WO2013073792A1 - 엘이디 조명 장치 - Google Patents

엘이디 조명 장치 Download PDF

Info

Publication number
WO2013073792A1
WO2013073792A1 PCT/KR2012/009309 KR2012009309W WO2013073792A1 WO 2013073792 A1 WO2013073792 A1 WO 2013073792A1 KR 2012009309 W KR2012009309 W KR 2012009309W WO 2013073792 A1 WO2013073792 A1 WO 2013073792A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal base
cover
led package
led
heat
Prior art date
Application number
PCT/KR2012/009309
Other languages
English (en)
French (fr)
Inventor
이상철
Original Assignee
아이스파이프 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이스파이프 주식회사 filed Critical 아이스파이프 주식회사
Priority to AU2012337592A priority Critical patent/AU2012337592A1/en
Priority to CA2852827A priority patent/CA2852827A1/en
Priority to EP12850634.2A priority patent/EP2781831A4/en
Priority to MX2014005825A priority patent/MX2014005825A/es
Publication of WO2013073792A1 publication Critical patent/WO2013073792A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/506Cooling arrangements characterised by the adaptation for cooling of specific components of globes, bowls or cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2107/00Light sources with three-dimensionally disposed light-generating elements
    • F21Y2107/30Light sources with three-dimensionally disposed light-generating elements on the outer surface of cylindrical surfaces, e.g. rod-shaped supports having a circular or a polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to an LED lighting device.
  • Korean Laid-Open Patent Publication No. 2009-0095903 discloses a structure in which a heat sink is entirely installed on an outer circumferential surface of a body to which a light source is coupled. That is, in order to dissipate heat generated from the LED, all the surfaces except for the portion where the LED package is installed are proposed to use a structure for heat dissipation.
  • the conventional LED lighting device has a limit in securing a wide area for supplying light because most of the surface is used for heat dissipation to secure a heat dissipation area.
  • the present invention is to provide an LED lighting device having a high heat dissipation performance while ensuring a wide light emitting area for supplying light.
  • the first cover is formed with a vent hole, the opening is formed on one side and the other side is coupled to the first cover, an air flow passage for connecting the vent hole and the opening is formed inside the air flow passage
  • a thermal base for guiding the flow of air to the air, disposed on the outside of the thermal base, including an LED package that is radiated by the air flowing through the air flow passage, coupled to the first cover and electrically connected to the LED package
  • a second cover for covering the LEDs and the LED package, wherein the thermal base is provided with a reflective surface for reflecting and diffusing at least a portion of the light generated from the LED package.
  • It may further include a support substrate for supporting the LED package on the outside of the thermal base.
  • the support substrate may be in close contact with the outer circumferential surface of the thermal base by at least one of interference fitting, tube expanding, and shrinkage fitting.
  • the LED package may be disposed to be inclined outside the thermal base.
  • the LED packages are disposed in pairs along the length direction of the thermal base, and the pair of LED packages may be inclined in opposite directions to increase the emission angle of light generated from the pair of LED packages.
  • the LED lighting apparatus may further include a power supply unit at least partially accommodated inside the thermal base so as to be positioned in the air flow passage of the thermal base and supplying power to the LED package.
  • the power supply unit may include a housing coupled to the first cover and having a through hole formed therein for air flow, and a printed circuit board accommodated in the housing.
  • the LED lighting device may further include a heat dissipation member disposed on the air flow passage of the thermal base and absorbing heat generated from the LED package and discharging the heat to the air flowing through the air flow passage.
  • the heat dissipation member may include a plurality of heat pipe loops formed in a tubular shape and having a heat absorbing portion for injecting a working fluid and absorbing heat and a heat dissipating portion for dissipating heat absorbed from the heat absorbing portion.
  • the plurality of heat pipe loops may be disposed radially about a central axis of the thermal base.
  • the second cover, the LED lighting device is coupled to the first cover to cover the thermal base and the LED package, the air flow hole may be formed to correspond to the position of the opening.
  • the LED lighting device is disposed adjacent to the circumference of the thermal base, and may further include a reflector for reflecting light generated from the LED package or light reflected from the thermal base.
  • the second cover is coupled to the thermal base to cover the LED package, the air flow hole may be formed to correspond to the position of the opening.
  • Vent holes may be formed in the thermal base.
  • One side of the second cover may be formed in a shape in which the air flow hole is inserted into the opening.
  • FIG. 1 is a front view showing the LED lighting apparatus according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view showing the LED lighting apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining heat radiation using air flow in the LED lighting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a view showing a state in which a heat pipe loop of the LED lighting apparatus according to an embodiment of the present invention is installed.
  • FIG. 5 is a view showing a heat pipe loop of the LED lighting apparatus according to an embodiment of the present invention.
  • FIG. 6 is a view showing a state in which the support substrate is omitted in the LED lighting apparatus according to an embodiment of the present invention.
  • FIG. 7 is a front view showing the LED lighting apparatus according to another embodiment of the present invention.
  • FIG. 8 is an exploded perspective view showing an LED lighting apparatus according to another embodiment of the present invention.
  • FIG. 9 is a view for explaining heat radiation using air flow in the LED lighting apparatus according to another embodiment of the present invention.
  • FIG. 10 is a view for explaining the diffusion of light using the reflector in the LED lighting apparatus according to another embodiment of the present invention.
  • FIG 11 is a view showing a state in which the second cover is coupled to the thermal base in the LED lighting apparatus according to an embodiment of the present invention.
  • FIG. 12 is an exploded perspective view showing a state in which the second cover is coupled to the thermal base in the LED lighting apparatus according to an embodiment of the present invention.
  • FIG. 13 is a view for explaining heat dissipation using air flow when the second cover is coupled to the thermal base in the LED lighting apparatus according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • 1 is a front view showing the LED lighting device 100 according to an embodiment of the present invention.
  • 2 is an exploded perspective view showing the LED lighting device 100 according to an embodiment of the present invention.
  • 3 is a view for explaining heat radiation using air flow in the LED lighting device 100 according to an embodiment of the present invention.
  • the LED package 10 As shown in FIGS. 1 to 3, the LED package 10, the first cover 20, the thermal base 30, the second cover 50, the power supply unit 60, and the support substrate
  • An LED lighting device 100 is shown that includes an 80 and an electrical connection 90.
  • the air flow passage 34 is secured using the thermal base 30 disposed on the central axis of the LED lighting device 100, and the LED package 10 is disposed outside the thermal base 30.
  • the air permeability of the LED lighting device 100 can be secured to the maximum and heat radiation performance can be further improved.
  • the high heat dissipation performance can be secured by using the thermal base 30 disposed on the central axis of the LED lighting device 100, and thus, the heat dissipation of the heat sink is generally compared to that of the heat sink installed on the outer circumferential surface of the body to which the conventional light source is coupled. Since the amount of thermally conductive material such as aluminum used for fabrication of the structure can be significantly reduced, as a result, the manufacturing cost of the LED lighting device 100 can be further reduced.
  • the LED package 10 is directly installed on the outer circumferential surface of the thermal base 30 through the support substrate 80, it is possible to shorten the heat transfer path for heat dissipation of the LED package 10 heat dissipation performance It can be improved more.
  • a pair of support substrates 80 are installed on the outer circumferential surface of the thermal base 30, and the LED packages 10 are arranged in opposite directions (that is, on the upper side of the support substrate 80).
  • the LED package 10 is inclined upwardly on the support substrate 80 of the support substrate 80 and downwardly on the lower support substrate 80 of the support substrate 80. Accordingly, the type of light generated from the LED packages 10 disposed up and down, respectively, is provided. It is possible to increase the directional radiation angle extensively.
  • the LED package 10 can emit light at an angle of 120 degrees, by placing the LED package 10 inclined in the opposite direction to each other, the LED lighting device 100 emits each of the LED package 10 It is possible to emit light widely at a radiation angle similar to the sum of the angles.
  • the LED package 10 may be arranged in plural arranged at regular intervals along the outer circumferential surface of the thermal base 30, and thus, similar to the above-described principle, the lateral radiation angles of each of the LED package 10 It may extend to a radiation angle similar to the sum of the radiation angles.
  • the first cover 20 is coupled to the thermal base 30 as shown in FIGS. 1 to 3.
  • the first cover 20 has a vent hole 22 connected to the air flow passage 34 of the thermal base 30. Heat generated in the LED package 10 may be discharged to the outside through the air flow passage 34 and the vent hole 22.
  • the first cover 20 may be made of a material having high thermal conductivity such as metal such as aluminum.
  • the LED lighting device 100 when the LED lighting device 100 is mounted such that the electrical connection portion 90 is positioned downward, the LED is provided through an air flow hole 52 formed in the air flow passage 34 and the second cover 50. Heat in the package 10 may be released to the outside.
  • an electrical connection 90 electrically coupled to the LED package 10 through a printed circuit board 63 of the power supply unit 60 is coupled to an end of the first cover 20.
  • the first cover 20 may have a hemispherical structure having a space formed therein.
  • the electrical connection unit 90 may be a socket having a structure such as Edison type, Swan type or the like.
  • vent holes 22 are formed in all directions on the spherical surface of the first cover 20, the air flowing in the lateral direction around the first cover 20 also passes through the first cover 20, so that heat dissipation performance is improved. Can be further improved.
  • the thermal base 30 may provide an air flow passage 34 for heat dissipation of the LED package 10 as illustrated in FIGS. 1 to 3. That is, an opening 32 is formed at one side of the thermal base 30, the other side of the thermal base 30 is coupled to the first cover 20, and the opening 32 is formed at the inner side of the thermal base 30. Since an air flow passage 34 connecting the vent holes 22 may be formed, air flowing into the opening 32 or the vent holes 22 may form a flow along the air flow passage 34. Will be.
  • the thermal base 30 has a hollow cylindrical structure in which an opening 32 is formed toward an object of illumination.
  • the thermal base 30 has a structure in which the other side coupled to the first cover 20 is also open, so that the inside of the cylindrical thermal base 30 is an opening portion 32 to a space portion of the first cover 20.
  • An airflow passage 34 to be connected is formed.
  • the thermal base 30 is composed of a flow guide portion of a circular pipe structure having a constant diameter and the connection portion of the expansion pipe structure increases in diameter toward the top thereof, the connection portion is the bottom of the first cover 20 Is coupled to.
  • air introduced into the airflow passage 34, which is an empty space therein, through the opening 32 of the thermal base 30 is generated in the LED package 10 to support the support substrate 80 and Due to the heat transferred through the inner wall of the thermal base 30 is heated and naturally rises and is discharged to the vent hole (22).
  • the thermal base 30 may also be used as a heat dissipation means.
  • the thermal base 30 may be made of a material such as metal (for example, aluminum) having excellent thermal conductivity similarly to the first cover 20.
  • the air flowing along the air flow passage 34 absorbs heat in contact with the inner wall of the thermal base 30 heated by the LED package 10. That is, the thermal base 30 may discharge the heat transferred from the LED package 10 to the outside through the air flowing therein.
  • the thermal base 30 may be formed with a reflective surface 31 that reflects and diffuses at least a portion of the light generated by the LED package 10. That is, the outer surface of the thermal base 30 may be used as a reflector to diffuse light.
  • the air flow passage 34 of the thermal base 30 absorbs the heat generated from the LED package 10 to the air flow passage 34
  • the heat dissipation member 40 may be further installed to discharge the air flowing through.
  • FIG. 4 is a view showing a state in which the heat pipe loop 44 of the LED lighting apparatus 100 according to an embodiment of the present invention is installed.
  • 5 is a view showing a heat pipe loop 44 of the LED lighting apparatus 100 according to an embodiment of the present invention.
  • the heat dissipation member 40 may absorb heat generated from the LED package 10 and release the absorbed heat as air flowing along the air flow passage 34. As shown in FIG. 5, as the heat dissipation member 40, a vibrating tubular heat pipe, which is formed in a tubular shape and into which a working fluid 42a is injected, may be used.
  • the heat dissipation member 40 of the present embodiment is in contact with the inner wall of the LED package 10 side of the thermal base 30 to receive heat and receive heat absorbing portion 40a.
  • a heat pipe loop 44 having a heat radiating part 40b spaced apart from the part 40a and dissipating heat absorbed by the heat absorbing part 40a may be repeatedly arranged.
  • the plurality of heat pipe loops 44 may have a helical structure that repeatedly reciprocates between portions of the LED package 10 side of the air flow passage 34 and spaces spaced upwardly therefrom. Accordingly, since the surface area required for heat dissipation in a limited space can be secured as much as possible, through the space between the spiral structures of the plurality of heat pipe loops 44, the air can move freely and absorb the heat of the LED package 10. have.
  • the plurality of heat pipe loops 44 may be disposed radially about the central axis of the thermal base 30. That is, the plurality of heat pipe loops 44 having a helical structure are rolled in an annular shape so that the heat dissipation part 40b may be disposed radially. In other words, the heat dissipation part 40b which performs heat dissipation is disposed radially about the central axis of the annular structure. Therefore, the flow of air required for heat dissipation can be freed and heat dissipation with higher efficiency can be achieved.
  • the plurality of heat pipe loops 44 has a helical structure is provided as an example, but is not limited thereto, and the heat pipe loops 44 are spaced apart from the heat absorbing portion 40a and the heat absorbing portion 40a.
  • the structure in which a plurality of customs 42 having a heat dissipation part 40b for dissipating the heat is arranged side by side is also included in the scope of the present invention.
  • a separate heat transfer member is disposed between the inner wall of the thermal base 30 and the heat dissipation member 40 such that the inner wall of the thermal base 30 and the heat absorbing portion 40a of the heat dissipation member 40 contact each other.
  • the coupling groove may be formed to allow the tubule 42 constituting the heat pipe loop 44 to be coupled to the inner wall of the thermal base 30.
  • the plurality of heat pipe loops 44 may be a vibrating tubular heat pipe loop 44 into which the working fluid 42a is injected. As shown in FIG. 4, the vibrating tubular heat pipe loop 44 is injected with a predetermined ratio of the working fluid 42a and the air bubbles 42b into the tubule 42, and the inside of the tubule 42 is sealed from the outside. It has a structure.
  • the vibrating tubular heat pipe loop 44 has a heat transfer cycle for mass transfer of heat in latent form by volume expansion and condensation of the bubbles 42b and the working fluid 42a. Accordingly, heat dissipation performance of the heat pipe loop 44 may be maximized.
  • the heat pipe loop 44 may include a capillary 42 made of a metal material such as copper and aluminum having high thermal conductivity. Accordingly, while conducting heat at a high speed, the volume change of the bubbles 42b injected therein can be quickly induced.
  • the plurality of heat pipe loops 44 may communicate with each other.
  • the communication structure of the heat pipe loop 44 may be both an open loop and a close loop.
  • all or part of the plurality of heat pipe loops 44 may be in communication with neighboring heat pipe loops 44. Accordingly, the plurality of heat pipe loops 44 may have an overall open loop shape or a closed loop shape as required by design.
  • the LED lighting device 100 at least a portion is accommodated inside the thermal base 30 so as to be located in the air flow passage 34 of the thermal base 30, the LED package 10
  • a power supply unit 60 for supplying power may be provided.
  • the power supply unit 60 may include a housing 61 coupled to the first cover 20 and a printed circuit board 63 accommodated in the housing 61, as shown in FIG. 3.
  • the printed circuit board 63 may be equipped with a converter and various active and passive elements.
  • the power supply unit 60 since the power supply unit 60 is embedded in the air flow passage 34 of the thermal base 30, heat generated from the power supply unit 60 may be effectively discharged to the outside through the air flowing through the air flow passage 34. Can be. As described above, since the continuous air flow is formed in the air flow passage 34, the power supply unit 60 may be prevented from being overheated and deteriorated in performance.
  • a heat dissipation member 40 may be installed in the air flow passage 34, and the heat dissipation member 40 may have an annular structure, such that a vent 45 may be formed at the center thereof. Since the power supply unit 60 may be accommodated in the air vent unit 45 and positioned on a movement path of air passing through the air vent unit 45, the power supply unit 60 may be further provided by the highly breathable heat dissipation member 40. Effective heat dissipation is possible.
  • the through hole 62 for the flow of air may be formed in the housing 61 of the power supply unit 60. Accordingly, air flowing through the vent 45 may be introduced into the housing 61, and thus heat dissipation performance of the power supply 60 may be further improved.
  • the thermal base 30 of the present embodiment implements high heat dissipation performance as the air flows into the LED lighting device 100 to ensure maximum ventilation. And by embedding all of the heat dissipation structure to the inside of the thermal base 30 in this way, the outer surface of the LED lighting device 100 can be used for various purposes other than heat dissipation.
  • the LED package 10 may be disposed outside the thermal base 30 and radiated by air flowing through the air flow passage 34.
  • the LED package 10 may emit light using electrical energy, and may be configured as a package substrate and an LED chip mounted and packaged thereon.
  • the LED package 10 may be disposed to be inclined outside the thermal base 30. And the LED package 10 is disposed in a pair along the longitudinal direction (up and down direction based on the drawing) of the thermal base 30, a pair of LED package 10 in a pair of LED package 10 The longitudinal radiation angles of the generated light may be inclined in opposite directions to each other (ie, the upper LED package 10 is upward and the lower LED package 10 is downward).
  • the upper LED package 10 may be disposed to be inclined upward by an angle of less than 90 degrees with respect to the outer peripheral surface of the thermal base 30, the lower LED package 10 is the outer peripheral surface of the thermal base 30 Can be inclined downward by an angle of less than 90 degrees. Accordingly, the active surfaces of the upper LED package 10 and the lower LED package 10 face the upper diagonal direction and the lower diagonal direction, respectively.
  • the LED lighting device 100 is the sum of the radiation angles of each of the LED packages 10 of the upper and lower sides. It can emit light widely at a longitudinal radiation angle similar to.
  • the LED package 10 may be arranged in plurality at regular intervals along the outer circumferential surface of the thermal base (30).
  • four LED packages 10 may be arranged at regular intervals, and thus, similar to the principle described above, the transverse radiation angle may also be extended to a radiation angle similar to the sum of the radiation angles of each of the LED packages 10. Can be.
  • the plurality of LED packages 10 are disposed at regular intervals along the outer circumferential surface of the thermal base 30 and at the same time inclined at an angle with respect to the outer circumferential surface of the thermal base 30, and the thermal base ( Another plurality of LED packages 10 are disposed on the lower layer so as to be symmetrical with the plurality of LED packages 10 about a virtual plane perpendicular to the central axis of the upper layer 30, and the upper LED packages 10 and the lower LED packages ( 10) are arranged to face the upper diagonal direction and the lower diagonal direction, respectively.
  • the emission surface of the light emitted from the LED lighting apparatus 100 becomes close to the spherical surface as a whole, the area in which the LED lighting apparatus 100 can supply light can be maximized.
  • the LED package 10 may be supported on the outside of the thermal base 30 by the support substrate 80. As the LED package 10 is directly installed on the outer circumferential surface of the thermal base 30 through the support substrate 80, the heat transfer path for heat dissipation of the LED package 10 can be shortened, so that the heat dissipation of the LED package 10 is achieved. Performance can be further improved.
  • the support substrate 80 is formed of a base substrate made of aluminum or the like having excellent thermal conductivity, an insulating layer formed on the surface of the base substrate, and an insulating layer to form a printed circuit board of the LED package 10 and the power supply unit 60. It may be a circuit board composed of a circuit pattern for electrically connecting.
  • the support substrate 80 includes a base substrate made of a metal having excellent thermal conductivity, heat of the LED package 10 can be effectively transferred to the inner wall of the thermal base 30 through the support substrate 80.
  • the support substrate 80 is coupled to the thermal base 30, the fastening portion 82 having an annular structure to be inserted into the outer peripheral surface of the thermal base 30, and extends from the fastening portion 82 and the LED package 10 ) May be composed of a support 84 to which it is coupled.
  • the support portion 84 may be bent from the fastening portion 82 to be inclined at an angle with the outer circumferential surface of the thermal base 30, so that the support portion 84 is inclined with respect to the central axis of the thermal base 30 Can have.
  • the active surface of the LED package 10 may face the upper or lower diagonal direction.
  • the support substrate 80 may be coupled to be in close contact with the outer circumferential surface of the thermal base 30.
  • the support substrate 80 since the support substrate 80 is in close contact with the thermal base 30, heat generated in the LED package 10 may be more effectively transferred to the thermal base 30 via the support substrate 80, and at the same time, the support substrate 80 can be more firmly fixed on the outer peripheral surface of the thermal base (30).
  • the support substrate 80 may be tightly fixed to the outer circumferential surface of the thermal base 30 by interference fitting, tube expanding, shrinkage fitting, or a combination thereof.
  • the inner diameter of the fastening portion 82 of the support substrate 80 is designed to be smaller than the outer diameter of the thermal base 30 and the thermal base 30 is inserted into the fastening portion 82.
  • the support substrate 80 can be in close contact and fixed.
  • a ball-shaped expansion means is inserted into the thermal base 30 by inserting the thermal base 30 into the fastening portion 82 of the support substrate 80.
  • the support substrate 80 may be closely attached and fixed.
  • the support substrate 80 is heated and expanded, the thermal base 30 is cooled and shrunk, or both are performed, and then the fastening portion 82 of the support substrate 30 is performed.
  • the thermal base 30 is inserted into and placed in a room temperature environment, the supporting substrate 80 or the thermal base 30, which has been expanded or contracted, may be restored to its original state and the supporting substrate 80 may be tightly fixed.
  • the support substrate 80 may be omitted so that the LED package 10 itself may be installed on the outer peripheral surface of the thermal base (30).
  • the heat transfer path can be further shortened to further improve heat dissipation performance, and manufacturing cost can be further reduced due to the non-use of the support substrate 80. Will be.
  • the second cover 50 may induce efficient air flow together with protection of the internal parts.
  • the second cover 50 may be made of a transparent material to transmit light, and as shown in FIGS. 1 to 3, the second cover 50 may be formed on the first cover 20 to cover the thermal base 30 and the LED package 10.
  • the air flow hole 52 is formed to correspond to the position of the opening 32.
  • the second cover 50 is formed in a form surrounding the side and the bottom of the LED lighting device 100 to cover the LED package 10 and the thermal base 30, the LED package 10 and Protect the thermal base (30).
  • the air flow hole 52 formed in the lower portion of the second cover 50 is formed to correspond to the position of the opening 32 of the thermal base 30, as soon as the rising air flow is formed in the air flow passage 34 It serves to guide the outside cold air into the air flow passage (34).
  • the structure in which both the LED package 10 and the thermal base 30 are covered by the second cover 50 is described.
  • the second cover 50 is manufactured in a small size so that the LED package ( 10 may be installed on the outer circumferential surface of the thermal base 30 to cover only.
  • 11 is a view showing a state in which the second cover is coupled to the thermal base in the LED lighting apparatus according to an embodiment of the present invention.
  • 12 is an exploded perspective view showing a state in which the second cover is coupled to the thermal base in the LED lighting apparatus according to an embodiment of the present invention.
  • 13 is a view for explaining heat dissipation using air flow when the second cover is coupled to the thermal base in the LED lighting apparatus according to the embodiment of the present invention.
  • the second cover 50 is coupled to the thermal base 30 to cover the LED package 10, and the opening ( An air flow hole 52 may be formed to correspond to the position of 32.
  • the second cover 50 may be coupled to the lower end of the thermal base 30 to cover only the minimum portion of the thermal base 30. For this reason, even if it covers only the minimum part of the thermal base 30, the LED package 10 can be suitably protected from an external shock and contamination.
  • the thermal base 30 may have a relatively large area in direct contact with the outside air, thereby further increasing heat dissipation efficiency through the thermal base 30.
  • the second cover 50 may be easily attached and detached to easily replace the second cover 50 in case of breakage, thereby simplifying and modularizing the structure of the LED lighting apparatus 100 according to the present embodiment.
  • a hole is formed in the lower end of the housing 61 so that air introduced into the air flow hole 52 can effectively dissipate the power supply 60.
  • the LED package 10 may be installed in the second cover 50.
  • the vent hole 22 may be formed in the thermal base 30. That is, the vent hole 22 may not be formed in the first cover 20, but may be formed in a portion of the thermal base 30 not covered by the second cover 50. As a result, an air flow path similar to the case where the vent hole 22 is formed in the first cover 20 can be formed, and thus, efficient heat dissipation can be achieved.
  • one side of the second cover 50 may be formed in a shape in which the air flow hole 52 is inserted into the opening 32. That is, the lower portion of the second cover 50 is formed in a shape in which the air flow hole 52 is formed, the opening of the thermal base 30 when the second cover 50 and the thermal base 30 is coupled A portion in which the air flow hole 52 is formed among the lower ends of the second cover 50 may be inserted into the 32.
  • the second cover 50 and the thermal base 30 can be more firmly coupled, and the air flow path can be more stably secured.
  • the LED lighting apparatus 100 can implement the LED lighting without glare by ensuring even heat dissipation performance required for the LED package 10 by using the thermal base 30 evenly diffused light. have.
  • FIG. 7 is a front view showing the LED lighting apparatus 100 according to another embodiment of the present invention.
  • 8 is an exploded perspective view of the LED lighting apparatus 100 according to another embodiment of the present invention.
  • 9 is a view for explaining heat radiation using air flow in the LED lighting device 100 according to another embodiment of the present invention.
  • FIGS. 7 to 9 the LED package 10, the first cover 20, the thermal base 30, the second cover 50, the power supply unit 60, and the heat dissipation member 40 are illustrated in FIGS. ),
  • An LED lighting device 100 comprising a reflector 70, an electrical connection 90, and a support substrate 80 is presented.
  • the air flow passage 34 is secured using the thermal base 30 disposed on the central axis of the LED lighting device 100, and the LED package 10 is disposed outside the thermal base 30.
  • the air permeability of the LED lighting device 100 can be secured to the maximum and heat radiation performance can be further improved.
  • the high heat dissipation performance can be secured by using the thermal base 30 disposed on the central axis of the LED lighting device 100, and thus, the heat dissipation of the heat sink is generally compared to that of the heat sink installed on the outer circumferential surface of the body to which the conventional light source is coupled. Since the amount of thermally conductive material such as aluminum used for fabrication of the structure can be significantly reduced, as a result, the manufacturing cost of the LED lighting device 100 can be further reduced.
  • the LED package 10 is coupled to the lower surface of the first cover 20, the surface of the thermal base 30 can reflect and diffuse at least a portion of the light generated from the LED package 10 Since the reflective surface 31 is formed, the radiation surface of the light emitted from the LED lighting device 100 can be further expanded.
  • the LED package 10 may emit light using electrical energy, and may be configured as a package substrate and an LED chip mounted and packaged thereon. As shown in FIG. 8, in the present embodiment, the LED package 10 is mounted on the support substrate 80 and the support substrate 80 is installed on the first cover 20.
  • the support substrate 10 may be formed in an annular structure and may be coupled to the bottom surface of the first cover 20, and the plurality of LED packages 10 may face the active substrate vertically downward on the support substrate 80. Distributed arrangements.
  • the first cover 20 may receive heat generated by the LED package 10 to directly discharge the heat, or transfer heat to the heat dissipation member 40 to be described later.
  • the LED package 10 is coupled to the edge area 21 of the lower surface of the first cover 20 so as to be heat transferable, and the first cover 20 is made of a material having excellent thermal conductivity, such as a metal such as aluminum.
  • a vent hole 22 is formed in the first cover 20, and heat radiation may be achieved by the flow of air passing through the first cover 20.
  • an electrical connection unit 90 electrically connected to the power supply unit 60 may be coupled to an end portion of the base 20, and the first cover 20 may include a space portion therein. It may have a hemispherical structure formed.
  • the heat generated from the LED package 10 is transmitted along the spherical surface of the first cover 20, and the air moving along the air flow passage 34 of the thermal base 30 to be described later is the first cover ( After flowing into the space portion 20, the heat of the first cover 20 is discharged to the outside while being discharged to the outside through the vent hole 22.
  • vent holes 22 are formed in all directions on the spherical surface of the first cover 20, air flowing in the lateral direction around the first cover 20 also passes through the first cover 20 to radiate heat. Performance can be further improved.
  • the thermal base 30 may provide an air flow passage 34 for heat dissipation of the LED package 10 as illustrated in FIGS. 7 to 9. That is, an opening 32 is formed at one side of the thermal base 30, the other side of the thermal base 30 is coupled to the first cover 20, and the opening 32 is formed at the inner side of the thermal base 30. Since an air flow passage 34 connecting the vent holes 22 may be formed, air flowing into the opening 32 or the vent holes 22 may form a flow along the air flow passage 34. Will be.
  • the thermal base 30 has a hollow cylindrical structure in which an opening 32 is formed toward an object to be illuminated.
  • the thermal base 30 has a structure in which the other side coupled to the first cover 20 is open, and is connected to the space portion of the electrical connection unit 90 at the opening 32 in the cylindrical thermal base 30.
  • An airflow passage 34 is formed.
  • air introduced into the airflow passage 34, which is an empty space therein, through the opening 32 of the thermal base 30 is heated by the LED package 10. Due to the heat received from the 20) is heated and naturally rises and is discharged to the vent hole (22).
  • the thermal base 30 may also be used as a heat dissipation means.
  • the thermal base 30 may be made of a material such as metal (for example, aluminum) having excellent thermal conductivity similarly to the first cover 20.
  • the air flowing along the air flow passage 34 absorbs heat in contact with the inner wall of the thermal base 30. That is, the thermal base 30 may emit heat transmitted from the LED package 10 and the first cover 20 through the air flowing therein.
  • the heat dissipation member 40 may be additionally installed in the air flow passage 34 inside the thermal base 30 as illustrated in FIG. 9 to further increase the heat dissipation performance.
  • the heat dissipation member 40 is coupled to the first cover 20 to absorb heat from the first cover 20 and discharge the absorbed heat into the air flowing along the air flow passage 34.
  • a vibrating tubular heat pipe may be used as the heat dissipation member 40, which is formed in a tubular shape and into which a working fluid 42a is injected.
  • the heat dissipation member 40 of the present embodiment is coupled to the first cover 20 to release the heat absorbed by the heat absorbing portion 40a and the heat absorbing portion 40a which receives heat from the LED package 10.
  • the heat pipe loop 44 having the heat dissipation part 40b may be repeatedly arranged.
  • the plurality of heat pipe loops 44 may have a spiral structure that repeatedly reciprocates between portions of the first cover 20 side of the air flow passage 34 and spaces spaced downward from the portions of the first cover 20. Accordingly, since the surface area required for heat dissipation in a limited space can be secured as much as possible, through the space between the spiral structures of the plurality of heat pipe loops 44, the air can move freely and absorb the heat of the LED package 10. have.
  • the plurality of heat pipe loops 44 may be disposed radially about the central axis of the thermal base 30. That is, the plurality of heat pipe loops 44 having a helical structure are rolled in an annular shape so that the heat dissipation part 40b may be disposed radially. In other words, the heat dissipation part 40b which performs heat dissipation is disposed radially about the central axis of the annular structure. Therefore, the flow of air required for heat dissipation can be freed and heat dissipation with higher efficiency can be achieved.
  • an inner side of the first cover 20 may include a coupling groove 24 to which the tubule 42 constituting the heat pipe loop 44 is coupled. Accordingly, the heat pipe loop 44 is firmly coupled to the first cover 20, and the heat transfer area through which heat is transferred from the first cover 20 to the heat pipe loop 44 may be increased.
  • the plurality of heat pipe loops 44 has a helical structure is provided as an example, but is not limited thereto, and the heat pipe loops 44 are spaced apart from the heat absorbing portion 40a and the heat absorbing portion 40a.
  • the structure in which a plurality of customs 42 having a heat dissipation part 40b for dissipating the heat is arranged side by side is also included in the scope of the present invention.
  • the plurality of heat pipe loops 44 may be a vibrating tubular heat pipe loop 44 into which the working fluid 42a is injected.
  • the vibrating tubular heat pipe loop 44 has a structure in which the inside of the tubule 42 is sealed from the outside after the working fluid 42a and the bubbles 42b are injected into the tubule 42 at a predetermined ratio.
  • the vibrating tubular heat pipe loop 44 has a heat transfer cycle for mass transfer of heat in latent form by volume expansion and condensation of the bubbles 42b and the working fluid 42a. Accordingly, heat dissipation performance of the heat pipe loop 44 may be maximized.
  • the heat pipe loop 44 may include a capillary 42 made of a metal material such as copper and aluminum having high thermal conductivity. Accordingly, while conducting heat at a high speed, the volume change of the bubbles 42b injected therein can be quickly induced.
  • the plurality of heat pipe loops 44 may communicate with each other.
  • the communication structure of the heat pipe loop 44 may be both an open loop and a close loop.
  • all or part of the plurality of heat pipe loops 44 may be in communication with neighboring heat pipe loops 44. Accordingly, the plurality of heat pipe loops 44 may have an overall open loop shape or a closed loop shape as required by design.
  • the present embodiment it is possible to further heat dissipation of the power supply unit 60 for supplying power to the LED package 10 by using a heat-absorbing heat radiation member 40.
  • the heat dissipation member 40 is provided with a vent 45 to open the central region of the first cover 20, the power supply 60 is disposed inside the vent 45, the vent ( 45 is located on the path of air passing through.
  • the power supply unit 60 may naturally radiate heat by contacting the air passing through the heat radiating member 40. That is, since a continuous rising air flow is formed in the vent 45 around the power supply 60, the air flow is dissipated by the flow of air, thereby preventing the power supply 60 from overheating and degrading performance. can do.
  • the thermal base 30 of the present embodiment implements high heat dissipation performance as the air flows into the LED lighting device 100 to ensure maximum ventilation. And by embedding all of the heat dissipation structure to the inside of the thermal base 30 in this way, the outer surface of the LED lighting device 100 can be used for various purposes other than heat dissipation.
  • a reflective surface 31 may be formed in the thermal base 30 to reflect and diffuse at least a portion of the light generated by the LED package 10. That is, the outer surface of the thermal base 30 may be used as a reflector to diffuse light.
  • the LED package 10 is disposed on the outside of the thermal base 30, the outer surface of the thermal base 30 may function as a reflecting surface 31 for reflecting light, in the LED package 10
  • the emitted light may be uniformly diffused through the reflective surface 31 of the thermal base 30. Accordingly, the light of the LED package 10 is concentrated in one direction to prevent the phenomenon of glare and to control the spread of light to a desired degree.
  • the thermal base 30 is formed in a cylindrical shape, and the outer circumferential surface of the thermal base 30 is made of a material that reflects light so as to be the reflective surface 31. Accordingly, some of the light generated by the LED package 10 is reflected by the reflecting surface 31 of the thermal base 30 adjacent to the LED package 10, and the reflected light is moved away from the thermal base 30. Can be reflected and diffused widely.
  • the thermal base 30 may be made of a material that reflects light or the reflective material may be coated on the outer circumferential surface of the thermal base 30 so that the outer circumferential surface of the thermal base 30 is the reflective surface 31.
  • the outer circumferential surface of the thermal base 30 may have various reflection angles according to the degree of diffusion of light required for illumination.
  • the reflection angle may be variously adjusted by adjusting the curvature of the outer circumferential surface.
  • the thermal base 30 has a circular cross section and has a tubular structure in which the diameter decreases toward the bottom thereof, and accordingly, the LED package is coupled downward to the edge region 21 of the lower surface of the first cover 20. Light generated from 10 may be reflected and diffused through the outer circumferential surface of the thermal base 30.
  • a reflector 70 may be further provided to reflect the light reflected from the thermal base 30 to obtain a wider variety of light diffusion effects.
  • 15 is a view for explaining the diffusion of light using the reflector 70 in the LED lighting apparatus 100 according to another embodiment of the present invention.
  • the reflector 70 is disposed adjacent to the circumference of the thermal base 30 to reflect the light generated by the LED package 10 or the light reflected by the thermal base 30. ) May be further provided.
  • the reflective surface 72 inside the reflector 70 may primarily reflect light reflected from the reflective surface 31 of the thermal base 30, only the LED package 10 and the thermal base 30 may be used. Light can be emitted even in a shaded area where light cannot be emitted. Alternatively, excessive diffusion of light reflected from the thermal base 30 can also be prevented.
  • the second cover 50 may induce efficient air flow together with protection of the internal parts.
  • the second cover 50 may be made of a transparent material to transmit light, and as shown in FIGS. 7 to 9, the second cover 50 may be formed on the first cover 20 to cover the thermal base 30 and the LED package 10.
  • the air flow hole 52 is formed to correspond to the position of the opening 32.
  • the second cover 50 is formed in a form surrounding the side and the bottom of the LED lighting device 100 to cover the LED package 10 and the thermal base 30, the LED package 10 and Protect the thermal base (30).
  • the air flow hole 52 formed in the lower portion of the second cover 50 is formed to correspond to the position of the opening 32 of the thermal base 30, as soon as the rising air flow is formed in the air flow passage 34 It serves to guide the outside cold air into the air flow passage (34).
  • the LED lighting apparatus 100 can implement the LED lighting without glare by ensuring even heat dissipation performance required for the LED package 10 by using the thermal base 30 evenly diffused light. have.
  • an LED lighting device having a high heat dissipation performance while ensuring a wide light emitting area for supplying light.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

엘이디 조명 장치가 개시된다. 본 발명의 일 측면에 따르면, 통기홀이 형성된 제1커버, 일측에 개구부가 형성되고 타측이 제1커버와 결합되며, 내측에 통기홀과 개구부를 연결하는 공기유동 통로가 형성되어 공기유동 통로 내부로 유입되는 공기의 유동을 가이드하는 서멀베이스, 서멀베이스의 외측에 배치되어, 공기유동 통로를 통해 유동하는 공기에 의해 방열되는 엘이디패키지, 제1커버에 결합되며 엘이디패키지와 전기적으로 연결되는 전기 연결부, 및 엘이디패키지를 커버하여 엘이디패키지를 보호하는 제2커버를 포함하며, 서멀베이스에는 엘이디패키지에서 발생되는 광의 적어도 일부를 반사시켜 확산시키는 반사면이 형성되는 것을 특징으로 하는 엘이디 조명 장치가 제공된다.

Description

엘이디 조명 장치
본 발명은 엘이디 조명 장치에 관한 것이다.
엘이디 조명 장치에서는 엘이디의 발열로 인하여 다량의 열이 발생된다. 일반적으로 엘이디 조명 장치가 과열되면 작동 오류가 발생되거나 손상될 수 있는 바, 과열을 방지하기 위한 방열 구조가 필수적으로 요구된다. 또한, 엘이디에 전원을 공급하는 전원 장치의 경우에도 많은 열을 발생시키고 과열되면 수명이 단축되는 등의 문제가 있다.
과열을 방지하기 위하여, 한국공개특허 제2009-0095903호에서는 광원이 결합된 몸체의 외주면에 전체적으로 히트 싱크를 설치하는 구조가 개시된 바 있다. 즉, 엘이디에서 발생되는 열을 발산하기 위해서, 엘이디패키지가 설치되는 부분을 제외한 모든 표면을 전부 방열에 이용하는 구조를 제시하고 있다.
그런데, 엘이디에서 발생된 광은 밀도가 높고 직진성이 강하므로, 좁은 면적에서만 광을 발생시켜 조명을 하면 특정한 영역만을 지나치게 강하게 비추어서 눈부심이 심해지는 문제가 발생한다. 특히, 종래의 엘이디 조명장치는 방열 면적 확보를 위하여 표면의 대부분을 방열에 사용하므로 광을 공급하는 면적을 넓게 확보하는데 한계가 있다.
본 발명은 높은 방열 성능을 가지면서도 광을 공급하는 발광 면적을 넓게 확보할 수 있는 엘이디 조명 장치를 제공하는 것이다.
본 발명의 일 측면에 따르면, 통기홀이 형성된 제1커버, 일측에 개구부가 형성되고 타측이 제1커버와 결합되며, 내측에 통기홀과 개구부를 연결하는 공기유동 통로가 형성되어 공기유동 통로 내부로 유입되는 공기의 유동을 가이드하는 서멀베이스, 서멀베이스의 외측에 배치되어, 공기유동 통로를 통해 유동하는 공기에 의해 방열되는 엘이디패키지를 포함하며, 제1커버에 결합되며 엘이디패키지와 전기적으로 연결되는 전기 연결부, 및 엘이디패키지를 커버하는 제2커버를 포함하며, 서멀베이스에는 엘이디패키지에서 발생되는 광의 적어도 일부를 반사시켜 확산시키는 반사면이 형성되는 것을 특징으로 하는 엘이디 조명 장치가 제공된다.
엘이디패키지를 서멀베이스의 외측에 지지하는 지지 기판을 더 포함할 수 있다.
지지 기판은, 억지 끼워맞춤(interference fitting), 확관(tube expanding) 및 열 박음(shrinkage fitting) 중 적어도 어느 하나의 방식에 의해 서멀베이스의 외주면에 밀착될 수 있다.
엘이디패키지는 서멀베이스의 외측에 경사지게 배치될 수 있다.
엘이디패키지는 서멀베이스의 길이 방향을 따라 한 쌍으로 배치되며, 한 쌍의 엘이디패키지는 한 쌍의 엘이디패키지에서 발생되는 광의 방사 각도가 증가되도록 서로 반대 방향으로 경사질 수 있다.
엘이디 조명 장치는, 서멀베이스의 공기유동 통로에 위치되도록 적어도 일부가 서멀베이스의 내측에 수용되며, 엘이디패키지에 전력을 공급하는 전원부를 더 포함할 수 있다.
전원부는, 제1커버에 결합되며 공기의 유동을 위한 관통홀이 형성된 하우징, 및 하우징 내부에 수용되는 인쇄회로기판을 포함할 수 있다.
엘이디 조명 장치는, 서멀베이스의 공기유동 통로 상에 배치되며, 엘이디패키지에서 발생되는 열을 흡수하여 공기유동 통로를 통해 유동하는 공기로 방출하는 방열 부재를 더 포함할 수 있다.
방열 부재는, 세관형으로 형성되어 작동 유체가 주입되며, 열을 흡수하는 흡열부 및 흡열부에서 흡수된 열을 방출하는 방열부를 구비하는 복수의 히트파이프 루프를 포함할 수 있다.
복수의 히트파이프 루프는 서멀베이스의 중심축을 중심으로 방사상으로 배치될 수 있다.
제2커버는, 엘이디 조명 장치는 서멀베이스 및 엘이디패키지를 커버하도록 제1커버에 결합되며, 개구부의 위치에 대응되도록 공기 유동홀이 형성될 수 있다.
엘이디 조명 장치는 서멀베이스의 둘레에 인접하여 배치되며, 엘이디패키지에서 발생되는 광 또는 서멀베이스에서 반사되는 광을 반사시키는 리플렉터(reflector)를 더 포함할 수 있다.
제2커버는 엘이디패키지를 커버하도록 서멀베이스에 결합되며, 개구부의 위치에 대응되도록 공기 유동홀이 형성될 수 있다.
통기홀은 서멀베이스에 형성될 수 있다.
제2커버의 일측은 공기 유동홀이 개구부에 삽입되도록 함입된 형상으로 형성될 수 있다.
도 1은 본 발명의 일 실시예에 따른 엘이디 조명 장치를 나타낸 정면도.
도 2는 본 발명의 일 실시예에 따른 엘이디 조명 장치를 나타낸 분해 사시도.
도 3은 본 발명의 일 실시예에 따른 엘이디 조명 장치에서 공기 유동을 이용한 방열을 설명하는 도면.
도 4는 본 발명의 일 실시예에 따른 엘이디 조명 장치의 히트파이프 루프가 설치된 상태를 나타낸 도면.
도 5는 본 발명의 일 실시예에 따른 엘이디 조명 장치의 히트파이프 루프를 나타낸 도면.
도 6은 본 발명의 일 실시예에 따른 엘이디 조명 장치에서 지지 기판이 생략된 상태를 나타낸 도면.
도 7은 본 발명의 다른 실시예에 따른 엘이디 조명 장치를 나타낸 정면도.
도 8은 본 발명의 다른 실시예에 따른 엘이디 조명 장치를 나타낸 분해 사시도.
도 9는 본 발명의 다른 실시예에 따른 엘이디 조명 장치에서 공기 유동을 이용한 방열을 설명하는 도면.
도 10은 본 발명의 다른 실시예에 따른 엘이디 조명 장치에서 리플렉터를 이용한 광의 확산을 설명하는 도면.
도 11은 본 발명의 일 실시예에 따른 엘이디 조명 장치에서 제2커버가 서멀베이스에 결합된 상태를 나타낸 도면.
도 12는 본 발명의 일 실시예에 따른 엘이디 조명 장치에서 제2커버가 서멀베이스에 결합된 상태를 나타낸 분해 사시도.
도 13은 본 발명의 일 실시예에 따른 엘이디 조명 장치에서 제2커버가 서멀베이스에 결합된 경우 공기 유동을 이용한 방열을 설명하는 도면.
― 부호의 설명 ―
100: 엘이디 조명 장치
10: 엘이디패키지
20: 제1커버
22: 통기홀
24: 결합홈
30: 서멀베이스
31: 반사면
32: 개구부
34: 공기유동 통로
40: 방열 부재
40a: 흡열부
40b: 방열부
42: 세관
42a: 작동 유체
42b: 기포
44: 히트파이프 루프
45: 통기부
50: 제2커버
52: 공기 유동홀
60: 전원부
61: 하우징
62: 관통홀
63: 인쇄회로기판
70: 리플렉터
72: 반사면
80: 지지 기판
82: 체결부
84: 지지부
90: 전기 연결부
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명에 따른 엘이디 조명 장치를 첨부 도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 엘이디 조명 장치(100)를 나타낸 정면도이다. 도 2는 본 발명의 일 실시예에 따른 엘이디 조명 장치(100)를 나타낸 분해 사시도이다. 도 3은 본 발명의 일 실시예에 따른 엘이디 조명 장치(100)에서 공기 유동을 이용한 방열을 설명하는 도면이다.
본 실시예에 따르면, 도 1 내지 도 3에 도시된 바와 같이, 엘이디패키지(10), 제1커버(20), 서멀베이스(30), 제2커버(50), 전원부(60), 지지 기판(80) 및 전기 연결부(90)을 포함하는 엘이디 조명 장치(100)가 제시된다.
본 실시예에 따르면, 엘이디 조명 장치(100)의 중심축에 배치된 서멀베이스(30)를 이용하여 공기유동 통로(34)를 확보하고, 이러한 서멀베이스(30)의 외측에 엘이디패키지(10)를 배치함으로써, 엘이디 조명 장치(100)의 통기성을 최대한 확보하여 방열 성능을 보다 향상시킬 수 있다.
이와 같이 엘이디 조명 장치(100)의 중심축에 배치되는 서멀베이스(30)를 이용하여 높은 방열 성능을 확보할 수 있음에 따라, 종래 광원이 결합된 몸체의 외주면에 전체적으로 설치되는 히트 싱크에 비해 방열 구조의 제작을 위해 사용되는 알루미늄 등의 열전도성 재질의 양을 획기적으로 감소시킬 수 있으므로, 결과적으로 엘이디 조명 장치(100)의 제조 원가를 보다 절감할 수 있다.
또한 본 실시예에 따르면, 엘이디패키지(10)가 지지 기판(80)을 통해 서멀베이스(30)의 외주면에 직접 설치됨으로써, 엘이디패키지(10)의 방열을 위한 열전달 경로를 단축시킬 수 있어 방열 성능을 보다 향상시킬 수 있게 된다.
한편 본 실시예에 따르면, 서멀베이스(30)의 외주면에 상하로 한 쌍의 지지 기판(80)이 설치되고, 이러한 지지 기판(80)에는 엘이디패키지(10)가 서로 반대 방향으로(즉, 상측의 지지 기판(80)에는 상측으로, 하측의 지지 기판(80)에는 하측으로) 각각 경사지게 엘이디패키지(10)가 설치되며, 이에 따라, 상하에 각각 배치된 엘이디패키지(10)로부터 발생되는 광의 종방향 방사 각도를 광범위하게 증가시킬 수 있다.
예를 들어 엘이디패키지(10)는 120도 각도로 광을 방사할 수 있으므로, 이러한 엘이디패키지(10)를 서로 반대 방향으로 경사지게 배치함으로써, 엘이디 조명 장치(100)는 엘이디패키지(10) 각각의 방사 각도의 합과 유사한 방사 각도로 광을 넓게 방사할 수 있는 것이다.
또한, 이들 엘이디패키지(10)는 서멀베이스(30)의 외주면을 따라 일정한 간격으로 배치되는 복수로 배치될 수 있으며, 이에 따라 상술한 원리와 유사하게 횡방향 방사 각도 역시 엘이디패키지(10) 각각의 방사 각도의 합과 유사한 방사 각도로 확장될 수 있다.
이하, 도 1 내지 도 5를 참조하여 본 실시예에 따른 엘이디 조명 장치(100)의 각 구성에 대하여 보다 구체적으로 설명하도록 한다.
제1커버(20)는 도 1 내지 도 3에 도시된 바와 같이 서멀베이스(30)와 결합된다. 제1커버(20)에는 서멀베이스(30)의 공기유동 통로(34)와 연결되는 통기홀(22)이 형성된다. 엘이디패키지(10)에서 발생된 열은 이러한 공기유동 통로(34)와 통기홀(22)을 통해 외부로 방출될 수 있다. 이러한 제1커버(20)는 알루미늄 등의 금속과 같이 열전도율이 높은 재질로 이루어질 수 있다.
도 3과는 반대로 전기 연결부(90)가 하측으로 위치되도록 엘이디 조명 장치(100)가 장착되는 경우에는 공기유동 통로(34)와 제2커버(50)에 형성된 공기 유동홀(52)을 통해 엘이디패키지(10)의 열이 외부로 방출될 수 있다.
도 1 내지 도 3에 도시된 바와 같이, 제1커버(20)의 단부에는 전원부(60)의 인쇄회로기판(63)을 통해 엘이디패키지(10)와 전기적으로 연결되는 전기 연결부(90)가 결합될 수 있으며, 이러한 제1커버(20)는 내부에 공간부가 형성된 반구형 구조를 가질 수 있다. 여기서, 전기 연결부(90)는 등과 같은 에디슨형, 스완형 등의 구조를 갖는 소켓일 수 있다.
제1커버(20)의 구면에는 모든 방향으로 통기홀(22)이 형성되어 있으므로, 제1커버(20)의 주변에 횡방향으로 유동하는 공기 역시 제1커버(20)를 통과함으로써 방열 성능이 보다 향상될 수 있다.
서멀베이스(30)는 도 1 내지 도 3에 도시된 바와 같이 엘이디패키지(10)의 방열에 필요한 공기유동 통로(34)를 제공할 수 있다. 즉, 서멀베이스(30)의 일측에는 개구부(32)가 형성되고, 서멀베이스(30)의 타측은 제1커버(20)와 결합되며, 서멀베이스(30)의 내측에는 이들 개구부(32)와 통기홀(22)을 연결하는 공기유동 통로(34)가 형성될 수 있으므로, 이에 따라 개구부(32) 또는 통기홀(22)로 유입되는 공기는 공기유동 통로(34)를 따라 유동을 형성할 수 있게 된다.
도 3에 나타난 바와 같이, 서멀베이스(30)는 조명의 대상물을 향하여 개구부(32)가 형성된 속이 빈 원통형의 구조를 가진다. 그리고, 서멀베이스(30)는 제1커버(20)와 결합되는 타측 부분도 개방된 구조를 가짐으로써, 원통형 서멀베이스(30)의 내부에는 개구부(32)에서 제1커버(20)의 공간부로 연결되는 공기유동 통로(34)가 형성된다.
구체적으로, 서멀베이스(30)는 일정한 직경을 갖는 원형관 구조의 유동 가이드부와 그 상단에 상부으로 갈수록 직경이 증가하는 확관 구조의 연결부로 이루어지며, 이러한 연결부는 제1커버(20)의 하단에 결합된다.
도 3에 나타난 바와 같이, 서멀베이스(30)의 개구부(32)를 통하여 내부의 빈 공간인 공기유동 통로(34)로 유입된 공기는, 엘이디패키지(10)에서 발생되어 지지 기판(80) 및 서멀베이스(30) 내벽을 통해 전달되는 열로 인해 가열되어 자연적으로 상승하여 통기홀(22)로 배출된다.
그리고 이와 같이 공기유동 통로(34) 내부의 공기가 상승하면, 빈 공간을 채우기 위하여 서멀베이스(30)의 개구부(32)를 통하여 외부의 차가운 공기가 유입된다. 즉, 서멀베이스(30)의 개구부(32)를 통하여 외부의 차가운 공기가 유입되고, 유입된 공기가 엘이디패키지(10)에 의해 가열되어 배출되는 공기의 유동이 지속적으로 발생하게 된다.
이 경우, 방열 성능을 높이기 위하여, 서멀베이스(30)도 방열 수단으로 사용될 수 있다. 구체적으로, 본 실시예의 경우 서멀베이스(30)는 제1커버(20)와 유사하게 열전도율이 우수한 금속(예를 들어 알루미늄) 등의 재질로 이루어질 수 있다.
이에 따라, 공기유동 통로(34)를 따라 유동하는 공기는 엘이디패키지(10)에 의해 가열된 서멀베이스(30)의 내벽과 접하여 열을 흡수한다. 즉, 서멀베이스(30)는 엘이디패키지(10)로부터 전달된 열을 그 내부에 흐르는 공기를 통하여 외부로 방출할 수 있다.
그리고 본 실시예의 경우 서멀베이스(30)에는 엘이디패키지(10)에서 발생되는 광의 적어도 일부를 반사시켜 확산시키는 반사면(31)이 형성될 수 있다. 즉, 서멀베이스(30)의 외부 면은 광을 확산시키는 반사판으로 이용될 수 있다.
한편, 방열 성능을 더욱 높일 수 있도록, 도 4에 도시된 바와 같이, 서멀베이스(30)의 공기유동 통로(34) 상에는 엘이디패키지(10)에서 발생되는 열을 흡수하여 공기유동 통로(34)를 통해 유동하는 공기로 방출하는 방열 부재(40)가 추가로 설치될 수도 있다.
도 4는 본 발명의 일 실시예에 따른 엘이디 조명 장치(100)의 히트파이프 루프(44)가 설치된 상태를 나타낸 도면이다. 도 5는 본 발명의 일 실시예에 따른 엘이디 조명 장치(100)의 히트파이프 루프(44)를 나타낸 도면이다.
방열 부재(40)는 엘이디패키지(10)로부터 발생되는 열을 흡수하고 이와 같이 흡수된 열을 공기유동 통로(34)를 따라 흐르는 공기로 방출할 수 있다. 도 5에 도시된 바와 같이, 본 실시예의 경우 방열 부재(40)로서, 세관형으로 형성되어 작동 유체(42a)가 주입되는 진동세관형 히트파이프가 이용될 수 있다.
구체적으로, 도 4 및 도 5에 도시된 바와 같이, 본 실시예의 방열 부재(40)는 서멀베이스(30)의 엘이디패키지(10) 측 내벽에 접촉하여 열을 전달받는 흡열부(40a) 및 흡열부(40a)로부터 이격되어 흡열부(40a)에서 흡수된 열을 방출하는 방열부(40b)를 구비하는 히트파이프 루프(44)가 반복적으로 배치되어 이루어질 수 있다.
즉, 복수의 히트파이프 루프(44)는 공기유동 통로(34) 내부 공간의 엘이디패키지(10) 측 부분과 이로부터 상측으로 이격된 부분을 반복적으로 왕복하는 나선형 구조를 가질 수 있다. 이에 따라, 한정된 공간에서 방열에 필요한 표면적이 최대한 확보될 수 있으므로, 복수의 히트파이프 루프(44)의 나선 구조 사이의 공간을 통하여, 공기는 자유롭게 이동하면서 엘이디패키지(10)의 열을 흡수할 수 있다.
또한, 복수의 히트파이프 루프(44)는 서멀베이스(30)의 중심축을 중심으로 방사상으로 배치될 수 있다. 즉, 나선형 구조를 갖는 복수의 히트파이프 루프(44)가 환형으로 말아짐으로써 방열부(40b)가 방사상으로 배치될 수 있다. 다시 말해, 방열을 수행하는 방열부(40b)가 환형 구조의 중심축을 중심으로 방사상으로 배치된다. 따라서, 방열에 필요한 공기의 유동이 자유롭게 되어 보다 높은 효율의 방열이 이루어질 수 있다.
본 실시예의 경우, 복수의 히트파이프 루프(44)가 나선형 구조를 갖는 경우를 일례로 제시하였으나, 이에 한정되는 것은 아니며, 열을 흡수하는 흡열부(40a) 및 흡열부(40a)에서 이격되어 흡수된 열을 방출하는 방열부(40b)를 구비하는 복수의 세관(42)이 나란히 배치되는 구조 역시 본 발명의 권리범위에 포함됨은 물론이다.
도 4에 도시된 바와 같이, 서멀베이스(30)의 내벽과 방열 부재(40)의 흡열부(40a)가 접하도록 별도의 열전달 부재가 서멀베이스(30)의 내벽과 방열 부재(40) 사이에 개재될 수 있으며, 이와 달리 서멀베이스(30)의 내벽에 히트파이프 루프(44)를 이루는 세관(42)이 결합 가능하도록 결합홈이 형성될 수도 있다.
본 실시예의 경우, 복수의 히트파이프 루프(44)는 작동 유체(42a)가 주입되는 진동세관형의 히트파이프 루프(44)일 수 있다. 도 4에 나타난 바와 같이, 진동세관형 히트파이프 루프(44)는 세관(42)의 내부에 작동 유체(42a)와 기포(42b)가 소정 비율로 주입된 후 세관(42) 내부가 외부로부터 밀폐되는 구조를 가진다.
이에 따라, 진동세관형 히트파이프 루프(44)는 기포(42b) 및 작동 유체(42a)의 부피팽창 및 응축에 의하여 열을 잠열 형태로 대량으로 수송하는 열전달 사이클을 가진다. 이에 따라, 히트파이프 루프(44)의 방열 성능이 극대화될 수 있다.
여기서, 히트파이프 루프(44)는 열전도도가 높은 구리, 알루미늄 등의 금속 소재로 이루어진 세관(42)을 포함할 수 있다. 이에 따라, 열을 빠른 속도로 전도 받음과 아울러 그 내부에 주입된 기포(42b)의 체적 변화를 빠르게 유발할 수 있다.
그리고 복수의 히트파이프 루프(44)는 서로 연통될 수 있다. 히트파이프 루프(44)의 연통 구조는 개루프(open loop)와 폐루프(close loop) 모두 가능하다. 또한, 복수의 히트파이프 루프(44)의 전부 또는 일부는 이웃하는 히트파이프 루프(44)와 연통될 수 있다. 이에 따라, 복수의 히트파이프 루프(44)는 설계상 필요에 따라 전체적으로 개루프 또는 폐루프 형상을 가질 수도 있다.
한편, 본 실시예에 따른 엘이디 조명 장치(100)는, 서멀베이스(30)의 공기유동 통로(34)에 위치되도록 적어도 일부가 서멀베이스(30)의 내측에 수용되며, 엘이디패키지(10)에 전력을 공급하는 전원부(60)를 구비할 수 있다. 이 경우 전원부(60)는, 도 3에 도시된 바와 같이 제1커버(20)에 결합되는 하우징(61), 및 하우징(61) 내부에 수용되는 인쇄회로기판(63)을 포함할 수 있다. 인쇄회로기판(63)에는 컨버터 및 다양한 능동, 수동 소자들이 실장될 수 있다.
이와 같이 전원부(60)가 서멀베이스(30)의 공기유동 통로(34)에 내장됨으로써, 전원부(60)에서 발생되는 열은 공기유동 통로(34)를 통해 유동되는 공기를 통해 외부로 효과적으로 방출될 수 있다. 상술한 바와 같이 공기유동 통로(34)에는 지속적인 공기의 유동이 형성되므로, 전원부(60)가 과열되어 성능이 저하되는 것을 방지할 수 있게 된다.
도 4에 도시된 바와 같이 공기유동 통로(34) 내에는 방열 부재(40)가 설치될 수 있으며, 방열 부재(40)는 환형 구조를 이룸으로써 중앙에 통기부(45)가 형성될 수 있다. 전원부(60)는 이러한 통기부(45) 내에 수용되어 통기부(45)를 지나는 공기의 이동경로 상에 위치될 수 있으므로, 전원부(60)는 이와 같이 통기성이 높은 방열 부재(40)에 의해 보다 효과적인 방열이 가능하게 된다.
이 경우 전원부(60)의 하우징(61)에는 도 4에 도시된 바와 같이 공기의 유동을 위한 관통홀(62)이 형성될 수 있다. 이에 따라 통기부(45)를 통해 유동하는 공기는 하우징(61)의 내부로 유입될 수 있으므로, 전원부(60)에 대한 방열 성능이 보다 향상될 수 있다.
상술한 바와 같이, 본 실시예의 서멀베이스(30)는 엘이디 조명 장치(100)의 내부로 공기를 유동시켜 통기성을 최대한 확보시킴에 따라 높은 방열 성능을 구현한다. 그리고 이와 같이 방열 구조를 서멀베이스(30)의 내측으로 모두 내장시킴으로써, 엘이디 조명 장치(100)의 외부 면이 방열 이외의 다양한 용도로 이용될 수 있다.
상술한 바와 같이 엘이디패키지(10)는 서멀베이스(30)의 외측에 배치되어, 공기유동 통로(34)를 통해 유동하는 공기에 의해 방열될 수 있다. 엘이디패키지(10)는 전기 에너지를 이용하여 광을 발산할 수 있으며, 패키지 기판 및 이에 실장되어 패키징된 엘이디 칩으로 구성될 수 있다.
엘이디패키지(10)는 서멀베이스(30)의 외측에 경사지게 배치될 수 있다. 그리고 이러한 엘이디패키지(10)는 서멀베이스(30)의 길이 방향(도면을 기준으로 상하 방향)을 따라 한 쌍으로 배치되며, 한 쌍의 엘이디패키지(10)는 한 쌍의 엘이디패키지(10)에서 발생되는 광의 종방향 방사 각도가 증가되도록 서로 반대 방향으로(즉, 상측의 엘이디패키지(10)는 상측으로, 하측의 엘이디패키지(10)는 하측으로) 각각 경사질 수 있다.
구체적으로, 상측의 엘이디패키지(10)는 서멀베이스(30)의 외주면에 대해 상측으로 90도 미만의 각도만큼 기울어지게 배치될 수 있으며, 하측의 엘이디패키지(10)는 서멀베이스(30)의 외주면에 대해 하측으로 90도 미만의 각도만큼 기울어지게 배치될 수 있다. 이에 따라 상측의 엘이디패키지(10)와 하측의 엘이디패키지(10)의 활성면은 각각 상측 대각선 방향과 하측 대각선 방향을 각각 향하게 된다.
엘이디패키지(10)는 예를 들어 120도의 방사 각도를 가지고 있으므로, 이와 같은 엘이디패키지(10)의 배치에 따라 엘이디 조명 장치(100)는 상측 및 하측의 엘이디패키지(10) 각각의 방사 각도의 합과 유사한 종방향 방사 각도로 광을 넓게 방사할 수 있다.
그리고 엘이디패키지(10)는 서멀베이스(30)의 외주면을 따라 일정한 간격으로 복수로 배치될 수 있다. 예를 들어 4개의 엘이디패키지(10)가 일정한 간격으로 배치될 수 있으며, 이에 따라 상술한 원리와 유사하게 횡방향 방사 각도 역시 엘이디패키지(10) 각각의 방사 각도의 합과 유사한 방사 각도로 확장될 수 있다.
이와 같이 본 실시예의 경우, 복수의 엘이디패키지(10)를 서멀베이스(30)의 외주면을 따라 일정한 간격으로 배치됨과 동시에 서멀베이스(30)의 외주면에 대해 일정 각도 경사지게 상층에 배치하고, 서멀베이스(30)의 중심축에 수직한 가상의 평면에 대해 이러한 복수의 엘이디패키지(10)와 상하 대칭되도록 또 다른 복수의 엘이디패키지(10)를 하층에 배치하여 상측 엘이디패키지(10)와 하측 엘이디패키지(10)가 각각 상측 대각선 방향과 하측 대각선 방향을 향하도록 배치하게 된다.
이와 같은 엘이디패키지(10)의 배치에 따라 엘이디 조명 장치(100)로부터 방출되는 광의 방사면이 전체적으로 구면에 가깝게 되므로, 엘이디 조명 장치(100)가 광을 공급할 수 있는 면적이 최대화될 수 있게 된다.
엘이디패키지(10)는 지지 기판(80)에 의해 서멀베이스(30)의 외측에 지지될 수 있다. 이와 같이 엘이디패키지(10)가 지지 기판(80)을 통해 서멀베이스(30)의 외주면에 직접 설치됨으로써, 엘이디패키지(10)의 방열을 위한 열전달 경로가 단축될 수 있으므로 엘이디패키지(10)의 방열 성능이 보다 향상될 수 있다.
이 경우 지지 기판(80)은 열전도율이 우수한 알루미늄 등으로 이루어진 베이스 기판, 이러한 베이스 기판 표면에 형성되는 절연층, 및 절연층 상에 형성되어 엘이디패키지(10)와 전원부(60)의 인쇄회로기판을 전기적으로 연결시키는 회로 패턴으로 구성되는 회로기판일 수 있다.
이와 같이 지지 기판(80)이 열전도율이 우수한 금속 등으로 이루어진 베이스 기판을 구비함으로써, 엘이디패키지(10)의 열은 효과적으로 지지 기판(80)을 거쳐 서멀베이스(30)의 내벽으로 전달될 수 있다.
구체적으로 지지 기판(80)은, 서멀베이스(30)에 결합되며 서멀베이스(30)의 외주면에 삽입되도록 환형 구조를 갖는 체결부(82), 및 체결부(82)로부터 연장되며 엘이디패키지(10)가 결합되는 지지부(84)로 이루어질 수 있다.
이러한 지지부(84)는 서멀베이스(30)의 외주면과 일정 각도 기울어지도록 체결부(82)로부터 절곡될 수 있으며, 이에 따라 지지부(84)는 서멀베이스(30)의 중심축에 대해 경사진 면을 가질 수 있다. 이러한 경사진 면에 엘이디패키지(10)가 결합됨으로써, 상술한 바와 같이 엘이디패키지(10)의 활성면이 상측 또는 하측 대각선 방향을 향할 수 있게 된다.
이 경우, 지지 기판(80)은, 서멀베이스(30)의 외주면에 밀착되도록 결합될 수 있다. 이와 같이 지지 기판(80)이 서멀베이스(30)에 밀착됨으로써 엘이디패키지(10)에서 발생된 열은 지지 기판(80)을 거쳐 서멀베이스(30)로 더욱 효과적으로 전달될 수 있음과 동시에, 지지 기판(80)이 서멀베이스(30)의 외주면 상에 보다 견고하게 고정될 수 있게 된다.
지지 기판(80)은 억지 끼워맞춤(interference fitting), 확관(tube expanding), 열 박음(shrinkage fitting), 또는 이들 방식의 조합에 의해, 서멀베이스(30) 외주면에 밀착, 고정될 수 있다.
구체적으로, 억지 끼워맞춤 방식에 의해, 지지 기판(80)의 체결부(82)의 내경을 서멀베이스(30)의 외경보다 작게 설계하고 체결부(82)에 서멀베이스(30)를 삽입함에 따라, 지지 기판(80)이 밀착, 고정할 수 있다.
그리고 확관 방식에 의해, 지지 기판(80)의 체결부(82)에 서멀베이스(30)를 삽입한 상태에서 서멀베이스(30)의 내부에 볼 형상의 확관 수단을 삽입하여 서멀베이스(30) 중 체결부(82)가 위치한 부분의 직경을 확대시킴에 따라, 지지 기판(80)이 밀착, 고정될 수 있다.
또한 열 박음 방식에 의해, 지지 기판(80)을 가열하여 팽창시키거나, 서멀베이스(30)를 냉각하여 수축시키거나, 또는 이들 모두를 수행한 뒤, 지지 기판(30)의 체결부(82)에 서멀베이스(30)를 삽입하고 이들을 상온 환경에 두면, 팽창 또는 수축되었던 지지 기판(80) 또는 서멀베이스(30)가 원상태로 복원되면서 지지 기판(80)이 밀착, 고정될 수 있다.
한편, 도 6에 도시된 바와 같이, 지지 기판(80)이 생략되어 엘이디패키지(10) 자체가 서멀베이스(30)의 외주면에 설치될 수도 있다. 이와 같이 엘이디패키지(10)가 직접 서멀베이스(30)에 설치됨으로써, 열 전달 경로가 더욱 단축되어 방열 성능을 보다 향상시킬 수 있으며, 지지 기판(80)의 미사용으로 인해 제조 원가 역시 더욱 절감할 수 있게 된다.
제2커버(50)는 내부 부품의 보호와 더불어 효율적인 공기의 유동을 유도할 수 있다. 제2커버(50)는 광이 투과되도록 투명한 재질로 이루어질 수 있으며, 도 1 내지 도 3에 도시된 바와 같이, 서멀베이스(30) 및 엘이디패키지(10)를 커버하도록 제1커버(20)에 결합되며, 개구부(32)의 위치에 대응되도록 공기 유동홀(52)이 형성된다.
제2커버(50)는 엘이디패키지(10) 및 서멀베이스(30)를 커버하도록 엘이디 조명 장치(100)의 측면 및 하부를 감싸는 형태로 형성되어, 외부의 충격 및 오염으로부터 엘이디패키지(10) 및 서멀베이스(30)를 보호한다.
또한, 제2커버(50)의 하부에 형성된 공기 유동홀(52)은 서멀베이스(30)의 개구부(32)의 위치와 대응되도록 형성되어, 공기유동 통로(34)에서 상승 기류가 형성되면 곧바로 외부의 차가운 공기를 공기유동 통로(34) 내부로 안내하는 역할을 한다.
본 실시예의 경우 제2커버(50)에 의해 엘이디패키지(10)와 서멀베이스(30)가 모두 커버되는 구조에 대해 설명하고 있으나, 이와는 달리 제2커버(50)가 소형으로 제작되어 엘이디패키지(10)만을 커버하도록 서멀베이스(30)의 외주면에 설치될 수도 있음은 물론이다.
구체적으로, 본 실시예에 따른 엘이디 조명 장치(100)에서 제2커버(50)가 서멀베이스(30)에 결합되는 구성을 도 11 내지 도 13을 참조하여 설명한다.
도 11은 본 발명의 일 실시예에 따른 엘이디 조명 장치에서 제2커버가 서멀베이스에 결합된 상태를 나타낸 도면이다. 도 12는 본 발명의 일 실시예에 따른 엘이디 조명 장치에서 제2커버가 서멀베이스에 결합된 상태를 나타낸 분해 사시도이다. 도 13은 본 발명의 일 실시예에 따른 엘이디 조명 장치에서 제2커버가 서멀베이스에 결합된 경우 공기 유동을 이용한 방열을 설명하는 도면이다.
도 11 내지 도 13에 도시된 바와 같이, 본 실시예에 따른 엘이디 조명 장치(100)에서, 제2커버(50)는 엘이디패키지(10)를 커버하도록 서멀베이스(30)에 결합되며, 개구부(32)의 위치에 대응되도록 공기 유동홀(52)이 형성될 수 있다.
즉, 제2커버(50)는 서멀베이스(30)의 하단부에 결합되어 서멀베이스(30)의 최소한의 부분만을 커버할 수 있다. 이로 인해, 서멀베이스(30)의 최소한의 부분만을 커버하더라도 외부의 충격 및 오염으로부터 적절하게 엘이디패키지(10)를 보호할 수 있다.
이에 따라, 서멀베이스(30)는 상대적으로 많은 면적이 외기와 직접 접촉할 수 있으므로, 서멀베이스(30)를 통한 방열 효율을 더욱 높일 수 있다. 또한, 제2커버(50)의 탈착이 용이하여 파손 시 제2커버(50)를 용이하게 교체할 수 있는 등 본 실시예에 따른 엘이디 조명 장치(100)의 구조를 단순화하고 모듈화할 수 있다.
이 경우, 도 13에 도시된 바와 같이, 하우징(61)의 하단부에도 홀이 형성되어 공기 유동홀(52)로 유입된 공기가 전원부(60)를 효율적으로 방열시킬 수 있다. 또한, 도 13에 도시된 바와 같이, 엘이디패키지(10)가 제2커버(50)의 내부에 설치될 수도 있다.
여기서, 통기홀(22)은 서멀베이스(30)에 형성될 수 있다. 즉, 통기홀(22)이 제1커버(20)에 형성되지 않고, 서멀베이스(30) 중 제2커버(50)에 의해 커버되지 않은 부분에 형성될 수 있다. 이로 인해, 통기홀(22)이 제1커버(20)에 형성된 경우와 유사한 공기 유동 경로를 형성할 수 있으므로, 효율적인 방열이 이루어질 수 있다.
또한, 제2커버(50)의 일측은 공기 유동홀(52)이 개구부(32)에 삽입되도록 함입된 형상으로 형성될 수 있다. 즉, 제2커버(50)의 하단부 중 공기 유동홀(52)이 형성된 부분이 함입된 형상으로 형성되어, 제2커버(50)와 서멀베이스(30)의 결합 시 서멀베이스(30)의 개구부(32)에 제2커버(50)의 하단부 중 공기 유동홀(52)이 형성된 부분이 삽입될 수 있다.
이에 따라, 제2커버(50)와 서멀베이스(30)가 보다 견고하게 결합될 수 있고, 공기 유동 경로를 보다 안정적으로 확보할 수 있다.
상술한 바와 같이, 본 실시예에 따른 엘이디 조명 장치(100)는 서멀베이스(30)를 이용하여 엘이디패키지(10)에 필수적인 방열 성능을 확보하면서도 광을 고르게 확산시켜 눈부심이 없는 엘이디 조명을 구현할 수 있다.
다음으로, 도 7 내지 도 10을 참조하여, 본 발명의 다른 실시예에 따른 엘이디 조명 장치(100)에 대해 설명한다.
도 7은 본 발명의 다른 실시예에 따른 엘이디 조명 장치(100)를 나타낸 정면도이다. 도 8은 본 발명의 다른 실시예에 따른 엘이디 조명 장치(100)를 나타낸 분해 사시도이다. 도 9는 본 발명의 다른 실시예에 따른 엘이디 조명 장치(100)에서 공기 유동을 이용한 방열을 설명하는 도면이다.
본 실시예의 경우, 도 7 내지 도 9에 도시된 바와 같이 엘이디패키지(10), 제1커버(20), 서멀베이스(30), 제2커버(50), 전원부(60), 방열 부재(40), 리플렉터(70), 전기 연결부(90) 및 지지 기판(80)을 포함하는 엘이디 조명 장치(100)가 제시된다.
본 실시예에 따르면, 엘이디 조명 장치(100)의 중심축에 배치된 서멀베이스(30)를 이용하여 공기유동 통로(34)를 확보하고, 이러한 서멀베이스(30)의 외측에 엘이디패키지(10)를 배치함으로써, 엘이디 조명 장치(100)의 통기성을 최대한 확보하여 방열 성능을 보다 향상시킬 수 있다.
이와 같이 엘이디 조명 장치(100)의 중심축에 배치되는 서멀베이스(30)를 이용하여 높은 방열 성능을 확보할 수 있음에 따라, 종래 광원이 결합된 몸체의 외주면에 전체적으로 설치되는 히트 싱크에 비해 방열 구조의 제작을 위해 사용되는 알루미늄 등의 열전도성 재질의 양을 획기적으로 감소시킬 수 있으므로, 결과적으로 엘이디 조명 장치(100)의 제조 원가를 보다 절감할 수 있다.
또한 본 실시예에 따르면, 엘이디패키지(10)가 제1커버(20)의 하면에 결합되고, 서멀베이스(30)의 표면이 엘이디패키지(10)에서 발생되는 광의 적어도 일부를 반사시켜 확산시킬 수 있도록 반사면(31)으로 이루어짐으로써, 엘이디 조명 장치(100)로부터 발산되는 광의 방사면을 보다 확장시킬 수 있다.
이하, 도 7 내지 도 10을 참조하여 본 실시예에 따른 엘이디 조명 장치(100)의 각 구성에 대하여 보다 구체적으로 설명하도록 한다.
엘이디패키지(10)는 전기 에너지를 이용하여 광을 발산할 수 있으며, 패키지 기판 및 이에 실장되어 패키징된 엘이디 칩으로 구성될 수 있다. 도 8에 나타난 바와 같이, 본 실시예의 경우, 엘이디패키지(10)가 지지 기판(80)에 실장되고 지지 기판(80)은 제1커버(20)에 설치된다.
이러한 지지 기판(10)은 환형 구조로 형성되어 제1커버(20)의 하면에 결합될 수 있으며, 다수의 엘이디패키지(10)는 이러한 지지 기판(80)에 그 활성면이 수직 방향 하측을 향하도록 분산 배치된다.
제1커버(20)는 엘이디패키지(10)에서 발생된 열을 받아 직접 방출하거나, 후술할 방열 부재(40)로 열을 전달할 수 있다. 이를 위해, 엘이디패키지(10)는 제1커버(20) 하면의 가장자리 영역(21)에 열전달 가능하게 결합되며, 제1커버(20)는 알루미늄 등의 금속과 같이 열전도율이 우수한 재질로 이루어진다. 또한, 제1커버(20)에는 통기홀(22)이 형성되어, 제1커버(20)를 통과하는 공기의 유동에 의해 방열이 이루어질 수 있다.
도 7 내지 도 9에 도시된 바와 같이, 베이스(20)의 단부에는 전원부(60)와 전기적으로 연결되는 전기 연결부(90)가 결합될 수 있으며, 이러한 제1커버(20)는 내부에 공간부가 형성된 반구형 구조를 가질 수 있다.
이에 따라, 엘이디패키지(10)에서 발생된 열은 제1커버(20)의 구면을 따라 전달되며, 후술할 서멀베이스(30)의 공기유동 통로(34)를 따라 이동하는 공기는 제1커버(20)의 공간부로 유입된 후에 통기홀(22)을 통하여 외부로 배출되면서 제1커버(20)의 열을 외부로 방출하게 된다.
한편, 제1커버(20)의 구면에는 모든 방향으로 통기홀(22)이 형성되어 있으므로, 제1커버(20)의 주변에 횡방향으로 유동하는 공기 역시 제1커버(20)를 통과함으로써 방열 성능이 보다 향상될 수 있다.
서멀베이스(30)는 도 7 내지 도 9에 도시된 바와 같이 엘이디패키지(10)의 방열에 필요한 공기유동 통로(34)를 제공할 수 있다. 즉, 서멀베이스(30)의 일측에는 개구부(32)가 형성되며, 서멀베이스(30)의 타측은 제1커버(20)와 결합되며, 서멀베이스(30)의 내측에는 이들 개구부(32)와 통기홀(22)을 연결하는 공기유동 통로(34)가 형성될 수 있으므로, 이에 따라 개구부(32) 또는 통기홀(22)로 유입되는 공기는 공기유동 통로(34)를 따라 유동을 형성할 수 있게 된다.
도 9에 나타난 바와 같이, 서멀베이스(30)는 조명의 대상물을 향하여 개구부(32)가 형성된 속이 빈 원통형의 구조를 가진다. 그리고, 서멀베이스(30)는 제1커버(20)와 결합되는 타측 부분도 개방된 구조를 가짐으로써, 원통형 서멀베이스(30)의 내부에는 개구부(32)에서 전기 연결부(90)의 공간부로 연결되는 공기유동 통로(34)가 형성된다.
도 9에 나타난 바와 같이, 서멀베이스(30)의 개구부(32)를 통과하여 내부의 빈 공간인 공기유동 통로(34)로 유입된 공기는, 엘이디패키지(10)에 의해 가열된 제1커버(20)로부터 받은 열로 인하여 가열되어 자연적으로 상승하여 통기홀(22)로 배출된다.
그리고 이와 같이 공기유동 통로(34) 내부의 공기가 상승하면, 빈 공간을 채우기 위하여 서멀베이스(30)의 개구부(32)를 통하여 외부의 차가운 공기가 유입된다. 즉, 서멀베이스(30)의 개구부(32)를 통하여 외부의 차가운 공기가 유입되고, 유입되는 공기가 엘이디패키지(10)와 제1커버(20)에 의해 가열되어 배출되는 공기의 유동이 지속적으로 발생하게 된다.
이 경우, 방열 성능을 높이기 위하여, 서멀베이스(30)도 방열 수단으로 사용될 수 있다. 구체적으로, 본 실시예의 경우 서멀베이스(30)는 제1커버(20)와 유사하게 열전도율이 우수한 금속(예를 들어 알루미늄) 등의 재질로 이루어질 수 있다.
이에 따라, 공기유동 통로(34)를 따라 유동하는 공기는 서멀베이스(30)의 내벽과 접하여 열을 흡수한다. 즉, 서멀베이스(30)는 엘이디패키지(10) 및 제1커버(20)로부터 전달된 열을 그 내부에 흐르는 공기를 통하여 방출할 수 있다.
더불어, 방열 성능을 더욱 높일 수 있도록, 도 9에 도시된 바와 같이 서멀베이스(30) 내부의 공기유동 통로(34)에는 추가로 방열 부재(40)가 설치될 수도 있다. 방열 부재(40)는 제1커버(20)에 결합되어 제1커버(20)의 열을 흡수하고 흡수된 열을 공기유동 통로(34)를 따라 흐르는 공기로 방출하는 역할을 한다.
도 9에 도시된 바와 같이, 본 실시예에서는 방열 부재(40)로서 세관형으로 형성되어 작동 유체(42a)가 주입되는 진동세관형 히트파이프가 사용될 수 있다.
구체적으로, 본 실시예의 방열 부재(40)는 제1커버(20)에 결합되어 엘이디패키지(10)로부터 열을 전달받는 흡열부(40a) 및 흡열부(40a)에서 이격되어 흡수된 열을 방출하는 방열부(40b)를 구비하는 히트파이프 루프(44)가 반복적으로 배치되어 이루어질 수 있다.
즉, 복수의 히트파이프 루프(44)는 공기유동 통로(34) 내부 공간의 제1커버(20) 측 부분과 이로부터 하측으로 이격된 부분을 반복적으로 왕복하는 나선형 구조를 가질 수 있다. 이에 따라, 한정된 공간에서 방열에 필요한 표면적이 최대한 확보될 수 있으므로, 복수의 히트파이프 루프(44)의 나선 구조 사이의 공간을 통하여, 공기는 자유롭게 이동하면서 엘이디패키지(10)의 열을 흡수할 수 있다.
또한, 복수의 히트파이프 루프(44)는 서멀베이스(30)의 중심축을 중심으로 방사상으로 배치될 수 있다. 즉, 나선형 구조를 갖는 복수의 히트파이프 루프(44)가 환형으로 말아짐으로써 방열부(40b)가 방사상으로 배치될 수 있다. 다시 말해, 방열을 수행하는 방열부(40b)가 환형 구조의 중심축을 중심으로 방사상으로 배치된다. 따라서, 방열에 필요한 공기의 유동이 자유롭게 되어 보다 높은 효율의 방열이 이루어질 수 있다.
도 8에 나타난 바와 같이, 제1커버(20)의 내측에는 히트파이프 루프(44)를 이루는 세관(42)이 결합되는 결합홈(24)이 형성될 수 있다. 이에 따라, 히트파이프 루프(44)가 제1커버(20)에 견고하게 결합됨과 더불어, 제1커버(20)에서 히트파이프 루프(44)로 열이 전달되는 열전달 면적이 증가될 수 있다.
본 실시예의 경우, 복수의 히트파이프 루프(44)가 나선형 구조를 갖는 경우를 일례로 제시하였으나, 이에 한정되는 것은 아니며, 열을 흡수하는 흡열부(40a) 및 흡열부(40a)에서 이격되어 흡수된 열을 방출하는 방열부(40b)를 구비하는 복수의 세관(42)이 나란히 배치되는 구조 역시 본 발명의 권리범위에 포함됨은 물론이다.
본 실시예의 경우, 복수의 히트파이프 루프(44)는 작동 유체(42a)가 주입되는 진동세관형의 히트파이프 루프(44)일 수 있다. 진동세관형 히트파이프 루프(44)는 세관(42)의 내부에 작동 유체(42a)와 기포(42b)가 소정 비율로 주입된 후 세관(42) 내부가 외부로부터 밀폐되는 구조를 가진다.
이에 따라, 진동세관형 히트파이프 루프(44)는 기포(42b) 및 작동 유체(42a)의 부피팽창 및 응축에 의하여 열을 잠열 형태로 대량으로 수송하는 열전달 사이클을 가진다. 이에 따라, 히트파이프 루프(44)의 방열 성능이 극대화될 수 있다.
여기서, 히트파이프 루프(44)는 열전도도가 높은 구리, 알루미늄 등의 금속 소재로 이루어진 세관(42)을 포함할 수 있다. 이에 따라, 열을 빠른 속도로 전도 받음과 아울러 그 내부에 주입된 기포(42b)의 체적 변화를 빠르게 유발할 수 있다.
그리고 복수의 히트파이프 루프(44)는 서로 연통될 수 있다. 히트파이프 루프(44)의 연통 구조는 개루프(open loop)와 폐루프(close loop) 모두 가능하다. 또한, 복수의 히트파이프 루프(44)의 전부 또는 일부는 이웃하는 히트파이프 루프(44)와 연통될 수 있다. 이에 따라, 복수의 히트파이프 루프(44)는 설계상 필요에 따라 전체적으로 개루프 또는 폐루프 형상을 가질 수도 있다.
한편, 본 실시예에서는 통기성이 높은 방열 부재(40)를 이용하여 엘이디패키지(10)에 전력을 공급하는 전원부(60)를 추가로 방열시킬 수 있다.
본 실시예에서 방열 부재(40)에는 제1커버(20)의 중앙 영역을 개방시키는 통기부(45)가 형성되어 있으며, 전원부(60)는 통기부(45)의 내측에 배치되어 통기부(45)를 지나는 공기의 이동경로 상에 위치된다.
이에 따라, 전원부(60)는 방열 부재(40)를 통과하여 지나는 공기에 접촉하여 자연적으로 방열될 수 있다. 즉, 전원부(60) 주변의 통기부(45)에는 지속적인 상승하는 공기 흐름이 형성되므로, 이러한 공기의 흐름에 의해 전원부(60)를 방열시켜, 전원부(60)가 과열되어 성능이 저하되는 것을 방지할 수 있다.
상술한 바와 같이, 본 실시예의 서멀베이스(30)는 엘이디 조명 장치(100)의 내부로 공기를 유동시켜 통기성을 최대한 확보시킴에 따라 높은 방열 성능을 구현한다. 그리고 이와 같이 방열 구조를 서멀베이스(30)의 내측으로 모두 내장시킴으로써, 엘이디 조명 장치(100)의 외부 면이 방열 이외의 다양한 용도로 이용될 수 있다.
본 실시예의 경우 서멀베이스(30)에는 엘이디패키지(10)에서 발생되는 광의 적어도 일부를 반사시켜 확산시키는 반사면(31)이 형성될 수 있다. 즉, 서멀베이스(30)의 외부 면은 광을 확산시키는 반사판으로 이용될 수 있다.
구체적으로, 엘이디패키지(10)는 서멀베이스(30)의 외측에 배치되며, 서멀베이스(30)의 외측 면은 광을 반사시키는 반사면(31)으로 기능할 수 있으므로, 엘이디패키지(10)에서 발산된 광은 서멀베이스(30)의 반사면(31)을 통해 균일하게 확산될 수 있다. 이에 따라, 엘이디패키지(10)의 광이 일 방향으로 집중되어 눈부심이 발생되는 현상을 방지하고 원하는 정도로 광을 퍼짐을 조절할 수 있다.
서멀베이스(30)는 원통형으로 형성되며, 서멀베이스(30)의 외주면은 반사면(31)이 될 수 있도록 광을 반사하는 물질로 이루어진다. 이에 따라, 엘이디패키지(10)에서 발생된 광에서 일부는 엘이디패키지(10)에 인접한 서멀베이스(30)의 반사면(31)에 의해 반사되고, 반사된 광은 서멀베이스(30)에서 멀어지는 방향으로 반사되어 광이 넓게 확산될 수 있다.
이 경우, 서멀베이스(30)의 외주면이 반사면(31)이 되도록, 서멀베이스(30)는 광을 반사시키는 재질로 이루어지거나 서멀베이스(30)의 외주면에 반사 물질이 코팅될 수 있다.
또한, 서멀베이스(30)의 외주면은 조명에 필요한 광의 확산 정도에 따라 다양한 반사각을 가질 수 있다. 예를 들면, 서멀베이스(30)의 외주면이 곡면으로 이루어질 경우, 외주면의 곡률을 조절하여 반사각을 다양하게 조절할 수 있다.
본 실시예의 경우 서멀베이스(30)는 원형 단면을 가지며, 하부로 갈수록 직경이 감소하는 관 구조를 가지고 있으며, 이에 따라 제1커버(20) 하면의 가장자리 영역(21)에 하향 결합되는 엘이디패키지(10)로부터 발생되는 광은 서멀베이스(30)의 외주면을 통해 반사되어 확산될 수 있다.
또한, 서멀베이스(30)에서 반사된 광을 다시 반사시키는 리플렉터(70)를 추가로 구비하여 더욱 다양한 광의 확산 효과를 얻을 수 있다.
도 15는 본 발명의 다른 실시예에 따른 엘이디 조명 장치(100)에서 리플렉터(70)를 이용한 광의 확산을 설명하는 도면이다.
도 15에 도시된 바와 같이, 본 실시예의 경우 서멀베이스(30)의 둘레에 인접하여 배치되어, 엘이디패키지(10)에서 발생된 광이나 서멀베이스(30)에서 반사된 광을 반사시키는 리플렉터(70)를 추가로 구비할 수 있다.
리플렉터(70) 내측의 반사면(72)는 1차로 서멀베이스(30)의 반사면(31)에서 반사된 광을 다시 반사시킬 수 있으므로, 엘이디패키지(10) 및 서멀베이스(30)만을 이용하여 광을 비출 수 없는 음영 영역에도 광을 비출 수 있게 된다. 또는, 서멀베이스(30)에서 반사된 광이 지나치게 확산되는 것 또한 방지할 수 있다.
제2커버(50)는 내부 부품의 보호와 더불어 효율적인 공기의 유동을 유도할 수 있다. 제2커버(50)는 광이 투과되도록 투명한 재질로 이루어질 수 있으며, 도 7 내지 도 9에 도시된 바와 같이, 서멀베이스(30) 및 엘이디패키지(10)를 커버하도록 제1커버(20)에 결합되며, 개구부(32)의 위치에 대응되도록 공기 유동홀(52)이 형성된다.
제2커버(50)는 엘이디패키지(10) 및 서멀베이스(30)를 커버하도록 엘이디 조명 장치(100)의 측면 및 하부를 감싸는 형태로 형성되어, 외부의 충격 및 오염으로부터 엘이디패키지(10) 및 서멀베이스(30)를 보호한다.
또한, 제2커버(50)의 하부에 형성된 공기 유동홀(52)은 서멀베이스(30)의 개구부(32)의 위치와 대응되도록 형성되어, 공기유동 통로(34)에서 상승 기류가 형성되면 곧바로 외부의 차가운 공기를 공기유동 통로(34) 내부로 안내하는 역할을 한다.
상술한 바와 같이, 본 실시예에 따른 엘이디 조명 장치(100)는 서멀베이스(30)를 이용하여 엘이디패키지(10)에 필수적인 방열 성능을 확보하면서도 광을 고르게 확산시켜 눈부심이 없는 엘이디 조명을 구현할 수 있다.
이상, 본 발명의 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
본 발명에 따르면, 높은 방열 성능을 가지면서도 광을 공급하는 발광 면적을 넓게 확보할 수 있는 엘이디 조명 장치를 구현할 수 있다.

Claims (15)

  1. 통기홀이 형성된 제1커버;
    일측에 개구부가 형성되고 타측이 상기 제1커버와 결합되며, 내측에 상기 통기홀과 상기 개구부를 연결하는 공기유동 통로가 형성되어 상기 공기유동 통로 내부로 유입되는 공기의 유동을 가이드하는 서멀베이스;
    상기 서멀베이스의 외측에 배치되어, 상기 공기유동 통로를 통해 유동하는 상기 공기에 의해 방열되는 엘이디패키지;
    상기 제1커버에 결합되며 상기 엘이디패키지와 전기적으로 연결되는 전기 연결부; 및
    상기 엘이디패키지를 커버하는 제2커버를 포함하며,
    상기 서멀베이스에는 상기 엘이디패키지에서 발생되는 광의 적어도 일부를 반사시켜 확산시키는 반사면이 형성되는 것을 특징으로 하는 엘이디 조명 장치.
  2. 제1항에 있어서,
    상기 엘이디패키지를 상기 서멀베이스의 외측에 지지하는 지지 기판을 더 포함하는 엘이디 조명 장치.
  3. 제2항에 있어서,
    상기 지지 기판은, 억지 끼워맞춤(interference fitting), 확관(tube expanding) 및 열 박음(shrinkage fitting) 중 적어도 어느 하나의 방식에 의해 상기 서멀베이스의 외주면에 밀착되는 것을 특징으로 하는 엘이디 조명 장치.
  4. 제1항에 있어서,
    상기 엘이디패키지는 상기 서멀베이스의 외측에 경사지게 배치되는 것을 특징으로 하는 엘이디 조명 장치.
  5. 제4항에 있어서,
    상기 엘이디패키지는 상기 서멀베이스의 길이 방향을 따라 한 쌍으로 배치되며,
    상기 한 쌍의 엘이디패키지는 상기 한 쌍의 엘이디패키지에서 발생되는 광의 방사 각도가 증가되도록 서로 반대 방향으로 경사진 것을 특징으로 하는 엘이디 조명 장치.
  6. 제1항에 있어서,
    상기 서멀베이스의 상기 공기유동 통로에 위치되도록 적어도 일부가 상기 서멀베이스의 내측에 수용되며, 상기 엘이디패키지에 전력을 공급하는 전원부를 더 포함하는 엘이디 조명 장치.
  7. 제6항에 있어서,
    상기 전원부는,
    상기 제1커버에 결합되며 상기 공기의 유동을 위한 관통홀이 형성된 하우징; 및
    상기 하우징 내부에 수용되는 인쇄회로기판을 포함하는 것을 특징으로 하는 엘이디 조명 장치.
  8. 제1항에 있어서,
    상기 서멀베이스의 상기 공기유동 통로 상에 배치되며, 상기 엘이디패키지에서 발생되는 열을 흡수하여 상기 공기유동 통로를 통해 유동하는 상기 공기로 방출하는 방열 부재를 더 포함하는 엘이디 조명 장치.
  9. 제8항에 있어서,
    상기 방열 부재는,
    세관형으로 형성되어 작동 유체가 주입되며, 열을 흡수하는 흡열부 및 상기 흡열부에서 흡수된 열을 방출하는 방열부를 구비하는 복수의 히트파이프 루프를 포함하는 것을 특징으로 하는 엘이디 조명 장치.
  10. 제9항에 있어서,
    상기 복수의 히트파이프 루프는 상기 서멀베이스의 중심축을 중심으로 방사상으로 배치되는 것을 특징으로 하는 엘이디 조명 장치.
  11. 제1항에 있어서,
    상기 제2커버는 상기 서멀베이스 및 상기 엘이디패키지를 커버하도록 상기 제1커버에 결합되며, 상기 개구부의 위치에 대응되도록 공기 유동홀이 형성되는 것을 특징으로 하는 엘이디 조명 장치.
  12. 제1항에 있어서,
    상기 서멀베이스의 둘레에 인접하여 배치되며, 상기 엘이디패키지에서 발생되는 광 또는 상기 서멀베이스에서 반사되는 광을 반사시키는 리플렉터(reflector)를 더 포함하는 엘이디 조명 장치.
  13. 제1항에 있어서,
    상기 제2커버는 상기 엘이디패키지를 커버하도록 상기 서멀베이스에 결합되며, 상기 개구부의 위치에 대응되도록 공기 유동홀이 형성되는 것을 특징으로 하는 엘이디 조명 장치.
  14. 제13항에 있어서,
    상기 통기홀은 상기 서멀베이스에 형성되는 것을 특징으로 하는 엘이디 조명 장치.
  15. 제13항에 있어서,
    상기 제2커버의 일측은 상기 공기 유동홀이 상기 개구부에 삽입되도록 함입된 형상으로 형성되는 것을 특징으로 하는 엘이디 조명 장치.
PCT/KR2012/009309 2011-11-14 2012-11-07 엘이디 조명 장치 WO2013073792A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2012337592A AU2012337592A1 (en) 2011-11-14 2012-11-07 LED lighting device
CA2852827A CA2852827A1 (en) 2011-11-14 2012-11-07 Led lighting device
EP12850634.2A EP2781831A4 (en) 2011-11-14 2012-11-07 LED LIGHTING DEVICE
MX2014005825A MX2014005825A (es) 2011-11-14 2012-11-07 Dispositivo de iluminacion con led.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0118364 2011-11-14
KR20110118364 2011-11-14
KR1020120002034A KR101318432B1 (ko) 2011-11-14 2012-01-06 엘이디 조명 장치
KR10-2012-0002034 2012-01-06

Publications (1)

Publication Number Publication Date
WO2013073792A1 true WO2013073792A1 (ko) 2013-05-23

Family

ID=48663184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009309 WO2013073792A1 (ko) 2011-11-14 2012-11-07 엘이디 조명 장치

Country Status (6)

Country Link
EP (1) EP2781831A4 (ko)
KR (1) KR101318432B1 (ko)
AU (1) AU2012337592A1 (ko)
CA (1) CA2852827A1 (ko)
MX (1) MX2014005825A (ko)
WO (1) WO2013073792A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104295942A (zh) * 2013-07-15 2015-01-21 展晶科技(深圳)有限公司 Led灯泡
WO2015024846A1 (en) * 2013-08-22 2015-02-26 Koninklijke Philips N.V. Lighting device
CN105324603A (zh) * 2014-06-02 2016-02-10 冰管灯具株式会社 Led照明装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3320258B1 (en) 2015-07-09 2018-11-21 Philips Lighting Holding B.V. Lighting module and lighting device comprising the lighting module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090095903A (ko) 2008-03-06 2009-09-10 화우테크놀러지 주식회사 소형 무팬(無 Fan) 엘이디 조명기구
JP2010199049A (ja) * 2009-02-23 2010-09-09 ▲緑▼點高新科技股▲分▼有限公司 高性能発光体
KR101039073B1 (ko) * 2008-10-01 2011-06-08 주식회사 아모럭스 방열장치 및 이를 이용한 전구형 led 조명장치
KR20110087012A (ko) * 2010-01-25 2011-08-02 오명호 Led 조명기구
KR20110089737A (ko) * 2010-02-01 2011-08-09 주식회사 자온지 방열장치 및 이를 구비한 엘이디 조명장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296245A (ja) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Ledランプ
EP2245367A4 (en) * 2008-01-15 2015-08-12 Philip Premysler OMNIDIRECTIONAL LED BULB
EP2399070B1 (en) * 2009-02-17 2017-08-23 Epistar Corporation Led light bulbs for space lighting
CN201496804U (zh) * 2009-08-28 2010-06-02 黄桐 一种高效散热led灯泡
US9217542B2 (en) * 2009-10-20 2015-12-22 Cree, Inc. Heat sinks and lamp incorporating same
US8525395B2 (en) * 2010-02-05 2013-09-03 Litetronics International, Inc. Multi-component LED lamp
JP5327096B2 (ja) * 2010-02-23 2013-10-30 東芝ライテック株式会社 口金付ランプおよび照明器具
KR20110101789A (ko) * 2010-03-09 2011-09-16 주식회사 솔라코 컴퍼니 에어 파이프를 갖는 조명 커버 및 이를 이용한 엘이디 조명장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090095903A (ko) 2008-03-06 2009-09-10 화우테크놀러지 주식회사 소형 무팬(無 Fan) 엘이디 조명기구
KR101039073B1 (ko) * 2008-10-01 2011-06-08 주식회사 아모럭스 방열장치 및 이를 이용한 전구형 led 조명장치
JP2010199049A (ja) * 2009-02-23 2010-09-09 ▲緑▼點高新科技股▲分▼有限公司 高性能発光体
KR20110087012A (ko) * 2010-01-25 2011-08-02 오명호 Led 조명기구
KR20110089737A (ko) * 2010-02-01 2011-08-09 주식회사 자온지 방열장치 및 이를 구비한 엘이디 조명장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2781831A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104295942A (zh) * 2013-07-15 2015-01-21 展晶科技(深圳)有限公司 Led灯泡
WO2015024846A1 (en) * 2013-08-22 2015-02-26 Koninklijke Philips N.V. Lighting device
US9657934B2 (en) 2013-08-22 2017-05-23 Philips Lighting Holding B.V. Lighting device
CN105324603A (zh) * 2014-06-02 2016-02-10 冰管灯具株式会社 Led照明装置

Also Published As

Publication number Publication date
KR20130054096A (ko) 2013-05-24
AU2012337592A1 (en) 2014-05-01
EP2781831A1 (en) 2014-09-24
MX2014005825A (es) 2014-06-04
EP2781831A4 (en) 2015-04-22
KR101318432B1 (ko) 2013-10-16
CA2852827A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
WO2013022283A2 (en) Lighting device
WO2013032293A2 (ko) 엘이디 조명기구
WO2013073792A1 (ko) 엘이디 조명 장치
WO2013032276A1 (en) Lighting device
WO2017191954A1 (ko) 조명모듈 및 이를 구비한 조명 장치
WO2012018231A1 (ko) 광반도체 조명장치
WO2012161426A2 (ko) 임의배광이 가능한 엘이디 조명장치
WO2014073913A1 (en) Lighting apparatus having communication module
WO2010024583A2 (ko) Led 조명장치
WO2013042896A2 (ko) 조명 장치
EP2729733A2 (en) Lighting device
WO2017142349A1 (ko) 광학 렌즈, 및 이를 구비한 라이트 유닛 및 조명 장치
WO2013012217A2 (en) Lighting device
WO2014010778A1 (ko) 광 반도체 조명장치
WO2016200149A1 (ko) 조명 장치
US8277081B2 (en) Lamp using LED
WO2013002511A2 (ko) 엘이디 램프
WO2013089334A1 (ko) 조명 장치
WO2017043859A1 (ko) 발광 다이오드 패키지
WO2013032239A1 (en) Lighting device
EP2764292A2 (en) Lighting module
WO2011037370A2 (en) Heat-dissipating apparatus and illuminator using the same
WO2013027872A1 (ko) 히트 싱크 및 이를 구비하는 조명 장치
WO2017030341A1 (ko) 조명 장치
WO2016200151A1 (ko) 조명 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2852827

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012850634

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012850634

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012337592

Country of ref document: AU

Date of ref document: 20121107

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12014501040

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/005825

Country of ref document: MX