WO2024025322A1 - Autonomous mobile system for detecting hazardous substances in air - Google Patents

Autonomous mobile system for detecting hazardous substances in air Download PDF

Info

Publication number
WO2024025322A1
WO2024025322A1 PCT/KR2023/010783 KR2023010783W WO2024025322A1 WO 2024025322 A1 WO2024025322 A1 WO 2024025322A1 KR 2023010783 W KR2023010783 W KR 2023010783W WO 2024025322 A1 WO2024025322 A1 WO 2024025322A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
collection
air
sample
docking
Prior art date
Application number
PCT/KR2023/010783
Other languages
French (fr)
Korean (ko)
Inventor
신용범
조현민
최종민
Original Assignee
재단법인 바이오나노헬스가드연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230096355A external-priority patent/KR20240015028A/en
Application filed by 재단법인 바이오나노헬스가드연구단 filed Critical 재단법인 바이오나노헬스가드연구단
Publication of WO2024025322A1 publication Critical patent/WO2024025322A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots

Definitions

  • the present invention relates to an autonomously mobile system for detecting hazardous substances in the air. More specifically, the present invention relates to an autonomously mobile system for detecting harmful substances in the air that can monitor air conditions while moving in a wide area rather than being mounted in a fixed location.
  • the existing stationary air collection device when installed in a place with few people due to necessity, it must be installed in a place where electricity can be continuously supplied and the device can be stable. A location that satisfies these conditions must be selected. It is not easy and inevitably requires frequent intervention by administrators, which is inconvenient.
  • PCR analysis method is the most sensitive and accurate technology among existing technologies.
  • samples must be prepared in liquid form, and for this purpose, an impinger-type air collector is appropriate.
  • a representative air collector is one that uses the cyclone method, which requires a vacuum pump to create a fast air flow.
  • the vacuum pump used at this time has the disadvantage of requiring power consumption of hundreds of watts and is difficult to use in everyday environments other than laboratories because it is accompanied by vibration and noise due to the principle of creating a vacuum.
  • the present invention collects air by placing a device in a crowded place or a space where air collection is required through a mobile unit, and delivers the collected sample to a fixed holding unit to analyze the sample.
  • the purpose is to provide a portable airborne hazardous substance detection system.
  • the present invention includes a collection unit including a traveling unit that runs autonomously under the control of an MCU and a collection unit that collects samples in the air; and a station unit to which the collection unit is docked and which retrieves and analyzes the sample from the collection unit in the docked state.
  • the collection unit includes a collection tank that accommodates a liquid collection medium inside, a fan that introduces external air into the collection tank, and a collection tank so that the collection medium containing the sample in the air can be transferred to the station unit. It is characterized by having a port communicating with.
  • the collection unit further includes a traveling sensor that irradiates a laser toward the periphery of the traveling unit to generate distance information to the target the laser reaches, and a camera that generates image information about the environment around the traveling unit.
  • the MCU is characterized in that it controls autonomous driving of the driving unit using the distance information and the image information.
  • the station unit is a docking room surrounded by a housing at the bottom and open at the front so that the collection unit can enter and exit, disposed at the top of the docking room, and connected to the port to recover the sample from the collection tank.
  • a docking unit that receives the sample from the docking unit, a preprocessing unit that performs physical or chemical treatment on the sample, and an analysis unit that optically analyzes the sample processed by the preprocessing unit. do.
  • the station unit is characterized by being equipped with a fully automatic pipette for transferring and stirring the sample transferred to the pretreatment unit.
  • the docking unit and the port each have electrodes that are electrically connected to each other, and the collection unit is supplied with power for charging while docked with the station unit.
  • the present invention collects a large amount of air by moving the device to a crowded place or a space where air collection is required through a collection unit capable of autonomous movement, so it has the effect of efficiently collecting air despite using a noiseless fan. There is.
  • Figure 1 is a block diagram of an autonomous mobile airborne hazardous substance detection system according to a preferred embodiment of the present invention.
  • Figure 2 is a diagram schematically showing a station unit.
  • Figure 3 is a plan view of the station unit.
  • Figure 4 is a perspective view of the collection unit.
  • Figure 5 is a view showing the collection unit with the housing removed.
  • Figure 6 is a top view of the collection unit.
  • Figure 7 is a diagram showing a state in which the collection unit enters the docking room of the station unit.
  • Figures 8 and 9 are diagrams showing an example of the use of an autonomous mobile airborne hazardous substance detection system according to a preferred embodiment of the present invention.
  • Figures 10 and 11 are graphs and tables showing the results of comparative analysis of the collection efficiency of an autonomous mobile airborne hazardous substance detection system and a conventional fixed air collector according to a preferred embodiment of the present invention.
  • Figure 1 is a block diagram of an autonomous mobile airborne hazardous substance detection system according to a preferred embodiment of the present invention
  • Figure 2 is a diagram schematically showing a station unit
  • Figure 3 is a plan view of the station unit.
  • Figure 4 is a perspective view of the collection unit
  • Figure 5 is a diagram showing the collection unit with the housing removed
  • Figure 6 is a plan view of the collection unit
  • Figure 7 is a view showing the collection unit entering the docking room of the station unit. This is a drawing showing the state.
  • the autonomous mobile airborne hazardous substance detection system 10 includes a station unit 100 and a collection unit 200.
  • the station unit 100 is mounted at a specific location and maintains a fixed state, and the collection unit 200 is docked. In the docked state, the station unit 100 performs the function of recovering and analyzing samples from the collection unit 200.
  • the station unit 100 includes an MCU 110, a docking unit 120, a preprocessing unit 130, and an analysis unit 140.
  • the MCU 110 transmits and receives signals to and from the collection unit 100 and is provided in the station unit 100, such as the docking unit 120, the preprocessing unit 130, the fully automatic pipette 132, and the analysis unit 140. It performs the function of controlling things.
  • the lower part of the station unit 100 is provided with a docking room 104 surrounded by the housing 102 and open at the front so that the collection unit 200 can enter and exit, and the upper part of the docking room 104 is equipped with a docking part ( 120) is placed.
  • the docking unit 120 is connected to the port 236 provided in the collection unit 200 and performs the function of recovering the sample contained in the collection tank 234.
  • the docking unit 120 may be equipped with a tube (not shown) communicating with the port 236 and a peristaltic pump (not shown) for sucking the sample.
  • the docking unit 120 and the port 236 each have electrodes (not shown) that are electrically connected to each other, thereby supplying power for charging while the collection unit 200 is docked with the station unit 100. You can receive it.
  • the preprocessing unit 130 receives the sample from the docking unit 120 and performs physical or chemical processing on the sample for analysis.
  • a fully automatic pipette 132 is provided for dispensing, moving and stirring the sample transferred to the pretreatment unit 130 by the docking unit 120 of the station unit 100 into a container or tube provided in the pretreatment unit 130. You can.
  • the analysis unit 140 optically analyzes the sample processed by the preprocessing unit 130.
  • the collection unit 200 is not fixed in a limited place and moves autonomously to collect samples such as harmful substances in the air, and while docked at the station unit 100, the collected samples are stored in the station unit 100. It performs the function of transmitting to.
  • This collection unit 200 includes an MCU 210, a traveling unit 220, and a collection unit 230.
  • the MCU 210 communicates with the MCU 110 of the station unit 100 and serves to control the traveling unit 220 and the collecting unit 230.
  • the driving unit 220 is controlled by the MCU 210 and functions to move autonomously between the station unit 100 and a designated location within a predetermined space.
  • the traveling unit 220 is equipped with a wheel, a driving means for driving the wheel, and a battery for power supply.
  • the battery provided may be a lithium-ion battery.
  • the driving unit 220 has a driving sensor 222 that irradiates a laser toward the surroundings and generates distance information to the target the laser reaches, and a driving sensor 222 that generates image information about the environment around the driving part 220. Equipped with a camera 224, the MCU 210 controls autonomous driving of the driving unit 220 using distance information and image information.
  • the driving unit 220 may be further equipped with various sensors such as a tilt sensor in addition to the driving sensor 222 and the camera 224 for autonomous driving.
  • the driving sensor 222 and the camera 224 are placed on the front side of the housing 202 that forms the exterior of the driving unit 220.
  • the driving sensor 222 may be implemented as a LIDAR (Light Detection And Ranging) sensor.
  • the collection unit 230 includes a fan 232 that introduces external air into the collection tank, and is disposed below the fan 232, and contains a liquid collection medium therein to collect the air introduced by the fan 232. It is provided with a collection tank 234 that is provided to collide with the medium, and a port 236 that communicates with the collection tank 232 so that the collection medium containing the sample in the air can be transferred to the station unit 100.
  • a water level sensor may be installed in the collection tank 234 to ensure stable sample collection when the collection unit 200 is moved.
  • the port 236 is provided with an electrode electrically connected to the docking unit 120 as described above.
  • the MCU 110 of the station unit 100 receives a collection command signal manipulated by the user or receives a collection command signal automatically generated according to preset operation start conditions, and the MCU of the collection unit 200
  • the air collector operation signal is transmitted to (210).
  • the MCU 210 of the collection unit 200 which receives the air collector operation signal, controls the traveling unit 220 to move to a preset location or an arbitrary location.
  • the collection unit 200 is moved, and a collection unit operation signal is transmitted to the collection unit 230 to operate the fan 232 provided in the collection unit 230.
  • the collection unit 200 which moves to a predetermined location and performs air collection work, moves back to the station unit 100 and docks when a predetermined time has passed or preset conditions are met.
  • the collection unit 230 When the collection unit 230 is docked to the docking unit 120, the collection medium containing the sample in the collection tank 234 is moved to the pretreatment unit 130 by the peristaltic pump through the port 236, and the collection tank 234 ), the new collection medium required for collection is supplied through the port 236.
  • the collection unit 200 is docked with the station unit 100, the collection unit 200 is supplied with power for operation and charged.
  • the preprocessing unit 130 performs physical or chemical processing to analyze the transferred sample, and the analysis unit 140 performs optical analysis on the sample for which processing in the preprocessing unit 130 has been completed.
  • the analysis unit 140 transmits the analysis results for the sample to the MCU 110, and the MCU 110 displays the analysis results on a separate display or transmits them to an external server.
  • Figures 10 and 11 are graphs and tables showing the results of comparative analysis of the collection efficiency of an autonomous mobile airborne hazardous substance detection system and a conventional fixed air collector according to a preferred embodiment of the present invention.
  • the difference in collection efficiency between the fixed air collector and the mobile air collector such as the present invention should be within the error range.
  • bacteria E. coli
  • the existing fixed air collector and the mobile air device according to the present invention were mixed for 1 minute. Each collector was operated to collect harmful substances in the air.
  • the respective Cq values were 32.5 and 30.95 when air was captured in a fixed state and when it was captured while moving autonomously, and a greater amount of bacteria was collected when air was captured while moving through the mobile device of the present invention. could be confirmed.
  • the autonomously mobile airborne hazardous substance detection system 10 moves the device to a crowded place or a space requiring air collection through a collection unit 200 capable of autonomous movement. It is possible to collect air efficiently, and maintenance of the device is carried out by delivering a collection medium, etc. to the collection unit 200 through the mounted station unit 100 or by performing charging of the collection unit 200. It is very useful as it can facilitate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Food Science & Technology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention relates to an autonomous mobile system for detecting hazardous substances in the air, and comprises: a collection unit including a traveling part that autonomously travels under the control of an MCU, and a collection part for collecting a sample from the air; and a station unit in which the collection unit docks, and which recovers the sample from the collection part in a docked state and analyzes same. In the present invention, an autonomously-moving collection unit moves a device in a place crowded with people or a space requiring air collection so as to collect air, and thus can effectively collect air.

Description

자율이동형 공기 중 유해물질 검출 시스템Autonomous mobile airborne hazardous substance detection system
본 발명은 자율이동형 공기 중 유해물질 검출 시스템에 관한 것이다. 더욱 상세하게 본 발명은 일정한 장소에 거치되는 것이 아니라 넓은 장소를 이동하면서 공기의 상태를 모니터링할 수 있는 자율이동형 공기 중 유해물질 검출 시스템에 관한 것이다.The present invention relates to an autonomously mobile system for detecting hazardous substances in the air. More specifically, the present invention relates to an autonomously mobile system for detecting harmful substances in the air that can monitor air conditions while moving in a wide area rather than being mounted in a fixed location.
공기 중의 유해물질을 검출하여 공기의 질을 측정하기 위한 기존의 거치형 공기포집장치는 지정된 위치에 고정되어 공기를 포집하도록 구성된다. 그런데 이러한 종래의 장치들은 넓은 공간에 배치될 경우 충분한 성능을 발휘하기 위해 공기를 흡입하기 위한 팬이 커져야만 하고 이에 따라 소음이 증가하는 문제가 발생된다. 또한, 포집 장소가 고정되어 있기 때문에 넓은 공간을 소수의 장치로 커버할 수 없다는 한계가 있다.Existing stationary air capture devices for measuring air quality by detecting harmful substances in the air are fixed to a designated location and are configured to collect air. However, when these conventional devices are placed in a large space, the fan for sucking air must be larger in order to achieve sufficient performance, which causes the problem of increased noise. Additionally, because the collection location is fixed, there is a limitation in that a large space cannot be covered with a small number of devices.
예를 들어 공항과 같이 넓은 공간의 경우 터미널에 다양한 게이트들이 있고 비행기가 도착하게 되면 어떤 게이트에는 사람이 한순간에 밀집되는 경우가 있는 반면 다른 게이트는 한산한 상태가 된다. 이러한 경우 효율적인 공기포집 작업을 수행하기 위해서는 사람들이 붐비는 곳에 공기포집장치가 설치되어야 하지만, 기존의 거치형 공기포집장치는 상황과 장소에 따라 이동이 불가능하기 때문에 효율적인 공기포집이 불가능하다.For example, in the case of a large space such as an airport, there are various gates in the terminal, and when a plane arrives, some gates may be crowded with people at once, while other gates become deserted. In this case, in order to perform efficient air collection work, an air collection device must be installed in a crowded place, but existing stationary air capture devices cannot be moved depending on the situation or location, making efficient air collection impossible.
또한, 기존의 거치형 공기포집장치가 필요에 의해서 인적이 드문 곳에 장치가 설치될 경우, 지속적으로 전기를 공급받을 수 있고 기기가 안정될 수 있는 곳에 설치되어야 하는데 이와 같은 조건을 충족하는 장소를 선정하는 것이 쉽지 않고 부득이하게 관리자의 잦은 개입이 요구되는 불편함이 있다.In addition, when the existing stationary air collection device is installed in a place with few people due to necessity, it must be installed in a place where electricity can be continuously supplied and the device can be stable. A location that satisfies these conditions must be selected. It is not easy and inevitably requires frequent intervention by administrators, which is inconvenient.
한편, 포집된 유해물질의 분석의 경우 PCR 분석 방법이 현존하는 기술 중 가장 감도와 정확도가 높은 기술이다. PCR 분석을 위해서는 액상으로 시료가 준비되어야 하는데 이를 위해선 임핀저 방식의 공기포집기가 적절하다.Meanwhile, in the case of analysis of collected hazardous substances, PCR analysis method is the most sensitive and accurate technology among existing technologies. For PCR analysis, samples must be prepared in liquid form, and for this purpose, an impinger-type air collector is appropriate.
대표적인 공기포집기는 사이클론 방식을 이용한 공기포집기인데 이는 진공펌프를 이용하여 빠른 공기의 흐름을 만들어야 한다. 이때 사용되는 진공펌프는 수백와트의 전력소모가 필요하고 진공을 만드는 원리상 진동과 소음이 동반하기 때문에 실험실 이외의 일상환경에서는 사용이 어렵다는 단점이 있다.A representative air collector is one that uses the cyclone method, which requires a vacuum pump to create a fast air flow. The vacuum pump used at this time has the disadvantage of requiring power consumption of hundreds of watts and is difficult to use in everyday environments other than laboratories because it is accompanied by vibration and noise due to the principle of creating a vacuum.
따라서, 상기한 문제를 해소할 수 있는 새로운 방식의 공기 중 유해물질 검출 시스템의 개발이 요구되고 있는 실정이다.Therefore, there is a demand for the development of a new system for detecting harmful substances in the air that can solve the above problems.
상기한 문제를 해결하기 위해 본 발명은 이동형 유닛을 통해 사람이 밀집된 장소나 공기포집이 필요한 공간에 장치를 위치시켜 공기를 포집하고 포집된 시료를 고정된 거치 유닛에 전달하여 시료를 분석하도록 하는 자율이동형 공기 중 유해물질 검출 시스템를 제공하는 것을 목적으로 한다. In order to solve the above problem, the present invention collects air by placing a device in a crowded place or a space where air collection is required through a mobile unit, and delivers the collected sample to a fixed holding unit to analyze the sample. The purpose is to provide a portable airborne hazardous substance detection system.
상기한 목적을 달성하기 위해 본 발명은 MCU의 제어를 받아 자율주행하는 주행부와, 공기 중의 시료를 포집하는 포집부를 구비하는 포집유닛; 및 상기 포집유닛이 도킹되고, 도킹상태에서 상기 포집부로부터 상기 시료를 회수하여 분석하는 스테이션유닛을 포함하는 것을 특징으로 하는 자율이동형 공기 중 유해물질 검출 시스템를 제공한다.In order to achieve the above object, the present invention includes a collection unit including a traveling unit that runs autonomously under the control of an MCU and a collection unit that collects samples in the air; and a station unit to which the collection unit is docked and which retrieves and analyzes the sample from the collection unit in the docked state.
이때, 상기 포집부는 내부에 액상의 포집매체가 수용되는 포집수조, 외부 공기를 상기 포집수조로 유입시키는 팬, 및 공기 중의 시료가 인입된 상기 포집매체가 상기 스테이션유닛으로 이송될 수 있도록 상기 포집수조에 연통되는 포트를 구비하는 것을 특징으로 한다.At this time, the collection unit includes a collection tank that accommodates a liquid collection medium inside, a fan that introduces external air into the collection tank, and a collection tank so that the collection medium containing the sample in the air can be transferred to the station unit. It is characterized by having a port communicating with.
또한, 상기 포집유닛은 상기 주행부의 주변을 향하여 레이저를 조사하여 상기 레이저가 도달하는 대상까지의 거리정보를 생성하는 주행센서, 및 상기 주행부 주변의 환경에 대한 영상정보를 생성하는 카메라를 더 구비하며, 상기 MCU는 상기 거리정보 및 상기 영상정보를 이용하여 상기 주행부의 자율주행을 제어하는 것을 특징으로 한다.In addition, the collection unit further includes a traveling sensor that irradiates a laser toward the periphery of the traveling unit to generate distance information to the target the laser reaches, and a camera that generates image information about the environment around the traveling unit. The MCU is characterized in that it controls autonomous driving of the driving unit using the distance information and the image information.
또한, 상기 스테이션유닛은 하부에 하우징에 의해 둘러싸여지고 상기 포집유닛이 출입할 수 있도록 전방이 개방된 도킹룸, 상기 도킹룸의 상부에 배치되고, 상기 포트에 연결되어 상기 포집수조로부터 상기 시료를 회수하는 도킹부, 상기 도킹부로부터 상기 시료를 전달받고, 상기 시료에 대한 물리적 또는 화학적 처리를 수행하는 전처리부, 상기 전처리부에 의해 처리된 상기 시료를 광학적 방식으로 분석하는 분석부를 구비하는 것을 특징으로 한다.In addition, the station unit is a docking room surrounded by a housing at the bottom and open at the front so that the collection unit can enter and exit, disposed at the top of the docking room, and connected to the port to recover the sample from the collection tank. A docking unit that receives the sample from the docking unit, a preprocessing unit that performs physical or chemical treatment on the sample, and an analysis unit that optically analyzes the sample processed by the preprocessing unit. do.
또한, 상기 스테이션유닛은 상기 전처리부로 이송된 상기 시료를 이송 및 교반하는 전자동피펫을 구비하는 것을 특징으로 한다.In addition, the station unit is characterized by being equipped with a fully automatic pipette for transferring and stirring the sample transferred to the pretreatment unit.
또한, 상기 도킹부와 상기 포트는 전기적으로 상호 연결되는 전극을 각각 구비하고, 상기 포집유닛은 상기 스테이션유닛에 도킹한 상태에서 충전을 위한 전원을 공급받는 것을 특징으로 한다.In addition, the docking unit and the port each have electrodes that are electrically connected to each other, and the collection unit is supplied with power for charging while docked with the station unit.
본 발명은 자율이동이 가능한 포집유닛을 통해 사람이 밀집된 장소나 공기포집이 필요한 공간에 장치를 이동시켜서 많은 양의 공기를 포집하기 때문에 무소음 팬을 사용함에도 불구하고 효율적으로 공기를 포집할 수 있는 효과가 있다.The present invention collects a large amount of air by moving the device to a crowded place or a space where air collection is required through a collection unit capable of autonomous movement, so it has the effect of efficiently collecting air despite using a noiseless fan. There is.
또한, 거치된 스테이션 유닛을 통해 포집유닛으로 포집매체 등을 전달하거나, 포집유닛의 충전을 수행함으로써 기기의 유지보수를 용이하게 할 수 있는 장점이 있다.In addition, there is an advantage in that maintenance of the device can be facilitated by delivering a collection medium to the collection unit through a mounted station unit or performing charging of the collection unit.
도 1은 본 발명의 바람직한 실시예에 따른 자율이동형 공기 중 유해물질 검출 시스템의 블럭도이다.Figure 1 is a block diagram of an autonomous mobile airborne hazardous substance detection system according to a preferred embodiment of the present invention.
도 2는 스테이션 유닛을 개략적으로 도시한 도면이다.Figure 2 is a diagram schematically showing a station unit.
도 3은 스테이션 유닛의 평면도이다.Figure 3 is a plan view of the station unit.
도 4는 포집 유닛의 사시도이다.Figure 4 is a perspective view of the collection unit.
도 5는 하우징이 제거된 상태의 포집 유닛을 도시한 도면이다.Figure 5 is a view showing the collection unit with the housing removed.
도 6은 포집 유닛의 평면도이다.Figure 6 is a top view of the collection unit.
도 7은 스테이션 유닛의 도킹룸에 포집 유닛이 진입한 상태를 도시한 도면이다.Figure 7 is a diagram showing a state in which the collection unit enters the docking room of the station unit.
도 8 및 도 9는 본 발명의 바람직한 실시예에 따른 자율이동형 공기 중 유해물질 검출 시스템의 사용예를 도시한 도면이다.Figures 8 and 9 are diagrams showing an example of the use of an autonomous mobile airborne hazardous substance detection system according to a preferred embodiment of the present invention.
도 10 및 도 11은 본 발명의 바람직한 실시예에 따른 자율이동형 공기 중 유해물질 검출 시스템과 기존의 고정식 공기포집기의 포집효율을 비교분석한 결과를 나타낸 그래프 및 표이다.Figures 10 and 11 are graphs and tables showing the results of comparative analysis of the collection efficiency of an autonomous mobile airborne hazardous substance detection system and a conventional fixed air collector according to a preferred embodiment of the present invention.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 상세하게 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 첨가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 실시될 수 있음은 물론이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. First, when adding reference signs to components in each drawing, it should be noted that the same components are given the same reference numerals as much as possible even if they are shown in different drawings. Additionally, if it is judged that it may obscure the gist of the present invention, the detailed description will be omitted. In addition, preferred embodiments of the present invention will be described below, but of course, the technical idea of the present invention is not limited or limited thereto and can be practiced by those skilled in the art.
도 1은 본 발명의 바람직한 실시예에 따른 자율이동형 공기 중 유해물질 검출 시스템의 블럭도이고, 도 2는 스테이션 유닛을 개략적으로 도시한 도면이며, 도 3은 스테이션 유닛의 평면도이다. 또한, 도 4는 포집 유닛의 사시도이고, 도 5는 하우징이 제거된 상태의 포집 유닛을 도시한 도면이며, 도 6은 포집 유닛의 평면도, 도 7은 스테이션 유닛의 도킹룸에 포집 유닛이 진입한 상태를 도시한 도면이다.Figure 1 is a block diagram of an autonomous mobile airborne hazardous substance detection system according to a preferred embodiment of the present invention, Figure 2 is a diagram schematically showing a station unit, and Figure 3 is a plan view of the station unit. In addition, Figure 4 is a perspective view of the collection unit, Figure 5 is a diagram showing the collection unit with the housing removed, Figure 6 is a plan view of the collection unit, and Figure 7 is a view showing the collection unit entering the docking room of the station unit. This is a drawing showing the state.
이하, 도 1 내지 도 7을 참고하여 본 발명의 바람직한 실시예에 따른 자율이동형 공기 중 유해물질 검출 시스템(10)를 설명한다.Hereinafter, an autonomous mobile airborne hazardous substance detection system 10 according to a preferred embodiment of the present invention will be described with reference to FIGS. 1 to 7.
본 발명의 바람직한 실시예에 따른 자율이동형 공기 중 유해물질 검출 시스템(10)는 스테이션유닛(100)과 포집유닛(200)을 포함한다.The autonomous mobile airborne hazardous substance detection system 10 according to a preferred embodiment of the present invention includes a station unit 100 and a collection unit 200.
스테이션유닛(100)은 특정 장소에 거치되어 고정된 상태를 유지하며, 포집유닛(200)이 도킹되고 도킹상태에서 포집유닛(200)으로부터 시료를 회수하여 분석하는 기능을 수행한다.The station unit 100 is mounted at a specific location and maintains a fixed state, and the collection unit 200 is docked. In the docked state, the station unit 100 performs the function of recovering and analyzing samples from the collection unit 200.
구체적으로 스테이션유닛(100)은 MCU(110), 도킹부(120), 전처리부(130) 및 분석부(140)를 포함한다.Specifically, the station unit 100 includes an MCU 110, a docking unit 120, a preprocessing unit 130, and an analysis unit 140.
MCU(110)는 포집유닛(100)과의 신호를 송수신하고 도킹부(120), 전처리부(130), 전자동피펫(132) 및 분석부(140)와 같이 스테이션유닛(100)에 구비되는 구성들을 제어하는 기능을 수행한다.The MCU 110 transmits and receives signals to and from the collection unit 100 and is provided in the station unit 100, such as the docking unit 120, the preprocessing unit 130, the fully automatic pipette 132, and the analysis unit 140. It performs the function of controlling things.
스테이션유닛(100)의 하부에는 하우징(102)에 의해 둘러싸여지고 포집유닛(200)이 출입할 수 있도록 전방이 개방된 도킹룸(104)이 구비되며, 도킹룸(104)의 상부에는 도킹부(120)가 배치된다.The lower part of the station unit 100 is provided with a docking room 104 surrounded by the housing 102 and open at the front so that the collection unit 200 can enter and exit, and the upper part of the docking room 104 is equipped with a docking part ( 120) is placed.
도킹부(120)는 포집유닛(200)에 구비되는 포트(236)에 연결되어 포집수조(234)에 수용된 시료를 회수하는 기능을 수행한다. 이를 위해 도킹부(120)는 포트(236)에 연통되는 튜브(미도시) 및 시료를 흡입하기 위한 연동펌프(미도시)를 구비할 수 있다.The docking unit 120 is connected to the port 236 provided in the collection unit 200 and performs the function of recovering the sample contained in the collection tank 234. For this purpose, the docking unit 120 may be equipped with a tube (not shown) communicating with the port 236 and a peristaltic pump (not shown) for sucking the sample.
또한, 도킹부(120)와 포트(236)는 전기적으로 상호 연결되는 전극(미도시)을 각각 구비함으로써, 포집유닛(200)이 스테이션유닛(100)에 도킹한 상태에서 충전을 위한 전원을 공급받도록 할 수 있다.In addition, the docking unit 120 and the port 236 each have electrodes (not shown) that are electrically connected to each other, thereby supplying power for charging while the collection unit 200 is docked with the station unit 100. You can receive it.
전처리부(130)는 도킹부(120)로부터 시료를 전달받고, 시료의 분석을 위해 시료에 대한 물리적 또는 화학적 처리를 수행한다.The preprocessing unit 130 receives the sample from the docking unit 120 and performs physical or chemical processing on the sample for analysis.
이때, 스테이션유닛(100) 도킹부(120)에 의해 전처리부(130)로 이송된 시료를 전처리부(130)에 구비된 용기 또는 튜브에 분주, 이동 및 교반하는 전자동피펫(132)을 구비할 수 있다.At this time, a fully automatic pipette 132 is provided for dispensing, moving and stirring the sample transferred to the pretreatment unit 130 by the docking unit 120 of the station unit 100 into a container or tube provided in the pretreatment unit 130. You can.
분석부(140)는 전처리부(130)에 의해 처리된 시료를 광학적 방식으로 분석한다.The analysis unit 140 optically analyzes the sample processed by the preprocessing unit 130.
한편, 포집유닛(200)은 한정된 장소에 고정되지 않고 자율주행에 의해 이동하면서 공기 중의 유해물질 등과 같은 시료를 포집하며, 스테이션유닛(100)에 도킹한 상태에서 포집된 시료를 스테이션유닛(100)으로 전달하는 기능을 수행한다.Meanwhile, the collection unit 200 is not fixed in a limited place and moves autonomously to collect samples such as harmful substances in the air, and while docked at the station unit 100, the collected samples are stored in the station unit 100. It performs the function of transmitting to.
이러한 포집유닛(200)은 MCU(210), 주행부(220) 및 포집부(230)를 구비한다.This collection unit 200 includes an MCU 210, a traveling unit 220, and a collection unit 230.
구체적으로 MCU(210)는 스테이션유닛(100)의 MCU(110)와 통신하며 주행부(220) 및 포집부(230)를 제어하는 역할을 한다.Specifically, the MCU 210 communicates with the MCU 110 of the station unit 100 and serves to control the traveling unit 220 and the collecting unit 230.
주행부(220)는 MCU(210)의 제어를 받아 스테이션유닛(100)과 소정 공간 안에서 지정된 장소 사이를 자율주행 방식으로 이동하는 역할을 한다.The driving unit 220 is controlled by the MCU 210 and functions to move autonomously between the station unit 100 and a designated location within a predetermined space.
이를 위해 주행부(220)는 휠과 휠을 구동시키기 위한 구동수단 및 전력공급을 위한 배터리를 구비한다. 이때, 구비되는 배터리는 리튬이온 배터리일 수 있다.To this end, the traveling unit 220 is equipped with a wheel, a driving means for driving the wheel, and a battery for power supply. At this time, the battery provided may be a lithium-ion battery.
또한, 주행부(220)는 주변을 향하여 레이저를 조사하여 상기 레이저가 도달하는 대상까지의 거리정보를 생성하는 주행센서(222), 및 주행부(220) 주변의 환경에 대한 영상정보를 생성하는 카메라(224)를 구비하며, MCU(210)는 거리정보 및 영상정보를 이용하여 주행부(220)의 자율주행을 제어한다. In addition, the driving unit 220 has a driving sensor 222 that irradiates a laser toward the surroundings and generates distance information to the target the laser reaches, and a driving sensor 222 that generates image information about the environment around the driving part 220. Equipped with a camera 224, the MCU 210 controls autonomous driving of the driving unit 220 using distance information and image information.
주행부(220)는 자율주행을 위해 주행센서(222)와 카메라(224) 외에 기울기센서 등의 다양한 센서를 더 구비할 수 있다.The driving unit 220 may be further equipped with various sensors such as a tilt sensor in addition to the driving sensor 222 and the camera 224 for autonomous driving.
바람직하게 이러한 주행센서(222) 및 카메라(224)는 주행부(220)의 외관을 형성하는 하우징(202)의 전방측에 배치한다. 또한, 주행센서(222)는 LIDAR(Light Detection And Ranging) 센서로 구현될 수 있다.Preferably, the driving sensor 222 and the camera 224 are placed on the front side of the housing 202 that forms the exterior of the driving unit 220. Additionally, the driving sensor 222 may be implemented as a LIDAR (Light Detection And Ranging) sensor.
포집부(230)는 외부 공기를 상기 포집수조로 유입시키는 팬(232)과, 팬(232)의 하부에 배치되고 내부에 액상의 포집매체가 수용되어 팬(232)에 의해 유입된 공기가 포집매체에 충돌하도록 구비되는 포집수조(234), 및 공기 중의 시료가 인입된 포집매체가 스테이션유닛(100)으로 이송될 수 있도록 포집수조(232)에 연통되는 포트(236)를 구비한다.The collection unit 230 includes a fan 232 that introduces external air into the collection tank, and is disposed below the fan 232, and contains a liquid collection medium therein to collect the air introduced by the fan 232. It is provided with a collection tank 234 that is provided to collide with the medium, and a port 236 that communicates with the collection tank 232 so that the collection medium containing the sample in the air can be transferred to the station unit 100.
이때, 포집수조(234)에는 포집유닛(200)의 이동시 안정된 시료의 포집을 위해 수위센서가 설치될 수 있다.At this time, a water level sensor may be installed in the collection tank 234 to ensure stable sample collection when the collection unit 200 is moved.
또한, 포트(236)에는 상술한 바와 같이 도킹부(120)에 전기적으로 연결되는 전극이 구비된다.Additionally, the port 236 is provided with an electrode electrically connected to the docking unit 120 as described above.
이하, 도 1을 참고하여 본 발명의 바람직한 실시예에 따른 자율이동형 공기 중 유해물질 검출 시스템(10)의 작동과정을 설명한다.Hereinafter, the operation process of the autonomous mobile airborne hazardous substance detection system 10 according to a preferred embodiment of the present invention will be described with reference to FIG. 1.
먼저, 스테이션유닛(100)의 MCU(110)는 사용자의 조작에 의한 포집명령신호를 입력받거나, 미리 설정된 작동 개시조건에 의해 자동으로 생성된 포집명령신호를 입력받고, 포집유닛(200)의 MCU(210)로 공기포집기 가동신호를 송출한다.First, the MCU 110 of the station unit 100 receives a collection command signal manipulated by the user or receives a collection command signal automatically generated according to preset operation start conditions, and the MCU of the collection unit 200 The air collector operation signal is transmitted to (210).
포집유닛(200)이 스테이션유닛(100)에 도킹되어 있는 상태에서 공기포집기 가동신호를 수신한 포집유닛(200)의 MCU(210)는 주행부(220)를 제어하여 미리 설정된 장소 또는 임의의 장소로 포집유닛(200)을 이동시키고, 포집부(230)로 포집부 가동신호를 송출하여 포집부(230)에 구비된 팬(232)을 작동시킨다.While the collection unit 200 is docked in the station unit 100, the MCU 210 of the collection unit 200, which receives the air collector operation signal, controls the traveling unit 220 to move to a preset location or an arbitrary location. The collection unit 200 is moved, and a collection unit operation signal is transmitted to the collection unit 230 to operate the fan 232 provided in the collection unit 230.
소정의 장소로 이동하여 공기포집 작업을 수행하는 포집유닛(200)은 미리 정해진 시간이 지나거나, 미리 설정된 조건이 충족되면 다시 스테이션유닛(100)으로 이동하여 도킹한다.The collection unit 200, which moves to a predetermined location and performs air collection work, moves back to the station unit 100 and docks when a predetermined time has passed or preset conditions are met.
도킹부(120)에 포집부(230)가 도킹되면 포트(236)를 통해 포집수조(234) 내의 시료가 포함된 포집매체가 연동펌프에 의해 전처리부(130)로 이동되고, 포집수조(234)에는 포집에 필요한 새로운 포집매체가 포트(236)를 통해 공급된다.When the collection unit 230 is docked to the docking unit 120, the collection medium containing the sample in the collection tank 234 is moved to the pretreatment unit 130 by the peristaltic pump through the port 236, and the collection tank 234 ), the new collection medium required for collection is supplied through the port 236.
또한, 포집유닛(200)이 스테이션유닛(100)에 도킹된 상태에서 포집유닛(200)은 작동을 위한 전력을 공급받아 충전된다.In addition, while the collection unit 200 is docked with the station unit 100, the collection unit 200 is supplied with power for operation and charged.
이후, 전처리부(130)에서는 이송된 시료를 분석하기 위한 물리적 또는 화학적 처리가 수행되며, 분석부(140)는 전처리부(130)에서의 처리가 완료된 시료에 대해 광학적 분석을 수행한다.Thereafter, the preprocessing unit 130 performs physical or chemical processing to analyze the transferred sample, and the analysis unit 140 performs optical analysis on the sample for which processing in the preprocessing unit 130 has been completed.
분석부(140)는 시료에 대한 분석결과를 MCU(110)로 전송하며, MCU(110)는 분석결과를 별도의 디스플레이에 표시하거나 외부서버로 전송한다.The analysis unit 140 transmits the analysis results for the sample to the MCU 110, and the MCU 110 displays the analysis results on a separate display or transmits them to an external server.
도 10 및 도 11은 본 발명의 바람직한 실시예에 따른 자율이동형 공기 중 유해물질 검출 시스템과 기존의 고정식 공기포집기의 포집효율을 비교분석한 결과를 나타낸 그래프 및 표이다.Figures 10 and 11 are graphs and tables showing the results of comparative analysis of the collection efficiency of an autonomous mobile airborne hazardous substance detection system and a conventional fixed air collector according to a preferred embodiment of the present invention.
이론적으로 제한된 공간에서 고정식 공기포집기의 유량이 충분할 경우 고정식 공기포집기와 본 발명과 같은 이동식 공기포집기의 포집효율의 차이는 오차 범위 내이어야 한다.In theory, if the flow rate of the fixed air collector is sufficient in a limited space, the difference in collection efficiency between the fixed air collector and the mobile air collector such as the present invention should be within the error range.
기존의 고정식 장치와 본 발명의 이동식 장치간의 공기 포집효율을 비교하기 위해 8㎥의 제한된 공간에 박테리아(E. coli)를 5분간 분산시키고, 1분간 기존의 고정식 공기포집기와 본 발명에 따른 이동식 공기 포집기를 각각 작동시켜 공기 중의 유해물질을 포집하였다.To compare the air collection efficiency between the existing fixed device and the mobile device of the present invention, bacteria (E. coli) were dispersed in a limited space of 8 ㎥ for 5 minutes, and the existing fixed air collector and the mobile air device according to the present invention were mixed for 1 minute. Each collector was operated to collect harmful substances in the air.
이후, 고정식 및 이동식 장치 각각에서 포집된 용액을 모아 농축 및 전처리 후 qPCR 분석을 수행하였다.Afterwards, the solutions collected from each of the fixed and mobile devices were collected, concentrated and pretreated, and then qPCR analysis was performed.
고정 상태에서 공기를 포집할 때와 자율이동하면서 포집했을 때의 각 Cq값은 32.5와 30.95로 나타났으며, 본 발명의 이동식 장치를 통해 이동하면서 공기를 포집했을때 더 많은 양의 박테리아가 포집되는 것을 확인할 수 있었다.The respective Cq values were 32.5 and 30.95 when air was captured in a fixed state and when it was captured while moving autonomously, and a greater amount of bacteria was collected when air was captured while moving through the mobile device of the present invention. could be confirmed.
상술한 바와 같이 본 발명의 바람직한 실시예에 따른 자율이동형 공기 중 유해물질 검출 시스템(10)는 자율이동이 가능한 포집유닛(200)을 통해 사람이 밀집된 장소나 공기포집이 필요한 공간에 장치를 이동시켜 공기를 포집할 수 있어 효율적으로 공기를 포집할 수 있고, 거치된 스테이션 유닛(100)을 통해 포집유닛(200)으로 포집매체 등을 전달하거나 포집유닛(200)의 충전을 수행함으로써 기기의 유지보수를 용이하게 할 수 있어 매우 유용하다.As described above, the autonomously mobile airborne hazardous substance detection system 10 according to a preferred embodiment of the present invention moves the device to a crowded place or a space requiring air collection through a collection unit 200 capable of autonomous movement. It is possible to collect air efficiently, and maintenance of the device is carried out by delivering a collection medium, etc. to the collection unit 200 through the mounted station unit 100 or by performing charging of the collection unit 200. It is very useful as it can facilitate.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 청구 범위에 의해서 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative explanation of the technical idea of the present invention, and various modifications, changes, and substitutions can be made by those skilled in the art without departing from the essential characteristics of the present invention. will be. Accordingly, the embodiments disclosed in the present invention and the attached drawings are not intended to limit the technical idea of the present invention, but are for illustrative purposes, and the scope of the technical idea of the present invention is not limited by these embodiments and the attached drawings. The scope of protection of the present invention should be interpreted in accordance with the claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of rights of the present invention.

Claims (6)

  1. MCU의 제어를 받아 자율주행하는 주행부와, 공기 중의 시료를 포집하는 포집부를 구비하는 포집유닛; 및A collection unit including a driving unit that runs autonomously under the control of an MCU and a collection unit that collects samples in the air; and
    상기 포집유닛이 도킹되고, 도킹상태에서 상기 포집부로부터 상기 시료를 회수하여 분석하는 스테이션유닛을 포함하는 것을 특징으로 하는 자율이동형 공기 중 유해물질 검출 시스템.An autonomous mobile system for detecting harmful substances in the air, wherein the collection unit is docked and includes a station unit that retrieves and analyzes the sample from the collection unit in the docked state.
  2. 제 1 항에 있어서,According to claim 1,
    상기 포집부는The collection unit
    내부에 액상의 포집매체가 수용되는 포집수조,A collection tank containing a liquid collection medium inside,
    외부 공기를 상기 포집수조로 유입시키는 팬, 및A fan that introduces outside air into the collection tank, and
    공기 중의 시료가 인입된 상기 포집매체가 상기 스테이션유닛으로 이송될 수 있도록 상기 포집수조에 연통되는 포트를 구비하는 것을 특징으로 하는 자율이동형 공기 중 유해물질 검출 시스템.An autonomous mobile airborne hazardous substance detection system, characterized in that it has a port communicating with the collection tank so that the collection medium containing the sample in the air can be transferred to the station unit.
  3. 제 1 항에 있어서,According to claim 1,
    상기 포집유닛은The collection unit is
    상기 주행부의 주변을 향하여 레이저를 조사하여 상기 레이저가 도달하는 대상까지의 거리정보를 생성하는 주행센서, 및A driving sensor that irradiates a laser toward the surroundings of the driving unit and generates distance information to the target reached by the laser, and
    상기 주행부 전방의 환경에 대한 영상정보를 생성하는 카메라를 더 구비하며,Further comprising a camera that generates image information about the environment in front of the driving unit,
    상기 MCU는 상기 거리정보 및 상기 영상정보를 이용하여 상기 주행부의 자율주행을 제어하는 것을 특징으로 하는 자율이동형 공기 중 유해물질 검출 시스템.The MCU is an autonomously mobile airborne hazardous substance detection system, characterized in that the MCU controls autonomous driving of the driving unit using the distance information and the image information.
  4. 제 2 항에 있어서,According to claim 2,
    상기 스테이션유닛은The station unit is
    하부에 하우징에 의해 둘러싸여지고 상기 포집유닛이 출입할 수 있도록 전방이 개방된 도킹룸,A docking room surrounded by a housing at the bottom and open at the front to allow the collection unit to enter and exit,
    상기 도킹룸의 상부에 배치되고, 상기 포트에 연결되어 상기 포집수조로부터 상기 시료를 회수하는 도킹부,A docking unit disposed at the top of the docking room and connected to the port to recover the sample from the collection tank,
    상기 도킹부로부터 상기 시료를 전달받고, 상기 시료에 대한 물리적 또는 화학적 처리를 수행하는 전처리부,A preprocessing unit that receives the sample from the docking unit and performs physical or chemical treatment on the sample;
    상기 전처리부에 의해 처리된 상기 시료를 광학적 방식으로 분석하는 분석부를 구비하는 것을 특징으로 하는 자율이동형 공기 중 유해물질 검출 시스템.An autonomous mobile hazardous substance detection system in the air, characterized by having an analysis unit that optically analyzes the sample processed by the preprocessing unit.
  5. 제 4 항에 있어서,According to claim 4,
    상기 스테이션유닛은The station unit is
    상기 전처리부로 이송된 상기 시료를 이송 및 교반하는 전자동피펫을 더 구비하는 것을 특징으로 하는 자율이동형 공기 중 유해물질 검출 시스템.An autonomously mobile system for detecting hazardous substances in the air, further comprising a fully automatic pipette for transporting and stirring the sample transferred to the pretreatment unit.
  6. 제 4 항에 있어서,According to claim 4,
    상기 도킹부와 상기 포트는 전기적으로 상호 연결되는 전극을 각각 구비하고, The docking portion and the port each have electrodes electrically connected to each other,
    상기 포집유닛은 상기 스테이션유닛에 도킹한 상태에서 충전을 위한 전원을 공급받는 것을 특징으로 하는 자율이동형 공기 중 유해물질 검출 시스템.An autonomous mobile airborne hazardous substance detection system, characterized in that the collection unit receives power for charging while docked with the station unit.
PCT/KR2023/010783 2022-07-26 2023-07-26 Autonomous mobile system for detecting hazardous substances in air WO2024025322A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220092363 2022-07-26
KR10-2022-0092363 2022-07-26
KR1020230096355A KR20240015028A (en) 2022-07-26 2023-07-24 Autonomous mobile system for detection of harmful substances in air
KR10-2023-0096355 2023-07-24

Publications (1)

Publication Number Publication Date
WO2024025322A1 true WO2024025322A1 (en) 2024-02-01

Family

ID=89706948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010783 WO2024025322A1 (en) 2022-07-26 2023-07-26 Autonomous mobile system for detecting hazardous substances in air

Country Status (1)

Country Link
WO (1) WO2024025322A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190079820A (en) * 2017-12-28 2019-07-08 (주)켄텍 Dust Collecting Device for Particulate Matter Analyzer and Particulate Matter Analyzer having the Same
US20200163505A1 (en) * 2017-09-28 2020-05-28 Panasonic Intellectual Property Management Co., Ltd. Detection device
KR102236211B1 (en) * 2020-08-07 2021-04-05 주식회사 우리아이오 Apparatus for measuring harmful gas and dust in the atmosphere using an unmanned moving body and improved gas analysis method using the same
KR20210038764A (en) * 2019-09-30 2021-04-08 한화디펜스 주식회사 Air foil bearing
KR102294469B1 (en) * 2021-01-22 2021-08-25 연세대학교 산학협력단 Apparatus for gently sampling bio-particles in air

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200163505A1 (en) * 2017-09-28 2020-05-28 Panasonic Intellectual Property Management Co., Ltd. Detection device
KR20190079820A (en) * 2017-12-28 2019-07-08 (주)켄텍 Dust Collecting Device for Particulate Matter Analyzer and Particulate Matter Analyzer having the Same
KR20210038764A (en) * 2019-09-30 2021-04-08 한화디펜스 주식회사 Air foil bearing
KR102236211B1 (en) * 2020-08-07 2021-04-05 주식회사 우리아이오 Apparatus for measuring harmful gas and dust in the atmosphere using an unmanned moving body and improved gas analysis method using the same
KR102294469B1 (en) * 2021-01-22 2021-08-25 연세대학교 산학협력단 Apparatus for gently sampling bio-particles in air

Similar Documents

Publication Publication Date Title
CN212195683U (en) Power distribution inspection robot
CN101377547B (en) Nuclear pollution detecting method based on remote operating mobile robot
WO2017084198A1 (en) Unmanned aerial vehicle for detecting environmental toxic gas
WO2013100228A1 (en) Unmanned boat for managing water resources
WO2013100229A1 (en) System for operating an unmanned boat for water resource management and method for operating same
WO2015130000A1 (en) Airborne microbial measurement apparatus and method
CN102914583A (en) Portable electrochemistry biochip detector system
WO2024025322A1 (en) Autonomous mobile system for detecting hazardous substances in air
WO2015130002A1 (en) Airborne microbial measurement apparatus and measurement method
CN106979889A (en) Construction material intensity detecting device
CN113502221A (en) Air microorganism detection robot
CN203772877U (en) Full-automatic chemiluminescence enzyme immunoassay analyzer
CN113916618A (en) Online virus monitoring and early warning device
US7503229B2 (en) Biobriefcase electrostatic aerosol collector
CN115884739A (en) Examination device system
KR20240015028A (en) Autonomous mobile system for detection of harmful substances in air
CN210307840U (en) Pig farm is with patrolling and examining robot
WO2017007278A1 (en) Automated cell cultivation device, and method for operating cultivation device
CN211528148U (en) A patrol and examine robot for operating room granularity detects
CN205941527U (en) Water quality detection device
CN112405564A (en) Automatic inspection robot for vehicle base comprehensive pipe gallery
CN209290687U (en) A kind of environmental monitoring UAV system
CN203465281U (en) Bio-safety hematology analyzer
CN220645370U (en) Full-automatic nucleic acid workstation
CN214381419U (en) Automatic inspection device for 5G network optimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846980

Country of ref document: EP

Kind code of ref document: A1