WO2024025324A1 - 유체 처리 장치 - Google Patents

유체 처리 장치 Download PDF

Info

Publication number
WO2024025324A1
WO2024025324A1 PCT/KR2023/010792 KR2023010792W WO2024025324A1 WO 2024025324 A1 WO2024025324 A1 WO 2024025324A1 KR 2023010792 W KR2023010792 W KR 2023010792W WO 2024025324 A1 WO2024025324 A1 WO 2024025324A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
inner tube
light source
fluid
processing device
Prior art date
Application number
PCT/KR2023/010792
Other languages
English (en)
French (fr)
Inventor
정재학
최은미
Original Assignee
서울바이오시스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스주식회사 filed Critical 서울바이오시스주식회사
Publication of WO2024025324A1 publication Critical patent/WO2024025324A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light

Definitions

  • the present invention relates to fluid processing devices.
  • the problem to be solved by the present invention is to provide a fluid processing device capable of purifying fluid.
  • Another problem to be solved by the present invention is to provide a fluid processing device that can improve fluid processing efficiency by minimizing light loss.
  • Another problem to be solved by the present invention is to provide a fluid processing device employing a method that can easily be mass-produced and improve yield.
  • Another problem to be solved by the present invention is to provide a fluid processing device that can reduce malfunctions and damage caused by heat generation in a driving circuit.
  • a fluid processing device including a housing, an inner pipe portion disposed inside the housing, and a light source portion that emits light into an inner space of the housing.
  • the housing may include an inlet through which fluid flows in and an outlet through which fluid is discharged.
  • the inner tube portion may have an inner diameter smaller than that of the housing and may be formed to be open at the bottom.
  • the inner space of the inner tube part may be a first flow path, and the space between the inner tube part and the housing may be a second flow path.
  • the fluid flowing in through the inlet part may pass through the first flow path and the second flow path and move to the discharge part.
  • the light source unit may be arranged to face the lower end of the inner tube part.
  • the lower end of the inner tube may be located within a light irradiation area, which is an area where light is emitted from the light source unit and directly irradiated to the fluid. Additionally, the inlet portion may be formed so that the central axis of the inlet portion and the central axis of the inner tube portion are located on different lines.
  • a fluid processing device can purify the fluid by sterilizing the fluid by irradiating light to the fluid.
  • the fluid processing device can improve fluid processing efficiency by minimizing light loss.
  • the fluid processing device is easy to assemble and mass produce, can improve yield, and reduce defect rate.
  • the fluid processing device places the driving circuit outside the housing, thereby preventing malfunction and damage to the light source unit due to heat generation of the driving circuit.
  • FIG. 1 is a front view of a fluid processing device according to an embodiment of the present invention.
  • Figure 2 is an exploded view of a fluid processing device according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view of a fluid processing device according to an embodiment of the present invention.
  • FIG. 4 is a plan view of a first housing of a fluid processing device according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a first housing of a fluid processing device according to an embodiment of the present invention.
  • Figure 6 is a cross-sectional view illustrating another example of a second seating portion and an inlet hole of a fluid processing device according to an embodiment of the present invention.
  • Figure 7 is a perspective view of a first reflector of a fluid processing device according to an embodiment of the present invention.
  • Figure 8 is a cross-sectional view of a first reflection portion of a fluid processing device according to an embodiment of the present invention.
  • Figure 9 is a perspective view of the inner tube of a fluid processing device according to an embodiment of the present invention.
  • Figure 10 is a cross-sectional view of the inner tube of a fluid processing device according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view illustrating another example of an inner pipe portion of a fluid processing device according to an embodiment of the present invention.
  • Figure 12 is a cross-sectional view for explaining another example of the inner pipe portion of a fluid processing device according to an embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating another example of an inner pipe portion of a fluid processing device according to an embodiment of the present invention.
  • Figure 14 is a plan view of the second housing according to an embodiment of the present invention.
  • Figure 15 is a cross-sectional view of the second housing according to an embodiment of the present invention.
  • Figure 16 is a perspective view of a second reflector according to an embodiment of the present invention.
  • Figure 17 is a cross-sectional view of the second reflector according to an embodiment of the present invention.
  • Figure 18 is a diagram for explaining another embodiment of the second reflector.
  • Figure 19 is a plan view of the second housing in which the light source unit and the second reflector of the fluid processing device according to an embodiment of the present invention are disposed.
  • Figure 20 is a cross-sectional view of the second housing in which the light source unit and the second reflector of the fluid processing device according to an embodiment of the present invention are disposed.
  • Figure 21 is an exemplary diagram for explaining the length of the inner tube of a fluid processing device according to an embodiment of the present invention.
  • FIG. 22 is an exemplary diagram illustrating the length of an inner tube when a fluid processing device according to an embodiment of the present invention includes a plurality of light sources.
  • Figure 23 is another example diagram for explaining the length of an inner tube when a fluid processing device according to an embodiment of the present invention includes a plurality of light sources.
  • Figure 24 is a diagram for explaining the position where the inlet of the fluid processing device of this embodiment is formed.
  • Figure 25 is a diagram showing the appearance of another embodiment of the inlet and outlet of a fluid processing device according to an embodiment of the present invention.
  • Figure 26 is a cross-sectional view illustrating another example of the inlet and outlet of a fluid processing device according to an embodiment of the present invention.
  • a fluid processing device may include a housing, an inner tube portion disposed inside the housing, and a light source portion that emits light into an inner space of the housing.
  • the housing may include an inlet through which fluid flows in and an outlet through which fluid is discharged.
  • the inner tube portion may have an inner diameter smaller than that of the housing and may be formed to be open at the bottom.
  • the inner space of the inner tube part may be a first flow path, and the space between the inner tube part and the housing may be a second flow path.
  • the fluid flowing in through the inlet part may pass through the first flow path and the second flow path and move to the discharge part.
  • the light source unit may be arranged to face the lower end of the inner tube part.
  • the lower end of the inner tube may be located within a light irradiation area, which is an area where light is emitted from the light source unit and directly irradiated to the fluid. Additionally, the inlet portion may be formed so that the central axis of the inlet portion and the central axis of the inner tube portion are located on different lines.
  • the fluid processing device may further include a first reflection portion that is in close contact with the inner wall of the housing and is spaced apart from the inner tube portion.
  • the first reflector may include a material that reflects light from the light source unit.
  • the first reflector may be formed by injection molding and inserted into the housing.
  • the inner tube portion forms the first channel and may include an inner tube made of a material that transmits light.
  • the housing may include a seating portion of a multi-stage structure in which the upper end of the inner tube portion is inserted and the inner tube portion is seated.
  • An inlet hole connected to the inlet part may be formed in the seating part.
  • the seating portion may include a first end and a second end located outside the first end.
  • the first end may have a lower height than the second end.
  • the upper end of the inner pipe portion may be inserted into the second end of the seating portion and seated on the first end.
  • the inlet hole may be formed at the first end of the seating portion.
  • the inlet hole may be formed at the first end of the seating portion and extend to the inner wall of the housing located inside the seating portion.
  • the diameter of the inlet hole may be smaller than the inner diameter of the inlet part.
  • the fluid processing device may include a second reflection part disposed between the inner tube part and the light source part inside the housing. A portion of the light source unit may be located inside the second reflection unit.
  • the second reflector may include a reflection member and a window member.
  • the reflective member has a through hole and can reflect light from the light source unit.
  • the window member may be disposed on the upper surface of the reflective member to cover the through hole of the reflective member. Additionally, the window member may be formed of a material that transmits light from the light source unit. A portion of the light source unit may be disposed in the through hole of the reflective member of the second reflector unit.
  • the second reflector may include a sealing member formed to cover at least a portion of a side surface of the reflective member of the second reflector, a portion of an upper surface, and an upper edge of the window member.
  • the inlet portion and the outlet portion may each have a curved shape.
  • the light irradiation area may include an intensive sterilization area having a sterilizing power of 90% or more against contaminants contained in the fluid.
  • the light source unit may include a plurality of light sources.
  • the lower end of the inner tube may be located in an area where light irradiation areas of at least two light sources overlap.
  • the housing may include a first housing and a second housing.
  • the inner tube portion may be disposed in the first housing.
  • the second reflection unit and the light source unit may be disposed in the second housing.
  • the first housing and the second housing may have different outer diameters. A portion of the first housing may be inserted into the second housing, and the first housing and the second housing may be coupled.
  • the fluid processing device is disposed outside the housing and may include a driving unit including a driving circuit that controls the operation of the light source unit.
  • 1 to 26 are exemplary diagrams for explaining a fluid processing device according to an embodiment of the present invention.
  • FIG. 1 is a front view of a fluid processing device 10 according to an embodiment of the present invention.
  • Figure 2 is an exploded view of the fluid processing device 10 according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view of the fluid processing device 10 according to an embodiment of the present invention.
  • the fluid processing device 10 includes a housing 100, a first reflector 200, a second reflector 300, an inner tube 400, and Includes a light source unit 500.
  • the fluid processing device 10 of this embodiment is a device that sterilizes the fluid introduced into the fluid.
  • the fluid treatment sterilizes the incoming raw water to make it purified water. That is, the fluid is water, and the fluid treatment is sterilization.
  • the housing 100 includes a first housing 110 and a second housing 130.
  • the first housing 110 and the second housing 130 are combined with each other to form an internal space where various components provided for sterilizing raw water are disposed and where raw water flowing inside is sterilized.
  • An inlet portion 121 which is a passage for raw water to flow in, and an outlet portion 125, which is a passage for purified water to be discharged, are formed on the upper surface of the first housing 110. Additionally, a hole is formed on the lower surface of the first housing 110, and the hole formed on the lower surface of the first housing 110 is connected to the internal space of the first housing 110.
  • Figure 4 is a plan view of the first housing 110 of the fluid processing device 10 according to an embodiment of the present invention. Additionally, Figure 5 is a cross-sectional view of the first housing 110 of the fluid processing device 10 according to an embodiment of the present invention.
  • a first seating part 111, a second seating part 112, an inlet hole 113, and an outlet hole 114 are formed inside the first housing 110.
  • the first reflecting unit 200 may be seated on the first seating unit 111 .
  • the first seating portion 111 includes a first protrusion 115 that protrudes downward from the inner upper surface of the first housing 110.
  • the first protrusion 115 may be formed along the inner surface of the first housing 110 while being spaced apart from the inner surface. Accordingly, a first groove 116 that is concave with respect to the upper surface of the first protrusion 115 may be formed between the first protrusion 115 and the inner surface of the first housing 110. The first protrusion 115 and the first groove 116 formed in this way may become the first seating portion 111 on which one end of the first reflecting portion 200 is seated.
  • the first protrusion 115 is formed in a circular shape along the inner surface of the first housing 110, but the structure of the first protrusion 115 is not limited thereto.
  • the first protrusion 115 may be formed in a structure corresponding to one end of the first reflection part 200 that is seated on the first seating part 111. Additionally, the first protrusion 115 may be formed in various structures as long as the first reflector 200 can be seated thereon.
  • the second seating portion 112 may accommodate the inner tube portion 400.
  • the second seating portion 112 is formed inside the first seating portion 111 and may be spaced apart from the first seating portion 111. Additionally, the second seating portion 112 may also be formed in a circular shape along the first seating portion 111. Additionally, the second seating portion 112 may be formed in a multi-stage structure that protrudes downward from the inner upper surface of the first housing 110. In this embodiment, the multi-stage structure of the second seating portion 112 has a first end 118 located on the inside having a lower height than the second end 119 located on the outside. One end of the inner pipe portion 400 may be seated on the inner surface of the multi-stage structure of the second seating portion 112. In this embodiment, the second seating portion 112 is formed in a structure having a circular cross-section, but is not limited thereto. The second seating portion 112 may be formed in a structure corresponding to one end of the inner tube portion 400. Additionally, the second seating portion 112 may be formed in various structures as long as one end of the inner tube portion 400 can be seated thereon.
  • the inlet hole 113 may be formed in the second seating portion 112. At this time, at least a portion of the inlet hole 113 may be formed on the side of the second seating portion 112. In more detail, the inlet hole 113 may be formed at the first end 118 of the second seating portion 112. Alternatively, the inlet hole 113 may extend from the first end 118 of the second seating portion 112 and may be further formed on the inner upper surface of the first housing 110 located inside the second seating portion 112. .
  • the inlet hole 113 is formed on the side of the first end 118 and the second end 119 of the first seating part 111, and may be formed to have a constant diameter.
  • the structure of the inlet hole 113 is not limited to this.
  • FIG. 6 is a cross-sectional view illustrating another example of the second seating portion 712 and the inlet hole 713 of the fluid processing device 10 according to an embodiment of the present invention.
  • the inlet hole 713 may have a structure whose diameter gradually increases from the outer surface to the inner surface of the second seating portion 712. At this time, the inner wall of the second seating portion 712, which forms the inlet hole 713 and is located close to the inner tube 420, may have an inclined structure.
  • the inlet hole 713 of this embodiment can minimize collisions with fluid changing the direction of movement due to the inclined inner wall.
  • the diameter of the inlet hole 713 in this embodiment increases according to the direction in which the fluid moves, fluid stagnation inside or near the inlet hole 713 due to eddy currents can be prevented.
  • the second seating portion 712 is formed in a structure in which the inner wall of the portion where the inlet hole 713 is formed has a slope, so that the diameter of the inlet hole 713 increases as shown in FIG. 6.
  • the structure of the second seating portion 112 is not limited to this.
  • the second seating portion 112 may be formed so that the entire inner wall, not just a portion thereof, has an inclination.
  • the inlet hole 113 formed in the second seating portion 112 may be connected to the inlet passage 124 of the inlet portion 121 of the first housing 110.
  • the inlet passage 124 is an internal space of the inlet 121 through which fluid flows. Accordingly, raw water flowing in through the inlet 121 may flow into the interior of the housing 100 through the inlet hole 113.
  • the discharge hole 114 may be formed on the inner upper surface of the first housing 110 located inside the first seating portion 111. More specifically, the discharge hole 114 may be formed on the inner upper surface of the first housing 110 located between the first seating portion 111 and the second seating portion 112.
  • the discharge hole 114 may be connected to the discharge passage of the discharge portion 125 of the first housing 110. Accordingly, purified water sterilized inside the housing 100 may be discharged to the discharge unit 125 through the discharge hole 114.
  • the first reflector 200 is disposed inside the first housing 110.
  • Figure 7 is a perspective view of the first reflector 200 of the fluid processing device 10 according to an embodiment of the present invention. Additionally, Figure 8 is a cross-sectional view of the first reflection unit 200 of the fluid processing device 10 according to an embodiment of the present invention.
  • the first reflector 200 may include a first sealing member 210 and a first reflecting member 220.
  • the first reflective member 220 may be formed in a cylindrical shape with an internal space. Additionally, the first reflective member 220 may be disposed inside the first housing 110 .
  • the first sealing member 210 may be disposed at one end of the first reflective member 220 and coupled to the first reflective member 220 .
  • the first sealing member 210 is formed with a through hole penetrating from the upper surface to the lower surface, and the outer surface may have a multi-stage structure. That is, the first sealing member 210 may have a structure in which a chin is formed on the outer surface.
  • the upper surface, which is one end of the first reflective member 220, may be seated on the chin of the outer surface of the first sealing member 210.
  • the first sealing member 210 may be divided into an upper part and a lower part having different diameters.
  • the first sealing member 210 may have a structure where the upper portion has a larger outer diameter than the lower portion.
  • the first sealing member 210 may be formed so that the upper portion has a larger inner diameter than the lower portion.
  • the first sealing member 210 may be coupled to the first reflective member 220 in such a way that the upper portion is located on the upper portion of the first reflective member 220 and the lower portion is inserted into the interior of the first reflective member 220.
  • the outer diameter of the upper part of the first sealing member 210 may be the same as the outer diameter of the first reflective member 220.
  • the outer diameter of the lower portion of the first sealing member 210 may be the same as the inner diameter of the first reflective member 220. Therefore, when the first sealing member 210 is coupled to the first reflecting member 220, the lower part of the first sealing member 210 is in close contact with the inner surface of the first reflecting member 220, and the upper part is in close contact with the first reflecting member 220. It may be in close contact with the upper surface of the member 220. In this way, since the first sealing member 210 is in close contact with the inner surface and upper surface of the first reflecting member 220, the fluid flowing in the internal space of the first reflecting member 200 is connected to the first reflecting member 220. It is possible to prevent leakage between the first sealing members 210.
  • the inner diameter of the lower portion of the first sealing member 210 may be smaller than the inner diameter of the first reflective member 220.
  • the structure of the first sealing member 210 is not limited to this.
  • the first sealing member 210 may be formed so that both upper and lower inner diameters are the same as the inner diameter of the first reflective member 220.
  • the first sealing member 210 may be formed of a material having elasticity. Therefore, when the first housing 110 and the second housing 130 are combined, the upper surface of the first sealing member 210 is more firmly attached to the first housing 110 due to the elastic force of the first sealing member 210. The lower surface of the first sealing member 210 can be more firmly adhered to the first reflective member 220. Accordingly, the watertight effect between the first housing 110, the first sealing member 210, and the first reflective member 220 can be improved.
  • the first reflective member 220 may be formed of a reflective material. Since the first reflective member 220 is made of a reflective material, the light emitted from the light source unit 500 may be reflected rather than absorbed by the inner wall of the first reflective member 220. Accordingly, the light emitted from the light source unit 500 can be prevented from being lost by the first reflective member 220. Additionally, the fluid flowing in the internal space of the first reflective member 220 may be directly exposed to the light emitted from the light source unit 500 as well as the light reflected from the first reflective member 220. Accordingly, the amount of light exposed to the fluid is increased or light loss is reduced by the first reflective member 220, so fluid processing efficiency can be improved.
  • the material forming the first reflective member 220 may be Teflon.
  • the fluid processing device 10 includes a separate first reflective member 220 made of a reflective material instead of coating the first housing 110 with a reflective material.
  • the reflective material In order to coat the inner wall of the first housing 110 with a reflective material such as Teflon, the reflective material must be converted into a liquid resin and then applied to the inner wall of the first housing 110. As such, the first housing 110 whose inner wall is coated with a reflective material is not easy to mass produce because it is formed through several complex processes.
  • the first reflection member 220 is manufactured by injection molding and inserted into the first housing 110.
  • reflected light can be allowed to reach the entire internal space of the first housing 110.
  • the method of separately providing the first reflective member 220 and assembling it to the first housing 110 is easier for mass production than the method of coating the inner wall of the first housing 110 with a reflective material.
  • the first reflector 200 may be fixed to the first housing 110 by inserting the upper portion of the first sealing member 210 between the first protrusion 115 and the inner surface of the first housing 110. there is.
  • the outer surface of the first reflecting member 220 may be in close contact with the inner surface of the first housing 110. there is.
  • the first sealing member 210 may seal the first seating portion 111 formed in the first housing 110. That is, the first sealing member 210 can prevent fluid from flowing into the space between the first protrusion 115 and the inner surface of the first housing 110. If fluid flows into the space between the first protrusion 115 of the first housing 110 and the inner surface of the first housing 110, and the fluid flows in for a long time, it may become more contaminated. The first sealing member 210 can prevent fluid from flowing into the space between the first protrusion 115 and the first housing 110, thereby preventing fluid from accumulating in this space and causing contamination.
  • the discharge hole 114 is located inside the first reflector 200. That is, the internal space of the first reflector 200 and the discharge hole 114 may be connected to each other. Accordingly, the fluid flowing in the internal space of the first reflection unit 200 may be discharged to the discharge unit 125 through the discharge hole 114.
  • the inner tube part 400 is disposed inside the first reflection part 200.
  • Figure 9 is a perspective view of the inner pipe portion 400 of the fluid processing device 10 according to an embodiment of the present invention. Additionally, Figure 10 is a cross-sectional view of the inner pipe portion 400 of the fluid processing device 10 according to an embodiment of the present invention.
  • the inner tube portion 400 may include a second sealing member 410 and an inner tube 420.
  • the second sealing member 410 may have a structure in which through holes are formed from the upper surface to the lower surface.
  • the upper end of the inner tube 420 may be inserted into the through hole of the second sealing member 410. That is, the second sealing member 410 may be formed to surround the upper part of the inner tube 420.
  • the second sealing member 410 may be formed to surround the side of the upper portion of the inner tube 420. Accordingly, when the second sealing member 410 is mounted on the inner tube 420, the inner diameter of the second sealing member 410 may be the same as the outer diameter of the inner tube 420. Additionally, the second sealing member 410 may be formed of a material having elasticity.
  • the inner tube 420 may have a cylindrical structure with through holes formed from the upper surface to the lower surface. Additionally, the inner tube 420 may be formed of a material that transmits light from the light source unit 500. Accordingly, the light reflected from the first reflection member 220 may pass through the inner tube 420 and be irradiated to the inner space of the inner tube 420. Alternatively, the light emitted from the light source unit 500 and irradiated to the inner space of the inner tube 420 may pass through the inner tube 420 and be irradiated to the space between the inner tube 420 and the first reflective member 220.
  • the inner tube 420 may be formed of quartz.
  • the inner tube portion 400 may be fixed to the first housing 110 by inserting and seating the second sealing member 410 surrounding the inner tube 420 into the second seating portion 112 of the first housing 110. .
  • the upper surface of the second sealing member 410 may be in close contact with one surface of the first end 118 of the second seating portion 112.
  • the inner diameter of the second sealing member 410 may be smaller than the inner diameter of the first end 118 of the second seating portion 112. Accordingly, the inner edge of the first end 118 of the second seating portion 112 may not be located on the upper surface of the inner tube 420 but on the upper surface of the second sealing member 410. If the first end 118 of the second seating portion 112 is in close contact with the inner tube 420, the inner tube (400) is damaged by the force applied when the inner tube portion 400 is inserted into the second seating portion 112. 420) may be damaged by the second seating portion 112. According to this embodiment, the first end 118 of the second seating part 112 is in close contact with the second sealing member 410 having elastic force rather than the inner tube 420, so that the inner tube 420 is connected to the second seating part. Damage can be prevented by (112).
  • the side surface of the second sealing member 410 may come into close contact with the inner surface of the second stage. Therefore, when the inner pipe portion 400 is seated on the second seating portion 112 of the first housing 110, the outer diameter of the second sealing member 410 is the same as the inner diameter of the upper end of the second seating portion 112. can do.
  • the inner pipe portion 400 is located below the first end 118 of the second seating portion 112, and therefore does not block the inlet hole 113 formed in the second seating portion 112. Accordingly, even when the inner tube portion 400 is coupled to the second seating portion 112, the inlet hole 113 is connected to the inner space of the first end 118 of the second seating portion 112, and The inner space of (118) is connected to the inner space of the inner tube (420). Therefore, the fluid flowing in through the inlet 121 sequentially passes through the inlet hole 113 and the inner space of the first end 118 of the second seating portion 112 and flows into the inner space of the inner pipe 420. It can be.
  • the lower surface which is the other end of the inner tube part 400, is adjacent to the window member 320 of the second reflection part 300, but is positioned to be spaced apart. You can. Since the inner tube part 400 is spaced apart from the second reflection part 300, the fluid in the inner space of the inner tube 420 passes through the space between the inner tube 420 and the second reflection part 300 to the first reflection member 220. ) can be moved to the space between the inner tube (420).
  • a through hole which is a fluid passage, was formed in a part of the inner tube 420 (for example, a side wall of the inner tube 420).
  • the inner tube 420 may be damaged.
  • the fluid processing device 10 includes an inner tube 420 with an open lower surface instead of an inner tube 420 with a fluid passage formed on a side wall.
  • the fluid processing device 10 is arranged so that the open lower surface of the inner tube 420 and the second reflecting part 300 are spaced apart, so that fluid can pass between the inner tube 420 and the second reflecting part 300. A space is formed. Accordingly, the fluid processing device 10 of this embodiment can improve the yield of the inner tube 420 by reducing the risk of damage to the inner tube 420 by omitting the process of forming a fluid passage on the side wall. Furthermore, the yield of the fluid processing device 10 can be improved and the defect rate can be reduced.
  • an adhesive material may be interposed between the second sealing member 410 and the inner tube 420. Accordingly, the adhesion between the second sealing member 410 and the inner tube 420 is improved, and the second sealing member 410 is separated from the inner tube 420 by various factors such as water pressure in the inner space and external space of the inner tube 420 and external shock. It is possible to prevent deviation from (420).
  • the inner tube portion 400 has a structure in which the second sealing member 410 surrounds only the upper side of the inner tube 420.
  • the structure of the inner tube 400 is not limited to this.
  • FIG. 11 is a cross-sectional view illustrating another example of the inner pipe portion of the fluid processing device 10 according to an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view illustrating another example of the inner pipe portion of the fluid processing device 10 according to an embodiment of the present invention.
  • Figure 13 is a cross-sectional view for explaining another example of the inner pipe portion of the fluid processing device 10 according to an embodiment of the present invention.
  • the inner tube portion 401 may include a second sealing member 411 having at least one protrusion 415 formed on an outer surface.
  • the protrusion 415 may be formed of the same material as the second sealing member 411. Accordingly, the protrusion 415 also has elastic force like the second sealing member 411.
  • the inner tube part 401 When the inner tube part 401 is inserted into the second seating part 112 of the first housing 110 by the protrusion 415 of the second sealing member 411, the inner tube part 401 is inserted into the second seating part 112. ) can be fixed more firmly. Therefore, when fluid flows into the first flow path 141 of the inner tube 420, the inner tube portion 401 can be prevented from being separated from the second seating portion 112 due to fluid pressure.
  • the second sealing member 412 of the inner tube portion 402 is formed to cover not only the upper side of the inner tube 420 but also the upper surface of the inner tube 420. Additionally, referring to FIG. 13 , the second sealing member 413 of the inner tube portion 403 may be formed to cover a portion of the upper side, upper surface, and inner surface of the inner tube 420.
  • the second sealing members 412 and 413 of FIGS. 12 and 13 have a larger adhesive area with the inner tube 420 than the second sealing member 410 of FIGS. 9 and 10 . Accordingly, the adhesion of the second sealing members 412 and 413 of FIGS. 12 and 13 with the inner tube 420 may be improved by increasing the contact area with the inner tube 420.
  • the second sealing members 412 and 413 are formed to cover the upper surface of the inner tube 420, the upper surfaces of the second sealing members 412 and 413 are between the inner tube 420 and the second seating portion 112. Located. Therefore, the second sealing members 412 and 413 are connected to the inner tube 420 by the force of the inner tube 420 colliding with the second seating part 112 or the inner tube 420 being pressed in the direction of the second seating part 112. This can prevent damage.
  • the second housing 130 coupled to the first housing 110 has a larger diameter than the first housing 110.
  • the outer diameter of the second housing 130 may be larger than the outer diameter of the first housing 110.
  • the inner diameter of the second housing 130 may be the same as the outer diameter of the first housing 110. Accordingly, the first housing 110 and the second housing 130 may be coupled in such a way that the lower portion of the first housing 110 is inserted into the second housing 130.
  • first housing 110 and the second housing 130 may be coupled by a screw coupling method.
  • Screw threads and screw bones may be formed on the outer surface of the lower portion of the first housing 110 and the inner surface of the second housing 130, respectively.
  • the first housing 110 and the second housing 130 may be coupled to each other by engaging the screw threads and the threaded bones of the first housing 110 with the threaded bones and the threaded bones of the second housing 130, respectively.
  • first housing 110 and the second housing 130 may be separated from each other, but the first housing 110 and the second housing 130 may be integrated.
  • Figure 14 is a plan view of the second housing 130 according to an embodiment of the present invention. Additionally, Figure 15 is a cross-sectional view of the second housing 130 according to an embodiment of the present invention.
  • the light source unit 500 and the second reflection unit 300 may be disposed in the internal space of the second housing 130.
  • the second housing 130 has an open upper surface and has an internal space. As shown in FIG. 3 , the first housing 110 may be inserted into the internal space of the second housing 130 through the open upper surface of the second housing 130 .
  • a second protrusion 131 protruding downward is formed on the lower surface of the second housing 130.
  • a through hole through which an electric wire 610 connecting the light source unit 500 and an external power source passes is formed in the second protrusion 131. That is, the through hole formed in the second protrusion 131 may connect the inner space of the second housing 130 and the outside of the second housing 130.
  • a third seating portion 132 may be formed on the inner lower surface of the second housing 130. Referring to FIG. 15 , the third seating portion 132 may be formed to protrude upward from the inner lower surface of the second housing 130. Additionally, referring to FIG. 14 , the third seating portion 132 may be formed along the edge of the inner surface of the second housing 130 while being spaced apart from the inner surface of the second housing 130 .
  • the light source unit 500 is mounted on the inner area of the third seating unit 132.
  • the third seating portion 132 may have a structure having a circular edge.
  • the structure of the third seating portion 132 is not limited to this, and the light source unit 500 may be mounted inside. It can be in any shape if possible.
  • the third seating unit 132 may fix the light source unit 500 seated in the inner region so that the light source unit 500 does not move in the horizontal direction.
  • the third seating portion 132 may have a structure and size such that at least portions of both sides of the light source unit 500 are in close contact with the inner surface of the third seating portion 132.
  • the structure of the inner surface of the third seating part 132 corresponds to the structure of the outer surface of the substrate 520 of the light source unit 500, and the inner diameter is the same as the outer diameter of the substrate 520 of the light source unit 500. You can. Accordingly, when the light source unit 500 is mounted on the third seating unit 132, the inner surface of the third seating unit 132 may be in close contact with the outer surface of the substrate 520 of the light source unit 500.
  • the light source unit 500 may include at least one light source 510 and a substrate 520 on which the light source 510 is mounted.
  • the light source 510 may emit light capable of sterilizing contaminants contained in the fluid.
  • the light source 510 may emit ultraviolet rays.
  • the light source 510 may emit UVC.
  • the light source 510 may emit light having a peak wavelength in a wavelength range of approximately 265 nm to 275 nm.
  • the substrate 520 may serve to electrically connect the light source 510 and an external power source. Accordingly, power supplied from an external power source can be supplied to the light source 510 through the substrate 520.
  • the substrate 520 may include a base, an upper pattern, a lower pattern, and vias.
  • the base may be formed of an insulating material.
  • the upper pattern may be formed on the upper surface of the base, and the lower pattern may be formed on the lower surface of the base. Both the upper pattern and the lower pattern may be formed of a conductive material.
  • the upper and lower patterns may be formed of copper.
  • the via may be formed to penetrate the base, so that one end is in contact with the upper pattern and the other end is in contact with the lower pattern.
  • the via may be formed of a conductive material such as copper or solder paste.
  • the upper pattern of the substrate 520 is electrically connected to the light source 510
  • the lower pattern of the substrate 520 is electrically connected to the wire 610 connected to an external power source
  • the via is connected to the upper pattern.
  • the and lower patterns can be electrically connected. Accordingly, power from an external power source can be supplied to the light source 510 through the substrate 520.
  • the upper pattern, lower pattern, and via are wires formed of a conductive material.
  • the wire 610 may pass through a through hole formed in the second protrusion 131 of the second housing 130 to connect the light source unit 500 and an external power source.
  • the fluid processing device 10 of this embodiment may have a driving unit 710 located outside the housing 100.
  • the driving unit 710 may include a driving circuit for constant voltage driving or constant current driving of the light source 510 of the light source unit 500. That is, the driving circuit may be a circuit that controls the operation of the light source unit. To implement a driving circuit, a large-area board and electronic components are required. Additionally, the driving circuit has a problem in that it generates a lot of heat during operation.
  • the fluid processing device 10 of this embodiment does not implement the driving circuit on the substrate 520 of the light source unit 500, but separately provides a driving unit 710 including the driving circuit, so the substrate 520 of the light source unit 500 can be manufactured in small size. Additionally, the fluid processing device 10 can prevent the light source unit 500 from malfunctioning or being damaged by heat generation from the driving circuit by disposing the driving unit 710 including the driving circuit outside the housing 100.
  • the driving unit 710 may further include a defect detection unit that detects a failure of the light source unit 500.
  • the defect detection unit detects an abnormal state such as a short circuit or an open circuit of the light source 510 and may generate an abnormal signal to output the detected abnormal state to the outside.
  • the defect detection unit may detect an abnormal state of the light source 510 by detecting the current or voltage flowing through the light source 510 and generate an abnormal signal.
  • the fluid processing device 10 may include an output unit capable of outputting sound, light, text, etc. according to the abnormal signal generated by the defect detection unit to the outside.
  • the output unit may output at least one of sound, text, and visible light to the outside of the fluid processing device 10 so that the user can confirm it audibly or visually.
  • the output may be a screen or a visible light source located external to the fluid processing device 10.
  • the output unit may be a speaker located inside or outside the fluid processing device 10.
  • the fluid processing device 10 can immediately replace the light source unit 500 when the light source unit 500 breaks down by using a driving unit including a defect detection unit, thereby preventing a decrease in fluid processing efficiency. can do.
  • a second reflection unit 300 may be disposed on the light source unit 500. At this time, a part of the light source unit 500 may be located inside the second reflection unit 300.
  • Figure 16 is a perspective view of the second reflector 300 according to an embodiment of the present invention.
  • Figure 17 is a cross-sectional view of the second reflector 300 according to an embodiment of the present invention.
  • the second reflector 300 may include a second reflection member 310, a window member 320, and a fourth sealing member 330.
  • the second reflective member 310 may include a through hole penetrating from the upper surface to the lower surface.
  • the outer diameter or cross-sectional area of the second reflective member 310 is larger than the diameter or cross-sectional area of the substrate 520 of the light source unit 500. Additionally, the diameter or cross-sectional area of the through hole of the second reflective member 310 may be smaller than the diameter or cross-sectional area of the substrate 520 of the light source unit 500. Accordingly, when the second reflective member 310 is disposed on the upper part of the light source unit 500, a portion of the lower surface of the second reflective member 310 is the upper surface of the substrate 520 of the light source unit 500, as shown in FIG. It is located in Additionally, the light source 510 of the light source unit 500 is located in the through hole of the second reflective member 310.
  • the second reflective member 310 may have a flat structure with no steps on its lower surface. Additionally, the lower surface of the second reflective member 310 may be in close contact with the upper surface of the substrate 520 of the light source unit 500.
  • a fourth seating portion 315 on which the window member 320 is seated may be formed on the upper surface of the second reflective member 310.
  • the upper surface of the second reflective member 310 includes a third protrusion 316 that protrudes upward along the edge. Accordingly, the upper surface of the second reflective member 310 includes a structure in which a concave groove 317 is formed based on the third protrusion 316.
  • the fourth seating portion 315 includes a third protrusion 316 and a groove 317 formed by the third protrusion 316. That is, the upper surface of the second reflective member 310, which has a space into which the window member 320 can be inserted, may become the fourth seating portion 315.
  • the inner diameter of the fourth seating portion 315 is larger than the diameter of the through hole.
  • the window member 320 may be inserted into the third protrusion 316 of the second reflection member 310 and seated on the fourth seating portion 315.
  • the window member 320 may be formed of a material that transmits light emitted from the light source unit 500.
  • the fourth seating portion 315 may be formed in a structure corresponding to the window member 320.
  • the fourth seating portion 315 may be formed such that its inner surface surrounds the outer surface of the window member 320 and is in close contact with it.
  • the inner surface of the fourth seating part 315 is the inner surface of the third protrusion 316. Accordingly, the fourth seating portion 315 can prevent the window member 320 mounted on the upper surface of the second reflective member 310 from leaving its designated position.
  • the second reflective member 310 may be formed of a material that reflects light emitted from the light source unit 500. Light from the light source unit 500 that is directed in a direction other than the window member 320 may be reflected from the inner surface of the second reflective member 310 toward the window member 320. Accordingly, the second reflection member 310 can allow the light emitted from the light source unit 500 to pass through the window member 320 as much as possible and be irradiated into the internal space of the fluid processing device 10. The second reflection member 310 can improve the fluid processing efficiency of the fluid processing device 10 by allowing the light from the light source unit 500 to illuminate the fluid as much as possible.
  • the second reflective member 310 may be made of white silicon or Teflon.
  • the second reflective member 310 may be formed of metal. Since metal has high thermal conductivity, heat generated in the light source unit 500 may be emitted to the outside of the light source unit 500 through the second reflection member 310.
  • the second reflective member 310 may be formed of aluminum.
  • heat generated in the light source unit 500 may be transferred to the fluid through the second reflective member 310.
  • the fluid may absorb the heat conducted to the second reflective member 310 and be discharged to the outside of the fluid processing device 10. . Accordingly, the heat dissipation efficiency of the fluid processing device 10 can be improved.
  • the fluid processing device 10 can improve not only the light reflection effect but also the heat dissipation efficiency by the second reflection member 310.
  • the second reflective member 310 may be formed by coating the inner wall of the through hole with a reflective material even if the body is not made of a material that reflects light.
  • the thickness of the second reflective member 310 may be greater than the thickness of the light source 510 of the light source unit 500.
  • the thickness is the length from the upper surface to the lower surface. Accordingly, when the light source 510 is disposed in the through hole of the second reflection member 310, the light source 510 and the window member 320 may be spaced apart from each other.
  • the light irradiation area becomes wider as the distance from the light source 510 increases depending on the beam angle. Accordingly, the closer the light source 510 and the window member 320 are to each other, the smaller the area where light is incident on the window member 320. Conversely, the farther away the light source 510 and the window member 320 are from each other, the larger the light incident area of the window member 320 is. Additionally, light may pass through the window member 320 and diffuse within the window member 320 .
  • the light incident area of the window member 320 can be increased. Additionally, light incident through a wide area of the window member 320 may be spread more widely while passing through the window member 320 and be emitted into the internal space of the housing 100. Accordingly, light passing through the window member 320 can be irradiated into the inner space of the housing 100 as wide as possible.
  • the second reflective member 310 has a structure in which the inner wall forming the through hole is vertical with respect to the lower surface. That is, the through hole of the second reflection member 310 has the same diameter from top to bottom.
  • the structure of the second reflective member 310 is not limited to this.
  • FIG. 18 is a diagram for explaining another embodiment of the second reflector 301.
  • the second reflective member 311 of the second reflector 301 has a structure in which the inner wall forming the through hole is inclined with respect to the lower surface.
  • the second reflective member 311 may include a through hole whose diameter increases from the bottom to the top in consideration of the beam angle of the light source 510. That is, the second reflection unit 301 may include a second reflection member 311 including a through hole whose diameter increases along the direction in which light emitted from the light source 510 travels.
  • the window member 320 may be disposed on the fourth seating portion 315 of the second reflective member 310 and cover the through hole of the second reflective member 310.
  • the window member 320 may be formed of a material that transmits light emitted from the light source unit 500.
  • window member 320 may be formed of quartz.
  • the window member 320 mounted on the second reflective member 310 covers the through hole to prevent fluid flowing in the internal space of the first housing 110 from flowing into the through hole of the second reflective member 310. there is.
  • the fourth sealing member 330 is made of a material having elastic force and may be formed to have a through hole penetrating from the top to the bottom.
  • the second reflective member 310 may be inserted and fixed into the through hole that becomes the internal space of the fourth sealing member 330.
  • the fourth sealing member 330 may be formed so that the upper through hole 331 formed at the upper portion has a smaller diameter than the lower through hole 332 formed at the lower portion. Accordingly, when the second reflective member 310 is inserted into the internal space of the fourth sealing member 330, the fourth sealing member 330 covers at least a portion of the upper surface and the side surface of the second reflective member 310. You can.
  • the fourth sealing member 330 may be formed so that the upper portion of the fourth sealing member 330 closely covers a portion of the upper surface of the second reflective member 310 . Additionally, the lower portion of the fourth sealing member 330 may be formed to cover the outer surface of the second reflective member 310 in close contact. At this time, the upper portion of the fourth sealing member 330 may cover at least a portion of the fourth seating portion 315 of the second reflective member 310. Furthermore, the upper portion of the fourth sealing member 330 is a portion of the upper surface including the third protrusion 316 of the second reflective member 310 and the upper surface edge of the window member 320 seated on the fourth seating portion 315. It can be formed to cover.
  • the fourth sealing member 330 can simultaneously cover the fourth seating portion 315 and the window member 320, thereby fixing the window member 320 in close contact with the second reflective member 310.
  • the upper part of the fourth sealing member 330 corresponds to the upper surface of the second sealing member 410, and the lower part corresponds to the side and lower surfaces of the fourth sealing member 330 excluding the upper surface.
  • the diameter of the upper through hole 331 of the fourth sealing member 330 is larger than the diameter of the through hole of the second reflecting member 310, and the inner diameter of the fourth seating portion 315 or the diameter of the window member 320 smaller than Accordingly, the fourth sealing member 330 covers a portion of the window member 320, but does not cover the upper portion of the through hole of the second reflective member 310. Accordingly, the fourth sealing member 330 does not impede the passage of light emitted to the upper part of the window member 320 through the through hole of the second reflective member 310.
  • the fourth sealing member 330 may be formed along the edge of the window member 320 to minimally cover the window member 320. Accordingly, the fourth sealing member 330 can expose the window member 320 to the outside as much as possible. Accordingly, the fourth sealing member 330 fixes the window member 320 to the second reflective member 310 and simultaneously secures the light emission area of the window member 320 to the maximum to increase the light emission efficiency of the window member 320. This decrease can be minimized.
  • the fluid processing device 10 further interposes an adhesive material between the fourth sealing member 330 and the window member 320 to seal the fourth sealing member 330, the window member 320, and the fourth sealing member 320. Adhesion and fixation between the two reflective members 310 may be further improved.
  • FIG. 19 is a plan view of the second housing 130 in which the light source unit 500 and the second reflector 300 of the fluid processing device 10 according to an embodiment of the present invention are disposed.
  • Figure 20 is a cross-sectional view of the second housing 130 in which the light source unit 500 and the second reflector 300 of the fluid processing device 10 according to an embodiment of the present invention are disposed.
  • the lower surface of the substrate 520 is positioned on the second housing 130 located inside the third seating part 132. It can be in close contact with the inner bottom.
  • a third sealing member 650 may be formed below the light source unit 500.
  • the third sealing member 650 may be formed to surround a portion of the wire 610 connected to the substrate 520 of the light source unit 500. Additionally, the third sealing member 650 may be formed to fill the through hole of the second protrusion 131 of the second housing 130. The third sealing member 650 formed in this way can shield the inner space of the second housing 130 from the external space.
  • the third sealing member 650 may be formed of a material having elastic force. If the third sealing member 650 is made of a material having elastic force, the through hole of the second protrusion 131 of the second housing 130 can be more effectively sealed.
  • the material of the third sealing member 650 may be silicon.
  • the outer surface of the fourth sealing member 330 is aligned with the inner surface of the second housing 130. It can adhere closely.
  • the light source unit 500 is exposed to fluid. It may be blocked from the internal space of the housing 100 through which flows.
  • the internal space of the inner tube 420 is a first flow path 141, which is a passage through which fluid flowing in through the inlet 121 passes.
  • the space between the housing 100 and the inner tube 420 is a second flow path 142, which is a passage through which the fluid discharged from the inner tube 420 heads to the discharge unit 125.
  • the fluid processing device 10 divides the internal space of the housing 100 into a first flow path 141 and a second flow path 142 by disposing the inner tube 420 inside the housing 100. do. Accordingly, the length of the flow path inside the housing 100 through which fluid moves from the inlet 121 to the outlet 125 increases. As the time for which the fluid stays inside the housing 100 increases, the time it is exposed to the light of the light source unit 500 increases. Accordingly, the fluid processing device 10 of this embodiment can improve the sterilization efficiency of the fluid by increasing the time the fluid is exposed to light for sterilization inside the housing 100.
  • Figure 21 is an exemplary diagram for explaining the length of the inner tube 420 of the fluid processing device 10 according to an embodiment of the present invention.
  • the light source 510 of the light source unit 500 has an arbitrary beam angle, which is the angle at which light is emitted, and an area within the range of the beam angle can be a light irradiation area.
  • the light irradiation area of the light source unit 500 light emitted from the light source 510 may be directly irradiated to the fluid.
  • the light irradiation area may include an intensive sterilization area.
  • the intensive sterilization area is an area adjacent to the light source unit 500 and has a greater light intensity than other areas, and may have a certain sterilizing power against contaminants.
  • the intensive sterilization area is an area where light emitted from the light source unit 500 is directly irradiated to the fluid, and may be an area that has a sterilizing power of 90% or more against contaminants.
  • the lower end of the inner tube 420 may be located within the light irradiation area of the light source unit 500. Furthermore, the lower end of the inner tube 420 may be located within the intensive sterilization area. That is, the fluid processing device 10 according to this embodiment has a length such that the lower end of the inner tube 420 can be located in the light irradiation area or the intensive sterilization area.
  • the lower end of the inner tube 420 is one end facing the light source unit 500 among both ends located in the longitudinal direction of the inner tube 420.
  • An opening is formed at the bottom of the inner tube 420 to allow fluid to be discharged from the first flow path 141 to the second flow path 142.
  • the light from the light source unit 500 has a beam angle, so the light irradiation range gradually widens as the distance from the light source unit 500 increases. Accordingly, not only the bottom of the inner tube 420 but also the entire inner tube 420 may be located in the light irradiation area or the intensive sterilization area. That is, the light emitted from the light source unit 500 may be directly irradiated to the first passage 141 inside the inner tube 420.
  • the fluid can be first sterilized by the light emitted from the light source unit 500 in the first flow path 141. At this time, when the fluid is discharged from the bottom of the inner tube 420 to the second flow path 142, it can be sterilized by exposure to high intensity light.
  • the fluid After the fluid is discharged from the lower end of the inner tube 420, it passes through the second flow path 142 and is exposed to light reflected from the inner wall of the first reflective member 220 to be secondary sterilized.
  • the fluid processing device 10 can improve sterilization efficiency by sterilizing the fluid at least twice from the time the fluid flows into the inlet 121 until it is discharged to the outlet 125.
  • the light emitted from the light source unit 500 is irradiated to the first flow path 141, and the light reflected by the first reflection member 220 is irradiated to the second flow path 142.
  • the invention is not limited to this. Since the inner tube 420 is made of a material that transmits light, the light reflected from the first reflective member 220 may pass through the inner tube 420 and be irradiated to the first flow path 141. Additionally, the light heading from the light source unit 500 to the first flow path 141 may pass through the inner tube 420 and be irradiated to the second flow path 142. That is, both light directly irradiated from the light source unit 500 and light reflected from the first reflective member 220 may be irradiated to the first flow path 141 and the second flow path 142.
  • FIG. 22 is an exemplary diagram illustrating the length of the inner tube 420 when the fluid processing device 10 according to an embodiment of the present invention includes a plurality of light sources 510.
  • Figure 23 is another example diagram for explaining the length of the inner tube 420 when the fluid processing device 10 according to an embodiment of the present invention includes a plurality of light sources 510.
  • the light source units 501 and 502 of the fluid processing device 10 may include a plurality of light sources 510.
  • the light source unit 501 may include two light sources 510
  • the light source unit 503 may include three light sources 510. can do.
  • Each light source 510 may have a light irradiation area. Since the plurality of light sources 510 are located at different positions on the substrate 520, the positions of each light irradiation area are also different.
  • the lower end of the inner tube 420 may be located in an area where a plurality of light irradiation areas formed by each of the plurality of light sources 510 overlap.
  • the light source unit 500 may have two light irradiation areas by each of the two light sources 510. At this time, the lower end of the inner tube 420 may be located within an area where two light irradiation areas overlap.
  • the light source unit 500 may have three light irradiation areas by each of the three light sources 510. At this time, the lower end of the inner tube 420 may be located within an area where all three light irradiation areas overlap.
  • the light source units 501 and 502 include two or three light sources 510, but may include a larger number of light sources 510.
  • the lower end of the inner tube 420 through which fluid is discharged may be located in an area where two or more light irradiation areas overlap.
  • the area where the plurality of light irradiation areas overlap is the area where the light from the plurality of light sources 510 is simultaneously irradiated. Accordingly, a greater amount of light is irradiated to an area where a plurality of light irradiation areas overlap than to other areas.
  • the lower end of the inner tube 420 through which fluid is discharged may be located in an area where two or more light irradiation areas overlap. Accordingly, the fluid that passes through the first flow path 141 of the inner tube 420 and is discharged into the second flow path 142 can receive light from two or more light sources 510 at the same time. Therefore, in the fluid processing device 10 according to this embodiment, the sterilization efficiency is improved because the fluid is exposed to a high amount of light while heading from the first flow path 141 to the second flow path 142 of the inner pipe 420. You can.
  • the fluid processing device 10 of this embodiment includes a plurality of light sources 510
  • the lower end of the inner tube 420 may be located in the area where the light irradiation areas overlap the most.
  • the fluid processing device 10 of this embodiment includes a plurality of light sources 510
  • the lower end of the inner tube 420 may be located in an area where the plurality of light irradiation areas all overlap. Accordingly, the fluid processing device 10 can improve sterilization efficiency by allowing the fluid to pass through an area where the greatest amount of light is intensively irradiated.
  • Figure 24 is a diagram for explaining the position where the inlet 121 of the fluid processing device 10 of this embodiment is formed.
  • the fluid processing device 10 of this embodiment may have a structure in which the central axis C1 of the inlet 121 and the central axis C2 of the inner tube 420 are offset from each other.
  • the central axis C1 of the inlet 121 is a straight line that passes through the center of the inlet passage 124 and is perpendicular to the upper surface of the first housing 110.
  • the central axis C2 of the inner tube 420 is a straight line that passes through the center of the inner space of the inner tube 420 and is parallel to the longitudinal direction of the inner tube 420.
  • at least a portion of the inflow passage 124 may be located in the upper part of the first passage 141 of the inner pipe 420.
  • the inlet hole 113 of the first housing 110 is formed on the side of the second seating portion 112, the fluid flows from the inlet passage 124 to the inlet hole 113 and the inlet hole 113. ) changes direction when proceeding to the first passage 141 of the inner pipe 420.
  • the fluid processing device 10 of this embodiment allows fluid to flow from the inlet 121 to the inner tube ( It is possible to prevent movement in the shortest distance to the first passage 141 of 420). That is, the moving distance of the fluid from the inlet 122 to the inner tube 420 increases. Additionally, the fluid does not move in one direction from the inlet 122 to the inner tube 420, but changes direction at least once.
  • the structure of the inlet 121 and the inner pipe 420 increases the moving distance of the fluid from the inlet 122 to the first flow path 141 of the inner pipe 420 and changes the direction of the fluid to increase the speed of the fluid. can be reduced.
  • the diameter of the inlet hole 113 formed in the second seating portion 112 may be smaller than the inner diameter of the inlet portion 121. Accordingly, the fluid pressure increases in the inlet hole 113, and as a result, the velocity of the fluid in the first flow path 141 of the inner tube 420 decreases than the velocity of the fluid in the inlet 121. Accordingly, the time until both the first flow path 141 and the second flow path 142 are filled and the fluid is discharged to the outside of the fluid processing device 10 increases.
  • the inner diameter of the discharge portion 125 is smaller than the diameter of the second flow path 142, the fluid pressure increases in the discharge hole 114. Accordingly, the velocity of the fluid in the discharge portion 125 is reduced compared to the velocity of the fluid in the second flow path 142.
  • the fluid processing device 10 of this embodiment increases the time the fluid stays in the first flow path 141 and the second flow path 142, thereby increasing the time the fluid is exposed to the light of the light source unit 500, thereby sterilizing the fluid. Efficiency can be improved.
  • 25 and 26 are exemplary diagrams for explaining other embodiments of the inlet and outlet of the fluid processing device 10 according to an embodiment of the present invention.
  • Figure 25 is a diagram showing the appearance of another embodiment of the inlet and outlet of the fluid processing device 10 according to an embodiment of the present invention.
  • Figure 26 is a cross-sectional view for explaining another embodiment of the inlet and outlet of the fluid processing device 10 according to an embodiment of the present invention.
  • the fluid processing device 10 may include an outlet portion 127 and an inlet portion 123 that have a curved structure. Accordingly, the fluid processing device 10 may add a section in which the direction of movement of the fluid is changed from the inlet 122 to the first flow path 141 of the inner tube 420. Additionally, the fluid processing device 10 may add a section in which the direction of fluid movement is changed from the second flow path 142 to the outlet 126. That is, the fluid processing device 10 may increase the section in which the fluid movement direction is changed from the inlet 122 to the outlet 126. Fluids can decrease in velocity when their direction of movement changes. Accordingly, the time the fluid stays inside the fluid processing device 10 may increase due to the curved structure of the inlet 123 and the outlet 127, and thus the fluid processing efficiency may be improved.
  • the fluid processing device 10 may be formed so that the central axis C3 of the inlet 123 and the central axis C2 of the inner tube 420 are offset as shown in FIG. 24.
  • this embodiment is different from FIG. 24 in that the inflow passage 124 is not located at the upper part of the first passage 141 of the inner pipe 420.
  • the central axis C3 of the inlet 123 is the central axis of the inlet passage 124 of the inlet 123 parallel to the inner tube 420. That is, the central axis C3 of the inlet 123 may be parallel to the central axis C2 of the inner tube 420.
  • the central axes C2 and C3 are misaligned, the distance between the inlet 121 and the inner tube 420 increases, and the fluid movement distance also increases.
  • the fluid processing target of the fluid processing device has been described as water.
  • the fluid in the fluid processing device of the present invention is not limited to water.
  • the subject of fluid treatment in the fluid processing device of the present invention may be not only water but also various liquids or gases that require sterilization.

Abstract

본 발명은 유체 처리 장치에 관한 것이다. 본 발명의 실시 예에 따른 유체 처리 장치는 하우징, 하우징의 내부에 배치되는 내관부 및 하우징의 내부 공간으로 광을 방출하는 광원부를 포함할 수 있다. 하우징은 유체가 유입되는 유입부 및 유체가 배출되는 배출부를 포함할 수 있다. 내관부는 하우징보다 작은 내부 직경을 가지며 하단이 개방되도록 형성될 수 있다. 내관부의 내부 공간은 제1 유로이고, 내관부와 하우징 사이의 공간은 제2 유로일 수 있다. 유입부를 통해 유입된 유체는 제1 유로와 제2 유로를 통과하여 배출부로 이동할 수 있다. 광원부는 내관부의 하단을 마주하도록 배치될 수 있다. 내관부의 하단은 광원부에서 광이 방출되어 유체에 직접 조사되는 영역인 광 조사 영역 내에 위치할 수 있다. 또한, 유입부는 유입부의 중심축과 내관부의 중심축이 서로 다른 선상에 위치하도록 형성될 수 있다.

Description

유체 처리 장치
본 발명은 유체 처리 장치에 관한 것이다.
최근 산업화로 인한 오염이 심해지고 있는 가운데, 환경에 대한 관심이 증가됨과 동시에 웰빙 트렌드가 확산되고 있다. 이에 따라, 깨끗한 물이나 깨끗한 공기에 대한 수요가 점점 늘어나고 있는 바, 깨끗한 물 및 깨끗한 공기를 제공할 수 있는 정수기, 공기 정화기 등의 다양한 관련 제품이 개발되고 있다.
본 발명의 해결하고자 하는 과제는 유체를 정화할 수 있는 유체 처리 장치를 제공하는 데 있다.
본 발명의 해결하고자 하는 다른 과제는 광 손실을 최소화하여 유체 처리 효율을 향상시킬 수 있는 유체 처리 장치를 제공하는 데 있다.
본 발명의 해결하고자 하는 또 다른 과제는 양산이 용이하게 수율이 향상시킬 수 있는 방식이 채택된 유체 처리 장치를 제공하는 데 있다.
본 발명의 해결하고자 하는 또 다른 과제는 구동 회로의 발열에 의한 오작동 및 손상을 감소할 수 있는 유체 처리 장치를 제공하는 데 있다.
본 발명의 실시 예에 따르면 하우징, 하우징의 내부에 배치되는 내관부 및 상기 하우징의 내부 공간으로 광을 방출하는 광원부를 포함하는 유체 처리 장치가 제공된다. 상기 하우징은 유체가 유입되는 유입부 및 유체가 배출되는 배출부를 포함할 수 있다. 상기 내관부는 상기 하우징보다 작은 내부 직경을 가지며 하단이 개방되도록 형성될 수 있다. 상기 내관부의 내부 공간은 제1 유로이고, 상기 내관부와 상기 하우징 사이의 공간은 제2 유로일 수 있다. 상기 유입부를 통해 유입된 유체는 상기 제1 유로와 상기 제2 유로를 통과하여 상기 배출부로 이동할 수 있다. 상기 광원부는 상기 내관부의 하단을 마주하도록 배치될 수 있다. 상기 내관부의 하단은 상기 광원부에서 광이 방출되어 상기 유체에 직접 조사되는 영역인 광 조사 영역 내에 위치할 수 있다. 또한, 상기 유입부는 상기 유입부의 중심축과 상기 내관부의 중심축이 서로 다른 선상에 위치하도록 형성될 수 있다.
본 발명의 실시 예에 따른 유체 처리 장치는 유체에 광을 조사하여 살균하여, 유체를 정화할 수 있다.
또한, 본 발명의 실시 예에 따른 유체 처리 장치는 광 손실을 최소화하여 유체 처리 효율을 향상시킬 수 있다.
또한, 본 발명의 실시 예에 따른 유체 처리 장치는 조립 및 양산이 용이하며, 수율을 향상시킬 수 있으며, 불량률을 감소시킬 수 있다.
또한, 본 발명의 실시 예에 따른 유체 처리 장치는 구동 회로를 하우징의 외부에 배치하여, 상기 구동 회로의 발열에 의해서 광원부의 오작동 및 손상을 방지할 수 있다.
도 1은 본 발명의 실시 예에 따른 유체 처리 장치의 정면도이다.
도 2는 본 발명의 실시 예에 따른 유체 처리 장치의 분해도이다.
도 3은 본 발명의 실시 예에 따른 유체 처리 장치의 단면도이다.
도 4는 본 발명의 실시 예에 따른 유체 처리 장치의 제1 하우징의 평면도이다.
도 5는 본 발명의 실시 예에 따른 유체 처리 장치의 제1 하우징의 단면도이다.
도 6은 본 발명의 실시 예에 따른 유체 처리 장치의 제2 안착부와 유입홀의 다른 실시 예를 설명하기 위한 단면도이다.
도 7은 본 발명의 실시 예에 따른 유체 처리 장치의 제1 반사부의 사시도이다.
도 8은 본 발명의 실시 예에 따른 유체 처리 장치의 제1 반사부의 단면도이다.
도 9는 본 발명의 실시 예에 따른 유체 처리 장치의 내관부의 사시도이다.
도 10은 본 발명의 실시 예에 따른 유체 처리 장치의 내관부의 단면도이다.
도 11은 본 발명의 실시 예에 따른 유체 처리 장치의 내관부의 다른 예시를 설명하기 위한 단면도이다.
도 12는 본 발명의 실시 예에 따른 유체 처리 장치의 내관부의 또 다른 예시를 설명하기 위한 단면도이다.
도 13은 본 발명의 실시 예에 따른 유체 처리 장치의 내관부의 또 다른 예시를 설명하기 위한 단면도이다.
도 14는 본 발명의 실시 예에 따른 제2 하우징의 평면도이다.
도 15는 본 발명의 실시 예에 따른 제2 하우징의 단면도이다.
도 16은 본 발명의 실시 예에 따른 제2 반사부의 사시도이다.
도 17은 본 발명의 실시 예에 따른 제2 반사부의 단면도이다.
도 18은 제2 반사부의 다른 실시 예를 설명하기 위한 도면이다.
도 19는 본 발명의 실시 예에 따른 유체 처리 장치의 광원부 및 제2 반사부가 배치된 제2 하우징의 평면도이다.
도 20은 본 발명의 실시 예에 따른 유체 처리 장치의 광원부 및 제2 반사부가 배치된 제2 하우징의 단면도이다.
도 21은 본 발명의 실시 예에 따른 유체 처리 장치의 내관의 길이를 설명하기 위한 예시도이다.
도 22는 본 발명의 실시 예에 따른 유체 처리 장치가 복수의 광원을 포함할 때, 내관의 길이를 설명하기 위한 예시도이다.
도 23은 본 발명의 실시 예에 따른 유체 처리 장치가 복수의 광원을 포함할 때, 내관의 길이를 설명하기 위한 다른 예시도이다.
도 24는 본 실시 예의 유체 처리 장치의 유입부가 형성되는 위치를 설명하기 위한 도면이다.
도 25는 본 발명의 실시 예에 따른 유체 처리 장치의 유입부 및 배출부에 대한 다른 실시 예의 외관을 나타낸 도면이다.
도 26은 본 발명의 실시 예에 따른 유체 처리 장치의 유입부 및 배출부에 대한 또 다른 실시 예를 설명하기 위한 단면도이다.
다음에 소개되는 실시 예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위한 예시로써 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타내고 유사한 참조번호는 대응하는 유사한 구성요소를 나타낸다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시 예들을 상세히 설명하기로 한다.
본 발명의 실시 예에 따른 유체 처리 장치는 하우징, 하우징의 내부에 배치되는 내관부 및 상기 하우징의 내부 공간으로 광을 방출하는 광원부를 포함할 수 있다. 상기 하우징은 유체가 유입되는 유입부 및 유체가 배출되는 배출부를 포함할 수 있다. 상기 내관부는 상기 하우징보다 작은 내부 직경을 가지며 하단이 개방되도록 형성될 수 있다. 상기 내관부의 내부 공간은 제1 유로이고, 상기 내관부와 상기 하우징 사이의 공간은 제2 유로일 수 있다. 상기 유입부를 통해 유입된 유체는 상기 제1 유로와 상기 제2 유로를 통과하여 상기 배출부로 이동할 수 있다. 상기 광원부는 상기 내관부의 하단을 마주하도록 배치될 수 있다. 상기 내관부의 하단은 상기 광원부에서 광이 방출되어 상기 유체에 직접 조사되는 영역인 광 조사 영역 내에 위치할 수 있다. 또한, 상기 유입부는 상기 유입부의 중심축과 상기 내관부의 중심축이 서로 다른 선상에 위치하도록 형성될 수 있다.
상기 유체 처리 장치는 상기 하우징의 내벽에 밀착되며, 상기 내관부와 이격되도록 배치되는 제1 반사부를 더 포함할 수 있다. 상기 제1 반사부는 상기 광원부의 광을 반사하는 물질을 포함할 수 있다.
또한, 상기 제1 반사부는 사출 성형 방식으로 형성되어 상기 하우징에 삽입될 수 있다.
상기 내관부는 상기 제1 유로 형성하며, 광이 투과하는 재질로 형성된 내관을 포함할 수 있다.
상기 하우징은 상기 내관부의 상단이 삽입되어 상기 내관부가 안착되는 다단 구조의 안착부를 포함할 수 있다. 상기 안착부에는 상기 유입부와 연결되는 유입홀이 형성될 수 있다.
상기 안착부는 제1 단 및 상기 제1 단의 외측에 위치하는 제2 단을 포함할 수 있다. 상기 제1 단은 상기 제2 단보다 낮은 높이를 가질 수 있다.
상기 내관부의 상단은 상기 안착부의 상기 제2 단의 내부에 삽입되어 상기 제1 단에 안착될 수 있다.
상기 유입홀은 상기 안착부의 상기 제1 단에 형성될 수 있다.
또한, 상기 유입홀은 상기 안착부의 상기 제1 단에 형성되어 상기 안착부의 내측에 위치한 상기 하우징의 내벽까지 연장되도록 형성될 수 있다.
상기 유입홀의 직경은 상기 유입부의 내경보다 작을 수 있다.
상기 유체 처리 장치는 상기 하우징의 내부에서 상기 내관부와 상기 광원부 사이에 배치되는 제2 반사부를 포함할 수 있다. 상기 광원부의 일부는 상기 제2 반사부의 내부에 위치할 수 있다.
상기 제2 반사부는 반사 부재 및 창 부재를 포함할 수 있다. 상기 반사 부재는 관통홀이 형성되며, 상기 광원부의 광을 반사할 수 있다. 상기 창 부재는 상기 반사 부재의 상면에서 상기 반사 부재의 상기 관통홀을 덮도록 배치될 수 있다. 또한, 상기 창 부재는 상기 광원부의 광이 투과하는 재질로 형성될 수 있다. 상기 제2 반사부의 상기 반사 부재의 상기 관통홀에 상기 광원부의 일부가 배치될 수 있다.
상기 제2 반사부는 상기 제2 반사부의 상기 반사 부재의 측면의 적어도 일부, 상면의 일부 및 상기 창 부재의 상면 테두리를 덮도록 형성된 밀봉 부재를 포함할 수 있다.
상기 유입부 및 상기 배출부는 각각 구부러진 형태일 수 있다.
상기 광 조사 영역은 상기 유체에 포함된 오염원에 대해 90% 이상 살균력을 갖는 집중 살균 영역을 포함할 수 있다.
상기 광원부는 복수의 광원을 포함할 수 있다.
이때, 상기 내관부의 상기 하단은 적어도 2개의 광원의 광 조사 영역들이 중첩되는 영역에 위치할 수 있다.
상기 하우징은 제1 하우징 및 제2 하우징을 포함할 수 있다. 상기 제1 하우징에는 상기 내관부가 배치될 수 있다. 또한, 상기 제2 하우징에는 상기 제2 반사부 및 상기 광원부가 배치될 수 있다. 상기 제1 하우징과 상기 제2 하우징은 서로 다른 외경을 가질 수 있다. 상기 제2 하우징의 내부에 상기 제1 하우징의 일부가 삽입되어 상기 제1 하우징과 상기 제2 하우징이 결합될 수 있다.
상기 유체 처리 장치는 상기 하우징의 외부에 배치되며, 상기 광원부의 동작을 제어하는 구동 회로를 포함하는 구동부를 포함할 수 있다.
이후, 도면을 통해서 본 발명의 유체 처리 장치에 대해 상세히 설명한다.
도 1 내지 도 26은 본 발명의 실시 예에 따른 유체 처리 장치를 설명하기 위한 예시도이다.
도 1은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 정면도이다. 도 2는 본 발명의 실시 예에 따른 유체 처리 장치(10)의 분해도이다. 또한, 도 3은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 단면도이다.
도 1 내지 도 3을 참고하면, 본 발명의 실시 예에 따른 유체 처리 장치(10)는 하우징(100), 제1 반사부(200), 제2 반사부(300), 내관부(400) 및 광원부(500)를 포함한다.
본 실시 예의 유체 처리 장치(10)는 내부로 유입된 유체를 살균 처리하는 장치이다. 본 실시 예에서, 유체 처리는 유입된 원수를 살균하여 정수로 만든다. 즉, 유체는 물이고, 유체 처리는 살균이다.
하우징(100)은 제1 하우징(110) 및 제2 하우징(130)을 포함한다.
제1 하우징(110)과 제2 하우징(130)은 서로 결합되어 원수의 살균 처리를 위해 구비되는 여러 구성부들이 배치되고 내부로 유입된 원수가 살균 처리되는 내부 공간을 형성한다.
제1 하우징(110)의 상면에는 원수가 유입되는 통로인 유입부(121) 및 정수가 배출되는 통로인 배출부(125)가 형성된다. 또한, 제1 하우징(110)은 하면에 홀이 형성되며, 제1 하우징(110)의 하면에 형성된 홀은 제1 하우징(110)의 내부 공간과 연결된다.
도 4는 본 발명의 실시 예에 따른 유체 처리 장치(10)의 제1 하우징(110)의 평면도이다. 또한, 도 5는 본 발명의 실시 예에 따른 유체 처리 장치(10)의 제1 하우징(110)의 단면도이다.
도 3 및 도 4를 참고하면, 제1 하우징(110)의 내부에는 제1 안착부(111), 제2 안착부(112), 유입홀(113) 및 배출홀(114)이 형성된다.
제1 안착부(111)는 제1 반사부(200)가 안착될 수 있다.
제1 안착부(111)는 제1 하우징(110)의 내부 상면에서 하부 방향으로 돌출된 제1 돌출부(115)를 포함한다. 제1 돌출부(115)는 제1 하우징(110)의 내측면과 이격된 상태에서 그 내측면을 따라 형성될 수 있다. 따라서, 제1 돌출부(115)와 제1 하우징(110)의 내측면 사이에는 제1 돌출부(115)의 상면을 기준으로 오목한 제1 홈(116)이 형성될 수 있다. 이와 같이 형성된 제1 돌출부(115)와 제1 홈(116)이 제1 반사부(200)의 일단이 안착되는 제1 안착부(111)가 될 수 있다. 본 실시 예에서, 제1 돌출부(115)가 제1 하우징(110)의 내측면을 따라 원형으로 형성되지만, 제1 돌출부(115)의 구조가 이에 한정되;는 것은 아니다. 제1 돌출부(115)는 제1 안착부(111)에 안착되는 제1 반사부(200)의 일단에 대응하는 구조로 형성될 수 있다. 또한, 제1 돌출부(115)는 제1 반사부(200)가 안착될 수 있다면 다양한 구조로 형성될 수 있다.
제2 안착부(112)는 내관부(400)가 안착될 수 있다.
제2 안착부(112)는 제1 안착부(111)의 내측에 형성되며, 제1 안착부(111)와 이격될 수 있다. 또한, 제2 안착부(112) 역시 제1 안착부(111)를 따라 원형으로 형성될 수 있다. 또한, 제2 안착부(112)는 제1 하우징(110)의 내부 상면에서 하부 방향으로 돌출된 다단 구조로 형성될 수 있다. 본 실시 예에서는 제2 안착부(112)의 다단 구조는 내측에 위치한 단인 제1 단(118)이 외측에 위치한 단인 제2 단(119)보다 낮은 높이를 갖는다. 내관부(400)의 일단은 제2 안착부(112)의 다단 구조의 내측면에 안착될 수 있다. 본 실시 예에서, 제2 안착부(112)가 원형의 단면을 갖는 구조로 형성되지만, 이에 한정되는 것은 아니다. 제2 안착부(112)는 내관부(400)의 일단과 대응하는 구조로 형성될 수 있다. 또한, 제2 안착부(112)는 내관부(400)의 일단이 안착될 수 있다면, 다양한 구조로 형성될 수 있다.
유입홀(113)은 제2 안착부(112)에 형성될 수 있다. 이때, 유입홀(113)의 적어도 일부는 제2 안착부(112)의 측면에 형성될 수 있다. 더 자세히, 유입홀(113)은 제2 안착부(112)의 제1 단(118)에 형성될 수 있다. 또는 유입홀(113)은 제2 안착부(112)의 제1 단(118)에서 연장되어 제2 안착부(112)의 내측에 위치한 제1 하우징(110)의 내부 상면에도 더 형성될 수 있다.
도 5를 참고하면, 유입홀(113)은 제1 안착부(111)의 제1 단(118) 및 제2 단(119)의 측면에 형성되며, 일정한 직경을 갖도록 형성될 수 있다. 그러나 유입홀(113)의 구조는 이에 한정되는 것은 아니다.
도 6은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 제2 안착부(712)와 유입홀(713)의 다른 실시 예를 설명하기 위한 단면도이다.
도 6을 참고하면, 유입홀(713)은 제2 안착부(712)의 외측면에서 내측면으로 갈수록 직경이 점점 증가하는 구조일 수 있다. 이때, 유입홀(713)을 형성하며 내관(420)에 가까이 위치한 제2 안착부(712)의 내측벽은 경사를 갖는 구조일 수 있다.
유체가 방향을 전환할 때, 유로의 모서리 부분에 부딪히게 되면, 와류가 발생하고, 와류에 의해서 유체 저항이 발생할 수 있다.
본 실시 예의 유입홀(713)은 경사진 내측벽에 의해서 이동 방향을 전환하는 유체와의 충돌을 최소화할 수 있다. 또한, 본 실시 예의 유입홀(713)은 유체의 이동 방향에 따라 직경이 증가하므로 와류에 의한 유입홀(713)의 내부 또는 유입홀(713)의 인근에서의 유체 정체를 방지할 수 있다.
본 실시 예에 따르면, 제2 안착부(712)는 유입홀(713)이 형성된 부분의 내측벽이 경사를 갖는 구조로 형성되어, 도 6에 도시된 바와 같이 유입홀(713)이 직경이 증가하도록 형성되지만, 제2 안착부(112)의 구조가 이에 한정되는 것은 아니다. 제2 안착부(112)는 내측벽의 일부가 아닌 전체가 경사를 갖도록 형성될 수 있다.
도 3 및 도 4를 참고하면, 제2 안착부(112)에 형성된 유입홀(113)은 제1 하우징(110)의 유입부(121)의 유입 통로(124)와 연결될 수 있다. 여기서, 유입 통로(124)는 유체가 흐르는 유입부(121)의 내부 공간이다. 따라서, 유입부(121)를 통해서 유입된 원수는 유입홀(113)을 통해서 하우징(100)의 내부로 유입될 수 있다.
배출홀(114)은 제1 안착부(111)의 내측에 위치한 제1 하우징(110)의 내부 상면에 형성될 수 있다. 더 자세히는, 배출홀(114)은 제1 안착부(111)와 제2 안착부(112) 사이에 위치한 제1 하우징(110)의 내부 상면에 형성될 수 있다.
배출홀(114)은 제1 하우징(110)의 배출부(125)의 배출 통로와 연결될 수 있다. 따라서, 하우징(100)의 내부에서 살균된 정수는 배출홀(114)을 통해서 배출부(125)로 배출될 수 있다.
제1 하우징(110)의 내부에 제1 반사부(200)가 배치된다.
도 7은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 제1 반사부(200)의 사시도이다. 또한, 도 8은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 제1 반사부(200)의 단면도이다.
도 2, 도 3, 도 7 및 도 8을 참고하면, 제1 반사부(200)는 제1 밀봉 부재(210) 및 제1 반사 부재(220)를 포함할 수 있다.
제1 반사 부재(220)는 내부 공간을 갖는 원통형으로 형성될 수 있다. 또한, 제1 반사 부재(220)는 제1 하우징(110)의 내부에 배치될 수 있다.
제1 밀봉 부재(210)는 제1 반사 부재(220)의 일단에 배치되어, 제1 반사 부재(220)와 결합될 수 있다.
제1 밀봉 부재(210)는 상면에서 하면까지 관통하는 관통홀이 형성되며, 외측면은 다단 구조일 수 있다. 즉, 제1 밀봉 부재(210)는 외측면에 턱이 형성된 구조일 수 있다. 제1 밀봉 부재(210)의 외측면의 턱에 제1 반사 부재(220)의 일단인 상면이 안착될 수 있다.
제1 밀봉 부재(210)는 서로 다른 직경을 갖는 상부와 하부로 구분될 수 있다. 예를 들어, 제1 밀봉 부재(210)는 상부가 하부보다 큰 외경을 갖는 구조일 수 있다. 또한, 제1 밀봉 부재(210)는 상부가 하부보다 큰 내경을 갖도록 형성될 수 있다. 제1 밀봉 부재(210)는 상부가 제1 반사 부재(220)의 상부에 위치하고, 하부가 제1 반사 부재(220)의 내부에 삽입되는 방식으로 제1 반사 부재(220)와 결합될 수 있다. 또한, 제1 밀봉 부재(210)의 상부의 외경은 제1 반사 부재(220)의 외경과 동일할 수 있다. 또한, 제1 밀봉 부재(210)의 하부의 외경은 제1 반사 부재(220)의 내경과 동일할 수 있다. 따라서, 제1 밀봉 부재(210)가 제1 반사 부재(220)에 결합되면, 제1 밀봉 부재(210)는 하부가 제1 반사 부재(220)의 내측면에 밀착되고, 상부가 제1 반사 부재(220)의 상면에 밀착될 수 있다. 이와 같이, 제1 밀봉 부재(210)가 제1 반사 부재(220)에의 내측면 및 상면에 밀착하므로, 제1 반사부(200)의 내부 공간에서 유동하는 유체가 제1 반사 부재(220)와 제1 밀봉 부재(210) 사이로 유출되는 것을 방지할 수 있다.
또한, 도 8을 참고하면, 제1 밀봉 부재(210)의 하부의 내경은 제1 반사 부재(220)의 내경보다 작을 수 있다. 그러나 제1 밀봉 부재(210)의 구조는 이에 한정되는 것은 아니다. 예를 들어, 제1 밀봉 부재(210)는 상부 및 하부의 내경이 모두 제1 반사 부재(220)의 내경과 동일하도록 형성될 수도 있다.
제1 밀봉 부재(210)는 탄성력을 갖는 재질로 형성될 수 있다. 따라서, 제1 하우징(110)과 제2 하우징(130)이 결합될 때, 제1 밀봉 부재(210)의 탄성력에 의해서 제1 밀봉 부재(210)의 상면은 제1 하우징(110)에 더 견고하게 밀착되며, 제1 밀봉 부재(210)의 하면은 제1 반사 부재(220)에 더 견고하게 밀착될 수 있다. 따라서, 제1 하우징(110), 제1 밀봉 부재(210) 및 제1 반사 부재(220) 간의 수밀 효과가 향상될 수 있다.
제1 반사 부재(220)는 반사 물질로 형성될 수 있다. 제1 반사 부재(220)가 반사 물질로 형성되므로, 광원부(500)에서 방출된 광은 제1 반사 부재(220)의 내벽에서 흡수되지 않고 반사될 수 있다. 따라서, 광원부(500)에서 방출된 광이 제1 반사 부재(220)에 의해서 손실되는 것이 방지될 수 있다. 또한, 제1 반사 부재(220)의 내부 공간을 흐르는 유체가 광원부(500)에서 방출되는 광이 직접 노출될 뿐만아니라 제1 반사 부재(220)에서 반사된 광에도 노출될 수 있다. 따라서, 제1 반사 부재(220)에 의해서 유체에 노출되는 광량이 증가되거나 광 손실이 감소하므로, 유체 처리 효율이 향상될 수 있다. 예를 들어, 제1 반사 부재(220)를 이루는 물질은 테프론일 수 있다.
본 발명의 실시 예에 따른 유체 처리 장치(10)는 제1 하우징(110)에 반사 물질을 코팅하는 대신 반사 물질로 이루어진 제1 반사 부재(220)를 별도로 구비한다.
테프론과 같은 반사 물질을 제1 하우징(110)의 내벽에 코팅하기 위해서는 반사 물질을 액상 수지 상태로 만든 후에 제1 하우징(110)의 내벽에 도포해야 한다. 이와 같이, 내벽에 반사 물질이 코팅된 제1 하우징(110)은 복잡한 여러 공정을 통해서 형성되므로 양산에 용이하지 않다.
그러나 본 실시 예에 따른 유체 처리 장치(10)는 제1 반사 부재(220)가 사출 성형 방식으로 제작되어 제1 하우징(110)에 삽입된다. 제1 반사 부재(220)를 사출 성형하여 형성하는 단순한 방식을 채택하고, 제1 하우징(110)에 삽입하는 간단한 조립으로 제1 하우징(110)의 내부 공간 전체에 반사광이 도달하도록 할 수 있다. 이와 같이, 제1 반사 부재(220)를 별도로 구비하여 제1 하우징(110)에 조립하는 방식은 제1 하우징(110)의 내벽에 반사 물질을 코팅하는 방식보다 양산에 용이하다.
도 3을 참고하면, 제1 밀봉 부재(210)의 상부의 적어도 일부는 제1 안착부(111)에 삽입될 수 있다. 즉, 제1 반사부(200)는 제1 밀봉 부재(210)의 상부가 제1 돌출부(115)와 제1 하우징(110)의 내측면 사이에 삽입되어 제1 하우징(110)에 고정될 수 있다. 제1 반사부(200)가 제1 하우징(110)의 제1 안착부(111)에 안착되면, 제1 반사 부재(220)의 외측면은 제1 하우징(110)의 내측면과 밀착할 수 있다.
또한, 제1 밀봉 부재(210)는 제1 하우징(110)에 형성된 제1 안착부(111)를 밀폐할 수 있다. 즉, 제1 밀봉 부재(210)는 제1 돌출부(115)와 제1 하우징(110)의 내측면 사이의 공간으로 유체가 유입되는 것을 방지할 수 있다. 제1 하우징(110)의 제1 돌출부(115)와 제1 하우징(110)의 내측면 사이의 공간에 유체가 유입되고, 유입된 유체가 장시간 고여 있으면 더 오염될 수 있다. 제1 밀봉 부재(210)는 제1 돌출부(115)와 제1 하우징(110) 사이의 공간에 유체가 유입되는 것을 방지함으로써, 유체가 이 공간에 고여 오염되는 것을 방지할 수 있다.
제1 반사부(200)가 제1 하우징(110)에 결합하면, 배출홀(114)은 제1 반사부(200)의 내측에 위치하게 된다. 즉, 제1 반사부(200)의 내부 공간과 배출홀(114)이 서로 연결될 수 있다. 따라서, 제1 반사부(200)의 내부 공간을 흐르는 유체는 배출홀(114)을 통해서 배출부(125)로 배출될 수 있다.
제1 반사부(200)의 내측에 내관부(400)가 배치된다.
도 9는 본 발명의 실시 예에 따른 유체 처리 장치(10)의 내관부(400)의 사시도이다. 또한, 도 10은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 내관부(400)의 단면도이다.
도 2, 도 3, 도 9 및 도 10을 참고하면, 내관부(400)는 제2 밀봉 부재(410) 및 내관(420)을 포함할 수 있다.
제2 밀봉 부재(410)는 상면에서 하면까지 관통홀이 형성된 구조일 수 있다. 제2 밀봉 부재(410)의 관통홀에는 내관(420)의 일단인 상부가 삽입될 수 있다. 즉, 제2 밀봉 부재(410)는 내관(420)의 상부를 감싸도록 형성될 수 있다.
도 10을 참고하면, 제2 밀봉 부재(410)는 내관(420)의 상부 부분의 측면을 감싸도록 형성될 수 있다. 따라서, 제2 밀봉 부재(410)가 내관(420)에 장착되었을 때, 제2 밀봉 부재(410)의 내경은 내관(420)의 외경과 동일할 수 있다. 또한, 제2 밀봉 부재(410)는 탄성력을 갖는 재질로 형성될 수 있다.
내관(420)은 상면에서 하면까지 관통홀이 형성된 원통 구조일 수 있다. 또한, 내관(420)은 광원부(500)의 광이 투과하는 재질로 형성될 수 있다. 따라서, 제1 반사 부재(220)에서 반사된 광이 내관(420)을 통과하여 내관(420)의 내부 공간까지 조사될 수 있다. 또는 광원부(500)에서 방출되어 내관(420)의 내부 공간에 조사된 광이 내관(420)을 통과하여 내관(420)과 제1 반사 부재(220) 사이의 공간에 조사될 수 있다. 예를 들어, 내관(420)은 석영으로 형성될 수 있다.
내관부(400)는 내관(420)을 감싸는 제2 밀봉 부재(410)가 제1 하우징(110)의 제2 안착부(112)에 삽입 및 안착되어 제1 하우징(110)에 고정될 수 있다.
이때, 제2 밀봉 부재(410)의 상면은 제2 안착부(112)의 제1 단(118)의 일면과 밀착할 수 있다. 이때, 제2 밀봉 부재(410)의 내경은 제2 안착부(112)의 제1 단(118)의 내경보다 작을 수 있다. 따라서, 제2 안착부(112)의 제1 단(118)의 내측 테두리는 내관(420)의 상면에 위치하지 않고 제2 밀봉 부재(410)의 상면에 위치할 수 있다. 만약, 제2 안착부(112)의 제1 단(118)이 내관(420)과 밀착하는 경우, 내관부(400)가 제2 안착부(112)에 삽입될 때 가해지는 힘에 의해서 내관(420)이 제2 안착부(112)에 의해서 손상될 수 있다. 본 실시 예에 따르면, 제2 안착부(112)의 제1 단(118)이 내관(420)이 아닌 탄성력을 갖는 제2 밀봉 부재(410)와 밀착하므로, 내관(420)이 제2 안착부(112)에 의해서 손상되는 것을 방지할 수 있다.
또한, 내관부(400)가 제2 안착부(112)에 삽입되면, 제2 밀봉 부재(410)의 측면은 제2단의 내측면과 밀착할 수 있다. 따라서, 내관부(400)가 제1 하우징(110)의 제2 안착부(112)에 안착되었을 때, 제2 밀봉 부재(410)의 외경은 제2 안착부(112)의 상단의 내경과 동일할 수 있다.
도 3을 참고하면, 내관부(400)는 제2 안착부(112)의 제1 단(118)의 하부에 위치하므로, 제2 안착부(112)에 형성된 유입홀(113)을 막지 않는다. 따라서, 내관부(400)가 제2 안착부(112)에 결합하여도, 유입홀(113)은 제2 안착부(112)의 제1 단(118)의 내부 공간과 연결되며, 제1 단(118)의 내부 공간은 내관(420)의 내부 공간과 연결된다. 따라서, 유입부(121)를 통해서 유입된 유체는 유입홀(113)과 제2 안착부(112)의 제1 단(118)의 내부 공간을 차례대로 통과하여 내관(420)의 내부 공간으로 유입될 수 있다.
또한, 내관부(400)가 제2 안착부(112)와 결합되면, 내관부(400)의 타단인 하면은 제2 반사부(300)의 창 부재(320)와 인접하지만, 이격되도록 위치할 수 있다. 내관부(400)가 제2 반사부(300)와 이격되므로, 내관(420)의 내부 공간의 유체는 내관(420)과 제2 반사부(300) 사이의 공간을 통해서 제1 반사 부재(220)와 내관(420) 사이의 이격 공간으로 이동할 수 있다.
종래에는 내관(420)의 유체를 내관(420)의 내부에서 외부로 이동시키기 위해서, 내관(420)의 일부(예를 들어, 내관(420)의 측벽)에 유체 통로인 관통홀을 형성했다. 그러나 석영과 같이 강성 재질의 내관(420)의 측벽에 관통홀을 형성할 때, 내관(420)이 파손될 수 있다. 특히, 내관(420)의 측벽이 곡면으로 이루어진 경우, 관통홀을 형성하는 과정에서 파손될 확률이 더 높아진다. 그러나 본 실시 예에 따른 유체 처리 장치(10)는 측벽에 유체 통로가 형성된 내관(420) 대신에 하면(하단)이 개방된 구조의 내관(420)을 포함한다. 또한, 유체 처리 장치(10)는 내관(420)을 개방된 하면과 제2 반사부(300)가 이격되도록 배치되어, 내관(420)과 제2 반사부(300) 사이에 유체가 통과할 수 있는 공간이 형성된다. 따라서, 본 실시 예의 유체 처리 장치(10)는 측벽에 유체 통로를 형성하는 과정을 생략하여 내관(420)이 파손되는 위험을 감소시켜 내관(420)의수율을 향상시킬 수 있다. 더 나아가 유체 처리 장치(10)의 수율을 향상시키고, 불량률을 감소시킬 수 있다.
도 10에는 도시되어 있지 않으나, 제2 밀봉 부재(410)와 내관(420) 사이에 접착 물질이 개재될 수 있다. 따라서, 제2 밀봉 부재(410)와 내관(420) 간의 접착력이 향상되어, 내관(420)의 내부 공간 및 외부 공간에서의 수압, 외부 충격 등 여러가지 요인에 의해서 제2 밀봉 부재(410)가 내관(420)으로부터 이탈되는 것을 방지할 수 있다.
도 9 및 도 10에서, 내관부(400)는 제2 밀봉 부재(410)가 내관(420)의 상부 측면만 감싸는 구조이다. 그러나 내관부(400)의 구조는 이에 한정되는 것은 아니다.
도 11은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 내관부의 다른 예시를 설명하기 위한 단면도이다. 도 12는 본 발명의 실시 예에 따른 유체 처리 장치(10)의 내관부의 또 다른 예시를 설명하기 위한 단면도이다. 또한, 도 13은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 내관부의 또 다른 예시를 설명하기 위한 단면도이다.
도 11을 참고하면, 내관부(401)는 외측면에 적어도 하나의 돌기(415)가 형성된 제2 밀봉 부재(411)를 포함할 수 있다. 돌기(415)는 제2 밀봉 부재(411)와 동일한 재질로 형성될 수 있다. 따라서, 돌기(415)도 제2 밀봉 부재(411)처럼 탄성력을 갖는다.
제2 밀봉 부재(411)의 돌기(415)에 의해서 내관부(401)가 제1 하우징(110)의 제2 안착부(112)에 삽입되면, 내관부(401)가 제2 안착부(112)에 더 견고하게 고정될 수 있다. 따라서, 내관(420)의 제1 유로(141)로 유체가 유입될 때 유체 압력에 의해서 내관부(401)가 제2 안착부(112)에서 이탈하는 것을 방지할 수 있다.
도 12를 참고하면, 내관부(402)의 제2 밀봉 부재(412)는 내관(420)의 상부 측면 뿐만 아니라 내관(420)의 상면을 덮도록 형성된다. 또한, 도 13을 참고하면, 내관부(403)의 제2 밀봉 부재(413)는 내관(420)의 상부 측면, 상면 및 내측면의 일부를 덮도록 형성될 수 있다.
도 12 및 도 13의 제2 밀봉 부재(412, 413)는 도 9 및 도 10의 제2 밀봉 부재(410)보다 내관(420)과의 접착 면적이 크다. 따라서, 도 12 및 도 13의 제2 밀봉 부재(412, 413)는 내관(420)의 접촉 면적 증가로 내관(420)과의 접착력이 향상될 수 있다.
또한, 제2 밀봉 부재(412, 413)는 내관(420)의 상면을 덮도록 형성되므로, 제2 밀봉 부재(412, 413)의 상면은 내관(420)과 제2 안착부(112) 사이에 위치한다. 따라서, 제2 밀봉 부재412, 413)는 내관(420)이 제2 안착부(112)와 부딪히거나 내관(420)이 제2 안착부(112) 방향으로 가압되는 힘에 의해서 내관(420)이 파손되는 것을 방지할 수 있다.
도 3를 참고하면, 제1 하우징(110)과 결합하는 제2 하우징(130)은 제1 하우징(110)보다 큰 직경을 갖는다. 예를 들어, 제2 하우징(130)의 외경은 제1 하우징(110)의 외경보다 클 수 있다. 또한, 제2 하우징(130)의 내경은 제1 하우징(110)의 외경과 동일할 수 있다. 따라서, 제1 하우징(110)의 하부가 제2 하우징(130)에 삽입되는 방식으로 제1 하우징(110)과 제2 하우징(130)이 결합될 수 있다.
예를 들어, 제1 하우징(110)과 제2 하우징(130)은 나사 결합 방식으로 결합될 수 있다. 제1 하우징(110)의 하부 부분의 외측면 및 제2 하우징(130)의 내측면에 각각 나사산 및 나사골이 형성될 수 있다. 따라서, 제1 하우징(110)의 나사산 및 나사골이 각각 제2 하우징(130)의 나사골 및 나사산과 맞물리도록 체결하여, 제1 하우징(110)과 제2 하우징(130)이 서로 결합될 수 있다.
본 실시 예에서, 제1 하우징(110)과 제2 하우징(130)이 분리형으로 서로 체결 및 분리가 될 수 있지만, 제1 하우징(110)과 제2 하우징(130)은 일체형일 수도 있다.
도 14는 본 발명의 실시 예에 따른 제2 하우징(130)의 평면도이다. 또한, 도 15는 본 발명의 실시 예에 따른 제2 하우징(130)의 단면도이다.
제2 하우징(130)의 내부 공간에는 광원부(500) 및 제2 반사부(300)가 배치될 수 있다.
도 14 및 도 15를 참고하면, 제2 하우징(130)은 상부면이 개방된 구조이며, 내부 공간을 갖는다. 도 3에 도시된 바와 같이, 제2 하우징(130)의 개방된 상면을 통해서 제1 하우징(110)이 제2 하우징(130)의 내부 공간에 삽입될 수 있다.
또한, 제2 하우징(130)의 하면에는 하부 방향으로 돌출된 제2 돌출부(131)가 형성된다. 제2 돌출부(131)에는 광원부(500)와 외부 전원을 연결하는 전선(610)이 통과하는 관통홀이 형성된다. 즉, 제2 돌출부(131)에 형성된 관통홀은 제2 하우징(130)의 내부 공간과 제2 하우징(130)의 외부를 연결할 수 있다.
제2 하우징(130)의 내부 하면에는 제3 안착부(132)가 형성될 수 있다. 도 15를 참고하면, 제3 안착부(132)는 제2 하우징(130)의 내부 하면에서 상부 방향으로 돌출된 구조로 형성될 수 있다. 또한, 도 14를 참고하면, 제3 안착부(132)는 제2 하우징(130)의 내측면과 이격된 상태에서 제2 하우징(130)의 내측면의 테두리를 따라 형성될 수 있다. 제3 안착부(132)의 내측 영역에는 광원부(500)가 실장된다.
도 14를 참고하면, 제3 안착부(132)는 원형 테두리를 갖는 구조일 수 있다.. 그러나 제3 안착부(132)의 구조가 이에 한정되는 것은 아니며, 내측에 광원부(500)가 실장될 수 있다면 어떠한 형태도 될 수 있다.
제3 안착부(132)는 내측 영역에 안착된 광원부(500)가 수평 방향으로 움직이지 않도록 광원부(500)를 고정시킬 수 있다. 이를 위해서, 제3 안착부(132)는 광원부(500)의 적어도 양측의 일부분이 제3 안착부(132)의 내측면과 밀착하는 구조 및 크기를 가질 수 있다. 예를 들어, 제3 안착부(132)는 내측면의 구조가 광원부(500)의 기판(520)의 외측면 구조와 대응하며, 내경이 광원부(500)의 기판(520)의 외경과 동일할 수 있다. 따라서, 제3 안착부(132)에 광원부(500)가 실장되면, 제3 안착부(132)의 내측면이 광원부(500)의 기판(520)의 외측면과 밀착할 수 있다.
도 2를 참고하면, 광원부(500)는 적어도 하나의 광원(510) 및 광원(510)이 실장되는 기판(520)을 포함할 수 있다.
본 실시 예에 따르면, 광원(510)은 유체에 포함된 오염원을 살균할 수 있는 광을 방출할 수 있다. 예를 들어, 광원(510)은 자외선을 방출할 수 있다. 더 나아가 광원(510)은 UVC를 방출할 수 있다. 더 나아가 광원(510)은 약 265nm 내지 275nm 파장대에서 피크 파장을 갖는 광을 방출할 수 있다.
기판(520)은 광원(510)과 외부 전원을 전기적으로 연결시키는 역할을 할 수 있다. 따라서, 외부 전원에서 공급되는 전력이 기판(520)을 통해서 광원(510)으로 공급될 수 있다.
기판(520)은 베이스, 상부 패턴, 하부 패턴 및 비아를 포함할 수 있다. 베이스는 절연 물질로 형성될 수 있다. 상부 패턴은 베이스의 상면에 형성되며, 하부 패턴은 베이스의 하면에 형성될 수 있다. 상부 패턴 및 하부 패턴은 모두 전도성 물질로 형성될 수 있다. 예를 들어, 상부 패턴 및 하부 패턴은 구리로 형성될 수 있다. 또한, 비아는 베이스를 관통하도록 형성되어, 일단은 상부 패턴과 접촉하며, 타단은 하부 패턴과 접촉하도록 형성될 수 있다. 여기서, 비아는 구리, 솔더 페이스트 등의 전도성 물질로 형성될 수 있다.
본 실시 예에 따르면, 기판(520)의 상부 패턴은 광원(510)과 전기적으로 연결되며, 기판(520)의 하부 패턴은 외부 전원과 연결된 전선(610)과 전기적으로 연결되며, 비아는 상부 패턴과 하부 패턴을 전기적으로 연결할 수 있다. 따라서, 기판(520)을 통해서 외부 전원의 전력이 광원(510)에 공급될 수 있다. 상기 상부 패턴, 하부 패턴 및 비아는 전도성 물질로 형성된 배선이다.
여기서, 전선(610)은 제2 하우징(130)의 제2 돌출부(131)에 형성된 관통홀을 통과하여 광원부(500)과 외부 전원을 연결시킬 수 있다.
도 1을 참고하면, 본 실시 예의 유체 처리 장치(10)는 하우징(100)의 외부에 구동부(710)가 위치할 수 있다. 구동부(710)는 광원부(500)의 광원(510)의 정전압 구동 또는 정전류 구동을 위한 구동 회로를 포함할 수 있다. 즉, 구동 회로는 광원부의 동작을 제어하는 회로 일 수 있다. 구동 회로를 구현하기 위해서는 큰 면적의 기판 및 전자 부품이 필요하다. 또한, 구동 회로는 동작 시 발열이 심하다는 문제점이 있다.
본 실시 예의 유체 처리 장치(10)는 구동 회로를 광원부(500)의 기판(520)에 구현하지 않고, 구동 회로를 포함하는 구동부(710)를 별도로 구비하므로, 광원부(500)의 기판(520)을 소형으로 제작할 수 있다. 또한, 유체 처리 장치(10)는 구동 회로를 포함하는 구동부(710)를 하우징(100) 외부에 배치하여, 구동 회로의 발열에 의해 광원부(500)가 오작동 하거나 손상되는 것을 방지할 수 있다.
또한, 구동부(710)는 광원부(500)의 고장을 감지하는 불량 감지부를 더 포함할 수 있다. 불량 감지부는 광원(510)의 단락 또는 개방과 같은 이상 상태를 감지하며, 감지된 이상 상태를 외부로 출력하기 위한 이상 신호를 생성할 수 있다. 예를 들어, 불량 감지부는 광원(510)에 흐르는 전류 또는 전압을 검출하여 광원(510)의 이상 상태를 감지하고 이상 신호를 생성할 수 있다. 이때, 유체 처리 장치(10)는 불량 감지부에서 생성된 이상 신호에 따른 소리, 빛, 문자 등을 외부로 출력하할 수 있는 출력부를 포함할 수 있다. 출력부는 이상 신호를 무선 또는 유선으로 수신하면, 사용자가 청각 또는 시각으로 확인 가능하도록 소리, 문자, 및 가시광 중 적어도 하나를 유체 처리 장치(10)의 외부로 출력할 수 있다. 예를 들어, 출력부는 유체 처리 장치(10)의 외부에 위치한 화면 또는 가시 광원일 수 있다. 또한 출력부는 유체 처리 장치(10)의 내부 또는 외부에 위치한 스피커일 수 있다.
본 발명의 실시 예에 따른 유체 처리 장치(10)는 불량 감지부를 구비한 구동부에 의해서, 광원부(500)가 고장 났을 때 광원부(500)를 바로 교체할 수 있으므로, 유체 처리 효율이 저하되는 것을 방지할 수 있다.
광원부(500)의 상부에는 제2 반사부(300)가 배치될 수 있다. 이때, 광원부(500)의 일부가 제2 반사부(300)의 내부에 위치할 수 있다.
도 16은 본 발명의 실시 예에 따른 제2 반사부(300)의 사시도이다. 도 17은 본 발명의 실시 예에 따른 제2 반사부(300)의 단면도이다.
도 2, 도 16 및 도 17을 참고하면, 제2 반사부(300)는 제2 반사 부재(310), 창 부재(320) 및 제4 밀봉 부재(330)를 포함할 수 있다.
도 17을 참고하면, 제2 반사 부재(310)는 상면에서부터 하면까지 관통하는 관통홀을 포함할 수 있다. 제2 반사 부재(310)의 외경 또는 단면적은 광원부(500)의 기판(520)의 직경 또는 단면적보다 크다. 또한, 제2 반사 부재(310)의 관통홀의 직경 또는 단면적은 광원부(500)의 기판(520)의 직경 또는 단면적보다 작을 수 있다. 따라서, 제2 반사 부재(310)가 광원부(500)의 상부에 배치되면, 도 3에 도시된 바와 같이 제2 반사 부재(310)의 하면의 일부는 광원부(500)의 기판(520)의 상면에 위치하게 된다. 또한, 제2 반사 부재(310)의 관통홀에는 광원부(500)의 광원(510)이 위치한다.
본 실시 예에 따르면, 제2 반사 부재(310)는 하면이 단차가 없는 평평한 구조일 수 있다. 또한, 제2 반사 부재(310)의 하면은 광원부(500)의 기판(520)의 상면과 밀착할 수 있다.
제2 반사 부재(310)의 상면에는 창 부재(320)가 안착되는 제4 안착부(315)가 형성될 수 있다.
제2 반사 부재(310)의 상면에는 테두리를 따라 상부 방향으로 돌출된 제3 돌출부(316)를 포함한다. 따라서, 제2 반사 부재(310)의 상면은 제3 돌출부(316)를 기준으로 오목한 홈(317)이 형성된 구조를 포함한다. 제4 안착부(315)는 제3 돌출부(316) 및 제3 돌출부(316)에 의한 형성된 홈(317)을 포함한다. 즉, 창 부재(320)가 삽입될 수 있는 공간을 갖는 제2 반사 부재(310)의 상면이 제4 안착부(315)가 될 수 있다. 제4 안착부(315)의 내경은 관통홀의 직경보다 크다. 창 부재(320)는 제2 반사 부재(310)의 제3 돌출부(316)의 내측에 삽입되어 제4 안착부(315)에 안착될 수 있다. 창 부재(320)는 광원부(500)에서 방출된 광이 투과하는 재질로 형성될 수 있다.
제4 안착부(315)는 창 부재(320)와 대응되는 구조로 형성될 수 있다. 예를 들어, 제4 안착부(315)는 내측면이 창 부재(320)의 외측면을 둘러싸는 동시에 밀착하도록 형성될 수 있다. 여기서, 제4 안착부(315)의 내측면은 제3 돌출부(316)의 내측면이다. 따라서, 제4 안착부(315)는 제2 반사 부재(310)의 상면에 장착된 창 부재(320)가 정해진 위치에서 이탈하는 것을 방지할 수 있다.
제2 반사 부재(310)는 광원부(500)에서 방출되는 광을 반사하는 물질로 형성될 수 있다. 창 부재(320)가 아닌 다른 방향을 향하는 광원부(500)의 광은 제2 반사 부재(310)의 내측면에서 창 부재(320)를 향하도록 반사될 수 있다. 따라서, 제2 반사 부재(310)는 광원부(500)에서 방출된 광이 최대한 창 부재(320)를 통과하여 유체 처리 장치(10)의 내부 공간에 조사되도록 할 수 있다. 제2 반사 부재(310)는 광원부(500)의 광이 최대한 유체에 조사되도록 함으로써, 유체 처리 장치(10)의 유체 처리 효율을 향상시킬 수 있다. 예를 들어, 제2 반사 부재(310)는 화이트 실리콘 또는 테플론으로 형성될 수 있다. 또한, 제2 반사 부재(310)는 금속으로 형성될 수 있다. 금속의 경우 열 전도성이 높기 때문에, 광원부(500)에서 발생한 열이 제2 반사 부재(310)를 통해서 광원부(500)의 외부로 방출될 수 있다. 예를 들어, 제2 반사 부재(310)는 알루미늄으로 형성될 수 있다.
또한, 하우징(100)의 내부 공간에 액체 또는 기체와 같은 유체가 흐르는 경우, 광원부(500)에서 발생한 열이 제2 반사 부재(310)를 통해서 유체로 전달될 수 있다. 예를 들어, 유체가 광원부(500)에서 발생한 열보다 상대적으로 온도가 낮다면, 유체는 제2 반사 부재(310)로 전도된 열을 흡수하고 유체 처리 장치(10)의 외부로 배출될 수 있다. 따라서, 유체 처리 장치(10)의 방열 효율이 향상될 수 있다.
이와 같이, 본 실시 예에 따른 유체 처리 장치(10)는 제2 반사 부재(310)에 의해서 광 반사 효과 뿐만아니라 방열 효율도 향상될 수 있다.
또한, 제2 반사 부재(310)는 몸체가 광을 반사하는 물질로 형성되지 않더라도 관통홀을 이루는 내벽에 반사 물질을 코팅하여 형성될 수 있다.
제2 반사 부재(310)의 두께는 광원부(500)의 광원(510)의 두께보다 클 수 있다. 여기서, 두께는 상면에서 하면까지의 길이이다. 따라서, 제2 반사 부재(310)의 관통홀에 광원(510)이 배치되었을 때, 광원(510)과 창 부재(320)가 서로 이격될 수 있다.
광원(510)에서 방출된 광은 지향각에 따라 광원(510)으로부터 멀어질수록 광 조사 영역이 넓어진다. 따라서, 광원(510)과 창 부재(320)가 서로 가까울수록 창 부재(320)에서 광이 입사되는 면적이 작아진다. 반대로 광원(510)과 창 부재(320)가 서로 멀어질수록 창 부재(320)의 광 입사 면적이 커진다. 또한, 광은 창 부재(320)를 통과하면서, 창 부재(320) 내부에서 확산될 수 있다.
본 실시 예에 따르면, 제2 반사 부재(310)에 의해서 광원(510)과 창 부재(320)가 서로 이격되므로, 창 부재(320)의 광 입사 면적을 증가시킬 수 있다. 또한, 창 부재(320)의 넓은 영역을 통해 입사된 광은 창 부재(320)를 통과하면서 더 넓게 확산되어 하우징(100)의 내부 공간으로 방출될 수 있다. 따라서, 창 부재(320)를 통과한 광은 최대한 넓은 하우징(100)의 내부 공간으로 광을 조사할 수 있다.
도 17을 참고하면, 제2 반사 부재(310)는 관통홀을 이루는 내벽이 하면을 기준으로 수직인 구조를 갖는다. 즉, 제2 반사 부재(310)의 관통홀은 상부에서 하부까지 동일한 직경을 갖는다. 그러나 제2 반사 부재(310)의 구조가 이에 한정되는 것은 아니다.
도 18은 제2 반사부(301)의 다른 실시 예를 설명하기 위한 도면이다. 도 18을 참고하면, 제2 반사부(301)의 제2 반사 부재(311)는 관통홀을 이루는 내벽이 하면을 기준으로 경사진 구조를 갖는다. 제2 반사 부재(311)는 광원(510)의 지향각을 고려하여 하부에서 상부로 갈수록 직경이 증가하는 구조의 관통홀을 포함할 수 있다. 즉, 제2 반사부(301)는 광원(510)에서 방출되는 광의 진행 방향을 따라 직경이 증가하는 관통홀을 포함하는 제2 반사 부재(311)를 포함할 수 있다.
창 부재(320)는 제2 반사 부재(310)의 제4 안착부(315)에 배치되어 제2 반사 부재(310)의 관통홀을 덮을 수 있다. 창 부재(320)는 광원부(500)에서 방출되는 광을 투과시키는 재질로 형성될 수 있다. 예를 들어, 창 부재(320)는 석영으로 형성될 수 있다.
제2 반사 부재(310)에 안착된 창 부재(320)는 관통홀을 덮어 제1 하우징(110)의 내부 공간에서 유동하는 유체가 제2 반사 부재(310)의 관통홀로 유입되는 것을 방지할 수 있다.
제4 밀봉 부재(330)는 탄성력을 갖는 물질로 형성되며, 상면에서 하부까지 관통하는 관통홀을 갖도록 형성될 수 있다. 제4 밀봉 부재(330)의 내부 공간이 되는 관통홀에는 제2 반사 부재(310)가 삽입되어 고정될 수 있다.
도 17을 참고하면, 제4 밀봉 부재(330)는 상부에 형성된 상부 관통홀(331)이 하부에 형성된 하부 관통홀(332) 보다 작은 직경을 갖도록 형성될 수 있다. 따라서, 제4 밀봉 부재(330)의 내부 공간에 제2 반사 부재(310)가 삽입되면, 제4 밀봉 부재(330)는 제2 반사 부재(310)의 상면의 일부 및 측면의 적어도 일부를 덮을 수 있다.
더 자세히, 제4 밀봉 부재(330)는 상부가 제2 반사 부재(310)의 상면 일부를 밀착하여 덮도록 형성될 수 있다. 또한, 제4 밀봉 부재(330)는 하부가 제2 반사 부재(310)의 외측면을 밀착하여 덮도록 형성될 수 있다. 이때, 제4 밀봉 부재(330)의 상부는 제2 반사 부재(310)의 제4 안착부(315)의 적어도 일부를 덮을 수 있다. 더 나아가 제4 밀봉 부재(330)의 상부는 제2 반사 부재(310)의 제3 돌출부(316) 및 제4 안착부(315)에 안착된 창 부재(320)의 상면 테두리를 포함한 상면의 일부를 덮도록 형성될 수 있다. 따라서, 제4 밀봉 부재(330)는 제4 안착부(315)와 창 부재(320)를 동시에 덮어, 창 부재(320)를 제2 반사 부재(310)에 밀착된 상태로 고정시킬 수 있다. 제4 밀봉 부재(330)의 상부는 제2 밀봉 부재(410)의 상면에 해당하며, 하부는 제4 밀봉 부재(330)의 상면을 제외한 측면 및 하면에 해당한다.
또한, 제4 밀봉 부재(330)의 상부 관통홀(331)의 직경은 제2 반사 부재(310)의 관통홀의 직경보다 크며, 제4 안착부(315)의 내경 또는 창 부재(320)의 직경보다 작다. 따라서, 제4 밀봉 부재(330)는 창 부재(320)의 일부를 덮지만, 제2 반사 부재(310)의 관통홀의 상부를 덮지 않는다. 따라서, 제4 밀봉 부재(330)는 제2 반사 부재(310)의 관통홀을 통과하여 창 부재(320)의 상부로 방출되는 광의 진행을 방해하지 않는다.
또한, 제4 밀봉 부재(330)는 창 부재(320)의 테두리를 따라 형성되어, 창 부재(320)를 최소한으로 덮도록 형성될 수 있다. 따라서, 제4 밀봉 부재(330)는 창 부재(320)를 최대한 외부로 노출시킬 수 있다. 따라서, 제4 밀봉 부재(330)는 창 부재(320)를 제2 반사 부재(310)에 고정시키는 동시에 창 부재(320)의 광 방출 면적을 최대한으로 확보하여 창 부재(320)에서 광 방출 효율이 감소하는 것을 최소화할 수 있다.
본 발명의 실시 예에 따른 유체 처리 장치(10)는 제4 밀봉 부재(330)와 창 부재(320) 사이에 접착 물질을 더 개재하여 제4 밀봉 부재(330), 창 부재(320) 및 제2 반사 부재(310) 간의 밀착력 및 고정력을 더 향상시킬 수도 있다.
도 19는 본 발명의 실시 예에 따른 유체 처리 장치(10)의 광원부(500) 및 제2 반사부(300)가 배치된 제2 하우징(130)의 평면도이다. 도 20은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 광원부(500) 및 제2 반사부(300)가 배치된 제2 하우징(130)의 단면도이다.
도 19 및 도 20을 참고하면, 광원부(500)가 제3 안착부(132)에 배치되면, 기판(520)의 하면이 제3 안착부(132)의 내측에 위치한 제2 하우징(130)의 내부 하면과 밀착될 수 있다.
광원부(500)의 하부에는 제3 밀봉 부재(650)가 형성될 수 있다. 제3 밀봉 부재(650)는 광원부(500)의 기판(520)과 연결된 전선(610)의 일부를 감싸도록 형성될 수 있다. 또한, 제3 밀봉 부재(650)는 제2 하우징(130)의 제2 돌출부(131)의 관통홀을 채우도록 형성될 수 있다. 이와 같이 형성된 제3 밀봉 부재(650)는 제2 하우징(130)의 내부 공간을 외부 공간으로부터 차폐할 수 있다.
본 실시 예에 따르면, 제3 밀봉 부재(650)는 탄성력을 갖는 재질로 형성될 수 있다. 제3 밀봉 부재(650)가 탄성력을 갖는 재질로 형성되면, 제2 하우징(130)의 제2 돌출부(131)의 관통홀을 더 효과적으로 밀봉할 수 있다. 예를 들어, 제3 밀봉 부재(650)의 재질은 실리콘일 수 있다.
또한, 도 19 및 도 20을 참고하면, 제2 하우징(130)에 제2 반사부(300)가 삽입되면, 제4 밀봉 부재(330)의 외측면은 제2 하우징(130)의 내측면과 밀착할 수 있다.
제2 하우징(130)의 내측면과 제2 반사부(300)의 외측면이 밀착하고, 창 부재(320)가 제2 반사부(300)의 관통홀을 덮고 있으므로, 광원부(500)는 유체가 흐르는 하우징(100)의 내부 공간과 차단될 수 있다.
도 3을 참고하면, 내관(420)의 내부 공간은 유입부(121)를 통해 유입된 유체가 통과하는 통로인 제1 유로(141)이다. 또한, 하우징(100)과 내관(420) 사이의 공간은 내관(420)에서 배출된 유체가 배출부(125)로 향하는 통로인 제2 유로(142)이다.
본 발명의 실시 예에 따른 유체 처리 장치(10)는 하우징(100) 내부에 내관(420)을 배치하여 하우징(100)의 내부 공간을 제1 유로(141)와 제2 유로(142)로 분리한다. 따라서, 유체가 유입부(121)에서 배출부(125)까지 이동하는 하우징(100) 내부의 유로의 길이가 증가하게 된다. 유체가 하우징(100) 내부에 머무르는 시간이 증가하게 되어 광원부(500)의 광에 노출되는 시간이 증가하게 된다. 따라서, 본 실시 예의 유체 처리 장치(10)는 유체가 하우징(100) 내부에서 살균을 위한 광 노출되는 시간을 증가시켜 유체의 살균 효율을 향상시킬 수 있다.
도 21은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 내관(420)의 길이를 설명하기 위한 예시도이다.
광원부(500)의 광원(510)은 광이 방출되는 각도인 임의의 지향각을 가지며, 지향각 범위 내의 영역은 광 조사 영역이 될 수 있다. 광원부(500)의 광 조사 영역에서는 광원(510)에서 방출되는 광이 유체에 직접 조사될 수 있다. 더 나아가, 광 조사 영역은 집중 살균 영역을 포함할 수 있다. 집중 살균 영역은 광원부(500)와 인접하여 다른 영역보다 광 세기가 큰 영역으로, 오염원에 대한 임의의 살균력을 가질 수 있다. 예를 들어, 집중 살균 영역은 광원부(500)에서 방출된 광이 유체에 직접 조사되는 영역이며, 오염원에 대해 90% 이상의 살균력을 갖는 영역일 수 있다.
도 21을 참고하면, 내관(420)의 하단은 광원부(500)의 광 조사 영역 내에 위치할 수 있다. 더 나아가 내관(420)의 하단은 집중 살균 영역 내에 위치할 수 있다. 즉, 본 실시 예에 따른 유체 처리 장치(10)는 내관(420)의 하단이 광 조사 영역 또는 집중 살균 영역에 위치할 수 있는 길이를 갖는다. 내관(420)의 하단은 내관(420)의 길이 방향에 위치한 양단 중에서 광원부(500)를 마주하는 일단이다. 내관(420)의 하단에는 유체가 제1 유로(141)에서 제2 유로(142)로 배출되도록 개구가 형성되어 있다.
내관(420)의 하단이 광원부(500)의 광 조사 영역에 위치하므로, 제1 유로(141)에서 제2 유로(142)로 배출되는 유체는 모두 광 조사 영역을 통과하게 된다. 따라서, 유체는 모두 내관(420)의 하단에서 배출될 때, 광원부(500)로부터 방출된 광에 직접 조사되어 살균 처리가 될 수 있다.
또한, 내관(420)의 하단이 집중 살균 영역 내에 위치하면, 제1 유로(141)에서 제2 유로(142)로 배출되는 유체는 모두 살균 집중 영역을 통과하게 된다. 따라서, 유체 처리 장치(10)의 내부로 유입된 모든 유체는 내관(420)의 하단에서 높은 강도의 광에 노출되어 살균될 수 있다.
또한, 본 실시 예에 따르면 광원부(500)의 광은 지향각을 가지므로 광원부(500)에서 멀어질수록 점점 광 조사 범위가 넓어진다. 따라서, 내관(420)의 하단 뿐만아니라 내관(420) 전체가 광 조사 영역 또는 집중 살균 영역에 위치할 수 있다. 즉, 내관(420)의 내부인 제1 유로(141)에는 광원부(500)에서 방출된 광이 직접 조사될 수 있다.
따라서, 유체는 제1 유로(141)에서 광원부(500)에서 방출된 광에 의해서 1차 살균될 수 있다. 이때, 유체는 내관(420)의 하단에서 제2 유로(142)로 배출될 때, 높은 강도의 광에 노출되어 살균될 수 있다.
또한, 유체는 내관(420)의 하단에서 배출된 후, 제2 유로(142)를 통과하면서, 제1 반사 부재(220)의 내벽서 반사된 광에 노출되어 2차 살균될 수 있다.
이와 같이, 본 실시 예에 따른 유체 처리 장치(10)는 유체가 유입부(121)로 유입되어 배출부(125)로 배출될 때까지 적어도 두번의 살균되도록 하여, 살균 효율을 향상시킬 수 있다.
본 실시 예에서, 제1 유로(141)에는 광원부(500)에서 방출된 광이 조사되고, 제2 유로(142)에는 제1 반사 부재(220)에 의해서 반사된 광이 조사된다고 설명하였지만, 본 발명이 이에 한정되는 것은 아니다. 내관(420)이 광이 투과하는 재질로 형성되므로, 제1 반사 부재(220)에서 반사된 광이 내관(420)을 통과하여 제1 유로(141)에 조사될 수도 있다. 또한, 광원부(500)에서 제1 유로(141)로 향하는 광도 내관(420)을 통과하여 제2 유로(142)에 조사될 수도 있다. 즉, 제1 유로(141)과 제2 유로(142)에는 광원부(500)에서 직접 조사된 광과 제1 반사 부재(220)에서 반사된 광이 모두 조사될 수도 있다.
도 22는 본 발명의 실시 예에 따른 유체 처리 장치(10)가 복수의 광원(510)을 포함할 때, 내관(420)의 길이를 설명하기 위한 예시도이다. 또한, 도 23은 본 발명의 실시 예에 따른 유체 처리 장치(10)가 복수의 광원(510)을 포함할 때, 내관(420)의 길이를 설명하기 위한 다른 예시도이다.
도 22 및 도 23을 참고하면, 본 발명의 실시 예에 따른 유체 처리 장치(10)의 광원부(501, 502)는 복수의 광원(510)을 포함할 수 있다. 예를 들어, 도 22에 도시된 바와 같이, 광원부(501)는 2개의 광원(510)을 포함할 수 있으며, 도 23에 도시된 바와 같이, 광원부(503)는 3개의 광원(510)을 포함할 수 있다.
각각의 광원(510)은 광 조사 영역을 가질 수 있다. 복수의 광원(510)은 기판(520) 상에서 서로 다른 위치에 위치하므로, 각각의 광 조사 영역의 위치 역시 서로 다르다.
본 실시 예들을 참고하면, 내관(420)의 하단은 복수의 광원(510) 각각에 의해 형성된 복수의 광 조사 영역이 중첩되는 영역에 위치할 수 있다.
도 22를 참고하면, 광원부(500)는 2개의 광원(510) 각각에 의한 2개의 광 조사 영역을 가질 수 있다. 이때, 내관(420)의 하단은 2개의 광 조사 영역이 중첩되는 영역 내에 위치할 수 있다.
또한, 도 23을 참고하면, 광원부(500)는 3개의 광원(510) 각각에 의한 3개의 광 조사 영역을 가질 수 있다. 이때, 내관(420)의 하단은 3개의 광 조사 영역이 모두 중첩되는 영역 내에 위치할 수 있다.
도 22 및 도 23에서는 광원부(501, 502)가 2개 또는 3개의 광원(510)을 포함하지만, 더 많은 수의 광원(510)을 포함할 수도 있다.
또한, 광원부(500)가 복수의 광원(510)을 포함하는 경우, 유체가 배출되는 내관(420)의 하단은 2개 이상의 광 조사 영역이 중첩되는 영역 내에 위치할 수 있다. 복수의 광 조사 영역이 중첩되는 영역은 복수의 광원(510)의 광이 동시에 조사되는 영역이다. 따라서, 복수의 광 조사 영역이 중첩되는 영역에는 다른 영역보다 많은 광량이 조사된다.
본 실시 예에 따른 유체 처리 장치(10)는 복수의 광원(510)을 포함하는 경우, 2개 이상의 광 조사 영역이 중첩되는 영역에 유체가 배출되는 내관(420)의 하단이 위치할 수 있다. 따라서, 내관(420)의 제1 유로(141)를 통과하여 제2 유로(142)로 배출되는 유체는 모두 2개 이상의 광원(510)으로부터 동시에 광을 조사받을 수 있다. 따라서, 본 실시 예에 따른 유체 처리 장치(10)는 유체가 내관(420)의 제1 유로(141)에서 제2 유로(142)로 향하면서 높은 광량의 광에 노출되므로, 살균 효율이 향상될 수 있다.
또한, 본 실시 예의 유체 처리 장치(10)는 복수의 광원(510)을 포함하는 경우, 광 조사 영역들이 가장 많이 중첩되는 영역에 내관(420)의 하단이 위치할 수 있다. 또는 본 실시 예의 유체 처리 장치(10)는 복수의 광원(510)을 포함하는 경우, 복수의 광 조사 영역이 모두 중첩되는 영역에 내관(420)의 하단이 위치할 수 있다. 따라서, 유체 처리 장치(10)는 유체가 가장 큰 광량의 광이 집중적으로 조사되는 영역을 통과하도록 하여, 살균 효율을 향상시킬 수 있다.
도 24는 본 실시 예의 유체 처리 장치(10)의 유입부(121)가 형성되는 위치를 설명하기 위한 도면이다.
도 3 및 도 24를 참고하면, 본 실시 예의 유체 처리 장치(10)는 유입부(121)의 중심축(C1)과 내관(420)의 중심축(C2)은 서로 어긋난 구조를 가질 수 있다.
여기서, 유입부(121)의 중심축(C1)은 유입 통로(124)의 중심을 통과하고 제1 하우징(110)의 상면에 수직한 직선이다. 또한, 내관(420)의 중심축(C2)은 내관(420)의 내부 공간의 중심을 통과하고 내관(420)의 길이 방향과 평행한 직선이다. 이때, 본 실시 예의 유체 처리 장치(10)는 내관(420)의 제1 유로(141) 상부에 유입 통로(124)의 적어도 일부가 위치할 수 있다.
또한, 제1 하우징(110)의 유입홀(113)이 제2 안착부(112)의 측면에 형성되어 있으므로, 유체는 유입 통로(124)에서 유입홀(113)로 진행할 때 및 유입홀(113)에서 내관(420)의 제1 유로(141)로 진행할 때 방향 전환을 하게 된다.
이와 같이, 유입부(121)의 중심축(C1)과 내관(420)의 중심축(C2)이 서로 어긋나 있으므로, 본 실시 예의 유체 처리 장치(10)는 유체가 유입부(121)에서 내관(420)의 제1 유로(141)까지 최단 거리로 이동하는 것을 방지할 수 있다. 즉, 유입구(122)에서 내관(420)까지의 유체의 이동 거리가 증가한다. 또한, 유체는 유입구(122)에서 내관(420)까지 한 방향으로 이동하는 것이 아니라 적어도 한번 방향을 전환하게 된다.
따라서, 본 실시 예에 따른 유입부(121) 및 내관(420)의 구조는 유입구(122)에서 내관(420)의 제1 유로(141)까지 유체의 이동 거리 증가 및 방향 전환에 의해서 유체의 속도를 감소시킬 수 있다.
또한, 본 실시 예에 따르면, 제2 안착부(112)에 형성된 유입홀(113)의 직경은 유입부(121)의 내경보다 작을 수 있다. 따라서, 유입홀(113)에서 유체 압력은 증가하게 되며, 그 결과 내관(420)의 제1 유로(141)에서의 유체의 속도는 유입부(121)에서의 유체의 속도보다 감소하게 된다. 따라서, 제1 유로(141) 및 제2 유로(142)가 모두 채워져 유체가 유체 처리 장치(10)의 외부로 배출되기까지 시간이 증가하게 된다.
또한, 배출부(125)의 내경이 제2 유로(142)의 직경보다 작기 때문에, 배출홀(114)에서 유체 압력이 증가하게 된다. 따라서,배출부(125)에서의 유체의 속도는 제2 유로(142)에서의 유체 속도보다 감소하게 된다.
따라서, 본 실시 예의 유체 처리 장치(10)는 유체가 제1 유로(141) 및 제2 유로(142)에 머무는 시간을 증가시켜, 유체가 광원부(500)의 광에 노출되는 시간도 증가시키므로 살균 효율을 향상시킬 수 있다.
도 25 및 도 26은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 유입부 및 배출부의 다른 실시 예들을 설명하기 위한 예시도이다.
도 25는 본 발명의 실시 예에 따른 유체 처리 장치(10)의 유입부 및 배출부에 대한 다른 실시 예의 외관을 나타낸 도면이다. 또한, 도 26은 본 발명의 실시 예에 따른 유체 처리 장치(10)의 유입부 및 배출부에 대한 또 다른 실시 예를 설명하기 위한 단면도이다.
도 25 및 도 26울 참고하면, 유체 처리 장치(10)는 구부러진 구조의 배출부(127) 및 유입부(123)를 포함할 수 있다. 따라서, 유체 처리 장치(10)는 유입구(122)에서 내관(420)의 제1 유로(141)까지 유체의 이동 방향이 전환되는 구간이 추가될 수 있다. 또한, 유체 처리 장치(10)는 제2 유로(142)에서 배출구(126)까지 유체의 이동 방향이 전환되는 구간이 추가될 수 있다. 즉, 유체 처리 장치(10)는 유입구(122)에서 배출구(126)까지의 유체 이동 방향이 전환되는 구간이 증가할 수 있다. 유체는 이동 방향이 전환될 때 속도가 감소할 수 있다. 따라서, 구부러진 구조의 유입부(123) 및 배출부(127)에 의해서 유체가 유체 처리 장치(10)의 내부에 머무는 시간이 증가할 수 있으며, 그에 따라 유체 처리 효율이 향상될 수 있다.
도 26을 참고하면, 유체 처리 장치(10)는 도 24와 같이 유입부(123)의 중심축(C3)과 내관(420)의 중심축(C2)이 어긋나도록 형성될 수 있다. 다만, 본 실시 예에서는 내관(420)의 제1 유로(141)의 상부에 유입 통로(124)가 위치하지 않는다는 점에서 도 24와 차이가 있다. 도 26에서 유입부(123)의 중심축(C3)은 내관(420)과 평행한 유입부(123)의 유입 통로(124)의 중심축이다. 즉, 유입부(123)의 중심축(C3)은 내관(420)의 중심축(C2)과 평행할 수 있다. 중심축들(C2, C3)이 어긋나게 형성됨에 따라 유입부(121)와 내관(420)의 거리가 증가하므로, 유체의 이동 거리 역시 증가하게 된다.
본 발명의 실시 예를 통해서 유체 처리 장치의 유체 처리 대상을 물로 설명하였다. 그러나 본 발명의 유체 처리 장치에 유체가 물로 한정되는 것은 아니다. 본 발명의 유체 처리 장치에서 유체 처리되는 대상은 물 뿐만아니라 살균이 필요한 다양한 액체 또는 기체가 될 수 있다.
위에서 설명한 바와 같이 본 발명에 대한 자세한 설명은 첨부된 도면을 참조한 실시 예에 의해서 이루어졌지만, 상술한 실시 예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이므로, 본 발명이 상기 실시 예에만 국한되는 것으로 이해돼서는 안 되며, 본 발명의 권리 범위는 후술하는 청구범위 및 그 등가개념으로 이해되어야 할 것이다.

Claims (18)

  1. 유체가 유입되는 유입부 및 유체가 배출되는 배출부를 포함하는 하우징;
    상기 하우징의 내부에 배치되며, 상기 하우징보다 작은 내부 직경을 가지며 하단이 개방된 내관부; 및
    상기 하우징의 내부 공간으로 광을 방출하는 광원부;를 포함하고,
    상기 내관부의 내부 공간은 제1 유로이고, 상기 내관부와 상기 하우징 사이의 공간은 제2 유로이며,
    상기 유입부를 통해 유입된 유체는 상기 제1 유로와 상기 제2 유로를 통과하여 상기 배출부로 이동하고,
    상기 광원부는 상기 내관부의 하단을 마주하도록 배치되며,
    상기 내관부의 하단은 상기 광원부에서 광이 방출되어 상기 유체에 직접 조사되는 영역인 광 조사 영역 내에 위치하고,
    상기 유입부는 상기 유입부의 중심축과 상기 내관부의 중심축이 서로 다른 선상에 위치하도록 형성된 유체 처리 장치.
  2. 청구항 1에 있어서,
    상기 하우징의 내벽에 밀착되며, 상기 내관부와 이격되도록 배치되는 제1 반사부를 더 포함하며,
    상기 제1 반사부는 상기 광원부의 광을 반사하는 물질을 포함하는 유체 처리 장치.
  3. 청구항 2에 있어서,
    상기 제1 반사부는 사출 성형 방식으로 형성되어 상기 하우징에 삽입되는 유체 처리 장치.
  4. 청구항 1에 있어서,
    상기 내관부는 상기 제1 유로 형성하며, 광이 투과하는 재질로 형성된 내관을 포함하는 유체 처리 장치.
  5. 청구항 1에 있어서,
    상기 하우징은 상기 내관부의 상단이 삽입되어 상기 내관부가 안착되는 다단 구조의 안착부를 포함하고,
    상기 안착부에는 상기 유입부와 연결되는 유입홀이 형성되는 유체 처리 장치.
  6. 청구항 5에 있어서,
    상기 안착부는 제1 단 및 상기 제1 단의 외측에 위치하는 제2 단을 포함하며,
    상기 제1 단은 상기 제2 단보다 낮은 높이를 가지고,
    상기 내관부의 상단은 상기 안착부의 상기 제2 단의 내부에 삽입되어 상기 제1 단에 안착되는 유체 처리 장치.
  7. 청구항 6에 있어서,
    상기 유입홀은 상기 안착부의 상기 제1 단에 형성되는 유체 처리 장치.
  8. 청구항 7에 있어서,
    상기 유입홀은 상기 안착부의 상기 제1 단에 형성되어 상기 안착부의 내측에 위치한 상기 하우징의 내벽까지 연장되도록 형성되는 유체 처리 장치.
  9. 청구항 6에 있어서,
    상기 유입홀의 직경은 상기 유입부의 내경보다 작은 유체 처리 장치.
  10. 청구항 1에 있어서,
    상기 하우징의 내부에서 상기 내관부와 상기 광원부 사이에 배치되는 제2 반사부를 포함하며,
    상기 광원부의 일부는 상기 제2 반사부의 내부에 위치하는 유체 처리 장치.
  11. 청구항 10에 있어서,
    상기 제2 반사부는,
    관통홀이 형성되며, 상기 광원부의 광을 반사하는 반사 부재; 및
    상기 반사 부재의 상면에서 상기 반사 부재의 상기 관통홀을 덮도록 배치되며, 상기 광원부의 광이 투과하는 재질로 형성되는 창 부재;를 포함하며,
    상기 제2 반사부의 상기 반사 부재의 상기 관통홀에 상기 광원부의 일부가 배치되는 유체 처리 장치.
  12. 청구항 11에 있어서,
    상기 제2 반사부는 상기 제2 반사부의 상기 반사 부재의 측면의 적어도 일부, 상면의 일부 및 상기 창 부재의 상면 테두리를 덮도록 형성된 밀봉 부재를 포함하는 유체 처리 장치.
  13. 청구항 1에 있어서,
    상기 유입부 및 상기 배출부는 각각 구부러진 형태인 유체 처리 장치.
  14. 청구항 1에 있어서,
    상기 광 조사 영역은 상기 유체에 포함된 오염원에 대해 90% 이상 살균력을 갖는 집중 살균 영역을 포함하는 유체 처리 장치.
  15. 청구항 1에 있어서,
    상기 광원부는 복수의 광원을 포함하는 유체 처리 장치.
  16. 청구항 15에 있어서,
    상기 내관부의 상기 하단은 적어도 2개의 광원의 광 조사 영역들이 중첩되는 영역에 위치하는 유체 처리 장치.
  17. 청구항 9에 있어서,
    상기 하우징은,
    상기 내관부가 배치되는 제1 하우징; 및
    상기 제2 반사부 및 상기 광원부가 배치되는 제2 하우징;을 포함하며,
    상기 제1 하우징과 상기 제2 하우징은 서로 다른 외경을 가지며,
    상기 제2 하우징의 내부에 상기 제1 하우징의 일부가 삽입되어 상기 제1 하우징과 상기 제2 하우징이 결합되는 유체 처리 장치.
  18. 청구항 1에 있어서,
    상기 하우징의 외부에 배치되며, 상기 광원부의 동작을 제어하는 구동 회로를 포함하는 구동부를 포함하는 유체 처리 장치.
PCT/KR2023/010792 2022-07-27 2023-07-26 유체 처리 장치 WO2024025324A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263392789P 2022-07-27 2022-07-27
US63/392,789 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024025324A1 true WO2024025324A1 (ko) 2024-02-01

Family

ID=89706952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010792 WO2024025324A1 (ko) 2022-07-27 2023-07-26 유체 처리 장치

Country Status (1)

Country Link
WO (1) WO2024025324A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040222163A1 (en) * 2001-10-17 2004-11-11 Honeywell International Inc. Apparatus for disinfecting water using ultraviolet radiation
KR20150049953A (ko) * 2013-10-31 2015-05-08 코웨이 주식회사 자외선 살균장치
KR20180081571A (ko) * 2015-12-08 2018-07-16 니기소 가부시키가이샤 유체 살균 장치
KR20200093383A (ko) * 2019-01-28 2020-08-05 엘지이노텍 주식회사 살균 유닛
CN113880189A (zh) * 2021-09-17 2022-01-04 厦门大学 一种差速式对称破缺结构及深紫外过流水杀菌器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040222163A1 (en) * 2001-10-17 2004-11-11 Honeywell International Inc. Apparatus for disinfecting water using ultraviolet radiation
KR20150049953A (ko) * 2013-10-31 2015-05-08 코웨이 주식회사 자외선 살균장치
KR20180081571A (ko) * 2015-12-08 2018-07-16 니기소 가부시키가이샤 유체 살균 장치
KR20200093383A (ko) * 2019-01-28 2020-08-05 엘지이노텍 주식회사 살균 유닛
CN113880189A (zh) * 2021-09-17 2022-01-04 厦门大学 一种差速式对称破缺结构及深紫外过流水杀菌器

Similar Documents

Publication Publication Date Title
WO2016122216A1 (ko) 광원 유닛
WO2013032276A1 (en) Lighting device
WO2016017969A1 (ko) 발광 소자 및 이를 구비한 광원 모듈
WO2013022283A2 (en) Lighting device
WO2012018231A1 (ko) 광반도체 조명장치
WO2013054996A1 (ko) 광 반도체 기반 조명장치
EP2732198A2 (en) Lighting device
WO2017039328A1 (en) Gas cooker
WO2013015602A2 (en) Lighting module
WO2013089334A1 (ko) 조명 장치
EP3472598A1 (en) Apparatus and method for measuring dust
WO2024025324A1 (ko) 유체 처리 장치
WO2018147688A1 (ko) 광원 유닛
WO2011037370A2 (en) Heat-dissipating apparatus and illuminator using the same
WO2022015032A1 (ko) 잉크젯 다파장 경화기
WO2022092799A1 (ko) 광원 모듈 및 광원 모듈을 포함하는 공조 장치
WO2015170897A1 (ko) 조명장치
WO2020190027A2 (ko) 조명 장치 및 조명 장치를 포함하는 이동식 차량
EP2748513A2 (en) Lighting device
WO2014148805A1 (ko) 엘이디조명장치
WO2013073792A1 (ko) 엘이디 조명 장치
WO2018226057A1 (ko) 살균 장치
WO2018016918A1 (ko) 튜브형 엘이디 조명 장치
WO2019022433A1 (ko) 타겟에 조사되는 레이저 에너지와 초점 크기를 조절할 수 있는 진단용 레이저 핸드피스용 팁
WO2023136708A1 (ko) 유체 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846982

Country of ref document: EP

Kind code of ref document: A1