WO2024027346A1 - 一种放大信号的装置、接收光信号的装置和方法 - Google Patents

一种放大信号的装置、接收光信号的装置和方法 Download PDF

Info

Publication number
WO2024027346A1
WO2024027346A1 PCT/CN2023/099948 CN2023099948W WO2024027346A1 WO 2024027346 A1 WO2024027346 A1 WO 2024027346A1 CN 2023099948 W CN2023099948 W CN 2023099948W WO 2024027346 A1 WO2024027346 A1 WO 2024027346A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplification
signal
data recovery
recovery channel
rate
Prior art date
Application number
PCT/CN2023/099948
Other languages
English (en)
French (fr)
Inventor
林华枫
李远谋
黄利新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027346A1 publication Critical patent/WO2024027346A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0003Details

Definitions

  • the present application relates to the field of optical access, and, more specifically, to a device for amplifying a signal, a device and a method for receiving an optical signal.
  • Passive optical network is an optical line terminal (OLT) that connects a certain number of optical network terminals (optical network terminal, ONT) or more through an optical distribution network (ODN).
  • ONT optical network terminal
  • ODN optical distribution network
  • This application provides a device for amplifying signals, a device and a method for receiving optical signals, which can simultaneously meet the different performance requirements of 50GPON and GPON.
  • inventions of the present application provide a device for amplifying a signal.
  • the device includes: a signal receiving unit channel selection unit, a first amplification and data recovery channel and a second amplification and data recovery channel.
  • the signal receiving unit is configured to receive a first signal and output the first signal to the channel selection unit, where the first signal includes a first rate signal and a second rate signal.
  • the channel selection unit is used to connect the signal receiving unit to at least one of the first amplification and data recovery channel and the second amplification and data recovery channel, and transmit the first signal to the at least one of a first amplification and data recovery channel and said second amplification and data recovery channel.
  • the first amplification and data recovery channel is used to amplify and data recover the first signal transmitted to the first amplification and data recovery channel.
  • the second amplification and data recovery channel is used to amplify and data recover the first signal transmitted to the second amplification and data recovery channel.
  • the signal receiving unit may be a serial port for receiving signals.
  • the device for amplifying the signal may be the amplifying device itself, or a module in the amplifying device, or may be in the form of a chip, which is not limited by this application.
  • multi-rate first signals can be transmitted to different amplification and data recovery channels.
  • the first signal can reuse the same carrier for transmission.
  • the carriers of 50GPON and GPON can use optical signals of the same band, which can realize the coexistence scenario of 50GPON and GPON devices in the system without affecting the system performance.
  • the signal receiving unit is specifically configured to receive the first rate signal and the second rate signal arriving at different times.
  • the first rate signal and the second rate signal in the first signal arrive at the signal receiving unit staggered in a certain order in the time dimension.
  • the first amplification and data recovery channel is specifically used to perform limiting amplification and data recovery on the first rate signal.
  • the second amplification and data recovery channel is specifically used for linear amplification and data recovery of the second rate signal.
  • the channel selection unit includes: a control unit and a switching element.
  • the control unit is configured to receive first control signaling, and control the switching element according to the first control signaling to connect the signal receiving unit with the first amplification and data recovery channel or with the third Two amplification and data recovery channels are connected.
  • the switching element connects the signal receiving unit to the first amplification and data recovery channel
  • the switching element is used to transmit the first rate signal to the first amplification and data recovery channel.
  • the switching element connects the signal receiving unit to the second amplification and data recovery channel, the switching element For transmitting the second rate signal to the second amplification and data recovery channel.
  • the first signal is transmitted to different amplification and data recovery channels, so that the first signal can be amplified in the amplification and data recovery channel adapted to its rate, ensuring It improves the integrity of the signal during transmission and further improves the performance of the system.
  • the switching element includes a single-pole double-throw switch or a triode.
  • the single-pole double-throw switch is a "single-pole double-throw" high-speed electronic switch.
  • the switching of the first signal channel is realized based on common components such as single-pole double-throw switches or triodes, which can save the cost of network upgrades.
  • the first control information comes from media access control MAC.
  • the first control information is sent to the control unit based on the uplink timing stored in the MAC, by
  • the first control information control channel selection unit is connected to amplification and data recovery channels of different bandwidths, which can ensure the reliability of channel switching and thereby ensure the stability of system performance.
  • the channel selection unit includes: a mirror module.
  • the mirror module is used to mirror and copy the first signal to obtain a second signal, and transmit the first signal and the second signal to the first amplification and data recovery channel and the second amplification and data recovery channel respectively. aisle.
  • Replication of the first signal based on common mirror circuits can save the cost of network upgrades.
  • the MAC can select the amplification and data recovery channel that matches the first signal rate according to the timing for reception. , Therefore, the performance of the system can still be guaranteed.
  • the first amplification and data recovery channel is also used to receive second control signaling, and determine the first amplification based on the second control signaling. and the working rate/working bandwidth of the data recovery channel.
  • the second amplification and data recovery channel is also used to receive second control signaling, and determine the working rate/working bandwidth of the second amplification and data recovery channel according to the second control signaling.
  • the second control information comes from the media access control MAC.
  • the second control information is sent to the amplifier based on the uplink timing stored in the MAC, and through the second control
  • the information amplifier adjusts the bandwidth of different amplification and data recovery channels to ensure the signal-to-noise ratio after signal amplification, thereby ensuring the stability of system performance.
  • the device includes M amplification and data recovery channels
  • the first signal includes N rates
  • the M amplification and data recovery channels are related to the Corresponding to N types of rates
  • each rate in the N types of rates corresponds to one of the M amplification and data recovery channels.
  • the channel selection unit is used to connect the signal receiving unit with an amplification and data recovery channel corresponding to the rate of the first signal.
  • M and N are integers greater than or equal to 2.
  • the multi-channel amplification device provided by this application has the ability to amplify most signals and recover data, while ensuring system performance and realizing applications in multiple scenarios.
  • inventions of the present application provide a device for receiving optical signals.
  • the device includes: an optical signal receiving and converting unit, a channel selecting unit, a first amplification and data recovery channel and a second amplification and data recovery channel.
  • the optical signal receiving and converting unit is used to receive a first optical signal, convert the first optical signal into a first electrical signal, and output the first electrical signal to the channel selection unit.
  • An optical signal includes a first rate optical signal and a second rate optical signal. The first rate optical signal corresponds to a first rate electrical signal, and the second rate optical signal corresponds to a second rate electrical signal.
  • the channel selection unit is used to connect the optical signal receiving and converting unit with at least one of the first amplification and data recovery channel and the second amplification and data recovery channel, and transmit the first electrical signal to at least one of the first amplification and data recovery channel and the second amplification and data recovery channel.
  • the first amplification and data recovery channel is used to amplify and data recover the first electrical signal transmitted to the first amplification and data recovery channel.
  • the second amplification and data recovery channel is used to amplify and data recover the first electrical signal transmitted to the second amplification and data recovery channel.
  • the optical signal receiving and converting unit may be an avalanche diode APD, or other components or chips used to convert optical signals into electrical signals.
  • a photoelectric conversion chip may be used to convert the first optical signal into the first optical signal. electric signal.
  • the optical signal receiving and converting unit is specifically configured to receive the first rate optical signal and the second rate optical signal arriving at different times. , convert the first rate optical signal and the second rate optical signal into the first rate electrical signal and the second rate electrical signal, and output the first rate electrical signal and the second rate electrical signal at different times respectively.
  • the second rate electrical signal is sent to the channel selection unit.
  • the first rate signal and the second rate signal among the first optical signal and the first electrical signal arrive at the optical signal conversion and conversion unit in a certain order in a time dimension in a staggered manner.
  • the first amplification and data recovery channel is specifically used to perform limiting amplification and data recovery on the first rate electrical signal.
  • the second amplification and data recovery channel is specifically used for linear amplification and data recovery of the second rate electrical signal.
  • the channel selection unit includes: a control unit and a switching element.
  • the control unit is configured to receive a first control signaling, and control the switching element according to the first control signaling to connect the optical signal receiving and converting unit to the first amplification and data recovery channel or to the first amplification and data recovery channel.
  • the second amplification and data recovery channel are connected.
  • the switching element connects the optical signal receiving and converting unit to the first amplification and data recovery channel
  • the switching element transmits the first rate electrical signal to the first amplification and data recovery channel.
  • the switching element connects the optical signal receiving and converting unit to the second amplification and data recovery channel
  • the switching element is used to transmit the second rate electrical signal to the second amplification and data recovery channel. Recovery channel.
  • the switching element includes a single-pole double-throw switch or a triode.
  • the first control information comes from media access control MAC.
  • the channel selection unit includes: a mirror module.
  • the mirror module is used to mirror and copy the first electrical signal to obtain a second electrical signal, and transmit the first electrical signal and the second electrical signal to the first amplification and data recovery channel and the Second amplification and data recovery channel.
  • the first amplification and data recovery channel is also used to receive second control signaling, and determine the first amplification according to the second control signaling. and the working rate/working bandwidth of the data recovery channel.
  • the second amplification and data recovery channel is also used to receive second control signaling, and determine the working rate/working bandwidth of the second amplification and data recovery channel according to the second control signaling.
  • the second control information comes from the media access control MAC.
  • the device includes M amplification and data recovery channels
  • the first optical signal or the first electrical signal includes N rate signals
  • the M Amplification and data recovery channels correspond to the N rate signals
  • each rate signal in the N rate signals corresponds to one of the M amplification and data recovery channels.
  • the M amplification and data recovery channels Channels include limiting amplification and data recovery channels, as well as linear amplification and data recovery channels.
  • the channel selection unit is used to connect the optical signal receiving and converting unit with an amplification and data recovery channel corresponding to the rate of the first electrical signal.
  • M and N are integers greater than or equal to 2.
  • the present application implements a method of amplifying a signal.
  • the method includes: receiving a first signal, where the first signal includes a first rate signal and a second rate signal.
  • the first signal is transmitted to at least one of a first amplification and data recovery channel and a second amplification and data recovery channel.
  • the first amplification and data recovery channel amplifies and data recovers the first signal.
  • the second amplification and data recovery channel amplifies and data recovers the first signal.
  • receiving the first signal includes: receiving the first rate signal and the second rate signal at different times.
  • the first amplification and data recovery channel amplifies and data recovers the first signal, including: the first amplification and data recovery channel amplifies and data recovers the first signal.
  • the first signal is subjected to limiting amplification and data recovery.
  • the second amplification and data recovery channel amplifies and data recovers the first signal, including: the second amplification and data recovery channel performs linear amplification and data recovery of the first signal.
  • the method further includes: receiving first control signaling.
  • the first signal is transmitted to the first amplification and data recovery channel or the second amplification and data recovery channel according to the first control signaling.
  • the first control information comes from the media access control MAC.
  • the method further includes: mirror copying the first signal to obtain a second signal.
  • the first signal and the second signal are respectively transmitted to the first amplification and data recovery channel and the second amplification and data recovery channel.
  • the method further includes: receiving second control signaling.
  • the working rate/working bandwidth of the first amplification and data recovery channel or the second amplification and data recovery channel is determined according to the second control signaling.
  • the second control information comes from the media access control MAC.
  • the first signal includes N rates, the N rates correspond to M amplification and data recovery channels, and each of the N rates The rate corresponds to one of the M channels, where M and N is an integer greater than or equal to 2.
  • the first signal is transmitted to a channel corresponding to the rate of the first signal.
  • inventions of the present application provide a passive optical network system.
  • the system includes an optical line terminal OLT and a plurality of optical network units ONU.
  • the OLT and the ONU communicate through at least one downlink wavelength channel and one uplink wavelength channel, wherein the uplink wavelength channel is used to transmit all According to the first signal, the OLT is configured to perform the method provided by the above third aspect or any implementation of the above third aspect.
  • the transmission on the uplink wavelength channel includes at least two optical signals with different rates and staggered in the time dimension.
  • embodiments of the present application provide a chip.
  • the chip includes a processor and an optical signal receiving device.
  • the optical signal receiving device is used to receive the first signal and transmit it to the processor.
  • the processor is used to execute the above third aspect or any of the above third aspects. A method provided by the implementation.
  • embodiments of the present application provide a communication device.
  • the device is used to perform the method provided in the third aspect above.
  • the communication device may include units and/or modules for performing the method provided by the third aspect or any one of the above implementations of the third aspect, such as a processing module and a transceiver module.
  • the communication device may include a unit and/or module for performing the method provided by the third aspect or any of the above implementations of the third aspect, and is a receiving end device.
  • the transceiver module may be a transceiver or an input/output interface.
  • the processing module may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip, chip system or circuit in the receiving end device.
  • the transceiver module may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit.
  • the processing module may be at least one processor, processing circuit or logic circuit, etc.
  • embodiments of the present application provide a processor for executing the method provided in the third aspect.
  • processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
  • transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores program code for device execution, and the program code includes execution of the above third aspect and the method provided by any one of the third aspect implementations.
  • embodiments of the present application provide a computer program product containing instructions.
  • the computer program product When the computer program product is run on the computer, the computer is caused to execute the above third aspect and the method provided by any one of the third aspect implementations.
  • embodiments of the present application provide a chip.
  • the chip includes a processor and a communication interface.
  • the processor reads instructions stored in the memory through the communication interface and executes any implementation of the third aspect. provided method.
  • the chip also includes a memory, in which computer programs or instructions are stored.
  • the processor is used to execute the computer programs or instructions stored in the memory.
  • the processor is used to execute The method provided by any one of the above third aspect and the third aspect implementation manner.
  • Figure 1 is a schematic diagram of the PON system architecture applicable to the embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a signal amplification device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of the first signal amplifying device 200 provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a second signal amplifying device 200 provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the first signal amplifying device 300 provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second signal amplifying device 300 provided by an embodiment of the present application.
  • Figure 7 is a schematic flowchart of a signal amplification method 700 provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a signal amplification method 800 provided by an embodiment of the present application.
  • Figure 9 is a schematic flowchart of a signal amplification method 900 provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a device 1000 for receiving optical signals provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a device 1001 for receiving optical signals provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a device 1002 for receiving optical signals provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used to express examples, illustrations or illustrations, and embodiments or designs described as “exemplary” or “for example” should not are to be construed as preferred or advantageous over other embodiments or designs.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • for instructions may include direct instructions and indirect instructions.
  • information When describing certain information to indicate A, it may include that the information directly indicates A or indirectly indicates A, but it does not mean that the information must contain A.
  • PON technology is a broadband access technology based on passive ODN network. It adopts point-to-multipoint (point 2 multiple point, P2MP) topology, with independent uplink and downlink transmission wavelengths and time-division multiplexing of data.
  • the ODN network connecting OLT and ONU in the PON system uses pure optical media, is passive throughout, has strong environmental adaptability, and is easy to expand and upgrade. Due to its comparative advantages over copper wire access in fiber-optic, passive, P2MP, etc., PON technology has achieved great success and has been deployed on a large scale.
  • the optical signals of multiple wavelengths in the optical fiber are decomposed to different receivers according to different optical wavelengths through a wavelength division multiplexer (demultiplexer).
  • demultiplexer wavelength division multiplexer
  • different rates use corresponding rate receivers, that is, the GPON corresponding avalanche photodiode (avalanche photo diode, APD) and transimpedance amplifier (trans-impedance amplifier, TIA) are used in GPON reception.
  • APD avalanche photo diode
  • TIA transimpedance amplifier
  • embodiments of the present application provide a signal amplification method, a communication device, and a passive optical network system. Based on the signal amplification method provided by this application, the above-mentioned technical difficulties and cost problems caused by the use of WDM when 50GPON coexist.
  • This application designs a unique TIA (respectively outputting signals of GPON and 50G-PON) through the coexistence of 50GPON and GPON time division multiplexing, using optical carriers in the same wavelength range, and using the same optical detector (APD). , the serial-to-parallel conversion interface of the medium access control (MAC) to choose to receive GPON or 50G-PON signals at a certain time.
  • the solution provided by this application can save The deployment space of central office equipment and the reduction of energy consumption of optical access equipment can effectively utilize the ODN resources of the existing network while reducing the operator's network construction costs.
  • FIG. 1 is a schematic diagram of the PON system architecture applicable to the embodiment of the present application.
  • PON technology is a point-to-multipoint optical fiber access technology.
  • the PON system includes OLT equipment, ODN equipment and at least one ONU equipment. Among them, the OLT device is connected to the ODN device, and the ODN device is connected to multiple ONU devices.
  • the OLT device provides a network-side interface.
  • the OLT device is connected to the upper-layer network-side devices (such as switches, routers, etc.), and the lower layer is connected to one or more ODN devices.
  • OLT equipment is usually located in the center office (CO), and ONU equipment is located at or near the user's home.
  • the ONU device provides a user-side interface and is connected to the ODN device. If the ONU also provides user interface functions, such as providing an Ethernet user interface or a traditional telephone service (plain old telephone service, POTS) user interface, it is called an optical network termination (ONT).
  • POTS plain old telephone service
  • ODN equipment includes passive optical splitters for optical power distribution, trunk optical fibers connected between the passive optical splitters and OLT, and branch optical fibers connected between the passive optical splitters and ONU equipment.
  • the ODN device When transmitting downlink data, the ODN device transmits the downlink data from the OLT device to each ONU device through the optical splitter.
  • the ODN device when transmitting upstream data, the ODN device aggregates the upstream data from the ONU device and transmits it to the OLT device.
  • the signal amplifying device proposed in this application is located in the central office OLT equipment.
  • it can be integrated into the optical module as a functional feature in the OLT equipment.
  • This application does not limit the form of the signal amplifying device. .
  • FIG. 2 is a schematic structural diagram of a signal amplifying device 200 provided by an embodiment of the present application.
  • the device 200 includes a signal receiving unit 201, a channel selection unit 202, a first amplification and data recovery channel 203 and a second amplification and data recovery channel 204.
  • the signal receiving unit 201 is configured to receive a first signal and output the first signal to the channel selection unit 202, where the first signal includes a first rate signal and a second rate signal.
  • the first rate signal and the second rate signal arrive at the signal receiving unit 201 staggered in a certain order in the time dimension.
  • the channel selection unit 202 is used to connect the signal receiving unit 201 with at least one of the first amplification and data recovery channel 203 and the second amplification and data recovery channel 204, and transmit the first signal to the first amplification and data recovery channel 203 and at least one of a second amplification and data recovery channel 204.
  • the first amplification and data recovery channel 203 is used to amplify and data recover the first signal transmitted to the first amplification and data recovery channel 203 .
  • the second amplification and data recovery channel 204 is used to amplify and data recover the first signal transmitted to the second amplification and data recovery channel 204 .
  • the first amplification and data recovery channel 203 corresponds to the first rate
  • the second amplification and data recovery channel 204 corresponds to the second rate.
  • the first rate may be 1.25Gbps
  • the second rate may be 50Gbps.
  • the first amplifier 2031 a limiting transimpedance amplifier with an operating bandwidth of 1.25Gbps located in the first amplification and data recovery channel 203 The signal is amplified and data restored.
  • the second amplifier 2041 (a linear transimpedance amplifier with a bandwidth of 50Gbps) of the second amplification and data recovery channel is used to linearly amplify and data the first signal. recover.
  • the communication unit 202 includes a control unit 2021 and a switching element 2022.
  • the amplifier 200 is as shown in FIG. 3 .
  • the control unit 2021 is used to receive the first control signaling, and control the switching element 2022 according to the first control signaling to connect the signal receiving unit 201 with the first amplification and data recovery channel 203 or with the second amplification and data recovery channel 204 Connected.
  • the switching element 2022 connects the signal receiving unit 201 to the first amplification and data recovery channel 203
  • the switching element 2022 is used to transmit the first rate signal to the first amplification and data recovery channel 203.
  • the switching element 2022 connects the signal receiving unit 201 to the second amplification and data recovery channel 204
  • the switching element 2022 is used to transmit the second rate signal to the second amplification and data recovery channel 204.
  • the switching element 2022 can be a single-pole double-throw switch or a transistor or other elements capable of realizing link switching. It should be understood that in FIG. 3 , the switching element 2022 is explained as a single-pole double-throw switch.
  • the first amplifier 2031 is a transimpedance amplifier with a bandwidth of 1.25Gbps
  • the second amplifier 2041 is a transimpedance amplifier with a bandwidth of 50Gbps.
  • the first control signaling received by the control unit 2021 instructs the control unit 2021 to control the switching element 2022 to connect the signal receiving unit 201 with the first amplification and data recovery channel 203 .
  • the first rate signal with a rate of 1.25Gbps is transmitted to the first amplification and data recovery channel 203 through the switching element 2022, and is amplified and data recovered through the first amplifier 2031 located in the first amplification and data recovery channel 203.
  • the first control signaling received by the control unit 2021 instructs the control unit 2021 to control the switching element 2022 to connect the signal receiving unit 201 with the second amplification and data recovery channel 204 .
  • the second rate signal with a rate of 50Gbps is transmitted to the second amplification and data recovery channel 204 through the switching element 2022, and is amplified and data recovered through the second amplifier 2041 located in the second amplification and data recovery channel 204.
  • the control unit 2021 receives The first control signaling may instruct the control unit 2021
  • the switching element 2022 is controlled to connect the signal receiving unit 201 with the first amplification and data recovery channel 203 .
  • the first signal with a rate of 12.5Gbps is transmitted to the first amplification and data recovery channel 203 through the switching element 2022, and is amplified and data recovered through the first amplifier 2031 located in the first amplification and data recovery channel 203.
  • the first control signaling received by the control unit 2021 may instruct the control unit 2021 to control the switching element 2022 to connect the signal receiving unit 201 with the second amplification and data recovery channel 204 .
  • the first signal with a rate of 12.5Gbps is transmitted to the second amplification and data recovery channel 204 through the switching element 2022, and is amplified and data recovered through the second amplifier 2041 located in the second amplification and data recovery channel 204.
  • the first control signaling received by the control unit 2021 instructs the control unit 2021 to control the switching element 2022 to receive the signal.
  • Unit 201 communicates with a second amplification and data recovery channel 204.
  • the second amplifier 2041 on the second amplification and data recovery channel 204 is also used to receive second control signaling.
  • the second control signaling is used to instruct the second amplifier 2041 to reduce the 50G bandwidth.
  • it can The second amplifier 2041 is instructed to adjust the bandwidth to 25G.
  • the first signal with a rate of 25Gbps is transmitted to the second amplification and data recovery channel 204 through the switching element 2022, and is amplified and data recovered through the second amplifier 2041 located in the second amplification and data recovery channel 204. .
  • the first control signaling can be used to transmit the first signal in the rate range to the first amplification and data recovery channel 203, and at the same time, combined with the second control signaling, the first signal in the rate range can be transmitted to the first amplification and data recovery channel 203.
  • An amplification and data recovery channel 203 adjusts the bandwidth of the first amplifier 2031.
  • Adjusting the bandwidth of the amplifier through the second signaling is beneficial to improving the signal-to-noise ratio after signal amplification, realizing flexible signal amplification, thereby further improving communication quality.
  • the first control signaling and the second control signaling are not accompanied at the same time. received.
  • the first rate signal received at the first moment is of the order of 10Gbps, for example, 25Gbps
  • the second rate signal received at the second moment is of the same order of magnitude, for example, 50Gbps
  • the first rate signal is not required.
  • control signaling to switch.
  • a receiving device such as a receiver
  • the signal corresponding to the rate of the first amplification and data recovery channel 203 is first sent, and then the signal corresponding to the rate of the second amplification and data recovery channel 204 is sent.
  • the first control can be received only once. signaling, and adjusting the application scenario of the switching element 2022 once during reception can greatly improve the efficiency of signal amplification and further improve the performance of the system.
  • the control signaling may be received in no sequence.
  • the first control signaling and the second control signaling are received synchronously.
  • both the first control signaling and the second control signaling may be instructions from the system, such as a control and processing center of the system, such as a MAC. This allows the system to control signal transmission to different amplification and data recovery channels at different times according to different rates of arriving uplink signals, and receive the signal at the corresponding amplification and data recovery channels.
  • the connection unit 202 includes a mirror module 2023.
  • FIG. 5 is a schematic structural diagram of the first signal amplifying device 300 provided by the embodiment of the present application.
  • the mirror module 2023 is used to mirror and copy the first signal to obtain a second signal, and transmit the first signal and the second signal to the first amplification and data recovery channel 203 and the second amplification and data recovery channel 204 respectively.
  • the mirror module 2023 may be a mirror circuit, for example, a circuit including a current mirror and other components.
  • the relevant technical description please refer to the relevant technical description, which will not be described again here.
  • the first amplifier 2031 is a transimpedance amplifier with a bandwidth of 1.25Gbps
  • the second amplifier 2041 is a transimpedance amplifier with a bandwidth of 50Gbps.
  • the mirror module 2023 copies the received first signal from the signal receiving unit to generate a second signal, and transmits the first signal to the first amplification and
  • the data recovery channel 203 simultaneously transmits the second signal to the second amplification and data recovery channel 204.
  • the first signal passes through the first amplifier 2031 located in the first amplification and data recovery channel 203 for amplification and data recovery, and the second signal passes through the second amplifier 2041 located in the second amplification and data recovery channel 204 for amplification and data recovery.
  • the rate of the second signal is the same as the rate of the first signal, that is, 1.25Gbps, therefore, when the second signal is amplified and data restored by the second amplifier 2041, the signal-to-noise ratio is significantly reduced, and can be passed Filter elements etc. located on this second amplification and data recovery path 204 filter and are not received.
  • the first signal when the rate of the first signal received by the signal receiving unit 201 is 12.5Gbps, the first signal can pass through the first amplification and data recovery channel 203 and the second amplification and data recovery channel Amplify and recover data on any one of the 204 channels.
  • the second amplifier 2041 of the second amplification and data recovery channel 204 can receive the second control signaling, and based on the The second control signaling adjusts the bandwidth of the second amplifier 2041 to reduce it.
  • the second signaling is used to instruct the second amplifier 2041 to reduce the bandwidth to 25G, so that the bandwidth through the second amplifier 2041 is reduced.
  • the signal-to-noise ratio of the 25Gbps first signal of amplifier 2041 has been improved.
  • the device 300 for amplifying the signal may also include a third amplifier 205, which is used to perform amplification on the first signal. Amplification and data recovery increase the strength of the first signal to ensure system transmission needs.
  • both the first control signaling and the second control signaling may be instructions from the system, such as a control and processing center of the system, such as a MAC. This allows the system to receive signals arriving at different times in the corresponding amplification and data recovery channels according to the different rates of the arriving uplink signals.
  • the amplification device provided by the embodiment of the present application may also include other amplification and data recovery channels for amplifying and data recovery of multi-rate signals.
  • the amplification device provided by the embodiment of the present application includes M amplification and data recovery channels.
  • the first signal includes N kinds of rates
  • the M amplification and data recovery channels correspond to the N kinds of rates
  • each rate in the N kinds of rates corresponds to one amplification and data recovery channel among the M amplification and data recovery channels.
  • Each of the M amplification and data recovery channels is used to amplify and recover data at a rate corresponding to the channel, wherein N signals at N rates are sequentially time-division multiplexed by the device 200 or 300 received.
  • N signals at N rates are sequentially time-division multiplexed by the device 200 or 300 received.
  • the device for amplifying signals provided by embodiments of the present application has been described above with reference to FIGS. 2 to 6 .
  • the method for amplifying signals provided by the present application will be described below.
  • FIG. 7 is a schematic flowchart of a signal amplification method 700 provided by an embodiment of the present application.
  • the method includes the following steps. This method can be implemented by the above-mentioned signal amplifying device 200 or 300 shown in FIGS. 2 to 6 , or executed by a component (such as a chip or chip system, etc.) of the above-mentioned signal amplifying device 200 or 300 .
  • a component such as a chip or chip system, etc.
  • the S701. Receive a first signal.
  • the first signal includes a first rate signal and a second rate signal.
  • the signal receiving unit 201 is used to receive a first signal, where the first signal includes a first rate signal and a second rate signal.
  • the first rate signal and the second rate signal arrive at the signal receiving unit 201 in a certain order in the time dimension.
  • the first signal may also include signals at other rates, that is, the first signal may include multi-rate signals, and these signals are all transmitted to the signal receiving unit 201 in a time division multiplexing manner.
  • the channel selection unit 202 is configured to transmit the first signal to at least one of the first amplification and data recovery channel 203 and the second amplification and data recovery channel 204 .
  • the first amplification and data recovery channel 203 amplifies and data recovers the first signal.
  • the second amplification and data recovery channel 204 amplifies and data recovers the first signal.
  • FIG. 8 is a schematic flowchart of a signal amplification method 800 provided by an embodiment of the present application.
  • the method includes the following steps. This method can be implemented by the above-mentioned signal amplifying device 200 shown in FIG. 3 or FIG. 4 , or executed by a component (such as a chip or chip system, etc.) of the above-mentioned signal amplifying device 200 .
  • a component such as a chip or chip system, etc.
  • the first signal includes a first rate signal and a second rate signal.
  • the signal receiving unit 201 is used to receive a first signal, where the first signal includes a first rate signal and a second rate signal.
  • the first rate signal and the second rate signal arrive at the signal receiving unit 201 in a certain order in the time dimension.
  • the first signal may also include signals of other rates, that is, the first signal may include signals of multiple rates, and these signals are all transmitted to the signal receiving unit 201 in a time division multiplexing manner.
  • control unit 2021 receives first control signaling, which is used to instruct transmitting the first signal to the first amplification and data recovery channel or the second amplification and data recovery channel.
  • control unit 2021 controls the conversion element 2022 to connect the signal receiving unit 201 with the first amplification and data recovery channel 203 or the second amplification and data recovery channel 204 according to the first control signaling.
  • the control unit 2021 controls the conversion element 2022 to receive the signal according to the first control signaling.
  • the unit 201 is connected to the first amplification and data recovery channel 203, so that the first amplification and data recovery channel 203 amplifies and data recovers the first rate signal.
  • the control unit 2021 controls the conversion element 2022 to connect the signal receiving unit 201 to the second rate signal according to the first control signaling.
  • two The amplification and data recovery channel 204 is connected, so that the second amplification and data recovery channel 204 amplifies and data recovers the second rate signal.
  • FIG. 9 is a schematic flowchart of a signal amplification method 900 provided by an embodiment of the present application.
  • the method includes the following steps. This method can be implemented by the above-mentioned signal amplifying device 300 shown in FIG. 5 or FIG. 6 , or executed by a component (such as a chip or chip system, etc.) of the above-mentioned signal amplifying device 300 .
  • a component such as a chip or chip system, etc.
  • the rate of the first signal includes a first rate and a second rate.
  • the signal receiving unit 201 is configured to receive a first signal, where the first signal includes a first rate and a second rate.
  • the rate of the first signal may include other rates, that is, the first signal is a multi-rate signal.
  • S902 Mirror and copy the first signal to obtain the second signal.
  • the mirror module 2023 mirrors and copies the first signal to obtain the second signal.
  • S903 transmit the first signal and the second signal to the first amplification and data recovery channel and the second amplification and data recovery channel respectively.
  • the mirror module 2023 transmits the first signal and the second signal to the first amplification and data recovery channel and the second amplification and data recovery channel respectively, so that the first amplification and data While the recovery channel 203 amplifies and recovers data on the first signal, the second amplification and data recovery channel 204 amplifies and recovers data on the second signal.
  • FIG. 10 is a schematic structural diagram of a device 1000 for receiving optical signals provided by an embodiment of the present application.
  • the device 1000 for receiving optical signals is a receiver or an amplification module in the receiver, and may be, for example, arranged in an OLT device in a PON system.
  • the device 1000 for receiving optical signals includes: an optical signal receiving and converting unit 210 , a channel selection unit 202 , a first amplification and data recovery channel 203 , and a second amplification and data recovery channel 204 .
  • the optical signal receiving and converting unit 210 is used to receive the first optical signal, convert the first optical signal into a first electrical signal, and output the first electrical signal to the channel selection unit 202, where the first optical signal includes A first rate optical signal and a second rate optical signal, the first rate optical signal corresponds to the first rate electrical signal, and the second rate optical signal corresponds to the second rate electrical signal.
  • the channel selection unit 200 is used to connect the optical signal receiving and converting unit 210 with at least one of the first amplification and data recovery channel 203 and the second amplification and data recovery channel 204, and transmit the first electrical signal to the first amplification and data recovery channel 204. At least one of the data recovery channel 203 and the second amplification and data recovery channel 204.
  • the first amplification and data recovery channel 203 is used to amplify and data recover the first electrical signal transmitted to the first amplification and data recovery channel 203 .
  • the second amplification and data recovery channel 204 is used to amplify and data recover the first electrical signal transmitted to the second amplification and data recovery channel 204 .
  • the working rate/working bandwidth of the first amplification and data recovery channel 203 corresponds to 1.25G
  • the working rate/working bandwidth of the second amplification and data recovery channel 204 corresponds to 50G.
  • the first rate signal when the rate of the first rate signal is 1.25Gbps, the first rate signal is amplified and data restored through the first amplifier 2031, and then transmitted to a line amplifier (line amplifier, LA) or amplitude limiting After the amplifier (limiting amplifier, LA) 220 amplifies again, it enters the burst clock and data recovery (BCDR) 230 for judgment and data recovery, and then is received by the MAC 260.
  • the second rate signal is 50Gbps
  • the second rate signal is amplified by the second amplifier 2041 and then transmitted to the 50G optical digital signal processing (oDSP) and BCDR decision module 240 for digital processing and data recovery.
  • oDSP optical digital signal processing
  • oDSP optical digital signal processing
  • BCDR decision module 240 After output to the 2*25G non return to zero (NRZ) encoding module 250 for encoding, it is received by the MAC 260.
  • the optical signal receiving and converting unit may be a photoelectric conversion chip, such as an APD.
  • the uplink first optical signal is converted into a first electrical signal by the optical signal receiving and converting unit 210 and output to the channel selection unit 202 .
  • the channel selection unit 202 includes a control unit 2021 and a switching element 2022.
  • the control unit 2021 in the channel selection unit 202 receives the first control signaling from the MAC, and controls the single-pole double-throw switch 2022 to input the first signal to different amplification and data recovery channels according to the first control signaling.
  • the first control signaling may indicate the rate of the first signal, so that the control unit 2021 allocates the first signal to different amplification and data recovery channels according to the rate of the first signal.
  • the first control signaling can directly indicate different amplification and data recovery channels, because the MAC 260 control end stores the rates of signals sent by the ONU devices at different times.
  • the optical signal receiving and conversion unit converts the first rate optical signal into a first rate electrical signal, and outputs it to in the channel selection unit 202.
  • the control unit 2021 receives the first control signaling from the MAC, and controls the single-pole double-throw switch 2022 to be connected to the first amplification and data recovery channel 203 according to the first control signaling, and at the same time transmits the first rate electrical signal to the first amplification and data recovery channel 203 .
  • the first rate electrical signal passes through LA 220 and BCDR 230 in sequence and is received by MAC 260.
  • the optical signal receiving and conversion unit converts the second rate optical signal into a second rate electrical signal and outputs it to the channel selection unit 202 .
  • the control unit 2021 receives the first control signaling from the MAC, and controls the single-pole double-throw switch 2022 to connect to the second amplification and data recovery channel 204 according to the first control signaling, and at the same time transmits the second rate electrical signal to the first amplification and data recovery channel 204.
  • the second rate electrical signal passes through LA220 and BCDR 230 in sequence and is received by MAC 260.
  • the MAC 260 can control the working rate/working bandwidth of different amplification and data recovery channels by sending second control signaling to the first amplifier 2031 or the second amplifier 2041.
  • the MAC 260 can send the second control signaling to the second amplifier 2041 according to the rate of the first signal.
  • the second control signaling is used to instruct the second amplifier 2041 to reduce the amplification. bandwidth.
  • the second control signaling includes a specified bandwidth value, which is used to instruct the second amplifier 2041 to adjust the amplification bandwidth to the specified bandwidth value. For example, when the specified bandwidth value is 25G, the second amplifier 2041 adjusts the bandwidth to the specified 25G.
  • the second control signaling is used to instruct the second amplifier 2041 to reduce the bandwidth, and the second control signaling includes an indication field, and the value of the indication field is the second amplifier 2041
  • the adjusted bandwidth value for example, when the value of the indication field is 25, after receiving the second indication signaling, the second amplifier 2041 lowers the 50G bandwidth by 25G, and adjusts the reduced bandwidth to 25G.
  • the first signal is amplified and data recovered.
  • the second control signaling is only used to instruct the second amplifier 2041 to reduce the bandwidth, and does not specifically indicate the bandwidth value that needs to be reduced. When the second amplifier 2041 receives the second After signaling is indicated, just reduce the 50G bandwidth.
  • Figure 12 is a schematic structural diagram of the device 1002, in which the channel selection unit 202 includes a mirror module 2023. Specifically, the mirror module 2023 is used to mirror and copy the first signal to obtain a second signal, and transmit the first signal and the second signal to the first amplification channel amplification and data recovery channel 203 and the second amplification channel amplification and data recovery channel respectively. 204 in.
  • the MAC 260 control end can receive the uplink signal on the amplification and data recovery channel that matches the first signal rate based on the timing of the uplink ONT device. For example, at a certain moment, if the rate of the first signal is 50Gbps, although the first signal is transmitted in the second amplification and data recovery channel 204, it will also be transmitted in the first amplification and data recovery channel 203. transmission, but the MAC 260 control end will only receive the upstream signal transmitted by the second amplification and data recovery channel 204.
  • the communication device provided by the embodiment of the present application will be described in detail below with reference to FIG. 13 . It should be understood that the description of the device embodiments corresponds to the description of the method embodiments. Therefore, for content that is not described in detail, please refer to the above method embodiments. For the sake of brevity, some content will not be described again.
  • Embodiments of the present application can divide the signal amplifying device 200 or 300 into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods. The following is an example of dividing each functional module according to each function.
  • Figure 13 is a schematic structural diagram of a possible communication device.
  • the communication device 1300 includes a processor 1301 , an optical transceiver 1302 and a memory 1303 .
  • memory 1303 is optional.
  • the processor 1301 and the optical transceiver 1302 are used to implement the methods performed by the device 200 or 300 in Figures 7 to 9. During the implementation process, each step of the processing flow can complete the method performed by the sending device in the above figure through instructions in the form of hardware integrated logic circuits or software in the processor 1301.
  • the optical transceiver 1302 is used to receive the first signal sent by the transmitting section, and send the first signal to the processor 1301 for processing.
  • Memory 1303 may be used to store instructions such that process 1301 may be used to perform steps as mentioned in the above figures. Alternatively, the storage 1303 can also be used to store other instructions to configure parameters of the processor 1301 to implement corresponding functions.
  • embodiments of the present application also provide a computer-readable storage medium.
  • the storage medium stores a software program.
  • the software program can implement the method provided by any one or more of the above embodiments.
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
  • embodiments of the present application also provide a chip.
  • the chip includes a processor for implementing the functions involved in any one or more of the above embodiments, such as amplifying the first signal and recovering data.
  • the chip further includes a memory, and the memory is used for necessary program instructions and data executed by the processor.
  • the chip may be composed of chips or may include chips and other discrete devices.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM). For example, RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to implement the solution provided by this application.
  • each functional unit in each embodiment of the present application can be integrated into one unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)).
  • the aforementioned available media may include But not limited to: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk Or various media such as CDs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供一种放大信号的装置、接收光信号的装置和方法,能够满足50GPON与GPON上行信号的高性能时分接收,实现系统中50GPON与GPON终端设备在同一个PON口下的共存需求。该装置包括:信号接收单元通道选择单元、第一放大和数据恢复通道和第二放大和数据恢复通道。其中,信号接收单元用于接收第一信号,并输出第一信号至通道选择单元,第一信号中包括第一速率信号和第二速率信号。通道选择单元用于将信号接收单元与上述两个放大和数据恢复通道中的至少一个连通,并将第一信号传输至上述两个放大和数据恢复通道中的至少一个。第一放大和数据恢复通道和第二放大和数据恢复通道分别用于对接收的第一信号进行放大和数据恢复。

Description

一种放大信号的装置、接收光信号的装置和方法
本申请要求于2022年7月30日提交中国国家知识产权局、申请号为202210912578.9、申请名称为“一种放大信号的装置、接收光信号的装置和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光接入领域,并且,更具体地,涉及一种放大信号的装置、接收光信号的装置和方法。
背景技术
无源光网络(passive optical network,PON)是光线路终端(optical line terminal,OLT)通过光分配网络(optical distribution network,ODN)连接一定数量的光网络终端(optical network terminal,ONT)或者多个光网络单元(optical network unit,ONU)形成的通信网络。随着视频业务成为宽带网络的基础业务,以及PON技术逐步从家宽领域向政企行业领域拓展,如远程医疗、工业智能制造、厂矿通信等,对带宽提出了更高的要求。当前,普遍认可将下一代光接入网带宽提升至50Gbps以逐渐替换部分10GPON和GPON设备。因此,如何简单、高效地实现系统带宽平滑演进成为PON领域研究的热点。
发明内容
本申请提供一种放大信号的装置、接收光信号的装置和方法,能够同时满足50GPON与GPON对性能的不同要求。
第一方面,本申请实施例提供了一种放大信号的装置。所述装置包括:信号接收单元通道选择单元、第一放大和数据恢复通道和第二放大和数据恢复通道。其中,所述信号接收单元用于接收第一信号,并输出所述第一信号至所述通道选择单元,所述第一信号中包括第一速率信号和第二速率信号。所述通道选择单元用于将所述信号接收单元与所述第一放大和数据恢复通道和所述第二放大和数据恢复通道中的至少一个连通,并将所述第一信号传输至所述第一放大和数据恢复通道和所述第二放大和数据恢复通道中的至少一个。所述第一放大和数据恢复通道,用于对传输至所述第一放大和数据恢复通道的所述第一信号进行放大和数据恢复。所述第二放大和数据恢复通道,用于对传输至所述第二放大和数据恢复通道的所述第一信号进行放大和数据恢复。
示例性的,在本申请实施例中,信号接收单元可以是用于接收信号的串口。
示例性的,在本申请实施例中,该放大信号的装置可以是放大装置本身,或者为放大装置中的一个模块,或者还可以是芯片的形式,本申请不做限定。
基于上述方案,通过通道选择单元与不同的放大和数据恢复通道的连通,可以将多速率的第一信号传输至不同的放大和数据恢复通道,当应用于多代共存PON系统时,不同速率的第一信号可以复用相同的载波进行传输,换句话说,50GPON与GPON的载波可以采用相同波段的光信号,能够在不影响系统性能的情况下,实现系统中50GPON与GPON设备共存的场景。
结合第一方面,在第一方面的某些实现方式中,所述信号接收单元具体用于接收不同的时刻到达的所述第一速率信号与所述第二速率信号。
即在本申请中,第一信号中的第一速率信号和第二速率信号在时间维度上是按照一定顺序交错到达信号接收单元的。
结合第一方面,在第一方面的某些实现方式中,所述第一放大和数据恢复通道,具体用于对所述第一速率信号进行限幅放大和数据恢复。所述第二放大和数据恢复通道,具体用于对所述第二速率信号进行线性放大和数据恢复。
结合第一方面,在第一方面的某些实现方式中,所述通道选择单元包括:控制单元和切换元件。其中,所述控制单元用于接收第一控制信令,并根据所述第一控制信令控制所述切换元件将所述信号接收单元与所述第一放大和数据恢复通道或与所述第二放大和数据恢复通道连通。当所述切换元件将所述信号接收单元与所述第一放大和数据恢复通道连通时,所述切换元件用于将所述第一速率信号传输至所述第一放大和数据恢复通道。当所述切换元件将所述信号接收单元与所述第二放大和数据恢复通道连通时,所述切换元件 用于将所述第二速率信号传输至所述第二放大和数据恢复通道。
基于上述方案,通过控制单元和切换元件的配合,将第一信号传输至不同的放大和数据恢复通道中,使得第一信号可以在与之速率适配的放大和数据恢复通道中得到放大,保证了信号在传输中的完整性,进一步的,提升系统的性能。
结合第一方面,在第一方面的某些实现方式中,所述切换元件包括单刀双掷开关或者三极管。
示例性的,该单刀双掷开关为“单刀双掷”高速电子开关。
基于该单刀双掷开关或者三极管这类常见的元件实现第一信号通道的切换,能够节约网络升级的成本。
结合第一方面,在第一方面的某些实现方式中,所述第一控制信息来自媒体接入控制MAC。
示例性的,当该放大信号的装置用于接收机时,由于系统的MAC可以存储有上行时分复用信号的速率,因此,基于MAC存储的上行时序,向控制单元发送第一控制信息,通过第一控制信息控制通道选择单元与不同带宽的放大和数据恢复通道连通,可以保证通道切换的可靠性,从而保证系统性能的稳定。
结合第一方面,在第一方面的某些实现方式中,所述通道选择单元包括:镜像模块。所述镜像模块用于镜像复制所述第一信号得到第二信号,并将所述第一信号与第二信号分别传输至所述第一放大和数据恢复通道和所述第二放大和数据恢复通道。
基于常见镜像电路实现第一信号的复制,能够节约网络升级的成本。当应用于50GPON与GPON共存场景中时,即使每个放大和数据恢复通道中均传输有某个速率的第一信号,MAC可根据时序选择与第一信号速率匹配的放大和数据恢复通道进行接收,因此,仍然可以保证系统的性能。
结合第一方面,在第一方面的某些实现方式中,所述第一放大和数据恢复通道还用于接收第二控制信令,并根据所述第二控制信令确定所述第一放大和数据恢复通道的工作速率/工作带宽。或者,所述第二放大和数据恢复通道还用于接收第二控制信令,并根据所述第二控制信令确定所述第二放大和数据恢复通道的工作速率/工作带宽。
基于该方案,通过第二控制信令控制放大和数据恢复通道的工作速率/工作带宽,可以实现一个通道对应多种工作速率/工作带宽,基于速率的灵活调整,从而满足不同场景的应用需求。
结合第一方面,在第一方面的某些实现方式中,所述第二控制信息来自媒体接入控制MAC。
示例性的,当该放大信号的装置用于接收机时,由于MAC可以存储有上行时分复用信号的速率,因此,基于MAC存储的上行时序,向放大器发送第二控制信息,通过第二控制信息放大器将不同放大和数据恢复通道的带宽进行调整,可以保证信号放大后的信噪比,从而保证系统性能的稳定。
结合第一方面,在第一方面的某些实现方式中,所述装置包括M个放大和数据恢复通道,所述第一信号包括N种速率,所述M个放大和数据恢复通道与所述N种速率对应,所述N种速率中的每种速率对应所述M个放大和数据恢复通道中的一个通道。所述通道选择单元用于将所述信号接收单元与所述第一信号的速率对应的放大和数据恢复通道连通。其中,M和N为大于等于2的整数。
基于该方案,本申请提供的多通道放大装置具备对多数率的信号进行放大和数据恢复的能力,在保证系统性能的同时,实现多场景的应用。
第二方面,本申请实施例提供一种接收光信号的装置。所述装置包括:光信号接收和转换单元、通道选择单元、第一放大和数据恢复通道和第二放大和数据恢复通道。其中,所述光信号接收和转换单元用于接收第一光信号,将所述第一光信号转换成第一电信号,并输出所述第一电信号至所述通道选择单元,所述第一光信号包括第一速率光信号和第二速率光信号,所述第一速率光信号对应第一速率电信号,所述第二速率光信号对应第二速率电信号。所述通道选择单元用于将所述光信号接收和转换单元与所述第一放大和数据恢复通道和第二放大和数据恢复通道中的至少一个连通,并将所述第一电信号传输至所述第一放大和数据恢复通道和第二放大和数据恢复通道中的至少一个。所述第一放大和数据恢复通道用于对传输至所述第一放大和数据恢复通道的所述第一电信号进行放大和数据恢复。所述第二放大和数据恢复通道用于对传输至所述第二放大和数据恢复通道的所述第一电信号进行放大和数据恢复。
示例性的,光信号接收和转换单元可以是雪崩二极管APD,或者其他用于将光信号转换为电信号的元件或芯片,可以使用光电转换芯片将所述第一光信号转换成所述第一电信号。
结合第二方面,在第二方面的某些实现方式中,所述光信号接收和转换单元,具体用于接收在不同的时刻到达的所述第一速率光信号与所述第二速率光信号,将所述第一速率光信号和所述第二速率光信号转换为所述第一速率电信号和所述第二速率电信号,并分别在不同的时刻输出所述第一速率电信号和所述第二速率电信号至所述通道选择单元。
应理解,在本申请中,所述第一光信号和所述第一电信号中的第一速率信号和第二速率信号在时间维度上按一定顺序交错到达所述光信号转换和转换单元。
结合第二方面,在第二方面的某些实现方式中,所述第一放大和数据恢复通道具体用于对所述第一速率电信号进行限幅放大和数据恢复。所述第二放大和数据恢复通道具体用于对所述第二速率电信号进行线性放大和数据恢复。
结合第二方面,在第二方面的某些实现方式中,所述通道选择单元包括:控制单元和切换元件。所述控制单元用于接收第一控制信令,并根据所述第一控制信令控制所述切换元件将所述光信号接收和转换单元与所述第一放大和数据恢复通道或与所述第二放大和数据恢复通道连通。当所述切换元件将所述光信号接收和转换单元与所述第一放大和数据恢复通道连通时,所述切换元件于将所述第一速率电信号传输至所述第一放大和数据恢复通道。当所述切换元件将所述光信号接收和转换单元与所述第二放大和数据恢复通道连通时,所述切换元件用于将所述第二速率电信号传输至所述第二放大和数据恢复通道。
结合第二方面,在第二方面的某些实现方式中,所述切换元件包括单刀双掷开关或者三极管。
结合第二方面,在第二方面的某些实现方式中,所述第一控制信息来自媒体接入控制MAC。
结合第二方面,在第二方面的某些实现方式中,所述通道选择单元包括:镜像模块。所述镜像模块用于镜像复制所述第一电信号得到第二电信号,并将所述第一电信号与所述第二电信号分别传输至所述第一放大和数据恢复通道和所述第二放大和数据恢复通道。
结合第二方面,在第二方面的某些实现方式中,所述第一放大和数据恢复通道还用于接收第二控制信令,并根据所述第二控制信令确定所述第一放大和数据恢复通道的工作速率/工作带宽。或者,所述第二放大和数据恢复通道还用于接收第二控制信令,并根据所述第二控制信令确定所述第二放大和数据恢复通道的工作速率/工作带宽。
结合第二方面,在第二方面的某些实现方式中,所述第二控制信息来自媒体接入控制MAC。
结合第二方面,在第二方面的某些实现方式中,所述装置包括M个放大和数据恢复通道,所述第一光信号或所述第一电信号包括N种速率信号,所述M个放大和数据恢复通道与所述N种速率信号对应,所述N种速率信号中的每种速率信号对应所述M个放大和数据恢复通道中的一个通道,所述M个放大和数据恢复通道包括限幅放大和数据恢复通道,以及线性放大和数据恢复通道。所述通道选择单元用于将所述光信号接收和转换单元与所述第一电信号的速率对应的放大与数据恢复通道连通。其中,M和N为大于等于2的整数。
第三方面,本申请实施例一种放大信号的方法。该方法包括:接收第一信号,所述第一信号中包括第一速率信号和第二速率信号。将所述第一信号传输至第一放大和数据恢复通道和第二放大和数据恢复通道中的至少一个。当所述第一信号传输至所述第一放大和数据恢复通道时,所述第一放大和数据恢复通道对所述第一信号进行放大和数据恢复。当所述第一信号传输至所述第二放大和数据恢复通道时,所述第二放大和数据恢复通道对所述第一信号进行放大和数据恢复。
结合第三方面,在第三方面的某些实现方式中,所述接收第一信号,包括:接收不同的时刻的所述第一速率信号与所述第二速率信号。
结合第三方面,在第三方面的某些实现方式中,所述第一放大和数据恢复通道对所述第一信号进行放大和数据恢复,包括:所述第一放大和数据恢复通道对所述第一信号进行限幅放大和数据恢复。所述第二放大和数据恢复通道对所述第一信号进行放大和数据恢复,包括:所述第二放大和数据恢复通道对所述第一信号进行线性放大和数据恢复。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:接收第一控制信令。根据所述第一控制信令将所述第一信号传输至所述第一放大和数据恢复通道或所述第二放大和数据恢复通道。
结合第三方面,在第三方面的某些实现方式中,所述第一控制信息来自媒体接入控制MAC。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:镜像复制所述第一信号得到第二信号。将所述第一信号与第二信号分别传输至所述第一放大和数据恢复通道和所述第二放大和数据恢复通道。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:接收第二控制信令。根据所述第二控制信令确定所述第一放大和数据恢复通道或所述第二放大和数据恢复通道的工作速率/工作带宽。
结合第三方面,在第三方面的某些实现方式中,所述第二控制信息来自媒体接入控制MAC。
结合第三方面,在第三方面的某些实现方式中,所述第一信号包括N种速率,所述N种速率与M个放大和数据恢复通道对应,所述N种速率中的每种速率对应所述M个通道中的一个通道,其中,M和N 为大于等于2的整数。将所述第一信号传输至与所述第一信号的速率对应的通道。
第四方面,本申请实施例提供了一种无源光网络系统。所述系统包括光线路终端OLT和多个光网络单元ONU,所述OLT和所述ONU之间通过至少一个下行波长通道和一个上行波长通道进行通信,其中,所述上行波长通道用于传输所述第一信号,所述OLT用于执行上述第三方面或上述第三方面的任意一种实现方式提供的方法。
应理解,所述上行波长通道上传输包括至少两种速率不同、在时间维度上错开的光信号。
第五方面,本申请实施例提供了一种芯片。所述芯片包括处理器和光信号接收装置,所述光信号接收装置用于接收所述第一信号并传输至所述处理器,所述处理器用于执行上述第三方面或上述第三方面的任意一种实现方式提供的方法。
第六方面,本申请实施例提供了一种通信装置。该装置用于执行上述第三方面提供的方法。具体地,该通信装置可以包括用于执行第三方面或第三方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理模块和收发模块。
在一种实现方式中,该通信装置可以包括用于执行第三方面或第三方面的上述任意一种实现方式提供的方法的单元和/或模块,为接收端设备。其中,收发模块可以是收发器,或,输入/输出接口。处理模块可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为接收端设备中的芯片、芯片系统或电路。收发模块可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理模块可以是至少一个处理器、处理电路或逻辑电路等。
第七方面,本申请实施例提供了一种处理器,用于执行上述第三方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第八方面,本申请实施例提供了一种计算机可读存储介质。该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第三方面及第三方面中任意一种实现方式提供的方法。
第九方面,本申请实施例提供了提供一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得计算机执行上述第三方面及第三方面中的任意一种实现方式提供的方法。
第十方面,本申请实施例提供了提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第三方面第三方面的任意一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第三方面及第三方面中的任意一种实现方式提供的方法。
上述第二方面和第十方面带来的有益效果具体可以参考第一方面中有益效果的描述,此处不再赘述。
附图说明
图1为本申请实施例适用的PON系统架构示意图。
图2为本申请实施例提供的放大信号的装置的示意性结构图。
图3为本申请实施例提供的第一种放大信号的装置200的示意性结构图。
图4为本申请实施例提供的第二种放大信号的装置200的示意性结构图。
图5为本申请实施例提供的第一种放大信号的装置300的示意性结构图。
图6为本申请实施例提供的第二种放大信号的装置300的示意性结构图。
图7为本申请实施例提供的放大信号的方法700的流程示意图。
图8为本申请实施例提供的放大信号的方法800的流程示意图。
图9为本申请实施例提供的放大信号的方法900的流程示意图。
图10为本申请实施例提供的接收光信号的装置1000的结构示意图。
图11为本申请实施例提供的接收光信号的装置1001的结构示意图。
图12为本申请实施例提供的接收光信号的装置1002的结构示意图。
图13是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
第一、在下文示出的本申请实施例中的文字说明或者附图中的术语,“第一”、“第二”等以及各种数字编号仅为描述方便进行的区分,而不必用于描述特定的顺序或者先后次序,并不用来限制本申请实施例的范围。例如,在本申请实施例中用于区分不同的上行信号或者控制信令等。
第二、下文示出的本申请实施例中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或者单元。
第三、在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
第四、在本申请中,“用于指示”可以包括直接指示和间接指示。当描述某一信息用于指示A时,可以包括该信息直接指示A或间接指示A,而并不代表该信息中一定携带有A。
第五、在本申请的附图中,附图仅为示例而非严格按照比例绘制。具体来讲,附图中所示出的单刀双掷开关的形状通过实施例的方式示出。并且,为了便于说明,已经稍微夸大了其形状。
PON技术是一种基于无源ODN网络的宽带接入技术,采用点到多点(point 2 multiple point,P2MP)拓扑结构,上、下行传输波长独立,数据时分复用。PON系统中连接OLT和ONU的ODN网络采用纯光介质,全程无源,环境适应性强,易于扩展和升级。由于在基于光纤、无源、P2MP等方面相对于铜线接入的比较优势,PON技术取得了巨大成功,得到了大规模部署。同时,随着宽带网络作为经济社会发展基础平台的作用日益突出,互联网视频应用的快速普及,4K/8K高清、家庭云、视频通话等高带宽业务的不断发展,GPON设备得到大规模部署。当前,10GPON设备的部署呈现逐年快速上涨的趋势。然而,随着视频业务成为宽带网络的基础业务,以及PON技术逐步从家宽领域向政企行业领域拓展,如远程医疗、工业智能制造、厂矿通信等,对带宽提出了更高的要求。因此,对更高宽带的50GPON技术的研究如火如荼,预计在未来,50GPON设备会大规模应用于各个场景。
由于GPON设备以及10GPON设备的大规模部署,可以预见的是,在一定时间内,GPON、10GPON和50GPON设备将共存于一个ODN场景。
在网络的演进中,尽可能地利用现网资源与节约升级演进成本,是运营商历来关注的重点。当前,在实现GPON向10GPON的平滑演进中,局端设备采用多制式共存的光收发合一模块是目前已被验证的最有效的手段,如采用联合体PON(即Combo PON)理念来实现GPON、10GPON的合波。该方案的主要思想为,将GPON、10GPON的信号调制在不同波长的载波上,然后通过波分复用(wavelength division multiplexing,WDM)合波器把不同光波长的光合路到一根光纤中进行传输。当收到合波信号后,通过波分复用解复用器(demultiplexer)将光纤中的多种波长的光信号按照不同的光波长分解到不同的接收机。其中,在该方案中,不同的速率使用对应速率的接收机,即GPON的接收中使用GPON对应的雪崩光电二极管(avalanche photo diode,APD)与跨阻放大器(trans-impedance amplifier,TIA),10GPON的接收中使用10GPON对应的APD和TIA,这样可以保证各个速率下的接收的性能均为最优的情况。
然而,当继续采用Combo PON的方案在光器件实现GPON、10GPON和50GPON的难度不容忽视。首先,技术难度较大。相较于GPON和10GPON的上行带宽来讲,50GPON可用的波段较窄,对于未来50GPON不与GPON或10GPON共存的场景来说,该窄带波段并不能满足50GPON系统的使用需求。同时,该窄带的波段使得局端OLT设备在接收信号并进行波分解复用时分波间距过小,导致对无源部件的贴装精度要求极高,制造困难。此外,由于三代共存,因此,相比于当前的XGS Combo,光模块的长度将会更长。若电芯片全部集成的情况下,光模块的制造将面临极大挑战。同时,在光接收机的通信接口的布局以及多代兼容方案,也会带来诸多问题。其次,由于三代共存,还会带来成本的增加,例如,光模块的制造成本以及ONT的制冷封装成本等。
因此,现有的共存方案无法实现50GPON平滑演进的需求。
有鉴于此,本申请实施例提供了一种放大信号的方法、通信装置和无源光网络系统。基于本申请提供的放大信号的方法,能够解决上述50GPON共存时采用WDM导致的技术难题和成本问题。本申请通过50GPON和GPON时分复用的方式共存,使用相同波长范围的光载波,同时使用相同的光探测器(APD),设计了一种独特的TIA(分别输出GPON和50G-PON的信号),媒体接入控制(medium access control,MAC)的串并转换接口来选择在某一时刻接收GPON或者50G-PON的信号。本申请提供的方案能够节约 局端设备的部署空间,并降低光接入设备能耗,能够在有效利用现网的ODN资源的同时,达到降低运营商的网络建设成本的效果。
本申请实施例应用于PON系统,图1为本申请实施例适用的PON系统架构示意图。PON技术是一种点到多点的光纤接入技术。PON系统包括OLT设备、ODN设备和至少一个ONU设备。其中,OLT设备与ODN设备连接,ODN设备与多个ONU设备连接。OLT设备提供网络侧接口,OLT设备连接上层的网络侧设备(如交换机、路由器等),下层连接一个或者多个ODN设备。
一般地,OLT设备通常位于中心机房(center office,CO),ONU设备位于用户家中或家附近。ONU设备提供用户侧接口,同时与ODN设备相连。如果ONU同时提供用户接口功能,如提供Ethernet用户接口或者传统电话业务(plain old telephone service,POTS)用户接口,则称为光网络终端(optical network termination,ONT)。
ODN设备包括用于光功率分配的无源光分光器、连接在无源光分光器和OLT之间的主干光纤,以及连接在无源光分光器和ONU设备之间的分支光纤。传输下行数据时,ODN设备将OLT设备下行的数据通过分光器传输到各个ONU设备。同样地,传输上行数据时,ODN设备将ONU设备的上行数据汇聚后传输到OLT设备。
需要说明的是,本申请提出的放大信号的装置位于局端OLT设备内,例如,可以是OLT设备内作为一项功能特性集成于光模块中等,本申请对放大信号的装置的形态并不限定。
图2为本申请实施例提供的一种放大信号的装置200的示意性结构图。装置200包括信号接收单元201、通道选择单元202、第一放大和数据恢复通道203和第二放大和数据恢复通道204。具体地,信号接收单元201用于接收第一信号,并输出第一信号至通道选择单元202,其中,该第一信号的包括第一速率信号和第二速率信号。其中,第一速率信号和第二速率信号在时间维度上按照一定顺序交错到达信号接收单元201。通道选择单元202用于将信号接收单元201与第一放大和数据恢复通道203和第二放大和数据恢复通道204中的至少一个连通,并将第一信号传输至第一放大和数据恢复通道203和第二放大和数据恢复通道204中的至少一个。第一放大和数据恢复通道203用于对传输至第一放大和数据恢复通道203的第一信号进行放大和数据恢复。第二放大和数据恢复通道204用于对传输至第二放大和数据恢复通道204的第一信号进行放大和数据恢复。示例性的,第一放大和数据恢复通道203对应第一速率,第二放大和数据恢复通道204对应第二速率。如图2所示,第一速率可以是1.25Gbps,第二速率可以是50Gbps。具体地,当第一信号传输至第一放大和数据恢复通道203后,位于该第一放大和数据恢复通道203的第一放大器2031(工作带宽为1.25Gbps的限幅跨阻放大器)对第一信号进行限幅放大和数据恢复。当第一信号传输至第二放大和数据恢复通道204后,该第二放大和数据恢复通道的第二放大器2041(带宽为50Gbps的线性跨阻放大器)用于对第一信号进行线性放大和数据恢复。
在一种可实现的方式中,连通单元202包括控制单元2021和切换元件2022,此时,放大器200如图3所示。其中,控制单元2021用于接收第一控制信令,并根据第一控制信令控制切换元件2022将信号接收单元201与第一放大和数据恢复通道203连通或与第二放大和数据恢复通道204连通。当切换元件2022将信号接收单元201与第一放大和数据恢复通道203连通时,切换元件2022用于将第一速率信号传输至第一放大和数据恢复通道203。当切换元件2022将信号接收单元201与第二放大和数据恢复通道204连通时,切换元件2022用于将第二速率信号传输至第二放大和数据恢复通道204。
可选的,切换元件2022可以为单刀双掷开关或者三极管或者其他能够实现链路切换的元件。应理解,在图3中,是以切换元件2022为单刀双掷开关进行说明的。
具体地,如图3所示,第一放大器2031为带宽1.25Gbps的跨阻放大器,第二放大器2041为带宽50Gbps的跨阻放大器。当信号接收单元201接收到的第一速率信号为1.25Gbps时,控制单元2021接收的第一控制信令指示控制单元2021控制切换元件2022将信号接收单元201与第一放大和数据恢复通道203连通。此时,该速率为1.25Gbps的第一速率信号通过切换元件2022传输至第一放大和数据恢复通道203,并通过位于第一放大和数据恢复通道203的第一放大器2031进行放大和数据恢复。当信号接收单元201接收到第二速率信号的速率为50Gbps时,控制单元2021接收的第一控制信令指示控制单元2021控制切换元件2022将信号接收单元201与第二放大和数据恢复通道204连通。此时,该速率为50Gbps的第二速率信号通过切换元件2022传输至第二放大和数据恢复通道204,并通过位于第二放大和数据恢复通道204的第二放大器2041进行放大和数据恢复。
在其他的一种实现方式中,如图4所示,若信号接收单元201接收到的第一信号的速率为12.5Gbps时,在本申请实施例提供的放大装置200中,控制单元2021接收的第一控制信令可以指示控制单元2021 控制切换元件2022将信号接收单元201与第一放大和数据恢复通道203连通。此时,该速率为12.5Gbps的第一信号通过切换元件2022传输至第一放大和数据恢复通道203,并通过位于第一放大和数据恢复通道203的第一放大器2031进行放大和数据恢复。或者,控制单元2021接收的第一控制信令可以指示控制单元2021控制切换元件2022将信号接收单元201与第二放大和数据恢复通道204连通。此时,该速率为12.5Gbps的第一信号通过切换元件2022传输至第二放大和数据恢复通道204,并通过位于第二放大和数据恢复通道204的第二放大器2041进行放大和数据恢复。
在其他的另一种可实现的方式中,当信号接收单元201接收到的第一信号的速率为25Gbps时,控制单元2021接收的第一控制信令指示控制单元2021控制切换元件2022将信号接收单元201与第二放大和数据恢复通道204连通。此时,该第二放大和数据恢复通道204上的第二放大器2041还用于接收第二控制信令,该第二控制信令用于指示第二放大器2041将50G带宽降低,优选的,可以指示第二放大器2041将带宽调整为25G。在这种场景下,该速率为25Gbps的第一信号通过切换元件2022传输至第二放大和数据恢复通道204,并通过位于第二放大和数据恢复通道204的第二放大器2041进行放大和数据恢复。
应理解,对于速率为Gbps的第一信号来说,可以使用第一控制信令使该速率范围的第一信号传输至第一放大和数据恢复通道203,同时结合第二控制信令对位于第一放大和数据恢复通道203的第一放大器2031的带宽进行调整。
通过第二信令对放大器的带宽进行调整,有利于提升信号放大后的信噪比,实现信号的灵活放大,从而进一步提升通信质量。
应理解,对于本申请实施例提出的放大信号的装置200来说,对每次接收到的第一信号进行放大和数据恢复时,第一控制信令和第二控制信令并不是同时伴随着接收的。举例来说,当第一时刻接收的第一速率信号为10Gbps量级,例如25Gbps,若后一个第二时刻接收的第二速率信号为相同量级,例如50Gbps,此时,并不需要第一控制信令进行切换。换句话说,对于使用本申请提出的放大信号的装置200的接收装置(例如接收机)来讲,采用时分复用的方式接收信号时,可以在发送端进行相应的控制。例如,先发送对应于第一放大和数据恢复通道203速率的信号,再发送对应第二放大和数据恢复通道204速率的信号,此时,对于接收机来说,可以实现仅接收一次第一控制信令,并在接收时调整一次切换元件2022的应用场景,可以极大的提升对信号放大的效率,进一步地提升系统的性能。
此外,当放大信号的装置200接收第一控制信令和第二控制信令时,对于控制信令的接收可以没有先后顺序,优选的,同步接收第一控制信令和第二控制信令。
还需要说明的是,在本申请实施例中,第一控制信令和第二控制信令均可以是来自系统的指令,例如系统的控制与处理中心,比如,MAC。使得系统可以在不同的时刻根据到达的上行信号的不同速率控制信号传输至不同的放大和数据恢复通道,并在相应的放大和数据恢复通道接收该信号。
在另一种可实现的方式中,连通单元202包括镜像模块2023,图5为本申请实施例提供的第一种放大信号的装置300的示意性结构图。其中,镜像模块2023用于镜像复制第一信号得到第二信号,并将第一信号与第二信号分别传输至第一放大和数据恢复通道203和第二放大和数据恢复通道204。可选的,镜像模块2023可以为镜像电路,例如包括电流镜等元件的电路,该镜像电路的实现可以参照相关的技术说明,此处不再赘述。
具体地,如图5所示,第一放大器2031为带宽1.25Gbps的跨阻放大器,第二放大器2041为带宽50Gbps的跨阻放大器。当信号接收单元201接收到的第一信号的速率为1.25Gbps时,镜像模块2023将接收到的来自信号接收单元的第一信号复制生成第二信号,并将第一信号传输至第一放大和数据恢复通道203,同时将第二信号传输至第二放大和数据恢复通道204。其中,第一信号通过位于第一放大和数据恢复通道203的第一放大器2031进行放大和数据恢复,第二信号通过位于第二放大和数据恢复通道204的第二放大器2041进行放大和数据恢复。应理解,由于该第二信号的速率与第一信号的速率相同,即为1.25Gbps,因此,当该第二信号通过第二放大器2041进行放大和数据恢复后,信噪比明显降低,可以通过位于该第二放大和数据恢复通道204上的滤波元件等进行滤波,从而不被接收。
可选地,如图6所示,当信号接收单元201接收到的第一信号的速率为12.5Gbps时,该第一信号可以通过第一放大和数据恢复通道203和第二放大和数据恢复通道204中的任意一个通道进行放大和数据恢复。
当信号接收单元201接收到的第一信号的速率为25Gbps时,在一种可实现的方式中,第二放大和数据恢复通道204的第二放大器2041可以接收第二控制信令,并基于该第二控制信令调整第二放大器2041的带宽进行减小,优选的,该第二信令用于指示第二放大器2041将带宽减小为25G,以使得通过第二放 大器2041的25Gbps第一信号的信噪比得到提升。
需要说明的是,当放大信号的装置如上述图5或者图6所示时,本申请实施例提供的放大信号的装置300还可以包括第三放大器205,该放大器205用于对第一信号进行放大和数据恢复,使得第一信号的强度增加,保证系统传输的需要。
还需要说明的是,在本申请实施例中,第一控制信令和第二控制信令均可以是来自系统的指令,例如系统的控制与处理中心,比如,MAC。使得系统可以在不同的时刻根据到达的上行信号的不同速率在对应的放大和数据恢复通道中接收该时刻到达的信号。
此外,本申请实施例提供的放大装置还可以包括其他放大和数据恢复通道,用于对多速率的信号进行放大和数据恢复,例如,本申请实施例提供的放大装置包括M个放大和数据恢复通道,第一信号包括N种速率,该M个放大和数据恢复通道与该N种速率对应,N种速率中的每种速率对应M个放大和数据恢复通道中的一个放大和数据恢复通道。该M个放大和数据恢复通道中的每一个放大和数据恢复通道用于对该通道对应的速率进行放大和数据恢复,其中N中速率的N个信号依次按照时分复用的方式被装置200或300接收。该过程可参考上述对第一放大和数据恢复通道或者第二放大和数据恢复通道的相关说明,在此不再赘述。
以上,结合图2至图6对本申请实施例提供的放大信号的装置进行了说明,以下对本申请提供的放大信号的方法进行说明。
图7为本申请实施例提供的放大信号的方法700的流程示意图。该方法包括如下多个步骤。该方法可以通过上述图2-图6所示的放大信号的装置200或300实现,或者由上述放大信号的装置200或300的部件(如芯片或芯片系统等)执行。为了说明的简便性,此处仅以图2所示的装置200为例进行说明。
S701,接收第一信号,第一信号包括第一速率信号和第二速率信号。
具体地,在放大信号的装置200中,信号接收单元201用于接收第一信号,该第一信号包括第一速率信号和第二速率信号。其中,第一速率信号和第二速率信号在时间维度上按一定顺序交错到达信号接收单元201。
应理解,在本申请实施例中,第一信号还可以包括其他速率的信号,即第一信号包括多速率的信号,这些信号均按照时分复用的形式传输至信号接收单元201。
S702,将第一信号传输至第一放大和数据恢复通道和第二放大和数据恢复通道中的至少一个。
具体地,在装置200中,通道选择单元202用于将第一信号传输至第一放大和数据恢复通道203和第二放大和数据恢复通道204中的至少一个。当第一信号传输至第一放大和数据恢复通道203时,第一放大和数据恢复通道203对第一信号进行放大和数据恢复。当第一信号传输至第二放大和数据恢复通道204时,第二放大和数据恢复通道204对第一信号进行放大和数据恢复。
图8为本申请实施例提供的放大信号的方法800的流程示意图。该方法包括如下多个步骤。该方法可以通过上述图3或图4所示的放大信号的装置200实现,或者由上述放大信号的装置200的部件(如芯片或芯片系统等)执行。为了说明的简便性,此处仅以图3所示的装置200为例进行说明。
S801,接收第一信号,第一信号包括第一速率信号和第二速率信号。
具体地,在放大信号的装置200中,信号接收单元201用于接收第一信号,该第一信号包括第一速率信号和第二速率信号。其中,第一速率信号和第二速率信号在时间维度上按一定顺序交错到达信号接收单元201。
同样的,第一信号还可以包括其他速率的信号,即第一信号包括多速率的信号,这些信号均按照时分复用的形式传输至信号接收单元201。
S802,接收第一控制信令。
具体地,控制单元2021接收第一控制信令,该第一控制信令用于指示将第一信号传输至第一放大和数据恢复通道或第二放大和数据恢复通道。
S803,根据第一控制信令将第一信号传输至第一放大和数据恢复通道或第二放大和数据恢复通道。
具体地,控制单元2021根据第一控制信令控制转换元件2022将信号接收单元201与第一放大和数据恢复通道203或第二放大和数据恢复通道204连通。示例性的,当第一放大和数据恢复通道203的工作速率/工作带宽对应第一速率时,当接收到第一速率信号后,控制单元2021根据第一控制信令控制转换元件2022将信号接收单元201与第一放大和数据恢复通道203连通,使得第一放大和数据恢复通道203对第一速率信号进行放大和数据恢复。当第二放大和数据恢复通道204的工作速率/工作带宽对应第二速率时,当接收到第二速率信号后,控制单元2021根据第一控制信令控制转换元件2022将信号接收单元201与第二 放大和数据恢复通道204连通,以使第二放大和数据恢复通道204对第二速率信号进行放大和数据恢复。
图9为本申请实施例提供的放大信号的方法900的流程示意图。该方法包括如下多个步骤。该方法可以通过上述图5或图6所示的放大信号的装置300实现,或者由上述放大信号的装置300的部件(如芯片或芯片系统等)执行。为了说明的简便性,此处仅以图5所示的装置300为例进行说明。
S901,接收第一信号,第一信号的速率包括第一速率和第二速率。
具体地,在放大信号的装置300中,信号接收单元201用于接收第一信号,该第一信号包括第一速率和第二速率。
同样的,第一信号的速率可以包括其他速率,即第一信号为多速率的信号。
S902,镜像复制第一信号得到第二信号。
具体地,镜像模块2023镜像复制第一信号得到第二信号。
S903,将第一信号与第二信号分别传输至第一放大和数据恢复通道和第二放大和数据恢复通道。
具体地,镜像模块2023镜像复制第一信号得到第二信号后,将第一信号与第二信号分别传输至第一放大和数据恢复通道和第二放大和数据恢复通道,使得第一放大和数据恢复通道203对第一信号进行放大和数据恢复的同时,第二放大和数据恢复通道204对第二信号进行放大和数据恢复。
需要说明的是,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
图10为本申请实施例提供的接收光信号的装置1000的结构示意图。该接收光信号的装置1000为接收机或者接收机中的放大模块,例如可以是布置于PON系统中的OLT设备中。如图10所述该接收光信号的装置1000包括:光信号接收和转换单元210、通道选择单元202、第一放大和数据恢复通道203、第二放大和数据恢复通道204。其中,光信号接收和转换单元210用于接收第一光信号,将第一光信号转换成第一电信号,并输出第一电信号至所述通道选择单元202,其中,第一光信号包括第一速率光信号和第二速率光信号,第一速率光信号对应第一速率电信号,第二速率光信号对应第二速率电信号。通道选择单元200用于将光信号接收和转换单元210与第一放大和数据恢复通道203和第二放大和数据恢复通道204中的至少一个连通,并将第一电信号传输至第一放大和数据恢复通道203和第二放大和数据恢复通道204中的至少一个。第一放大和数据恢复通道203用于对传输至第一放大和数据恢复通道203的第一电信号进行放大和数据恢复。第二放大和数据恢复通道204用于对传输至第二放大和数据恢复通道204的第一电信号进行放大和数据恢复。
具体地,在图10中,第一放大和数据恢复通道203的工作速率/工作带宽对应1.25G,第二放大和数据恢复通道204的工作速率/工作带宽对应50G。
在一种可实现的方式中,当第一速率信号的速率为1.25Gbps时,第一速率信号通过第一放大器2031进行放大和数据恢复后,传输至线路放大器(line amplifier,LA)或者限幅放大器(limiting amplifier,LA)220再次进行放大后,进入突发时钟数据恢复(burst clock and data recovery,BCDR)230中进行判决和数据恢复后,由MAC260进行接收。当第二速率信号为50Gbps时,第二速率信号通过第二放大器2041进行放大后,传输至50G光数字信号处理(optical digital signal processing,oDSP)和BCDR判决模块240进行数字处理和数据恢复后,输出至2*25G不归零(non return to zero,NRZ)编码模块250进行编码后,由MAC 260进行接收。
示例性的,光信号接收和转换单元可以是光电转换芯片,例如,APD。
接下来,根据通道选择单元202的不同结构结合图11和图12,对本申请的接收装置1000的两种不同结构1001和1002进行详细说明。
具体地,如图11所示,上行第一光信号通过光信号接收和转换单元210转换为第一电信号,并输出至通道选择单元202。其中,通道选择单元202包括控制单元2021和切换元件2022。具体地,通道选择单元202中的控制单元2021接收到来自MAC的第一控制信令,并根据第一控制信令控制单刀双掷开关2022将第一信号输入至不同的放大和数据恢复通道。其中,该第一控制信令可以指示第一信号的速率,使得控制单元2021根据第一信号的速率将第一信号分配至不同的放大和数据恢复通道。或者该第一控制信令可以直接指示不同的放大和数据恢复通道,这是因为MAC 260控制端保存有不同时刻ONU设备发送的信号的速率。
示例性地,当第一时刻的上行第一光信号为第一速率光信号时,例如1.25Gbps时,光信号接收和转换单元将第一速率光信号转换为第一速率电信号,并输出至通道选择单元202中。控制单元2021接收来自MAC的第一控制信令,并根据第一控制信令控制单刀双掷开关2022与第一放大和数据恢复通道203相连,同时将第一速率电信号至传输第一放大和数据恢复通道203中,该第一速率电信号依次经过LA 220,BCDR230后被MAC 260接收。当第二时刻的上行第一光信号为第二速率光信号时,例如50Gbps时,光信号接收和转换单元将第二速率光信号转换为第二速率电信号,并输出至通道选择单元202中。控制单元2021接收来自MAC的第一控制信令,并根据第一控制信令控制单刀双掷开关2022与第二放大和数据恢复通道204相连,同时将第二速率电信号至传输第一放大和数据恢复通道204中,该第二速率电信号依次经过LA220,BCDR 230后被MAC 260接收。
此外,MAC 260可以通过向第一放大器2031或者第二放大器2041发送第二控制信令来控制放不同放大和数据恢复通道的工作速率/工作带宽。具体地,当第一信号的速率为25Gbps时,MAC 260可根据第一信号的速率,向第二放大器2041发送第二控制信令,该第二控制信令用于指示第二放大器2041降低放大带宽。在一种可实现的方式中,该第二控制信令中包括指定的带宽值,用于指示第二放大器2041将放大带宽调整为该指定的带宽值。例如,当指定的带宽值为25G时,该第二放大器2041将带宽调整为该指定的25G。或者,在另一种可实现的方式中,该第二控制信令用于指示第二放大器2041将带宽降低,该第二控制信令中包括指示字段,该指示字段的值为第二放大器2041调整的带宽值,例如,该指示字段的值为25时,第二放大器2041收到该第二指示信令后,将50G带宽下调25G后,使降低后的带宽调整到25G后,对接收到的第一信号进行放大和数据恢复。或者,在另一种可实现的方式中,该第二控制信令仅用于指示第二放大器2041将带宽降低,并不具体指示需要降低的带宽值,当第二放大器2041收到该第二指示信令后,将50G带宽降低即可。
如图12为装置1002的示意性结构图,其中,通道选择单元202包括镜像模块2023。具体地,镜像模块2023用于镜像复制第一信号得到第二信号,并将第一信号与第二信号分别传输至第一放大通道放大和数据恢复通道203和第二放大通道放大和数据恢复通道204中。
其中,MAC 260控制端可以基于上行ONT设备的时序,在匹配第一信号速率的放大和数据恢复通道上进行上行信号的接收。示例性的,当在某个时刻,若第一信号的速率为50Gbps时,尽管该第一信号除了在第二放大和数据恢复通道204中传输,还会在第一放大和数据恢复通道203中传输,但MAC 260控制端仅会接收第二放大和数据恢复通道204传输的上行信号。
应理解,该图12所示的其他部分的说明可对应参考图10或图11中的相关说明,此处不再赘述。
以下,结合图13详细说明本申请实施例提供的通信的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对放大信号的装置200或300进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图13为一种可能的通信装置的结构示意图。如图13所示,通信装置1300包括处理器1301、光收发器1302和存储器1303。其中,存储器1303是可选的。
其中,处理器1301和光收发器1302用于实现图7至图9中装置200或300所执行的方法。在实现过程中,处理流程的各步骤可以通过处理器1301中的硬件的集成逻辑电路或软件形式的指令完成上述附图的发送设备所执行的方法。光收发器1302用于接收发送段发送的第一信号,并将第一信号发送给处理器1301进行处理。
存储器1303可以用于存储指令,以使得处理1301可以用于执行如上述图中提及的步骤。或者,存储1303也可以用于存储其他指令,以配置处理器1301的参数以实现对应的功能。
需要说明的是,图13所述的装置也可以用于执行前述提及的附图所示的实施例变形所涉及的方法步骤,在此不再赘述。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质。该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。所述计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种芯片。该芯片包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如对第一信号进行放大和数据恢复。可选地,所述芯片还包括存储器,所述存储器,用于处理器所执行必要的程序指令和数据。该芯片,可以由芯片构成,也可以包含芯片和其他分立器件。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟 或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种放大信号的装置,其特征在于,所述装置包括:信号接收单元、通道选择单元、第一放大和数据恢复通道和第二放大和数据恢复通道,
    所述信号接收单元,用于接收第一信号,并输出所述第一信号至所述通道选择单元,所述第一信号中包括第一速率信号和第二速率信号;
    所述通道选择单元,用于将所述信号接收单元与所述第一放大和数据恢复通道和所述第二放大和数据恢复通道中的至少一个连通,并将所述第一信号传输至所述第一放大和数据恢复通道和所述第二放大和数据恢复通道中的至少一个;
    所述第一放大和数据恢复通道,用于对传输至所述第一放大和数据恢复通道的所述第一信号进行放大和数据恢复;
    所述第二放大和数据恢复通道,用于对传输至所述第二放大和数据恢复通道的所述第一信号进行放大和数据恢复。
  2. 根据权利要求1所述的装置,其特征在于,所述信号接收单元,具体用于接收不同的时刻到达的所述第一速率信号与所述第二速率信号。
  3. 根据权利要求1或2所述的装置,其特征在于,
    所述第一放大和数据恢复通道,具体用于对所述第一速率信号进行限幅放大和数据恢复;
    所述第二放大和数据恢复通道,具体用于对所述第二速率信号进行线性放大和数据恢复。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,所述通道选择单元包括:控制单元和切换元件,
    所述控制单元,用于接收第一控制信令,并根据所述第一控制信令控制所述切换元件将所述信号接收单元与所述第一放大和数据恢复通道或与所述第二放大和数据恢复通道连通;
    当所述切换元件将所述信号接收单元与所述第一放大和数据恢复通道连通时,所述切换元件,用于将所述第一速率信号传输至所述第一放大和数据恢复通道;
    当所述切换元件将所述信号接收单元与所述第二放大和数据恢复通道连通时,所述切换元件,用于将所述第二速率信号传输至所述第二放大和数据恢复通道。
  5. 根据权利要求4所述的装置,其特征在于,所述切换元件包括单刀双掷开关或者三极管。
  6. 根据权利要求4或5所述的装置,其特征在于,所述第一控制信息来自媒体接入控制MAC。
  7. 根据权利要求1所述的装置,其特征在于,所述通道选择单元包括:镜像模块,
    所述镜像模块,用于镜像复制所述第一信号得到第二信号,并将所述第一信号与第二信号分别传输至所述第一放大和数据恢复通道和所述第二放大和数据恢复通道。
  8. 根据权利要求1至7中任一项所述的装置,其特征在于,
    所述第一放大和数据恢复通道,还用于接收第二控制信令,并根据所述第二控制信令确定所述第一放大和数据恢复通道的工作速率/工作带宽;
    或者,
    所述第二放大和数据恢复通道,还用于接收第二控制信令,并根据所述第二控制信令确定所述第二放大和数据恢复通道的工作速率/工作带宽。
  9. 根据权利要求8所述的装置,其特征在于,所述第二控制信息来自媒体接入控制MAC。
  10. 根据权利要求1至9中任一项所述的装置,其特征在于,
    所述装置包括M个放大和数据恢复通道,所述第一信号包括N种速率,所述M个放大和数据恢复通道与所述N种速率对应,所述N种速率中的每种速率对应所述M个放大和数据恢复通道中的一个通道;
    所述通道选择单元,用于将所述信号接收单元与所述第一信号的速率对应的放大和数据恢复通道连通,其中,M和N为大于等于2的整数。
  11. 一种接收光信号的装置,其特征在于,所述装置包括:光信号接收和转换单元、通道选择单元、第一放大和数据恢复通道、第二放大和数据恢复通道,
    所述光信号接收和转换单元,用于接收第一光信号,将所述第一光信号转换成第一电信号,并输出所述第一电信号至所述通道选择单元,所述第一光信号包括第一速率光信号和第二速率光信号,所述第一速 率光信号对应第一速率电信号,所述第二速率光信号对应第二速率电信号;
    所述通道选择单元,用于将所述光信号接收和转换单元与所述第一放大和数据恢复通道和第二放大和数据恢复通道中的至少一个连通,并将所述第一电信号传输至所述第一放大和数据恢复通道和第二放大和数据恢复通道中的至少一个;
    所述第一放大和数据恢复通道,用于对传输至所述第一放大和数据恢复通道的所述第一电信号进行放大和数据恢复;
    所述第二放大和数据恢复通道,用于对传输至所述第二放大和数据恢复通道的所述第一电信号进行放大和数据恢复。
  12. 根据权利要求11所述的装置,其特征在于,
    所述光信号接收和转换单元,具体用于接收在不同的时刻到达的所述第一速率光信号与所述第二速率光信号,将所述第一速率光信号和所述第二速率光信号转换为所述第一速率电信号和所述第二速率电信号,并分别在不同的时刻输出所述第一速率电信号和所述第二速率电信号至所述通道选择单元。
  13. 根据权利要求11或12所述的装置,其特征在于,
    所述第一放大和数据恢复通道,具体用于对所述第一速率电信号进行限幅放大和数据恢复;
    所述第二放大和数据恢复通道,具体用于对所述第二速率电信号进行线性放大和数据恢复。
  14. 根据权利要求11至13中任一项所述的装置,其特征在于,所述通道选择单元包括:控制单元和切换元件,
    所述控制单元,用于接收第一控制信令,并根据所述第一控制信令控制所述切换元件将所述光信号接收和转换单元与所述第一放大和数据恢复通道或与所述第二放大和数据恢复通道连通;
    当所述切换元件将所述光信号接收和转换单元与所述第一放大和数据恢复通道连通时,所述切换元件,用于将所述第一速率电信号传输至所述第一放大和数据恢复通道;
    当所述切换元件将所述光信号接收和转换单元与所述第二放大和数据恢复通道连通时,所述切换元件,用于将所述第二速率电信号传输至所述第二放大和数据恢复通道。
  15. 根据权利要求14所述的装置,其特征在于,所述切换元件包括单刀双掷开关或者三极管。
  16. 根据权利要求14或15所述的装置,其特征在于,所述
    第一控制信息来自媒体接入控制MAC。
  17. 根据权利要求11所述的装置,其特征在于,所述通道选择单元包括:镜像模块,
    所述镜像模块,用于镜像复制所述第一电信号得到第二电信号,并将所述第一电信号与所述第二电信号分别传输至所述第一放大和数据恢复通道和所述第二放大和数据恢复通道。
  18. 根据权利要求至11至17中任一项所述的装置,其特征在于,
    所述第一放大和数据恢复通道,还用于接收第二控制信令,并根据所述第二控制信令确定所述第一放大和数据恢复通道的工作速率/工作带宽;
    或者,
    所述第二放大和数据恢复通道,还用于接收第二控制信令,并根据所述第二控制信令确定所述第二放大和数据恢复通道的工作速率/工作带宽。
  19. 根据权利要求18所述的装置,其特征在于,所述第二控制信息来自媒体接入控制MAC。
  20. 根据权利要求11至19中任一项所述的装置,其特征在于,
    所述装置包括M个放大和数据恢复通道,所述第一光信号或所述第一电信号包括N种速率信号,所述M个放大和数据恢复通道与所述N种速率信号对应,所述N种速率信号中的每种速率信号对应所述M个放大和数据恢复通道中的一个通道,所述M个放大和数据恢复通道包括限幅放大和数据恢复通道,以及线性放大和数据恢复通道;
    所述通道选择单元,用于将所述光信号接收和转换单元与所述第一电信号的速率对应的放大与数据恢复通道连通,其中,M和N为大于等于2的整数。
  21. 一种放大信号的方法,其特征在于,包括:
    接收第一信号,所述第一信号中包括第一速率信号和第二速率信号;
    将所述第一信号传输至第一放大和数据恢复通道和第二放大和数据恢复通道中的至少一个;
    当所述第一信号传输至所述第一放大和数据恢复通道时,所述第一放大和数据恢复通道对所述第一信号进行放大和数据恢复;
    当所述第一信号传输至所述第二放大和数据恢复通道时,所述第二放大和数据恢复通道对所述第一信号进行放大和数据恢复。
  22. 根据权利要求21所述的方法,其特征在于,所述接收第一信号,包括:
    接收不同的时刻的所述第一速率信号与所述第二速率信号。
  23. 根据权利要求21或22所述的方法,其特征在于,
    所述第一放大和数据恢复通道对所述第一信号进行放大和数据恢复,包括:所述第一放大和数据恢复通道对所述第一信号进行限幅放大和数据恢复;
    所述第二放大和数据恢复通道对所述第一信号进行放大和数据恢复,包括:所述第二放大和数据恢复通道对所述第一信号进行线性放大和数据恢复。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一控制信令;
    根据所述第一控制信令将所述第一信号传输至所述第一放大和数据恢复通道或所述第二放大和数据恢复通道。
  25. 根据权利要求24所述的方法,其特征在于,所述第一控制信息来自媒体接入控制MAC。
  26. 根据权利要求21至23中任一项所述的方法,其特征在于,所述方法还包括:
    镜像复制所述第一信号得到第二信号;
    将所述第一信号与第二信号分别传输至所述第一放大和数据恢复通道和所述第二放大和数据恢复通道。
  27. 根据权利要求21至26中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二控制信令;
    根据所述第二控制信令确定所述第一放大和数据恢复通道或所述第二放大和数据恢复通道的工作速率/工作带宽。
  28. 根据权利要求27所述的方法,其特征在于,所述第二控制信息来自媒体接入控制MAC。
  29. 根据权利要求21至28中任一项所述的方法,其特征在于,
    所述第一信号包括N种速率,所述N种速率与M个放大和数据恢复通道对应,所述N种速率中的每种速率对应所述M个通道中的一个通道,其中,M和N为大于等于2的整数;
    将所述第一信号传输至与所述第一信号的速率对应的通道。
  30. 一种无源光网络系统,包括光线路终端OLT和多个光网络单元ONU,所述OLT和所述ONU之间通过至少一个下行波长通道和一个上行波长通道进行通信,其中,所述上行波长通道用于传输所述第一信号,所述OLT用于执行上述权利要求21至29中任一项所述的方法。
  31. 一种芯片,其特征在于,所述芯片包括处理器和光信号接收装置,所述光信号接收装置用于接收所述第一信号并传输至所述处理器,所述处理器用于执行如权利要求21至29中任一项所述的方法。
PCT/CN2023/099948 2022-07-30 2023-06-13 一种放大信号的装置、接收光信号的装置和方法 WO2024027346A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210912578.9A CN117528294A (zh) 2022-07-30 2022-07-30 一种放大信号的装置、接收光信号的装置和方法
CN202210912578.9 2022-07-30

Publications (1)

Publication Number Publication Date
WO2024027346A1 true WO2024027346A1 (zh) 2024-02-08

Family

ID=89759127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099948 WO2024027346A1 (zh) 2022-07-30 2023-06-13 一种放大信号的装置、接收光信号的装置和方法

Country Status (2)

Country Link
CN (1) CN117528294A (zh)
WO (1) WO2024027346A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579781A (zh) * 2017-10-18 2018-01-12 成都优博创通信技术股份有限公司 光信号接收模块及光信号收发装置
US9882539B1 (en) * 2016-07-31 2018-01-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Multi-data rate, burst-mode transimpedance amplifier (TIA) circuit
US20200044733A1 (en) * 2003-03-03 2020-02-06 Alexander Soto System and method for performing in-service optical network certification
WO2021115454A1 (zh) * 2019-12-13 2021-06-17 华为技术有限公司 光电信号转换器、光驱动处理和接收模组及网络交互设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200044733A1 (en) * 2003-03-03 2020-02-06 Alexander Soto System and method for performing in-service optical network certification
US9882539B1 (en) * 2016-07-31 2018-01-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Multi-data rate, burst-mode transimpedance amplifier (TIA) circuit
CN107579781A (zh) * 2017-10-18 2018-01-12 成都优博创通信技术股份有限公司 光信号接收模块及光信号收发装置
WO2021115454A1 (zh) * 2019-12-13 2021-06-17 华为技术有限公司 光电信号转换器、光驱动处理和接收模组及网络交互设备

Also Published As

Publication number Publication date
CN117528294A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
JP4820880B2 (ja) 局側終端装置
US9967033B2 (en) Flexible TWDM PON with load balancing and power saving
US8855490B2 (en) Backward compatible PON coexistence
WO2015154389A1 (zh) 光收发模块及其工作参数的配置方法及装置
US8565605B2 (en) Burst mode to continuous mode converter
US11362756B2 (en) System and methods for coherent PON architecture and burst-mode reception
TW201032502A (en) Managed PON repeater and cross connect
US10110310B2 (en) Transmission system and transmission method
US9071405B2 (en) Optical line terminal, optical network unit and passive optical network system
CN101953098A (zh) 通过波分复用无源光网络的时分多址
US11309967B2 (en) Communications network and related device
WO2011009368A1 (zh) 无源光网络中传输信息的方法、装置和系统
WO2019015484A1 (zh) 一种光模块以及网络设备
WO2020181549A1 (en) Power saving mechanisms for high speed passive optical network
CN101471730B (zh) 基于波分复用结构的光纤宽带接入系统及光网络单元
JP6449060B2 (ja) 波長分離多重装置及び光通信システム並びに波長分離多重方法
US20230208522A1 (en) Communication system and method, and related device
WO2014180253A1 (zh) 一种支持两种无源光网络共存的光组件及方法
WO2024027346A1 (zh) 一种放大信号的装置、接收光信号的装置和方法
JP5456547B2 (ja) 光通信システム及び光通信方法
US20240097790A1 (en) Communication apparatus, communication system, storage medium, and communication method
JP2010161568A (ja) マルチレートpon親局装置
AU2017225642A1 (en) Agrregator-based cost-optimized communications topology for a point-to-multipoint network
JP2016010036A (ja) 局側光終端装置、光中継装置、プログラムおよび光通信方法
KR100998582B1 (ko) 지역 가입자간의 통신을 위한 수동형 광 가입자망 시스템 및 그의 통신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849056

Country of ref document: EP

Kind code of ref document: A1