WO2024027103A1 - 热管理系统、车辆和热管理系统的控制方法 - Google Patents

热管理系统、车辆和热管理系统的控制方法 Download PDF

Info

Publication number
WO2024027103A1
WO2024027103A1 PCT/CN2022/144308 CN2022144308W WO2024027103A1 WO 2024027103 A1 WO2024027103 A1 WO 2024027103A1 CN 2022144308 W CN2022144308 W CN 2022144308W WO 2024027103 A1 WO2024027103 A1 WO 2024027103A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
management system
thermal management
loop
coolant
Prior art date
Application number
PCT/CN2022/144308
Other languages
English (en)
French (fr)
Inventor
王宇
丁鹏
林军昌
张旭
Original Assignee
合众新能源汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合众新能源汽车股份有限公司 filed Critical 合众新能源汽车股份有限公司
Publication of WO2024027103A1 publication Critical patent/WO2024027103A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps

Definitions

  • the present invention relates to the field of vehicle technology, and in particular, to a thermal management system, a vehicle and a control method of the thermal management system.
  • car batteries need to be kept at a more suitable temperature to maintain good performance.
  • hot water needs to be used to heat the battery.
  • the coolant in the battery uses the water-to-water heat exchanger to absorb the heat of the high-temperature circuit coolant through conduction, thereby heating the battery coolant.
  • such a solution increases the cost of the water-to-water heat exchanger, and at the same time transfers heat through the water-to-water heat exchanger, resulting in slow heat transfer response and low heat transfer efficiency.
  • Embodiments of the present application provide a thermal management system, a vehicle, and a control method of the thermal management system.
  • the thermal management system of the embodiment of the present application is used in a vehicle.
  • the thermal management system includes the first loop, the second loop, the power battery and the mixing chamber.
  • the first circuit is used to heat the vehicle's cabin.
  • the power battery is provided in the second circuit.
  • the mixing chamber is connected to the first circuit and the second circuit respectively, and mixes the cooling liquid in the first circuit and the second circuit.
  • the thermal management system is used in a vehicle.
  • the coolant in the thermal management system flows to the first loop and the second loop respectively, and part of the coolant passes through the first loop to provide heat for the vehicle's cockpit.
  • Another part of the coolant enters the mixing chamber, mixes with the coolant of the second circuit, and then flows to the power battery through the second circuit, so that the temperature of the coolant of the second circuit is appropriate to heat and preserve the power battery.
  • the first circuit includes a main circuit, a branch circuit and a valve assembly.
  • the main circuit is used to provide heat to the cockpit, and the mixing chamber is connected to the branch circuit and the third circuit respectively.
  • the valve assembly is used to connect the main circuit and the branch circuit and regulate the flow of coolant to the main circuit and the branch circuit respectively.
  • the valve assembly is a three-way valve.
  • the three-way valve includes a first interface, a second interface and a third interface.
  • the first interface is connected to the water inlet pipeline, and the second interface is connected to the water inlet pipeline.
  • the main circuit and the third interface are connected to the branch circuit.
  • the thermal management system further includes a three-way pipe fitting, which is respectively connected to the rear ends of the main loop and the branch loop and the return water pipeline.
  • the valve assembly is capable of controlling the proportion of coolant flowing into the main circuit and the branch circuit.
  • the thermal management system further includes a temperature sensor for detecting the temperature of the coolant flowing to the power battery in the second circuit, and the valve assembly can respond to the temperature The temperature detected by the sensor regulates the ratio of coolant flowing into the main circuit and the branch circuit.
  • the thermal management system further includes a warm air core, the warm air core is disposed in the main circuit, and the warm air core is used to heat the cockpit of the vehicle.
  • the mixing chamber includes a first mixing interface, a second mixing interface, a third mixing interface and a fourth mixing interface, and the first mixing interface and the second mixing interface are connected to the second mixing interface. loop, the third mixing interface and the fourth mixing interface are connected to the first loop.
  • the thermal management system further includes a pump body, the pump body is disposed in the second circuit, and the pump body is used to drive the cooling liquid to flow in the second circuit.
  • the vehicle according to the embodiment of the present application includes a vehicle body and the thermal management system described in any of the above embodiments, and the thermal management system is provided on the vehicle body.
  • the temperature sensor is used to detect the temperature of the coolant flowing in the second circuit to the power battery provided in the second circuit;
  • the valve assembly is adjusted to reduce the flow of coolant entering the branch circuit.
  • the thermal management system is used in the vehicle, the coolant in the thermal management system flows to the first loop and the second loop respectively, and part of the coolant passes through the first loop.
  • the loop supplies heat to the vehicle's cockpit, and another part of the coolant enters the mixing chamber and mixes with the coolant of the second loop and then flows to the power battery through the second loop, so that the coolant temperature of the second loop is appropriate to heat and preserve the power battery. .
  • Figure 1 is a schematic structural diagram of a thermal management system according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • FIG. 3 is another structural schematic diagram of the thermal management system according to the embodiment of the present application.
  • FIG. 4 is another structural schematic diagram of the thermal management system according to the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the module structure of the thermal management system according to the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of the control method of the thermal management system according to the embodiment of the present application.
  • Thermal management system 100 processor 101, first loop 10, main loop 11, branch loop 12, valve assembly 13, first interface 131, second interface 132, third interface 133, water inlet pipeline 14, return water pipeline 15 , second circuit 20, power battery 30, mixing chamber 40, first mixing interface 41, second mixing interface 42, third mixing interface 43, fourth mixing interface 44, tee pipe fitting 50, temperature sensor 60, heater core Body 70, pump body 80, vehicle 200, body 201.
  • the term “above” or “below” a first feature on a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • a thermal management system 100 is used in a vehicle 200 .
  • the thermal management system 100 includes a first loop 10 , a second loop 20 , a power battery 30 and a mixing chamber 40 .
  • the first circuit 10 is used to heat the cabin of the vehicle 200 .
  • the power battery 30 is provided in the second circuit 20 .
  • the mixing chamber 40 is connected to the first circuit 10 and the second circuit 20 respectively, and mixes the cooling liquid in the first circuit 10 and the second circuit 20 .
  • the thermal management system 100 in the embodiment of the present application, the thermal management system 100 is used in the vehicle 200.
  • the coolant in the thermal management system 100 flows to the first loop 10 and the second loop 20 respectively, and part of the coolant passes through the first loop 10.
  • the cockpit of the vehicle 200 is heated, and another part of the coolant enters the mixing chamber 40 to mix with the coolant of the second circuit 20 and then flows to the power battery 30 through the second circuit 20, so that the temperature of the coolant of the second circuit 20 is suitable for power generation.
  • the battery 30 is heated and kept warm.
  • the thermal management system 100 of the vehicle 200 may include multiple sets of pipelines to implement different heating and cooling functions.
  • the vehicle 200 can provide heat to the cockpit and the power battery 30 through multiple pipeline systems to ensure the indoor temperature of the cockpit and the normal operation of the power battery 30 .
  • the temperature of the coolant used to heat the power battery 30 needs to be lower than 40°C, and the temperature of the coolant used to heat the passenger compartment needs to be higher than 60°C, that is, It is said that the temperature of the coolant in the first circuit 10 is higher than the temperature of the coolant in the second circuit 20 . It can be understood that after the coolant circulates for a period of time, the temperature of the coolant will drop. At this time, the mixing chamber 40 can be opened to mix the coolant in the first loop 10 and the second loop 20 and return to the first loop respectively. 10 and 20 for the second circuit.
  • the temperature of the coolant returning to the first circuit 10 drops slightly, and the temperature of the coolant in the first circuit 10 can be restored through components such as the compressor and the outdoor heat exchanger.
  • the temperature of the coolant returning to the second circuit 20 rises, so that the temperature of the coolant in the second circuit 20 is appropriate, and then the power battery 30 is heated and kept warm.
  • the mixing chamber 40 can also be opened at the beginning so that the coolant in the first circuit 10 and the second circuit 20 is always within an appropriate range.
  • the first loop 10 and the second loop 20 are connected through the mixing chamber 40 , so that the coolant with a higher temperature in the first loop 10 can communicate with the second loop 20
  • the coolant with a lower temperature is mixed to ensure that the temperature of the coolant in the second loop 20 is appropriate. It avoids the cost of adding a water-to-water heat exchanger or heater in the second loop 20 in the related art, simplifies the original pipeline system, and directly mixes the coolant together, so that the heat transfer response is fast and the transfer efficiency is high. high.
  • the first circuit 10 includes a main circuit 11, a branch circuit 12 and a valve assembly 13.
  • the main circuit 11 is used to provide heat for the cockpit, and the mixing chamber 40 is connected to the branch circuit 12 and the third circuit respectively.
  • the secondary circuit 20 and the valve assembly 13 are used to connect the main circuit 11 and the branch circuit 12 and regulate the flow of coolant to the main circuit 11 and the branch circuit 12 respectively.
  • the coolant in the first circuit 10 flows to the main circuit 11 and the branch circuit 12 respectively through the valve assembly 13, so that part of the coolant can be diverted to the main circuit 11 to heat the cockpit, and part of the coolant can be diverted to the branch circuit 12,
  • the coolant entering the branch circuit 12 can be mixed with the coolant of the second loop 20 through the mixing chamber 40 and returned to the second loop 20 , so that the coolant of the second loop 20 can heat and maintain the temperature of the power battery 30 .
  • the two loops of the thermal management system 100 are often located at different locations of the vehicle 200 .
  • the first loop 10 can be divided into a main loop 11 and a branch loop 12 .
  • the branch loop 12 can be extended to a position near the second loop 20 And connected with the mixing chamber 40.
  • the valve assembly 13 can divide the coolant into two parts, part of the coolant can pass through the main circuit 11 to provide heat for the cockpit, and the other part of the coolant can enter the mixing chamber 40 through the branch circuit 12 .
  • the valve assembly 13 is a three-way valve.
  • the three-way valve includes a first interface 131, a second interface 132 and a third interface 133.
  • the first interface 131 is connected to the water inlet pipeline 14.
  • the second interface 132 is connected to the main circuit 11
  • the third interface 133 is connected to the branch circuit 12 .
  • the coolant in the water inlet pipe 14 enters the three-way valve through the first interface 131, and then is diverted to the main circuit 11 and the branch circuit 12 through the second interface 132 and the third interface 133 respectively, ensuring that the coolant in the water inlet pipe 14 can
  • the diversion realizes two functions of heating the power battery 30 and heating the cockpit.
  • valve assembly 13 In the embodiment of the present application, the specific type of the valve assembly 13 is not limited.
  • the valve assembly 13 can also be a four-way valve or a five-way valve to meet different needs.
  • the thermal management system 100 further includes a tee pipe 50 .
  • the tee pipe 50 is connected to the rear ends of the main loop 11 and the branch loop 12 and the return pipe 15 respectively.
  • the tee fitting 50 simultaneously connects the main circuit 11, the branch circuit 12 and the return pipe 15, so that the coolant can flow out through the return pipe 15 after passing through the main circuit 11 and the branch circuit 12, ensuring that the coolant circulates throughout the entire pipeline. circulation.
  • the three-way pipe fitting 50 and the valve assembly 13 are respectively provided at both ends of the main loop 11 and the branch loop 12, so that the main loop 11 and the branch loop 12 can form a complete pipeline system with the water inlet pipeline 14 and the return water pipeline 15. , ensure that the coolant can achieve complete circulation.
  • the three-way pipe fitting 50 can also be replaced with a three-way valve, so that the two three-way valves together control the flow of the main circuit 11 and the branch circuit 12 of the coolant.
  • the thermal management system 100 further includes a heater core 70 .
  • the heater core 70 is disposed in the main circuit 11 .
  • the heater core 70 is used to heat the cockpit of the vehicle 200 . .
  • the heater core 70 is disposed in the main circuit 11 , so that when the coolant passes through the main circuit 11 , it supplies heat to the cockpit through the heater core 70 .
  • the coolant in the water inlet pipe 14 enters the main circuit 11 and the branch circuit 12 respectively through the valve assembly 13, so that the coolant entering the main circuit 11 can provide heat for the cockpit through the heater core 70.
  • the cooling liquid entering the branch circuit 12 can enter the mixing chamber 40 so that the temperature of the cooling liquid in the second circuit 20 increases.
  • the warm air core 70 can also be disposed in the water inlet pipe 14 or the return water pipe 15 in the first circuit 10 .
  • the coolant passes through the heater core 70 to heat the cockpit and then enters the mixing chamber 40 through the first circuit 10 .
  • the temperature of the coolant in the first circuit 10 drops slightly and can still heat the power battery 30 after being mixed with the coolant in the second circuit 20 .
  • the warm air core 70 is disposed in the return pipe 15 , the cooling liquid first enters the mixing chamber 40 and then enters the warm air core 70 .
  • the valve assembly 13 and the tee pipe 50 can be omitted, leaving only one pipeline.
  • valve assembly 13 can control the proportion of coolant flowing into the main circuit 11 and the branch circuit 12 .
  • the coolant in the water inlet pipe 14 can flow into the main circuit 11 and the branch circuit 12 according to a certain proportion by the valve assembly 13 to ensure that the coolant can achieve the corresponding functions.
  • the valve assembly 13 can also according to the actual needs of the power battery 30 The temperature changes in the proportion entering the main circuit 11 and the branch circuit 12 to adjust the temperature of the power battery 30 and the cockpit accordingly.
  • the thermal management system 100 also includes a temperature sensor 60.
  • the temperature sensor 60 is used to detect the temperature of the coolant flowing to the power battery 30 in the second circuit 20.
  • the valve The assembly 13 can adjust the ratio of the coolant flowing into the main circuit 11 and the branch circuit 12 according to the temperature detected by the temperature sensor 60 .
  • the temperature sensor 60 can detect the temperature of the coolant flowing to the power battery 30 in the second circuit 20, and then adjust the proportion of the coolant flowing into the main circuit 11 and the branch circuit 12 according to the detected temperature value to quickly adjust the power battery 30. temperature.
  • the thermal management system 100 also includes a processor 101, which can connect the temperature sensor 60 and the valve assembly 13, receive the temperature signal of the temperature sensor 60 and control the valve assembly 13.
  • the processor 101 receives the temperature signal from the temperature sensor 60 , and the processor 101 controls the valve assembly. 13 causes the valve assembly 13 to change the proportion of coolant flowing into the main circuit 11 and the branch circuit 12, increasing the proportion of coolant entering the branch circuit 12, thereby quickly increasing the coolant temperature of the second circuit 20, ensuring the normal operation of the power battery 30.
  • the processor 101 when the temperature sensor 60 detects that the temperature of the coolant flowing to the power battery 30 in the second circuit 20 is higher than a predetermined temperature range, the processor 101 receives the temperature signal from the temperature sensor 60 , and the processor 101 controls the valve.
  • the assembly 13 allows the valve assembly 13 to change the proportion of coolant flowing into the main circuit 11 and the branch circuit 12, and the proportion of the coolant entering the branch circuit 12 is reduced, thereby ensuring that the temperature of the coolant in the second circuit 20 is normal and ensuring the stable operation of the power battery 30 .
  • the mixing chamber 40 includes a first mixing interface 41, a second mixing interface 42, a third mixing interface 43 and a fourth mixing interface 44.
  • the first mixing interface 41 and the second mixing interface 42 is connected to the second loop 20
  • the third mixing interface 43 and the fourth mixing interface 44 are connected to the first loop 10 .
  • the cooling liquid of the second circuit 20 can enter the mixing chamber 40 through the first mixing interface 41, and the cooling liquid of the first circuit 10 can enter the mixing chamber 40 through the third mixing interface 43.
  • the cooling liquids of the two temperatures are mixed.
  • Mix in chamber 40 to adjust the temperature of the coolant.
  • the coolant in the mixing chamber 40 can return to the second loop 20 and the first loop 10 through the second mixing interface 42 and the fourth mixing interface 44 respectively, so that the temperature of the coolant flowing to the power battery 30 is appropriate, and the cooling of the power battery 30 can be realized.
  • the thermal management system 100 further includes a pump body 80 , which is disposed in the second circuit 20 .
  • the pump body 80 is used to drive the cooling liquid to flow in the second circuit 20 .
  • the pump body 80 can provide pressure for the second loop 20 and drive the flow of the coolant in the second loop 20 to avoid slow flow or even blockage of the coolant in the second loop 20 and ensure that the coolant can flow quickly in the second loop 20
  • the flow realizes heating and insulation of the power battery 30 .
  • a vehicle 200 includes a body 201 and the thermal management system 100 of any of the above embodiments.
  • the thermal management system 100 is provided on the body 201 .
  • the thermal management system 100 is used in the vehicle 200.
  • the coolant in the thermal management system 100 flows to the first loop 10 and the second loop 20 respectively, and part of the coolant passes through the first loop.
  • the circuit 10 supplies heat to the cockpit of the vehicle 200.
  • Another part of the coolant enters the mixing chamber 40 and mixes with the coolant of the second circuit 20 and then flows to the power battery 30 through the second circuit 20, so that the temperature of the coolant of the second circuit 20 is appropriate. To heat and preserve the power battery 30 .
  • vehicle 200 is not limited.
  • vehicle 200 can be a hybrid vehicle or a pure electric vehicle to meet different needs.
  • control method of the thermal management system 100 in the embodiment of the present application includes:
  • the temperature sensor 60 is used to detect the temperature of the coolant flowing in the second circuit 20 to the power battery 30 provided in the second circuit 20. ;
  • the thermal management system 100 further includes a processor 101.
  • the processor 101 can be used to read the temperature value of the temperature sensor 60 provided in the second loop 20 of the thermal management system 100.
  • the temperature sensor 60 is used to detect the third The temperature of the coolant flowing in the secondary circuit 20 to the power battery 30 provided in the second circuit 20; and when the temperature value is lower than a predetermined temperature value, the valve assembly 13 provided in the first circuit 10 of the thermal management system 100 is adjusted.
  • the branch circuit 12 and the second circuit 20 are connected through the mixing chamber 40; it is also used to adjust the valve assembly 13 to reduce the temperature when the temperature value is higher than the predetermined temperature value.
  • the thermal management system 100 is used for the vehicle 200, and the coolant in the thermal management system 100 flows to the first loop 10 and the second loop respectively. 20. Part of the coolant supplies heat to the cockpit of the vehicle 200 through the first circuit 10, and the other part of the coolant enters the mixing chamber 40 and mixes with the coolant of the second circuit 20 and then flows to the power battery 30 through the second circuit 20, so that the second The coolant temperature of the circuit 20 is appropriate to heat and preserve the power battery 30 .
  • first and second are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of the described features. In the description of the embodiments of the present application, “plurality” means two or more, unless otherwise explicitly and specifically limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种热管理系统(100)、车辆(200)和热管理系统(100)的控制方法。热管理系统(100)用于车辆(200)。热管理系统(100)包括第一回路(10)、第二回路(20)、动力电池(30)和混合腔(40)。第一回路(10)用于为车辆(200)的驾驶舱供热。动力电池(30)设置在第二回路(20)。混合腔(40)分别连接第一回路(10)和第二回路(20),并将第一回路(10)和第二回路(20)中的冷却液混合。热管理系统(100)中的冷却液分别流向第一回路(10)和第二回路(20),部分冷却液通过第一回路(10)为车辆(200)的驾驶舱供热,另一部分冷却液进入混合腔(40)与第二回路(20)的冷却液混合后通过第二回路(20)流向动力电池(30),使得第二回路(20)的冷却液温度适宜,以对动力电池(30)进行加热保温。

Description

热管理系统、车辆和热管理系统的控制方法
优先权信息
本申请请求2022年08月05日向中国国家知识产权局提交的、专利申请号为202210944009.2的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及车辆技术领域,尤其涉及一种热管理系统、车辆和热管理系统的控制方法。
背景技术
在相关技术中,汽车的电池需要保持在较为适宜的温度下才能保持良好的性能。当电池温度过低时需要用热水对电池进行加热,电池内冷却液借助水水换热器以传导的方式吸收高温回路冷却液的热量,从而实现对电池冷却液的加热。然而,这样的方案增加了水水换热器的成本,同时通过水水换热器传递热量,导致热量传递响应缓慢,传热效率低。
发明内容
本申请实施方式提供了一种热管理系统、车辆和热管理系统的控制方法。
本申请实施方式的热管理系统用于车辆。热管理系统包括第一回路、第二回路、动力电池和混合腔。所述第一回路用于为车辆的驾驶舱供热。所述动力电池设置在所述第二回路。所述混合腔分别连接所述第一回路和所述第二回路,并将所述第一回路和所述第二回路中的冷却液混合。
在本申请实施方式的热管理系统中,热管理系统用于车辆,热管理系统中的冷却液分别流向第一回路和第二回路,部分冷却液通过第一回路为车辆的驾驶舱供热,另一部分冷却液进入混合腔与第二回路的冷却液混合后通过第二回路流向动力电池,使得第二回路的冷却液温度适宜,以对动力电池进行加热保温。
在某些实施方式中,所述第一回路包括主回路、支回路和阀组件,所述主回路用于为所述驾驶舱供热,所述混合腔分别连接所述支回路和所述第二回路,所述阀组件用于连通所述主回路和所述支回路,并调节冷却液分别流向所述主回路和所述支回路。
在某些实施方式中,所述阀组件为三通阀,所述三通阀包括第一接口、第二接口 和第三接口,所述第一接口连接进水管路,所述第二接口连接所述主回路,所述第三接口连接所述支回路。
在某些实施方式中,所述热管理系统还包括三通管件,所述三通管件分别连接所述主回路和所述支回路的后端以及回水管路。
在某些实施方式中,所述阀组件能够控制冷却液流入所述主回路和所述支回路的比例。
在某些实施方式中,所述热管理系统还包括温度传感器,所述温度传感器用于探测所述第二回路中流向所述动力电池的冷却液的温度,所述阀组件能够根据所述温度传感器探测的温度调节冷却液流入所述主回路和所述支回路的比例。
在某些实施方式中,所述热管理系统还包括暖风芯体,所述暖风芯体设置在所述主回路,所述暖风芯体用于为所述车辆的驾驶舱供热。
在某些实施方式中,所述混合腔包括第一混合接口、第二混合接口、第三混合接口和第四混合接口,所述第一混合接口和所述第二混合接口连接所述第二回路,所述第三混合接口和所述第四混合接口连接所述第一回路。
在某些实施方式中,所述热管理系统还包括泵体,所述泵体设置在所述第二回路,所述泵体用于驱动冷却液在所述第二回路中流动。
本申请实施方式的车辆包括车身和上述任一项实施方式所述的热管理系统,所述热管理系统设置在车身上。
本申请实施方式的热管理系统的控制方法包括:
读取设置在所述热管理系统的第二回路的温度传感器的温度值,所述温度传感器用于探测所述第二回路中流向设置在所述第二回路的动力电池的冷却液的温度;
在所述温度值低于所述预定温度值时,调节设置在所述热管理系统的第一回路的阀组件以提高进入所述第一回路的支回路的冷却液的流量,所述支回路和所述第二回路通过混合腔连通;
在所述温度值高于所述预定温度值时,调节所述阀组件以降低进入所述支回路的冷却液的流量。
在本申请实施方式的热管理系统、车辆和热管理系统的控制方法中,热管理系统用于车辆,热管理系统中的冷却液分别流向第一回路和第二回路,部分冷却液通过第一回路为车辆的驾驶舱供热,另一部分冷却液进入混合腔与第二回路的冷却液混合后通过第二回路流向动力电池,使得第二回路的冷却液温度适宜,以对动力电池进行加热保温。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的热管理系统的结构示意图;
图2是本申请实施方式的车辆的结构示意图;
图3是本申请实施方式的热管理系统的另一结构示意图;
图4是本申请实施方式的热管理系统的又一结构示意图;
图5是本申请实施方式的热管理系统的模块结构示意图;
图6是本申请实施方式的热管理系统的控制方法的流程示意图。
主要元件符号说明:
热管理系统100、处理器101、第一回路10、主回路11、支回路12、阀组件13、第一接口131、第二接口132、第三接口133、进水管路14、回水管路15、第二回路20、动力电池30、混合腔40、第一混合接口41、第二混合接口42、第三混合接口43、第四混合接口44、三通管件50、温度传感器60、暖风芯体70、泵体80、车辆200、车身201。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1和图2,本申请实施方式的热管理系统100用于车辆200。热管理系统100包括第一回路10、第二回路20、动力电池30和混合腔40。第一回路10用于为车辆200的驾驶舱供热。动力电池30设置在第二回路20。混合腔40分别连接第一回路10和第二回路20,并将第一回路10和第二回路20中的冷却液混合。
在本申请实施方式的热管理系统100中,热管理系统100用于车辆200,热管理系统100中的冷却液分别流向第一回路10和第二回路20,部分冷却液通过第一回路10为车辆200的驾驶舱供热,另一部分冷却液进入混合腔40与第二回路20的冷却液混合后通过第二回路20流向动力电池30,使得第二回路20的冷却液温度适宜,以对动力电池30进行加热保温。
可以理解的是,车辆200的热管理系统100可以包括多套管路,以实现不同的供暖和冷却的功能。例如,车辆200可以通过多条管路系统为驾驶舱和动力电池30供热,以保证驾驶舱的室内温度以及动力电池30的正常工作。
具体地,在本申请实施方式的热管理系统100中,通常为动力电池30加热的冷却液需要低于40℃,而用于给乘员舱加热的冷却液的温度需要高于60℃,也就是说第一回路10中的冷却液的温度高于第二回路20中的冷却液的温度。可以理解的是,在冷却液循环一段时间后,冷却液的温度会下降,此时,可以开启混合腔40使得第一回路10和第二回路20中的冷却液混合并分别回到第一回路10和第二回路20。这样,回到第一回路10的冷却液温度少许下降,可以通过压缩机和室外换热器等元件使得第一回路10中的冷却液温度恢复。而回到第二回路20中的冷却液温度上升,使得第二回路20中的冷却液的温度适宜,再对动力电池30加热保温。当然,也可以在一开始就开启混合腔40,使得第一回路10和第二回路20的冷却液始终处于合适的范围内。
进一步地,在本申请实施方式的热管理系统100中,通过混合腔40将第一回路10和第二回路20导通,使得第一回路10中温度较高的冷却液可以与第二回路20中温度较低的冷却液混合,保证第二回路20中的冷却液的温度合适。避免了相关技术中在第二回路20中增加水水换热器或加热器的成本,简化了原有的管路系统,并且直接将冷 却液混合在一起,使得热量传递的响应快速,传递效率高。
请参阅图1,在某些实施方式中,第一回路10包括主回路11、支回路12和阀组件13,主回路11用于为驾驶舱供热,混合腔40分别连接支回路12和第二回路20,阀组件13用于连通主回路11和支回路12,并调节冷却液分别流向主回路11和支回路12。
如此,第一回路10的冷却液通过阀组件13分别流向主回路11和支回路12,以使得部分冷却液可以分流值主回路11为驾驶舱供暖,并使得部分冷却液可以分流支回路12,进入支回路12的冷却液可以通过混合腔40和第二回路20的冷却液混合并回到第二回路20,进而第二回路20的冷却液温度适宜可以对动力电池30加热保温。
可以理解的是,热管理系统100的两条回路往往处于车辆200的不同位置,可以将第一回路10分为主回路11和支回路12,支回路12可以延伸至第二回路20附近的位置并与混合腔40连通。阀组件13可以将冷却液分为两部分,部分的冷却液可以通过主回路11以为驾驶舱供热,另一部分的冷却液可以通过支回路12进入混合腔40中。
请参阅图1,在某些实施方式中,阀组件13为三通阀,三通阀包括第一接口131、第二接口132和第三接口133,第一接口131连接进水管路14,第二接口132连接主回路11,第三接口133连接支回路12。
如此,进水管路14的冷却液通过第一接口131进入三通阀,然后分别通过第二接口132和第三接口133分流至主回路11和支回路12,保证进水管路14的冷却液可以分流实现加热动力电池30和加热驾驶舱两个功能。
在本申请实施方式中,不限定阀组件13的具体类型,阀组件13还可以是四通阀或者五通阀等,以满足不同的需求。
进一步地,请参阅图1,在某些实施方式中,热管理系统100还包括三通管件50,三通管件50分别连接主回路11和支回路12的后端以及回水管路15。
如此,三通管件50同时连接主回路11、支回路12和回水管路15,使得冷却液在通过主回路11和支回路12后可以通过回水管路15流出,保证冷却液在整个管路中的流通。
具体地,三通管件50和阀组件13分别设置在主回路11和支回路12的两端,使得主回路11和支回路12可以与进水管路14以及回水管路15构成完成的管路系统,保证冷却液可以实现完成的循环。另外,在一些实施方式中,三通管件50也可以更换为三通阀,使得两个三通阀一起控制冷却液的主回路11以及支回路12的流通。
请参阅图1,在某些实施方式中,热管理系统100还包括暖风芯体70,暖风芯体 70设置在主回路11,暖风芯体70用于为车辆200的驾驶舱供热。
如此,暖风芯体70设置在主回路11,使得冷却液在通过主回路11上时,通过暖风芯体70为驾驶舱供热。
在这样的实施方式中,进水管路14的冷却液通过阀组件13分别进入至主回路11和支回路12,这样进入主回路11中的冷却液可以通过暖风芯体70为驾驶舱供热,进入支回路12中的冷却液可以进入混合腔40中使得第二回路20中的冷却液的温度增加。
请结合图3和图4,在其它的实施方式中,暖风芯体70还可以设置在第一回路10中的进水管路14或者回水管路15中。在一个例子中,当暖风芯体70设置在进水管路14中时,冷却液通过暖风芯体70为驾驶舱加热后再通过第一回路10进入混合腔40中。这样,第一回路10中的冷却液温度稍有下降,在与第二回路20的冷却液混合后依旧能够为动力电池30加热。在另一个例子中,当暖风芯体70设置在回水管路15中时,冷却液先进入混合腔40再进入暖风芯体70中。当然,在这样的实施方式中,可以省略阀组件13和三通管件50,只保留一条管路。
请参阅图1,在某些实施方式中,阀组件13能够控制冷却液流入主回路11和支回路12的比例。
如此,进水管路14的冷却液可以被阀组件13按照一定的比例流入主回路11和支回路12,以保证冷却液可以实现相对应的功能,阀组件13还可以根据动力电池30实际需要的温度改变进入主回路11和支回路12的比例,以对动力电池30和驾驶舱的温度进行对应的调节。
进一步地,请参阅图1和图5,在某些实施方式中,热管理系统100还包括温度传感器60,温度传感器60用于探测第二回路20中流向动力电池30的冷却液的温度,阀组件13能够根据温度传感器60探测的温度调节冷却液流入主回路11和支回路12的比例。
如此,温度传感器60可以探测第二回路20中流向动力电池30的冷却液的温度,进而可以根据探测的温度值以调节冷却液流入主回路11和支回路12的比例,以快速调节动力电池30的温度。
具体地,热管理系统100还包括处理器101,处理器101可以连接温度传感器60和阀组件13,接收温度传感器60的温度信号并控制阀组件13。在一个例子中,在温度传感器60探测到第二回路20中流向动力电池30的冷却液的温度低于预定温度范围时,处理器101接收到温度传感器60的温度信号,处理器101控制阀组件13使得阀组件13改变冷却液流入主回路11和支回路12的比例,进入支回路12的冷却液的比 例提高,进而快速提高第二回路20的冷却液温度,保证动力电池30的正常工作。在另一个例子中,在温度传感器60探测到第二回路20中流向动力电池30的冷却液的温度高于预定温度范围时,处理器101接收到温度传感器60的温度信号,处理器101控制阀组件13使得阀组件13改变冷却液流入主回路11和支回路12的比例,进入支回路12的冷却液的比例降低,进而保证第二回路20的冷却液温度正常,保证动力电池30的稳定工作。
请参阅图1,在某些实施方式中,混合腔40包括第一混合接口41、第二混合接口42、第三混合接口43和第四混合接口44,第一混合接口41和第二混合接口42连接第二回路20,第三混合接口43和第四混合接口44连接第一回路10。
如此,第二回路20的冷却液可以通过第一混合接口41进入混合腔40中,第一回路10的冷却液可以通过第三混合接口43进入混合腔40中,两种温度的冷却液在混合腔40中混合以调节冷却液的温度。混合腔40中的冷却液可以分别通过第二混合接口42和第四混合接口44回到第二回路20和第一回路10,使得流向动力电池30的冷却液的温度适宜,实现动力电池30的快速加热保温。
请参阅图1,在某些实施方式中,热管理系统100还包括泵体80,泵体80设置在第二回路20,泵体80用于驱动冷却液在第二回路20中流动。
如此,泵体80可以为第二回路20提供压力,驱动第二回路20中冷却液的流动,避免冷却液在第二回路20中流动缓慢甚至堵塞,保证冷却液可以在第二回路20中快速流动实现对动力电池30的加热保温。
请参阅图2,本申请实施方式的车辆200包括车身201和上述任一项实施方式的热管理系统100,热管理系统100设置在车身201上。
在本申请实施方式的热管理系统100和车辆200中,热管理系统100用于车辆200,热管理系统100中的冷却液分别流向第一回路10和第二回路20,部分冷却液通过第一回路10为车辆200的驾驶舱供热,另一部分冷却液进入混合腔40与第二回路20的冷却液混合后通过第二回路20流向动力电池30,使得第二回路20的冷却液温度适宜,以对动力电池30进行加热保温。
在本申请实施方式中,不限定车辆200的具体类型,车辆200可以为混合动力汽车,也可以为纯电动汽车,以满足不同的需求。
请参阅图5和图6,本申请实施方式的热管理系统100的控制方法包括:
S10,读取设置在热管理系统100的第二回路20的温度传感器60的温度值,温度传感器60用于探测第二回路20中流向设置在第二回路20的动力电池30的冷却液的 温度;
S20,在温度值低于预定温度值时,调节设置在热管理系统100的第一回路10的阀组件13以提高进入第一回路10的支回路12的冷却液的流量,支回路12和第二回路20通过混合腔40连通;
S30,在温度值高于预定温度值时,调节阀组件13以降低进入支回路12的冷却液的流量。
在一些实施方式中,热管理系统100还包括处理器101,处理器101可以用于读取设置在热管理系统100的第二回路20的温度传感器60的温度值,温度传感器60用于探测第二回路20中流向设置在第二回路20的动力电池30的冷却液的温度;和用于在温度值低于预定温度值时,调节设置在热管理系统100的第一回路10的阀组件13以提高进入第一回路10的支回路12的冷却液的流量,支回路12和第二回路20通过混合腔40连通;还用于在温度值高于预定温度值时,调节阀组件13以降低进入支回路12的冷却液的流量。
在本申请实施方式的热管理系统100、车辆200和热管理系统100的控制方法中,热管理系统100用于车辆200,热管理系统100中的冷却液分别流向第一回路10和第二回路20,部分冷却液通过第一回路10为车辆200的驾驶舱供热,另一部分冷却液进入混合腔40与第二回路20的冷却液混合后通过第二回路20流向动力电池30,使得第二回路20的冷却液温度适宜,以对动力电池30进行加热保温。
在本申请的实施方式的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在 不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (11)

  1. 一种热管理系统,用于车辆,其特征在于,包括:
    第一回路,所述第一回路用于为车辆的驾驶舱供热;
    第二回路;
    动力电池,所述动力电池设置在所述第二回路;和
    混合腔,所述混合腔分别连接所述第一回路和所述第二回路,并将所述第一回路和所述第二回路中的冷却液混合。
  2. 根据权利要求1所述的热管理系统,其特征在于,所述第一回路包括主回路、支回路和阀组件,所述主回路用于为所述驾驶舱供热,所述混合腔分别连接所述支回路和所述第二回路,所述阀组件用于连通所述主回路和所述支回路,并调节冷却液分别流向所述主回路和所述支回路。
  3. 根据权利要求2所述的热管理系统,其特征在于,所述阀组件为三通阀,所述三通阀包括第一接口、第二接口和第三接口,所述第一接口连接进水管路,所述第二接口连接所述主回路,所述第三接口连接所述支回路。
  4. 根据权利要求2所述的热管理系统,其特征在于,所述热管理系统还包括三通管件,所述三通管件分别连接所述主回路和所述支回路的后端以及回水管路。
  5. 根据权利要求2所述的热管理系统,其特征在于,所述阀组件能够控制冷却液流入所述主回路和所述支回路的比例。
  6. 根据权利要求2所述的热管理系统,其特征在于,所述热管理系统还包括温度传感器,所述温度传感器用于探测所述第二回路中流向所述动力电池的冷却液的温度,所述阀组件能够根据所述温度传感器探测的温度调节冷却液流入所述主回路和所述支回路的比例。
  7. 根据权利要求2所述的热管理系统,其特征在于,所述热管理系统还包括暖风芯体,所述暖风芯体设置在所述主回路,所述暖风芯体用于为所述车辆的驾驶舱供热。
  8. 根据权利要求1所述的热管理系统,其特征在于,所述混合腔包括第一混合接口、第二混合接口、第三混合接口和第四混合接口,所述第一混合接口和所述第二混合接口连接所述第二回路,所述第三混合接口和所述第四混合接口连接所述第一回路。
  9. 根据权利要求1所述的热管理系统,其特征在于,所述热管理系统还包括泵体,所述泵体设置在所述第二回路,所述泵体用于驱动冷却液在所述第二回路中流动。
  10. 一种车辆,其特征在于,包括:
    车身;和
    根据权利要求1-9中任一项所述的热管理系统,所述热管理系统设置在车身上。
  11. 一种热管理系统的控制方法,其特征在于,包括:
    读取设置在所述热管理系统的第二回路的温度传感器的温度值,所述温度传感器用于探测所述第二回路中流向设置在所述第二回路的动力电池的冷却液的温度;
    在所述温度值低于所述预定温度值时,调节设置在所述热管理系统的第一回路的阀组件以提高进入所述第一回路的支回路的冷却液的流量,所述支回路和所述第二回路通过混合腔连通;
    在所述温度值高于所述预定温度值时,调节所述阀组件以降低进入所述支回路的冷却液的流量。
PCT/CN2022/144308 2022-08-05 2022-12-30 热管理系统、车辆和热管理系统的控制方法 WO2024027103A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210944009.2A CN115366609A (zh) 2022-08-05 2022-08-05 热管理系统、车辆和热管理系统的控制方法
CN202210944009.2 2022-08-05

Publications (1)

Publication Number Publication Date
WO2024027103A1 true WO2024027103A1 (zh) 2024-02-08

Family

ID=84064244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144308 WO2024027103A1 (zh) 2022-08-05 2022-12-30 热管理系统、车辆和热管理系统的控制方法

Country Status (2)

Country Link
CN (1) CN115366609A (zh)
WO (1) WO2024027103A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115366609A (zh) * 2022-08-05 2022-11-22 合众新能源汽车有限公司 热管理系统、车辆和热管理系统的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206475759U (zh) * 2017-01-23 2017-09-08 北京新能源汽车股份有限公司 混合动力汽车
CN108725134A (zh) * 2018-06-06 2018-11-02 北京长城华冠汽车科技股份有限公司 一种新能源汽车的热管理系统及其调节方法和新能源汽车
CN110509744A (zh) * 2019-08-30 2019-11-29 海马新能源汽车有限公司 一种电动汽车热管理系统及电动汽车
CN111532099A (zh) * 2020-03-31 2020-08-14 宁波吉利汽车研究开发有限公司 一种新能源汽车热管理系统
US20210001683A1 (en) * 2018-03-28 2021-01-07 Volvo Truck Corporation Thermoregulation system for an electrically driven vehicle, and vehicle comprising such a system
CN115366609A (zh) * 2022-08-05 2022-11-22 合众新能源汽车有限公司 热管理系统、车辆和热管理系统的控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206475759U (zh) * 2017-01-23 2017-09-08 北京新能源汽车股份有限公司 混合动力汽车
US20210001683A1 (en) * 2018-03-28 2021-01-07 Volvo Truck Corporation Thermoregulation system for an electrically driven vehicle, and vehicle comprising such a system
CN108725134A (zh) * 2018-06-06 2018-11-02 北京长城华冠汽车科技股份有限公司 一种新能源汽车的热管理系统及其调节方法和新能源汽车
CN110509744A (zh) * 2019-08-30 2019-11-29 海马新能源汽车有限公司 一种电动汽车热管理系统及电动汽车
CN111532099A (zh) * 2020-03-31 2020-08-14 宁波吉利汽车研究开发有限公司 一种新能源汽车热管理系统
CN115366609A (zh) * 2022-08-05 2022-11-22 合众新能源汽车有限公司 热管理系统、车辆和热管理系统的控制方法

Also Published As

Publication number Publication date
CN115366609A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN211404638U (zh) 一种车辆燃料电池热管理系统及车辆
US20120018129A1 (en) Temperature adjusting apparatus, fluid supply system, heating system, installation method of temperature adjusting apparatus, and fluid supply method
CA2406331C (en) Thermal management system
JP5476800B2 (ja) 燃料電池システム
CN108284725B (zh) 新能源汽车分布式驱动智能化热管理系统
CN110509744B (zh) 一种电动汽车热管理系统及电动汽车
CN111129663B (zh) 车载热管理系统和车辆
JP2006082805A (ja) 自動車用熱交換装置
CN111231619A (zh) 车辆热管理系统和车辆
WO2024027103A1 (zh) 热管理系统、车辆和热管理系统的控制方法
CN213228245U (zh) 车辆热管理系统和车辆
CN210554237U (zh) 一种燃料电池系统和汽车
CN113547893B (zh) 车辆及其热管理系统
CN216659651U (zh) 一种燃料电池汽车热管理系统及燃料电池汽车
JP5846413B2 (ja) コージェネレーションシステム
CN212272375U (zh) 一种热管理装置及车辆
CN205564917U (zh) 电动汽车动力电池温度管理控制系统
CN115817103A (zh) 车辆热管理系统、方法及车辆
CN115257355A (zh) 热管理系统及其控制方法、以及车辆
EP1547182A2 (en) Thermal management system
CN106654442A (zh) 一种动力电池冷却和加热集成系统及电池
CN110861469A (zh) 电动汽车及其热管理系统
JP6663740B2 (ja) 熱利用システム
CN219382151U (zh) 一种热管理系统及车辆
CN218287363U (zh) 热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953891

Country of ref document: EP

Kind code of ref document: A1