WO2024027208A1 - 充电电路、电子设备、充电系统及反向充电方法 - Google Patents

充电电路、电子设备、充电系统及反向充电方法 Download PDF

Info

Publication number
WO2024027208A1
WO2024027208A1 PCT/CN2023/089380 CN2023089380W WO2024027208A1 WO 2024027208 A1 WO2024027208 A1 WO 2024027208A1 CN 2023089380 W CN2023089380 W CN 2023089380W WO 2024027208 A1 WO2024027208 A1 WO 2024027208A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
charging
power
control
pull
Prior art date
Application number
PCT/CN2023/089380
Other languages
English (en)
French (fr)
Other versions
WO2024027208A9 (zh
Inventor
秦恒亮
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024027208A1 publication Critical patent/WO2024027208A1/zh
Publication of WO2024027208A9 publication Critical patent/WO2024027208A9/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of circuit technology, and in particular, to a charging circuit, electronic equipment, charging system and reverse charging method.
  • this application provides a charging circuit, electronic device and reverse charging method. It can realize the power supply of electronic equipment to any device to be charged in the shutdown scenario.
  • inventions of the present application provide a charging circuit for use in electronic equipment.
  • the charging circuit includes: a control module, a charging protocol module, a first power module, a second power module, a first switch module, and a wired external interface. and a pull-up module;
  • the wired external interface includes a first pin and a second pin;
  • the control module is electrically connected to the first power module, the second power module, and the charging protocol module respectively, and the charging protocol module is respectively connected to the second power module.
  • the control end and the first pin of the first switch module are electrically connected, the first end of the first switch module is electrically connected to the first power module, the second end of the first switch module is electrically connected to the second pin, and the pull-up The module and the first pin are coupled to the first node; the pull-up module is used to provide a first level signal to the first node; when the first node changes from a first level signal to a second level signal, the The second power module is used to power the control module and the charging protocol module; when the second power module supplies power to the charging protocol module, the charging protocol module is used to identify whether a charging cable is inserted into the wired external interface.
  • the charging protocol module When the charging protocol module identifies When the charging cable is inserted into the wired external interface, the charging protocol module is also used to control the first switch module to be turned on, so that the first power module is in standby mode through the second pin and the charging cable when the electronic device is in the shutdown state. Charging external devices (also called external devices to be charged) provide power.
  • the level of the first pin of the wired external interface changes when the charging cable is connected and when the charging cable is not connected, based on the change in level , so that the second power module supplies power to it and the charging protocol module, thereby causing the charging protocol module to identify the protocol and open the first switch module, and the control module controls the first power module to provide external power supply, that is, to realize notebook computers, tablets, desktops machine Electronic devices such as these can serve as the main device in a shutdown scenario and provide power to any external device, and are no longer limited to the PD protocol.
  • control module may be an embedded controller (Embed Controller, EC embedded controller).
  • embedded controller Embed Controller, EC embedded controller
  • the charging protocol module may be a USB-PD (Power Delivery) protocol module, such as a USB-PD protocol IC.
  • USB-PD Power Delivery
  • the wired external interface can be a USB Type-C interface.
  • the first pin may be a CC (Configuation Channel) pin.
  • the second pin can be a VBUS pin.
  • the second power module is a buck circuit, which is used to output a fixed voltage, such as a 3.3V fixed voltage, to provide complete power supply to the control module and the charging protocol module when the electronic device (such as a laptop) is in a shutdown state.
  • a fixed voltage such as a 3.3V fixed voltage
  • the first switch module may be a load switch (LS) chip.
  • LS load switch
  • the pull-up module includes a pull-up resistor, the first end of the pull-up resistor is used to receive the first control signal, so that the signal of the first node is a first level signal; the pull-up resistor The second terminal and the first pin are coupled to the first node.
  • the structure is simple and the cost is low.
  • the third power module supplies power to some ports of the control module.
  • the control module controls the third power module to stop supplying power to it.
  • the third power module controls the second power module to stop supplying power to it.
  • the control module sends a switch signal. Control the third power module to supply power to or stop power supply, wherein the first control signal is, for example, a switch signal.
  • the pull-up module further includes a diode, the anode of the diode is used to receive the first control signal, and the cathode of the diode is electrically connected to the first end of the pull-up resistor. It can prevent the signal of the first node from affecting the signal of the first end of the pull-up resistor and improve the stability of the circuit.
  • the resistance of the pull-up resistor is greater than 5.1 kiloohms. This setting can prevent the pull-up resistor from being too small.
  • the pull-down resistor in the OTG line cannot achieve the pull-down effect.
  • the control module includes a first port, the first port, the first pin and the pull-up module are coupled to the first node; the control module It is used to collect the signal of the first node. When the first node changes from the first level signal to the second level signal, it is also used to send the first switch signal to the second power module, so that the second power module is controlled. module and charging protocol module. That is, the control module identifies the change in the first node level. When the change is identified, the second power module is enabled to supply power to the control module and the charging protocol module, thereby enabling the charging protocol module to identify the protocol and open the first switch module.
  • control module controls the first power module to provide external power supply, that is, electronic devices such as laptops, tablets, and desktops can be used as main devices in a shutdown scenario to provide power to any external device, and are no longer limited to the PD protocol of the TypeC port.
  • the charging circuit further includes a second switch module, a first end of the second switch module is electrically connected to the first node, and a second end of the second switch module Electrically connected to the first port, the control end of the second switch module is used to receive a second control signal; the second control signal is used to control the second switch module to turn on when the signal of the first node is a first level signal, When the signal at the first node changes from the first level signal to the second level signal, the second switch module is controlled to be turned off.
  • the charging protocol module performs protocol identification
  • the signal of the first port of the control module can be prevented from affecting the signal of the first node, thereby affecting the protocol identification of the charging protocol module.
  • the second control module is the first control module.
  • the circuit structure is simplified, and there is no need to separately set up a corresponding structure to provide the first control signal.
  • the second switch module includes a structure such as a metal oxide semiconductor field effect transistor that can implement a switching function.
  • the charging circuit further includes a logic NOT circuit, the input end of the logic NOT circuit is coupled to the first node; the output end of the logic NOT circuit is electrically connected to the second power module. Connection; when the first node changes from the first level signal to the second level signal, the logic NOT circuit is used to control the second power supply module to supply power to the control module and the charging protocol module. That is, the change in the first node level is identified through the logical NOT circuit. When the change is identified, the second power module is enabled to supply power to the control module and the charging protocol module, thereby enabling the charging protocol module to identify the protocol and the first switch module.
  • the opening and control module controls the first power module to provide external power supply, that is, electronic devices such as laptops, tablets, and desktops can be used as the main device in a shutdown scenario to provide power to any external device, and are no longer limited to the PD protocol of the TypeC port. .
  • the charging circuit further includes a third power module electrically connected to the control module; the control module is used to control the second power module to be the control module and the charging protocol module.
  • the third power supply module is controlled to stop supplying power to the control module.
  • the third power supply module supplies power to the control module, it is also used to stop the second power supply module from supplying power to the control module and the charging protocol module. This is to ensure that some ports can work with low power consumption when the control module is in the shutdown state.
  • the third power module includes a low dropout linear voltage regulator.
  • the first end of the pull-up resistor is electrically connected to the control module and the third power module; the first end of the pull-up resistor receives
  • the first control signal is a second switch signal sent by the control module to the third power module, where the second switch signal is used to control the third power module to supply power to the control module or to stop supplying power to the control module. That is, the signal at the control end of the second switch module, the signal at the first end of the pull-up resistor, and the switch signal sent by the control module to the third power module are the same signal.
  • the above signals can be provided through the control module without separate settings.
  • the corresponding structure provides control of the second switch module The signal at the control terminal and the signal at the first terminal of the pull-up resistor.
  • inventions of the present application provide an electronic device.
  • the electronic device includes: a charging circuit corresponding to the above-mentioned first aspect and any implementation manner of the first aspect.
  • the electronic device may also include: one or more processors; memory; and one or more computer programs, wherein the one or more computer programs are stored on the memory, and when the computer program is executed by the one or more processors , causing the electronic device to perform the corresponding function.
  • the electronic device may be a laptop computer or a smartphone.
  • the second aspect and any implementation manner of the second aspect respectively correspond to the first aspect and any implementation manner of the first aspect.
  • the technical effects corresponding to the second aspect and any implementation manner of the second aspect may be referred to the technical effects corresponding to the above-mentioned first aspect and any implementation manner of the first aspect, which will not be described again here.
  • embodiments of the present application provide a reverse charging method, which can be applied to the electronic device corresponding to the above-mentioned second aspect and any implementation of the second aspect.
  • the reverse charging method includes: when detecting that the first node changes from a first level signal to a second level signal, the electronic device supplies power to the control module and the charging protocol module; when it is recognized that the charging cable is inserted into the wired external interface When the electronic device is powered off, the electronic device supplies power to the external device to be charged through the second pin and the charging cable.
  • the third aspect and any implementation manner of the third aspect respectively correspond to the second aspect and any implementation manner of the second aspect.
  • the technical effects corresponding to the third aspect and any implementation manner of the third aspect please refer to the technical effects corresponding to the above-mentioned second aspect and any implementation manner of the second aspect, which will not be described again here.
  • inventions of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium includes a computer program.
  • the computer program When the computer program is run on the electronic device, the electronic device performs the third aspect and the reverse charging method of any one of the third aspect.
  • the fourth aspect and any implementation manner of the fourth aspect respectively correspond to the third aspect and any implementation manner of the third aspect.
  • the technical effects corresponding to the fourth aspect and any implementation manner of the fourth aspect please refer to the technical effects corresponding to the above-mentioned third aspect and any implementation manner of the third aspect, which will not be described again here.
  • embodiments of the present application provide a computer program product, including a computer program that, when the computer program is run, causes the computer to perform the reverse charging method as in the third aspect or any one of the third aspects.
  • the fifth aspect and any implementation manner of the fifth aspect respectively correspond to the third aspect and any implementation manner of the third aspect.
  • the technical effects corresponding to the fifth aspect and any implementation manner of the fifth aspect please refer to the technical effects corresponding to the above-mentioned third aspect and any implementation manner of the third aspect, which will not be described again here.
  • this application provides a chip, which includes a processing circuit and transceiver pins.
  • the transceiver pin and the processing circuit communicate with each other through an internal connection path, and the processing circuit performs the reverse charging method as in the third aspect or any one of the third aspect to control the receiving pin to receive the signal to control the sending The pin sends the signal.
  • the sixth aspect and any one of the implementation methods of the sixth aspect are respectively the same as the third aspect and any one of the third aspects. corresponding to the implementation methods.
  • the technical effects corresponding to the sixth aspect and any implementation manner of the sixth aspect please refer to the technical effects corresponding to the above-mentioned third aspect and any implementation manner of the third aspect, which will not be described again here.
  • this application also provides a reverse charging system.
  • the reverse charging system includes an electronic device and an external device.
  • the electronic device and the external device are connected through a wired external interface.
  • the electronic device is used to reverse charge the external device.
  • the electronic device is an electronic device corresponding to the above-mentioned second aspect and any one of the implementation methods of the second aspect.
  • the electronic device performs charging to the external device. Reverse charging.
  • the electronic device is a laptop computer, or it can also be a smartphone.
  • the reverse charging system further includes an OTG line.
  • OTG line When one end of the OTG line is electrically connected to the electronic device and the other end is electrically connected to the external device, in the shutdown state, the electronic device is used to charge the external device through the OTG line. The device performs reverse charging. The level of the first node changes through the OTG line.
  • the seventh aspect and any implementation manner of the seventh aspect respectively correspond to the third aspect and any implementation manner of the third aspect.
  • the technical effects corresponding to the seventh aspect and any implementation manner of the seventh aspect please refer to the technical effects corresponding to the above-mentioned third aspect and any implementation manner of the third aspect, which will not be described again here.
  • Figure 1 is a schematic diagram of an exemplary application scenario
  • Figure 2 is the pin diagram of the USB Type-C interface
  • FIG. 3 is a schematic structural diagram of a charging circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another charging circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an OTG line provided by an embodiment of the present application.
  • Figure 6 is an exemplary schematic diagram showing an OTG line connected to an electronic device
  • FIG. 7 is a schematic structural diagram of another charging circuit provided by an embodiment of the present application.
  • Figure 8 is a flow chart of a reverse charging method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another charging circuit provided by an embodiment of the present application.
  • Figure 10 is a flow chart of yet another reverse charging method provided by an embodiment of the present application.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • first and second in the description and claims of the embodiments of this application are used to distinguish different objects, rather than a specific order used to describe the objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • Embodiments of the present application provide an electronic device.
  • the electronic device provided by the embodiment of the present application may be a notebook computer, a mobile phone, a tablet computer, a desktop computer, a personal digital assistant (PDA for short), a vehicle-mounted computer, or a smart wearable device. , smart home equipment, augmented reality (AR)/virtual reality (VR), etc.
  • PDA personal digital assistant
  • AR augmented reality
  • VR virtual reality
  • FIG. 1 illustrates an application scenario.
  • the electronic device is a laptop and the external device to be charged is a mobile phone. That is, the laptop is used to charge the mobile phone. illustrate.
  • the notebook computer 100 includes a wired external interface 101
  • the mobile phone 200 includes a wired external interface 201 .
  • the laptop 100 is on or off.
  • the mobile phone 200 can be reversely charged in any state.
  • USB Type-C interface Type C USB interface defined by the USB Association
  • the following wired external interface 101 is USB Type- The C interface is taken as an example to explain in detail.
  • the USB Type-C interface can adopt any USB transmission protocol such as USB 2.0 protocol, USB 3.0 protocol or USB 3.1 protocol, and supports USB standard charging, data transmission, display output and other functions.
  • the USB Type-C interface does not distinguish between the front and back sides, and is an interface that supports double-sided insertion.
  • the USB Type-C interface includes: 4 VBUS pins for power supply, 4 GND pins for grounding, and two CC pins. pins (CC1 pin and CC2 pin), 4 pairs of TX pins and RX pins, 2 pairs of D+ (also called DP or data positive signal) pins and D- (also called DM or data negative signal) ) pin, and a pair of SBU pins (SBU1 pin and SBU2 pin).
  • the VBUS pin and GND pin are the return paths for power and signals.
  • the default VBUS voltage is 5V, but the standard allows the device to negotiate and select a VBUS voltage other than the default. Power delivery allows VBUS to have voltages up to 20V, and the maximum current can also be increased to 5A. Therefore, the USB Type-C interface can provide a maximum power of 100W.
  • the CC pin is used to complete the configuration channel functions defined in the USB Type-C specification, as well as the functions specified in the USB PD specification.
  • the D+ pin and D- pin are the differential pairs used for USB 2.0 connections.
  • the signals transmitted on the D+/D- pins can be used for identification of private protocols.
  • the TX pin and RX pin are used for high-speed data transmission;
  • the SBU1 pin and the SBU2 pin are auxiliary pins and have different uses in different application scenarios, and will not be described in detail in this embodiment.
  • FIG. 3 exemplarily shows a schematic structural diagram of a charging circuit.
  • the charging circuit 10 includes a USB Type-C interface 101, a control module 102, a charging protocol module 103, a first power module 104, a second power module 105, a third power module 106, a charging management module 107 and a third power module.
  • the control module 102 is electrically connected to the first power module 104, the second power module 105, the third power module 106, and the charging protocol module 103 respectively.
  • the charging protocol module 103 is respectively connected to the CC pin (CC1 pin) of the USB Type-C interface 101. or CC2 pin) is electrically connected to the first switch module 108, the VBUS pin of the USB Type-C interface 101 is electrically connected to the charging management module 107 and the first switch module 108 respectively, and the first switch module 108 is electrically connected to the first power module 104 Electrical connection.
  • control module 102 is, for example, an embedded controller (Embed Controller, EC embedded controller), which mainly controls the power-on sequence, keyboard, and handles underlying hardware-related work, such as temperature detection, charging control, and controlling PD chip implementation. Interface functions etc.
  • the control module 102 may contain stand-alone software stored on its own non-volatile medium.
  • control module 102 may include one or more interfaces. Interfaces can include general input and output interfaces (GPIO), eSPI (Enhanced Serial Peripheral, enhanced serial peripheral) interfaces, integrated circuit I2C interfaces, etc.
  • GPIO general input and output interfaces
  • eSPI Enhanced Serial Peripheral, enhanced serial peripheral interfaces
  • integrated circuit I2C interfaces etc.
  • the electrical connection with other modules in the electronic device and the communication between modules are realized through the above-mentioned interface.
  • control module 102 can send switching signals to the first power module 104, the second power module 105, and the third power module 106 respectively to control the first power module 104, the second power module 105, and the third power module.
  • the working status of the module 106 (working or not working) can control the charging protocol module 103 to implement the interface function.
  • the switching signal sent by the first power module 104 is the third switching signal
  • the switching signal sent by the second power module 105 is the first switching signal
  • the switching signal sent by the third power module 106 is the second switching signal.
  • the charging protocol module 103 is a USB-PD charging protocol module. As an example, it can be a USB-PD charging protocol IC.
  • the charging protocol module 103 may include one or more interfaces. The interface may include an integrated circuit I2C interface, etc.
  • the charging protocol chip 130 is electrically connected to the I2C interface of the control module 102 through, for example, the I2C interface and the I2C bus, to realize the electrical connection between the charging protocol module 103 and the control module 102 and the transmission of signals.
  • the control module 102 can control the charging protocol module 103 Implement interface functions.
  • the charging protocol module 103 can realize functions such as identification of peripheral chargers.
  • the first power module 104 is, for example, a power chip, and is used to output a fixed voltage, for example, a 5V fixed voltage.
  • a fixed voltage for example, a 5V fixed voltage.
  • the first switch module 108 When the first switch module 108 is turned on, the fixed voltage output by the first power module 104 can power the external device to be charged through the VBUS pin of the USB Type-C interface 101, that is, the first power module 104 is used to charge the external device. device provides power.
  • the second power module 105 is a buck circuit, for example, and is used to output a fixed voltage, for example, a 3.3V fixed voltage.
  • the fixed voltage output by the second power supply module 105 provides complete power supply to the control module 102 and the charging protocol module 103 to ensure the normal operation of the control module 102 and the charging protocol module 103 (that is, all functions are effective).
  • the control module 102 and the charging protocol module 103 are provided with high-efficiency power supply.
  • the second power module 105 can also provide power for the control module 102 and the charging protocol when the electronic device (such as a laptop) is in a shutdown state according to the control of the control module 102.
  • the negotiation module 103 provides complete power supply.
  • the third power module 106 is, for example, a low dropout linear regulator (LDO), used to output a fixed voltage, such as a 3.3V fixed voltage.
  • LDO low dropout linear regulator
  • the fixed voltage output by the third power supply module 106 supplies power to a part of the GPIO of the control module 102 and other modules (such as clock chips) of the electronic device (such as a laptop computer) to ensure that the electronic device (such as a laptop computer) maintains certain power in the shutdown state.
  • Functions power-on button and time operation
  • energy consumption is low.
  • the second power module 105 and the third power module 106 both supply power to the control module 102 and other modules inside the electronic device (such as a laptop) (such as modules that need to keep working in the shutdown state, such as clock chips, etc.) , but the power supply relationship between the two is opposite.
  • the third power module 106 is turned off (not working).
  • the second power module 105 Turn on(work). That is to say, when the control module 102 enables the second power module 105, it turns off the third power module 106, that is, the third power module 106 supplies power instead of the second power module 105.
  • the charging management module 107 may be a Charger IC.
  • the first switch module 108 may be a load switch (LS) chip, which functions as a switch and a current limiter (to prevent large currents from damaging the circuit).
  • the first switch module 108 includes but is not limited to an LS chip.
  • the charging protocol module 103 can be used to control the first switch module 108 to be turned on or off.
  • the electronic device such as a laptop
  • the main device can serve as the main device to provide external power.
  • the third power module 106 outputs a fixed voltage to supply power to a portion of the GPIO of the control module 102 and other modules (such as a clock chip) of the electronic device (such as a notebook computer), so as to Ensure that some functions (power-on button and time operation) of electronic equipment (such as laptops) can operate normally when they are turned off.
  • an external device to be charged such as a mobile phone
  • the USB Type-C interface 101 of an electronic device such as a laptop
  • the device can serve as a master device to provide 5V voltage to the outside.
  • the charging management module 107 For example, it provides 5V voltage to the charging management module 107 of the electronic device through the VBUS pin. After the charging management module 107 recognizes that there is a 5V voltage, it sends a signal to the control module 102. The control module 102 responds accordingly. The signal sends a switching signal to the first power module 104 and the second power module 105, so that the second power module 105 provides complete power supply to the control module 102 and the charging protocol module 103 to ensure the normal operation of the control module 102 and the charging protocol module 103 ( i.e. all functions are valid).
  • the charging protocol module 103 After the charging protocol module 103 is working normally, the charging protocol module 103 recognizes that there is an external device to be charged as the master device through the protocol followed between it and the external device to be charged (for example, the PD protocol), and communicates through the PD protocol. The power role is switched. At this time, the electronic device (such as a laptop) becomes the main device, and then outputs a voltage of 5V to the outside through the first power chip 104, the first switch module 108 and the USB Type-C interface 101 (such as the VBUS pin). , to charge external devices to be charged (such as mobile phones), that is, to achieve shutdown charging.
  • the electronic device such as a laptop
  • the prerequisite is that the control module 102 and charging protocol module 103 of the electronic device (such as a laptop) must be in a power-on state or be awakened from the device in order to recognize the access of the external device.
  • Current main devices especially those with batteries, need to consider devices with long battery life and low power consumption.
  • the shutdown scenario except for the power supply that maintains the clock chip, boot and other modules, all other power sources are turned off.
  • the above solution is not suitable for shutting down the main device.
  • the power-off state cannot be achieved.
  • the slave device the device to be charged
  • the slave device must comply with the PD protocol. For non-standard devices, even through an adapter cable (such as an OTG cable), the external charging function cannot be satisfied.
  • this embodiment also provides a charging circuit that can provide power to any external device when it is powered on or off. It is no longer limited to the PD protocol of the USB Type-C interface and does not require excessive hardware. cost.
  • the structure and charging principle of the charging circuit provided by this application are introduced below.
  • FIG 4 exemplarily shows a schematic structural diagram of yet another charging circuit.
  • the charging circuit 10 of the electronic device 100 includes a USB Type-C interface 101, a control module 102, a charging protocol module 103, a first power module 104, a second power module 105, a third power module 106, a charging
  • the management module 107 and the first switch module 108 also include a pull-up module 109.
  • the pull-up module 109 includes a pull-up resistor R1, the first end of the pull-up resistor R1 is used to receive the first control signal, the second end of the pull-up resistor R1, the first port 1021 of the control module 102 and the USB Type-C interface 101
  • the CC pin is coupled to the first node N1.
  • the first control signal is, for example, a high-level signal.
  • the first control signal is, for example, a low-level signal.
  • the first port 1021 of the control module 102 may be a GPIO interface, and the GPIO interface may operate with low power consumption and receive external level changes when the electronic device is in a shutdown state.
  • the following explanation takes the charging cable 300 connecting the external device 200 to be charged and the electronic device 100 as an OTG line as an example. However, this does not constitute a limitation of the present application. As long as the charging cable 300 is connected, any cable that can cause the voltage at the first node N1 to change is within the protection scope of the present application.
  • FIG. 5 exemplarily shows a schematic structural diagram of an OTG line.
  • the OTG line 300 includes a USB Type-C interface 301, a USB Type-A interface 302, a voltage bus (Voltage Bus, VBUS) 303, a DP/DM line 304, a TX/RX line 305, a GND line 306 and a CC line 307.
  • One end of the CC line 307 is electrically connected to the CC pin in the USB Type-C interface 301, and the other end is set to ground through a pull-down resistor R2 of 5.1K ohm, for example.
  • Figure 6 exemplarily shows a schematic diagram after the OTG line is connected to the electronic device.
  • the OTG line is inserted into the USB Type-C interface 101 of the electronic device 100, that is, when the device 200 to be charged needs to be charged, the USB Type-A interface 302 of the OTG line 300 is connected to the wired external connection of the external device 200 to be charged.
  • the interface 201 is electrically connected, and the USB Type-C interface 301 of the OTG cable 300 is electrically connected to the wired external interface 101 of the electronic device 100 .
  • the pull-up resistor R1, the CC (CC1/CC2) pin of the wired external interface 101, the CC pin in the USB Type-C interface 301, the CC line 307 and the pull-down resistor R2 form a path. Since the pull-down resistor R2 is set to ground, therefore, The level of the first node N1 is pulled down and becomes a second level signal.
  • the second level signal is, for example, a low level signal.
  • the control module 102 can monitor the level change of the first node N1 (ie, from the first level signal to the second level signal). When the control module 102 detects that the level of the first node N1 changes, the control module 102 sends a signal to the second power module respectively. 105 and the third power module 106 send switching signals to control the second power module 105 to completely power the control module 102 and the charging protocol module 103, and to control the third power module 106 to stop powering the control module 102.
  • control module 102 and the charging protocol module 103 work normally, that is, the control module 102 changes from working with only part of the interface to working normally, and the charging protocol module 103 changes from not working to working normally, and In order to avoid the signal received by the first end of the first resistor R1 from affecting the level of the first node N1 (affecting the protocol identification of the charging protocol module 103), at this time, the signal received by the first end of the pull-up resistor R1 becomes low level.
  • the charging protocol module 103 When the charging protocol module 103 is working normally, it can be recognized that there is an external 5.1K ohm resistor pull-down through the CC1/CC2 pin of the wired external interface 101 (the specific protocol identification process is the same as the existing technology, please refer to the existing technology, which will not be discussed here). (Repeated description), and then confirm that the USB Type-C interface 101 has an OTG cable connected.
  • the charging protocol module 103 reports the information that the USB Type-C interface 101 has OTG line access to the control module 102.
  • the control module 102 sends a switch signal to the first power module 104 to control the operation of the first power module 104 and to the charging protocol module 102.
  • the module 103 sends a signal that controls the opening of the first switch module 108, so that the charging protocol module 103 controls the opening of the first switch module 108.
  • the 5V signal output by the first power module 104 can pass through the first switch module 108, USB
  • the VBUS pin of the Type-C interface 101, the voltage bus 303 of the OTG line, and the VBUS pin in the USB Type-C interface 301 provide power for the device 200 to be charged.
  • the embodiment of this application combines the OTG line characteristics of TypeC (there is a pull-down resistor grounding setting at the CC line), and sets a pull-up module at the CC pin of the USB Type-C interface 101, so that the CC pin of the USB Type-C interface 101
  • the control module 102 controls the second power supply module 105 to supply power to it and the charging protocol module 103, thereby causing the charging protocol module 103 to perform the protocol.
  • the recognition and opening of the first switch module 108 and the control module 102 control the first power module 104 to provide external power supply that is, electronic devices such as laptops, tablets, and desktops can be used as main devices in a shutdown scenario to provide power to any external device. , and is no longer limited to the PD protocol of the TypeC port.
  • the embodiment of the present application does not limit the resistance of the pull-up resistor R1.
  • the voltage at the first node N1 can be generated. changes, and the changed value can be recognized by the first port 1021 of the control module 102.
  • the first port 1021 of the control module 102 can recognize it.
  • the voltage at the first node N1 need to change, but the change needs to exceed a certain threshold before it can be recognized by the first port 1021 of the control module 102 .
  • the resistance of the pull-up resistor R1 is greater than 5.1K ohms, for example.
  • the resistance of the pull-up resistor R1 is 10K ohm, 20K ohm, 30K ohm, 40K ohm, 50K ohm, 60K ohm, 70K ohm, 80K ohm, 90K ohm, 100K ohm, etc. This setting can prevent the pull-up resistor R1 from being too small.
  • the pull-down resistor R2 in the OTG line cannot achieve the pull-down effect, thereby affecting the first port of the control module 102. 1021 identification.
  • the first end of the pull-up resistor R1 is used to receive a high-level signal. After the level of the first node N1 changes, the pull-up resistor R1 The first end of the pull-up resistor R1 is used to receive the low-level signal.
  • the acquisition of the signal at the first end of the pull-up resistor R1 is not specifically limited in the embodiment of this application.
  • the first end of the pull-up resistor R1 is electrically connected to the control module 102 and the third power module 106 for receiving the switching signal sent by the control module 102 to the third power module 106, that is, the pull-up resistor R1
  • the signal received by the first end may be the switching signal.
  • the switch signal is high level when the control module 102 enables the third power module 106 and is low level when the third power module 106 is controlled not to operate. Therefore, when the control module 102 enables the third power module 106, a high level signal can be provided to the first end of the pull-up resistor R1.
  • the pull-up resistor R1 and the first end of the pull-up resistor R1 can be provided with a high level signal.
  • Three power supply modules 106 provide low level signals.
  • the charging circuit 10 also includes a second switch module 1091, which is disposed between the first port 1021 of the control module 102 and the first node N1.
  • the second switch module 1091 The first end is electrically connected to the first port 1021 of the control module 102, the second end of the second switch module 1091 is electrically connected to the first node N1, and the control end of the second switch module 1091 is, for example, connected to the first end of the pull-up resistor R1. Electrical connection.
  • the second switch module 1091 is in the on state before the level of the first node N1 changes, and is in the off state after the level of the first node N1 changes.
  • the control module 102 controls the third power supply module 106 to provide power, that is, when the second switch module 1091 receives the high-level signal sent by the control module 102, the second switch module 1091 is in a conductive state.
  • the second power supply module 105 supplies power to the third power supply module 103 and controls the third power supply module 106 to stop supplying power to the third power supply module 103, that is, the control module 102 sends a low level to the third power supply module 106 at this time, that is, the second switch
  • the module 1091 receives the low-level signal sent by the control module 102
  • the second switch module 1091 is in a cut-off state. This setting prevents the influence of the signal from the first port 1021 of the control module 102 when the charging protocol module 103 performs protocol identification.
  • the signal of the first node N1 further affects the protocol identification of the charging protocol module 103.
  • the embodiment of the present application does not limit the type of the second switch module 1091.
  • the second switch module 1091 is, for example, a Metal Oxide Semiconductor Field Effect Transistor (MOSFET), which may be an N-type MOSFET or a P-type MOSFET.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the above example is explained by taking the second switch module 1091 as an N-type MOSFET.
  • the first port 1021 of the control module 102 can be set to high impedance (that is, the impedance is infinite). For example, by configuring a register at the first port 1021 of the control module 102, control can also be avoided.
  • the signal of the first port 1021 of the module 102 affects the signal of the first node N1.
  • the signal of the first node N1 affects the pull-up
  • the signal at the first end of the resistor R1 further affects the working state of the third power module 106, because the signal at the first end of the pull-up resistor R1 is the signal that controls the working state of the third power module 106.
  • the pull-up module 109 also includes a diode 1092, the cathode of the diode 1092 is electrically connected to the first end of the pull-up resistor R1, and the anode of the diode 1092 is used to receive the control signal. That is to say, when the control module 102 sends a high-level signal to the third power module 106 to control the third power module 106 to supply power to it, the high-level signal at the anode of the diode 1092 can be transmitted to the pull-up resistor R1 through the diode 1092 First end.
  • the control module 102 controls the third power module 106 to stop supplying power
  • the signal at the first node N1 cannot be transmitted to the anode of the diode 1092 and cannot affect the signal at the anode of the diode 1092, thereby affecting the operation of the third power module 106. status, improving the stability of the circuit Qualitative.
  • the embodiment of the present application also provides a reverse charging method.
  • This reverse charging method can be applied to the charging circuit in this embodiment and has the same beneficial effect.
  • the reverse charging method is introduced below in conjunction with the charging circuit shown in Figure 7.
  • the reverse charging method can be implemented through the following steps:
  • control module 102 determines whether the electronic device is in a shutdown state, and if so, executes step S802.
  • control module 102 can monitor whether the status of the electronic device is a powered-on state or a powered-off state. If it is detected that the electronic device is powered on, the first power module 104 can provide power to the external device to be charged. That is to provide external power supply according to the existing method.
  • the control module 102 controls the second switch module 1091 to be turned on, so that the first port 1021 of the control module 102 is electrically connected to the first node N1, and controls the third power module 106 to supply power to some interfaces of the control module 102.
  • Control The second power module 105 stops supplying power to the control module 102 and the charging protocol module 103.
  • the control module 102 can monitor the voltage signal at the first node N1 in real time.
  • step S803 The control module 102 monitors in real time whether the voltage at the first node N1 changes. If yes, step S804 is executed; if not, step S802 is returned to execution.
  • control module 102 controls the second power module 105 to power the control module 102 and the charging protocol module 103, and controls the third power module 106 to stop powering some interfaces of the control module 102.
  • the control module 102 and the charging protocol module 103 need to be fully powered.
  • the charging protocol module 103 needs to determine through protocol identification that the USB Type-C interface 101 is indeed connected to the OTG line.
  • the charging protocol module 103 determines whether the USB Type-C interface 101 is connected to an OTG line. If yes, step S806 is executed. If not, step S802 is returned to execution.
  • the charging protocol module 103 sends the signal indicating that the OTG line is connected to the USB Type-C interface 101 to the control module 102.
  • Control the second power module 105 to supply power to the control module 102 and the charging protocol module 103, and control the third power module 106 to stop supplying power to some interfaces of the control module 102
  • the control module 102 controls the operation of the first power module 104, and the charging protocol module 103 controls the first switch module 108 to be turned on, so that the first power module 104 is ready for external use through the first switch module 108 and the USB Type-C interface 101.
  • Charging device supplies power.
  • FIG. 9 exemplarily shows a schematic structural diagram of yet another charging circuit.
  • the charging circuit 10 also includes a logic NOT circuit 1093.
  • the input terminal of the logic NOT circuit 1093, the second terminal of the pull-up resistor R1 and the CC pin of the USB Type-C interface 101 are coupled to the first node N1.
  • the output end of the logic NOT circuit 1093 is electrically connected to the second power module 105 and the control module 102 respectively, and there is no need to select an interface that can operate with low power consumption when the electronic device is in a shutdown state.
  • the first node N1 is also at a high level. After the high level of the first node N1 passes through the logic NOT circuit 1093, the level is converted to a low level. The low level cannot enable the second power module 105. At this time, the third power module 106 is still used for control. Some interfaces of module 102 are powered.
  • the USB Type-A interface 302 of the OTG line 300 is electrically connected to the wired external interface 201 of the external device 200 to be charged.
  • the USB Type-C interface 301 of the OTG cable 300 is electrically connected to the wired external interface 101 of the electronic device 100.
  • the pull-up resistor R1, the CC (CC1/CC2) pin of the wired external interface 101, the CC pin in the USB Type-C interface 301, the CC line 307 and the pull-down resistor R2 form a path.
  • the pull-down resistor R2 is set to ground, therefore, The level of the first node N1 is pulled low.
  • the low level of the first node N1 is converted to a high level after passing through the logic NOT circuit 1093.
  • the high level enables the second power module 105, so that the second power module 105 controls the control module 102 and the charging protocol.
  • the module 103 is fully powered, the control module 102 and the charging protocol module 103 are working normally, that is, the control module 102 changes from working with only part of the interface to working normally, the charging protocol module 103 changes from not working to working normally, and the control module 102 controls the third
  • the power module 106 stops supplying power to it (the control module 102), and at this time, the signal received by the first end of the first resistor R1 becomes low level.
  • the charging protocol module 103 is working normally, it can be recognized that there is an external 5.1K ohm resistor pull-down through the CC1/CC2 pin of the wired external interface 101 (the specific protocol identification process is the same as the existing technology, please refer to the existing technology, which will not be discussed here).
  • the charging protocol module 103 reports the information that the USB Type-C interface 101 has an OTG line access to the control module 102.
  • the control module 102 sends a switch signal to the first power module 104 to control the operation of the first power module 104 and to the charging protocol module 102.
  • the module 103 sends a signal to control the opening of the first switch module 108, so that the charging protocol module 103 controls the opening of the first switch module 108.
  • the 5V signal output by the first power module 104 can pass through the first switch module 108, USB
  • the VBUS pin of the Type-C interface 101, the voltage bus 303 of the OTG line, and the VBUS pin in the USB Type-C interface 301 provide power for the device 200 to be charged.
  • the embodiment of this application combines the OTG line characteristics of TypeC (there is a pull-down resistor grounding setting at the CC line), and sets a pull-up module at the CC pin of the USB Type-C interface 101, so that the CC pin of the USB Type-C interface 101 The level changes when the OTG line is connected and when the OTG line is not connected.
  • the logic NOT circuit 1093 can enable the second power module 105 to supply power to the control module 102 and the charging protocol module 103, thereby enabling
  • the charging protocol module 103 identifies the protocol and opens the first switch module 108, and the control module 102 controls the first power module 104 to provide external power supply, that is, electronic devices such as laptops, tablets, and desktops can be used as main devices in a shutdown scenario. It can power any external device, and is no longer limited to the PD protocol of the TypeC port.
  • the embodiment of the present application also provides a reverse charging method.
  • This reverse charging method can be applied to the charging circuit in this embodiment and has the same beneficial effect.
  • the reverse charging method is introduced below with reference to the charging circuit shown in Figure 9.
  • the reverse charging method can be implemented through the following steps:
  • control module 102 determines whether the electronic device is in a shutdown state, and if so, executes step S1002.
  • control module 102 can monitor whether the status of the electronic device is a powered-on state or a powered-off state. If it is detected that the electronic device is powered on, the first power module 104 can provide power to the external device to be charged. That is to provide external power supply according to the existing method.
  • the control module 102 controls the third power module 106 to supply power to some interfaces of the control module 102, and controls the second power module 105 to stop supplying power to the control module 102 and the charging protocol module 103.
  • the logical NOT module 1093 controls the second power module 105 to provide power to the control module 102 and the charging protocol module 103, and the control module 102 controls the third power module 106 to stop supplying power to the control module 102. Power supply for some interfaces.
  • the control module 102 and the charging protocol module 103 need to be fully powered.
  • the charging protocol module 103 needs to determine through protocol identification that the USB Type-C interface 101 is indeed connected to the OTG line. Therefore, when the voltage at the first node N1 changes, the second power module 105 can be enabled to supply power to the control module 102 and the charging protocol module 103 through the logical NOT module 1093 .
  • step S1004 The charging protocol module 103 determines whether the USB Type-C interface 101 is connected to an OTG line. If so, step S1005 is executed. If not, step S1002 is returned to execution.
  • the charging protocol module 103 sends the signal indicating that the OTG line is connected to the USB Type-C interface 101 to the control module 102.
  • Control the second power module 105 to supply power to the control module 102 and the charging protocol module 103, and control the third power module 106 to stop supplying power to some interfaces of the control module 102
  • the control module 102 controls the operation of the first power module 104, and the charging protocol module 103 controls the first switch module 108 to be turned on, so that the first power module 104 is ready for external use through the first switch module 108 and the USB Type-C interface 101.
  • Charging device supplies power.
  • This embodiment also provides a computer storage medium that stores computer instructions.
  • the electronic device causes the electronic device to execute the above related method steps to implement the reverse charging method in the above embodiment. .
  • This embodiment also provides a computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to perform the above related steps to implement the reverse charging method in the above embodiment.
  • inventions of the present application also provide a device.
  • This device may be a chip, a component or a module.
  • the device may include a connected processor and a memory.
  • the memory is used to store computer execution instructions.
  • the processor can execute computer execution instructions stored in the memory, so that the chip performs the reverse charging method in each of the above method embodiments.
  • the first electronic device such as a notebook computer, etc.
  • computer storage medium, computer program product or chip provided in this embodiment is used to execute the corresponding method provided above. Therefore, the beneficial effects it can achieve can be Refer to the beneficial effects of the corresponding methods provided above, which will not be described again here.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or can be integrated into another device, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种充电电路、电子设备、充电系统及反向充电方法,涉及电路技术领域,实现电子设备在开机状态对外部任意设备进行供电,不再局限于PD协议。充电电路包括控制模块、充电协议模块、第一电源模块、第二电源模块、第一开关模块、有线外接接口和上拉模块;有线外接接口包括第一引脚和第二引脚;上拉模块向第一节点提供第一电平信号;当第一节点由第一电平信号变为第二电平信号时,第二电源模块为控制模块和充电协议模块供电;当第二电源模块为充电协议模块供电时,充电协议模块识别是否有充电线缆插入至有线外接接口,当充电线缆插入时,第二电源模块控制第一开关模块导通,以使第一电源模块通过充电线缆为待充电的外部设备供电。

Description

充电电路、电子设备、充电系统及反向充电方法
本申请要求于2022年08月02日提交中国国家知识产权局、申请号为202210921945.1、申请名称为“充电电路、电子设备、充电系统及反向充电方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路技术领域,尤其涉及一种充电电路、电子设备、充电系统及反向充电方法。
背景技术
随着社会的发展与进步,电子设备(如手机等)已经成为了人们生活中不可或缺的一部分。在不存在外接电源的情况下,如果手机等电子设备急需充电以保持续航,则用户可以使用其他移动便携设备(例如手机、平板电脑、笔记本电脑等)对其进行供电。
然而,这些移动便携设备仅能在开机状态下对外接电子设备进行充电(可以称之为反向充电),无法在关机状态下对外接电子设备进行充电,不利于用户体验。
发明内容
为了解决上述技术问题,本申请提供一种充电电路、电子设备及反向充电方法。可以实现电子设备在关机场景对任何待充电设备的供电。
第一方面,本申请实施例提供一种充电电路,应用于电子设备中,该充电电路包括:控制模块、充电协议模块、第一电源模块、第二电源模块、第一开关模块、有线外接接口和上拉模块;所述有线外接接口包括第一引脚和第二引脚;控制模块分别与第一电源模块、第二电源模块、充电协议模块电连接,充电协议模块分别与第二电源模块、第一开关模块的控制端、第一引脚电连接,第一开关模块的第一端与第一电源模块电连接,第一开关模块的第二端与第二引脚电连接,上拉模块与所述第一引脚耦合于第一节点;上拉模块用于向第一节点提供第一电平信号;当第一节点由第一电平信号变为第二电平信号时,第二电源模块用于为控制模块和充电协议模块供电;当第二电源模块为充电协议模块供电时,充电协议模块用于识别是否有充电线缆插入至有线外接接口,当所述充电协议模块识别到充电线缆插入有线外接接口时,所述充电协议模块还用于控制第一开关模块导通,以使第一电源模块在电子设备在关机状态下通过第二引脚、充电线缆为待充电的外部设备(也称为外部待充电的设备)供电。
通过在有线外接接口的第一引脚处设置上拉模块,使得有线外接接口的第一引脚在接入充电线缆时和未接入充电线缆时电平发生变化,基于电平的变化,使得第二电源模块对其和充电协议模块供电,进而使得充电协议模块进行协议的识别和第一开关模块的打开以及控制模块控制第一电源模块进行对外供电,即实现笔记本电脑、平板、桌面机 等电子设备在关机场景下作为主设备,对外部任意设备进行供电,而不再局限于PD协议。
示例性的,控制模块可以为嵌入式控制器(Embed Controller,EC嵌入式控制器)。
示例性的,充电协议模块可以为USB-PD(Power Delivery,供电)协议模块,例如为USB-PD协议IC。
示例性的,有线外接接口可以为USB Type-C接口。其中,第一引脚可以为CC(Configuation Channel,配置通道)引脚。第二引脚可以为VBUS引脚。
示例性的,第二电源模块例如为buck电路,用于输出固定电压,例如输出3.3V固定电压,在电子设备(如笔记本电脑)处于关机状态时,为控制模块和充电协议模块进行完整供电。
示例性的,第一开关模块例如可以为负载开关(Load Switch,LS)芯片。
根据第一方面,在充电电路中,上拉模块包括上拉电阻,上拉电阻的第一端用于接收第一控制信号,以使第一节点的信号为第一电平信号;上拉电阻的第二端和第一引脚耦合于第一节点。结构简单,成本低。
示例性的,在第二电源模块为控制模块和充电协议模块进行完整供电之前,第三电源模块为控制模块的部分端口供电。控制模块在控制第二电源模块为其供电时,控制第三电源模块停止为其供电,在控制第三电源模块为其供电时,控制第二电源模块停止为其供电,控制模块通过发送开关信号控制第三电源模块未其供电或停止供电,其中,第一控制信号例如为开关信号。
根据第一方面,或者以上第一方面的任意一种实现方式,上拉模块还包括二极管,二极管的阳极用于接收第一控制信号,二极管的阴极与上拉电阻的第一端电连接。可以避免第一节点的信号影响上拉电阻的第一端的信号,提高电路的稳定性。
根据第一方面,或者以上第一方面的任意一种实现方式,在该充电电路中,上拉电阻的阻值大于5.1千欧姆。这样设置,可以避免上拉电阻的电阻太小时,当OTG线接入到有线外接接口时,OTG线中的下拉电阻无法达到下拉的效果。
根据第一方面,或者以上第一方面的任意一种实现方式,在该充电电路中,控制模块包括第一端口,第一端口、第一引脚与上拉模块耦合于第一节点;控制模块用于采集第一节点的信号,当第一节点由第一电平信号变为第二电平信号时,还用于向第二电源模块发送第一开关信号,以使第二电源模块为控制模块和充电协议模块供电。即通过控制模块识别第一节点电平的变化,当识别到变化时,使能第二电源模块为控制模块和充电协议模块供电,进而使得充电协议模块进行协议的识别和第一开关模块的打开以及控制模块控制第一电源模块进行对外供电,即实现笔记本电脑、平板、桌面机等电子设备在关机场景下作为主设备,对外部任意设备进行供电,而不再局限于TypeC口的PD协议。
根据第一方面,或者以上第一方面的任意一种实现方式,该充电电路还包括第二开关模块,第二开关模块的第一端与第一节点电连接,第二开关模块的第二端与第一端口电连接,第二开关模块的控制端用于接收第二控制信号;第二控制信号用于在第一节点的信号为第一电平信号时,控制第二开关模块导通,在第一节点的信号由第一电平信号变为第二电平信号时,控制第二开关模块截止。这样设置,在充电协议模块进行协议识别时,可以防止控制模块的第一端口的信号影响第一节点的信号,进而影响充电协议模块的协议识别。
根据第一方面,或者以上第一方面的任意一种实现方式,在该充电电路中,当上拉模块包括上拉电阻时,第二控制模块为第一控制模块。简化电路结构,无需单独设置相应的结构提供第一控制信号。
根据第一方面,或者以上第一方面的任意一种实现方式,在该充电电路中,第二开关模块包括金属氧化物半导体型场效应管等可以实现开关功能的结构。
根据第一方面,或者以上第一方面的任意一种实现方式,该充电电路还包括逻辑非电路,逻辑非电路的输入端耦合于第一节点;逻辑非电路的输出端与第二电源模块电连接;当第一节点由第一电平信号变为第二电平信号时,逻辑非电路用于控制第二电源模块为控制模块和充电协议模块供电。即通过逻辑非电路识别第一节点电平的变化,当识别到变化时,使能第二电源模块为控制模块和充电协议模块供电,进而使得充电协议模块进行协议的识别和第一开关模块的打开以及控制模块控制第一电源模块进行对外供电,即实现笔记本电脑、平板、桌面机等电子设备在关机场景下作为主设备,对外部任意设备进行供电,而不再局限于TypeC口的PD协议。
根据第一方面,或者以上第一方面的任意一种实现方式,该充电电路还包括第三电源模块,与控制模块电连接;控制模块用于在控制第二电源模块为控制模块和充电协议模块供电时,控制第三电源模块停止为控制模块供电,还用于在第三电源模块为控制模块供电时,停止第二电源模块为控制模块和充电协议模块供电。以保证控制模块在关机状态时,某些端口可以低功耗工作。
示例性的,第三电源模块包括低压差线性稳压器。
根据第一方面,或者以上第一方面的任意一种实现方式,在该充电电路中,上拉电阻的第一端与控制模块和第三电源模块电连接;上拉电阻的第一端接收的第一控制信号为控制模块向第三电源模块发送的第二开关信号,其中,第二开关信号用于控制第三电源模块为控制模块供电或停止为控制模块供电。即第二开关模块的控制端的信号、上拉电阻第一端的信号、控制模块向第三电源模块发送的开关信号为同一信号,简化电路结构,通过控制模块即可提供上述信号,无需单独设置相应的结构提供第二开关模块的控 制端的信号和上拉电阻第一端的信号。
第二方面,本申请实施例提供一种电子设备。该电子设备包括:上述第一方面以及第一方面的任意一种实现方式所对应的充电电路。
其中,该电子设备还可以包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中一个或多个计算机程序存储在存储器上,当计算机程序被一个或多个处理器执行时,使得电子设备执行相应的功能。
根据第二方面,电子设备可以为笔记本电脑,也可以为智能手机。
第二方面以及第二方面的任意一种实现方式分别与第一方面以及第一方面的任意一种实现方式相对应。第二方面以及第二方面的任意一种实现方式所对应的技术效果可参见上述第一方面以及第一方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第三方面,本申请实施例提供一种反向充电方法,应用于上述第二方面以及第二方面的任意一种实现方式所对应的电子设备中。该反向充电方法,包括:当检测到第一节点由第一电平信号变为第二电平信号时,电子设备为控制模块和充电协议模块供电;当识别到充电线缆插入有线外接接口时,电子设备在关机状态下通过第二引脚、充电线缆为待充电的外部设备供电。
第三方面以及第三方面的任意一种实现方式分别与第二方面以及第二方面的任意一种实现方式相对应。第三方面以及第三方面的任意一种实现方式所对应的技术效果可参见上述第二方面以及第二方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第四方面,本申请实施例提供一种计算机可读存储介质。该计算机可读存储介质包括计算机程序,当计算机程序在电子设备上运行时,使得电子设备执行第三方面以及第三方面中任意一项的反向充电方法。
第四方面以及第四方面的任意一种实现方式分别与第三方面以及第三方面的任意一种实现方式相对应。第四方面以及第四方面的任意一种实现方式所对应的技术效果可参见上述第三方面以及第三方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第五方面,本申请实施例提供一种计算机程序产品,包括计算机程序,当计算机程序被运行时,使得计算机执行如第三方面或第三方面中任意一项的反向充电方法。
第五方面以及第五方面的任意一种实现方式分别与第三方面以及第三方面的任意一种实现方式相对应。第五方面以及第五方面的任意一种实现方式所对应的技术效果可参见上述第三方面以及第三方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第六方面,本申请提供了一种芯片,该芯片包括处理电路、收发管脚。其中,该收发管脚和该处理电路通过内部连接通路互相通信,该处理电路执行如第三方面或第三方面中任意一项的反向充电方法,以控制接收管脚接收信号,以控制发送管脚发送信号。
第六方面以及第六方面的任意一种实现方式分别与第三方面以及第三方面的任意一 种实现方式相对应。第六方面以及第六方面的任意一种实现方式所对应的技术效果可参见上述第三方面以及第三方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第七方面,本申请还提供了一种反向充电系统。该反向充电系统包括电子设备和外部设备,电子设备与外部设备通过有线外接接口相连,在关机状态下,电子设备用于向外部设备进行反向充电。其中,电子设备为上述第二方面以及第二方面的任意一种实现方式所对应的电子设备,在执行如第三方面或第三方面中任意一项的反向充电方法时,向外部设备进行反向充电。
示例性的,电子设备为笔记本电脑,也可以为智能手机。
根据第七方面,反向充电系统还包括OTG线,当OTG线的一端与电子设备电连接,另一端与外部设备设备电连接时,在关机状态下,电子设备用于通过OTG线向外部设备设备进行反向充电。通过OTG线使得第一节点的电平发生变化。
第七方面以及第七方面的任意一种实现方式分别与第三方面以及第三方面的任意一种实现方式相对应。第七方面以及第七方面的任意一种实现方式所对应的技术效果可参见上述第三方面以及第三方面的任意一种实现方式所对应的技术效果,此处不再赘述。
附图说明
图1为示例性示出的一种应用场景示意图;
图2为USB Type-C接口的引脚示意图;
图3为本申请实施例提供的一种充电电路的结构示意图;
图4为本申请实施例提供的又一种充电电路的结构示意图;
图5为本申请实施例提供的一种OTG线的结构示意图;
图6为示例性的示出了OTG线与电子设备连接后的原理图;
图7为本申请实施例提供的又一种充电电路的结构示意图;
图8为本申请实施例提供的一种反向充电方法的流程图;
图9为本申请实施例提供的又一种充电电路的结构示意图;
图10为本申请实施例提供的又一种反向充电方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的 对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
本申请实施例提供一种电子设备,本申请实施例提供的电子设备可以是笔记本电脑、手机、平板电脑、台式电脑、个人数字助理(personal digital assistant,简称PDA)、车载电脑、智能穿戴式设备、智能家居设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)等,本申请实施例对上述电子设备的具体形式不作特殊限定。
图1示例性的示出了一种应用场景,在本应用场景中以电子设备为笔记本电脑,外部待充电的设备为手机为例进行解释说明,即以笔记本电脑为手机进行充电为例进行解释说明。在用户外出等无法获取外接电源的情形下,若手机急需充电以保持续航功能,则用户可以使用笔记本电脑为手机进行充电。如图1所示,笔记本电脑100包括有线外接接口101,手机200包括有线外接接口201。当用户将充电线缆300的一端连接至笔记本电脑100的有线外接接口101,将充电线缆300的另一端连接至待充电的手机200的有线外接接口201时,笔记本电脑100在开机状态或关机状态均可对手机200进行反向充电。
由于目前大多数电子设备(如手机、平板电脑、笔记本电脑等)主流的有线外接接口为USB Type-C接口(USB协会定义的C类USB接口),下述以有线外接接口101为USB Type-C接口为例进行详细解释说明。USB Type-C接口可以采用USB 2.0协议、USB 3.0协议或USB 3.1协议等USB任一传输协议,支持USB标准的充电、数据传输、显示输出等功能。其中,USB Type-C接口不区分正反面,是一种支持双面插入的接口。
以电子设备侧的USB Type-C接口为例,如图2所示,USB Type-C接口包括:4个用于供电的VBUS引脚,4个用于接地的GND引脚,两个CC引脚(CC1引脚和CC2引脚),4对TX引脚和RX引脚,2对D+(也可称为DP或数据正信号)引脚和D-(也可称为DM或数据负信号)引脚,以及一对SBU引脚(SBU1引脚和SBU2引脚)。
其中,VBUS引脚和GND引脚是电源和信号的返回路径。默认的VBUS电压为5V,但标准允许器件协商并选择VBUS电压而不是默认值。电源传输允许VBUS具有高达20V的电压,最大电流也可以升高到5A。因此,USB Type-C接口可以提供100W的最大功率。CC引脚用于完成USB Type-C规范中定义的配置通道功能,以及USB PD规范中所规定的功能。D+引脚和D-引脚是用于USB 2.0连接的差分对。D+/D-引脚上传输的信号可以用于私有协议的识别。另外,TX引脚和RX引脚用于高速的数据传输; SBU1引脚和SBU2引脚为辅助引脚,在不同的应用场景具有不同的用途,本实施例不再详述。
参见图3,图3示例性的示出了一种充电电路的结构示意图。如图3所示,充电电路10包括USB Type-C接口101、控制模块102、充电协议模块103、第一电源模块104、第二电源模块105、第三电源模块106、充电管理模块107和第一开关模块108。
控制模块102分别与第一电源模块104、第二电源模块105、第三电源模块106、充电协议模块103电连接,充电协议模块103分别与USB Type-C接口101的CC引脚(CC1引脚或CC2引脚)和第一开关模块108电连接,USB Type-C接口101的VBUS引脚分别与充电管理模块107和第一开关模块108电连接,第一开关模块108与第一电源模块104电连接。
示例性的,控制模块102例如为嵌入式控制器(Embed Controller,EC嵌入式控制器),其主要控制上电时序、键盘和处理底层硬件相关工作,比如温度检测、充电控制、控制PD芯片实现接口等的功能。控制模块102可以包含独立运行的软件,存放在自己的非易失性介质中。在一些实施例中,控制模块102可以包括一个或多个接口。接口可以包括通用输入输出接口(GPIO)、eSPI(Enhanced Serial Peripheral,增强型串行外围)接口、集成电路I2C接口等。通过上述接口实现与电子设备中其他模块的电连接以及模块和模块之间的通信。本申请实施例中,控制模块102可以向第一电源模块104、第二电源模块105、第三电源模块106分别发送开关信号,以控制第一电源模块104、第二电源模块105、第三电源模块106的工作状态(工作或不工作),可以控制充电协议模块103实现接口功能。其中,第一电源模块104发送的开关信号为第三开关信号,第二电源模块105发送的开关信号为第一开关信号,第三电源模块106发送的开关信号为第二开关信号。
示例性的,充电协议模块103例如为USB-PD充电协议模块。示例性的,例如可以为USB-PD充电协议IC。充电协议模块103可以包括一个或多个接口。接口可以包括集成电路I2C接口等。充电协议芯片130通过例如I2C接口和I2C总线与控制模块102的I2C接口电连接,实现充电协议模块103与控制模块102的电连接以及信号之间的传输,例如控制模块102可以控制充电协议模块103实现接口功能。充电协议模块103可以实现外围充电器的识别等功能。
示例性的,第一电源模块104例如为电源芯片,用于输出固定电压,例如输出5V固定电压。当第一开关模块108导通时,第一电源模块104输出的固定电压可以通过USB Type-C接口101的VBUS引脚为外部待充电设备供电,即第一电源模块104用于对外部待充电的设备提供电源。
示例性的,第二电源模块105例如为buck电路,用于输出固定电压,例如输出3.3V固定电压。第二电源模块105输出的固定电压为控制模块102和充电协议模块103完整供电,以保证控制模块102和充电协议模块103的正常工作(即所有功能都是有效的)。例如在电子设备(如笔记本电脑)处于开机状态时,为控制模块102和充电协议模块103进行高效率的供电。本申请实施例中,第二电源模块105也可以根据控制模块102的控制,在电子设备(如笔记本电脑)处于关机状态时,为控制模块102和充电协 议模块103进行完整供电。
示例性的,第三电源模块106例如为低压差线性稳压器(low dropout regulator,LDO),用于输出固定电压,例如输出3.3V固定电压。第三电源模块106输出的固定电压为控制模块102的一分部GPIO以及电子设备(如笔记本电脑)的其他模块(如时钟芯片)供电,以保证电子设备(如笔记本电脑)在关机状态下一些功能(开机按键和时间的运行)可以正常进行,且能耗较低。
需要说明的是,第二电源模块105和第三电源模块106都是给控制模块102和电子设备(如笔记本电脑)内部其他模块(例如关机状态下需要保持工作的模块,如时钟芯片等)供电的,但二者供电关系是相反的,第二电源模块105开启(工作)时,第三电源模块106关闭(不工作),第三电源模块106关闭(不工作)时,第二电源模块105开启(工作)。也就是说,当控制模块102使能第二电源模块105时,就会把第三电源模块106的使能关掉,即由第三电源模块106供电变为第二电源模块105供电。
示例性的,充电管理模块107可以为Charger IC。
示例性的,第一开关模块108例如可以为负载开关(Load Switch,LS)芯片,其作用为开关和限流(防止较大的电流损伤电路)的作用。当然,第一开关模块108包括但不限于LS芯片,只要可以具有导通或截止的功能以及限流的功能的模块均在本申请实施例的保护范围内。例如可以通过充电协议模块103控制第一开关模块108的导通或截止,当充电协议模块103控制第一开关模块108导通时,电子设备(如笔记本电脑)可以作为主设备对外供电。
具体的,在电子设备处于关机状态的情形下,第三电源模块106输出固定电压,为控制模块102的一分部GPIO以及电子设备(如笔记本电脑)的其他模块(如时钟芯片)供电,以保证电子设备(如笔记本电脑)在关机状态下一些功能(开机按键和时间的运行)可以正常进行。当外部待充电的设备(如手机)通过充电线缆与电子设备(如笔记本电脑)的USB Type-C接口101连接后,外部待充电的设备识别到外围有电子设备插入,此时外部待充电设备可以作为主设备对外提供5V电压,例如通过VBUS引脚给电子设备的充电管理模块107提供5V电压,充电管理模块107识别到有5V电压之后,给控制模块102一个信号,控制模块102根据该信号向第一电源模块104和第二电源模块105发送开关信号,以使第二电源模块105为控制模块102和充电协议模块103完整供电,以保证控制模块102和充电协议模块103的正常工作(即所有功能都是有效的)。当充电协议模块103正常工作后,充电协议模块103通过其和外部待充电设备之间遵循的协议(例如PD协议)识别到外围有外部待充电的设备作为主设备时,通过PD协议沟通之后进行电源角色切换,此时,电子设备(如笔记本电脑)变为主设备,然后通过第一电源芯片104、第一开关模块108和USB Type-C接口101(例如VBUS引脚)对外输出5V的电压,以为外部待充电的设备(如手机)充电,即实现关机充电。
当采用上述方案对外反向充电时,前提条件是电子设备(如笔记本电脑)的控制模块102和充电协议模块103必须处于上电状态或者被从设备唤醒,才能识别外部设备接入。而当前主设备,尤其是带电池,需要考虑长续航低功耗的设备,关机场景下一般除维持时钟芯片、开机等模块工作的电源外,其他电源均关闭,上述方案对于主设备关机 下电状态无法实现。而当需要被从设备唤醒时,必须需要从设备(待充电设备)符合PD协议,对于非标类设备,即便通过转接线(例如OTG线)也无法满足对外充电功能。
鉴于此,本实施例还提供了一种充电电路,既可以在开机状态或关机状态时对外部任意设备进行供电,而不再局限于USB Type-C接口的PD协议,也无需过高的硬件成本。下面对本申请实施提供的充电电路的结构以及充电原理进行介绍。
实施例一
参见图4,图4示例性的示出了又一种充电电路的结构示意图。如图4所示,电子设备100的充电电路10除了包括USB Type-C接口101、控制模块102、充电协议模块103、第一电源模块104、第二电源模块105、第三电源模块106、充电管理模块107和第一开关模块108,还包括上拉模块109。上拉模块109包括上拉电阻R1,上拉电阻R1的第一端用于接收第一控制信号,上拉电阻R1的第二端、控制模块102的第一端口1021和USB Type-C接口101的CC引脚耦合于第一节点N1。第一节点N1的电压在变化之前,第一控制信号例如为高电平信号,第一节点N1的电压变化之后,第一控制信号例如为低电平信号。示例性的,控制模块102的第一端口1021例如可以为GPIO接口,且该GPIO接口在电子设备处于关机状态下可以低功耗工作,以及接收外部的电平的变化。
由于目前电子设备一般都是通过OTG线对外供电的,下述以连接外部待充电的设备200和电子设备100的充电线缆300为OTG线为例进行解释说明。但是不构成对本申请的限定,只要当充电线缆300接入时,可以使得第一节点N1处的电压发生变化的线缆均在本申请的保护范围内。
示例性的,结合图5,图5示例性的示出了一种OTG线的结构示意图。参见图5,OTG线300包括USB Type-C接口301、USB Type-A接口302、电压总线(Voltage Bus,VBUS)303、DP/DM线304、TX/RX线305和GND线306和CC线307,CC线307的一端与USB Type-C接口301中的CC引脚电连接,另一端通过例如5.1K欧姆的下拉电阻R2接地设置。
具体的,当电子设备100的有线外接接口101未电连接OTG线时,由于第一电阻R1的第一端接收高电平信号,因此,第一节点N1为第一电平信号,第一电平信号例如为高电平信号。结合图6,图6示例性的示出了OTG线与电子设备连接后的原理图。参见图6,当OTG线插入至电子设备100的USB Type-C接口101,即当待充电设备200需要充电时,OTG线300的USB Type-A接口302与外部待充电的设备200的有线外接接口201电连接,OTG线300的USB Type-C接口301与电子设备100的有线外接接口101电连接。上拉电阻R1、有线外接接口101的CC(CC1/CC2)引脚、USB Type-C接口301中的CC引脚、CC线307以及下拉电阻R2构成通路,由于下拉电阻R2接地设置,因此,第一节点N1的电平被拉低,变为第二电平信号,第二电平信号例如为低电平信号。由于控制模块102的第一端口1021与第一节点N1电连接,因此,控制模块102可以监测到第一节点N1的电平变化(即由第一电平信号变为第二电平信号)。当控制模块102监测到第一节点N1的电平发生变化时,控制模块102分别向第二电源模块 105和第三电源模块106发送开关信号,以控制第二电源模块105为控制模块102和充电协议模块103完整供电,以及控制第三电源模块106停止为控制模块102供电。控制模块102和充电协议模块103完整供电之后,控制模块102和充电协议模块103正常工作,即控制模块102由只有部分接口工作变为正常工作,充电协议模块103由不工作变为正常工作,且为了避免第一电阻R1的第一端接收的信号对第一节点N1的电平造成影响(影响充电协议模块103的协议识别),此时,上拉电阻R1的第一端接收的信号变为低电平。当充电协议模块103正常工作时,可以通过有线外接接口101的CC1/CC2引脚识别到外部有5.1K欧姆的电阻下拉(具体协议识别过程与已经技术相同,可以参见已经技术,此处不再赘述),进而确定USB Type-C接口101有OTG线接入。充电协议模块103将USB Type-C接口101有OTG线接入的信息上报给控制模块102,控制模块102向第一电源模块104发送开关信号,以控制第一电源模块104工作,且向充电协议模块103发送控制第一开关模块108打开的信号,以使充电协议模块103控制第一开关模块108打开,这样一来,第一电源模块104输出的5V信号便可以通过第一开关模块108、USB Type-C接口101的VBUS引脚、OTG线的电压总线303以及USB Type-C接口301中的VBUS引脚为待充电的设备200供电。
本申请实施例结合TypeC的OTG线特性(CC线处有下拉电阻接地设置),通过在USB Type-C接口101的CC引脚处设置上拉模块,使得USB Type-C接口101的CC引脚在接入OTG线时和不接入OTG线时电平发生变化,控制模块102基于电平的变化,控制第二电源模块105对其和充电协议模块103供电,进而使得充电协议模块103进行协议的识别和第一开关模块108的打开以及控制模块102控制第一电源模块104进行对外供电,即实现笔记本电脑、平板、桌面机等电子设备在关机场景下作为主设备,对外部任意设备进行供电,而不再局限于TypeC口的PD协议。
对于上拉电阻R1的阻值,本申请实施例对上拉电阻R1的阻值不进行限定,只要在OTG线接入到USB Type-C接口101时,可以使得第一节点N1处的电压发生变化,且变化值可以被控制模块102的第一端口1021识别到即可。示例性的,可以是只要第一节点N1处的电压发生变化,控制模块102的第一端口1021就可以识别到。或者,不仅需要第一节点N1处的电压发生变化,且变化量需要超过一定的阈值才会被控制模块102的第一端口1021识别到。
在一种可能的实现方式中,上拉电阻R1的阻值例如大于5.1K欧姆。示例性的,上拉电阻R1的阻值为10K欧姆、20K欧姆、30K欧姆、40K欧姆、50K欧姆、60K欧姆、70K欧姆、80K欧姆、90K欧姆、100K欧姆等。这样设置,可以避免上拉电阻R1的电阻太小时,当OTG线接入到USB Type-C接口101时,OTG线中的下拉电阻R2无法达到下拉的效果,进而影响控制模块102的第一端口1021的识别。
由前述内容可知,在控制模块102监测到第一节点N1的电平发生变化之前,上拉电阻R1的第一端用以接收高电平信号,第一节点N1的电平发生变化后,上拉电阻R1的第一端用以接收低电平信号。其中,上拉电阻R1的第一端信号的获取本申请实施例不做具体限定。示例性的,上拉电阻R1的第一端与控制模块102和第三电源模块106电连接,用于接收控制模块102发送至第三电源模块106的开关信号,即上拉电阻R1 的第一端接收的信号可以为该开关信号。这是因为,该开关信号在控制模块102使能第三电源模块106时为高电平,在控制第三电源模块106不工作时为低电平。因此,在控制模块102使能第三电源模块106时,可以向上拉电阻R1的第一端提供高电平信号,在控制模块102控制第三电源模块106不工作时,向上拉电阻R1以及第三电源模块106提供低电平信号。
为了进一步保证充电协议模块103的正常工作,即第一节点N1处的电压不会影响充电协议模块103协议识别,参见图7,图7示例性的示出了又一种充电电路的结构示意图。如图7所示,充电电路10还包括第二开关模块1091,控制模块102的第一端口1021和第一节点N1之间设置有该第二开关模块1091,具体的,第二开关模块1091的第一端与控制模块102的第一端口1021电连接,第二开关模块1091的第二端与第一节点N1电连接,第二开关模块1091的控制端例如与上拉电阻R1的第一端电连接。第二开关模块1091在第一节点N1的电平变化之前,处于导通状态,在第一节点N1的电平变化之后,处于截止状态。
在控制模块102控制第三电源模块106为其供电时,即第二开关模块1091接收到控制模块102发送的高电平信号时,第二开关模块1091处于导通状态,当控制模块102控制第二电源模块105为其和充电协议模块103供电时,控制第三电源模块106停止为其供电时,即控制模块102此时向第三电源模块106发送的是低电平,亦即第二开关模块1091接收到控制模块102发送的低电平信号时,第二开关模块1091处于截止状态,这样设置,在充电协议模块103进行协议识别时,可以防止控制模块102的第一端口1021的信号影响第一节点N1的信号,进而影响充电协议模块103的协议识别。
对于第二开关模块1091的类型,本申请实施例不对第二开关模块1091的类型进行限定,只要可以实现开和关的功能均在本申请实施例的保护范围内。示例性的,第二开关模块1091例如为金属氧化物半导体型场效应管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET),例如可以为N型MOSFET,也可以为P型MOSFET。上述示例以第二开关模块1091为N型MOSFET为例进行的说明。
当然,如果控制模块102完全工作之后,控制控制模块102的第一端口1021处可以设置为高阻(即阻抗无限大),例如在控制模块102的第一端口1021处配置寄存器,也可以避免控制模块102的第一端口1021的信号影响第一节点N1的信号。
为了防止控制模块102监测到第一节点N1的电平发生变化之后的阶段(充电协议模块103进行协议识别的阶段和第一电源模块104对外供电的阶段),第一节点N1的信号影响上拉电阻R1的第一端的信号,进而影响第三电源模块106的工作状态,因为,上拉电阻R1的第一端的信号即为控制第三电源模块106工作状态的信号。上拉模块109还包括二极管1092,二极管1092的阴极与上拉电阻R1的第一端电连接,二极管1092的阳极用于接收控制信号。也就是说,在控制模块102向第三电源模块106发送高电平信号,以控制第三电源模块106为其供电时,二极管1092阳极的高电平信号可以通过二极管1092传输至上拉电阻R1的第一端。在控制模块102控制第三电源模块106停止供电时,第一节点N1处的信号无法传输至二极管1092的阳极,无法对二极管1092阳极的信号造成影响,进而不会影响第三电源模块106的工作状态,提高电路的稳 定性。
本申请实施例还提供一种反向充电方法,该反向充电方法例如可以应用于本实施例中的充电电路,具有相同的有益效果,在该实施例中未详尽描述的细节内容,可以参考上述充电电路的实施例。下面结合图7所示的充电电路对反向充电方法进行介绍。
如图8所示,反向充电方法可通过如下步骤实现:
S801、控制模块102判断电子设备是否处于关机状态,若是,则执行步骤S802。
其中,控制模块102可以监测到电子设备的状态是开机状态,还是关机状态。如果监测到电子设备处于开机状态,则可以通过第一电源模块104为外部待充电设备供电。即按照已有的方式对外供电。
当电子设备处于关机状态时,可以按照本申请实施例提供的方式进行对外供电。
S802、控制模块102控制第二开关模块1091导通,以使控制模块102的第一端口1021与第一节点N1电连接,以及,控制第三电源模块106为控制模块102的部分接口供电,控制第二电源模块105停止为控制模块102和充电协议模块103供电。
其中,当控制模块102的第一端口1021与第一节点N1电连接时,控制模块102可以实时监测第一节点N1处的电压信号。
S803、控制模块102实时监测第一节点N1处的电压是否发生变化,若是,则执行步骤S804;若否,则返回执行步骤S802。
S804、当第一节点N1处的电压发生变化时,控制模块102控制第二电源模块105为控制模块102和充电协议模块103供电,控制第三电源模块106停止为控制模块102的部分接口供电。
其中,当第一节点N1处的电压发生变化时,说明USB Type-C接口101处可能有OTG线接入,此时可能需要对外供电,因此,控制模块102和充电协议模块103需要完整供电,充电协议模块103需要通过协议识别以确定USB Type-C接口101处接入的确实是OTG线。
S805、充电协议模块103判断USB Type-C接口101处接入的是否是OTG线,若是,则执行步骤S806,若否,则返回执行步骤S802。
S806、充电协议模块103将确定的USB Type-C接口101处接入的是OTG线的信号发送至控制模块102。
控制第二电源模块105为控制模块102和充电协议模块103供电,控制第三电源模块106停止为控制模块102的部分接口供电
S807、控制模块102控制第一电源模块104工作,以及充电协议模块103控制第一开关模块108导通,以使第一电源模块104通过第一开关模块108和USB Type-C接口101为外部待充电设备供电。
实现笔记本电脑、平板、桌面机等电子设备在关机场景下作为主设备,对外部任意设备进行供电,而不再局限于TypeC口的PD协议。
实施例二
参见图9,图9示例性的示出了又一种充电电路的结构示意图。如图9所示,与实 施例一不同的是,充电电路10还包括逻辑非电路1093,逻辑非电路1093的输入端、上拉电阻R1的第二端和USB Type-C接口101的CC引脚耦合于第一节点N1,逻辑非电路1093的输出端分别与第二电源模块105和控制模块102电连接,无需选择电子设备处于关机状态下可以低功耗工作的接口。
具体的,当电子设备100的有线外接接口101未电连接OTG线时,由于第一电阻R1的第一端接收高电平信号,因此,第一节点N1也为高电平。第一节点N1的高电平经过逻辑非电路1093之后电平发生转换,变为低电平,低电平无法使能第二电源模块105,此时,仍是通过第三电源模块106为控制模块102的部分接口供电。当OTG线插入至电子设备100的USB Type-C接口101,即当待充电设备200需要充电时,OTG线300的USB Type-A接口302与外部待充电的设备200的有线外接接口201电连接,OTG线300的USB Type-C接口301与电子设备100的有线外接接口101电连接。上拉电阻R1、有线外接接口101的CC(CC1/CC2)引脚、USB Type-C接口301中的CC引脚、CC线307以及下拉电阻R2构成通路,由于下拉电阻R2接地设置,因此,第一节点N1的电平被拉低。第一节点N1的低电平经过逻辑非电路1093之后电平发生转换,变为高电平,高电平使能第二电源模块105,以使第二电源模块105为控制模块102和充电协议模块103完整供电,控制模块102和充电协议模块103正常工作,即控制模块102由只有部分接口工作变为正常工作,充电协议模块103由不工作变为正常工作,以及,控制模块102控制第三电源模块106停止为其(控制模块102)供电,且此时,第一电阻R1的第一端接收的信号变为低电平。当充电协议模块103正常工作时,可以通过有线外接接口101的CC1/CC2引脚识别到外部有5.1K欧姆的电阻下拉(具体协议识别过程与已经技术相同,可以参见已经技术,此处不再赘述),进而确定USB Type-C接口101有OTG线接入。充电协议模块103将USB Type-C接口101有OTG线接入的信息上报给控制模块102,控制模块102向第一电源模块104发送开关信号,以控制第一电源模块104工作,且向充电协议模块103发送控制第一开关模块108打开的信号,以使充电协议模块103控制第一开关模块108打开,这样一来,第一电源模块104输出的5V信号就可以通过第一开关模块108、USB Type-C接口101的VBUS引脚、OTG线的电压总线303以及USB Type-C接口301中的VBUS引脚为待充电的设备200供电。
本申请实施例结合TypeC的OTG线特性(CC线处有下拉电阻接地设置),通过在USB Type-C接口101的CC引脚处设置上拉模块,使得USB Type-C接口101的CC引脚在接入OTG线时和不接入OTG线时电平发生变化,基于电平的变化,使得逻辑非电路1093可以使能第二电源模块105为控制模块102和充电协议模块103供电,进而使得充电协议模块103进行协议的识别和第一开关模块108的打开以及控制模块102控制第一电源模块104进行对外供电,即实现笔记本电脑、平板、桌面机等电子设备在关机场景下作为主设备,可以对外部任意设备进行供电,而不再局限于TypeC口的PD协议。
本申请实施例还提供一种反向充电方法,该反向充电方法例如可以应用于本实施例中的充电电路,具有相同的有益效果,在该实施例中未详尽描述的细节内容,可以参考上述充电电路的实施例。下面结合图9所示的充电电路对反向充电方法进行介绍。
如图10所示,反向充电方法可通过如下步骤实现:
S1001、控制模块102判断电子设备是否处于关机状态,若是,则执行步骤S1002。
其中,控制模块102可以监测到电子设备的状态是开机状态,还是关机状态。如果监测到电子设备处于开机状态,则可以通过第一电源模块104为外部待充电设备供电。即按照已有的方式对外供电。
当电子设备处于关机状态时,才可以按照本申请实施例提供的方式进行对外供电。
S1002、控制模块102控制第三电源模块106为控制模块102的部分接口供电,控制第二电源模块105停止为控制模块102和充电协议模块103供电。
S1003、当第一节点N1处的电压发生变化时,逻辑非模块1093控制第二电源模块105为控制模块102和充电协议模块103供电,控制模块102控制第三电源模块106停止为控制模块102的部分接口供电。
其中,当第一节点N1处的电压发生变化时,说明USB Type-C接口101处可能有OTG线接入,此时可能需要对外供电,因此,控制模块102和充电协议模块103需要完整供电,充电协议模块103需要通过协议识别以确定USB Type-C接口101处接入的确实是OTG线。因此,当第一节点N1处的电压发生变化时,通过逻辑非模块1093之后可以使能第二电源模块105为控制模块102和充电协议模块103供电。
S1004、充电协议模块103判断USB Type-C接口101处接入的是否是OTG线,若是,则执行步骤S1005,若否,则返回执行步骤S1002。
S1005、充电协议模块103将确定的USB Type-C接口101处接入的是OTG线的信号发送至控制模块102。
控制第二电源模块105为控制模块102和充电协议模块103供电,控制第三电源模块106停止为控制模块102的部分接口供电
S1006、控制模块102控制第一电源模块104工作,以及充电协议模块103控制第一开关模块108导通,以使第一电源模块104通过第一开关模块108和USB Type-C接口101为外部待充电设备供电。
实现笔记本电脑、平板、桌面机等电子设备在关机场景下作为主设备,可以对外部任意设备进行供电,而不再局限于TypeC口的PD协议。
本实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在电子设备上运行时,使得电子设备执行上述相关方法步骤实现上述实施例中的反向充电方法。
本实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的反向充电方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的反向充电方法。
其中,本实施例提供的第一电子设备(如笔记本电脑等)、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (19)

  1. 一种充电电路,其特征在于,应用于电子设备中,包括:控制模块、充电协议模块、第一电源模块、第二电源模块、第一开关模块、有线外接接口和上拉模块;所述有线外接接口包括第一引脚和第二引脚;
    所述控制模块分别与所述第一电源模块、所述第二电源模块、所述充电协议模块电连接,所述充电协议模块分别与所述第二电源模块、所述第一开关模块的控制端、所述第一引脚电连接,所述第一开关模块的第一端与所述第一电源模块电连接,所述第一开关模块的第二端与所述第二引脚电连接,所述上拉模块与所述第一引脚耦合于第一节点;
    所述上拉模块用于向所述第一节点提供第一电平信号;
    当所述第一节点由第一电平信号变为第二电平信号时,所述第二电源模块用于为所述控制模块和所述充电协议模块供电;
    当所述第二电源模块为所述充电协议模块供电时,所述充电协议模块用于识别是否有充电线缆插入至所述有线外接接口,当所述充电协议模块识别到所述充电线缆插入所述有线外接接口时,所述充电协议模块还用于控制所述第一开关模块导通,以使所述第一电源模块在所述电子设备在关机状态下通过所述第二引脚、所述充电线缆为待充电的外部设备供电。
  2. 根据权利要求1所述的充电电路,其特征在于,所述上拉模块包括上拉电阻,所述上拉电阻的第一端用于接收第一控制信号,以使所述第一节点的信号为所述第一电平信号;
    所述上拉电阻的第二端和所述第一引脚耦合于所述第一节点。
  3. 根据权利要求2所述的充电电路,其特征在于,所述上拉模块还包括二极管,所述二极管的阳极用于接收所述第一控制信号,所述二极管的阴极与所述上拉电阻的第一端电连接。
  4. 根据权利要求2所述的充电电路,其特征在于,所述上拉电阻的阻值大于5.1千欧姆。
  5. 根据权利要求1-4任一项所述的充电电路,其特征在于,所述控制模块包括第一端口,所述第一端口、所述第一引脚与所述上拉模块耦合于所述第一节点;
    所述控制模块用于采集所述第一节点的信号,当所述第一节点由第一电平信号变为第二电平信号时,还用于向所述第二电源模块发送第一开关信号,以使所述第二电源模块为所述控制模块和所述充电协议模块供电。
  6. 根据权利要求5所述的充电电路,其特征在于,还包括第二开关模块,所述第二 开关模块的第一端与所述第一节点电连接,所述第二开关模块的第二端与所述第一端口电连接,所述第二开关模块的控制端用于接收第二控制信号;所述第二控制信号用于在所述第一节点的信号为第一电平信号时,控制所述第二开关模块导通,在所述第一节点的信号由所述第一电平信号变为第二电平信号时,控制所述第二开关模块截止。
  7. 根据权利要求6所述的充电电路,其特征在于,当所述上拉模块包括上拉电阻,所述上拉电阻的第一端用于接收第一控制信号,以使所述第一节点的信号为所述第一电平信号时,所述第二控制模块为所述第一控制模块。
  8. 根据权利要求6所述的充电电路,其特征在于,所述第二开关模块包括金属氧化物半导体型场效应管。
  9. 根据权利要求1所述的充电电路,其特征在于,还包括逻辑非电路,所述逻辑非电路的输入端耦合于所述第一节点;
    所述逻辑非电路的输出端与所述第二电源模块电连接;
    当所述第一节点由第一电平信号变为第二电平信号时,所述逻辑非电路用于控制所述第二电源模块为所述控制模块和所述充电协议模块供电。
  10. 根据权利要求2所述的充电电路,其特征在于,还包括第三电源模块,与所述控制模块电连接;
    所述控制模块用于在控制所述第二电源模块为所述控制模块和所述充电协议模块供电时,控制所述第三电源模块停止为所述控制模块供电,还用于在所述第三电源模块为所述控制模块供电时,停止所述第二电源模块为所述控制模块和所述充电协议模块供电。
  11. 根据权利要求10所述的充电电路,其特征在于,所述上拉电阻的第一端与所述控制模块和所述第三电源模块电连接;
    所述上拉电阻的第一端接收的第一控制信号为所述控制模块向所述第三电源模块发送的第二开关信号,其中,所述第二开关信号用于控制所述第三电源模块为所述控制模块供电或停止为所述控制模块供电。
  12. 权利要求1所述的充电电路,其特征在于,所述充电协议模块包括USB-PD协议模块。
  13. 权利要求1所述的充电电路,其特征在于,所述第二电源模块包括BUCK电路。
  14. 权利要求10所述的充电电路,其特征在于,所述第三电源模块包括低压差线性 稳压器。
  15. 一种电子设备,其特征在于,包括如权利要求1-14任一项所述的充电电路。
  16. 根据权利要求15所述的电子设备,其特征在于,所述电子设备包括笔记本电脑。
  17. 一种反向充电方法,其特征在于,应用于如权利要求15或16所述的电子设备中,所述反向充电方法包括:
    当检测到所述第一节点由第一电平信号变为第二电平信号时,所述电子设备为所述控制模块和所述充电协议模块供电;
    当识别到所述充电线缆插入所述有线外接接口时,所述电子设备在关机状态下通过所述第二引脚、所述充电线缆为待充电的外部设备供电。
  18. 一种反向充电系统,其特征在于,包括如权利要求15或16所述的电子设备,以及与所述电子设备通过所述有线外接接口电连接的外部设备;
    在关机状态下,所述电子设备用于向所述外部设备进行反向充电。
  19. 根据权利要求18所述的反向充电系统,其特征在于,还包括OTG线,当所述OTG线的一端与所述电子设备电连接,另一端与所述外部设备电连接时,在关机状态下,所述电子设备用于通过所述OTG线向所述外部设备进行反向充电。
PCT/CN2023/089380 2022-08-02 2023-04-20 充电电路、电子设备、充电系统及反向充电方法 WO2024027208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210921945.1 2022-08-02
CN202210921945.1A CN116054309B (zh) 2022-08-02 2022-08-02 充电电路、电子设备、充电系统及反向充电方法

Publications (2)

Publication Number Publication Date
WO2024027208A1 true WO2024027208A1 (zh) 2024-02-08
WO2024027208A9 WO2024027208A9 (zh) 2024-03-28

Family

ID=86111977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089380 WO2024027208A1 (zh) 2022-08-02 2023-04-20 充电电路、电子设备、充电系统及反向充电方法

Country Status (2)

Country Link
CN (1) CN116054309B (zh)
WO (1) WO2024027208A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959740A (zh) * 2017-03-21 2017-07-18 联想(北京)有限公司 一种电子设备控制方法及电子设备
CN110829523A (zh) * 2019-10-31 2020-02-21 华为技术有限公司 一种电子设备及反向充电方法
CN114237378A (zh) * 2022-02-24 2022-03-25 荣耀终端有限公司 电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490319B (zh) * 2014-09-19 2018-11-09 联想(北京)有限公司 一种信息处理方法及电子设备
CN106685018B (zh) * 2017-03-17 2020-06-23 赣州市瑞嘉达电子有限公司 一种反向充电方法、装置及终端
CN113572210A (zh) * 2020-04-29 2021-10-29 北京小米移动软件有限公司 一种充电方法、装置、设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959740A (zh) * 2017-03-21 2017-07-18 联想(北京)有限公司 一种电子设备控制方法及电子设备
CN110829523A (zh) * 2019-10-31 2020-02-21 华为技术有限公司 一种电子设备及反向充电方法
CN114237378A (zh) * 2022-02-24 2022-03-25 荣耀终端有限公司 电子设备

Also Published As

Publication number Publication date
WO2024027208A9 (zh) 2024-03-28
CN116054309A (zh) 2023-05-02
CN116054309B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
EP2214077B1 (en) Method and device for charging of mobile devices
US8358100B2 (en) USB dedicated charger identification circuit
US8880909B2 (en) Auto-detect polling for correct handshake to USB client
WO2021082731A1 (zh) 一种电子设备及反向充电方法
JP2018206425A (ja) Type−Cコネクタサブシステムの低電力実装
US20080042616A1 (en) System and Method for Rapidly Charging a USB Device
US20160004650A1 (en) Portable device, cable assembly, and usb system
US8862921B1 (en) Apparatus for remote wake-up during dedicated charging mode
TWI611648B (zh) 雙向充放電電路架構
WO2024021709A1 (zh) 电子设备、设备识别方法及充电系统
WO2017063459A1 (zh) Usb控制装置及设备
WO2021258255A1 (zh) 一种双接口切换电路及Type-C集线器
WO2023045683A1 (zh) 充电控制方法、电子设备及充电控制系统
US10136223B1 (en) Control method and control system for audio device
CN116707055B (zh) 充电电路、电子设备及反向充电方法
WO2024022195A1 (zh) 电子设备、快充方法、装置、系统及可读存储介质
WO2024027208A1 (zh) 充电电路、电子设备、充电系统及反向充电方法
CN113162161A (zh) 一种基于Type-c接口的充放电电路控制方法、电路以及控制器
CN114691570A (zh) 电子设备及信号的切换方法
CN112086830A (zh) 一种与Apple设备通信的数据线电路
CN219247497U (zh) 一种蓝牙适配器及蓝牙适配系统
CN214674403U (zh) 一种充放电电路与电子设备
CN219800110U (zh) 一种用于从设备向主设备供电的电路及装置
WO2020187172A1 (zh) 一种外围设备
WO2023001034A1 (zh) 一种放电电路及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848919

Country of ref document: EP

Kind code of ref document: A1