WO2024027126A1 - 一种电池化成方法及装置 - Google Patents

一种电池化成方法及装置 Download PDF

Info

Publication number
WO2024027126A1
WO2024027126A1 PCT/CN2023/075421 CN2023075421W WO2024027126A1 WO 2024027126 A1 WO2024027126 A1 WO 2024027126A1 CN 2023075421 W CN2023075421 W CN 2023075421W WO 2024027126 A1 WO2024027126 A1 WO 2024027126A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
exhaust port
correction
guide rail
batteries
Prior art date
Application number
PCT/CN2023/075421
Other languages
English (en)
French (fr)
Inventor
袁维
祝利民
肖俊
李月生
张良
Original Assignee
深圳市铂纳特斯自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市铂纳特斯自动化科技有限公司 filed Critical 深圳市铂纳特斯自动化科技有限公司
Publication of WO2024027126A1 publication Critical patent/WO2024027126A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of battery formation, and in particular to a battery formation method and device.
  • lithium-ion batteries As a new generation of rechargeable battery products, lithium-ion batteries have the characteristics of high voltage, high energy density, long cycle life, and no pollution. They are widely used in automobiles, medical, military and other fields. In the production process of lithium-ion batteries, the lithium-ion batteries need to be formed under negative pressure. At the same time, the inside of the lithium-ion batteries also needs to be vented and drained to avoid damage to the lithium-ion batteries.
  • the battery formation method of the prior art has the following defects: during the formation process, the position of the lithium-ion battery in the tray in the battery slot of the tray is not fixed, causing the negative pressure device to apply a negative pressure suction nozzle to the battery exhaust port. The position is not correct.
  • the present invention provides a battery formation method and device.
  • a battery formation method including:
  • detecting the exhaust port of the battery on the stop tray and determining whether the exhaust port deviates includes:
  • the battery will be marked as one that needs correction
  • the battery is cylindrical and the stop ring is circular;
  • correcting the deviated battery includes: using a correction device with multiple correction units for correction, and the number of correction units is consistent with the number of batteries in the preset area;
  • the calibration unit moves to the corresponding battery to be calibrated
  • the calibration unit rotates the battery to be calibrated according to the rotation instruction until the exhaust port of the battery to be calibrated is at the set position.
  • the rotation force of the correction unit on the battery is greater than the clamping force of the stop ring on the battery.
  • the coordinate difference between the correction device and the preset area is calculated and a movement path is generated based on the coordinate difference, and the correction device moves according to the movement path.
  • the actual image in the next preset area of the stop tray is acquired.
  • a battery formation device applied to the battery formation method, including:
  • Stop tray for mounting and clamping multiple batteries
  • a visual detection device used to detect the exhaust port of the battery on the stopper tray and determine whether the exhaust port deviates
  • the negative pressure device is connected to the exhaust port of the battery and is used to suck out the gas in the battery;
  • the formation device is used for charging and forming the battery.
  • the stop tray is provided with a plurality of battery slots, and the inner wall of the battery slot is provided with a stop ring, and the stop ring protrudes from the surface of the inner wall of the battery slot.
  • the correction device includes a bracket and a plurality of correction units.
  • the visual detection device and the plurality of correction units are sequentially arranged on the bracket.
  • the driving device passes through all the correction units.
  • the bracket drives the visual detection device and the correction unit to move synchronously.
  • it also includes a frame, the frame is provided with x-axis guide rail, y-axis guide rail and z-axis guide rail, the bracket is movably provided on the z-axis guide rail, the z-axis guide rail is The guide rail is movably provided on the y-axis guide rail, and the y-axis guide rail is movably provided on the x-axis guide rail;
  • the driving device is connected to the bracket, the z-axis guide rail and the y-axis guide rail respectively, and is used to drive the bracket to move on the z-axis guide rail and drive the z-axis guide rail to move on the y-axis guide rail. move upward, and drive the y-axis guide rail to move on the x-axis guide rail.
  • the invention provides a battery formation method and device, wherein the battery formation method includes: Multiple batteries are installed on the stop tray, and the batteries are clamped through the stop ring on the stop tray; the exhaust port of the battery on the stop tray is detected to determine whether the exhaust port deviates. If the exhaust port deviates, the battery will be Deviated battery correction; after completing the correction, connect the negative pressure device to the exhaust port of the battery to discharge the gas in the battery through the exhaust port when the battery is being formed.
  • the invention detects the battery before formation and corrects the deviation of the battery. At the same time, the battery is prevented from sliding through the stop ring. It overcomes the defect in the prior art that the battery deviation causes the connection failure between the negative pressure device and the exhaust port of the battery and shortens the time. The time required to connect the negative pressure device to the exhaust port of the battery is shortened, thereby improving the battery formation efficiency.
  • detecting the exhaust port of the battery on the stop tray and determining whether the exhaust port deviates includes: obtaining an actual image within a preset area on the stop tray; identifying the actual position of the exhaust port based on the actual image; and sequentially Compare the actual position of the exhaust port of each battery with the set position, and calculate the deviation angle of each exhaust port; if the deviation angle is greater than the preset value, mark the battery as a battery that needs correction; summarize the data of each battery in the preset area Compare the results and count all the batteries that need to be calibrated in the preset area.
  • This invention obtains the actual position of the exhaust port of each battery in the preset area and compares it with the set position to finally mark the battery that needs to be corrected, thereby realizing the simultaneous detection of a large number of batteries, improving detection efficiency and high accuracy.
  • the battery is cylindrical, and the stop ring is annular; if the exhaust port deviates, the deviated battery will be corrected, including: using a correction device with multiple correction units for correction, and the number of correction units is consistent with the preset area.
  • the number of batteries in the battery is consistent; obtain the center coordinates of the preset area and the correction device; compare the center coordinates of the correction device with the center coordinates of the preset area to determine whether they are consistent; if the coordinates of the correction device are consistent with the coordinates of the preset area, Pair the battery that needs to be corrected with the calibration unit; after the pairing is successful, the correction unit moves to the corresponding battery that needs to be corrected; generate a rotation command based on the deviation angle of the battery that needs to be corrected, and output it to the battery that is successfully paired with the battery that needs to be corrected.
  • the Calibration unit rotates the battery to be corrected according to the rotation instruction until the exhaust port of the battery to be corrected is at the set position.
  • the present invention uses multiple correction units to simultaneously calibrate Batteries that need calibration take a short time.
  • the positions of multiple correction units are adjustable and have strong adaptability.
  • the present invention also provides a battery formation device, including: a stopper tray for installing and clamping multiple batteries; a visual detection device for detecting the exhaust port of the battery on the stopper tray, and determining whether the exhaust port is discharged. Whether the air port deviates; the correction device is used to correct the deviated battery; the negative pressure device is connected to the exhaust port of the battery and is used to suck out the gas in the battery; the formation device is used to charge and form the battery.
  • the present invention realizes simultaneous detection and simultaneous correction of multiple batteries through the cooperation of the stop tray, visual detection device, correction device, negative pressure device and formation device, thereby improving production efficiency.
  • Figure 1 is a first flow chart of the battery formation method provided by the present invention
  • Figure 2 is a second flow chart of the battery formation method provided by the present invention.
  • Figure 3 is a third flow chart of the battery formation method provided by the present invention.
  • Figure 4 is a schematic diagram of the overall structure of the battery formation device provided by the present invention.
  • Figure 5 is a schematic structural diagram of the calibration device and the visual detection device of the battery formation device provided by the present invention.
  • Figure 6 is a schematic structural diagram of the stop tray of the battery formation device provided by the present invention.
  • Figure 7 is a partial enlarged view of area A in Figure 6.
  • 1-stop tray 2-visual inspection device; 3-correction device; 4-drive device; 5-rack; 6-battery; 11-battery slot; 12-stop ring; 31-correction unit; 32-bracket ;51-x-axis guide rail; 52-y-axis guide rail; 53-z-axis guide rail.
  • the terms “comprises” or “may include” which may be used in various embodiments of the present invention indicate the presence of disclosed functions, operations, or elements and do not limit the presence of one or more functions, operations, or elements. Increase.
  • the terms “including,” “having,” and their cognates are only intended to represent specific features, numbers, steps, operations, elements, components, or combinations of the foregoing. and should not be understood as first excluding the presence of one or more other features, numbers, steps, operations, elements, components or combinations of the foregoing or adding one or more features, numbers, steps, operations, elements, components or the possibility of a combination of the foregoing.
  • Expressions used in various embodiments of the present invention may modify various constituent elements in various embodiments, but may not limit the corresponding constituent elements.
  • the above statements do not limit the order and/or importance of the elements described.
  • the above expressions are only for the purpose of distinguishing one element from other elements.
  • a first user device and a second user device indicate different user devices, although both are user devices.
  • a first element could be termed a second element, and likewise a second element could be termed a first element, without departing from the scope of various embodiments of the invention.
  • the present invention provides a battery formation method and device.
  • the battery formation method includes: installing a plurality of batteries 6 on the stopper tray 1, and placing the batteries through the stopper ring on the stopper tray 1. 6 Clamp; detect the exhaust port of the battery 6 on the stop tray 1 to determine whether the exhaust port deviates. If the exhaust port deviates, correct the deviated battery; after completing the correction, connect the negative pressure device to the exhaust port of the battery 6.
  • the gas port is connected to discharge the gas in the battery 6 through the exhaust port when the battery 6 is being formed.
  • the present invention detects the battery 6 before formation, and corrects the deviation of the battery.
  • the stop ring 12 is used to prevent the battery 6 from sliding, and overcomes the problem in the prior art that the battery deviation causes the negative pressure device to interact with the battery. It eliminates the defect of failed connection of the exhaust port of the battery, shortens the time for connecting the negative pressure device to the exhaust port of the battery, and improves the battery formation efficiency.
  • a battery formation method includes:
  • the new cylindrical battery requires negative pressure exhaust during the formation process.
  • the front-end process cannot ensure that the exhaust port of the battery is in the set position when the materials are received, resulting in the negative pressure device being connected to the exhaust port of the battery. fail.
  • the invention detects the battery before formation and corrects the deviation of the battery. At the same time, the battery is prevented from sliding through the stop ring. It overcomes the defect in the prior art that the battery deviation causes the connection failure between the negative pressure device and the exhaust port of the battery and shortens the time. The time required to connect the negative pressure device to the exhaust port of the battery is shortened, thereby improving the battery formation efficiency.
  • the conventional detection and correction method is to detect one by one and then calibrate one by one.
  • the detection and correction take a long time and are inefficient, resulting in a long battery formation time and seriously affecting the battery formation efficiency.
  • This invention is different from conventional detection and correction methods. This invention obtains the actual position of each battery exhaust port in a preset area and compares it with the set position, and finally marks the battery that needs correction, thereby realizing the simultaneous detection of a large number of batteries. , improving detection efficiency and high accuracy.
  • the present invention uses the visual detection device 2 to obtain the actual image within the preset area on the stopper tray 1 .
  • the visual detection device 2 is a CCD positioning mechanism, and the actual image within the preset area on the stop tray 1 is captured through the CCD positioning mechanism.
  • correcting the deviated battery includes: using a correction device 3 with multiple correction units for correction.
  • the number of correction units is equal to the number of batteries 6 in the preset area. consistent; consistent;
  • the calibration unit moves to the corresponding battery to be calibrated
  • the calibration unit rotates the battery to be calibrated according to the rotation instruction until the exhaust port of the battery to be calibrated is at the set position.
  • the present invention uses multiple calibration units to simultaneously calibrate multiple batteries that need to be calibrated in a preset area, shortening the time spent on calibration and facilitating the subsequent connection of the negative pressure device and the battery exhaust port. And more
  • the position of each correction unit is adjustable and can be adapted to a variety of stop pallets 1 of different specifications, with a wide range of applications. And the battery is clamped by the stop ring on the stop tray 1 to avoid the battery from sliding and causing another deviation after correction, and the correction effect is good.
  • the rotation force of the correction unit on the battery is greater than the clamping force of the stop ring on the battery, ensuring that the correction unit can rotate the battery and avoiding calibration failure caused by excessive clamping force of the stop ring.
  • the coordinate difference between the correction device 3 and the preset area is calculated and a movement path is generated based on the coordinate difference.
  • the correction device 3 is based on the movement path. move. After the correction device 3 moves according to the movement path, it obtains the center coordinates of the preset area and the correction device 3 again, compares the center coordinates of the correction device 3 with the center coordinates of the preset area, and re-judges whether they are consistent. This ensures that the calibration device 3 correctly calibrates the battery that needs to be calibrated, avoids invalid calibration caused by position deviation of the calibration device 3, and improves calibration accuracy.
  • the stop tray 1 includes a first preset area and a second preset area, and four batteries can be accommodated in both the first preset area and the second preset area. , wherein the first battery, the second battery, the third battery and the fourth battery are placed in the first preset area.
  • the correction device 3 includes a first correction unit, a second correction unit, a third correction unit and a fourth correction unit.
  • Detect the exhaust port of the battery in the first preset area and determine whether the exhaust port deviates including:
  • the preset deviation value is 10°, determine the second battery and the fourth battery as batteries that need to be corrected, and mark the second battery and the fourth battery;
  • the comparison results of the first battery, the second battery, the third battery and the fourth battery are summarized, and all the batteries that need to be corrected in the preset area are counted, that is, the second battery and the fourth battery.
  • the second battery and the fourth battery deviate, and the second battery and the fourth battery are corrected, including:
  • the center coordinates of the correction device 3 are (0,0,0), and the center coordinates of the preset area are (0,0,1);
  • the correction device 3 calculates the coordinate difference between the correction device 3 and the preset area, and generate a movement path based on the coordinate difference.
  • the correction device 3 moves according to the movement path, that is, the correction device 3 moves 1 unit along the positive direction of the z-axis;
  • the center coordinates of the preset area and the correction device 3 are obtained again.
  • the center coordinates of the correction device 3 are consistent with the center coordinates of the preset area, both being (0,0,1);
  • the second correction unit moves above the second battery, and the fourth correction unit moves above the fourth battery;
  • the second correction unit and the fourth correction unit simultaneously rotate the corresponding battery according to their respective rotation instructions until the exhaust port of the battery is at the set position.
  • the second correction unit and the fourth correction unit acquire the actual image in the second preset area while correcting the battery.
  • This embodiment provides a battery formation device based on the battery formation method proposed in Embodiment 1.
  • a battery formation device includes:
  • Stop tray 1 used to install and clamp multiple batteries 6;
  • the visual detection device 2 is used to detect the exhaust port of the battery 6 on the stop tray 1 and determine whether the exhaust port deviates;
  • Correction device 3 used to correct the deviated battery
  • a negative pressure device (not shown in the figure) is connected to the exhaust port of the battery 6 and is used to suck out the gas in the battery 6;
  • the formation device (not shown in the figure) is used for charging and forming the battery 6 .
  • the battery formation device also includes a frame 5.
  • the frame 5 is provided with an x-axis guide rail 51, a y-axis guide rail 52 and a z-axis guide rail 53.
  • the z-axis guide rail 53 is movably provided on the y-axis guide rail 52.
  • the y-axis guide rail 52 is movably disposed on the x-axis guide rail 51 .
  • the battery formation device also includes a driving device 4.
  • the correction device 3 includes a bracket 32 and a plurality of correction units 31.
  • the visual inspection device 2 and the plurality of correction units 31 are sequentially arranged on the bracket 32.
  • the driving device 4 passes through the bracket. 32 drives the visual detection device 2 and the correction unit 31 to move synchronously.
  • the driving device 4 is connected to the bracket 32, the z-axis guide rail 53 and the y-axis guide rail 52 respectively, and the bracket 32 is movably arranged on the z-axis guide rail 53, the driving device 4 drives the bracket 32 to move on the z-axis guide rail 53, drives the z-axis guide rail 53 to move on the y-axis guide rail 52, and drives the y-axis guide rail 52 to move on the x-axis guide rail 51
  • the correction device 3 and the visual detection device 2 can move in the x-axis, y-axis and z-axis directions.
  • the stop tray 1 includes a plurality of battery slots 11 for accommodating batteries 6 and a plurality of stop rings 12.
  • the stop rings 12 are arranged around the inner wall of the battery slots 11 and protrude from The surface of the inner wall of the battery compartment 11 .
  • the battery 6 is clamped by the stop ring 12 to achieve 360-degree fixation of the battery 6 and prevent the battery 6 from sliding and rotating.
  • the stop ring 12 is made of elastic material.
  • the present invention provides a battery formation method and device.
  • the battery is detected before formation and the deviation of the battery is corrected.
  • the battery is prevented from sliding through the stop ring, and the battery deviation caused by the prior art is overcome.
  • the defect of failure to connect the negative pressure device to the exhaust port of the battery shortens the time for connecting the negative pressure device to the exhaust port of the battery and improves the battery formation efficiency.

Abstract

本发明提供了一种电池化成方法及装置,其中电池化成方法包括:将多个电池安装到止动托盘上,通过止动托盘上的止动环将电池夹紧;检测止动托盘上的电池的排气口,判断排气口是否偏离,若排气口偏离,将偏离的电池校正;完成校正后,将负压装置与电池的排气口连接以在电池进行化成时通过排气口将电池内的气体排出。本发明在化成前对电池进行检测,并对偏离电池进行校正,同时通过止动环避免电池滑动,克服现有技术中电池偏移导致负压装置与电池的排气口连接失败的缺陷,缩短了负压装置与电池的排气口连接的时间,提高了电池化成效率。

Description

一种电池化成方法及装置 技术领域
本发明涉及电池化成技术领域,具体涉及一种电池化成方法及装置。
背景技术
锂离子电池作为新一代充电电池产品,具有电压高、能量密度大、循环寿命长、无污染等特点,被广泛应用于汽车、医疗、军事等领域。在锂离子电池的生产过程中需要对锂离子电池进行负压化成,与此同时还需要对锂离子电池内部进行排气、排液,以避免对锂离子电池造成伤害。
现有技术的电池化成方法存在如下缺陷:在化成过程中,托盘中的锂离子电池在托盘的电池槽中的位置不固定,导致负压装置在对电池排气口进行负压吸嘴时对位不准。
发明内容
为了克服上述现有技术的缺陷,本发明提供了一种电池化成方法及装置。
具体技术方案如下所示:
一种电池化成方法,包括:
将多个电池安装到止动托盘上,通过止动托盘上的止动环将电池夹紧;
检测止动托盘上的电池的排气口,判断排气口是否偏离,若排气口偏离,将偏离的电池校正;
完成校正后,将负压装置与电池的排气口连接以在电池进行化成时通过排气口将电池内的气体排出。
在一个具体实施例中,检测止动托盘上的电池的排气口,判断排气口是否偏离,包括:
获取止动托盘上预设区域内的实际图像;
根据实际图像识别排气口的实际位置;
依次将各电池的排气口的实际位置与设定位置对比,计算各排气口的偏离角度;
若偏离角度大于预设值,则标记该电池为需校正的电池;
汇总预设区域内各个电池的对比结果,统计出预设区域内所有的需校正的电池。
在一个具体实施例中,电池为圆柱形,止动环为圆环形;
若排气口偏离,将偏离的电池校正,包括:采用具有多个校正单元的校正装置进行校正,校正单元的数量与预设区域内的电池的数量一致;
获取预设区域与校正装置的中心坐标;
将校正装置的中心坐标与预设区域的中心坐标对比,判断是否一致;
若校正装置的坐标与预设区域的坐标一致,将需校正的电池与校正单元进行配对;
配对成功后,校正单元移动至对应的需校正的电池上方;
基于需校正的电池的偏离角度生成旋转指令,并输出至与需校正的电池配对成功的校正单元;
校正单元根据旋转指令将需校正的电池旋转,直至需校正的电池的排气口处于设定位置时停止。
在一个具体实施例中,校正单元对电池的旋转力大于止动环对电池的夹紧力。
在一个具体实施例中,若校正装置的中心坐标与预设区域的中心坐标不一致,计算校正装置与预设区域的坐标差并基于坐标差生成移动路径,校正装置根据移动路径移动。
在一个具体实施例中,将偏离的电池校正的同时,获取止动托盘下一预设区域内的实际图像。
一种电池化成装置,应用于所述的电池化成方法,包括:
止动托盘,用于安装和夹紧多个电池;
视觉检测装置,用于检测所述止动托盘上的电池的排气口,判断所述排气口是否偏离;
校正装置,用于将偏离的电池校正;
负压装置,与电池的排气口连接,用于吸出电池内的气体;
化成装置,用于对电池进行充电化成。
在一个具体实施例中,所述止动托盘上的设有多个电池槽,所述电池槽的内壁设置有止动环,所述止动环凸出于所述电池槽的内壁的表面。
在一个具体实施例中,还包括驱动装置,所述校正装置包括支架和多个校正单元,所述视觉检测装置与所述多个校正单元依次设置在所述支架上,所述驱动装置通过所述支架带动所述视觉检测装置、所述校正单元同步移动。
在一个具体实施例中,还包括机架,所述机架上设置有x轴导轨、y轴导轨和z轴导轨,所述支架可移动地设置在所述z轴导轨上,所述z轴导轨可移动地设置所述y轴导轨上,所述y轴导轨可移动地设置所述x轴导轨上;
所述驱动装置分别与所述支架、所述z轴导轨和所述y轴导轨连接,用于驱动所述支架在所述z轴导轨上移动、驱动所述z轴导轨在所述y轴导轨上移动,以及驱动所述y轴导轨在所述x轴导轨上移动。
本发明至少具有以下有益效果:
本发明提供了一种电池化成方法及装置,其中电池化成方法包括:将 多个电池安装到止动托盘上,通过止动托盘上的止动环将电池夹紧;检测止动托盘上的电池的排气口,判断排气口是否偏离,若排气口偏离,将偏离的电池校正;完成校正后,将负压装置与电池的排气口连接以在电池进行化成时通过排气口将电池内的气体排出。本发明在化成前对电池进行检测,并对偏离电池进行校正,同时通过止动环避免电池滑动,克服现有技术中电池偏移导致负压装置与电池的排气口连接失败的缺陷,缩短了负压装置与电池的排气口连接的时间,提高了电池化成效率。
进一步地,检测止动托盘上的电池的排气口,判断排气口是否偏离,包括:获取止动托盘上预设区域内的实际图像;根据实际图像识别排气口的实际位置;依次将各电池的排气口的实际位置与设定位置对比,计算各排气口的偏离角度;若偏离角度大于预设值,则标记该电池为需校正的电池;汇总预设区域内各个电池的对比结果,统计出预设区域内所有的需校正的电池。本发明通过获取预设区域内各电池排气口的实际位置,并与设定位置对比,最终标记出需校正的电池,实现大批量的电池的同时检测,提高了检测效率,且精准度高。
进一步地,电池为圆柱形,止动环为圆环形;若排气口偏离,将偏离的电池校正,包括:采用具有多个校正单元的校正装置进行校正,校正单元的数量与预设区域内的电池的数量一致;获取预设区域与校正装置的中心坐标;将校正装置的中心坐标与预设区域的中心坐标对比,判断是否一致;若校正装置的坐标与预设区域的坐标一致,将需校正的电池与校正单元进行配对;配对成功后,校正单元移动至对应的需校正的电池上方;基于需校正的电池的偏离角度生成旋转指令,并输出至与需校正的电池配对成功的校正单元;校正单元根据旋转指令将需校正的电池旋转,直至需校正的电池的排气口处于设定位置时停止。本发明采用多个校正单元同时校 正需校正的电池,花费时间短。且多个校正单元的位置可调节,适应性强。
进一步地,本发明还提供了一种电池化成装置,包括:止动托盘,用于安装和夹紧多个电池;视觉检测装置,用于检测止动托盘上的电池的排气口,判断排气口是否偏离;校正装置,用于将偏离的电池校正;负压装置,与电池的排气口连接,用于吸出电池内的气体;化成装置,用于对电池进行充电化成。本发明通过止动托盘、视觉检测装置、校正装置、负压装置和化成装置的相互配合,实现对多个电池的同时检测及同时校正,提高了生产效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的电池化成方法的第一流程图;
图2为本发明提供的电池化成方法的第二流程图;
图3为本发明提供的电池化成方法的第三流程图;
图4为本发明提供的电池化成装置的整体结构示意图;
图5为本发明提供的电池化成装置的校正装置和视觉检测装置的结构示意图;
图6为本发明提供的电池化成装置的止动托盘的结构示意图;
图7为图6中A区域的局部放大图。
附图标记:
1-止动托盘;2-视觉检测装置;3-校正装置;4-驱动装置;5-机架;6-电池;11-电池槽;12-止动环;31-校正单元;32-支架;51-x轴导轨; 52-y轴导轨;53-z轴导轨。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在下文中,可在本发明的各种实施例中使用的术语“包括”或“可包括”指示所公开的功能、操作或元件的存在,并且不限制一个或更多个功能、操作或元件的增加。此外,如在本发明的各种实施例中所使用,术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。
在本发明的各种实施例中使用的表述(诸如“第一”、“第二”等)可修饰在各种实施例中的各种组成元件,不过可不限制相应组成元件。例如,以上表述并不限制所述元件的顺序和/或重要性。以上表述仅用于将一个元件与其它元件区别开的目的。例如,第一用户装置和第二用户装置指示不同用户装置,尽管二者都是用户装置。例如,在不脱离本发明的各种实施例的范围的情况下,第一元件可被称为第二元件,同样地,第二元件也可被称为第一元件。
应注意到:在本发明中,除非另有明确的规定和定义,“安装”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接、也可以是 可拆卸连接、或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也是可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,本领域的普通技术人员需要理解的是,文中指示方位或者位置关系的术语为基于附图所示的方位或者位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的各种实施例中使用的术语仅用于描述特定实施例的目的并且并非意在限制本发明的各种实施例。如在此所使用,单数形式意在也包括复数形式,除非上下文清楚地另有指示。除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本发明的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本发明的各种实施例中被清楚地限定。
图1至图7所示,本发明提供一种电池化成方法及装置,其中电池化成方法包括:将多个电池6安装到止动托盘1上,通过止动托盘1上的止动环将电池6夹紧;检测止动托盘1上的电池6的排气口,判断排气口是否偏离,若排气口偏离,将偏离的电池校正;完成校正后,将负压装置与电池6的排气口连接以在电池6进行化成时通过排气口将电池6内的气体排出。
本发明在化成前对电池6进行检测,并对偏离电池进行校正,同时通过止动环12避免电池6滑动,克服现有技术中电池偏移导致负压装置与电 池的排气口连接失败的缺陷,缩短了负压装置与电池的排气口连接的时间,提高了电池化成效率。
实施例1
如图1、图4、图6和图7所示,一种电池化成方法,包括:
将多个电池6安装到止动托盘1上,通过止动托盘1上的止动环将电池6夹紧;
检测止动托盘1上的电池6的排气口,判断排气口是否偏离,若排气口偏离,将偏离的电池校正;
完成校正后,将负压装置与电池6的排气口连接以在电池6进行化成时通过排气口将电池6内的气体排出。
新型圆柱电池需要在化成过程中进行负压排气,但由于电池是圆柱形的,前端工序无法保证来料时电池的排气口处于设定位置,导致负压装置与电池的排气口连接失败。
本发明在化成前对电池进行检测,并对偏离电池进行校正,同时通过止动环避免电池滑动,克服现有技术中电池偏移导致负压装置与电池的排气口连接失败的缺陷,缩短了负压装置与电池的排气口连接的时间,提高了电池化成效率。
如图2、图5、图6和图7所示,检测止动托盘1上的电池6的排气口,判断排气口是否偏离,包括:
获取止动托盘1上预设区域内的实际图像;
根据实际图像识别排气口的实际位置;
依次将各电池6的排气口的实际位置与设定位置对比,计算各排气口的偏离角度;
若偏离角度大于预设值,则标记该电池6为需校正的电池;
汇总预设区域内各个电池6的对比结果,统计出预设区域内所有的需校正的电池。
常规的检测校正方法为逐一检测后再逐一校正,检测和校正花费时间长且效率低,导致电池化成时间长,严重影响电池的化成效率。本发明不同于常规的检测校正方法,本发明通过获取预设区域内各电池排气口的实际位置,并与设定位置对比,最终标记出需校正的电池,实现大批量的电池的同时检测,提高了检测效率,且精准度高。
具体地,本发明采用视觉检测装置2获取止动托盘1上预设区域内的实际图像。优选地,视觉检测装置2为CCD定位机构,通过CCD定位机构拍摄以获取止动托盘1上预设区域内的实际图像。
如图3、图5所示,若排气口偏离,将偏离的电池校正,包括:采用具有多个校正单元的校正装置3进行校正,校正单元的数量与预设区域内的电池6的数量一致;
获取预设区域与校正装置3的中心坐标;
将校正装置3的中心坐标与预设区域的中心坐标对比,判断是否一致;
若校正装置3的坐标与预设区域的坐标一致,将需校正的电池与校正单元进行配对;
配对成功后,校正单元移动至对应的需校正的电池上方;
基于需校正的电池的偏离角度生成旋转指令,并输出至与需校正的电池配对成功的校正单元;
校正单元根据旋转指令将需校正的电池旋转,直至需校正的电池的排气口处于设定位置时停止。
本发明采用多个校正单元同时校正预设区域内的多个需校正的电池,缩短了校正所花费的时间,便于后续负压装置与电池排气口的连接。且多 个校正单元的位置可调节,可适应多种不同规格的止动托盘1,适用范围广。且通过止动托盘1上的止动环将电池夹紧,避免电池校正后滑动造成再次偏移,校正效果好。
具体地,校正单元对电池的旋转力大于止动环对电池的夹紧力,确保校正单元可以将电池旋转,避免止动环夹紧力过大导致校正失败。
如图3、图5所示,若校正装置3的中心坐标与预设区域的中心坐标不一致,计算校正装置3与预设区域的坐标差并基于坐标差生成移动路径,校正装置3根据移动路径移动。校正装置3根据移动路径移动后,再次获取预设区域与校正装置3的中心坐标,并校正装置3的中心坐标与预设区域的中心坐标对比,重新判断是否一致。确保校正装置3对需校正的电池进行正确校正,避免校正装置3位置偏离导致无效校正,提高了校正精准度。
如图5所示,将偏离的电池校正的同时,获取止动托盘1下一预设区域内的实际图像。将校正与检测同步进行,缩短检测与校正所花费的时间,进一步提高电池化成效率。
在一个实施例中,如图1至7所示,止动托盘1包括第一预设区域和第二预设区域,且第一预设区域和第二预设区域内均可容纳四个电池,其中第一预设区域内放置了第一电池、第二电池、第三电池和第四电池。校正装置3包括第一校正单元、第二校正单元、第三校正单元和第四校正单元。
检测第一预设区域内的电池的排气口,判断排气口是否偏离,包括:
获取第一预设区域内的实际图像;
根据第一预设区域内的实际图像识别第一电池、第二电池、第三电池和第四电池的排气口的实际位置;
依次将各电池的排气口的实际位置与设定位置对比,计算各排气口的偏离角度,计算后确定第一电池偏离0°,第二电池偏离20°,第三电池偏离5°,第四电池偏离15°;
预设偏离值为10°,确定第二电池和第四电池为需校正的电池,对第二电池和第四电池进行标记;
汇总第一电池、第二电池、第三电池和第四电池的对比结果,统计出预设区域内所有的需校正的电池,即第二电池和第四电池。
第二电池和第四电池偏离,将第二电池和第四电池校正,包括:
获取预设区域与校正装置3的中心坐标,校正装置3的中心坐标为(0,0,0),预设区域的中心坐标为(0,0,1);
将校正装置3的中心坐标与预设区域的中心坐标对比,判定校正装置3的中心坐标与预设区域的中心坐标不一致;
计算校正装置3与预设区域的坐标差,并基于坐标差生成移动路径,校正装置3根据移动路径移动,即校正装置3沿z轴正方向移动1单位;
校正装置3根据移动路径移动后,再次获取预设区域与校正装置3的中心坐标,此时校正装置3的中心坐标与预设区域的中心坐标一致,均为(0,0,1);
将第二电池与第二校正单元进行配对,以及将第四电池与第四校正单元进行配对;
配对成功后,第二校正单元移动至第二电池上方,第四校正单元移动至第四电池上方;
基于第二电池的偏离角度生成旋转20°的指令,并输出至第二校正单元,基于第四电池的偏离角度生成旋转15°的指令,并输出至第四校正单元;
第二校正单元和第四校正单元根据各自旋转指令同时将对应的电池旋转,直至电池的排气口处于设定位置时停止。
第二校正单元和第四校正单元校正电池的同时,获取第二预设区域内的实际图像。
实施例2
本实施例在实施例1提出的一种电池化成方法的基础上,提出一种电池化成装置。
如图4至图7所示,一种电池化成装置,包括:
止动托盘1,用于安装和夹紧多个电池6;
视觉检测装置2,用于检测止动托盘1上的电池6的排气口,判断排气口是否偏离;
校正装置3,用于将偏离的电池校正;
负压装置(图中未示出),与电池6的排气口连接,用于吸出电池6内的气体;
化成装置(图中未示出),用于对电池6进行充电化成。
如图4所示,电池化成装置还包括机架5,机架5上设置有x轴导轨51、y轴导轨52和z轴导轨53,z轴导轨53可移动地设置y轴导轨52上,y轴导轨52可移动地设置x轴导轨51上。
如图5所示,电池化成装置还包括驱动装置4,校正装置3包括支架32和多个校正单元31,视觉检测装置2与多个校正单元31依次设置在支架32上,驱动装置4通过支架32带动视觉检测装置2、校正单元31同步移动。通过将视觉检测装置2、校正单元31设置于支架32上,实现视觉检测装置2、校正单元31同步移动,结构简单,且能耗低。
驱动装置4分别与支架32、z轴导轨53和y轴导轨52连接,且支架 32可移动地设置在z轴导轨53上,驱动装置4驱动支架32在z轴导轨53上移动、驱动z轴导轨53在y轴导轨52上移动,以及驱动y轴导轨52在x轴导轨51上移动,实现校正装置3与视觉检测装置2在x轴、y轴和z轴方向上的移动。
如图6和图7所示,止动托盘1包括多个用于容纳电池6的电池槽11和多个止动环12,止动环12绕设在电池槽11的内壁上且凸出于电池槽11的内壁的表面。通过止动环12夹紧电池6,实现对电池6的360度的固定,避免电池6滑动发生旋转。
具体地,止动环12为弹性材质。
综上所述,本发明提供了一种电池化成方法及装置,在化成前对电池进行检测,并对偏离电池进行校正,同时通过止动环避免电池滑动,克服现有技术中电池偏移导致负压装置与电池的排气口连接失败的缺陷,缩短了负压装置与电池的排气口连接的时间,提高了电池化成效率。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种电池化成方法,其特征在于,包括:
    将多个电池安装到止动托盘上,通过止动托盘上的止动环将电池夹紧;
    检测止动托盘上的电池的排气口,判断排气口是否偏离,包括:获取止动托盘上预设区域内的实际图像;根据实际图像识别排气口的实际位置;依次将各电池的排气口的实际位置与设定位置对比,计算各排气口的偏离角度;若偏离角度大于预设值,则标记该电池为需校正的电池;汇总预设区域内各个电池的对比结果,统计出预设区域内所有的需校正的电池;若排气口偏离,将偏离的电池校正;
    完成校正后,将负压装置与电池的排气口连接以在电池进行化成时通过排气口将电池内的气体排出。
  2. 根据权利要求1所述的电池化成方法,其特征在于,电池为圆柱形,止动环为圆环形;
    若排气口偏离,将偏离的电池校正,包括:采用具有多个校正单元的校正装置进行校正,校正单元的数量与预设区域内的电池的数量一致;
    获取预设区域与校正装置的中心坐标;
    将校正装置的中心坐标与预设区域的中心坐标对比,判断是否一致;
    若校正装置的坐标与预设区域的坐标一致,将需校正的电池与校正单元进行配对;
    配对成功后,校正单元移动至对应的需校正的电池上方;
    基于需校正的电池的偏离角度生成旋转指令,并输出至与需校正的电池配对成功的校正单元;
    校正单元根据旋转指令将需校正的电池旋转,直至需校正的电池的排气口处于设定位置时停止。
  3. 根据权利要求2所述的电池化成方法,其特征在于,校正单元对电 池的旋转力大于止动环对电池的夹紧力。
  4. 根据权利要求2所述的电池化成方法,其特征在于,若校正装置的中心坐标与预设区域的中心坐标不一致,计算校正装置与预设区域的坐标差并基于坐标差生成移动路径,校正装置根据移动路径移动。
  5. 根据权利要求1所述的电池化成方法,其特征在于,将偏离的电池校正的同时,获取止动托盘下一预设区域内的实际图像。
  6. 一种电池化成装置,应用于由权利要求1至5中任一项所述的电池化成方法,其特征在于,包括:
    止动托盘,用于安装和夹紧多个电池;
    视觉检测装置,用于检测所述止动托盘上的电池的排气口,判断所述排气口是否偏离;
    校正装置,用于将偏离的电池校正;
    负压装置,与电池的排气口连接,用于吸出电池内的气体;
    化成装置,用于对电池进行充电化成。
  7. 根据权利要求6所述的电池化成装置,其特征在于,所述止动托盘上的设有多个电池槽,所述电池槽的内壁设置有止动环,所述止动环凸出于所述电池槽的内壁的表面。
  8. 根据权利要求6所述的电池化成装置,其特征在于,还包括驱动装置,所述校正装置包括支架和多个校正单元,所述视觉检测装置与所述多个校正单元依次设置在所述支架上,所述驱动装置通过所述支架带动所述视觉检测装置、所述校正单元同步移动。
  9. 根据权利要求8所述的电池化成装置,其特征在于,还包括机架,所述机架上设置有x轴导轨、y轴导轨和z轴导轨,所述支架可移动地设置在所述z轴导轨上,所述z轴导轨可移动地设置所述y轴导轨上,所述y轴导轨可移动地设置所述x轴导轨上;
    所述驱动装置分别与所述支架、所述z轴导轨和所述y轴导轨连接, 用于驱动所述支架在所述z轴导轨上移动、驱动所述z轴导轨在所述y轴导轨上移动,以及驱动所述y轴导轨在所述x轴导轨上移动。
PCT/CN2023/075421 2022-08-03 2023-02-10 一种电池化成方法及装置 WO2024027126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210925090.X 2022-08-03
CN202210925090.XA CN115000551B (zh) 2022-08-03 2022-08-03 一种电池化成方法及装置

Publications (1)

Publication Number Publication Date
WO2024027126A1 true WO2024027126A1 (zh) 2024-02-08

Family

ID=83022682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075421 WO2024027126A1 (zh) 2022-08-03 2023-02-10 一种电池化成方法及装置

Country Status (2)

Country Link
CN (1) CN115000551B (zh)
WO (1) WO2024027126A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000551B (zh) * 2022-08-03 2022-11-04 深圳市铂纳特斯自动化科技有限公司 一种电池化成方法及装置
CN116047336A (zh) * 2023-03-27 2023-05-02 深圳市铂纳特斯自动化科技有限公司 一种电池化成监控方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550916A (zh) * 2018-03-28 2018-09-18 合肥国轩高科动力能源有限公司 一种圆柱型锂离子电池对孔设备
CN211789159U (zh) * 2020-03-31 2020-10-27 蜂巢能源科技有限公司 电池化成拘束装置
US20200411899A1 (en) * 2019-06-28 2020-12-31 Jiangsu Contemporary Amperex Technology Limited Device for battery formation
CN213324150U (zh) * 2020-07-31 2021-06-01 惠州市德合盛科技有限公司 硬扣式电池托盘
CN113414174A (zh) * 2021-06-01 2021-09-21 深圳市铂纳特斯自动化科技有限公司 一种用于电池化成的负压汇流排的清洗装置
CN216793796U (zh) * 2021-12-31 2022-06-21 珠海泰坦新动力电子有限公司 一种化成装置
CN115000551A (zh) * 2022-08-03 2022-09-02 深圳市铂纳特斯自动化科技有限公司 一种电池化成方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200004745A (ko) * 2018-07-04 2020-01-14 주식회사 엘지화학 자동화된 이차전지 내부 발생가스 포집장치 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550916A (zh) * 2018-03-28 2018-09-18 合肥国轩高科动力能源有限公司 一种圆柱型锂离子电池对孔设备
US20200411899A1 (en) * 2019-06-28 2020-12-31 Jiangsu Contemporary Amperex Technology Limited Device for battery formation
CN211789159U (zh) * 2020-03-31 2020-10-27 蜂巢能源科技有限公司 电池化成拘束装置
CN213324150U (zh) * 2020-07-31 2021-06-01 惠州市德合盛科技有限公司 硬扣式电池托盘
CN113414174A (zh) * 2021-06-01 2021-09-21 深圳市铂纳特斯自动化科技有限公司 一种用于电池化成的负压汇流排的清洗装置
CN216793796U (zh) * 2021-12-31 2022-06-21 珠海泰坦新动力电子有限公司 一种化成装置
CN115000551A (zh) * 2022-08-03 2022-09-02 深圳市铂纳特斯自动化科技有限公司 一种电池化成方法及装置

Also Published As

Publication number Publication date
CN115000551A (zh) 2022-09-02
CN115000551B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024027126A1 (zh) 一种电池化成方法及装置
US9046352B2 (en) Electrode position detection device and electrode position detection method
EP2696431B1 (en) Electrode stacking device and electrode stacking method
CN108511782B (zh) 一种铅酸电池合盖后的密封圈自动上装系统
CN102738038A (zh) 臂型搬运装置
CN105946363A (zh) 一种软包电池自动喷码转盘式扩口检测机
WO2020130184A1 (ko) 이차전지의 셀 스택 제조장치
CN108362739B (zh) 检测电池焊接质量的设备和检测电池焊接质量的方法
WO2023217040A1 (zh) 一种纠偏装置和卷绕机
WO2018182387A1 (ko) 이차전지의 리크검사시스템
KR20190051624A (ko) 극판 검사 기능을 포함하는 2차전지 제조장치의 극판이송장치
WO2021096068A1 (ko) 이차 전지 제조용 전극 자동공급 장치 및 이를 이용한 전극 자동공급 방법
WO2024087595A1 (zh) 光伏组件、光伏组件生产设备及电池串的摆片方法
CN116780058A (zh) 一种电池盖板自动组装检测一体机
CN210222214U (zh) 电池检测装置
CN218995206U (zh) 电芯检测装置
CN109360867A (zh) 一种光伏电池串送料装置
CN210448387U (zh) 一种气体颗粒物过滤膜的自动换膜装置
CN209328849U (zh) 基板缺陷检测装置和镀膜设备
CN208938990U (zh) 一种光伏电池串送料装置
CN208938951U (zh) 一种高精度光伏电池串排版机
CN220312169U (zh) 转动装置及电池焊接设备
CN110571308A (zh) 太阳能电池串校正设备及方法
CN216848068U (zh) 一种电池成组防错的检测装置
CN202256559U (zh) 检测电池极性的测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848841

Country of ref document: EP

Kind code of ref document: A1