WO2024026679A1 - 含碳酸酯的环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法 - Google Patents

含碳酸酯的环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法 Download PDF

Info

Publication number
WO2024026679A1
WO2024026679A1 PCT/CN2022/109719 CN2022109719W WO2024026679A1 WO 2024026679 A1 WO2024026679 A1 WO 2024026679A1 CN 2022109719 W CN2022109719 W CN 2022109719W WO 2024026679 A1 WO2024026679 A1 WO 2024026679A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
epoxy
carbonate
Prior art date
Application number
PCT/CN2022/109719
Other languages
English (en)
French (fr)
Inventor
林庆炫
叶任俞
陈怡君
汪孟纬
陈文章
Original Assignee
上纬创新育成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上纬创新育成股份有限公司 filed Critical 上纬创新育成股份有限公司
Priority to PCT/CN2022/109719 priority Critical patent/WO2024026679A1/zh
Publication of WO2024026679A1 publication Critical patent/WO2024026679A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/28Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic compounds containing nitrogen, sulfur or phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to an epoxy resin, its preparation method, its prepared epoxy cured product and a method for degrading the epoxy cured product, especially to an epoxy resin containing carbonate, its preparation method and its prepared Epoxy cured products and methods for degrading epoxy cured products.
  • Epoxy resin has a unique three-membered ring structure that can undergo a variety of ring-opening reactions and can also be self-cured through catalyst catalysis. However, its chain growth is more difficult, resulting in the shortcomings of poor performance in the final homopolymerized cured product.
  • thermoset materials have excellent thermal stability, chemical stability and a high-density covalently bonded cross-linked network structure, and are not easily dissolved, decomposed, recycled and reused.
  • the cured product can have the potential to be degraded.
  • the ester group is chemically decomposable and is gradually used in PET recycling. Therefore, if a similar concept can be introduced into epoxy resin, there is an opportunity to improve the degradability of waste and achieve sustainability. Chemical recycling purposes.
  • ester groups are mainly generated by the reaction of carboxylic acid compounds and phenols or alcohol compounds. It is difficult to retain the multifunctional alcohol or phenol groups for epoxidation during the preparation process. Therefore, the process of preparing derivatized epoxy resins is difficult. Due to restrictions, there are currently no related products.
  • One object of the present invention is to provide a carbonate-containing epoxy resin and its preparation method, which is to combine polycarbonate or carbonate compound with molecules of epoxy functional groups under catalyst catalysis to obtain a structure containing carbonate groups.
  • Bifunctional or multifunctional epoxy resin this epoxy resin can be used directly or can be used for subsequent reactions.
  • Another object of the present invention is to provide an epoxy cured product and a method for degrading the epoxy cured product, which involves subjecting an epoxy resin containing carbonate to a curing reaction to prepare an epoxy cured product, and the epoxy cured product can Decompose so that products can be recycled and reused, reducing the environmental burden.
  • One embodiment of the present invention provides a carbonate-containing epoxy resin having a structure represented by formula (I) or formula (II):
  • R 1 , R 2 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, an alkoxy group having 1 to 6 carbon atoms, or an aromatic group having 6 to 12 carbon atoms.
  • base or halogen atom a and b are each independently an integer ranging from 0 to 4
  • e and f are each independently an integer ranging from 0 to 5.
  • X is a single bond, an alkyl group with 1 to 12 carbon atoms, a cycloalkyl group with 3 to 12 carbon atoms, an oxygen atom, a sulfur atom, a sulfonyl group, a thionyl group, an acyl group, an aryl group with 6 to 12 carbon atoms, or a fluorenyl group.
  • X 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aromatic group having 6 to 12 carbon atoms.
  • Y is an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, isocyanurate, or a structure represented by formula (iii), formula (iv) or formula (v):
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group with 1 to 6 carbon atoms, an allyl group, an alkoxy group with 1 to 6 carbon atoms, an aryl group with 6 to 12 carbon atoms, or a halogen atom
  • R 5 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, an alkoxy group having 1 to 6 carbon atoms
  • R 6 is a methylene group, an alkyl group having 5 to 12 carbon atoms, or an alkyl group having 5 to 12 carbon atoms.
  • Cycloalkyl, c and d are each independently an integer from 0 to 4.
  • Z is a single bond, an alkyl group with 1 to 12 carbon atoms, a cycloalkyl group with 3 to 12 carbon atoms, an oxygen atom, a sulfur atom, a sulfonyl group, a thionyl group, an acyl group, an aryl group with 6 to 12 carbon atoms, or a fluorenyl group.
  • n is the degree of polymerization, and 1 ⁇ n ⁇ 500, p is an integer from 1 to 11, q is an integer from 0 to 20, and r is an integer from 1 to 15.
  • Another embodiment of the present invention provides a method for preparing a carbonate-containing epoxy resin, which includes providing an aromatic carbonate group-containing structure, providing an epoxy group-containing structure, and performing a catalytic step.
  • the structure containing aromatic carbonate groups has a structure represented by formula (A1) or formula (A2):
  • the structure containing epoxy groups has the structure shown in formula (B):
  • the catalytic step is to mix an aromatic carbonate group-containing structure with an epoxy group-containing structure, and then obtain a carbonate-containing epoxy resin under catalyst catalysis, which has a formula (I) or formula (II). structure:
  • R 1 , R 2 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, an alkoxy group having 1 to 6 carbon atoms, or an aromatic group having 6 to 12 carbon atoms.
  • base or halogen atom a and b are each independently an integer ranging from 0 to 4
  • e and f are each independently an integer ranging from 0 to 5.
  • X is a single bond, an alkyl group with 1 to 12 carbon atoms, a cycloalkyl group with 3 to 12 carbon atoms, an oxygen atom, a sulfur atom, a sulfonyl group, a thionyl group, an acyl group, an aryl group with 6 to 12 carbon atoms, or a fluorenyl group.
  • X 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aromatic group having 6 to 12 carbon atoms.
  • Y is an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, isocyanurate, or a structure represented by formula (iii), formula (iv) or formula (v):
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group with 1 to 6 carbon atoms, an allyl group, an alkoxy group with 1 to 6 carbon atoms, an aryl group with 6 to 12 carbon atoms, or a halogen atom
  • R 5 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, an alkoxy group having 1 to 6 carbon atoms
  • R 6 is a methylene group, an alkyl group having 5 to 12 carbon atoms, or an alkyl group having 5 to 12 carbon atoms.
  • Cycloalkyl, c and d are each independently an integer from 0 to 4.
  • Z is a single bond, an alkyl group with 1 to 12 carbon atoms, a cycloalkyl group with 3 to 12 carbon atoms, an oxygen atom, a sulfur atom, a sulfonyl group, a thionyl group, an acyl group, an aryl group with 6 to 12 carbon atoms, or a fluorenyl group.
  • n is the degree of polymerization, and 1 ⁇ n ⁇ 500, m is an integer from 2 to 12, p is an integer from 1 to 11, q is an integer from 0 to 20, and r is an integer from 1 to 15.
  • the catalyst can be selected from the group consisting of 4-dimethylaminopyridine, imidazole, pyridine, 2-methylimidazole, 3-methylimidazole, and 2-ethyl. -The group consisting of 4-methylimidazole.
  • the added amount of the catalyst can be 0.1 to 5 weight percent of the structural content of the epoxy group.
  • the equivalent ratio of the epoxy group of the epoxy group-containing structure to the carbonate group of the aromatic carbonate group-containing structure may be 1.3 to 10.0.
  • Another embodiment of the present invention provides an epoxy cured product, which is obtained by subjecting the aforementioned carbonate-containing epoxy resin to a curing reaction.
  • the curing reaction is completed by mixing the carbonate-containing epoxy resin and the hardener and heating.
  • the hardener can be a phenolic resin, an amine compound, an active ester compound, a carboxylic acid compound, a cyanate compound, an isocyanate compound, an anhydride compound, a benzoxazine, a polycarbonate or Its mixed.
  • the curing temperature of the curing reaction may be 180°C to 240°C.
  • Yet another embodiment of the present invention provides a method for degrading an epoxy cured product, which includes providing the aforementioned epoxy cured product and performing a degradation step, wherein the degradation step is to react an amine-containing compound with the epoxy cured product to degrade the epoxy cured product. Oxygen cured product.
  • the carbonate-containing epoxy resin of the present invention is obtained by mixing a carbonate group-containing structure with an epoxy group-containing structure and catalyzing it, and with the addition of a hardener, an epoxy cured product with excellent properties is formed. , can be degraded so that it can be recycled and reused, which is environmentally friendly.
  • FIG. 1 is a step flow chart illustrating a method for preparing a carbonate-containing epoxy resin according to an embodiment of the present invention.
  • FIG. 2 is a step flow chart illustrating a method for preparing an epoxy cured product according to another embodiment of the present invention.
  • Figure 3 is a flow chart showing the steps of a method for degrading epoxy cured products according to yet another embodiment of the present invention.
  • FIG. 4 is a 1 H-NMR spectrum chart showing Example 1.
  • Fig. 5 is a 1 H-NMR spectrum chart showing Example 2 to Example 4.
  • FIG. 6 is a 1 H-NMR spectrum chart showing Example 19.
  • the compound structure is sometimes represented by a skeleton formula. This representation can omit carbon atoms, hydrogen atoms, and carbon-hydrogen bonds. If there is a functional group clearly drawn in the structural formula, the one shown shall prevail.
  • the carbonate-containing epoxy resin has a structure represented by formula (I)
  • Epoxy resin of carbonate (I), other compounds or groups are expressed similarly.
  • the invention provides a carbonate-containing epoxy resin, which has a structure shown in formula (I) or formula (II):
  • R 1 , R 2 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group (allyl), an alkoxy group having 1 to 6 carbon atoms, or an alkoxy group having 6 to 6 carbon atoms.
  • a and b are each independently an integer from 0 to 4
  • e and f are each independently an integer from 0 to 5.
  • X is a single bond, an alkyl group with 1 to 12 carbon atoms, a cycloalkyl group with 3 to 12 carbon atoms, an oxygen atom, a sulfur atom, a sulfonyl group, a thionyl group, an acyl group, and the number of carbon atoms. 6 to 12 aryl groups, fluorene groups, structures represented by formula (i) or formula (ii):
  • X 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aromatic group having 6 to 12 carbon atoms.
  • Y is an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, isocyanurate (isocyanurate), a structure represented by formula (iii), formula (iv) or formula (v):
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group with 1 to 6 carbon atoms, an allyl group, an alkoxy group with 1 to 6 carbon atoms, an aryl group with 6 to 12 carbon atoms, or a halogen atom
  • R 5 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, an alkoxy group having 1 to 6 carbon atoms
  • R 6 is a methylene group, an alkyl group having 5 to 12 carbon atoms, or an alkyl group having 5 to 12 carbon atoms.
  • Cycloalkyl, c and d are each independently an integer from 0 to 4.
  • Z is a single bond, an alkyl group with 1 to 12 carbon atoms, a cycloalkyl group with 3 to 12 carbon atoms, an oxygen atom, a sulfur atom, a sulfonyl group, a thionyl group, an acyl group, an aryl group with 6 to 12 carbon atoms, or a fluorenyl group.
  • n is the degree of polymerization, and 1 ⁇ n ⁇ 500, p is an integer from 1 to 11, q is an integer from 0 to 20, and r is an integer from 1 to 15.
  • the carbonate-containing epoxy resin of the present invention since the carbonate-containing epoxy resin of the present invention has a carbonate structure, it can be used directly or undergo subsequent reactions, and its degradability can be improved by introducing a carbonate structure to achieve the purpose of chemical recovery.
  • FIG. 1 is a step flow chart illustrating a method 100 for preparing a carbonate-containing epoxy resin according to an embodiment of the present invention.
  • the preparation method 100 of carbonate-containing epoxy resin includes step 110 , step 120 and step 130 .
  • Step 110 is to provide a structure containing aromatic carbonate groups, which has a structure shown in formula (A1) or formula (A2):
  • the structure containing aromatic carbonate groups can be carbonate compounds, new carbonate plastics or polycarbonate recycled materials, but is not limited to this, and waste polycarbonate recycled materials can be recycled from discarded optical discs. Reduce environmental burden.
  • Step 120 is to provide an epoxy group-containing structure having a structure shown in formula (B):
  • Y is an integer from 2 to 12.
  • Step 130 is a catalytic step, which involves mixing an aromatic carbonate group-containing structure and an epoxy group-containing structure, and then obtaining a carbonate-containing epoxy resin under catalyst catalysis, which has the formula (I) or formula The structure shown in (II):
  • R 1 , R 2 , R 7 , R 8 , X, Y, a, b, e, f, p and n please refer to the above and will not be repeated here.
  • the equivalent ratio of the epoxy group of the aforementioned epoxy group-containing structure to the carbonate group of the aromatic carbonate group-containing structure may be 1.3 to 10.0, preferably 2.0 to 10.0.
  • the synthesized carbonate-containing epoxy resin has the structure represented by formula (I), and the reaction equation is as follows: Table 1 shown.
  • the synthesized carbonate-containing epoxy resin has the structure represented by formula (II), and the reaction equation is shown in Table 2 below. .
  • the aforementioned catalyst may include unshared electron pairs, which are selected from the group consisting of 4-Dimethylaminopyridine (DMAP), imidazole (Imidazole), pyridine (Pyridine), 2-methylimidazole (2-Methylimidazole), 3- A group consisting of 3-Methylimidazole and 2-Ethyl-4-methylimidazole.
  • DMAP 4-Dimethylaminopyridine
  • Imidazole imidazole
  • pyridine Pyridine
  • 2-methylimidazole (2-Methylimidazole)
  • 3- A group consisting of 3-Methylimidazole and 2-Ethyl-4-methylimidazole 2-Ethyl-4-methylimidazole.
  • the unshared electron pairs of the catalyst can interact with the epoxy groups in the structure containing epoxy groups to facilitate the subsequent curing reaction.
  • the addition amount of the aforementioned catalyst may be 0.1 to 5 weight percent of the epoxy group-containing structural content.
  • the carbonate-containing epoxy resin of the present invention utilizes the carbonate group in the aromatic carbonate group-containing structure to react with the epoxy group in the epoxy group-containing structure.
  • this paper The invention first performs a model reaction through Synthesis Example 1, in which diphenyl carbonate and bisphenol A-type epoxy resin (Diglycidyl ether of Bisphenol A, DGEBA) are reacted under the catalyst pyridine.
  • the present invention further provides an epoxy cured product, which is obtained by performing a curing reaction on the aforementioned carbonate-containing epoxy resin, and the curing reaction is briefly described as follows with reference to Figure 2, wherein Figure 2 illustrates an epoxy cured product according to the present invention.
  • the method 200 for preparing an epoxy cured product includes step 210 and step 220 .
  • Step 210 is a mixing step, which is to mix the carbonate-containing epoxy resin and the hardener to obtain a curable composition.
  • the carbonate-containing epoxy resin and the hardener may form a precursor solution containing the curable composition.
  • the solvent used in the precursor solution is used to help the carbonate-containing epoxy resin and the hardener be blended. Therefore, as long as it can dissolve the carbonate-containing epoxy resin and the hardener and does not react with the aforementioned two, any solvent can be used. It can be used as the solvent in step 210.
  • the details of the carbonate-containing epoxy resin please refer to the previous article and will not be repeated here.
  • the hardener of the present invention can be a phenolic resin, an amine compound, an active ester compound (active ester), a carboxylic acid compound, or a cyanate ester.
  • Step 220 is a curing step to cross-link the carbonate-containing epoxy resin and the hardener to form an epoxy cured product.
  • the above-mentioned curable composition can be directly ground into powder and heated to a molten state or the above-mentioned precursor solution can be heated to cross-link the carbonate-containing epoxy resin and the hardener, and the final curing temperature of heating can be 80°C to 240°C, preferably 180°C to 240°C, and the heating time may be 1 hour to 6 hours. More specifically, the aforementioned heating method may adopt a multi-stage heating and curing method, for example, heating at 180°C, 200°C, and 220°C for 2 hours each.
  • the heating curing temperature and heating time can be flexibly adjusted according to the types of carbonate-containing epoxy resin and hardener used, and the present invention is not limited thereto.
  • Figure 3 is a step flow chart illustrating a method 300 for degrading epoxy cured matter according to yet another embodiment of the present invention.
  • the method 300 for degrading cured epoxy material includes step 310 and step 320 .
  • Step 310 is to provide the aforementioned epoxy cured product.
  • Step 320 is a degradation step, which involves reacting an amine group-containing compound with the aforementioned epoxy cured product to degrade the epoxy cured product.
  • Example 1 Take 1.0 grams of diphenyl carbonate and 3.51 grams of bisphenol A-type epoxy resin (Changchun artificial resin product code BE188), so that the two are heated to 100 in an equivalent ratio of 1:2. After confirming dissolution at 0.0°C, add 0.0175 grams of pyridine and react for 8 hours to obtain the carbonate-containing epoxy resin DPC-EP of Example 1, with an epoxy equivalent of 476 g/eq (theoretical value is 483 g/eq).
  • Example 2 Take 1.50 grams of polycarbonate and 4.44 grams of bisphenol A-type epoxy resin (Changchun artificial resin product code BE188), so that the two are in an equivalent ratio of 1:2, and at 200°C In a nitrogen environment, bring it into a molten state and then lower it to 100°C, then add 0.0133 grams of pyridine (0.3wt% DGEBA), and react under mechanical stirring for 8 hours to obtain a dark brown viscous liquid, which can be cooled down After reaching room temperature, the carbonate-containing epoxy resin WPC-EP2 of Example 2 can be obtained, with an epoxy equivalent weight of 485 g/eq (theoretical value is 503 g/eq).
  • Example 3 Take 1.50 grams of polycarbonate and 6.66 grams of bisphenol A-type epoxy resin (Changchun artificial resin product code BE188), so that the two are in an equivalent ratio of 1:3, and at 200°C In a nitrogen environment, it is brought into a molten state and then lowered to 100°C, and then 0.0199 grams of pyridine (0.3wt% DGEBA) is added. The remaining steps are the same as in Example 2, and the carbonate-containing ring of Example 3 can be obtained.
  • Oxygen resin WPC-EP3 has an epoxy equivalent weight of 333g/eq (theoretical value is 345g/eq).
  • Example 4 Take 1.50 grams of polycarbonate and 8.88 grams of bisphenol A epoxy resin (Changchun artificial resin product code BE188), so that the two are in an equivalent ratio of 1:4, and at 200°C In a nitrogen environment, it is brought into a molten state and then lowered to 100°C, and then 0.0266 grams of pyridine (0.3wt% DGEBA) is added. The remaining steps are the same as in Example 2, and the carbonate-containing ring of Example 4 can be obtained.
  • Oxygen resin WPC-EP4 has an epoxy equivalent weight of 285g/eq (theoretical value is 293g/eq).
  • Examples 1 to 4 were subjected to 1 H-NMR analysis to confirm the structures of Examples 1 to 4. Please refer to FIG. 4 and FIG. 5 together.
  • FIG. 4 shows the 1 H-NMR spectrum of Example 1
  • FIG. 5 shows the 1 H-NMR spectrum of Examples 2 to 4. It can be seen from the results of Figure 4 and Figure 5 that the products of Example 1 to Example 4 are all carbonate-containing epoxy resins.
  • the hardener used in the present invention can be diaminodiphenylmethane (DDM), phenolic resin (PN), dimerocyanamide (DICY), polycarbonate (PC), diphenyl ether tetracarboxylic dianhydride (ODPA) and phthalic anhydride (PAH).
  • DDM diaminodiphenylmethane
  • PN phenolic resin
  • DIY dimerocyanamide
  • PC polycarbonate
  • ODPA diphenyl ether tetracarboxylic dianhydride
  • PAH phthalic anhydride
  • adding equal equivalents means that the number of epoxy equivalents is equal to the equivalent number of active hydrogen.
  • adding equal equivalents That is, the number of epoxy equivalents is equal to the number of equivalents of carbonate groups.
  • thermal properties of Examples 5 to 16 and Comparative Examples 1 to 4 were evaluated.
  • the thermal property evaluation included glass transition temperature (T g ), 5% thermogravimetric loss temperature (T d5% ) and coke residual rate. Methods as below.
  • Glass transition temperature Use a Dynamic Mechanical Analyzer (DMA) to measure the storage modulus (Storage Modulus) of the epoxy cured products prepared in Examples 5 to 16 and Comparative Examples 1 to 4. ) and the relationship between the Tan delta curve and temperature and the glass transition temperature.
  • DMA Dynamic Mechanical Analyzer
  • TMA thermo-mechanical analysis
  • the condition of the thermo-mechanical analysis method is to measure at a heating rate of 5°C/min.
  • thermogravimetric loss temperature and coke residual rate Use thermo-gravimetric analysis (TGA) to measure the 5% thermogravimetric loss temperature of the sample and the coke residual rate (Char yield) at 800°C.
  • the conditions of thermogravimetric analysis are to use a thermogravimetric analyzer to measure the weight change of the sample under a nitrogen atmosphere at a heating rate of 20°C/min.
  • the 5% thermogravimetric loss temperature refers to the temperature at which the weight loss of the cured sample reaches 5%. The higher the 5% thermogravimetric loss temperature, the better the thermal stability of the sample.
  • the coke residual rate at 800°C refers to the residual weight ratio of the sample when the heating temperature reaches 800°C. The higher the residual weight ratio at 800°C, the better the thermal stability of the sample.
  • the carbonate-containing epoxy resins of Examples 5 to 16 of the present invention can exhibit thermal properties similar to those of the commercially available epoxy resin cured products of Comparative Examples 1 to 4.
  • Examples 5 to 16 and Comparative Examples 1 to 4 were evaluated by tensile testing to measure tensile strength and elongation at break, where the tensile test was performed at Measured at room temperature, the test piece size is 5 cm long, 1 cm wide, and 0.04 to 0.10 mm thick.
  • the measurement results of the tensile strength and elongation at break of Examples 5 to 16 and Comparative Examples 1 to 4 are shown in Table 7 below.
  • Examples 17 to 19 are the results of the degradation reaction of the epoxy cured products of Examples 8 to 10 respectively, and Comparative Examples 5 to 8 are the epoxy cured products of Comparative Examples 1 to 4 respectively.
  • the result of a degradation reaction First, place the cured epoxy films from Examples 8 to 10 and Comparative Examples 1 to 4 and 1-hexylamine in a reactor. After the reaction, directly use a vacuum concentrator to extract 1-hexylamine. , the degraded Examples 17 to 19 and Comparative Examples 5 to 8 can be obtained.
  • the type of epoxy cured material, reaction temperature, reaction time and residual weight required in Examples 17 to 19 and Comparative Examples 5 to 8 are listed in Table 8 below.
  • Figure 6 shows the 1 H-NMR spectrum of Example 19.
  • (a) in Figure 6 is the 1 H-NMR spectrum of the product after the aminolysis reaction with 1-hexylamine was carried out in Example 10 and 1-hexylamine was evaporated
  • (b) in Figure 6 is the 1 H-NMR spectrum of the product.
  • Example 10 After carrying out the amidolysis reaction with 1-hexylamine, 1-hexylamine was evaporated and methanol was poured into it to precipitate. The 1 H-NMR spectrum of the precipitate was obtained.
  • Examples 8 and 9 are also partially degradable under the heating reaction of 1-hexylamine, with weight remaining of 85% and 77% respectively, while the rings made of commercial epoxy resins of Comparative Examples 1 to 4 When the oxygen cured product was extended to 24 hours under the same conditions, no degradation occurred, and the weight residues were all 100%. This proves that the carbonate-containing epoxy resin synthesized by the present invention has unique degradability, and is suitable for thermosetting materials. Recycling and waste reduction make a considerable contribution.
  • the present invention obtains a bifunctional or multifunctional epoxy resin containing a carbonate group through a simple one-step reaction.
  • This preparation method can be especially made from recycled waste polycarbonate or carbonate compounds as raw materials, and its atomic efficiency is high. , helping to reduce polycarbonate waste.
  • the carbonate-containing epoxy resin of the present invention undergoes a curing reaction with a hardener to obtain an epoxy cured product with excellent properties and is chemically degradable, reducing the emission of thermosetting plastic waste and achieving sustainable utilization. The goal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明提供一种含碳酸酯的环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法。所述含碳酸酯的环氧树脂,其具有如式(I)或式(II)所示的结构,式(I)及式(II)中各符号如说明书中所定义者。在基础上,利用碳酸酯基与环氧基进行反应以制备出含碳酸酯的环氧树脂,且其与硬化剂制得的环氧固化物具有良好的热性质与机械性质并具有可降解性。

Description

含碳酸酯的环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法 技术领域
本发明是关于一种环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法,尤其是关于一种含碳酸酯的环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法。
背景技术
目前市售的环氧树脂以双酚A型双官能及酚醛型(novolac)多官能为主,在合成上以酚基与环氧氯丙烷反应形成环氧基,其中多官能型因以酚醛树脂为基底,在酚醛制备上须使用甲醛,除具有环保议题外,此法亦不利于高分子量的多官能环氧制备。环氧树脂具有的独特三元环结构,可进行多种开环反应,亦可通过触媒催化进行自身固化,但因其链成长较为困难,导致最终均聚固化物有性能不佳的缺点,故环氧树脂大多需要搭配环氧树脂硬化剂进行共聚反应,提高固化后的交联度,而以现今市售商品来说,固化后的固化物虽具有良好的物性,却也因为其交联结构的生成导致产品不易回收,导致该类废弃物议题逐日升温。
一般而言,热固性材料具有优异的热稳定性、化学稳定性及高密度的共价键交联网络结构,不容易被溶解及分解回收再利用,而若是交联网络中存在不稳定的键结,则能使固化物具有被降解的潜力存在。近年来,部分研究指出酯基(ester group)具有可化学分解性,并逐步应用在PET回收中,因此如能将类似概念导入环氧树脂中,可望有机会提升废弃物降解性,达到可化学回收的目的。
然而,酯基的制备主要由羧酸类化合物与酚类或醇类化合物反应生成,难以在制备过程中保留多官能的醇基或酚基进行环氧化,因此在制备衍生环氧树脂工艺上受到限制,导致目前为止并无相关产品。
有鉴于此,如何合成出含有碳酸酯基的环氧树脂,且其所制备的固化物具有可化学降解性,遂成相关业者努力的目标。
发明内容
本发明的一目的在于提供一种含碳酸酯的环氧树脂及其制备方法,其 是将聚碳酸酯或碳酸酯化合物与环氧官能基的分子在触媒催化下得到结构中含有碳酸酯基团的双官能或多官能环氧树脂,此环氧树脂可直接使用或得以进行后续的反应。
本发明的另一目的在于提供一种环氧固化物以及降解环氧固化物的方法,其是将含碳酸酯的环氧树脂进行固化反应制备出环氧固化物,且此环氧固化物可进行降解,使产品能够回收再利用,减轻环境负担。
本发明的一实施方式提供一种含碳酸酯的环氧树脂,其具有如式(I)或式(II)所示的结构:
Figure PCTCN2022109719-appb-000001
其中,R 1、R 2、R 7及R 8是各自独立为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基、碳数6至12的芳香基或卤素原子,a及b是各自独立为0至4的整数,e及f是各自独立为0至5的整数。X为单键、碳数1至12的烷基、碳数3至12的环烷基、氧原子、硫原子、磺酰基、亚硫酰基、酰基、碳数6至12的芳香基、芴基、式(i)或式(ii)所示的结构:
Figure PCTCN2022109719-appb-000002
其中,X 1为氢原子、碳数1至6的烷基或碳数6至12的芳香基。Y为碳数1至12的烷基、碳数1至12的烷氧基、异氰脲酸酯、式(iii)、式(iv)或式(v)所示的结构:
Figure PCTCN2022109719-appb-000003
其中,R 3及R 4是各自独立为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基、碳数6至12的芳香基或卤素原子,R 5为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基,R 6为亚甲基、碳数5至12的烷基或碳数5至12的环烷基,c及d是各自独立为0至4的整数。Z为单键、碳数1至12的烷基、碳数3至12的环烷基、氧原子、硫原子、磺酰基、亚硫酰基、酰基、碳数6至12的芳香基、芴基、式(i)或式(ii)所示的结构。n为聚合度,且1≤n≤500,p为1至11的整数,q为0至20的整数以及r为1至15的整数。
本发明的另一实施方式提供一种含碳酸酯的环氧树脂的制备方法,包含提供含芳香族碳酸酯基的结构、提供含环氧基的结构以及进行催化步骤。含芳香族碳酸酯基的结构具有如式(A1)或如式(A2)所示的结构:
Figure PCTCN2022109719-appb-000004
含环氧基的结构具有如式(B)所示的结构:
Figure PCTCN2022109719-appb-000005
催化步骤是将含芳香族碳酸酯基的结构与含环氧基的结构混合后,在触媒催化下得到含碳酸酯的环氧树脂,其具有如式(I)或式(II)所示的结构:
Figure PCTCN2022109719-appb-000006
其中,R 1、R 2、R 7及R 8是各自独立为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基、碳数6至12的芳香基或卤素原子,a及b是各自独立为0至4的整数,e及f是各自独立为0至5的整数。X为单键、碳数1至12的烷基、碳数3至12的环烷基、氧原子、硫原子、磺酰基、亚硫酰基、酰基、碳数6至12的芳香基、芴基、式(i)或式(ii)所示的结构:
Figure PCTCN2022109719-appb-000007
其中,X 1为氢原子、碳数1至6的烷基或碳数6至12的芳香基。Y为碳数1至12的烷基、碳数1至12的烷氧基、异氰脲酸酯、式(iii)、式(iv)或式(v)所示的结构:
Figure PCTCN2022109719-appb-000008
Figure PCTCN2022109719-appb-000009
其中,R 3及R 4是各自独立为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基、碳数6至12的芳香基或卤素原子,R 5为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基,R 6为亚甲基、碳数5至12的烷基或碳数5至12的环烷基,c及d是各自独立为0至4的整数。Z为单键、碳数1至12的烷基、碳数3至12的环烷基、氧原子、硫原子、磺酰基、亚硫酰基、酰基、碳数6至12的芳香基、芴基、式(i)或式(ii)所示的结构。n为聚合度,且1≤n≤500,m为2至12的整数,p为1至11的整数,q为0至20的整数以及r为1至15的整数。
依据前段所述的含碳酸酯的环氧树脂的制备方法,其中触媒可为选自由4-二甲基氨基吡啶、咪唑、吡啶、2-甲基咪唑、3-甲基咪唑、2-乙基-4-甲基咪唑所组成的群组。
依据前段所述的含碳酸酯的环氧树脂的制备方法,其中触媒的添加量可为含环氧基的结构含量的0.1重量百分比至5重量百分比。
依据前段所述的含碳酸酯的环氧树脂的制备方法,其中含环氧基的结构的环氧基与含芳香族碳酸酯基的结构的碳酸酯基的当量比值可为1.3至10.0。
本发明的又一实施方式提供一种环氧固化物,其是通过前述含碳酸酯的环氧树脂进行固化反应而得。
依据前段所述的环氧固化物,其中固化反应是混合含碳酸酯的环氧树脂以及硬化剂并加热而完成。
依据前段所述的环氧固化物,其中硬化剂可为酚醛树脂、胺类化合物、活性酯化合物、羧酸化合物、氰酸酯化合物、异氰酸酯化合物、酸酐化合物、苯并恶嗪、聚碳酸酯或其混合。
依据前段所述的环氧固化物,其中固化反应的固化温度可为180℃至240℃。
本发明的再一实施方式提供一种降解环氧固化物的方法,包含提供前述环氧固化物以及进行降解步骤,其中降解步骤是将含胺基的化合物与环氧固化物反应,以降解环氧固化物。
因此,本发明的含碳酸酯的环氧树脂是利用含碳酸酯基的结构与含环氧基的结构混合并经由触媒催化所得,且在硬化剂的添加下形成具有优异性质的环氧固化物,可进行降解使其能够进行回收再利用,符合环保效益。
附图的简要说明
为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂,附图,应结合以下附图参考下面的具体实施方式。
图1是示出了根据本发明的一实施方式的含碳酸酯的环氧树脂的制备方法的步骤流程图。
图2是示出了根据本发明的另一实施方式的环氧固化物的制备方法的步骤流程图。
图3是示出了根据本发明的再一实施方式的降解环氧固化物的方法的步骤流程图。
图4是示出了实施例1的 1H-NMR光谱图。
图5是示出了实施例2至实施例4的 1H-NMR光谱图。
图6是示出了实施例19的 1H-NMR光谱图。
【主要元件符号说明】
100:含碳酸酯的环氧树脂的制备方法
200:环氧固化物的制备方法
300:降解环氧固化物的方法
110,120,130,210,220,310,320:步骤
实现发明的最佳方式
以下将更详细阐述本发明各实施方式。然而,此实施方式可为各种发明概念的应用,可被具体实行在各种不同的特定范围内。特定的实施方式是仅以说明为目的,且不受限于揭露的范围。
本发明中,有时以键线式(skeleton formula)表示化合物结构,此种表示法可以省略碳原子、氢原子以及碳氢键。倘若,结构式中有明确绘出官能基的,则以绘示者为准。
本发明中,「含碳酸酯的环氧树脂,具有如式(I)所示的结构」,为了简洁与通顺,有时会表达为式(I)所示的含碳酸酯的环氧树脂或含碳酸酯的环氧树脂(I),其他化合物或基团的表示方式依此类推。
<含碳酸酯的环氧树脂>
本发明提供一种含碳酸酯的环氧树脂,其具有如式(I)或式(II)所示的结构:
Figure PCTCN2022109719-appb-000010
其中,R 1、R 2、R 7及R 8是各自独立为氢原子、碳数1至6的烷基、烯丙基(allyl)、碳数1至6的烷氧基、碳数6至12的芳香基或卤素原子,a及b是各自独立为0至4的整数,e及f是各自独立为0至5的整数。X为单键、碳数1至12的烷基、碳数3至12的环烷基、氧原子、硫原子、磺酰基(sulfonyl)、亚硫酰基(thionyl)、酰基(carbonyl)、碳数6至12的芳香基、芴基(fluorene)、式(i)或式(ii)所示的结构:
Figure PCTCN2022109719-appb-000011
其中,X 1为氢原子、碳数1至6的烷基或碳数6至12的芳香基。Y为碳数1至12的烷基、碳数1至12的烷氧基、异氰脲酸酯(isocyanurate)、式(iii)、式(iv)或式(v)所示的结构:
Figure PCTCN2022109719-appb-000012
Figure PCTCN2022109719-appb-000013
其中,R 3及R 4是各自独立为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基、碳数6至12的芳香基或卤素原子,R 5为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基,R 6为亚甲基、碳数5至12的烷基或碳数5至12的环烷基,c及d是各自独立为0至4的整数。Z为单键、碳数1至12的烷基、碳数3至12的环烷基、氧原子、硫原子、磺酰基、亚硫酰基、酰基、碳数6至12的芳香基、芴基、式(i)或式(ii)所示的结构。n为聚合度,且1≤n≤500,p为1至11的整数,q为0至20的整数以及r为1至15的整数。
因此,本发明的含碳酸酯的环氧树脂因具有碳酸酯结构,可以直接使用或得以进行后续反应,并通过导入碳酸酯结构提升其降解性,达到可化学回收的目的。
<含碳酸酯的环氧树脂的制备方法>
配合参照图1,其是绘示依照本发明的一实施方式的含碳酸酯的环氧树脂的制备方法100的步骤流程图。在图1中,含碳酸酯的环氧树脂的制备方法100包含步骤110、步骤120以及步骤130。
步骤110为提供含芳香族碳酸酯基的结构,其具有如式(A1)或如式(A2)所示的结构:
Figure PCTCN2022109719-appb-000014
关于R 1、R 2、R 7、R 8、X、a、b、e、f及n的定义请参照上文,在此不再赘述。详细来说,含芳香族碳酸酯基的结构可为碳酸酯化合物、新的碳酸酯塑料或聚碳酸酯回收料,但不限于此,而废弃聚碳酸酯回收料可由废弃光碟片里回收,可减轻环境负担。
步骤120为提供含环氧基的结构,其具有如式(B)所示的结构:
Figure PCTCN2022109719-appb-000015
关于Y的定义请参照上文,在此不再赘述,而m为2至12的整数。
步骤130为进行催化步骤,其是将含芳香族碳酸酯基的结构与含环氧基的结构混合后,在触媒催化下得到含碳酸酯的环氧树脂,其具有如式(I)或式(II)所示的结构:
Figure PCTCN2022109719-appb-000016
关于R 1、R 2、R 7、R 8、X、Y、a、b、e、f、p及n的定义请参照上文,在此不再赘述。另外,前述含环氧基的结构的环氧基与含芳香族碳酸酯基的结构的碳酸酯基的当量比值可为1.3至10.0,较佳地可为2.0至10.0。
具体而言,当含芳香族碳酸酯基的结构为式(A1)所示的结构时,其所合成的含碳酸酯的环氧树脂为式(I)所示的结构,反应方程式如下表一所示。
Figure PCTCN2022109719-appb-000017
另外,当含芳香族碳酸酯基的结构为式(A2)所示的结构时,其所合成的含碳酸酯的环氧树脂为式(II)所示的结构,反应方程式如下表二所示。
Figure PCTCN2022109719-appb-000018
前述触媒可包含未共用电子对,其选自由4-二甲基氨基吡啶(4-Dimethylaminopyridine,DMAP)、咪唑(Imidazole)、吡啶(Pyridine)、2-甲基咪唑(2-Methylimidazole)、3-甲基咪唑(3-Methylimidazole)、2-乙基-4-甲基咪唑(2-Ethyl-4-methylimidazole)所组成的群组。在基础上,触媒的未共用电子对可与含环氧基的结构中的环氧基作用而有利于引发后续的固化反应。具体地,前述触媒的添加量可为含环氧基的结构含量的0.1重量百分比至5重量百分比。
详细来说,本发明的含碳酸酯的环氧树脂是利用含芳香族碳酸酯基的结构中的碳酸酯基与含环氧基的结构中的环氧基进行反应,为了证明上述概念,本发明先通过合成例1进行模式反应(model reaction),将碳酸二苯酯(diphenyl carbonate)和双酚A型环氧树脂(Diglycidyl ether of Bisphenol A,DGEBA)在触媒吡啶(pyridine)下进行反应。具体地,取1.00克(9.3毫摩尔)的碳酸二苯酯(107.1g/eq)、3.51克(18.6摩尔)的双酚A型环氧树脂(188g/eq)置入100mL的三颈瓶中,升温至100℃确认溶解后加入0.0175克的吡啶触媒并反应8小时。之后,根据合成例1所得的产物进行光谱分析,氢谱的数据: 1H-NMR(CDCl 3),δ=1.62(12H,H d)、2.73(2H,H a)、2.88(2H,H a’)、3.33(2H,H b)、3.92(2H,H c)、4.12(2H,H j)、4.16(2H,H c’)、4.25(4H,H l,H l’)、4.35(2H,H j’)、5.36(2H,H k)、6.80(8H,H h)、6.88(4H,H n)、6.95(2H,H p)、7.12(8H,H g)、7.27(4H,H o);碳谱的数据: 13C-NMR(CDCl 3),δ=31.0(C d)、41.6(C e)、44.7(C a)、50.2(C b)、67.0(C l)、68.5(C c)、68.7(C j)、74.6(C k)、113.9(C h)、114.6(C n)、121.2(C p)、127.7(C g)、129.5(C o)、143.7(C f)、154.1(C q)、156.2(C i)、158.1(C m);红外线光谱的数据:FTIR(KBr,cm -1):ν=1750(C=O stretch of carbonyl group);以及高解析度质谱数据:High resolution LC-MS(ESI-MS)m/z:[M +]calcd.for C 55H 58O 11 894.40g/mol;anal.894.4050g/mol,其中理论环氧当量为483.11g/eq,而实际环氧当量为 476g/eq。合成例1的反应方程式如下表三所示,结果发现碳酸酯基可与环氧基进行反应。
Figure PCTCN2022109719-appb-000019
<环氧固化物>
本发明进一步提供一种环氧固化物,其是通过对前述含碳酸酯的环氧树脂进行固化反应而得,而所述固化反应参照图2简单说明如下,其中图2绘示依照本发明的另一实施方式的环氧固化物的制备方法200的步骤流程图。在图2中,环氧固化物的制备方法200包含步骤210与步骤220。
步骤210是进行混合步骤,其是将含碳酸酯的环氧树脂以及硬化剂混合而得到可固化组成物。具体来说,通过步骤210,含碳酸酯的环氧树脂与硬化剂可形成含有可固化组成物的前驱物溶液。此外,前驱物溶液所用的溶剂是用以帮助含碳酸酯的环氧树脂与硬化剂共混,因此,只要可溶解含碳酸酯的环氧树脂、硬化剂且不与前述二者反应者,皆可作为步骤210中的溶剂使用。至于含碳酸酯的环氧树脂的细节请参照前文,在此不再赘述,而本发明的硬化剂可为酚醛树脂、胺类化合物、活性酯化合物(active ester)、羧酸化合物、氰酸酯化合物(cyanate ester)、异氰酸酯化合物(isocyanate)、酸酐化合物、苯并恶嗪(benzoxazine)、聚碳酸酯或其混合,但不限于此。
步骤220是进行固化步骤,使含碳酸酯的环氧树脂与硬化剂产生交联以形成环氧固化物。具体来说,可直接将上述可固化组成物研磨至粉并加热呈熔融状态或者加热上述前驱物溶液,使含碳酸酯的环氧树脂与硬化剂产生交联,且最后加热的固化温度可为80℃至240℃,优选为180℃至240℃,而加热时间可为1小时至6小时。更具体地,前述加热方式可采用多段加热固化方式,例如,以180℃、200℃、220℃各加热2小时。关于加热的固化温度与加热时间可随所使用含碳酸酯的环氧树脂与硬化剂的种类弹性调整,本发明并不以此为限。
<降解环氧固化物的方法>
请参阅图3,其是绘示依照本发明的再一实施方式的降解环氧固化物的 方法300的步骤流程图。在图3中,降解环氧固化物的方法300包含步骤310以及步骤320。
步骤310为提供前述环氧固化物。步骤320为进行降解步骤,其是将含胺基的化合物与前述环氧固化物反应,以降解环氧固化物。
兹以下列具体实施例进一步示范说明本发明,用以有利于本发明所属技术领域通常知识者,可在不需过度解读的情形下完整利用并实践本发明,而不应将这些实施例视为对本发明范围的限制,但用于说明如何实施本发明的材料及方法。
<实施例/比较例>
<含碳酸酯的环氧树脂的制备>
实施例1:取1.0克的碳酸二苯酯与3.51克的双酚A型环氧树脂(长春人造树脂商品代号BE188),以使前述两者在当量比1:2的比例下,升温至100℃确认溶解后,再加入0.0175克的吡啶并反应8小时,可得到实施例1的含碳酸酯的环氧树脂DPC-EP,其环氧当量为476g/eq(理论值为483g/eq)。
实施例2:取1.50克的聚碳酸酯与4.44克的双酚A型环氧树脂(长春人造树脂商品代号BE188),以使前述两者在当量比1:2的比例下,并在200℃的氮气环境中,使其呈熔融状态后降至100℃,再加入0.0133克的吡啶(0.3wt%的DGEBA),并在机械搅拌下反应8小时,可得到深咖啡色粘稠液体,待其冷却至室温后,可得到实施例2的含碳酸酯的环氧树脂WPC-EP2,其环氧当量为485g/eq(理论值为503g/eq)。
实施例3:取1.50克的聚碳酸酯与6.66克的双酚A型环氧树脂(长春人造树脂商品代号BE188),以使前述两者在当量比1:3的比例下,并在200℃的氮气环境中,使其呈熔融状态后降至100℃,再加入0.0199克的吡啶(0.3wt%的DGEBA),其余步骤皆与实施例2相同,可得到实施例3的含碳酸酯的环氧树脂WPC-EP3,其环氧当量为333g/eq(理论值为345g/eq)。
实施例4:取1.50克的聚碳酸酯与8.88克的双酚A型环氧树脂(长春人造树脂商品代号BE188),以使前述两者在当量比1:4的比例下,并在200℃的氮气环境中,使其呈熔融状态后降至100℃,再加入0.0266克的吡啶(0.3wt%的DGEBA),其余步骤皆与实施例2相同,可得到实施例4的含碳酸酯的环氧树脂WPC-EP4,其环氧当量为285g/eq(理论值为293g/eq)。
将实施例1至实施例4进行 1H-NMR分析,以确认实施例1至实施例4的结构。请配合参照图4以及图5,其中图4绘示实施例1的 1H-NMR光 谱图,图5绘示实施例2至实施例4的 1H-NMR光谱图。由图4以及图5的结果可知,实施例1至实施例4的产物皆为含碳酸酯的环氧树脂。
<环氧固化物的制备>
针对实施例1至实施例4所合成的含碳酸酯的环氧树脂,添加相等当量的硬化剂,先研磨至粉再加热至150℃呈熔融状态,搅拌均匀后,放入烘箱升温至160℃一小时、180℃两小时以及200℃两小时进行固化;或者可利用溶剂法将实施例1至实施例4所合成的含碳酸酯的环氧树脂与硬化剂在固含量20wt%的溶液中搅拌至全熔,倒入模具后进行固化,以得到实施例5至实施例16的环氧固化物。
具体地,本发明所使用的硬化剂可为二胺基二苯甲烷(DDM)、酚醛树脂(PN)、二聚氰胺(DICY)、聚碳酸酯(PC)、二苯醚四甲酸二酐(ODPA)以及邻苯二甲酸酐(PAH)。以实施例2为例,当选用不同硬化剂时,其所制备的环氧固化物如下表四所示。
Figure PCTCN2022109719-appb-000020
Figure PCTCN2022109719-appb-000021
另外,以市售的环氧树脂BE188及BE501,添加相等当量的硬化剂进行实施例5至实施例16相同的固化步骤,以得到比较例1至比较例4的环氧固化物。
详细来说,以添加二胺基二苯甲烷的硬化剂为例,添加相等当量即为环氧当量数等同于活性氢的当量数,而以添加聚碳酸酯的硬化剂为例,添加相等当量即为环氧当量数等同于碳酸酯基的当量数。
关于实施例5至实施例16以及比较例1至比较例4所使用的环氧树脂以及硬化剂如下表五所示。
Figure PCTCN2022109719-appb-000022
Figure PCTCN2022109719-appb-000023
<热性质评估>
将实施例5至实施例16以及比较例1至比较例4进行热性质评估,热性质评估包含玻璃转移温度(T g)、5%热重损失温度(T d5%)以及焦炭残余率,评估方法如下。
(一)玻璃转移温度:使用动态机械分析仪(Dynamic Mechanical Analyzer,DMA)测量实施例5至实施例16以及比较例1至比较例4所制得的环氧固化物的储存模数(Storage Modulus)及Tan delta曲线和温度的关系以及玻璃转移温度。另外使用热机械分析法(Thermo-Mechanical Analysis,TMA)来测量玻璃转移温度,热机械分析法的条件为在5℃/min的加热速率下测量。
(二)5%热重损失温度及焦炭残余率:使用热重分析法(Thermo-Gravimetric Analysis,TGA)来测量样品的5%热重损失温度以及800℃的焦炭残余率(Char yield)。热重量分析法的条件是在氮气气氛下、以20℃/min的加热速率,使用热重分析仪测量样品的重量变化。5%热重损失温度是指固化物样品的重量损失达5%的温度,其中5%热重损失温度愈高代表样品的热稳定性愈佳。800℃的焦炭残余率是指加热温度达800℃时的样品的残余重量比率,其中800℃的残余重量比率愈高代表样品的热稳定性愈佳。
关于实施例5至实施例16以及比较例1至比较例4的玻璃转移温度、储存模数、热重损失温度以及焦炭残余率的测量结果如下表六所示。
Figure PCTCN2022109719-appb-000024
Figure PCTCN2022109719-appb-000025
由表六的结果可见,当使用DDM作为硬化剂时,其制得的环氧固化物的玻璃转移温度高于其他硬化剂,主要是因为DDM硬化剂的官能数大于其他硬化剂,使得交联密度增加,热性质也较优异。然而,5%热重损失温度的高低主要与交联后的键结有关,当使用PN作为硬化剂时,其分解醚基所需要的能量大于酯基与胺基,因此其制得的环氧固化物具有较优异的5%热重损失温度。另外,当使用PN与DDM作为硬化剂时,其主链多为苯环结构,与环氧树脂能有更紧密的分子,因此焦炭残余率也相对较高。此外,本发明的实施例5至实施例16的含碳酸酯的环氧树脂在固化后可表现出与比较例1至比较例4的市售环氧树脂固化物相仿的热性质。
<机械性质评估>
将实施例5至实施例16以及比较例1至比较例4进行机械性质评估,通过拉力测试以测得抗拉强度(tensile strength)以及断裂伸长率(elongation at break),其中拉力测试是在室温中测量,试片大小为5厘米长、1厘米宽、0.04至0.10毫米厚。关于实施例5至实施例16以及比较例1至比较例4的抗拉强度以及断裂伸长率的测量结果如下表七所示。
Figure PCTCN2022109719-appb-000026
由表七的结果可见,当使用PC作为硬化剂时,其主链较长且PC的酯基具有一定的立体障碍,可使固化物有较高的分子运动,使得拉伸性能较优异。另外,本发明的实施例5至实施例16的含碳酸酯的环氧树脂在固化后可表现出与比较例1至比较例4的市售环氧树脂固化物相仿的机械性质,甚至普遍优于比较例1至比较例4的结果。
<降解环氧固化物>
实施例17至实施例19分别为实施例8至实施例10的环氧固化物进行降解反应所得的结果,而比较例5至比较例8分别为比较例1至比较例4的环氧固化物进行降解反应所得的结果。首先,取实施例8至实施例10以及比较例1至比较例4的环氧固化物薄膜与1-己胺置于反应器中,反应结束后直接使用减压浓缩机将1-己胺抽出,可得降解完成的实施例17至实施例19以及比较例5至比较例8。关于实施例17至实施例19以及比较例5至比较例8中所需的环氧固化物种类、反应温度、反应时间以及残留重量 皆列于下表八。
Figure PCTCN2022109719-appb-000027
请参考图6,其是绘示实施例19的 1H-NMR光谱图。详细来说,图6的(a)为实施例10与1-己胺进行胺解反应后,蒸去1-己胺的产物的 1H-NMR光谱图,而图6的(b)为实施例10与1-己胺进行胺解反应后,蒸去1-己胺并倒入甲醇析出,其析出物的 1H-NMR光谱图。
由图6的结果可观察到1,3-二己基脲(1,3-dihexylurea)的特征信号,7.3ppm为urea结构的胺基信号(NH-CO-NH)、亚甲基信号位于2.9ppm(H i)和1.2-1.4ppm(H c-h)、甲基信号位于0.8ppm(H d),并且从中亦可观察到苯氧树脂(phenoxy resin)的特征信号,5.3ppm为羟基信号,6.8和7.0ppm为苯环信号,次甲基与亚甲基信号分别位于4.1ppm(H b)与3.9ppm(H a)、甲基信号位于1.5ppm(H c)。经由图6以及表八的结果,可说明本发明的实施例10的环氧固化物与含胺基的化合物反应后具有可分解性,且环氧固化物的残留重量为0%。
另外,实施例8以及实施例9在1-己胺加热反应下也具有部分降解性,重量分别残留85%以及77%,而比较例1至比较例4的市售环氧树脂制得的环氧固化物在相同条件下拉长时间至24小时仍无降解发生,重量残留皆为100%,可证明本发明所合成的含碳酸酯的环氧树脂具有独特的降解性,对于热固型材料的回收减废存在相当大的贡献。
综上所述,本发明通过简单一步反应得到含有碳酸酯基的双官能或多官能的环氧树脂,此制备方法可特别由回收废弃聚碳酸酯或碳酸酯化合物作为原料,且其原子效率高,有助于聚碳酸酯废弃物减量。此外,本发明 的含碳酸酯的环氧树脂与硬化剂进行固化反应可得具有优异性质的环氧固化物,且具有可化学降解性,减少热固型塑胶废弃物的排放,达到永续利用的目标。
本发明并不局限于上述的实施方式,任何本领域的技术人员在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视后附的权利要求所界定者为准。

Claims (10)

  1. 一种含碳酸酯的环氧树脂,其特征在于,具有如式(I)或式(II)所示的结构:
    Figure PCTCN2022109719-appb-100001
    其中,R 1、R 2、R 7及R 8是各自独立为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基、碳数6至12的芳香基或卤素原子,a及b是各自独立为0至4的整数,e及f是各自独立为0至5的整数;
    其中,X为单键、碳数1至12的烷基、碳数3至12的环烷基、氧原子、硫原子、磺酰基、亚硫酰基、酰基、碳数6至12的芳香基、芴基、式(i)或式(ii)所示的结构:
    Figure PCTCN2022109719-appb-100002
    其中,X 1为氢原子、碳数1至6的烷基或碳数6至12的芳香基;
    其中,Y为碳数1至12的烷基、碳数1至12的烷氧基、异氰脲酸酯、式(iii)、式(iv)或式(v)所示的结构:
    Figure PCTCN2022109719-appb-100003
    Figure PCTCN2022109719-appb-100004
    其中,R 3及R 4是各自独立为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基、碳数6至12的芳香基或卤素原子,R 5为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基,R 6为亚甲基、碳数5至12的烷基或碳数5至12的环烷基,c及d是各自独立为0至4的整数;
    其中,Z为单键、碳数1至12的烷基、碳数3至12的环烷基、氧原子、硫原子、磺酰基、亚硫酰基、酰基、碳数6至12的芳香基、芴基、式(i)或式(ii)所示的所述结构;以及
    其中,n为聚合度,且1≤n≤500,p为1至11的整数,q为0至20的整数以及r为1至15的整数。
  2. 一种含碳酸酯的环氧树脂的制备方法,其特征在于,包含:
    提供含芳香族碳酸酯基的结构,其具有如式(A1)或如式(A2)所示的结构:
    Figure PCTCN2022109719-appb-100005
    提供含环氧基的结构,其具有如式(B)所示的结构:
    Figure PCTCN2022109719-appb-100006
    以及
    进行催化步骤,其是将所述含芳香族碳酸酯基的结构与所述含环氧基的结构混合后,在触媒催化下得到含碳酸酯的环氧树脂,其具有如式(I)或式(II)所示的结构:
    Figure PCTCN2022109719-appb-100007
    其中,R 1、R 2、R 7及R 8是各自独立为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基、碳数6至12的芳香基或卤素原子,a及b是各自独立为0至4的整数,e及f是各自独立为0至5的整数;
    其中,X为单键、碳数1至12的烷基、碳数3至12的环烷基、氧原子、硫原子、磺酰基、亚硫酰基、酰基、碳数6至12的芳香基、芴基、式(i)或式(ii)所示的结构:
    Figure PCTCN2022109719-appb-100008
    其中,X 1为氢原子、碳数1至6的烷基或碳数6至12的芳香基;
    其中,Y为碳数1至12的烷基、碳数1至12的烷氧基、异氰脲酸酯、式(iii)、式(iv)或式(v)所示的结构:
    Figure PCTCN2022109719-appb-100009
    Figure PCTCN2022109719-appb-100010
    其中,R 3及R 4是各自独立为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基、碳数6至12的芳香基或卤素原子,R 5为氢原子、碳数1至6的烷基、烯丙基、碳数1至6的烷氧基,R 6为亚甲基、碳数5至12的烷基或碳数5至12的环烷基,c及d是各自独立为0至4的整数;
    其中,Z为单键、碳数1至12的烷基、碳数3至12的环烷基、氧原子、硫原子、磺酰基、亚硫酰基、酰基、碳数6至12的芳香基、芴基、式(i)或式(ii)所示的所述结构;
    其中,n为聚合度,且1≤n≤500,m为2至12的整数,p为1至11的整数,q为0至20的整数以及r为1至15的整数。
  3. 如权利要求2所述的含碳酸酯的环氧树脂的制备方法,其特征在于,所述触媒为选自由4-二甲基氨基吡啶、咪唑、吡啶、2-甲基咪唑、3-甲基咪唑、2-乙基-4-甲基咪唑所组成的群组。
  4. 如权利要求3所述的含碳酸酯的环氧树脂的制备方法,其特征在于,所述触媒的添加量为所述含环氧基的结构含量的0.1重量百分比至5重量百分比。
  5. 如权利要求2所述的含碳酸酯的环氧树脂的制备方法,其特征在于,所述含环氧基的结构的环氧基与所述含芳香族碳酸酯基的结构的碳酸酯基的当量比值为1.3至10.0。
  6. 一种环氧固化物,其特征在于,所述环氧固化物是采用如权利要求1所述的含碳酸酯的环氧树脂进行固化反应而得。
  7. 如权利要求6所述的环氧固化物,其特征在于,所述固化反应是混合所述含碳酸酯的环氧树脂以及硬化剂并加热而完成。
  8. 如权利要求7所述的环氧固化物,其特征在于,所述硬化剂为酚醛 树脂、胺类化合物、活性酯化合物、羧酸化合物、氰酸酯化合物、异氰酸酯化合物、酸酐化合物、苯并恶嗪、聚碳酸酯或其混合。
  9. 如权利要求7所述的环氧固化物,其特征在于,所述固化反应的固化温度为180℃至240℃。
  10. 一种降解环氧固化物的方法,其特征在于,包含:
    提供如权利要求6所述的环氧固化物;以及
    进行降解步骤,其是将含胺基的化合物与所述环氧固化物反应,以降解所述环氧固化物。
PCT/CN2022/109719 2022-08-02 2022-08-02 含碳酸酯的环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法 WO2024026679A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109719 WO2024026679A1 (zh) 2022-08-02 2022-08-02 含碳酸酯的环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109719 WO2024026679A1 (zh) 2022-08-02 2022-08-02 含碳酸酯的环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法

Publications (1)

Publication Number Publication Date
WO2024026679A1 true WO2024026679A1 (zh) 2024-02-08

Family

ID=89848368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109719 WO2024026679A1 (zh) 2022-08-02 2022-08-02 含碳酸酯的环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法

Country Status (1)

Country Link
WO (1) WO2024026679A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037903A (en) * 1989-09-11 1991-08-06 The Dow Chemical Company Composition of aromatic polyester copolyester carbonate or polycarbonate with polyepoxide and polyorgano phosphorous catalyst
US5182344A (en) * 1989-09-11 1993-01-26 The Dow Chemical Company Curing polyester or polycarbonate and polyepoxide with polyorgano phosphorous catalyst
US5556927A (en) * 1994-06-16 1996-09-17 Daicel Chemical Industries, Ltd. Carbonate group-modified epoxy resin, a process for the preparation thereof, and a heat-curable resin composition
CN112752781A (zh) * 2018-10-12 2021-05-04 本州化学工业株式会社 环氧树脂组合物
TW202144487A (zh) * 2020-05-19 2021-12-01 國立中興大學 可固化組成物、其製備之環氧固化物及降解環氧固化物的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037903A (en) * 1989-09-11 1991-08-06 The Dow Chemical Company Composition of aromatic polyester copolyester carbonate or polycarbonate with polyepoxide and polyorgano phosphorous catalyst
US5182344A (en) * 1989-09-11 1993-01-26 The Dow Chemical Company Curing polyester or polycarbonate and polyepoxide with polyorgano phosphorous catalyst
US5556927A (en) * 1994-06-16 1996-09-17 Daicel Chemical Industries, Ltd. Carbonate group-modified epoxy resin, a process for the preparation thereof, and a heat-curable resin composition
CN112752781A (zh) * 2018-10-12 2021-05-04 本州化学工业株式会社 环氧树脂组合物
TW202144487A (zh) * 2020-05-19 2021-12-01 國立中興大學 可固化組成物、其製備之環氧固化物及降解環氧固化物的方法

Similar Documents

Publication Publication Date Title
Liu et al. High‐performance biobased epoxy derived from rosin
Wang et al. Synthesis of rosin‐based flexible anhydride‐type curing agents and properties of the cured epoxy
JPH0625194B2 (ja) 新規なエポキシ樹脂の製造方法
US8691920B2 (en) Thermosettable composition containing a half ester of a cycloaliphatic diol and a thermoset product therefrom
JPH02140219A (ja) エポキシ樹脂の製造方法
KR101422659B1 (ko) 신규 옥세탄계 화합물, 그 제조방법, 및 이를 포함하는 디스플레이 기판용 복합시트
WO2024026679A1 (zh) 含碳酸酯的环氧树脂、其制备方法、其制备的环氧固化物及降解环氧固化物的方法
Yan et al. Rosin derived catalyst-free vitrimer with hydrothermal recyclability and application in high performance fiber composite
TWI817202B (zh) 含碳酸酯之環氧樹脂、其製備方法、其製備之環氧固化物及降解環氧固化物的方法
WO2020117517A1 (en) Cyclobutane-containing thermally cleavable polymers
TWI768347B (zh) 可固化組成物、其製備之環氧固化物及降解環氧固化物的方法
CN110872281A (zh) 一种叔酚-糠胺型苯并噁嗪单体、固化树脂及其共聚树脂的制备方法
TWI832604B (zh) 降解環氧固化物的方法
CN105153407B (zh) 一种热固性松香基树脂组合物及其制备方法
TWI838046B (zh) 含碳酸酯之環氧樹脂、其製備方法、其製備之環氧固化物及降解環氧固化物的方法
CN111704711B (zh) 一种基于缩醛结构的环氧单体及其制备方法与应用
JP4509715B2 (ja) ジグリシジルエーテル、硬化性組成物および硬化物
WO2023168562A1 (zh) 含碳酸酯的不饱和化合物、其制备方法、其制备的固化物及降解固化物的方法
CN111548483B (zh) Salen锰配合物在涉及不饱和酸酐-环氧共聚物的串联催化反应中的应用
JP2639833B2 (ja) ポリエーテル化合物
JPS63234028A (ja) ポリエ−テル化合物
JP3014404B2 (ja) ポリエーテル化合物およびエポキシ化合物
CN117417518A (zh) 一种超支化活性酯聚合物及其制备方法和应用
CN117342976A (zh) 一种具有亚胺键的活性酯固化剂及其制备方法和应用
CN112679703A (zh) 一种环氧树脂固化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953492

Country of ref document: EP

Kind code of ref document: A1