WO2024026938A1 - 泳池清洁机器人的池壁避障移动方法、装置、电子设备 - Google Patents

泳池清洁机器人的池壁避障移动方法、装置、电子设备 Download PDF

Info

Publication number
WO2024026938A1
WO2024026938A1 PCT/CN2022/113079 CN2022113079W WO2024026938A1 WO 2024026938 A1 WO2024026938 A1 WO 2024026938A1 CN 2022113079 W CN2022113079 W CN 2022113079W WO 2024026938 A1 WO2024026938 A1 WO 2024026938A1
Authority
WO
WIPO (PCT)
Prior art keywords
pool
cleaning
cleaning robot
swimming pool
wall
Prior art date
Application number
PCT/CN2022/113079
Other languages
English (en)
French (fr)
Inventor
丁忠超
Original Assignee
智橙动力(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智橙动力(北京)科技有限公司 filed Critical 智橙动力(北京)科技有限公司
Publication of WO2024026938A1 publication Critical patent/WO2024026938A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1654Self-propelled cleaners
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle

Definitions

  • Embodiments of the present application relate to the field of cleaning control technology, and in particular to a method, device, electronic equipment and computer storage medium for a swimming pool cleaning robot to avoid obstacles in moving the pool wall.
  • the swimming pool cleaning robot is a cleaning robot produced to meet the needs of swimming pool cleaning. It can complete the actions of repeatedly cleaning the bottom and walls of the pool and filtering the water in the swimming pool.
  • the swimming pool cleaning tasks of the swimming pool cleaning robot mainly include cleaning of the pool bottom and pool walls.
  • pool wall obstacles such as floor drains (such as water inlets), escalators, steps, corners, etc. These pool walls Obstacles will hinder the swimming pool cleaning robot's pool wall cleaning task, and affect the success rate of the pool wall cleaning task and the pool wall cleaning efficiency.
  • embodiments of the present application provide an improved obstacle avoidance movement solution for the pool wall to at least partially solve the above problems.
  • a swimming pool cleaning robot is provided with a pool wall obstacle avoidance movement method, which includes: controlling the swimming pool cleaning robot to move along a cleaning route on the pool wall of the swimming pool to perform a pool wall cleaning task; After the robot collides with an obstacle on the pool wall while moving along the cleaning route, the swimming pool cleaning robot is controlled to continue to perform the pool wall cleaning task on the pool wall; or the swimming pool cleaning robot is controlled to avoid obstacles along the bottom of the pool. Move the path, and after avoiding the pool wall obstacle, return to the pool wall and continue to perform the pool wall cleaning task.
  • a pool wall obstacle avoidance mobile device for a swimming pool cleaning robot including: a movement control module for controlling the swimming pool cleaning robot to move along a cleaning route on the wall of the swimming pool to perform a pool wall cleaning task. ;
  • the obstacle avoidance control module is used to control the swimming pool cleaning robot to continue to perform the pool wall cleaning task on the pool wall after it collides with an obstacle on the pool wall while the swimming pool cleaning robot is moving along the cleaning route; Or control the swimming pool cleaning robot to move along the obstacle avoidance path on the bottom of the pool, and after avoiding the obstacles on the pool wall, return to the pool wall and continue to perform the pool wall cleaning task.
  • an electronic device including: a processor; and a memory storing a program; wherein the program includes instructions that, when executed by the processor, cause the processor to execute The method described in the first aspect above.
  • a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause a computer to execute the method described in the first aspect.
  • the swimming pool cleaning robot's pool wall obstacle avoidance moving method, device and computer storage medium provided by this application can control the swimming pool cleaning robot to move in the pool after colliding with the pool wall obstacle during the movement along the cleaning route.
  • the swimming pool cleaning robot can move along the obstacle avoidance path on the pool bottom to avoid the pool wall obstacles, then return to the pool wall and continue to perform the pool wall cleaning task.
  • this application can It is used for the swimming pool cleaning robot to effectively avoid the pool wall obstacles on the pool wall when performing the pool wall cleaning task, so as to improve the execution success rate and execution efficiency of the pool wall cleaning task.
  • Figure 1 is a processing flow chart of a pool wall obstacle avoidance movement method of a swimming pool cleaning robot according to an exemplary embodiment of the present application.
  • FIGS. 2A to 2B are schematic diagrams of different embodiments of cleaning routes of the present application.
  • Figures 3A to 3H show schematic diagrams of different embodiments of pool wall obstacle avoidance movement solutions that meet preset obstacle avoidance conditions.
  • Figure 4 is processing flow charts of the pool wall obstacle avoidance movement method of the swimming pool cleaning robot according to other embodiments of the present application.
  • 6A to 6B are schematic diagrams of embodiments of a pool wall obstacle avoidance movement solution that does not meet preset obstacle avoidance conditions.
  • FIG. 7 to 8 are processing flow charts of a pool wall obstacle avoidance movement method of a swimming pool cleaning robot according to other embodiments of the present application.
  • FIGS 9A to 9F are schematic diagrams of different embodiments of the pool wall obstacle avoidance movement solution that collides with the second pool wall during movement along the first pool wall according to the present application.
  • 10A to 10B are processing flow charts of the pool wall obstacle avoidance movement method of the swimming pool cleaning robot according to other embodiments of the present application.
  • Figure 11 is a structural block diagram of the pool wall obstacle avoidance moving device of the swimming pool cleaning robot according to an exemplary embodiment of the present application.
  • Figure 12 is a structural block diagram of an electronic device according to an exemplary embodiment of the present application.
  • Pool wall obstacles 1100: Pool wall obstacle avoidance mobile device of the swimming pool cleaning robot; 1102. Mobile control module; 1104. Obstacle avoidance control module; 1200. Electronic equipment; 1201. Computing unit; 1202. ROM; 1203. RAM ; 1204, bus; 1205, input and output interface; 1206, input unit; 1207, output unit; 1208, storage unit; 1209, communication unit.
  • Figure 1 shows the processing flow of the pool wall obstacle avoidance movement method of the swimming pool cleaning robot according to an exemplary embodiment of the present application. As shown in the figure, this embodiment mainly includes the following steps:
  • Step S102 Control the swimming pool cleaning robot to move along the cleaning route on the wall of the swimming pool to perform the cleaning task of the pool wall.
  • the cleaning route at least includes a plurality of downward cleaning sections.
  • the downward cleaning section BC and the downward cleaning section DE are shown in FIG. 2A
  • the downward cleaning section JK and the downward cleaning section MN are shown in FIG. 2B .
  • the cleaning route at least includes a plurality of upward cleaning sections.
  • the upward cleaning section AB and the upward cleaning section CD are shown in FIG. 2A
  • the upward cleaning section HI and the upward cleaning section KL are shown in FIG. 2B .
  • the cleaning route on the pool wall may include a plurality of consecutive zigzag paths, wherein each zigzag path may be composed of an upward cleaning section on the pool wall and a downward cleaning section connecting the upstream cleaning section.
  • the upward cleaning section and the downward cleaning section in each zigzag path may be directly connected or indirectly connected.
  • an inverted V-shaped zigzag path can be formed.
  • an inverted V-shaped broken line path ABC can be formed by the upward cleaning section AB and the downward cleaning section BC directly connected thereto, and another one can be formed by the upward cleaning section CD and the downward cleaning section DE directly connected thereto.
  • a trapezoidal zigzag path can be formed.
  • a trapezoidal polyline path HIJK can be formed by the upward cleaning section HI and the downward cleaning section JK indirectly connected thereto, and another trapezoidal polyline path HIJK can be formed by the upward cleaning section KL and the downward cleaning section MN indirectly connected thereto.
  • Path KLMN where the polyline path HIJK and the polyline path KLMN are continuous with each other.
  • the upward cleaning section and the downward cleaning section can be connected to each other through a translational cleaning section.
  • the uplink cleaning section HI and the downlink cleaning section JK are connected to each other through the translational cleaning section IJ; the uplink cleaning section KL and the downlink cleaning section MN can be connected to each other through the translational sweeping section LM.
  • the swimming pool cleaning robot can move backward from the bottom of the swimming pool to the bottom of the swimming pool along any downward cleaning section on the pool wall; or, the swimming pool cleaning robot can move backward along any one of the downward cleaning sections on the pool wall.
  • the upward cleaning section moves forward from the bottom of the swimming pool to the surface of the swimming pool.
  • the black area is the head end of the swimming pool cleaning robot (the same is true for all the following figures).
  • the swimming pool cleaning robot can move forward along any upward cleaning section on the pool wall (for example, section AB, section CD in Figure 2A, or section HI, section KL in Figure 2B) to move from the bottom of the pool to the surface of the pool. Climb up in the direction, and move backward along any downward cleaning section on the pool wall (for example, section BC, section DE in Figure 2A, or section JK, section MN in Figure 2B) to face the direction from the pool to the bottom of the pool Move down.
  • any upward cleaning section on the pool wall for example, section AB, section CD in Figure 2A, or section HI, section KL in Figure 2B
  • Climb up in the direction, and move backward along any downward cleaning section on the pool wall for example, section BC, section DE in Figure 2A, or section JK, section MN in Figure 2B
  • the angle of the road section can be determined based on the water depth measured by the swimming pool cleaning robot moving along the previous broken line path and the length of the roller brush of the swimming pool cleaning robot, and based on the angle of the road section and the current position of the swimming pool cleaning robot, the path before the continuation can be generated The current upward sweeping section and the current downward sweeping section in the current polyline path of the continued polyline path.
  • the angle of the road section can be determined based on the water depth measured by the swimming pool cleaning robot moving along the previous broken line path and the length of the roller brush of the swimming pool cleaning robot; based on the included angle of the road section and the current position of the swimming pool cleaning robot, the continuous broken line can be determined
  • the direction of the current upward cleaning section in the current polyline path of the path can control the swimming pool cleaning robot to move along the direction of the current upward cleaning section, from the bottom of the swimming pool to the surface of the swimming pool, until the waterline of the swimming pool cleaning robot is sensed
  • the sensor senses that the swimming pool cleaning robot has reached the waterline position of the swimming pool, and controls the swimming pool cleaning robot to perform differential motion based on the determined angle of the road section at the current position, and based on the orientation of the swimming pool cleaning robot after performing differential motion,
  • the swimming pool cleaning robot is controlled to move from the current position toward the bottom of the pool until the swimming pool cleaning robot collides with the bottom of the swimming pool to determine a downward cleaning section extending from the current position of the
  • the waterline sensor of this application can be an ultrasonic sensor. Since the sensor for detecting the position of the waterline can be implemented using a variety of existing technical means, there is no limitation here.
  • the angle between the orientation of the swimming pool cleaning robot after executing the differential motion and the orientation before executing the differential motion is twice the angle of the road segment, that is, the angle of the upward cleaning segment in the same zigzag path.
  • the included angle of the road section is the same as that of the downward sweeping section.
  • the angle ⁇ of the section of the current polyline path can be determined based on the water depth measured by the swimming pool cleaning robot moving along the previous polyline path ABC and the length of the roller brush of the swimming pool cleaning robot, and based on the angle ⁇ of the section, the swimming pool
  • the current position C of the cleaning robot generates the current upward cleaning section CD and the current downward cleaning section DE in the current polyline path CDE that continues the previous polyline path ABC.
  • the road section angle ⁇ can be determined based on the water depth measured by the swimming pool cleaning robot moving along the previous broken line path HIJK and the roller brush length of the swimming pool cleaning robot.
  • the current position K generates the current uplink cleaning section KL and the current downlink cleaning section MN in the current polyline path KLMN that continues the previous polyline path HIJK.
  • the distance between the translational cleaning section LM connecting the current upward cleaning section KL and the current downward cleaning section MN can be a preset distance, and the preset distance can be achieved by controlling the swimming pool cleaning robot to perform differential motion at the waterline position.
  • this application generates a technical solution for each zigzag path in the pool wall cleaning route based on the dynamically measured water depth, which can improve the pool wall cleaning coverage and improve the pool wall cleaning effect.
  • the angle between the previous downward cleaning road section and/or the previous downward cleaning road section in the previous zigzag path, and the swimming pool cleaning robot along the previous upward cleaning section and/or the previous zigzag path can be used.
  • the moving time and moving speed of the previous downward cleaning section are updated, and the water depth of the swimming pool is updated. Based on the updated water depth of the swimming pool, the length of the roller brush of the swimming pool cleaning robot, and the current position of the swimming pool cleaning robot, the current upward direction in the current polyline path is determined.
  • the angle between the swept road section and the current descending swept road section is determined.
  • the water depth of the swimming pool can be updated based on the angle between the sections of the previous polyline path and the movement time and speed of the swimming pool cleaning robot along the previous upward cleaning section and the previous downward cleaning section in the previous polyline path.
  • the water depth of the swimming pool can be updated based on the included angle of the previous upward cleaning section in the previous broken line path, and the moving time and moving speed of the swimming pool cleaning robot along the previous upward cleaning section in the previous broken line path.
  • the water depth of the swimming pool can be updated based on the included angle of the previous downward cleaning section in the previous zigzag path and the movement time and movement speed of the swimming pool cleaning robot along the previous downward cleaning section in the previous zigzag path. .
  • the water depth of the swimming pool can be updated based on the section angle ⁇ of the previous downward cleaning section BC in the previous broken line path ABC, and the movement time and movement speed of the swimming pool cleaning robot along the previous downward cleaning section BC. And based on the updated water depth of the swimming pool, the brush length of the swimming pool cleaning robot, and the current position C of the swimming pool cleaning robot, the angle ⁇ between the current upward cleaning section CD and the current downward cleaning section DE in the current polyline path CDE is determined.
  • the included angle of the current upward cleaning section in the current zigzag path is the same as the angle of the current downward cleaning section. That is to say, the included angle of the upgoing cleaning section that constitutes the same zigzag path is the same as that of the downward cleaning section.
  • the included angles of the road sections are the same, but in different zigzag paths, the included angles of the upward cleaning road section and the downward cleaning road section can be the same or different according to the updated water depth of the swimming pool.
  • the angle between the upward cleaning section AB and the current downward cleaning section BC in the previous polyline path ABC is ⁇
  • the current upward cleaning section CD and the current downward cleaning section DE in the current polyline path CDE are respectively
  • the included angles of the road sections are all ⁇ .
  • the angle between the previous upward cleaning section and the previous downward cleaning section in the previous broken line path can be directly obtained, so as to As the angle between the current upward sweeping section and the current downward sweeping section in the current polyline path that continues the previous polyline path.
  • the current upward cleaning in the current polyline path can be determined based on the water depth used to determine the angle of the road section of the previous polyline path. The angle between the road segment and the current descending swept road segment.
  • the moving time of the swimming pool cleaning robot can be moved along the actual polyline path ABC4 without having to follow the movement time of the swimming pool cleaning robot.
  • moving speed when updating the water depth of the swimming pool, directly based on the water depth measured by the swimming pool cleaning robot moving along the polyline path XYA, determine the section angle ⁇ of the polyline path C4DE to be generated, and according to the section angle ⁇ , swimming pool cleaning
  • the robot's current position C4 generates a polyline path C4DE that continues the polyline path ABC4.
  • the water depth of the swimming pool can be updated directly according to the movement time and speed of the swimming pool cleaning robot along the actual polyline path AB1C1 without updating the water depth of the swimming pool based on the movement of the swimming pool cleaning robot along the polygonal path XYA.
  • Step S104 After the swimming pool cleaning robot collides with an obstacle on the pool wall while the swimming pool cleaning robot is moving along the cleaning route, the swimming pool cleaning robot is controlled to continue performing the pool wall cleaning task on the pool wall, or the swimming pool cleaning robot is controlled to follow the obstacle avoidance path on the bottom of the pool. Move, and after avoiding said pool wall obstacles, return to the pool wall and continue the pool wall cleaning mission.
  • pool wall obstacles may include but are not limited to one of floor drains (such as water inlets), escalators, steps, and corners.
  • the moving distance of the swimming pool cleaning robot along the current downward cleaning section or the current upward cleaning section can be determined.
  • the moving distance of the swimming pool cleaning robot along the current downward cleaning section can be determined in the following way:
  • the end point B of the section close to the pool surface in the current downward cleaning section BC of the current polyline path ABC can be determined as the moving starting point, and the swimming pool cleaning robot moves from the moving starting point B along the current downward cleaning section BC to the pool wall.
  • the time of obstacle 2 and the moving speed of the swimming pool cleaning robot determine the actual moving distance of the swimming pool cleaning robot along the current downward cleaning section BC.
  • the moving distance of the swimming pool cleaning robot along the current upward cleaning section can be determined in the following way:
  • the end point A of the section close to the bottom of the pool in the current upward cleaning section AB of the current polyline path ABC can be determined as the moving starting point, and the swimming pool cleaning robot moves from the moving starting point A along the current upward cleaning section AB to the pool wall.
  • the time of obstacle 2 and the moving speed of the swimming pool cleaning robot determine the actual moving distance of the swimming pool cleaning robot along the current upward cleaning section AB.
  • whether the swimming pool cleaning robot collides with a pool wall obstacle can be determined based on the detection results of the collision detection sensor of the swimming pool cleaning robot during movement.
  • the swimming pool cleaning robot is controlled to move along the obstacle avoidance path on the bottom of the pool, and after avoiding the obstacles on the pool wall, return to the pool. wall to continue cleaning the pool wall.
  • the movement ratio of the actual movement distance of the swimming pool cleaning robot along the current downward cleaning section relative to the measured movement distance of the current downward cleaning section can be calculated, and based on the movement ratio, it is obtained whether the movement distance is Judgment results that meet the preset obstacle avoidance conditions.
  • control the swimming pool cleaning robot to move along the obstacle avoidance path on the bottom of the pool, and after avoiding the pool wall obstacles, return to the pool. wall to continue cleaning the pool wall.
  • the movement ratio of the actual movement distance of the swimming pool cleaning robot along the current upward cleaning section relative to the measured movement distance of the current upward cleaning section can be calculated, and based on the movement ratio, it is obtained whether the movement distance is Judgment results that meet the preset obstacle avoidance conditions.
  • the calculated moving distance of the current downward cleaning section/current upward cleaning section can be determined based on the water depth of the swimming pool and the angle between the current downward cleaning section/current upward cleaning section, and according to the swimming pool cleaning
  • the preset ratio is between 0.5 and 1, for example: 0.5, 0.6 (refer to the height shown in the preset line Z in Figures 3A to 3D, or refer to the preset line Z in Figures 3E to 3H height shown), 0.7, etc.
  • the horizontal height of the obstacle on the pool wall can also be calculated based on the actual moving distance of the swimming pool cleaning robot along the current downward cleaning section and the angle of the current downward cleaning section. If the pool If the horizontal height of the obstacle on the pool wall is higher than the preset height, the judgment result is obtained that the moving distance meets the preset obstacle avoidance conditions. On the contrary, if the horizontal height of the obstacle on the pool wall is lower than the preset height, the judgment result is obtained that the moving distance does not meet the preset obstacle avoidance conditions. The judgment result of the condition.
  • the horizontal height of the pool wall obstacle can be calculated based on the actual moving distance of the swimming pool cleaning robot along the current upward cleaning section and the angle of the current upward cleaning section. If the pool wall obstacle is If the horizontal height is lower than the preset height, the judgment result is obtained that the moving distance meets the preset obstacle avoidance conditions. On the contrary, if the horizontal height of the pool wall obstacle is higher than the preset height, the judgment result is obtained that the moving distance does not meet the preset obstacle avoidance conditions. .
  • the ratio of the preset height to the swimming pool water depth can be between 0.5 and 1, for example: 0.5, 0.6 (refer to the height shown in the preset line Z in Figures 3A to 3D or refer to the height shown in Figure 3E to 3H The height shown by the preset line Z), 0.7, etc.
  • the swimming pool cleaning robot is controlled to move along the cleaning route on the pool wall to continue to perform the pool wall cleaning task.
  • the swimming pool cleaning robot can be controlled to continue to perform the pool wall cleaning task on the pool wall without moving from the pool wall to the pool bottom.
  • the swimming pool cleaning robot is controlled to move along the cleaning route on the pool wall to continue performing the pool wall cleaning task.
  • the horizontal height of the pool wall obstacles can also be calculated based on the actual moving distance of the swimming pool cleaning robot along the current downward cleaning section/current downward cleaning section, and the angle between the current downward cleaning section/current downward cleaning section. And based on the measured moving distance of the current downward cleaning section/current downward cleaning section, the angle between the current downward cleaning section/current downward cleaning section, the water depth of the swimming pool is calculated, and based on the level of the pool wall obstacles and the water depth of the swimming pool, as Judgment criteria for whether preset obstacle avoidance conditions are met.
  • the above technical solutions can be easily acquired by those skilled in the art based on the technical disclosure of the present application. They should be regarded as equivalent or equivalent technical solutions of the present application and are covered by the protection scope of the embodiments of the present application.
  • the cleaning information on the pool wall is updated based on the current position of the swimming pool cleaning robot. route, and controls the swimming pool cleaning robot to move along the cleaning route on the pool wall to continue performing the pool wall cleaning task.
  • the swimming pool cleaning robot collides with the pool wall obstacle 2 while moving along the current downward cleaning section, the horizontal height of the pool wall obstacle 2 is lower than the preset height (the preset line Z shown in Figure 6A height), based on the current position C4 of the swimming pool cleaning robot, update the cleaning route on the pool wall, and control the swimming pool cleaning robot to move along the updated cleaning route (such as the polyline path C4DE) on the pool wall to continue executing the pool Wall cleaning task.
  • the preset height the preset line Z shown in Figure 6A height
  • the pool wall is updated. cleaning route, and controls the swimming pool cleaning robot to move along the cleaning route on the pool wall to continue performing the pool wall cleaning task.
  • the swimming pool cleaning robot collides with the pool wall obstacle 2 while moving along the current upward cleaning section, the horizontal height of the pool wall obstacle 2 is higher than the preset height (the preset line Z shown in Figure 6B height), based on the current position B1 of the swimming pool cleaning robot, update the cleaning route on the pool wall, and control the swimming pool cleaning robot to move along the updated cleaning route (such as the polyline path B1DE) on the pool wall to continue executing the pool Wall cleaning task.
  • the preset height the preset line Z shown in Figure 6B height
  • the swimming pool cleaning robot's pool wall obstacle avoidance movement method provided in this embodiment is used to control the swimming pool cleaning robot to execute the wall removal when it collides with a pool wall obstacle during the swimming pool cleaning robot's execution of the pool wall cleaning task. action, and move along the obstacle avoidance path on the bottom of the pool, so that after avoiding the obstacles on the pool wall, it can go up the wall again to continue the task of cleaning the pool wall.
  • the swimming pool cleaning robot can be effectively improved.
  • the success rate of performing pool wall cleaning tasks is improved, and the cleaning coverage rate of the pool wall is increased to improve the pool wall cleaning effect.
  • Figure 4 is another exemplary embodiment of the application for a swimming pool cleaning robot to avoid obstacles and move the pool wall.
  • This embodiment is a specific implementation of controlling the swimming pool cleaning robot to move along the obstacle avoidance path on the bottom of the pool in the above step S104, such as As shown in the figure, this embodiment mainly includes the following steps:
  • Step S402 control the swimming pool cleaning robot to move from the pool wall to the pool bottom.
  • the swimming pool cleaning robot when the swimming pool cleaning robot moves along the current downward cleaning section on the pool wall, the swimming pool cleaning robot can be controlled to return along the current downward cleaning section on the pool wall until it reaches a section of the current downward cleaning section close to the pool surface. endpoint, and controls the swimming pool cleaning robot to move diagonally downward to the bottom of the pool along the current upward cleaning section connected to the current downward cleaning section.
  • the swimming pool cleaning robot when the swimming pool cleaning robot is moving along the current downward cleaning route BC and collides with the pool wall obstacle 2 that meets the preset obstacle avoidance conditions, the swimming pool cleaning robot is controlled to return along the current downward cleaning route BC (for example Move forward) until it reaches the end point B of the road segment close to the pool surface in the current downward cleaning road segment BC, and then control the swimming pool cleaning robot to move diagonally downward to the road segment end point A along the current upward cleaning road segment AB connecting the current downward cleaning road segment BC (for example, back up move) until you reach the bottom of the pool.
  • the swimming pool cleaning robot is controlled to return along the current downward cleaning route BC (for example Move forward) until it reaches the end point B of the road segment close to the pool surface in the current downward cleaning road segment BC, and then control the swimming pool cleaning robot to move diagonally downward to the road segment end point A along the current upward cleaning road segment AB connecting the current downward cleaning road segment BC (for example, back up move) until you reach the bottom of the pool.
  • the swimming pool cleaning robot when the swimming pool cleaning robot moves along the current downward cleaning section on the pool wall, the swimming pool cleaning robot is controlled to return along the current downward cleaning section on the pool wall until it reaches the end point of the section close to the pool surface in the current downward cleaning section. , and controls the swimming pool cleaning robot to move vertically down the pool wall to the bottom of the pool based on the endpoint of the road segment.
  • the swimming pool cleaning robot when the swimming pool cleaning robot is moving along the current downward cleaning route BC and collides with the pool wall obstacle 2 that meets the preset obstacle avoidance conditions, the swimming pool cleaning robot is controlled to return along the current downward cleaning route BC (for example Move forward) until it reaches the end point B of the road segment close to the pool surface in the current downward cleaning road segment BC, and then control the swimming pool cleaning robot to move vertically down (such as moving backward) along the pool wall based on the road segment end point B to position O to reach the bottom of the swimming pool. .
  • the swimming pool cleaning robot is controlled to return along the current downward cleaning route BC (for example Move forward) until it reaches the end point B of the road segment close to the pool surface in the current downward cleaning road segment BC, and then control the swimming pool cleaning robot to move vertically down (such as moving backward) along the pool wall based on the road segment end point B to position O to reach the bottom of the swimming pool.
  • the swimming pool cleaning robot when the swimming pool cleaning robot moves along the current upward cleaning section on the pool wall, the swimming pool cleaning robot can be controlled to move diagonally downward along the current upward cleaning section to the bottom of the pool.
  • the swimming pool cleaning robot when the swimming pool cleaning robot is moving along the current upward cleaning route AB and collides with the pool wall obstacle 2 that meets the preset obstacle avoidance conditions, the swimming pool cleaning robot is controlled to return along the current upward cleaning route AB (for example Move backwards) until you reach the bottom of the pool.
  • the swimming pool cleaning robot when the swimming pool cleaning robot moves along the current upward cleaning section on the pool wall, the swimming pool cleaning robot can be controlled to move vertically downward along the pool wall to the bottom of the pool.
  • the swimming pool cleaning robot when the swimming pool cleaning robot is moving along the current upward cleaning section AB and collides with the pool wall obstacle 2 that meets the preset obstacle avoidance conditions, the swimming pool cleaning robot is controlled based on the current position, that is, the pool cleaning robot The robot is at position B1 when it collides with the pool wall obstacle 2, and moves vertically down the pool wall (for example, moving backward) to position O to reach the bottom of the swimming pool.
  • Step S404 Control the swimming pool cleaning robot to move along the obstacle avoidance path on the bottom of the pool to avoid obstacles on the pool wall.
  • the obstacle avoidance path on the bottom of the pool can be a U-shaped path (refer to the obstacle avoidance path APQC1 shown in Figure 3A or Figure 3E or the obstacle avoidance path OPQC1 shown in Figure 3B or Figure 3F), a V-shaped path (refer to Figure 3C Or the obstacle avoidance path ARC2 shown in Figure 3G) or the circular path (refer to the obstacle avoidance path AC3 shown in Figure 3D or Figure 3H).
  • the obstacle avoidance path on the bottom of the pool is not limited to those shown in Figures 3A to 3H. It can also be designed as other forms of obstacle avoidance paths, such as trapezoidal obstacle avoidance paths, etc. This application does not limit this. .
  • the obstacle avoidance path on the bottom of the pool is a U-shaped path
  • the swimming pool cleaning robot reaches the bottom of the pool (for example, position A)
  • it can move relative to the edge of the pool wall.
  • the bottom of the pool moves backward to position P, and performs a 90-degree clockwise turning operation at position P before moving forward to move from position P to position Q, and performs a 90-degree counterclockwise turning operation at position Q before moving forward to move to Location C1.
  • the swimming pool cleaning robot when the obstacle avoidance path on the bottom of the pool is a circular path, the swimming pool cleaning robot can perform differential motion and U-turn operations after reaching the bottom of the pool, so as to Move from position A to position C3.
  • Step S406 Control the swimming pool cleaning robot to move from the bottom of the pool to the wall of the pool, and move along the cleaning route on the wall of the pool.
  • control the swimming pool cleaning robot to move from the bottom of the pool to the wall, update the cleaning route on the pool wall based on the current position of the swimming pool cleaning robot, the water depth of the pool, and the length of the roller brush of the swimming pool cleaning robot, and control the swimming pool cleaning robot Move along the updated cleaning route on the pool wall to continue the pool wall cleaning mission.
  • the water depth of the swimming pool used to update the cleaning route on the pool wall is moved based on the preceding polyline path (for example, the preceding upward cleaning section and/or the preceding downward cleaning section in the preceding polyline path). Measured water depth.
  • the swimming pool cleaning robot can be controlled to perform a wall-mounting action at position C1 to move from the bottom of the pool to the wall, and based on the current position of the swimming pool cleaning robot (i.e., position C1), the swimming pool cleaning robot moves along the current
  • the water depth measured by the previous polyline path movement of the polyline path ABC (for example, it can be the water depth measured when the swimming pool cleaning robot moves along the previous downward cleaning section), the length of the roller brush of the swimming pool cleaning robot, and the polyline is generated.
  • Path C1DE and after updating the polyline path C1DE to the current polyline path, control the swimming pool cleaning robot to move along the current polyline path C1DE to continue performing the pool wall cleaning task.
  • this embodiment controls the swimming pool cleaning robot to move along the obstacle avoidance path on the bottom of the pool, so as to update the cleaning route on the pool wall after avoiding the obstacles on the pool wall, and control the swimming pool cleaning robot to move along the updated path.
  • the cleaning route continues to perform the pool wall cleaning task, thereby improving the success rate of pool wall cleaning task execution.
  • the pool wall cleaning coverage rate can be increased to improve the pool wall cleaning effect.
  • FIG. 5A shows the processing flow of the pool wall obstacle avoidance movement method of the swimming pool cleaning robot according to another exemplary embodiment of the present application.
  • This embodiment is a specific implementation plan for controlling the swimming pool cleaning robot to continue to perform the pool wall cleaning task in step 104 above. As shown in the figure, this embodiment mainly includes the following steps:
  • Step S502 Obtain the included angle of the road section.
  • the included angle of the road section can be determined based on the water depth of the swimming pool and the length of the roller brush of the swimming pool cleaning robot.
  • the water depth of the swimming pool is the water depth measured based on the previous movement of the polyline path.
  • the swimming pool cleaning robot collides with the pool wall obstacle 2 that does not meet the preset obstacle avoidance conditions while moving along the current downward cleaning section BC, the swimming pool cleaning robot will move along the zigzag path XYA as measured by The water depth of the swimming pool and the length of the roller brush of the swimming pool cleaning robot are obtained to determine the angle of the road section.
  • the road section angle of the current downward cleaning road section BC can also be directly obtained.
  • Step S504 based on the current position of the swimming pool cleaning robot and the angle of the road section, determine the upward cleaning section on the pool wall extending from the current position of the swimming pool cleaning robot to the pool surface, and update it to the current upward cleaning section.
  • the upward cleaning section C4D on the pool wall extending from the current position C4 of the swimming pool cleaning robot to the pool surface can be determined, and updated to the current Go up and clear the road.
  • the swimming pool cleaning robot can be controlled to perform differential motion at the current position C4 according to the angle ⁇ of the road section, and based on the orientation of the swimming pool cleaning robot after performing the differential motion, the swimming pool cleaning robot can be controlled to move toward the pool surface to determine the pool cleaning The robot cleans the upward cleaning section C4D extending from the current position C4 to the pool surface, and updates it to the current upward cleaning section.
  • a current downward cleaning section connected to the current upward cleaning section can be further generated, for example, the current downward cleaning section DE shown in FIG. 6A.
  • the swimming pool cleaning robot can be controlled to move along the direction of the current upward cleaning section C4D from the bottom of the swimming pool to the surface of the swimming pool until the waterline sensor of the swimming pool cleaning robot senses that the swimming pool cleaning robot has reached the end of the swimming pool.
  • the swimming pool cleaning robot is controlled to perform differential motion, and based on the orientation of the swimming pool cleaning robot after performing differential motion, the control
  • the swimming pool cleaning robot moves from the current position D toward the bottom of the pool until the swimming pool cleaning robot collides with the bottom of the swimming pool (for example, position E) to determine the current downward cleaning section DE extending from the current position of the swimming pool robot to the bottom of the pool.
  • Step S506 Control the swimming pool cleaning robot to move along the current upward cleaning section to continue performing the pool wall cleaning task.
  • the swimming pool cleaning robot is controlled to move along the current upward cleaning section C4D to continue the pool wall cleaning task.
  • the pool wall obstacle avoidance movement scheme described in this embodiment can be used when the swimming pool cleaning robot collides with a pool wall obstacle that does not meet the preset obstacle avoidance conditions while moving along the current downward cleaning section. Without moving down to the bottom of the pool to interrupt the current pool wall cleaning task, the cleaning route on the pool wall is directly updated so that the swimming pool cleaning robot can continue to perform the pool wall cleaning task based on the updated cleaning route, thereby improving the efficiency of the pool. Wall cleaning efficiency.
  • FIG. 5B shows the processing flow of the pool wall obstacle avoidance movement method of the swimming pool cleaning robot according to another exemplary embodiment of the present application.
  • This embodiment is another specific implementation of controlling the swimming pool cleaning robot to continue to perform the pool wall cleaning task in step S104 above. As shown in the figure, this embodiment mainly includes the following steps:
  • Step S512 Obtain the included angle of the road section.
  • the included angle of the road section can be determined based on the water depth of the swimming pool and the length of the roller brush of the swimming pool cleaning robot.
  • the water depth of the swimming pool is the water depth measured based on the previous movement of the polyline path.
  • the swimming pool cleaning robot collides with the pool wall obstacle 2 that does not meet the preset obstacle avoidance conditions while moving along the current upward cleaning section AB, the swimming pool cleaning robot will move along the zigzag path XYA as measured.
  • the water depth of the swimming pool and the length of the roller brush of the swimming pool cleaning robot are obtained to determine the angle of the road section.
  • the road segment angle of the current upward cleaning road segment can also be directly obtained.
  • Step S514 based on the current position of the swimming pool cleaning robot and the angle of the road section, determine the downward cleaning section on the pool wall extending from the current position of the swimming pool cleaning robot to the bottom of the pool, and update it to the current downward cleaning section.
  • the downward cleaning road section B1C1 on the pool wall extending from the current position B1 of the swimming pool cleaning robot to the bottom of the pool can be determined, and updated to the current Descending to clear the road.
  • the swimming pool cleaning robot can be controlled to perform differential motion at the current position B1 according to the angle ⁇ of the road section, and based on the direction of the swimming pool cleaning robot after performing the differential motion, the swimming pool cleaning robot can be controlled to move toward the bottom of the pool to determine the pool cleaning The robot cleans the downward cleaning section B1C1 extending from the current position B1 to the bottom of the pool.
  • Step S516 Control the swimming pool cleaning robot to move along the current downward cleaning section to continue to perform the pool wall cleaning task.
  • the swimming pool cleaning robot is controlled to move along the current downward cleaning section B1C1 to continue the pool wall cleaning task.
  • the polyline path AB1C1 of the actual movement of the swimming pool cleaning robot can be updated to the actual preceding polyline path
  • the polyline path ABC of the preset movement of the swimming pool cleaning robot can be updated to the preset preceding polyline path, where the polyline path AB1C1 and The previous polyline path of the polyline path ABC is the polyline path XYA.
  • the angle ⁇ of the road section can be determined, and based on the angle ⁇ of the road section and the current position C1 of the swimming pool cleaning robot , to generate the current upward cleaning section C1D and the current downward cleaning section DE in the current polyline path C1DE of the actual preceding polyline path AB1C1.
  • the pool wall obstacle avoidance movement scheme described in this embodiment can be used when the swimming pool cleaning robot collides with a pool wall obstacle that does not meet the preset obstacle avoidance conditions while moving along the current upward cleaning section. Without moving down to the bottom of the pool to interrupt the current pool wall cleaning task, the cleaning route on the pool wall is directly updated so that the swimming pool cleaning robot can continue to perform the pool wall cleaning task based on the updated cleaning route, thereby improving the efficiency of the pool. Wall cleaning efficiency.
  • Figure 7 shows the processing flow of the pool wall obstacle avoidance movement method of a swimming pool cleaning robot according to another embodiment of the present application.
  • the pool wall may include a first pool wall and a second pool wall that are adjacently arranged, wherein the pool cleaning robot collides with an obstacle on the pool wall while moving along the cleaning route on the first pool wall.
  • the property also includes a second pool wall.
  • this embodiment mainly includes the following steps:
  • Step S702 Control the swimming pool cleaning robot to move along the cleaning route on the wall of the swimming pool to perform the cleaning task of the pool wall.
  • Step S704 If the swimming pool cleaning robot collides with the second pool wall while moving along any downward cleaning section or any upward cleaning section on the first pool wall, the swimming pool cleaning robot is controlled to pass through the transfer path on the bottom of the pool by The first pool wall moves to the second pool wall and continues to perform the pool cleaning task of the second pool wall.
  • FIG. 8 shows the processing flow of the pool wall obstacle avoidance movement method of the swimming pool cleaning robot according to another embodiment of the present application.
  • This embodiment is a specific implementation of the above step S704. As shown in the figure, this embodiment mainly includes the following steps:
  • Step S802 control the swimming pool cleaning robot to move from the first pool wall to the bottom of the pool.
  • the swimming pool cleaning robot collides with the second pool wall during its movement along any downward cleaning section on the first pool wall, it can be determined according to the direction of the swimming pool cleaning robot along the second pool wall when it collides with the second pool wall.
  • the moving distance of the current downward cleaning section is used to control the swimming pool cleaning robot to move from the first pool wall to the bottom of the pool using different movement methods.
  • This step may further include the following processing flow:
  • Step S1002 Calculate the moving distance of the swimming pool cleaning robot along the current downward cleaning section when it collides with the second pool wall.
  • the end point of the section close to the pool surface in the current downward cleaning section of the current zigzag path can be determined as the moving starting point, and the swimming pool cleaning robot moves according to the moving time from the moving starting point to the second pool wall along the current downward cleaning section.
  • the moving speed of the robot determines the actual moving distance of the swimming pool cleaning robot along the current downward cleaning section.
  • Step S1004 Determine whether the movement distance meets the preset obstacle avoidance conditions. If yes, execute step S1006; if not, execute step S1008.
  • step S1006 or step S1008 can be selected.
  • step S1006 can be performed accordingly. Or step S1008.
  • Step S1006 Control the swimming pool cleaning robot to return along the current downward cleaning section on the first pool wall until it reaches the end point of the current downward cleaning section close to the pool surface, and move from the end point to the bottom of the pool.
  • the swimming pool cleaning robot can be controlled to return along the current downward cleaning section on the first pool wall until it reaches the end point of the section close to the pool surface in the current downward cleaning section, and diagonally along the current upward cleaning section connecting the current downward cleaning section. Move down to the bottom of said pool.
  • the swimming pool cleaning robot can be controlled to return (for example, move forward) along the current downward cleaning section BC on the first pool wall until it reaches the end point B of the section, and along the current upward cleaning section AB connecting the current downward cleaning section BC. Move diagonally downward (i.e., move backward) to the bottom of the pool.
  • the swimming pool cleaning robot can be controlled to return along the current downward cleaning section on the first pool wall until it reaches the end point of the current downward cleaning section close to the pool surface, and move vertically down the first pool wall to the pool based on the end point of the section. end.
  • the swimming pool cleaning robot can be controlled to return along the current descending cleaning section BC on the first pool wall (for example, move forward), and after reaching the section end point B, directly descend vertically from the section end point B along the first pool wall. Move (e.g., move backward) to position D to reach the bottom of the pool.
  • Step S1008 Based on the current position of the swimming pool cleaning robot, the water depth of the swimming pool, and the length of the roller brush of the swimming pool cleaning robot, determine the upward cleaning section on the first pool wall that extends from the current position of the swimming pool cleaning robot to the pool surface.
  • the previous polyline path based on the current position C of the swimming pool cleaning robot and the current polyline path ABC corresponding to the current downward cleaning section BC (wherein, the preceding polyline path is not shown in Figure 9B, please refer to Figure
  • the water depth measured by the previous broken line path shown in 6A (XYA) and the brush length of the swimming pool cleaning robot determine the upward cleaning section on the first pool wall extending from the current position C of the swimming pool cleaning robot to the direction of the pool surface ( The upward cleaning section is not shown in Figure 9B, and reference can be made to the upward cleaning section C4D) shown in Figure 6A.
  • Step S1010 determine whether the swimming pool cleaning robot can move along the upward cleaning section. If it can move, repeat this step until it is judged that the pool cleaning robot cannot move along the upward cleaning section, return to step S1006 or execute step S1012.
  • step S1006 can be returned.
  • step S1006 can be executed by controlling the swimming pool cleaning robot to move along the upward cleaning section connecting the current downward cleaning section BC.
  • Road section BC returns (for example, moves forward) until it reaches road section end point B, and at road section end point B, moves diagonally downward (for example, moves backward) along the current upward cleaning section AB connecting the current downward cleaning section BC to the bottom of the pool,
  • the swimming pool cleaning robot is controlled to move vertically downward (for example, backward movement) along the first pool wall directly from the road section end point B to the position D to reach the bottom of the pool.
  • step S1012 may be executed when it is determined that the pool cleaning robot cannot move along the uplink cleaning section connected to the current downlink cleaning section BC.
  • Step S1012 control the swimming pool cleaning robot to move to the bottom of the pool along the boundary line between the first pool wall and the second pool wall.
  • the swimming pool cleaning robot can be controlled to move from position C to position J along the boundary line of the first pool wall and the second pool wall to reach the bottom of the pool.
  • the swimming pool cleaning robot collides with the second pool wall during its movement along any upward cleaning section on the first pool wall, it can be determined according to the direction of the swimming pool cleaning robot along the second pool wall when it collides with the second pool wall.
  • the moving distance of the current upward cleaning section is used to control the swimming pool cleaning robot to move from the first pool wall to the bottom of the pool using different movement methods.
  • This step may further include the following processing flow:
  • Step S1032 Calculate the moving distance of the swimming pool cleaning robot along the current upward cleaning section when it collides with the second pool wall.
  • the end point of the section close to the bottom of the pool in the current upward cleaning section of the current zigzag path can be determined as the moving starting point, and the swimming pool cleaning robot moves according to the moving time from the moving starting point to the second pool wall along the current upward cleaning section.
  • the moving speed of the robot determines the actual moving distance of the swimming pool cleaning robot along the current upward cleaning section.
  • Step S1034 Determine whether the movement distance meets the preset obstacle avoidance conditions. If yes, execute step S1036; if not, execute step S1038.
  • step S1036 or step S1038 is selected.
  • step S1036 can be performed accordingly. Or step S1038.
  • Step S1036 control the swimming pool cleaning robot to move to the bottom of the pool.
  • the swimming pool cleaning robot can be controlled to move diagonally downward along the current upward cleaning section to the bottom of the pool.
  • the swimming pool cleaning robot can be controlled to move diagonally downward (eg, move backward) along the current upward cleaning section AB on the first pool wall to the bottom of the pool.
  • the vehicle can be moved vertically down along the first pool wall to the pool bottom, that is, moved to the pool bottom along the boundary line of the first pool wall and the second pool wall.
  • the first pool wall can be vertically moved downward (eg, moved backward) to the position J to reach the bottom of the pool.
  • Step S1038 Based on the current position of the swimming pool cleaning robot, the water depth of the swimming pool, and the length of the roller brush of the swimming pool cleaning robot, determine the downward cleaning section on the first pool wall that extends from the current position of the swimming pool cleaning robot to the bottom of the pool.
  • FIG. 9D it can be based on the current position B of the swimming pool cleaning robot and the previous polyline path of the current polyline path ABC corresponding to the current upward cleaning segment AB (wherein, the downward cleaning segment BC in the polyline path ABC is not shown).
  • the measured water depth and the brush length of the swimming pool cleaning robot determine the downward cleaning section on the first pool wall extending from the current position B of the swimming pool cleaning robot to the direction of the bottom of the pool (not shown in Figure 9D, please refer to Figure 6B
  • the downward cleaning section shown is B1C1).
  • Step S1040 Determine whether the pool cleaning robot can move along the downward cleaning section. If it can move, repeat this step until it is judged that the pool cleaning robot cannot move along the downward cleaning section, and then execute step S1042.
  • Step S1042 control the swimming pool cleaning robot to move diagonally downward to the bottom of the pool along the current upward cleaning section, or move vertically downward to the bottom of the pool along the interface between the first pool wall and the second pool wall.
  • the swimming pool cleaning robot when it is determined that the swimming pool cleaning robot cannot move along the downward cleaning section connecting the current upward cleaning section AB (for example, moving backward), the swimming pool cleaning robot can be controlled to move diagonally downward along the current upward cleaning section AB (for example, Move backward) to the bottom of the pool, or control the swimming pool cleaning robot to directly move vertically downward from position B along the boundary line of the first pool wall and the second pool wall (such as move backward) to position J to reach the bottom of the pool.
  • the swimming pool cleaning robot can be controlled to move diagonally downward along the current upward cleaning section AB (for example, Move backward) to the bottom of the pool, or control the swimming pool cleaning robot to directly move vertically downward from position B along the boundary line of the first pool wall and the second pool wall (such as move backward) to position J to reach the bottom of the pool.
  • Step S804 control the swimming pool cleaning robot to move along the bottom of the pool in a direction away from the first pool wall until the distance between the swimming pool cleaning robot and the first pool wall is sufficient for the swimming pool cleaning robot to perform a steering operation.
  • the swimming pool cleaning robot when the swimming pool cleaning robot moves down to position A on the bottom of the pool (refer to FIGS. 9A to 9B, or refer to FIGS. 9D to 9F), the swimming pool cleaning robot can be controlled to move along the bottom of the pool in a direction away from the first pool wall to the position A. E, so that the distance between the swimming pool cleaning robot and the first pool wall is sufficient for the swimming pool cleaning robot to perform a turning operation.
  • the swimming pool cleaning robot when the swimming pool cleaning robot moves down to position D at the bottom of the pool (refer to Figures 9A to 9C), the swimming pool cleaning robot can be controlled to move along the bottom of the pool in a direction away from the first pool wall to position F, so that the swimming pool is cleaned.
  • the distance between the robot and the first pool wall is sufficient for the swimming pool cleaning robot to perform a turning operation.
  • the swimming pool cleaning robot when the swimming pool cleaning robot moves down to the position J at the bottom of the pool (refer to Figure 9B), the swimming pool cleaning robot can be controlled to move along the bottom of the pool in a direction away from the first pool wall to position F1, so that the swimming pool cleaning robot is in contact with the first pool wall.
  • the spacing distance between the pool walls is sufficient for the swimming pool cleaning robot to perform steering operations.
  • the swimming pool cleaning robot when the swimming pool cleaning robot moves down to position J on the bottom of the pool (refer to Figure 9D or Figure 9E), the swimming pool cleaning robot can be controlled to move along the bottom of the pool in a direction away from the first pool wall to position F, so that the pool The distance between the cleaning robot and the first pool wall is sufficient for the swimming pool cleaning robot to perform a turning operation.
  • Step S806 Control the swimming pool cleaning robot to perform a steering operation in a direction facing the second pool wall.
  • the swimming pool cleaning robot can be controlled to perform clockwise rotation at position E (refer to FIGS. 9A to 9B ) or to perform clockwise rotation at position F (refer to FIGS. 9A to 9C ), so that the head end of the swimming pool cleaning robot faces the third Second pool wall.
  • the swimming pool cleaning robot can be controlled to perform clockwise rotation at position E (refer to FIGS. 9D to 9F) or position F (refer to FIG. 9D or 9E), so that the head end of the swimming pool cleaning robot faces the second pool wall.
  • Step S808 Determine whether the steering operation is successful. If successful, execute step S810. If unsuccessful, execute step S814.
  • Step S810 control the swimming pool cleaning robot to move along the bottom of the pool toward the second pool wall.
  • the swimming pool cleaning robot can be controlled to move along the pool wall from position E (refer to FIGS. 9A to 9B ) or from position F (refer to FIGS. 9A to 9C ), or from position F1 (refer to FIG. 9B ) toward position G. .
  • the swimming pool cleaning robot is controlled to move along the pool wall from position E to position G.
  • Step S812 control the swimming pool cleaning robot to move from the bottom of the pool to the second pool wall.
  • the swimming pool cleaning robot is controlled to perform a wall-mounting operation to move from the bottom of the pool to the second pool wall, and move along the cleaning route on the pool wall (such as the polyline path GHI in Figure 9A, Figure 9B, and Figure 9C) to perform The second pool wall cleaning task.
  • a wall-mounting operation to move from the bottom of the pool to the second pool wall, and move along the cleaning route on the pool wall (such as the polyline path GHI in Figure 9A, Figure 9B, and Figure 9C) to perform The second pool wall cleaning task.
  • the swimming pool cleaning robot can be controlled to perform a wall-mounting operation, so as to move from the bottom of the pool to the second pool wall, and move along the cleaning route on the pool wall (such as the polygonal path GHI in Figure 9D to Figure 9F) to perform the second cleaning route.
  • the second pool wall cleaning task can be controlled to perform a wall-mounting operation, so as to move from the bottom of the pool to the second pool wall, and move along the cleaning route on the pool wall (such as the polygonal path GHI in Figure 9D to Figure 9F) to perform the second cleaning route.
  • the second pool wall cleaning task can be controlled to perform a wall-mounting operation, so as to move from the bottom of the pool to the second pool wall, and move along the cleaning route on the pool wall (such as the polygonal path GHI in Figure 9D to Figure 9F) to perform the second cleaning route.
  • the second pool wall cleaning task can be controlled to perform a wall-mounting operation, so as to move from the bottom of the pool to the second pool wall, and
  • Step S814 control the swimming pool cleaning robot to perform a steering operation in a direction away from the second pool wall, and move in a direction away from the second pool wall, until the distance between the swimming pool cleaning robot and the second pool wall meets the requirements of the swimming pool.
  • the cleaning robot performs a U-turn operation, controls the swimming pool cleaning robot to perform a U-turn operation, and after completing the U-turn operation, moves along the bottom of the pool in a direction close to the second pool wall, and continues to perform step S812.
  • the swimming pool cleaning robot when the swimming pool cleaning robot cannot perform clockwise rotation at position F so that the head end of the swimming pool cleaning robot faces the second pool wall, the swimming pool cleaning robot is controlled to perform counterclockwise rotation at position E so as to Make the head end of the swimming pool cleaning robot face away from the second pool wall, and control the swimming pool cleaning robot to move position W in a direction away from the second pool wall, so that the distance between the swimming pool cleaning robot and the second pool wall can meet the requirements for pool cleaning.
  • the robot performs a U-turn operation and controls the pool cleaning robot to perform a U-turn operation, and after completing the U-turn operation, moves along the bottom of the pool from position W toward the second pool wall to position G, and continues to execute step S812.
  • the swimming pool cleaning robot when the swimming pool cleaning robot cannot perform clockwise rotation at position E so that the head end of the swimming pool cleaning robot faces the second pool wall, the swimming pool cleaning robot is controlled to perform counterclockwise rotation at position E, So that the head end of the swimming pool cleaning robot faces away from the second pool wall, and the swimming pool cleaning robot is controlled to move to position D in a direction away from the second pool wall, so that the distance between the swimming pool cleaning robot and the second pool wall can meet the requirements of the swimming pool.
  • the cleaning robot performs a U-turn operation, and controls the swimming pool cleaning robot to perform a U-turn operation, and after completing the U-turn operation, moves along the bottom of the pool from position D toward the second pool wall to position G, and continues to execute step S812.
  • the swimming pool cleaning robot collides with the second pool wall while performing a pool cleaning task along the first pool wall, it can move through the pool bottom.
  • the path moves from the first pool wall to the second pool wall, and continues to perform the pool wall cleaning task of the second pool wall, which improves the intelligence of the pool wall cleaning task and improves the user experience.
  • FIG 11 shows a structural block diagram of the pool wall obstacle avoidance moving device of the swimming pool cleaning robot according to an exemplary embodiment of the present application.
  • the pool wall obstacle avoidance mobile device 1100 of the swimming pool cleaning robot in this embodiment mainly includes a movement control module 1102 and an obstacle avoidance control module 1104.
  • the movement control module 1102 is used to control the swimming pool cleaning robot to move along the cleaning route on the wall of the swimming pool to perform the cleaning task of the pool wall.
  • the obstacle avoidance control module 1104 is used to control the swimming pool cleaning robot to continue to perform the pool wall cleaning task on the pool wall after it collides with an obstacle on the pool wall while the pool cleaning robot is moving along the cleaning route; Or control the swimming pool cleaning robot to move along the obstacle avoidance path on the bottom of the pool, and after avoiding the obstacles on the pool wall, return to the pool wall and continue to perform the pool wall cleaning task.
  • the cleaning route includes at least a plurality of downward cleaning sections and a plurality of upward cleaning sections
  • the obstacle avoidance control module 1104 is further configured to: move the swimming pool cleaning robot along any one of the downward cleaning sections on the pool wall.
  • the moving distance of the swimming pool cleaning robot along the current downward cleaning section is determined. If the moving distance of the swimming pool cleaning robot along the current downward cleaning section meets the preset obstacle avoidance conditions, control The swimming pool cleaning robot moves along the obstacle avoidance path on the bottom of the pool, and after avoiding the pool wall obstacles, returns to the pool wall and continues to perform the pool wall cleaning task.
  • the swimming pool cleaning robot moves along the current If the moving distance of the downward cleaning section does not meet the preset obstacle avoidance conditions, the swimming pool cleaning robot is controlled to continue to perform the pool wall cleaning task on the pool wall; or, the swimming pool cleaning robot is controlled at any location along the pool wall. During the movement of an upward cleaning section, after colliding with the pool wall obstacle, the moving distance of the swimming pool cleaning robot along the current upward cleaning section is determined.
  • the swimming pool cleaning robot If the moving distance of the swimming pool cleaning robot along the current upward cleaning section satisfies the preset Obstacle avoidance conditions, control the swimming pool cleaning robot to move along the obstacle avoidance path on the pool bottom, and after avoiding the pool wall obstacles, return to the pool wall and continue to perform the pool wall cleaning task, if If the moving distance of the swimming pool cleaning robot along the current upward cleaning section does not meet the preset obstacle avoidance conditions, the swimming pool cleaning robot is controlled to continue to perform the pool wall cleaning task on the pool wall.
  • the cleaning route on the pool wall includes a plurality of consecutive zigzag paths, each of the zigzag paths consists of an upward cleaning section on the pool wall and a downward cleaning section connecting the upstream cleaning section.
  • the pool wall obstacle avoidance mobile device 1100 also includes a path generation module (not shown), which is used to measure the water depth and the brush length of the pool cleaning robot based on the measured water depth when the pool cleaning robot moves along the previous broken line path.
  • the swimming pool cleaning robot determines the included angle of the road section, or, when the swimming pool cleaning robot moves along the previous broken line path and collides with the pool wall obstacle, obtain the included angle of the road section of the previous continued broken line path; according to the included angle of the road section, the swimming pool
  • the current position of the cleaning robot generates the current upward cleaning section and the current downward cleaning section in the current polyline path that continues the previous polyline path.
  • the swimming pool cleaning robot can move backward from the pool surface of the swimming pool to the bottom of the swimming pool in the direction of any downward cleaning section on the pool wall; or, the swimming pool cleaning robot can It can move forward from the bottom of the swimming pool to the surface of the swimming pool along the direction of any upward cleaning section on the pool wall.
  • the path generation module is also configured to: based on the angle between the previous downward cleaning road section and/or the previous downward cleaning section in the previous broken line path, the swimming pool cleaning robot moves along the previous section of the previous broken line path.
  • Update the water depth of the swimming pool based on the moving time and speed of the continued upward cleaning section and/or the previous downward cleaning section; according to the updated water depth of the swimming pool, the length of the roller brush of the swimming pool cleaning robot, the length of the swimming pool
  • the current position of the cleaning robot determines the angle between the current uplink cleaning section and the current downlink cleaning section in the current zigzag path; the angle between the current uplink cleaning section in the current zigzag path and the current downlink cleaning section
  • the included angles of the road sections are the same.
  • the obstacle avoidance control module 1104 is also configured to: determine the end point of the current downward cleaning section of the current zigzag path that is close to the pool surface as a moving starting point; according to the swimming pool cleaning robot, the swimming pool cleaning robot moves along the moving starting point from the moving starting point.
  • the moving time of the current downward cleaning section to the pool wall obstacle and the moving speed of the swimming pool cleaning robot determine the actual moving distance of the swimming pool cleaning robot along the current downward cleaning section.
  • the obstacle avoidance control module 1104 is also configured to: determine the end point of the current upward cleaning section of the current zigzag path that is close to the bottom of the pool as a moving starting point, and move the swimming pool cleaning robot along all directions along the moving starting point.
  • the moving time of the current upward cleaning section to the pool wall obstacle and the moving speed of the swimming pool cleaning robot determine the actual moving distance of the swimming pool cleaning robot along the current upward cleaning section.
  • the obstacle avoidance control module 1104 is also used to: determine the estimated moving distance of the current downward cleaning road section or the current upward cleaning road section according to the water depth of the swimming pool and the angle between the road sections; The actual moving distance of the robot along the current downward cleaning section or the current upward cleaning section, and the calculated movement distance of the current downward cleaning section or the current upward cleaning section are determined to determine whether the swimming pool cleaning robot moves along the current downward cleaning section.
  • the movement ratio of the cleaning section or the current upward cleaning section if the movement ratio does not exceed the preset ratio, a judgment result is obtained that the movement distance meets the preset obstacle avoidance condition. If the movement ratio exceeds the The preset ratio is used to obtain the judgment result that the moving distance does not meet the preset obstacle avoidance conditions.
  • the preset ratio is between 0.5 and 1.
  • the obstacle avoidance control module 1104 is also used to: if the moving distance of the swimming pool cleaning robot along the current downward cleaning section meets the preset obstacle avoidance conditions, control the swimming pool cleaning robot to move from the pool wall to the the bottom of the pool; control the swimming pool cleaning robot to move along the obstacle avoidance path on the bottom of the pool to avoid obstacles on the pool wall; control the swimming pool cleaning robot to move from the bottom of the pool to the wall of the pool, and Move along the cleaning route on the pool wall to continue the pool wall cleaning task.
  • the obstacle avoidance control module 1104 is also used to: control the swimming pool cleaning robot to return along the current downward cleaning section on the pool wall until it reaches the end point of the current downward cleaning section close to the pool surface; Control the swimming pool cleaning robot to move diagonally downward to the bottom of the pool along the current upward cleaning section connected to the current downward cleaning section; or, control the swimming pool cleaning robot to move vertically downward along the pool wall based on the end point of the road section to the bottom of the pool.
  • the obstacle avoidance path on the bottom of the pool includes one of a U-shaped path, a V-shaped path, and a circular path.
  • the obstacle avoidance control module 1104 is also used to: control the swimming pool cleaning robot to move from the pool bottom to the pool wall; based on the current position of the swimming pool cleaning robot, the water depth of the swimming pool, the swimming pool The length of the cleaning robot's roller brush updates the cleaning route on the pool wall; the swimming pool cleaning robot is controlled to move along the updated cleaning route on the pool wall to continue to perform the pool wall cleaning task; wherein, the swimming pool The water depth is the water depth measured based on the movement of the preceding polyline path.
  • the obstacle avoidance control module 1104 is also used to: if the moving distance of the swimming pool cleaning robot along the current downward cleaning section does not meet the preset obstacle avoidance conditions, control the updating of the swimming pool cleaning robot along the pool wall. Move the subsequent cleaning route to continue the pool wall cleaning task.
  • the obstacle avoidance control module 1104 is also used to: obtain the road section angle of the current downward cleaning road section, or determine the road section angle according to the water depth of the swimming pool and the brush length of the swimming pool cleaning robot; based on the swimming pool The current position of the cleaning robot and the angle between the road sections determine the upward cleaning section on the pool wall extending from the current position of the swimming pool cleaning robot to the pool surface, and update it to the current upward cleaning section; control The swimming pool cleaning robot moves along the current upward cleaning section to continue to perform the pool wall cleaning task; wherein the water depth of the swimming pool is the water depth measured based on the previous movement of the zigzag path.
  • the obstacle avoidance control module 1104 is also used to: control the swimming pool cleaning robot to perform differential motion at the current position according to the road section angle, and based on the orientation of the swimming pool cleaning robot after performing the differential motion , controlling the swimming pool cleaning robot to move from the current position toward the pool surface to determine an upward cleaning section extending from the current position of the swimming pool robot to the pool surface.
  • the obstacle avoidance control module 1104 is also used to: if the moving distance of the swimming pool cleaning robot along the current upward cleaning section meets the preset obstacle avoidance conditions, control the swimming pool cleaning robot to move from the pool wall to the the bottom of the pool; control the swimming pool cleaning robot to move along the obstacle avoidance path on the bottom of the pool to avoid obstacles on the pool wall; control the swimming pool cleaning robot to move from the bottom of the pool to the wall of the pool, and Move along the cleaning route on the pool wall.
  • the obstacle avoidance control module 1104 is also used to: control the swimming pool cleaning robot to move diagonally downward to the bottom of the pool along the current upward cleaning section; or control the swimming pool cleaning robot to move vertically downward along the pool wall to the bottom of the pool. The bottom of the pool.
  • the obstacle avoidance path on the bottom of the pool includes any one of a U-shaped path, a V-shaped path, and a circular path.
  • the obstacle avoidance control module 1104 is also used to: control the swimming pool cleaning robot to move from the bottom of the pool to the pool wall, and based on the current position of the swimming pool cleaning robot, the water depth of the swimming pool, the The length of the roller brush of the swimming pool cleaning robot updates the cleaning route on the pool wall, and controls the swimming pool cleaning robot to move along the updated cleaning route on the pool wall to continue to perform the pool wall cleaning task; wherein, the The water depth of the swimming pool is the water depth measured based on the previous zigzag path movement.
  • the obstacle avoidance control module 1104 is also used to: if the moving distance of the swimming pool cleaning robot along the current upward cleaning road section does not meet the preset obstacle avoidance conditions, obtain the road segment angle of the current upward cleaning road section, or according to the The water depth of the swimming pool and the length of the roller brush of the swimming pool cleaning robot determine the angle of the road section; based on the current position of the swimming pool cleaning robot and the angle of the road section, the current position of the swimming pool cleaning robot on the pool wall is determined.
  • the downward cleaning section extending toward the bottom of the pool; controlling the swimming pool cleaning robot to move along the downward cleaning section to continue to perform the pool wall cleaning task; wherein, the water depth of the swimming pool is based on the movement of the previous broken line path The measured water depth.
  • the obstacle avoidance control module 1104 is also used to: control the swimming pool cleaning robot to perform differential motion at the current position according to the road section angle, and based on the orientation of the swimming pool cleaning robot after performing the differential motion , controlling the swimming pool cleaning robot to move from the current position toward the bottom of the pool to determine a downward cleaning section extending from the current position of the swimming pool robot to the bottom of the pool.
  • the pool wall includes a first pool wall and a second pool wall that are adjacently arranged, wherein the pool cleaning robot collides with the pool wall during its movement along the cleaning route on the first pool wall.
  • the pool wall obstacles also include the second pool wall; and the obstacle avoidance control module 1104 is also used to: when the pool cleaning robot moves along any downward cleaning section or any upward cleaning section on the first pool wall During the process, when it collides with the second pool wall, the swimming pool cleaning robot is controlled to move from the first pool wall to the second pool wall via the transfer path on the pool bottom, and continues to execute the second pool wall.
  • the second pool wall cleaning task is also used to: when the pool cleaning robot moves along any downward cleaning section or any upward cleaning section on the first pool wall.
  • the obstacle avoidance control module 1104 is also used to: control the swimming pool cleaning robot to move from the first pool wall to the pool bottom; control the swimming pool cleaning robot to move along the pool bottom away from the first pool. Move the direction of the pool wall until the distance between the pool cleaning robot and the first pool wall is sufficient for the pool cleaning robot to perform a steering operation; control the pool cleaning robot to face the second pool wall. perform a steering operation in a certain direction, and after completing the steering operation, move along the bottom of the pool in a direction close to the second pool wall; control the swimming pool cleaning robot to move from the bottom of the pool to the second pool wall.
  • the obstacle avoidance control module 1104 is also configured to: if the swimming pool cleaning robot fails to perform a steering operation in the direction facing the second pool wall, control the swimming pool cleaning robot to face away from the second pool wall. perform a steering operation in the direction of the swimming pool cleaning robot; control the swimming pool cleaning robot to move in a direction away from the second pool wall until the separation distance between the swimming pool cleaning robot and the second pool wall is sufficient for the swimming pool cleaning robot to perform U-turn operation; control the swimming pool cleaning robot to perform a U-turn operation, and after completing the U-turn operation, move along the bottom of the pool in a direction close to the second pool wall; control the swimming pool cleaning robot to move from the bottom of the pool to the second pool wall. Describe the second pool wall.
  • the obstacle avoidance control module 1104 is also used to: determine the moving distance of the swimming pool cleaning robot along the current downward cleaning road section when it collides with the second pool wall; if the moving distance meets the preset obstacle avoidance conditions , controlling the swimming pool cleaning robot to return along the current downward cleaning section on the first pool wall until it reaches the end point of the current downward cleaning section close to the pool surface, and moves from the end point of the section to the The bottom of the pool; if the movement distance does not meet the preset obstacle avoidance conditions, based on the current position of the swimming pool cleaning robot, the water depth of the swimming pool, and the length of the roller brush of the swimming pool cleaning robot, determine the length of the first pool wall an upward cleaning section extending from the current position of the swimming pool cleaning robot to the direction of the pool surface, and when the swimming pool cleaning robot cannot move along the upward cleaning section, if the movement distance meets the preset obstacle avoidance Conditional steps, or move to the bottom of the pool along the boundary line between the first pool wall and the second pool wall.
  • the obstacle avoidance control module 1104 is also used to: control the swimming pool cleaning robot to move diagonally downward to the bottom of the pool along the current upward cleaning section connecting the current downward cleaning section; or control the swimming pool cleaning robot by The end point of the road section moves vertically downward along the first pool wall to the bottom of the pool.
  • the obstacle avoidance control module 1104 is also used to: determine the moving distance of the swimming pool cleaning robot along the current upward cleaning section when it collides with the second pool wall; if the moving distance meets the preset obstacle avoidance conditions , control the swimming pool cleaning robot to move diagonally downward to the bottom of the pool along the current upward cleaning section, or move vertically down to the bottom of the pool along the first pool wall based on the end point of the road section; if the movement distance is not Satisfying the preset obstacle avoidance conditions, based on the current position of the swimming pool cleaning robot, the water depth of the swimming pool, and the brush length of the swimming pool cleaning robot, the current position of the swimming pool cleaning robot on the first pool wall is determined.
  • the position is a downward cleaning section extending toward the bottom of the pool, and when the swimming pool cleaning robot cannot move along the downward cleaning section, the swimming pool cleaning robot is controlled to move diagonally downward along the current upward cleaning section to the bottom of the pool, Or move vertically down to the bottom of the pool along the boundary line between the first pool wall and the second pool wall.
  • pool wall obstacle avoidance moving device 1100 of the swimming pool cleaning robot in the embodiment of the present application can also be used to implement other steps in the aforementioned pool wall obstacle avoidance moving method embodiments of each swimming pool cleaning robot, and has corresponding method steps. The beneficial effects will not be repeated here.
  • Exemplary embodiments of the present application also provide an electronic device, including: at least one processor; and a memory communicatively connected to the at least one processor.
  • the memory stores a computer program that can be executed by the at least one processor, and when executed by the at least one processor, the computer program is used to cause the electronic device to perform methods according to various embodiments of the present application.
  • Exemplary embodiments of the present application also provide a non-transitory computer-readable storage medium storing a computer program, wherein the computer program, when executed by a processor of a computer, is used to cause the computer to execute various embodiments according to the present application. Methods.
  • Exemplary embodiments of the present application also provide a computer program product, including a computer program, wherein the computer program, when executed by a processor of a computer, is used to cause the computer to perform methods according to various embodiments of the present application.
  • Electronic devices are intended to refer to various forms of digital electronic computing equipment, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. Electronic devices may also represent various forms of mobile devices, such as personal digital assistants, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are examples only and are not intended to limit the implementation of the present application as described and/or claimed herein.
  • the electronic device 1200 includes a computing unit 1201 that can perform calculations according to a computer program stored in a read-only memory (ROM) 1202 or loaded from a storage unit 1208 into a random access memory (RAM) 1203 . Perform various appropriate actions and processing.
  • RAM 1203 various programs and data required for the operation of the device 1200 can also be stored.
  • Computing unit 1201, ROM 1202 and RAM 1203 are connected to each other via bus 1204.
  • An input/output (I/O) interface 1205 is also connected to bus 1204.
  • the input unit 1206 may be any type of device capable of inputting information to the electronic device 1200.
  • the input unit 1206 may receive input numeric or character information and generate key signal input related to user settings and/or function control of the electronic device.
  • the output unit 1207 may be any type of device capable of presenting information, and may include, but is not limited to, a display, a speaker, a video/audio output terminal, a vibrator, and/or a printer.
  • the storage unit 1204 may include, but is not limited to, magnetic disks and optical disks.
  • the communication unit 1209 allows the electronic device 1200 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunications networks, and may include, but is not limited to, a modem, a network card, an infrared communication device, a wireless communication transceiver and/or a chip Groups such as BluetoothTM devices, WiFi devices, WiMax devices, cellular communications devices and/or the like.
  • Computing unit 1201 may be a variety of general and/or special purpose processing components having processing and computing capabilities. Some examples of the computing unit 1201 include, but are not limited to, a central processing unit (CPU), a graphics processing unit (GPU), various dedicated artificial intelligence (AI) computing chips, various computing units that run machine learning model algorithms, digital signal processing processor (DSP), and any appropriate processor, controller, microcontroller, etc.
  • the computing unit 1201 performs various methods and processes described above.
  • the pool wall obstacle avoidance movement method of the swimming pool cleaning robot in the aforementioned embodiments can be implemented as a computer software program, which is tangibly included in a machine-readable medium, such as the storage unit 1208.
  • part or all of the computer program may be loaded and/or installed onto the electronic device 1200 via the ROM 1202 and/or the communication unit 1209.
  • the computing unit 1201 may be configured to perform the pool wall obstacle avoidance movement method of the pool cleaning robot by any other suitable means (eg, by means of firmware).
  • Program code for implementing the methods of the present application may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, special-purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions specified in the flowcharts and/or block diagrams/ The operation is implemented.
  • the program code may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, laptop disks, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM portable compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or means for providing machine instructions and/or data to a programmable processor (eg, magnetic disk, optical disk, memory, programmable logic device (PLD)), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or a trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or a trackball
  • Other kinds of devices may also be used to provide interaction with the user; for example, the feedback provided to the user may be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and may be provided in any form, including Acoustic input, voice input or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (e.g., a communications network). Examples of communication networks include: local area network (LAN), wide area network (WAN), and the Internet.
  • Computer systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种泳池清洁机器人的池壁避障移动方法、装置(1100)、电子设备(1200),方法包括:控制泳池清洁机器人沿泳池的池壁上的清扫路线移动以执行池壁清扫任务(S102);在泳池清洁机器人沿清扫路线移动的过程中,碰撞池壁障碍物后,控制泳池清洁机器人在池壁上继续执行池壁清扫任务;或者控制泳池清洁机器人沿池底上的避障路径移动,并在避开池壁障碍物后,返回池壁并继续执行池壁清扫任务(S104)。借此,可提高池壁清扫任务的执行成功率以及执行效率。

Description

泳池清洁机器人的池壁避障移动方法、装置、电子设备 技术领域
本申请实施例涉及清洗控制技术领域,尤其涉及一种泳池清洁机器人的池壁避障移动方法、装置、电子设备及计算机存储介质。
背景技术
泳池清洁机器人是针对泳池清洁需求而产生的一种清洁机器人,可以完成对池底及泳池壁的反复清洗以及对泳池内的水进行过滤的动作。
泳池清洁机器人的泳池清扫任务主要包括池底以及池壁的清扫,其中,池壁上通常存在有地漏(例如入水口)、扶梯、台阶、拐角等各种类型的池壁障碍物,这些池壁障碍物均会对泳池清洁机器人的池壁清扫任务产生阻碍,并影响了池壁清扫任务的执行成功率以及池壁清扫效率。
因此,需要一种改进的池壁避障移动方案,以解决现有池壁清扫任务的执行效果不佳的问题。
发明内容
为了解决上述问题,本申请实施例提供了一种改进的池壁避障移动方案,以至少部分地解决上述问题。
根据本申请的第一方面,提供一种泳池清洁机器人的池壁避障移动方法,包括:控制泳池清洁机器人沿泳池的池壁上的清扫路线移动以执行池壁清扫任务;在所述泳池清洁机器人沿所述清扫路线移动的过程中碰撞池壁障碍物后,控制所述泳池清洁机器人在池壁上继续执行所述池壁清扫任务;或者控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务。
根据本申请的第二方面,提供一种泳池清洁机器人的池壁避障移动装置,包括:移动控制模块,用于控制泳池清洁机器人沿泳池的池壁上的清扫路线移动以执行池壁清扫任务;避障控制模块,用于在所述泳池清洁机器人沿所述清扫路线移动的过程中,碰撞池壁障碍物后,控制所述泳池清洁机器人在池壁上继续执行所述池壁清扫任务;或者控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务。
根据本申请的第三方面,提供一种电子设备,包括:处理器;以及存储程序的存储器;其中,所述程序包括指令,所述指令在由所述处理器执行时使所述处理器执行上述第一方面所述的方法。
根据本申请的第四方面,提供一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使计算机执行上述第一方面所述的方法。
综上所述,本申请所提供的泳池清洁机器人的池壁避障移动方法、装置及计算机存储介质,可在沿清扫路线的移动过程中,碰撞池壁障碍物后,控制泳池清洁机器人在池壁上继续执行池壁清扫任务,或控制泳池清洁机器人沿池底上的避障路径移动以在避开池壁障碍物后,返回池壁并继续执行池壁清扫任务,据此,本申请可供泳池清洁机器人在执行池壁清扫任务的过程中,有效避开池壁上的池壁障碍物,以提高池壁清扫任务的执行成功率及执行效率。
附图说明
以下附图仅旨在于对本申请做示意性说明和解释,并不限定本申请的范围。其中,
图1是本申请示例性实施例的泳池清洁机器人的池壁避障移动方法的处理流程图。
图2A至图2B为本申请的清扫路线的不同实施例示意图。
图3A至图3H示出了满足预设避障条件的池壁避障移动方案的不同实施例示意图。
图4、图5A至图5B为本申请的其他实施例的泳池清洁机器人的池壁避障移动方法的处理流程图。
图6A至图6B为不满足预设避障条件的池壁避障移动方案的实施例示意图。
图7至图8为本申请的其他实施例的泳池清洁机器人的池壁避障移动方法的处理流程图。
图9A至图9F为本申请沿第一池壁移动过程中碰撞到第二池壁的池壁避障移动方案的不同实施例示意图。
图10A至图10B为本申请的其他实施例的泳池清洁机器人的池壁避障移动方法的处理流程图。
图11为本申请示例性实施例的泳池清洁机器人的池壁避障移动装置的结构框图。
图12为本申请示例性实施例的电子设备的结构框图。
附图标记说明:
2、池壁障碍物;1100:泳池清洁机器人的池壁避障移动装置;1102、移动控制模块;1104、避障控制模块;1200、电子设备;1201、计算单元;1202、ROM;1203、RAM;1204、总线;1205、输入输出接口;1206、输入单元;1207、输出单元;1208、存储单元;1209、通信单元。
具体实施方式
为了对本申请实施例的技术特征、目的和效果有更加清楚的理解,现对照附图说明本申请实施例的具体实施方式。
在本文中,“示意性”表示“充当实例、例子或说明”,不应将在本文中被描述为“示意性”的任何图示、实施方式解释为一种更优选的或更具优点的技术方案。
为使图面简洁,各图中只示意性地表示出了与本申请相关的部分,它们并不代表其作为产品的实际结构。另外,为使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个或多个,或仅标示出了其中的一个或多个。
图1示出了本申请示例性实施例的泳池清洁机器人的池壁避障移动方法的处理流程。如图所示,本实施例主要包括以下步骤:
步骤S102,控制泳池清洁机器人沿泳池的池壁上的清扫路线移动以执行池壁清扫任务。
于本实施例中,清扫路线至少包括有多个下行清扫路段。例如,如图2A所示的下行清扫路段BC、下行清扫路段DE,或如图2B所示的下行清扫路段JK、下行清扫路段MN。
于本实施例中,清扫路线至少包括有多个上行清扫路段。例如,如图2A所示的上行清扫路段AB、上行清扫路段CD,或如图2B所示的上行清扫路段HI、上行清扫路段KL。
可选地,池壁上的清扫路线可包括依次连续的多个折线路径,其中,每一个折线路径可由池壁上的一个上行清扫路段和连接上行清扫路段的一个下行清扫路段所构成。
可选地,每一个折线路径中的上行清扫路段和下行清扫路段可为直接连接或间接连接。
于一实施例中,当上行清扫路段和下行清扫路段为直接连接时,可构成倒V形的折线路径。
例如,参考图2A,由上行清扫路段AB和与之直接连接的下行清扫路段BC可构成一个倒V形折线路径ABC,由上行清扫路段CD和与之直接连接的下行清扫路段DE可构成另一个倒V形折线路径CDE,其中,折线路径ABC和折线路径CDE相互连续。
于另一实施例中,当上行清扫路段和下行清扫路段为间接连接时,可构成梯形的折线路径。
例如,参考图2B,由上行清扫路段HI和与之间接连接的下行清扫路段JK可构成一个梯形折线路径HIJK,由上行清扫路段KL和与之间接连接的下行清扫路段MN可构成另一个梯形折线路径KLMN,其中,折线路径HIJK和折线路径KLMN相互连续。
于本实施例中,上行清扫路段和下行清扫路段之间可经由平移清扫路段相互连接。例如,上行清扫路段HI和下行清扫路段JK之间经由平移清扫路段IJ相互连接;上行清扫路段KL和与下行清扫路段MN之间可借由平移平扫路段LM相互连接。
于本实施例中,泳池清洁机器人可沿池壁上的任意一个下行清扫路段的方向,由泳池的池面向泳池的池底的方向后退移动;或者,泳池清洁机器人可沿池壁上的任意一个上行清扫路段的方向,由泳池的池底向泳池的池面的方向前进移动。
例如,在图2A或图2B所示的泳池清洁机器人的简易示意图中,黑色区域部分为泳池清洁机器人的头端(以下各附图皆同)。其中,泳池清洁机器人可沿池壁上的任意一个上行清扫路段(例如,图2A中的路段AB、路段CD,或图2B中的路段HI、路段KL)前进移动,以由池底向池面方向上爬,并可沿池壁上的任意一个下行清扫路段(例如,图2A中的路段BC、路段DE,或图2B中的路段JK、路段MN)后退移动,以由池面向池底方向下移。
可选地,可根据泳池清洁机器人沿前续折线路径移动所测得的水深、泳池清洁机器人的滚刷长度,确定路段夹角,并根据路段夹角、泳池清洁机器人的当前位置,生成接续前续折线路径的当前折线路径中的当前上行清扫路段与当前下行清扫路段。
具体地,可根据泳池清洁机器人沿前续折线路径移动所测得的水深、泳池清洁机器人的滚刷长度,确定路段夹角;根据路段夹角、泳池清洁机器人的当前位置,确定接续前续折线路径的当前折线路径中的当前上行清扫路段的路段方向,可控制泳池清洁机器人沿当前上行清扫路段的路段方向,由泳池的池底向泳池的池面方向移动,直至泳池清洁机器人的水线感测器感测到泳池清洁机器人已到达泳池的水线位置,并在当前位置根据所确定的路段夹角,控制泳池清机器人执行差速运动,并基于泳池清洁机器人执行差速运动后的朝向,控制泳池清洁机器人由当前位置朝池底的方向移动,直至泳池清洁机器人碰撞泳池的池底,以确定由泳池机器人的当前位置向池底延伸的下行清扫路段。
需要说明的是,本申请的水线感测器可以采用超声传感器,由于检测水线的位置的传感器可以采取多种现有技术手段实现,在此不做限定。
于本实施例中,泳池清洁机器人执行差速运动后的朝向与执行差速运动前的朝向之间的夹角角度为路段夹角的2倍,亦即,同一折线路径中的上行清扫路段的路段夹角与下行清扫路段的路段夹角为相同。
例如,参考图2A,可根据泳池清洁机器人沿前续折线路径ABC移动所测得的水深、泳池清洁机器人的滚刷长度,确定当前折线路径的路段夹角β,并根据路段夹角β、泳池清洁机器人的当前位置C,生成接续前续折线路径ABC的当前折线路径CDE中的当前上行清扫路段CD与当前下行清扫路段DE。
又如,参考图2B,可根据泳池清洁机器人沿前续折线路径HIJK移动所测得的水深、泳池清洁机器人的滚刷长度,确定路段夹角β,并根据路段夹角β、泳池清洁机器人的当前位置K,生成接续前续折线路径HIJK的当前折线路径KLMN中的当前上行清扫路段KL与当前下行清扫路段MN。其中,连接当前上行清扫路段KL与当前下行清扫路段MN的平移清扫路段LM的距离可为预设距离,可通过控制泳池清洁机器人在水线位置进行差速运动移动以实现该预设距离。
借此,本申请基于动态测得的水深,生成池壁清扫路线中的各折线路径的技术方案,可提高池壁清扫的覆盖率,并提升池壁清扫效果。
可选地,可根据前续折线路径中的前续下行清扫路路段和/或前续下行清扫路段的路段夹角、以及泳池清洁机器人沿前续折线路径中的前续上行清扫路段和/或前续下行清扫路段移动的移动时间和移动速度,更新泳池的水深,并根据更新后的泳池的水深、泳池清洁机器人的滚刷长度、泳池清洁机器人的当前位置,确定当前折线路径中的当前上行清扫路段和当前下行清扫路段的路段夹角。
例如,可根据前续折线路径的路段夹角、以及泳池清洁机器人沿前续折线路径中的前续上行清扫路段与前续下行清扫路段移动的移动时间和移动速度,更新泳池的水深。
又如,可根据前续折线路径中的前续上行清扫路段的路段夹角、以及泳池清洁机器人沿前续折线路径中的前续上行清扫路段移动的移动时间和移动速度,更新泳池的水深。
较佳地,可根据前续折线路径中的前续下行清扫路段的路段夹角、以及泳池清洁机器人沿前续折线路径中的前续下行清扫路段移动的移动时间和移动速度,更新泳池的水深。
例如,参考图2A,可根据前续折线路径ABC中的前续下行清扫路段BC的路段夹角α、泳池清洁机器人沿前续下行清扫路段BC移动的移动时间和移动速度,更新泳池的水深,并根据更新后的泳池的水深、泳池清洁机器人的滚刷长度、泳池清洁机器人的当前位置C,确定当前折线路径CDE中的当前上行清扫路段CD和当前下行清扫路段DE各自的路段夹角β。
于本实施例中,当前折线路径中的当前上行清扫路段的路段夹角与当前下行清扫路段的路段夹角相同,也就是说,构成同一折线路径的上行清扫路段的路段夹角与下行清扫路段的路段夹角为相同,但在不同折线路径中,上行清扫路段、下行清扫路段各自的路段夹 角则根据更新的泳池的水深可为相同或者不同。
例如,参考图2A,前续折线路径ABC中的上行清扫路段AB和当前下行清扫路段BC各自的路段夹角均为α,当前折线路径CDE中的当前上行清扫路段CD和当前下行清扫路段DE各自的路段夹角均为β。
可选地,在泳池清洁机器人沿前续折线路径移动碰撞到池壁障碍物的情况下,可直接获取前续折线路径中的前续上行清扫路段和前续下行清扫路段的路段夹角,以作为接续前续折线路径的当前折线路径中的当前上行清扫路段和当前下行清扫路段的路段夹角。
于具体应用中,在泳池清洁机器人沿前续折线路径移动碰撞到池壁障碍物的情况下,可根据用于确定前续折线路径的路段夹角的水深,确定当前折线路径中的当前上行清扫路段和当前下行清扫路段的路段夹角。
例如,参考图6A,当泳池清洁机器人沿预设的折线路径ABC移动,并在C4点位置碰撞到池壁障碍物2时,可在无需根据泳池清洁机器人沿实际的折线路径ABC4移动的移动时间和移动速度,更新泳池的水深的情况下,直接根据泳池清洁机器人沿折线路径XYA移动所测得的水深,确定待生成的折线路径C4DE的路段夹角θ,并根据路段夹角θ、泳池清洁机器人的当前位置C4,生成接续折线路径ABC4的折线路径C4DE。
由图6A可以看出,由于折线路径ABC4(或折线路径ABC)和折线路径C4DE的路段夹角,均是基于泳池清洁机器人沿折线路径XYA移动所测得的水深来确定的,因此,两个折线路径的路段夹角均为θ。
又如,参考图6B,当泳池清洁机器人沿预设的折线路径ABC移动,并在B1点位置碰撞到池壁障碍物2时,可沿更新后的折线路径AB1C1移动(其中,折线路径AB1C1的路段夹角即为折线路径ABC的路段夹角)。
在泳池清洁机器人移动至C1位置后,可在无需根据泳池清洁机器人沿实际的折线路径AB1C1移动的移动时间和移动速度,更新泳池的水深的情况下,直接根据泳池清洁机器人沿折线路径XYA移动所测得的水深,确定待生成的折线路径C1DE的路段夹角θ,并根据路段夹角θ、泳池清洁机器人的当前位置C1,生成接续折线路径AB1C1的折线路径C1DE。
由图6B可以看出,由于折线路径AB1C1(或折线路径ABC)和折线路径C1DE的路段夹角,均是基于泳池清洁机器人沿折线路径XYA移动所测得的水深来确定的,因此,两个折线路径的路段夹角均为θ。
步骤S104,在泳池清洁机器人沿清扫路线移动的过程中,碰撞池壁障碍物后,控制泳池清洁机器人在池壁上继续执行池壁清扫任务,或控制泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回池壁并继续执行池壁清扫任务。
可选地,池壁障碍物可包括但不限于地漏(例如入水口)、扶梯、台阶、拐角中的一个。
可选地,可在泳池清洁机器人沿池壁上的任意一个下行清扫路段移动的过程中,碰撞池壁障碍物后,确定泳池清洁机器人沿当前下行清扫路段或当前上行清扫路段移动的移动距离。
可选地,泳池清洁机器人沿当前下行清扫路段移动的移动距离可通过以下方式确定:
将当前折线路径的当前下行清扫路段中接近池面的路段端点确定为移动起点,并根据泳池清洁机器人由移动起点沿当前下行清扫路段移动至池壁障碍物的移动时间、泳池清洁机器人的移动速度,确定泳池清洁机器人沿当前下行清扫路段移动的实际移动距离。
例如,参考图3A,可将当前折线路径ABC的当前下行清扫路段BC中接近池面的路段端点B确定为移动起点,并根据泳池清洁机器人由移动起点B沿当前下行清扫路段BC移动至池壁障碍物2的时间、泳池清洁机器人的移动速度,确定泳池清洁机器人沿当前下行清扫路段BC移动的实际移动距离。
可选地,泳池清洁机器人沿当前上行清扫路段移动的移动距离可通过以下方式确定:
将当前折线路径的当前上行清扫路段中接近池底的路段端点确定为移动起点,并根据泳池清洁机器人由移动起点沿当前上行清扫路段移动至池壁障碍物的移动时间、泳池清洁机器人的移动速度,确定泳池清洁机器人沿当前上行清扫路段移动的实际移动距离。
例如,参考图3E,可将当前折线路径ABC的当前上行清扫路段AB中接近池底的路段端点A确定为移动起点,并根据泳池清洁机器人由移动起点A沿当前上行清扫路段AB移动至池壁障碍物2的时间、泳池清洁机器人的移动速度,确定泳池清洁机器人沿当前上行清扫路段AB移动的实际移动距离。
可选地,可根据泳池清洁机器人在移动过程中的碰撞检测传感器的检测结果来判断泳池清洁机器人是否碰撞到池壁障碍物。
需说明的是,也可通过其他方式判断池清洁机器人在移动过程中是否碰撞到池壁障碍物,并不以上述方案为限,本申请对此不作限制。
可选地,若泳池清洁机器人沿当前下行清扫路段移动的移动距离满足预设避障条件,控制泳池清洁机器人沿池底上的避障路径移动,并在避开池壁障碍物后,返回池壁以继续执行池壁清扫任务。
可选地,可在碰撞池壁障碍物后,计算泳池清洁机器人沿当前下行清扫路段移动的实际移动距离相对于当前下行清扫路段的测算移动距离的移动比值,并基于移动比值,获得移动距离是否满足预设避障条件的判断结果。
可选地,若泳池清洁机器人沿当前上行清扫路段移动的移动距离满足预设避障条件,控制泳池清洁机器人沿池底上的避障路径移动,并在避开池壁障碍物后,返回池壁以继续执行池壁清扫任务。
可选地,可在碰撞池壁障碍物后,计算泳池清洁机器人沿当前上行清扫路段移动的实际移动距离相对于当前上行清扫路段的测算移动距离的移动比值,并基于移动比值,获得移动距离是否满足预设避障条件的判断结果。
具体地,可在碰撞池壁障碍物后,根据泳池的水深、当前下行清扫路段/当前上行清扫路段的路段夹角,确定当前下行清扫路段/当前上行清扫路段的测算移动距离,并根据泳池清洁机器人沿当前下行清扫路段/当前上行清扫路段移动的实际移动距离、当前下行清扫路段/当前上行清扫路段的测算移动距离,确定泳池清洁机器人沿当前下行清扫路段/当前上行清扫路段移动的移动比值,若移动比值未超过预设比值,获得移动距离满足预设避障条件的判断结果,若移动比值超过预设比值,获得移动距离不满足预设避障条件的判断结果。
于本实施例中,预设比值介于0.5至1之间,例如:0.5、0.6(参考图3A至图3D的预设线Z所示高度,或参考图3E至图3H的预设线Z所示高度)、0.7等。
需说明的是,也可在碰撞池壁障碍物时,基于泳池清洁机器人沿当前下行清扫路段移动的实际移动距离、当前下行清扫路段的路段夹角,测算池壁障碍物的水平高度,若池壁障碍物的水平高度高于预设高度,获得移动距离满足预设避障条件的判断结果,反之,若池壁障碍物的水平高度低于预设高度,获得移动距离不满足预设避障条件的判断结果。
或者,可在碰撞池壁障碍物时,基于泳池清洁机器人沿当前上行清扫路段移动的实际移动距离、当前上行清扫路段的路段夹角,测算池壁障碍物的水平高度,若池壁障碍物的水平高度低于预设高度,获得移动距离满足预设避障条件的判断结果,反之,若池壁障碍物的水平高度高于预设高度,获得移动距离不满足预设避障条件的判断结果。
可选地,预设高度相对于泳池水深的比值可介于0.5至1之间,例如:0.5、0.6(参考图3A至图3D的预设线Z所示高度或参考图3E至图3H的预设线Z所示高度)、0.7等。
可选地,若泳池清洁机器人沿当前上行清扫路段移动的移动距离不满足预设避障条件,控制泳池清洁机器人沿池壁上的清扫路线移动,以继续执行池壁清扫任务;或者,若泳池清洁机器人当前下行清扫路段移动的移动距离不满足预设避障条件,控制泳池清洁机器人沿池壁上的清扫路线移动,以继续执行池壁清扫任务。
具体地,若移动距离不满足预设避障条件,可忽略碰池壁障碍物,以在无需由池壁移动至池底的情况下,控制泳池清洁机器人在池壁上继续执行池壁清扫任务。
可选地,若泳池清洁机器人在碰撞池壁障碍物时,沿当前下行清扫路段移动/当前下行清扫路段的实际移动距离相对于当前下行清扫路段/当前下行清扫路段的测算移动距离的移动比值超过预设比值,则控制泳池清洁机器人沿池壁上的清扫路线移动,以继续执行池壁清扫任务。
在实际应用中,也可基于泳池清洁机器人沿当前下行清扫路段/当前下行清扫路段移动的实际移动距离、当前下行清扫路段/当前下行清扫路段的路段夹角,测算池壁障碍物的水平高度,并根据当前下行清扫路段/当前下行清扫路段的测算移动距离、当前下行清扫路段/当前下行清扫路段的路段夹角,测算泳池的水深,并根据池壁障碍物的水平高度和泳池的水深,作为是否满足预设避障条件的判断标准。上述技术方案属于本领域技术人员根据本申请的技术揭露而可轻易习得,其应被视为本申请的等效或等同技术方案,并被涵盖于本申请实施例的保护范围中。
于本实施例中,当泳池清洁机器人沿当前下行清扫路段移动过程中,碰撞到的池壁障碍物的水平高度低于预设高度时,基于泳池清洁机器人的当前位置,更新池壁上的清扫路线,并控制泳池清洁机器人沿池壁上的清扫路线移动,以继续执行池壁清扫任务。
例如,参考图6A,若泳池清洁机器人在沿当前下行清扫路段移动过程中,碰撞池壁障碍物2时,池壁障碍物2的水平高度低于预设高度(图6A所示预设线Z所示高度)时,基于泳池清洁机器人的当前位置C4,更新池壁上的清扫路线,并控制泳池清洁机器人沿池壁上的更新后的清扫路线(例如折线路径C4DE)移动,以继续执行池壁清扫任务。
于本实施例中,当泳池清洁机器人沿当前上行清扫路段移动过程中,碰撞到的池壁障碍物的水平高度高于水深的预设高度时,基于泳池清洁机器人的当前位置,更新池壁上的清扫路线,并控制泳池清洁机器人沿池壁上的清扫路线移动,以继续执行池壁清扫任务。
例如,参考图6B,若泳池清洁机器人在沿当前上行清扫路段移动过程中,碰撞池壁障碍物2时,池壁障碍物2的水平高度高于预设高度(图6B所示预设线Z所示高度)时,基于泳池清洁机器人的当前位置B1,更新池壁上的清扫路线,并控制泳池清洁机器人沿池壁上的更新后的清扫路线(例如折线路径B1DE)移动,以继续执行池壁清扫任务。
综上所述,本实施例提供的泳池清洁机器人的池壁避障移动方法,在泳池清洁机器人执行池壁清扫任务的过程中,碰撞到池壁障碍物时,通过控制泳池清洁机器人执行下墙动作,并沿池底上的避障路径移动,以在避开池壁障碍物后,再次上墙以继续执行池壁清扫任务,借由上述池壁障碍物规避方案,可有效提高泳池清洁机器人执行池壁清扫任务的成功率,且提升泳池池壁的清扫覆盖率,以提高池壁清扫效果。
图4为本申请另一示例性实施例的泳池清洁机器人的池壁避障移动方法,本实施例为 上述步骤S104中控制泳池清洁机器人沿池底上的避障路径移动的具体实施方案,如图所示,本实施例主要包括以下步骤:
步骤S402,控制泳池清洁机器人由池壁移动至池底。
可选地,在泳池清洁机器人沿池壁上的当前下行清扫路段移动的情况下,可控制泳池清洁机器人沿池壁上的当前下行清扫路段返回,直至抵达当前下行清扫路段中接近池面的路段端点,并控制泳池清洁机器人沿连接当前下行清扫路段的当前上行清扫路段斜向下移至池底。
例如,参考图3A,当泳池清洁机器人沿当前下行清扫路段BC移动的过程中,碰撞到满足预设避障条件的池壁障碍物2时,控制泳池清洁机器人沿当前下行清扫路线BC返回(例如前进移动),直至抵达当前下行清扫路段BC中接近池面的路段端点B,再控制泳池清洁机器人沿连接当前下行清扫路段BC的当前上行清扫路段AB斜向下移至路段端点A(例如,后退移动),直至抵达泳池的池底。
可选地,在泳池清洁机器人沿池壁上的当前下行清扫路段移动的情况下,控制泳池清洁机器人沿池壁上的当前下行清扫路段返回,直至抵达当前下行清扫路段中接近池面的路段端点,并控制泳池清洁机器人基于路段端点沿池壁垂直下移至池底。
例如,参考图3B,当泳池清洁机器人沿当前下行清扫路段BC移动的过程中,碰撞到满足预设避障条件的池壁障碍物2时,控制泳池清洁机器人沿当前下行清扫路线BC返回(例如前进移动),直至抵达当前下行清扫路段BC中接近池面的路段端点B,再控制泳池清洁机器人基于路段端点B沿池壁垂直下移(例如后退移动)至位置O,以抵达泳池的池底。
可选地,在泳池清洁机器人沿池壁上的当前上行清扫路段移动的情况下,可控制泳池清洁机器人沿当前上行清扫路段斜向下移至池底。
例如,参考图3E,当泳池清洁机器人沿当前上行清扫路段AB移动的过程中,碰撞到满足预设避障条件的池壁障碍物2时,控制泳池清洁机器人沿当前上行清扫路线AB返回(例如后退移动),直至抵达泳池的池底。
可选地,在泳池清洁机器人沿池壁上的当前上行清扫路段移动的情况下,可控制泳池清洁机器人沿池壁垂直下移至池底。
例如,参考图3F,当泳池清洁机器人沿当前上行清扫路段AB移动的过程中,碰撞到满足预设避障条件的池壁障碍物2时,控制泳池清洁机器人基于当前位置,亦即,泳池清洁机器人碰撞池壁障碍物2时的位置B1,沿池壁垂直下移(例如后退移动)至位置O,以抵达泳池的池底。
步骤S404,控制泳池清洁机器人沿池底上的避障路径移动,以避开池壁障碍物。
可选地,池底上的避障路径可为ㄇ型路径(参考图3A或图3E所示避障路径APQC1或图3B或图3F所示避障路径OPQC1)、V型路径(参考图3C或图3G所示避障路径ARC2)或环形路径(参考图3D或图3H所示避障路径AC3)。
需说明的是,池底上的避障路径并不以上述图3A至图3H所示为限,亦可设计为其他形态的避障路径,例如梯形避障路径等,本申请对此不作限制。
于一实施例中,参考图3A或图3E,在池底上的避障路径为ㄇ型路径的情况下,可在泳池清洁机器人抵达池底(例如,位置A)后,相对于池壁沿池底后退移动至位置P,并在位置P执行90度的顺时针转向操作后前进,以由位置P移动至位置Q,并在位置Q执行90度的逆时针转向操作后前进,以移动至位置C1。
于另一实施例中,参考图3C或图3G,在池底上的避障路径为V型路径的情况下,可在泳池清洁机器人在抵达池底后,由位置A相对于池壁斜向后退至位置R,并在位置R执行差速运动以旋转预设角度后继续前行,以由位置R移动至位置C2。
于又一实施例中,参考图3D或图3H,在池底上的避障路径为环型路径的情况下,可在泳池清洁机器人在抵达池底后,执行差速运动以及调头操作,以由位置A移动至位置C3。
步骤S406,控制泳池清洁机器人由池底移动至池壁,并沿池壁上的清扫路线移动。
可选地,控制泳池清洁机器人由池底移动至池壁,并基于泳池清洁机器人的当前位置、泳池的水深、泳池清洁机器人的滚刷长度,更新池壁上的清扫路线,且控制泳池清洁机器人沿池壁上更新后的清扫路线移动,以继续执行池壁清扫任务。
于本实施例中,用于更新池壁上的清扫路线的泳池的水深为基于前续折线路径(例如,前续折线路径中的前续上行清扫路段和/或前续下行清扫路段)移动所测得的水深。
例如,参考图3A或图3E,可控制泳池清洁机器人在位置C1执行上墙动作,以由池底移动至池壁,并基于泳池清洁机器人的当前位置(即位置C1)、泳池清洁机器人沿当前折线路径ABC的前续折线路径移动所测得的水深(例如,可以是在泳池清洁机器人沿前续下行清扫路段移动的过程中所测得的水深)、泳池清洁机器人的滚刷长度,生成折线路径C1DE,并将折线路径C1DE更新为当前折线路径后,控制泳池清洁机器人沿当前折线路径C1DE移动,以继续执行池壁清扫任务。
综上所述,本实施例通过控制泳池清洁机器人沿池底上的避障路径移动,以在避开池壁障碍物后,更新池壁上的清扫路线,并控制泳池清洁机器人沿更新后的清扫路线继续执行池壁清扫任务,借以提高池壁清扫任务执行的成功率,并通过动态更新池壁清扫路线, 可以提高池壁的清扫覆盖率,以提升池壁清扫效果。
图5A示出了本申请另一示例性实施例的泳池清洁机器人的池壁避障移动方法的处理流程。本实施例为上述步骤104中控制泳池清洁机器人在池壁上继续执行池壁清扫任务的一个具体实施方案,如图所示,本实施例主要包括以下步骤:
步骤S502,获取路段夹角。
可选地,可根据泳池的水深、泳池清洁机器人的滚刷长度,确定路段夹角。
可选地,泳池的水深为基于前续折线路径移动所测得的水深。
例如,参考图6A,若泳池清洁机器人在沿当前下行清扫路段BC移动的过程中,碰撞到不满足预设避障条件的池壁障碍物2时,根据泳池清洁机器人沿折线路径XYA移动所测得的泳池的水深、泳池清洁机器人的滚刷长度,确定路段夹角。
可选地,也可直接获取当前下行清扫路段BC的路段夹角。
步骤S504,基于泳池清洁机器人的当前位置、路段夹角,确定池壁上的由泳池清洁机器人的当前位置向池面延伸的上行清扫路段,并将其更新为当前上行清扫路段。
例如,参考图6A,可基于泳池清洁机器人的当前位置C4、路段夹角θ,确定池壁上的由泳池清洁机器人的当前位置C4向池面延伸的上行清扫路段C4D,并将其更新为当前上行清扫路段。
具体地,可在当前位置C4根据路段夹角θ,控制泳池清洁机器人执行差速运动,并基于泳池清机器人执行差速运动后的朝向,控制泳池清洁机器人朝池面方向移动,以确定泳池清洁机器人由当前位置C4向池面延伸的上行清扫路段C4D,并将其更新为当前上行清扫路段。
可选地,还可进一步生成连接当前上行清扫路段的当前下行清扫路段,例如,图6A所示的当前下行清扫路段DE。
例如,可控制泳池清洁机器人沿当前上行清扫路段C4D的路段方向,由泳池的池底向泳池的池面方向移动,直至泳池清洁机器人的水线感测器感测到泳池清洁机器人已到达泳池的水线位置,并在当前位置(例如图6A所示的位置D)根据所确定的路段夹角θ,控制泳池清机器人执行差速运动,并基于泳池清洁机器人执行差速运动后的朝向,控制泳池清洁机器人由当前位置D朝池底的方向移动,直至泳池清洁机器人碰撞泳池的池底(例如位置E),以确定由泳池机器人的当前位置向池底延伸的当前下行清扫路段DE。
步骤S506,控制泳池清洁机器人沿当前上行清扫路段移动,以继续执行池壁清扫任务。
例如,控制泳池清洁机器人沿当前上行清扫路段C4D移动,以继续执行池壁清扫任务。
综上所述,本实施例所述的池壁避障移动方案,当泳池清洁机器人在沿当前下行清扫路段移动的过程中,碰撞到不满足预设避障条件的池壁障碍物时,可在无需下移至池底以中断当前的池壁清扫任务的情况下,通过直接更新池壁上的清扫路线,以供泳池清洁机器人基于更新后的清扫路线继续执行池壁清扫任务,借以提高池壁清扫效率。
图5B示出了本申请另一示例性实施例的泳池清洁机器人的池壁避障移动方法的处理流程。本实施例为上述步骤S104中控制泳池清洁机器人在池壁上继续执行池壁清扫任务的另一具体实施方案,如图所示,本实施例主要包括以下步骤:
步骤S512,获取路段夹角。
可选地,可根据泳池的水深、泳池清洁机器人的滚刷长度,确定路段夹角。
可选地,泳池的水深为基于前续折线路径移动所测得的水深。
例如,参考图6B,若泳池清洁机器人在沿当前上行清扫路段AB移动的过程中,碰撞到不满足预设避障条件的池壁障碍物2时,根据泳池清洁机器人沿折线路径XYA移动所测得的泳池的水深、泳池清洁机器人的滚刷长度,确定路段夹角。
可选地,可也直接获取当前上行清扫路段的路段夹角。
步骤S514,基于泳池清洁机器人的当前位置、路段夹角,确定池壁上的由泳池清洁机器人的当前位置向池底延伸的下行清扫路段,并将其更新为当前下行清扫路段。
例如,参考图6B,可基于泳池清洁机器人的当前位置B1、路段夹角θ,确定池壁上的由泳池清洁机器人的当前位置B1向池底延伸的下行清扫路段B1C1,并将其更新为当前下行清扫路段。
具体地,可在当前位置B1根据路段夹角θ,控制泳池清洁机器人执行差速运动,并基于泳池清机器人执行差速运动后的朝向,控制泳池清洁机器人朝池底方向移动,以确定泳池清洁机器人由当前位置B1向池底延伸的下行清扫路段B1C1。
步骤S516,控制泳池清洁机器人沿当前下行清扫路段移动,以继续执行池壁清扫任务。
例如,控制泳池清洁机器人沿当前下行清扫路段B1C1移动,以继续执行池壁清扫任务。
参考图6B,可将泳池清洁机器人实际移动的折线路径AB1C1更新为实际前续折线路径,并将泳池清洁机器人预设移动的折线路径ABC更新为预设前续折线路径,其中,折线路径AB1C1和折线路径ABC的前续折线路径均为折线路径XYA,可根据泳池清洁机器人沿折线路径XYA移动所测得的水深,确定路段夹角θ,并根据路段夹角θ、泳池清洁机器人的当前位置C1,生成实际前续折线路径AB1C1的当前折线路径C1DE中的当前上行清扫路段C1D和当前下行清扫路段DE。
综上所述,本实施例所述的池壁避障移动方案,当泳池清洁机器人在沿当前上行清扫路段移动的过程中,碰撞到不满足预设避障条件的池壁障碍物时,可在无需下移至池底以中断当前的池壁清扫任务的情况下,通过直接更新池壁上的清扫路线,以供泳池清洁机器人基于更新后的清扫路线继续执行池壁清扫任务,借以提高池壁清扫效率。
图7示出了本申请另一实施例的泳池清洁机器人的池壁避障移动方法的处理流程。
于本实施例中,池壁可包括相邻设置的第一池壁和第二池壁,其中,泳池清洁机器人在沿第一池壁上的清扫路线的移动过程中,碰撞到的池壁障碍物还包括第二池壁。
如图所示,本实施例主要包括以下步骤:
步骤S702,控制泳池清洁机器人沿泳池的池壁上的清扫路线移动以执行池壁清扫任务。
步骤S704,若泳池清洁机器人在沿第一池壁上的任意一个下行清扫路段或任意一个上行清扫路段移动的过程中,碰撞第二池壁时,控制泳池清洁机器人经由池底上的转移路径由第一池壁移动至第二池壁,并继续执行第二池壁的池壁清扫任务。
图8示出了本申请另一实施例的泳池清洁机器人的池壁避障移动方法的处理流程。本实施例为上述步骤S704的具体实施方案。如图所示,本实施例主要包括以下步骤:
步骤S802,控制泳池清洁机器人由第一池壁移动至池底。
可选地,在泳池清洁机器人在沿第一池壁上的任意一个下行清扫路段的移动过程中,碰撞到第二池壁的情况下,可根据泳池清洁机器人在碰撞第二池壁时,沿当前下行清扫路段移动的移动距离,采用不同的移动方式控制泳池清洁机器人由第一池壁移动至池底。
请参考图10A,本步骤可进一步包括以下处理流程:
步骤S1002,测算泳池清洁机器人在碰撞第二池壁时,沿当前下行清扫路段移动的移动距离。
可选地,可将当前折线路径的当前下行清扫路段中接近池面的路段端点确定为移动起点,根据泳池清洁机器人由移动起点沿当前下行清扫路段移动至第二池壁的移动时间、泳池清洁机器人的移动速度,确定泳池清洁机器人沿当前下行清扫路段移动的实际移动距离。
步骤S1004,判断移动距离是否满足预设避障条件,若是,执行步骤S1006,若否,执行步骤S1008。
可选地,可判断泳池清洁机器人沿当前下行清扫路段移动的实际移动距离相对于当前下行清扫路段的测算移动距离的移动比值是否超过预设比值,据以选择执行步骤S1006或步骤S1008。
可选地,可基于泳池清洁机器人沿当前下行清扫路段移动的实际移动距离、当前下行清扫路段的测算移动距离,判断池壁障碍物的水平高度是否高于预设高度,据以选择执行 步骤S1006或步骤S1008。
步骤S1006,控制泳池清洁机器人沿第一池壁上的当前下行清扫路段返回,直至抵达当前下行清扫路段中接近池面的路段端点,并由路段端点移动至池底。
可选地,可控制泳池清洁机器人沿第一池壁上的当前下行清扫路段返回,直至抵达当前下行清扫路段中接近池面的路段端点,并沿连接当前下行清扫路段的当前上行清扫路段斜向下移至所述池底。
例如,参考图9A,可控制泳池清洁机器人沿第一池壁上的当前下行清扫路段BC返回(例如前进移动),直至抵达路段端点B,并沿连接当前下行清扫路段BC的当前上行清扫路段AB斜向下移(例如,后退移动)至池底。
可选地,可控制泳池清洁机器人沿第一池壁上的当前下行清扫路段返回,直至抵达当前下行清扫路段中接近池面的路段端点,并基于路段端点沿第一池壁垂直下移至池底。
例如,参考图9A,可控制泳池清洁机器人沿第一池壁上的当前下行清扫路段BC返回(例如前进移动),并在抵达路段端点B后,直接由路段端点B沿第一池壁垂直下移(例如,后退移动)至位置D,以抵达池底。
步骤S1008,基于泳池清洁机器人的当前位置、泳池的水深、泳池清洁机器人的滚刷长度,确定第一池壁上的由泳池清洁机器人的当前位置向池面延伸的上行清扫路段。
例如,参考图9B,可基于泳池清洁机器人的当前位置C、基于当前下行清扫路段BC对应的当前折线路径ABC的前续折线路径(其中,前续折线路径图9B中未示出,可参考图6A所示的前续折线路径XYA)所测得的水深、泳池清洁机器人的滚刷长度,确定第一池壁上的由泳池清洁机器人的当前位置C向池面的方向延伸的上行清扫路段(其中,上行清扫路段在图9B中未示出,可参考图6A所示的上行清扫路段C4D)。
步骤S1010,判断泳池清洁机器人是否可沿上行清扫路段移动,若可移动,则重复执行本步骤,直至当判断池清洁机器人无法沿上行清扫路段移动时,返回步骤S1006或执行步骤S1012。
可选地,可当判断池清洁机器人无法沿上行清扫路段移动时,返回步骤S1006。
例如,参考图9B,当判断泳池清洁机器人无法沿连接当前下行清扫路段BC的上行清扫路段移动(例如前进移动)时,可执行步骤S1006的移动技术方案,通过控制泳池清洁机器人沿连接当前下行清扫路段BC返回(例如,前进移动),直至抵达路段端点B,并在路段端点B处,沿连接当前下行清扫路段BC的当前上行清扫路段AB斜向下移(例如,后退移动)至池底,或者,控制泳池清洁机器人直接由路段端点B沿第一池壁垂直下移(例如后退移动)至位置D,以抵达池底。
可选地,可当判断池清洁机器人无法沿连接当前下行清扫路段BC的上行清扫路段移动时,执行步骤S1012。
步骤S1012,控制泳池清洁机器人沿第一池壁和第二池壁的交界线移动至池底。
例如,参考图9B,可控制泳池清洁机器人沿第一池壁和第二池壁的交界线由位置C移动至位置J,以抵达池底。
可选地,在泳池清洁机器人在沿第一池壁上的任意一个上行清扫路段的移动过程中,碰撞到第二池壁的情况下,可根据泳池清洁机器人在碰撞第二池壁时,沿当前上行清扫路段移动的移动距离,采用不同的移动方式控制泳池清洁机器人由第一池壁移动至池底。
请参考图10B,本步骤可进一步包括以下处理流程:
步骤S1032,测算泳池清洁机器人在碰撞第二池壁时,沿当前上行清扫路段移动的移动距离。
可选地,可将当前折线路径的当前上行清扫路段中接近池底的路段端点确定为移动起点,根据泳池清洁机器人由移动起点沿当前上行清扫路段移动至第二池壁的移动时间、泳池清洁机器人的移动速度,确定泳池清洁机器人沿当前上行清扫路段移动的实际移动距离。
步骤S1034,判断移动距离是否满足预设避障条件,若是,执行步骤S1036,若否,执行步骤S1038。
可选地,判断泳池清洁机器人沿当前上行清扫路段移动的实际移动距离相对于当前上行清扫路段的测算移动距离的移动比值是否超过预设比值,据以选择执行步骤S1036或步骤S1038。
可选地,可基于泳池清洁机器人沿当前上行清扫路段移动的实际移动距离、当前上行清扫路段的测算移动距离,判断池壁障碍物的水平高度是否高于预设高度,据以选择执行步骤S1036或步骤S1038。
步骤S1036,控制泳池清洁机器人移动至池底。
可选地,可控制泳池清洁机器人沿当前上行清扫路段斜向下移至池底。
例如,参考图9E,可控制泳池清洁机器人沿第一池壁上的当前上行清扫路段AB斜向下移(例如,后退移动)至池底。
可选地,可基于路段端点沿第一池壁垂直下移至池底,亦即,沿第一池壁和第二池壁的交界线移动至池底。例如,参考图9E,可基于路段端点B,沿第一池壁垂直下移(例如,后退移动)至位置J,以抵达池底。
步骤S1038,基于泳池清洁机器人的当前位置、泳池的水深、泳池清洁机器人的滚刷长度,确定第一池壁上的由泳池清洁机器人的当前位置向池底延伸的下行清扫路段。
例如,参考图9D,可基于泳池清洁机器人的当前位置B、基于当前上行清扫路段AB对应的当前折线路径ABC的前续折线路径(其中,折线路径ABC中的下行清扫路段BC未示出)所测得的水深、泳池清洁机器人的滚刷长度,确定第一池壁上的由泳池清洁机器人的当前位置B向池底的方向延伸的下行清扫路段(图9D未示出,可参考图6B所示的下行清扫路段B1C1)。
步骤S1040,判断泳池清洁机器人是否可沿下行清扫路段移动,若可移动,则重复执行本步骤,直至当判断池清洁机器人无法沿下行清扫路段移动时,执行步骤S1042。
步骤S1042,控制泳池清洁机器人沿当前上行清扫路段斜向下移至池底,或沿第一池壁和第二池壁的交界线垂直下移至池底。
例如,参考图9D,当判断泳池清洁机器人无法沿连接当前上行清扫路段AB的下行清扫路段移动(例如后退移动)时,可通过控制泳池清洁机器人沿当前上行清扫路段AB斜向下移(例如,后退移动)至池底,或者,控制泳池清洁机器人直接由位置B沿第一池壁和第二池壁的交界线垂直下移(例如后退移动)至位置J,以抵达池底。
步骤S804,控制泳池清洁机器人沿池底朝远离第一池壁的方向移动,直至泳池清洁机器人与第一池壁之间的间隔距离可满足泳池清洁机器人执行转向操作。
例如,当泳池清洁机器人下移至池底的位置A时(参考图9A至图9B、或参考图9D至9F),可控制泳池清洁机器人沿池底朝远离第一池壁的方向移动至位置E,以使泳池清洁机器人与第一池壁之间的间隔距离可满足泳池清洁机器人执行转向操作。
又如,当泳池清洁机器人下移至池底的位置D时(参考图9A至图9C),可控制泳池清洁机器人沿池底朝远离第一池壁的方向移动至位置F,以使泳池清洁机器人与第一池壁之间的间隔距离可满足泳池清洁机器人执行转向操作。
再如,当泳池清洁机器人下移至池底的位置J时(参考图9B),可控制泳池清洁机器人沿池底朝远离第一池壁的方向移动至位置F1,以使泳池清洁机器人与第一池壁之间的间隔距离可满足泳池清洁机器人执行转向操作。
又再如,当泳池清洁机器人下移至池底的位置J时(参考图9D或图9E),可控制泳池清洁机器人沿池底朝远离第一池壁的方向移动至位置F,以使泳池清洁机器人与第一池壁之间的间隔距离可满足泳池清洁机器人执行转向操作。
步骤S806,控制泳池清洁机器人朝面向第二池壁的方向执行转向操作。
例如,可控制泳池清洁机器人在位置E(参考图9A至图9B)执行顺时针旋转或在位置F(参考图9A至图9C,)执行顺时针旋转,以使泳池清洁机器人头端面朝第二池壁。
又如,可控制泳池清洁机器人在位置E(参考图9D至图9F)或在位置F(参考图9D 或图9E)执行顺时针旋转,以使泳池清洁机器人头端面朝第二池壁。
步骤S808,判断转向操作是否成功,若成功,执行步骤S810,若不成功,执行步骤S814。
步骤S810,控制泳池清洁机器人沿池底朝第二池壁的方向移动。
例如,可控制泳池清洁机器人沿池壁由位置E(参考图9A至图9B,)或由位置F(参考图9A至图9C),抑或由位置F1(参考图9B)朝位置G的方向移动。
又如,参考图9D或图9E,控制泳池清洁机器人沿池壁由位置E朝位置G的方向移动。
步骤S812,控制泳池清洁机器人由池底移动至第二池壁。
例如,控制泳池清洁机器人执行上墙操作,以由池底移动至第二池壁,并沿池壁上的清扫路线(例如图9A、图9B、图9C上的折线路径GHI)移动,以执行第二池壁的池壁清扫任务。
又如,可控制泳池清洁机器人执行上墙操作,以由池底移动至第二池壁,并沿池壁上的清扫路线(例如图9D至图9F上的折线路径GHI)移动,以执行第二池壁的池壁清扫任务。
步骤S814,控制泳池清洁机器人朝背向第二池壁的方向执行转向操作,并朝远离第二池壁的方向移动,直至泳池清洁机器人与第二池壁之间的间隔距离可满足所述泳池清洁机器人执行调头操作,控制泳池清洁机器人执行调头操作,并在完成调头操作后沿池底朝接近第二池壁的方向移动,并继续执行步骤S812。
例如,参考图9C,当泳池清洁机器人在位置F处无法执行顺时针旋转,以使泳池清洁机器人头端面朝第二池壁时,则控制泳池清洁机器人在位置E处执行逆时针旋转,以使泳池清洁机器人头端背朝第二池壁的方向,并控制泳池清洁机器人朝远离第二池壁的方向移动位置W,使得泳池清洁机器人与第二池壁之间的间隔距离可满足泳池清洁机器人执行调头操作,并控制泳池清洁机器人执行调头操作,且在完成调头操作后沿池底由位置W朝接近第二池壁的方向移动至位置G,并继续执行步骤S812。
又如,参考图9F,当泳池清洁机器人在位置E处无法执行顺时针旋转,以使泳池清洁机器人头端面朝第二池壁时,则控制泳池清洁机器人在位置E处执行逆时针旋转,以使泳池清洁机器人头端背朝第二池壁的方向,并控制泳池清洁机器人朝远离第二池壁的方向移动位置D,使得泳池清洁机器人与第二池壁之间的间隔距离可满足泳池清洁机器人执行调头操作,并控制泳池清洁机器人执行调头操作,且在完成调头操作后沿池底由位置D朝接近第二池壁的方向移动至位置G,并继续执行步骤S812。
综上所述,本申请各实施例提供的池壁避障移动方案,当泳池清洁机器人沿第一池壁 执行池壁清扫任务的过程中碰撞到第二池壁时,可经由池底的转移路径由第一池壁移动至第二池壁,并继续执行第二池壁的池壁清扫任务,提高了池壁清扫任务的智能化,提升了用户的使用体验。
图11示出了本申请示例性实施例的泳池清洁机器人的池壁避障移动装置的结构框图。如图所示,本实施例的泳池清洁机器人的池壁避障移动装置1100主要包括移动控制模块1102、避障控制模块1104。
移动控制模块1102,用于控制泳池清洁机器人沿泳池的池壁上的清扫路线移动以执行池壁清扫任务。
避障控制模块1104,用于在所述泳池清洁机器人沿所述清扫路线移动的过程中,碰撞池壁障碍物后,控制所述泳池清洁机器人在池壁上继续执行所述池壁清扫任务;或者控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务。
可选地,所述清扫路线至少包括多个下行清扫路段和多个上行清扫路段,避障控制模块1104还用于:在所述泳池清洁机器人沿所述池壁上的任意一个下行清扫路段移动的过程中,碰撞池壁障碍物后,确定所述泳池清洁机器人沿当前下行清扫路段移动的移动距离,若所述泳池清洁机器人沿当前下行清扫路段移动的移动距离满足预设避障条件,控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务,若所述泳池清洁机器人沿当前下行清扫路段移动的移动距离不满足预设避障条件,控制所述泳池清洁机器人在池壁上继续执行所述池壁清扫任务;或者,在所述泳池清洁机器人沿所述池壁上的任意一个上行清扫路段移动的过程中,碰撞池壁障碍物后,确定所述泳池清洁机器人沿当前上行清扫路段移动的移动距离,若所述泳池清洁机器人沿当前上行清扫路段移动的移动距离满足预设避障条件,控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务,若所述泳池清洁机器人沿当前上行清扫路段移动的移动距离不满足预设避障条件,控制所述泳池清洁机器人在池壁上继续执行所述池壁清扫任务。
可选地,所述池壁上的清扫路线包括依次连续的多个折线路径,每一个所述折线路径由所述池壁上的一个上行清扫路段和连接所述上行清扫路段的一个下行清扫路段所构成,池壁避障移动装置1100还包括路径生成模块(未示出),用于根据所述泳池清洁机器人沿前续折线路径移动所测得的水深、所述泳池清洁机器人的滚刷长度,确定路段夹角,或者,在所述泳池清洁机器人沿前续折线路径移动碰撞到池壁障碍物的情况下,获取前续折线路径的路段夹角;根据所述路段夹角、所述泳池清洁机器人的当前位置,生成接续所述前续 折线路径的当前折线路径中的当前上行清扫路段与当前下行清扫路段。
可选地,所述泳池清洁机器人可沿所述池壁上的任意一个下行清扫路段的方向,由所述泳池的池面向所述泳池的池底的方向后退移动;或者,所述泳池清洁机器人可沿所述池壁上的任意一个上行清扫路段的方向,由所述泳池的池底向所述泳池的池面的方向前进移动。
可选地,路径生成模块还用于:根据前续折线路径中的前续下行清扫路路段和/或前续下行清扫路段的路段夹角、所述泳池清洁机器人沿前续折线路径中的前续上行清扫路段和/或前续下行清扫路段移动的移动时间和移动速度,更新所述泳池的水深;根据更新后的所述泳池的水深、所述泳池清洁机器人的滚刷长度、所述泳池清洁机器人的当前位置,确定所述当前折线路径中的当前上行清扫路段和当前下行清扫路段各自的路段夹角;所述当前折线路径中的当前上行清扫路段的路段夹角与当前下行清扫路段的路段夹角相同。
可选地,避障控制模块1104还用于:将当前折线路径的当前下行清扫路段中接近所述池面的路段端点确定为移动起点;根据所述泳池清洁机器人由所述移动起点沿所述当前下行清扫路段移动至所述池壁障碍物的移动时间、所述泳池清洁机器人的移动速度,确定所述泳池清洁机器人沿所述当前下行清扫路段移动的实际移动距离。
可选地,避障控制模块1104还用于:将当前折线路径的当前上行清扫路段中接近所述池底的路段端点确定为移动起点,并根据所述泳池清洁机器人由所述移动起点沿所述当前上行清扫路段移动至所述池壁障碍物的移动时间、所述泳池清洁机器人的移动速度,确定所述泳池清洁机器人沿所述当前上行清扫路段移动的实际移动距离。
可选地,避障控制模块1104还用于:根据所述泳池的水深、所述路段夹角,确定所述当前下行清扫路段或所述当前上行清扫路段的测算移动距离;根据所述泳池清洁机器人沿所述当前下行清扫路段或所述当前上行清扫路段移动的实际移动距离、所述当前下行清扫路段或所述当前上行清扫路段的测算移动距离,确定所述泳池清洁机器人沿所述当前下行清扫路段或所述当前上行清扫路段移动的移动比值;若所述移动比值未超过预设比值,获得所述移动距离满足所述预设避障条件的判断结果,若所述移动比值超过所述预设比值,获得所述移动距离不满足预设避障条件的判断结果。
可选地,所述预设比值介于0.5至1之间。
可选地,避障控制模块1104还用于:若所述泳池清洁机器人沿当前下行清扫路段移动的移动距离满足预设避障条件,控制所述泳池清洁机器人由所述池壁移动至所述池底;控制所述泳池清洁机器人沿所述池底上的避障路径移动,以避开所述池壁障碍物;控制所述泳池清洁机器人由所述池底移动至所述池壁,并沿所述池壁上的清扫路线移动以继续执 行池壁清扫任务。
可选地,避障控制模块1104还用于:控制所述泳池清洁机器人沿所述池壁上的当前下行清扫路段返回,直至抵达所述当前下行清扫路段中接近所述池面的路段端点;控制所述泳池清洁机器人沿连接所述当前下行清扫路段的当前上行清扫路段斜向下移至所述池底;或者,控制所述泳池清洁机器人基于所述路段端点沿所述池壁垂直下移至所述池底。
可选地,所述池底上的避障路径包括ㄇ型路径、V型路径、环形路径中的一个。
可选地,避障控制模块1104还用于:控制所述泳池清洁机器人由所述池底移动至所述池壁;基于所述泳池清洁机器人的当前位置、所述泳池的水深、所述泳池清洁机器人的滚刷长度,更新所述池壁上的清扫路线;控制所述泳池清洁机器人沿所述池壁上更新后的清扫路线移动,以继续执行池壁清扫任务;其中,所述泳池的水深为基于所述前续折线路径移动所测得的水深。
可选地,避障控制模块1104还用于:若所述泳池清洁机器人沿当前下行清扫路段移动的移动距离不满足预设避障条件,控制所述泳池清洁机器人沿所述池壁上的更新后的清扫路线移动,以继续执行池壁清扫任务。
可选地,避障控制模块1104还用于:获取当前下行清扫路段的路段夹角,或根据所述泳池的水深、所述泳池清洁机器人的滚刷长度,确定路段夹角;基于所述泳池清洁机器人的当前位置、所述路段夹角,确定所述池壁上的由所述泳池清洁机器人的当前位置向所述池面延伸的上行清扫路段,并将其更新为当前上行清扫路段;控制所述泳池清洁机器人沿所述当前上行清扫路段移动,以继续执行池壁清扫任务;其中,所述泳池的水深为基于所述前续折线路径移动所测得的水深。
可选地,避障控制模块1104还用于:在所述当前位置根据所述路段夹角,控制所述泳池清机器人执行差速运动,并基于所述泳池清洁机器人执行差速运动后的朝向,控制所述泳池清洁机器人由所述当前位置朝所述池面的方向移动,以确定由所述泳池机器人的当前位置向所述池面延伸的上行清扫路段。
可选地,避障控制模块1104还用于:若所述泳池清洁机器人沿当前上行清扫路段移动的移动距离满足预设避障条件,控制所述泳池清洁机器人由所述池壁移动至所述池底;控制所述泳池清洁机器人沿所述池底上的避障路径移动,以避开所述池壁障碍物;控制所述泳池清洁机器人由所述池底移动至所述池壁,并沿所述池壁上的清扫路线移动。
可选地,避障控制模块1104还用于:控制所述泳池清洁机器人沿当前上行清扫路段斜向下移至所述池底;或者控制所述泳池清洁机器人沿所述池壁垂直下移至所述池底。
可选地,所述池底上的避障路径包括ㄇ型路径、V型路径、环形路径的任一个。
可选地,避障控制模块1104还用于:控制所述泳池清洁机器人由所述池底移动至所述池壁,并基于所述泳池清洁机器人的当前位置、所述泳池的水深、所述泳池清洁机器人的滚刷长度,更新所述池壁上的清扫路线,且控制所述泳池清洁机器人沿所述池壁上更新后的清扫路线移动,以继续执行池壁清扫任务;其中,所述泳池的水深为基于所述前续折线路径移动所测得的水深。
可选地,避障控制模块1104还用于:若泳池清洁机器人沿当前上行清扫路段移动的所述移动距离不满足预设避障条件,获取当前上行清扫路段的路段夹角,或根据所述泳池的水深、所述泳池清洁机器人的滚刷长度,确定路段夹角;基于所述泳池清洁机器人的当前位置、所述路段夹角,确定所述池壁上的由所述泳池清洁机器人的当前位置向所述池底延伸的下行清扫路段;控制所述泳池清洁机器人沿所述下行清扫路段移动,以继续执行池壁清扫任务;其中,所述泳池的水深为基于所述前续折线路径移动所测得的水深。
可选地,避障控制模块1104还用于:在所述当前位置根据所述路段夹角,控制所述泳池清机器人执行差速运动,并基于所述泳池清洁机器人执行差速运动后的朝向,控制所述泳池清洁机器人由所述当前位置朝所述池底的方向移动,以确定由所述泳池机器人的当前位置向所述池底延伸的下行清扫路段。
可选地,所述池壁包括相邻设置的第一池壁和第二池壁,其中,所述泳池清洁机器人在沿所述第一池壁上的清扫路线的移动过程中,碰撞到的池壁障碍物还包括所述第二池壁;且避障控制模块1104还用于:在所述泳池清洁机器人沿所述第一池壁上的任意一个下行清扫路段或任意一个上行清扫路段移动的过程中,碰撞所述第二池壁时,控制所述泳池清洁机器人经由所述池底上的转移路径由所述第一池壁移动至所述第二池壁,并继续执行所述第二池壁的池壁清扫任务。
可选地,避障控制模块1104还用于:控制所述泳池清洁机器人由所述第一池壁移动至所述池底;控制所述泳池清洁机器人沿所述池底朝远离所述第一池壁的方向移动,直至所述泳池清洁机器人与所述第一池壁之间的间隔距离可满足所述泳池清洁机器人执行转向操作;控制所述泳池清洁机器人朝面向所述第二池壁的方向执行转向操作,并在完成转向操作后沿所述池底朝接近所述第二池壁的方向移动;控制所述泳池清洁机器人由所述池底移动至所述第二池壁。
可选地,避障控制模块1104还用于:若所述泳池清洁机器人朝面向所述第二池壁的方向执行转向操作不成功,控制所述泳池清洁机器人朝背向所述第二池壁的方向执行转向操作;控制所述泳池清洁机器人朝远离所述第二池壁的方向移动,直至所述泳池清洁机器人与所述第二池壁之间的间隔距离可满足所述泳池清洁机器人执行调头操作;控制所述泳 池清洁机器人执行调头操作,并在完成调头操作后沿所述池底朝接近所述第二池壁的方向移动;控制所述泳池清洁机器人由所述池底移动至所述第二池壁。
可选地,避障控制模块1104还用于:确定所述泳池清洁机器人在碰撞所述第二池壁时,沿当前下行清扫路段移动的移动距离;若所述移动距离满足预设避障条件,控制所述泳池清洁机器人沿所述第一池壁上的当前下行清扫路段返回,直至抵达所述当前下行清扫路段中接近所述池面的路段端点,并由所述路段端点移动至所述池底;若所述移动距离不满足预设避障条件,基于所述泳池清洁机器人的当前位置、所述泳池的水深、所述泳池清洁机器人的滚刷长度,确定所述第一池壁上的由所述泳池清洁机器人的当前位置向所述池面方向延伸的上行清扫路段,并当所述泳池清洁机器人无法沿所述上行清扫路段移动时,执行若所述移动距离满足预设避障条件的步骤,或者沿所述第一池壁和所述第二池壁的交界线移动至所述池底。
可选地,避障控制模块1104还用于:控制所述泳池清洁机器人沿连接所述当前下行清扫路段的当前上行清扫路段斜向下移至所述池底;或者控制所述泳池清洁机器人由所述路段端点沿所述第一池壁垂直下移至所述池底。
可选地,避障控制模块1104还用于:确定所述泳池清洁机器人在碰撞所述第二池壁时,沿当前上行清扫路段移动的移动距离;若所述移动距离满足预设避障条件,控制所述泳池清洁机器人沿当前上行清扫路段斜向下移至所述池底,或基于所述路段端点沿所述第一池壁垂直下移至所述池底;若所述移动距离不满足预设避障条件,基于所述泳池清洁机器人的当前位置、所述泳池的水深、所述泳池清洁机器人的滚刷长度,确定所述第一池壁上的由所述泳池清洁机器人的当前位置向所述池底延伸的下行清扫路段,并当所述泳池清洁机器人无法沿所述下行清扫路段移动时,控制所述泳池清洁机器人沿当前上行清扫路段斜向下移至所述池底,或沿所述第一池壁和所述第二池壁的交界线垂直下移至所述池底。
此外,本申请实施例的泳池清洁机器人的池壁避障移动装置1100还可用于实现前述各泳池清洁机器人的池壁避障移动方法实施例中的其他步骤,并具有相应的方法步骤实施例的有益效果,在此不再赘述。
本申请示例性实施例还提供一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器。所述存储器存储有能够被所述至少一个处理器执行的计算机程序,所述计算机程序在被所述至少一个处理器执行时用于使所述电子设备执行根据本申请各实施例的方法。
本申请示例性实施例还提供一种存储有计算机程序的非瞬时计算机可读存储介质,其中,所述计算机程序在被计算机的处理器执行时用于使所述计算机执行根据本申请各实施 例的方法。
本申请示例性实施例还提供一种计算机程序产品,包括计算机程序,其中,所述计算机程序在被计算机的处理器执行时用于使所述计算机执行根据本申请各实施例的方法。
参考图12,现将描述可以作为本申请的服务器或客户端的电子设备1200的结构框图,其是可以应用于本申请的各方面的硬件设备的示例。电子设备旨在表示各种形式的数字电子的计算机设备,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图12所示,电子设备1200包括计算单元1201,其可以根据存储在只读存储器(ROM)1202中的计算机程序或者从存储单元1208加载到随机访问存储器(RAM)1203中的计算机程序,来执行各种适当的动作和处理。在RAM 1203中,还可存储设备1200操作所需的各种程序和数据。计算单元1201、ROM 1202以及RAM 1203通过总线1204彼此相连。输入/输出(I/O)接口1205也连接至总线1204。
电子设备1200中的多个部件连接至I/O接口1205,包括:输入单元1206、输出单元1207、存储单元1208以及通信单元1209。输入单元1206可以是能向电子设备1200输入信息的任何类型的设备,输入单元1206可以接收输入的数字或字符信息,以及产生与电子设备的用户设置和/或功能控制有关的键信号输入。输出单元1207可以是能呈现信息的任何类型的设备,并且可以包括但不限于显示器、扬声器、视频/音频输出终端、振动器和/或打印机。存储单元1204可以包括但不限于磁盘、光盘。通信单元1209允许电子设备1200通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据,并且可以包括但不限于调制解调器、网卡、红外通信设备、无线通信收发机和/或芯片组,例如蓝牙TM设备、WiFi设备、WiMax设备、蜂窝通信设备和/或类似物。
计算单元1201可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元1201的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元1201执行上文所描述的各个方法和处理。例如,在一些实施例中,前述各实施例的泳池清洁机器人的池壁避障移动方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元1208。在一些实施例中,计算机程序的部分或者全部可以经由ROM 1202和/或通信单元1209而被 载入和/或安装到电子设备1200上。在一些实施例中,计算单元1201可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行泳池清洁机器人的池壁避障移动方法。
用于实施本申请的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
如本申请使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的 数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上所述仅为本申请实施例示意性的具体实施方式,并非用以限定本申请实施例的范围。任何本领域的技术人员,在不脱离本申请实施例的构思和原则的前提下所作的等同变化、修改与结合,均应属于本申请实施例保护的范围。

Claims (30)

  1. 一种泳池清洁机器人的池壁避障移动方法,包括:
    控制泳池清洁机器人沿泳池的池壁上的清扫路线移动以执行池壁清扫任务;
    在所述泳池清洁机器人沿所述清扫路线移动的过程中,碰撞池壁障碍物后,
    控制所述泳池清洁机器人在所述池壁上继续执行所述池壁清扫任务;或者
    控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务。
  2. 根据权利要求1所述的方法,其特征在于,所述清扫路线至少包括多个下行清扫路段和多个上行清扫路段,所述方法还包括:
    在所述泳池清洁机器人沿所述池壁上的任意一个下行清扫路段移动的过程中,碰撞池壁障碍物后,确定所述泳池清洁机器人沿当前下行清扫路段移动的移动距离,若所述泳池清洁机器人沿当前下行清扫路段移动的移动距离满足预设避障条件,控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务,若所述泳池清洁机器人沿当前下行清扫路段移动的移动距离不满足预设避障条件,控制所述泳池清洁机器人在池壁上继续执行所述池壁清扫任务;或者
    在所述泳池清洁机器人沿所述池壁上的任意一个上行清扫路段移动的过程中,碰撞池壁障碍物后,确定所述泳池清洁机器人沿当前上行清扫路段移动的移动距离,若所述泳池清洁机器人沿当前上行清扫路段移动的移动距离满足预设避障条件,控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务,若所述泳池清洁机器人沿当前上行清扫路段移动的移动距离不满足预设避障条件,控制所述泳池清洁机器人在池壁上继续执行所述池壁清扫任务。
  3. 根据权利要求2所述的方法,其特征在于,所述池壁上的清扫路线包括依次连续的多个折线路径,每一个所述折线路径由所述池壁上的一个上行清扫路段和连接所述上行清扫路段的一个下行清扫路段所构成,所述池壁上的清扫路线可通过以下方式确定:
    根据所述泳池清洁机器人沿前续折线路径移动所测得的水深、所述泳池清洁机器人的滚刷长度,确定路段夹角,或者,在所述泳池清洁机器人沿前续折线路径移动碰撞到池壁障碍物的情况下,获取前续折线路径的路段夹角;
    根据所述路段夹角、所述泳池清洁机器人的当前位置,生成接续所述前续折线路径的当前折线路径中的当前上行清扫路段与当前下行清扫路段。
  4. 根据权利要求3所述的方法,其特征在于,
    所述泳池清洁机器人可沿所述池壁上的任意一个下行清扫路段的方向,由所述泳池的池面向所述泳池的池底的方向后退移动;或者,
    所述泳池清洁机器人可沿所述池壁上的任意一个上行清扫路段的方向,由所述泳池的池底向所述泳池的池面的方向前进移动。
  5. 根据权利要求3所述的方法,其特征在于,在根据所述泳池清洁机器人沿前续折线路径移动所测得的水深、所述泳池清洁机器人的滚刷长度,确定路段夹角的情况下,所述方法还包括:
    根据前续折线路径中的前续下行清扫路路段和/或前续下行清扫路段的路段夹角、所述泳池清洁机器人沿前续折线路径中的前续上行清扫路段和/或前续下行清扫路段移动的移动时间和移动速度,更新所述泳池的水深;
    根据更新后的所述泳池的水深、所述泳池清洁机器人的滚刷长度,确定所述当前折线路径中的当前上行清扫路段和当前下行清扫路段各自的路段夹角;
    所述当前折线路径中的当前上行清扫路段的路段夹角与当前下行清扫路段的路段夹角相同。
  6. 根据权利要求4所述的方法,其特征在于,
    所述泳池清洁机器人沿当前下行清扫路段移动的移动距离可通过以下方式确定:
    将当前折线路径的当前下行清扫路段中接近所述池面的路段端点确定为移动起点,并根据所述泳池清洁机器人由所述移动起点沿所述当前下行清扫路段移动至所述池壁障碍物的移动时间、所述泳池清洁机器人的移动速度,确定所述泳池清洁机器人沿所述当前下行清扫路段移动的实际移动距离;或者
    所述泳池清洁机器人沿当前上行清扫路段移动的移动距离可通过以下方式确定:
    将当前折线路径的当前上行清扫路段中接近所述池底的路段端点确定为移动起点,并根据所述泳池清洁机器人由所述移动起点沿所述当前上行清扫路段移动至所述池壁障碍物的移动时间、所述泳池清洁机器人的移动速度,确定所述泳池清洁机器人沿所述当前上行清扫路段移动的实际移动距离。
  7. 根据权利要求6所述的方法,其特征在于,所述泳池清洁机器人的移动距离是否满足预设避障条件可通过以下方式确定:
    根据所述泳池的水深、所述路段夹角,确定所述当前下行清扫路段或所述当前上行清扫路段的测算移动距离;
    根据所述泳池清洁机器人沿所述当前下行清扫路段或所述当前上行清扫路段移动的实际移动距离、所述当前下行清扫路段或所述当前上行清扫路段的测算移动距离,确定所述泳池清洁机器人沿所述当前下行清扫路段或所述当前上行清扫路段移动的移动比值;
    若所述移动比值未超过预设比值,获得所述移动距离满足所述预设避障条件的判断结果,若所述移动比值超过所述预设比值,获得所述移动距离不满足预设避障条件的判断结果。
  8. 根据权利要求7所述的方法,其特征在于,所述预设比值介于0.5至1之间。
  9. 根据权利要求2至8中任一项所述的方法,其特征在于,所述若所述泳池清洁机器人沿当前下行清扫路段移动的移动距离满足预设避障条件,控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务,包括:
    控制所述泳池清洁机器人由所述池壁移动至所述池底;
    控制所述泳池清洁机器人沿所述池底上的避障路径移动,以避开所述池壁障碍物;
    控制所述泳池清洁机器人由所述池底移动至所述池壁,并沿所述池壁上的清扫路线移动以继续执行池壁清扫任务。
  10. 根据权利要求9所述的方法,其特征在于,所述控制所述泳池清洁机器人由所述池壁移动至所述池底,包括:
    控制所述泳池清洁机器人沿所述池壁上的当前下行清扫路段返回,直至抵达所述当前下行清扫路段中接近所述池面的路段端点;
    控制所述泳池清洁机器人沿连接所述当前下行清扫路段的当前上行清扫路段斜向下移至所述池底;或者,控制所述泳池清洁机器人基于所述路段端点沿所述池壁垂直下移至所述池底。
  11. 根据权利要求9所述的方法,其特征在于,所述池底上的避障路径包括ㄇ型路径、V型路径、环形路径中的一个。
  12. 根据权利要求9所述的方法,其特征在于,所述控制所述泳池清洁机器人由所述池底移动至所述池壁,并沿所述池壁上的所述清扫路线移动以继续执行池壁清扫任务,包括:
    控制所述泳池清洁机器人由所述池底移动至所述池壁,并基于所述泳池清洁机器人的当前位置、所述泳池的水深、所述泳池清洁机器人的滚刷长度,更新所述池壁上的清扫路线,且控制所述泳池清洁机器人沿所述池壁上更新后的清扫路线移动,以继续执行池壁清扫任务;
    其中,所述泳池的水深为基于所述前续折线路径移动所测得的水深。
  13. 根据权利要求2至8中任一项所述的方法,其特征在于,所述若所述泳池清洁机器人沿当前下行清扫路段移动的移动距离不满足预设避障条件,控制所述泳池清洁机器人在池壁上继续执行所述池壁清扫任务,包括:
    获取当前下行清扫路段的路段夹角,或根据所述泳池的水深、所述泳池清洁机器人的滚刷长度,确定路段夹角;
    基于所述泳池清洁机器人的当前位置、所述路段夹角,确定所述池壁上的由所述泳池清洁机器人的当前位置向所述池面延伸的上行清扫路段;
    控制所述泳池清洁机器人沿所述上行清扫路段移动,以继续执行池壁清扫任务;
    其中,所述泳池的水深为基于所述前续折线路径移动所测得的水深。
  14. 根据权利要求13中所述的方法,其特征在于,所述基于所述泳池清洁机器人的当前位置、所述路段夹角,确定所述池壁上的由所述泳池清洁机器人的当前位置向所述池面延伸的上行清扫路段,包括:
    在所述当前位置根据所述路段夹角,控制所述泳池清机器人执行差速运动,并基于所述泳池清洁机器人执行差速运动后的朝向,控制所述泳池清洁机器人由所述当前位置朝所述池面的方向移动,以确定由所述泳池机器人的当前位置向所述池面延伸的上行清扫路段。
  15. 根据权利要求2至8中任一项所述的方法,其特征在于,所述若所述泳池清洁机器人沿当前上行清扫路段移动的移动距离满足预设避障条件,控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务,包括:
    控制所述泳池清洁机器人由所述池壁移动至所述池底;
    控制所述泳池清洁机器人沿所述池底上的避障路径移动,以避开所述池壁障碍物;
    控制所述泳池清洁机器人由所述池底移动至所述池壁,并沿所述池壁上的清扫路线移动。
  16. 根据权利要求15所述的方法,其特征在于,所述控制所述泳池清洁机器人由所述池壁移动至所述池底,包括:
    控制所述泳池清洁机器人沿当前上行清扫路段斜向下移至所述池底;或者
    控制所述泳池清洁机器人沿所述池壁垂直下移至所述池底。
  17. 根据权利要求15所述的方法,其特征在于,所述池底上的避障路径包括ㄇ型路径、V型路径、环形路径的任一个。
  18. 根据权利要求15所述的方法,其特征在于,所述控制所述泳池清洁机器人由所述池底移动至所述池壁,并沿所述池壁上的所述清扫路线移动,包括:
    控制所述泳池清洁机器人由所述池底移动至所述池壁,并基于所述泳池清洁机器人的当前位置、所述泳池的水深、所述泳池清洁机器人的滚刷长度,更新所述池壁上的清扫路线,且控制所述泳池清洁机器人沿所述池壁上更新后的清扫路线移动,以继续执行池壁清扫任务;
    其中,所述泳池的水深为基于所述前续折线路径移动所测得的水深。
  19. 根据权利要求2至8中任一项所述的方法,其特征在于,所述若泳池清洁机器人沿当前上行清扫路段移动的所述移动距离不满足预设避障条件,控制所述泳池清洁机器人 在池壁上继续执行所述池壁清扫任务,包括:
    获取当前上行清扫路段的路段夹角,或根据所述泳池的水深、所述泳池清洁机器人的滚刷长度,确定路段夹角;
    基于所述泳池清洁机器人的当前位置、所述路段夹角,确定所述池壁上的由所述泳池清洁机器人的当前位置向所述池底延伸的下行清扫路段;
    控制所述泳池清洁机器人沿所述下行清扫路段移动,以继续执行池壁清扫任务;
    其中,所述泳池的水深为基于所述前续折线路径移动所测得的水深。
  20. 根据权利要求19中所述的方法,其特征在于,所述基于所述泳池清洁机器人的当前位置、所述路段夹角,确定所述池壁上的由所述泳池清洁机器人的当前位置向所述池底延伸的下行清扫路段,包括:
    在所述当前位置根据所述路段夹角,控制所述泳池清机器人执行差速运动,并基于所述泳池清洁机器人执行差速运动后的朝向,控制所述泳池清洁机器人由所述当前位置朝所述池底的方向移动,以确定由所述泳池机器人的当前位置向所述池底延伸的下行清扫路段。
  21. 根据权利要求1至8中任一项所述的方法,其特征在于,所述池壁包括相邻设置的第一池壁和第二池壁,其中,所述泳池清洁机器人在沿所述第一池壁上的清扫路线的移动过程中,碰撞到的池壁障碍物还包括所述第二池壁;
    所述方法还包括:
    在所述泳池清洁机器人沿所述第一池壁上的任意一个下行清扫路段或任意一个上行清扫路段移动的过程中,碰撞所述第二池壁时,控制所述泳池清洁机器人经由所述池底上的转移路径由所述第一池壁移动至所述第二池壁,并继续执行所述第二池壁的池壁清扫任务。
  22. 根据权利要求21所述的方法,其特征在于,所述控制所述泳池清洁机器人经由所述池底上的转移路径由所述第一池壁移动至所述第二池壁,包括:
    控制所述泳池清洁机器人由所述第一池壁移动至所述池底;
    控制所述泳池清洁机器人沿所述池底朝远离所述第一池壁的方向移动,直至所述泳池清洁机器人与所述第一池壁之间的间隔距离可满足所述泳池清洁机器人执行转向操作;
    控制所述泳池清洁机器人朝面向所述第二池壁的方向执行转向操作,并在完成转向操作后沿所述池底朝接近所述第二池壁的方向移动;
    控制所述泳池清洁机器人由所述池底移动至所述第二池壁。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    若所述泳池清洁机器人朝面向所述第二池壁的方向执行转向操作不成功,控制所述泳池清洁机器人朝背向所述第二池壁的方向执行转向操作;
    控制所述泳池清洁机器人朝远离所述第二池壁的方向移动,直至所述泳池清洁机器人与所述第二池壁之间的间隔距离可满足所述泳池清洁机器人执行调头操作;
    控制所述泳池清洁机器人执行调头操作,并在完成调头操作后沿所述池底朝接近所述第二池壁的方向移动;
    控制所述泳池清洁机器人由所述池底移动至所述第二池壁。
  24. 根据权利要求22所述的方法,其特征在于,所述控制所述泳池清洁机器人由所述第一池壁移动至所述池底,还包括:
    确定所述泳池清洁机器人在碰撞所述第二池壁时,沿当前下行清扫路段移动的移动距离;
    若所述移动距离满足预设避障条件,控制所述泳池清洁机器人沿当前下行清扫路段返回,直至抵达所述当前下行清扫路段中接近所述池面的路段端点,并由所述路段端点移动至所述池底;
    若所述移动距离不满足预设避障条件,基于所述泳池清洁机器人的当前位置、所述泳池的水深、所述泳池清洁机器人的滚刷长度,确定所述第一池壁上的由所述泳池清洁机器人的当前位置向所述池面方向延伸的上行清扫路段,并当所述泳池清洁机器人无法沿所述上行清扫路段移动时,执行若所述移动距离满足预设避障条件的步骤,或者沿所述第一池壁和所述第二池壁的交界线移动至所述池底。
  25. 根据权利要求24所述的方法,其特征在于,所述由所述路段端点移动至所述池底,包括:
    控制所述泳池清洁机器人沿连接所述当前下行清扫路段的当前上行清扫路段斜向下移至所述池底;或者
    控制所述泳池清洁机器人由所述路段端点沿所述第一池壁垂直下移至所述池底。
  26. 根据权利要求22所述的方法,其特征在于,所述控制所述泳池清洁机器人由所述第一池壁移动至所述池底,包括:
    确定所述泳池清洁机器人在碰撞所述第二池壁时,沿当前上行清扫路段移动的移动距离;
    若所述移动距离满足预设避障条件,控制所述泳池清洁机器人沿当前上行清扫路段斜向下移至所述池底,或基于所述路段端点沿所述第一池壁垂直下移至所述池底;
    若所述移动距离不满足预设避障条件,基于所述泳池清洁机器人的当前位置、所述泳池的水深、所述泳池清洁机器人的滚刷长度,确定所述第一池壁上的由所述泳池清洁机器人的当前位置向所述池底延伸的下行清扫路段,并当所述泳池清洁机器人无法沿所述下行清扫路段移动时,控制所述泳池清洁机器人沿当前上行清扫路段斜向下移至所述池底,或 沿所述第一池壁和所述第二池壁的交界线垂直下移至所述池底。
  27. 一种泳池清洁机器人的池壁避障移动装置,包括:
    移动控制模块,用于控制泳池清洁机器人沿泳池的池壁上的清扫路线移动以执行池壁清扫任务;
    避障控制模块,用于在所述泳池清洁机器人沿所述清扫路线移动的过程中,碰撞池壁障碍物后,控制所述泳池清洁机器人在池壁上继续执行所述池壁清扫任务;或者控制所述泳池清洁机器人沿池底上的避障路径移动,并在避开所述池壁障碍物后,返回所述池壁并继续执行所述池壁清扫任务。
  28. 根据权利要求27所述的装置,其特征在于,所述装置装载于泳池清洁机器人中。
  29. 一种电子设备,包括:
    处理器;以及
    存储程序的存储器;
    其中,所述程序包括指令,所述指令在由所述处理器执行时使所述处理器执行根据权利要求1-26中任一项所述的方法。
  30. 一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使计算机执行根据权利要求1-26中任一项所述的方法。
PCT/CN2022/113079 2022-08-05 2022-08-17 泳池清洁机器人的池壁避障移动方法、装置、电子设备 WO2024026938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210937230.5A CN115185282B (zh) 2022-08-05 2022-08-05 泳池清洁机器人的池壁避障移动方法、装置、电子设备
CN202210937230.5 2022-08-05

Publications (1)

Publication Number Publication Date
WO2024026938A1 true WO2024026938A1 (zh) 2024-02-08

Family

ID=83520546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113079 WO2024026938A1 (zh) 2022-08-05 2022-08-17 泳池清洁机器人的池壁避障移动方法、装置、电子设备

Country Status (2)

Country Link
CN (3) CN116466725B (zh)
WO (1) WO2024026938A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116466725B (zh) * 2022-08-05 2023-11-28 智橙动力(北京)科技有限公司 泳池清洁机器人的池壁避障移动方法、装置、电子设备
CN116107304A (zh) * 2023-01-09 2023-05-12 天津望圆智能科技股份有限公司 泳池清洁机器人的路径规划方法、装置和泳池清洁机器人
CN116360462B (zh) * 2023-04-26 2023-09-26 青岛森科特智能仪器有限公司 一种网衣清洗机器人的避障方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040101953A (ko) * 2004-08-19 2004-12-03 주식회사 에스피레저 수류에 따른 장애물 감지구조를 갖는 수영장 청소로봇
CN102799180A (zh) * 2012-07-26 2012-11-28 杭州高越科技有限公司 一种清洗机行走控制方法与装置
CN112968534A (zh) * 2021-02-20 2021-06-15 广州菲亚兰德科技有限公司 水下清洁设备的寻充方法、装置和水下清洁设备
CN114059811A (zh) * 2020-08-06 2022-02-18 苏州宝时得电动工具有限公司 泳池清洁装置
CN114319954A (zh) * 2022-02-18 2022-04-12 智橙动力(北京)科技有限公司 泳池清洁机器人的碰壁调头及泳池边缘清洗方法、装置
CN115185282A (zh) * 2022-08-05 2022-10-14 智橙动力(北京)科技有限公司 泳池清洁机器人的池壁避障移动方法、装置、电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735437B1 (fr) * 1995-06-19 1997-08-14 Sevylor International Vehicule roulant, notamment robot de nettoyage en particulier de piscine, a changement automatique de direction de deplacement devant un obstacle
KR20030046325A (ko) * 2001-12-05 2003-06-12 아메니티-테크노스 가부시키가이샤 자주식청소장치 및 자주식청소방법
CN101285348A (zh) * 2007-04-10 2008-10-15 胜利宝有限公司 一种水池清洁机
CN101481957B (zh) * 2009-02-05 2011-06-08 天津望圆工贸有限责任公司 遥控有序泳池清洁机器人及其有序清洗方法
US9388595B2 (en) * 2012-07-10 2016-07-12 Aqua Products, Inc. Pool cleaning system and method to automatically clean surfaces of a pool using images from a camera
FR3042808B1 (fr) * 2015-10-21 2019-09-13 Zodiac Pool Care Europe Appareil nettoyeur de piscine a dispositif de franchissement d'obstacle
ES2797774T3 (es) * 2016-01-26 2020-12-03 Maytronics Ltd Método para operar un robot de limpieza de piscinas interactivo
US11124982B2 (en) * 2016-05-25 2021-09-21 Maytronics Ltd. Pool cleaner with drive motor navigation capabilities
CN116696131A (zh) * 2018-04-28 2023-09-05 天津望圆智能科技股份有限公司 水下清洁机
CN111155798A (zh) * 2020-03-02 2020-05-15 南方 泳池潜浮清污机器人
CN113805571B (zh) * 2020-05-29 2024-03-12 苏州科瓴精密机械科技有限公司 机器人行走控制方法、系统,机器人及可读存储介质
CN112947408B (zh) * 2021-01-19 2021-12-03 佛山市顺德区一拓电气有限公司 一种清洁设备的控制方法及装置
CN114233063B (zh) * 2021-12-07 2023-05-05 深圳市思傲拓科技有限公司 一种泳池清洁机器人及转向方法
CN114545939B (zh) * 2022-02-18 2022-09-23 智橙动力(北京)科技有限公司 泳池清洁机器人的驱动控制方法、装置、电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040101953A (ko) * 2004-08-19 2004-12-03 주식회사 에스피레저 수류에 따른 장애물 감지구조를 갖는 수영장 청소로봇
CN102799180A (zh) * 2012-07-26 2012-11-28 杭州高越科技有限公司 一种清洗机行走控制方法与装置
CN114059811A (zh) * 2020-08-06 2022-02-18 苏州宝时得电动工具有限公司 泳池清洁装置
CN112968534A (zh) * 2021-02-20 2021-06-15 广州菲亚兰德科技有限公司 水下清洁设备的寻充方法、装置和水下清洁设备
CN114319954A (zh) * 2022-02-18 2022-04-12 智橙动力(北京)科技有限公司 泳池清洁机器人的碰壁调头及泳池边缘清洗方法、装置
CN115185282A (zh) * 2022-08-05 2022-10-14 智橙动力(北京)科技有限公司 泳池清洁机器人的池壁避障移动方法、装置、电子设备

Also Published As

Publication number Publication date
CN115185282B (zh) 2023-05-12
CN116466725A (zh) 2023-07-21
CN115185282A (zh) 2022-10-14
CN116257068A (zh) 2023-06-13
CN116466725B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2024026938A1 (zh) 泳池清洁机器人的池壁避障移动方法、装置、电子设备
KR102434212B1 (ko) 2d 및 3d 경로 계획을 이용한 로봇 내비게이션
JP7344120B2 (ja) 軌道生成および実行アーキテクチャ
KR102490996B1 (ko) 환경에 기초하여 작동 속도를 변경하는 로봇 청소 장치
CN114427310B (zh) 泳池边缘清洗方法、装置、电子设备及计算机存储介质
US11642791B2 (en) Autonomous mobile robot and control program for autonomous mobile robot
CN114442639B (zh) 泳池清洁机器人的靠边控制方法、装置、电子设备
CN111142542A (zh) 一种基于vfh*局部路径规划方法的全向移动机器人自主导航系统
WO2023155157A1 (en) Method and apparatus for cleaning swimming pools, and electronic device and storage medium thereof
CN109737980A (zh) 一种导航方法及其对应的机器人
CN114319954B (zh) 泳池清洁机器人的碰壁调头及泳池边缘清洗方法、装置
CN115716482A (zh) 掉头轨迹规划方法、装置、设备及存储介质
CN114545939B (zh) 泳池清洁机器人的驱动控制方法、装置、电子设备
KR20210106374A (ko) 자율주행차량의 커브 주행을 제어하는 방법, 장치, 기기 및 매체
WO2024026822A1 (en) Method for generating pool wall cleaning path, method for cleaning pool wall, device thereof, and electronic device
JP2023030098A (ja) 車線変更制御方法、車線変更制御装置、電子機器および記憶媒体
WO2023155464A1 (zh) 泳池清扫方法、装置、电子设备及存储介质
WO2023155155A1 (en) Method, apparatus for return control of swimming pool cleaning robot, and electronic device thereof
CN115193047A (zh) 虚拟对象的移动控制方法和装置、存储介质、电子设备
Gómez et al. Adaptive robot formations using fast marching square working under uncertainty conditions
CN117565894A (zh) 自动驾驶车辆控制方法、装置、设备及存储介质
US9971425B2 (en) Dynamic device sensitivity control