,所述第二建命令包括所述UE与目标小区建立SRB的配置参数,所述目标小区为所述SRB待切换到的小区;所述UE与所述目标小区建立SRB的配置参数用于指示所述UE与所述目标小区建立的SRB所占用的传输信道和物理信道;
    所述UE根据所述第二建立命令,与所述目标小区建立所述SRB;
    其中,所述UE与所述目标小区建立的所述SRB所占用的传输信道,与,所述N个DRB中至少一个DRB所占用的传输信道不同以及所占用的物理信道不同。
PCT/CN2015/079595 2015-05-22 2015-05-22 无线承载建立方法和设备 WO2016187751A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580065314.2A CN107005987B (zh) 2015-05-22 2015-05-22 无线承载建立方法和设备
EP15892836.6A EP3291620B1 (en) 2015-05-22 2015-05-22 Radio bearer establishment method and device
PCT/CN2015/079595 WO2016187751A1 (zh) 2015-05-22 2015-05-22 无线承载建立方法和设备
US15/818,388 US10314086B2 (en) 2015-05-22 2017-11-20 Radio bearer setup method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079595 WO2016187751A1 (zh) 2015-05-22 2015-05-22 无线承载建立方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/818,388 Continuation US10314086B2 (en) 2015-05-22 2017-11-20 Radio bearer setup method and device

Publications (1)

Publication Number Publication Date
WO2016187751A1 true WO2016187751A1 (zh) 2016-12-01

Family

ID=57393763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079595 WO2016187751A1 (zh) 2015-05-22 2015-05-22 无线承载建立方法和设备

Country Status (4)

Country Link
US (1) US10314086B2 (zh)
EP (1) EP3291620B1 (zh)
CN (1) CN107005987B (zh)
WO (1) WO2016187751A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888078B (zh) * 2016-12-26 2019-03-12 中国移动通信有限公司研究院 前传网络的数据传输方法及装置
US11601841B2 (en) * 2018-08-01 2023-03-07 Nec Corporation Radio station, radio communication method, non-transitory computer readable medium, and radio communication system
CN111356172B (zh) * 2018-12-20 2022-04-12 华为技术有限公司 通信方法、装置、终端、网络设备及存储介质
CN115942464A (zh) * 2021-09-11 2023-04-07 华为技术有限公司 一种通信方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964228A (zh) * 2005-11-11 2007-05-16 中兴通讯股份有限公司 基于无线承载结合描述的无线承载建立和数据传输方法
US20130201924A1 (en) * 2012-02-07 2013-08-08 Qualcomm Incorporated Data radio bearer (drb) enhancements for small data transmissions apparatus, systems, and methods
CN104244450A (zh) * 2013-06-21 2014-12-24 中兴通讯股份有限公司 长期演进业务和集群业务并发时重建立方法、基站和用户设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9042338B2 (en) 2007-07-09 2015-05-26 Intel Mobile Communications GmbH Communication device and method for transmitting data
US20140241149A1 (en) * 2013-02-27 2014-08-28 Qualcomm Incorporated Systems and methods for synchronizing wireless communication device configurations
US8761783B2 (en) * 2009-09-22 2014-06-24 Electronics And Telecommunications Research Institute Method of transmitting user message, terminal and base station using the method
US20130137469A1 (en) * 2011-11-30 2013-05-30 Intel Mobile Communications GmbH Method for transmitting an opportunistic network related message
WO2013165161A1 (en) * 2012-05-02 2013-11-07 Lg Electronics Inc. Method and apparatus for changing cell information in wireless communication system
WO2013185285A1 (en) * 2012-06-12 2013-12-19 Nokia Corporation Methods, apparatuses and computer program products for configuration of signaling radio bearers
EP3668181A1 (en) * 2012-08-02 2020-06-17 Telefonaktiebolaget LM Ericsson (publ) A node and method for handing over a sub-set of bearers to enable multiple connectivity of a terminal towards several base stations
CN103916917B (zh) * 2013-01-06 2018-08-07 电信科学技术研究院 一种承载分离场景下进行切换的方法、设备及系统
US8855645B2 (en) * 2013-02-28 2014-10-07 Intel Mobile Communications GmbH Radio communication devices and cellular wide area radio base station
CN104144505B (zh) * 2013-05-10 2018-08-17 华为技术有限公司 上行数据包发送方法、下行数据发送方法及设备
WO2014183252A1 (zh) * 2013-05-13 2014-11-20 上海贝尔股份有限公司 通信系统中确定具有双连接的用户设备的移动性的方法
US10091821B2 (en) * 2013-06-26 2018-10-02 Telefonaktiebolaget Lm Ericsson (Publ) Methods and network node for activation of connection configuration for a secondary base station
US9819469B2 (en) * 2013-07-01 2017-11-14 Qualcomm Incorporated Techniques for enabling quality of service (QoS) on WLAN for traffic related to a bearer on cellular networks
US9713142B2 (en) * 2013-07-14 2017-07-18 Lg Electronics Inc. Method and apparatus for managing data radio bearers for dual connectivity in wireless communication system
US20150173118A1 (en) * 2013-12-18 2015-06-18 Qualcomm Incorporated Flexible extended signaling
US9763199B2 (en) * 2014-01-29 2017-09-12 Interdigital Patent Holdings, Inc. Uplink transmissions in wireless communications
TWI556663B (zh) * 2014-12-25 2016-11-01 宏達國際電子股份有限公司 處理與多個基地台間通訊的失敗的方法及其裝置
US20160255545A1 (en) * 2015-02-27 2016-09-01 Qualcomm Incorporated Flexible extended signaling
CN106304398B (zh) * 2015-05-15 2021-08-27 夏普株式会社 用于重配置数据承载的方法和用户设备
CN112437491A (zh) * 2015-05-15 2021-03-02 夏普株式会社 用户设备和由用户设备执行的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964228A (zh) * 2005-11-11 2007-05-16 中兴通讯股份有限公司 基于无线承载结合描述的无线承载建立和数据传输方法
US20130201924A1 (en) * 2012-02-07 2013-08-08 Qualcomm Incorporated Data radio bearer (drb) enhancements for small data transmissions apparatus, systems, and methods
CN104244450A (zh) * 2013-06-21 2014-12-24 中兴通讯股份有限公司 长期演进业务和集群业务并发时重建立方法、基站和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3291620A4 *

Also Published As

Publication number Publication date
US20180132294A1 (en) 2018-05-10
CN107005987B (zh) 2019-07-12
EP3291620B1 (en) 2020-02-12
EP3291620A4 (en) 2018-04-25
CN107005987A (zh) 2017-08-01
US10314086B2 (en) 2019-06-04
EP3291620A1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
CN108541032B (zh) 无线基站分离架构下的通信方法、功能实体及无线基站
CA3072717C (en) Data transmission method and data transmission apparatus
EP3328155B1 (en) Method, base station, and user equipment for implementing carrier aggregation
JP5920801B2 (ja) データ転送方法、装置、および通信システム
JP2021153323A (ja) 無線通信システムにおける次のメッセージのために使われるベアラのタイプを指示する方法及び装置
EP3461216B1 (en) Multi-connection communication method and device
US11412563B2 (en) Multi-connectivity communication method and device
WO2017020253A1 (zh) 用于辅基站切换的方法、网络设备和用户设备
CN108271276B (zh) 处理系统间移动中的新无线连接的装置及方法
CN108184249B (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
WO2014198133A1 (zh) 一种数据无线承载drb的资源分配方法及装置
WO2014059663A1 (zh) 切换方法和设备
WO2015089791A1 (zh) 一种载波聚合的实现方法和装置及系统
US10314086B2 (en) Radio bearer setup method and device
WO2014048361A1 (zh) 一种资源配置方法及设备
WO2012152130A1 (zh) 承载处理方法及装置
CN105009663B (zh) 一种消息传输方法及设备
US10285109B2 (en) Wireless connection establishment method and apparatus
WO2012126330A1 (zh) 联合传输方法及系统
WO2023124822A1 (zh) 一种通信协作方法及装置
CN113873585A (zh) 用于切换的数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015892836

Country of ref document: EP