WO2024024887A1 - 電解コンデンサの製造に用いられる分散体、電解コンデンサの製造方法、および電解コンデンサ - Google Patents

電解コンデンサの製造に用いられる分散体、電解コンデンサの製造方法、および電解コンデンサ Download PDF

Info

Publication number
WO2024024887A1
WO2024024887A1 PCT/JP2023/027569 JP2023027569W WO2024024887A1 WO 2024024887 A1 WO2024024887 A1 WO 2024024887A1 JP 2023027569 W JP2023027569 W JP 2023027569W WO 2024024887 A1 WO2024024887 A1 WO 2024024887A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
dielectric layer
insulating
electrolytic capacitor
conductive polymer
Prior art date
Application number
PCT/JP2023/027569
Other languages
English (en)
French (fr)
Inventor
由起也 下山
智之 田代
瞬平 松下
穂南 児島
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024024887A1 publication Critical patent/WO2024024887A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present disclosure relates to a dispersion used for manufacturing an electrolytic capacitor, a method for manufacturing an electrolytic capacitor, and an electrolytic capacitor.
  • An electrolytic capacitor that includes a wound body of an anode foil, a separator, and a cathode foil is known as an electrolytic capacitor.
  • An example of such an electrolytic capacitor includes a conductive polymer layer disposed in a winding.
  • the conductive polymer layer is formed, for example, by impregnating the wound body with a dispersion containing a conductive polymer.
  • electrolytic capacitors including conductive polymer layers and methods for manufacturing the same.
  • Patent Document 1 Patent No. 50627378 describes an organic sulfonate consisting of a polystyrene sulfonate and an aromatic sulfonate having a number average molecular weight of 10,000 to 300,000, Pyrrole or its derivative is oxidatively polymerized using an organic sulfonate in which the aromatic sulfonic acid moiety of the aromatic sulfonate is 20 to 50% by mass based on the polystyrene sulfonic acid moiety, and a persulfate.
  • a dispersion containing a synthesized conductive polymer and having a total concentration of 1% by mass of the conductive polymer and that derived from the added pH improver has a pH of 1.5 to 4. 5.” is disclosed.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2007-27767 discloses a dispersion a) containing at least particles b) of a predetermined conductive polymer, a binder c), and a dispersant d) in a capacitor body containing at least a solid electrolyte. and at least partially removing the dispersant d) and/or curing the binder c) to form a conductive polymeric outer layer.
  • Patent Document 3 Japanese Patent No. 6951159 describes, "an anode made of a valve metal, a dielectric layer made of an oxide of the valve metal, and a conductive material provided on the opposite side of the dielectric layer to the anode. and a solid electrolyte layer formed between the dielectric layer and the cathode, the solid electrolyte layer comprising a conductive composite containing a ⁇ -conjugated conductive polymer and a polyanion, and a binder. and the binder contains styrene-butadiene rubber.''
  • Patent No. 5062738 Japanese Patent Application Publication No. 2007-27767 Patent No. 6951159
  • the conductive polymer may adhere to the defective portion of the dielectric layer on the surface of the anode foil, or the anode and cathode portions may become disconnected.
  • the performance of the capacitor could deteriorate if it got too close. For example, if a conductive polymer adheres to a defective portion of a dielectric layer on the surface of an anode foil, a decrease in withstand voltage and an increase in leakage current may occur.
  • one of the objectives of the present disclosure is to provide an electrolytic capacitor with stable and high performance, a dispersion liquid for manufacturing the same, and a manufacturing method.
  • a first aspect of the present disclosure relates to a dispersion used in manufacturing an electrolytic capacitor.
  • the dispersion includes a conductive polymer, an insulating substance, and a dispersion medium, and the insulating substance includes at least one selected from the group consisting of insulating fibers and insulating particles.
  • the manufacturing method is a method for manufacturing an electrolytic capacitor including an anode portion and a cathode portion each having a dielectric layer formed on the surface thereof, wherein a conductive polymer and an insulating material are provided between the dielectric layer and the cathode portion.
  • the insulating material includes at least one selected from the group consisting of insulating fibers and insulating particles.
  • the electrolytic capacitor is an electrolytic capacitor, and includes an anode portion having a dielectric layer formed on its surface, a cathode portion, and a conductive polymer and an insulating material disposed between the dielectric layer and the cathode portion.
  • the insulating material includes at least one selected from the group consisting of insulating fibers and insulating particles.
  • FIG. 1 is a side view schematically showing an electrolytic capacitor according to an embodiment of the present disclosure.
  • FIG. 1 is an exploded perspective view schematically showing a capacitor element according to an embodiment of the present disclosure.
  • the dispersion according to this embodiment is used for manufacturing electrolytic capacitors.
  • the dispersion according to this embodiment may be referred to as a "dispersion (D1)" below.
  • the dispersion (D1) contains a conductive polymer, an insulating substance, and a dispersion medium.
  • the insulating substance includes at least one selected from the group consisting of insulating fibers and insulating particles.
  • the insulating substance may be hereinafter referred to as "insulating substance (I)".
  • the dispersion (D1) contains the insulating substance (I). Therefore, by forming a conductive polymer layer using the dispersion (D1), the conductive polymer may adhere to the defective portion of the dielectric layer on the surface of the anode foil, or the anode and cathode may become too close to each other. As a result, a decrease in withstand voltage and an increase in leakage current of the electrolytic capacitor can be suppressed. Therefore, by using the dispersion (D1), it is possible to obtain an electrolytic capacitor with stable and high performance. Examples of the constituent elements of the dispersion (D1) will be described below.
  • the insulating substance (I) contains at least one selected from the group consisting of insulating fibers and insulating particles.
  • the insulating substance (I) may be composed only of insulating fibers, may be composed only of insulating particles, or may contain both.
  • the insulating substance (I) preferably contains insulating fibers from the viewpoint of dispersibility in the dispersion (D1).
  • the insulating fibers used as the insulating substance (I) may include fibers containing at least one substance selected from the group consisting of cellulose, rayon, aramid, polyester, polyimide, and nylon; It may also be a fiber made of seed material. By using these insulating fibers, the dispersibility in the dispersion (D1) can be improved, and a decrease in the withstand voltage of the electrolytic capacitor can be particularly suppressed. Alternatively, insulating fibers other than these may be used.
  • the average diameter of the insulating fibers may be 0.1 ⁇ m or more, 1 ⁇ m or more, or 10 ⁇ m or more, or 100 ⁇ m or less, or 50 ⁇ m or less.
  • the cross section of the insulating fiber may be approximately a perfect circle, or may have another shape (for example, an ellipse).
  • the diameter of the fiber means the equivalent circle diameter.
  • the average fiber length of the insulating fibers may be 100 ⁇ m or more.
  • the upper limit of the average fiber length is not particularly limited, but may be, for example, 5000 ⁇ m or less.
  • the average fiber length is determined by arithmetic averaging the lengths of 30 arbitrarily selected fibers.
  • the insulating particles used as the insulating substance (I) are selected from the group consisting of polyolefin, polyester, polytetrafluoroethylene, and ceramics (insulating ceramics) from the viewpoint of suppressing a decrease in withstand voltage of the electrolytic capacitor.
  • the particles may include particles containing at least one kind of substance, or may be particles made of the at least one kind of substance. Alternatively, insulating particles other than these may be used.
  • the average particle diameter of the insulating particles may be 0.1 ⁇ m or more, 10 ⁇ m or more, or 20 ⁇ m or more, or 100 ⁇ m or less, or 50 ⁇ m or less.
  • the average particle size is the median diameter (D50) at which the cumulative volume is 50% in a volume-based particle size distribution. The median diameter is determined using a laser diffraction/scattering particle size distribution analyzer.
  • the shape of the insulating particles is not particularly limited, and may be spherical (including ellipsoidal or the like), scale-like, needle-like, or lattice-like. Alternatively, the shape of the insulating particles may not be particularly determined.
  • Insulating fibers and insulating particles are commercially available in various materials and shapes. Commercially available insulating fibers and/or insulating particles may be used as the insulating substance (I). Alternatively, insulating fibers and/or insulating particles manufactured by known methods may be used.
  • the content Ci (mass%) of the insulating substance (I) in the dispersion (D1) may be 0.1 mass% or more, or 1.0 mass% or more, and 5.0 mass% or less, or It may be 3.0% by mass or less.
  • the content may be 1.0% by mass or more, the effects of the present disclosure can be enhanced.
  • the ratio Ci/Cc between the content Ci (mass%) and the content Cc (mass%) of the conductive polymer in the dispersion (D1) may be 0.1 or more, or 0.5 or more. , 2.0 or less, or 1.0 or less.
  • the ratio Ci/Cc By setting the ratio Ci/Cc to 0.5 or more, the effects of the present disclosure can be enhanced.
  • the ratio Ci/Cc By setting the ratio Ci/Cc to 1.0 or less, it is possible to suppress a decrease in the conductivity of the conductive polymer layer.
  • the dispersion medium is a medium in which the conductive polymer is dispersed.
  • the dispersion medium contains water.
  • the content of water in the dispersion medium may be 50% by mass or more, 70% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the content may be 100% by mass. That is, the dispersion medium may be water.
  • the dispersion medium may contain an organic solvent other than water. Note that the additive (A) is not included in the dispersion medium.
  • the conductive polymer is not particularly limited, and any conductive polymer that can be used in electrolytic capacitors may be used.
  • As the conductive polymer a known conductive polymer used as an electrolyte of an electrolytic capacitor may be used.
  • Examples of conductive polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, and derivatives thereof.
  • the derivatives include polymers having a basic skeleton of polypyrrole, polythiophene, polyfuran, polyaniline, and polyacetylene.
  • derivatives of polythiophene include poly(3,4-ethylenedioxythiophene) and the like.
  • These conductive polymers may be used alone or in combination.
  • the conductive polymer may be a copolymer of two or more types of monomers.
  • the weight average molecular weight of the conductive polymer is not particularly limited, and may be in the range of 1,000 to 100,000, for example.
  • a preferred example of the conductive polymer is poly(3,4-ethylenedioxythiophene) (PEDOT).
  • the conductive polymer may be doped with a dopant. From the viewpoint of suppressing dedoping from the conductive polymer, it is preferable to use a polymer dopant as the dopant.
  • polymeric dopants include polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), polyisoprenesulfonic acid, Contains polyacrylic acid, etc. These may be used alone or in combination of two or more. At least a portion of these may be added in the form of a salt.
  • a preferred example of the dopant is polystyrene sulfonic acid (PSS).
  • the conductive polymer is poly(3,4-ethylenedioxythiophene) and the dopant is polystyrene sulfonic acid.
  • the dopant may be a dopant containing an acidic group, or may be a polymer dopant containing an acidic group.
  • acidic groups include sulfonic acid groups, carboxyl groups, and the like.
  • the polymer dopant containing an acidic group is a polymer in which at least some of the structural units contain an acidic group. Examples of such polymeric dopants include those described above.
  • the weight average molecular weight of the dopant is not particularly limited. From the viewpoint of facilitating the formation of a homogeneous conductive polymer layer, the weight average molecular weight of the dopant may be in the range of 1,000 to 100,000.
  • the pH of the dispersion (D1) is preferably less than 7.0, preferably 6.0 or less or 5.0 or less, in order to suppress dedoping of the dopant. It may be.
  • the pH of the dispersion (D1) may be 1.0 or more, 2.0 or more, or 3.0 or more.
  • the conductive polymer may be present in the dispersion (D1) in the form of particles.
  • the average particle diameter (D50) of the conductive polymer particles may be 10 ⁇ m or more, 20 ⁇ m or more, or 100 ⁇ m or less.
  • the content of the conductive polymer in the dispersion (D1) may be 0.5% by mass or more, or 1.0% by mass or more, and 7.0% by mass or less, 5.0% by mass or less, or It may be 3.0% by mass or less.
  • the content may be in the range of 0.5 to 7.0% by weight, or in the range of 1.0 to 5.0% by weight. In either of these ranges, the upper limit may be 3.0% by mass or 2.0% by mass.
  • the content is in the range of 1.0 to 5.0% by mass because the physical properties of the dispersion (D1) and its stability over time are excellent, and the ESR and cost of the electrolytic capacitor are well balanced. (For example, in the range of 1.0 to 3.0% by mass).
  • the mass of the dopant contained in the dispersion (D1) is not particularly limited, and may be in the range of 0.1 to 5 times (for example, in the range of 0.5 to 3 times) the mass of the conductive polymer contained in the dispersion (D1). ).
  • the dispersion (D1) may further contain an additive containing a hydroxy group, and the dispersion medium may contain water.
  • the additive may be hereinafter referred to as "additive (A)".
  • the ratio Mh/Mt of the total formula weight Mh of hydroxyl groups contained in the additive (A) and the molecular weight Mt of the additive may be 0.001 or more.
  • ethylene glycol HO-CH 2 -CH 2 -OH
  • the weight average molecular weight is used for the molecular weight of the additive (A).
  • the conductive polymer (for example, conductive polymer particles) and the insulating substance (I) tend to aggregate.
  • aggregation of both can be suppressed. Therefore, by forming a conductive polymer layer using the dispersion (D1) to which the additive (A) is added, a conductive polymer layer in which the insulating substance (I) is highly dispersible can be formed.
  • the ratio Mh/Mt may be 0.03 or more, or 0.07 or more, or 0.9 or less. By setting the ratio Mh/Mt to 0.03 or more, the effect of the additive (A) can be sufficiently obtained.
  • the molecular weight of the additive (A) is preferably 500 or less. By setting the molecular weight to 500 or less, the dispersibility in the dispersion (D1) can be improved. As a result, the additive (A) tends to adhere to the defective portions of the dielectric layer.
  • the lower limit of the molecular weight is not particularly limited, but may be 44 or more, 80 or more, or 150 or more.
  • the molecular weight may be 500 or less, 400 or less, 200 or less, or 120 or less.
  • the number of hydroxy groups contained in the additive (A) may be one or more or two or more, and may be six or less or three or less. From the viewpoint of repairability in the defective portion of the dielectric layer, the number of hydroxy groups is preferably 3 or less.
  • Examples of the additive (A) include polyols.
  • polyol means an organic compound containing two or more hydroxy groups.
  • examples of polyols include glycols, glycerins, sugar alcohols, and the like.
  • the polyol may be a hydrocarbon compound substituted with two or more hydroxy groups (eg, an aliphatic hydrocarbon substituted with two or more hydroxy groups).
  • the additive (A) is preferably a compound that dissolves in water.
  • the additive (A) may be an organic compound having 3 or less hydroxy groups (for example, a lower alcohol having a valence of 3 or less).
  • the molecular weight of the organic compound may be 500 or less.
  • glycols examples include alkylene glycol (ethylene glycol, propylene glycol, etc.), diethylene glycol, triethylene glycol, polyalkylene glycol (e.g. polyethylene glycol), polyoxyethylene polyoxypropylene glycol (ethylene oxide/propylene oxide copolymer). etc. are included.
  • glycerins examples include glycerin and polyglycerin.
  • sugar alcohols include mannitol, xylitol, sorbitol, erythritol, pentaerythritol, and the like.
  • the additive (A) may be at least one selected from the group consisting of glycols, glycerins, and sugar alcohols.
  • the additive (A) may be at least one selected from the group consisting of ethylene glycol, polyethylene glycol, diethylene glycol, triethylene glycol, glycerin, polyglycerin, erythritol, xylitol, sorbitol, and mannitol.
  • a preferred example of the additive (A) is ethylene glycol.
  • the ratio Ca/Ci between the content Ca (mass%) of the additive (A) in the dispersion (D1) and the content Ci (mass%) of the insulating substance (I) in the dispersion (D1) is 0. It may be greater than or equal to .1, or greater than or equal to 1.0, and may be less than or equal to 8.0, or less than or equal to 4.0.
  • the method for producing the dispersion (D1) is not particularly limited.
  • the dispersion (D1) can be produced by dispersing and dissolving the components of the dispersion (D1) in a dispersion medium.
  • the dispersion (D1) can be produced by adding the components of the dispersion (D1) to a dispersion medium and stirring the mixture.
  • the manufacturing method according to this embodiment is a method for manufacturing an electrolytic capacitor including an anode portion and a cathode portion each having a dielectric layer formed on the surface thereof.
  • This manufacturing method can be used to manufacture both multilayer electrolytic capacitors and sintered electrolytic capacitors.
  • a capacitor element of a multilayer electrolytic capacitor includes a laminate of at least one sheet-shaped anode section, at least one sheet-shaped cathode section, and at least one separator.
  • the laminate may be a laminate formed by laminating them in one direction.
  • the electrolytic capacitor may include multiple capacitor elements.
  • the laminate may be a wound body obtained by winding a sheet-like anode part, a sheet-like cathode part, and a separator.
  • a sintered body of a metal containing a valve metal or a metal compound containing a valve metal can be used for the anode portion of a sintered electrolytic capacitor. Examples of the components of the electrolytic capacitor will be described later.
  • This manufacturing method may be carried out using the above-mentioned dispersion (D1). Since the matters explained regarding the dispersion (D1) can be applied to this manufacturing method, duplicate explanations may be omitted.
  • This manufacturing method includes a step (X) of arranging a conductive polymer and an insulating material between the dielectric layer formed on the surface of the anode part and the cathode part.
  • the insulating substance is the above-mentioned insulating substance (I).
  • the insulating substance (I) contains at least one selected from the group consisting of insulating fibers and insulating particles. According to step (X), it is possible to prevent the conductive polymer from adhering to the defective portion of the dielectric layer on the surface of the anode foil, and to prevent the anode portion and the cathode portion from coming too close to each other. Therefore, according to this manufacturing method, an electrolytic capacitor with stable and high performance can be manufactured.
  • step (X) it is possible to form a layer containing a conductive polymer between the dielectric layer and the cathode part.
  • a layer containing a conductive polymer may be hereinafter referred to as a "conductive polymer layer.”
  • Step (X) may be performed using a first dispersion containing a conductive polymer, an insulating substance (I), and a dispersion medium.
  • the first dispersion is the above-mentioned dispersion (D1).
  • the dispersion (D1) is applied to at least one member (object to be coated) selected from the group consisting of a dielectric layer formed on the surface of the anode part and a cathode part, and the dispersion (D1) is dried. It may also include a step of.
  • the step (X) includes applying the dispersion (D1) to at least one member (object to be coated) selected from the group consisting of a dielectric layer formed on the surface of the anode part, a cathode part, and a separator. It may also include a drying step.
  • the method of arranging the conductive polymer and the insulating substance (I) in step (X) is not particularly limited.
  • the dispersion (D1) may be applied to an object and dried.
  • the coating method is not particularly limited, and any known method may be used.
  • the coating method may be a method using a coater or a method of spraying the dispersion (D1).
  • the object to be coated may be immersed in the dispersion (D1).
  • the dispersion (D1) may be dried by removing at least a portion of the dispersion medium by heating. For example, heating may be performed at a temperature of 100°C or higher (for example, 120°C or higher or 140°C or higher).
  • heating temperature is performed at a temperature that does not affect components such as the conductive polymer, for example, at a temperature of 160° C. or lower.
  • heating time may be determined by taking into consideration the amount of evaporation of the dispersion medium. Drying may be performed under reduced pressure.
  • Step (X) is to coat the dielectric layer formed on the surface of the anode part with the dispersion (D1) and dry it to form a conductive polymer and an insulating substance (I) on the surface of the dielectric layer.
  • the method may also include a step (a) of attaching.
  • the insulating material (I) can be easily placed in the defective portion of the dielectric layer.
  • step (a) may be performed by applying the dispersion (D1) to the anode part before forming the laminated body and drying it.
  • step (a) may be performed by forming a laminate, impregnating the laminate with the dispersion (D1), and then drying it.
  • the dispersion (D1) must be dried after coating (for example, impregnating) the dispersion (D1) on the anode part (sintered body) on which the dielectric layer is formed.
  • the electrolytic capacitor may further include a separator disposed between the dielectric layer formed on the surface of the anode portion and the cathode portion.
  • step (X) may include step (X1) and step (X2) in this order.
  • a conductive polymer is applied to at least one element by coating and drying the dispersion (D1) on at least one element selected from the group consisting of a dielectric layer, a cathode part, and a separator. This is a process of attaching an insulating material and an insulating material.
  • Step (X2) is a step of laminating an anode part, a separator, and a cathode part to form a laminate.
  • step (X1) it is preferable to apply the dispersion (D1) to at least the dielectric layer and dry it. Thereby, the insulating substance (I) can be placed in the defective portion of the dielectric layer, and deterioration in the performance of the capacitor due to the defect in the dielectric layer can be suppressed.
  • the manufacturing method of the present embodiment may further include a step (Z) of impregnating the laminate with a liquid component (hereinafter sometimes referred to as "liquid component (L)") after step (X). Examples of the liquid component (L) will be described later.
  • step (Y1) and step (Y2) after step (X) and before step (Z).
  • step (Y1) and step (Y2) may be collectively referred to as “step (Y).”
  • Step (Y1) is a step of impregnating the laminate with a treatment liquid containing water and an organic compound containing two or more hydroxy groups.
  • the organic compound and treatment liquid may be hereinafter referred to as “organic compound (C)” and “treatment liquid (S).”
  • Step (Y2) is a step of evaporating at least a portion of the water in the treatment liquid (S).
  • step (Y) it is possible to arrange the organic compound (C) in the conductive polymer layer. This makes it easier for the liquid component (L) to be impregnated into the laminate in step (Z).
  • step (Y1) the method of impregnating the laminate with the treatment liquid (S) is not limited.
  • the laminate may be immersed in the treatment liquid (S).
  • step (Y2) the step of evaporating at least a portion of the water in the treatment liquid (S) is not limited. Step (Y2) may be performed under the conditions exemplified for drying the dispersion (D1).
  • Examples of the organic compound (C) include polyols.
  • Examples of polyols include the compounds listed as examples of the polyol of additive (A).
  • the water content in the treatment liquid (S) may be 40% by mass or more, 60% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the content may be 99% by mass or less, 95% by mass or less, 90% by mass or less, or 80% by mass or less.
  • the content of the organic compound (C) in the treatment liquid (S) may be 1.0% by mass or more, 5.0% by mass or more, 10% by mass or more, or 20% by mass or more.
  • the content may be 60% by mass or less, 40% by mass or less, 20% by mass or less, or 10% by mass or less.
  • Step (X) may include step (b1) and step (b2) in this order.
  • the second dispersion (D2) containing the insulating substance (I) is applied to the dielectric layer formed on the surface of the anode part and dried, thereby insulating the surface of the dielectric layer. This is the step of attaching the sexual substance (I).
  • the third dispersion (D3) containing the conductive polymer is coated on the dielectric layer to which the insulating substance (I) is attached, and dried. This is a process in which a conductive polymer is deposited on the dielectric layer on which the dielectric layer is deposited.
  • the dispersion (D2) is a dispersion obtained by removing the conductive polymer from the dispersion exemplified as the dispersion (D1).
  • the dispersion (D3) is a dispersion containing a conductive polymer.
  • the dispersion (D3) may be the dispersion exemplified as the dispersion (D1), or a dispersion obtained by removing the insulating substance (I) from the dispersion exemplified as the dispersion (D1). good.
  • the manufacturing method may include a step of forming a conductive polymer layer using the fourth dispersion (D4).
  • the dispersion (D4) is a dispersion obtained by removing the insulating substance (I) from the dispersion exemplified as the dispersion (D1).
  • a second conductive polymer layer is formed on the first conductive polymer layer using the dispersion (D4). may be formed.
  • the step of applying and drying the dispersion (dispersions (D1) to (D4)) may be performed only once, or may be performed repeatedly multiple times.
  • the manufacturing process of the electrolytic capacitor is not limited, and any known manufacturing method may be applied.
  • An example of a method for manufacturing a multilayer electrolytic capacitor will be described below.
  • an anode foil anode part
  • a cathode foil cathode part
  • a separator is placed between the anode foil and the cathode foil. Leads are connected to each of the anode foil and the cathode foil as necessary.
  • a laminate may be formed by laminating at least one anode foil, at least one cathode foil, and at least one separator in one direction.
  • a wound body (laminated body) may be formed by winding an anode foil, a cathode foil, and a separator. In the wound body, the anode foil, the cathode foil, and the separator are laminated in the radial direction. Therefore, the wound body is also a laminate.
  • Step (X) may be performed on the member before forming the laminate.
  • step (X1) and step (X2) may be performed.
  • step (X) may be performed after forming the laminate.
  • step (X) can be performed by impregnating the laminate with the dispersion (D1) and then drying it.
  • step (X) can be performed by impregnating the laminate with the dispersion (D1) and then drying it.
  • step (X) can be performed by impregnating the laminate with the dispersion (D1) and then drying it.
  • step (X) can be performed by impregnating the laminate with the dispersion (D1) and then drying it.
  • step (X) a conductive polymer layer can be formed between the dielectric layer and the cathode foil (cathode part).
  • step (Z) may be performed after step (X).
  • step (Y) and step (Z) may be performed after step (X).
  • Impregnation of the laminate with liquid (dispersion (D1), dispersion (D2), dispersion (D3), dispersion (D4), treatment liquid (S), liquid component (L), etc.) This may also be done by immersion in a liquid.
  • the subsequent drying may be performed by heating the laminate. Heating may be performed under reduced pressure.
  • a sintered body (anode part) having a dielectric layer formed on its surface is prepared.
  • An anode lead is connected to the sintered body as necessary.
  • the dispersion (D1) is applied to the sintered body on which the dielectric layer has been formed and dried, thereby attaching the conductive polymer and the insulating substance to the surface of the dielectric layer (step (a) )).
  • a conductive polymer layer is formed on the surface of the dielectric layer.
  • the method of applying the dispersion (D1) is not limited, and may be applied by a general method or by immersing the sintered body in the dispersion (D1). Subsequent drying can be performed using the method described above.
  • a cathode portion is formed on the conductive polymer layer.
  • the method for forming the cathode section is not particularly limited, and any known method may be used. In this way, a capacitor element is formed. Note that the anode lead terminal is electrically connected to the anode portion, and the cathode lead terminal is electrically connected to the cathode portion, as necessary. Furthermore, the capacitor element is sealed with an exterior body (for example, a sealing resin) as necessary. In this way, a sintered electrolytic capacitor is manufactured.
  • An electrolytic capacitor includes a capacitor element.
  • the capacitor element includes an anode portion and a cathode portion, and a dielectric layer is formed on the surface of the anode portion.
  • the capacitor element of the multilayer electrolytic capacitor further includes a separator disposed between the anode part and the cathode part.
  • the anode portion includes an anode body.
  • the anode body may be a porous sintered body or a metal foil whose surface is made porous.
  • the thickness of the metal foil is not particularly limited and may be in the range of 15 ⁇ m to 300 ⁇ m.
  • a dielectric layer is formed on at least a portion of the surface of the anode body.
  • valve metal As the material of the anode body, a valve metal, an alloy containing a valve metal, or a compound of a valve metal can be used.
  • valve metals include titanium (Ti), tantalum (Ta), niobium (Nb), aluminum (Al), and the like.
  • the anode body may be a sintered body formed by sintering material particles (for example, valve metal particles).
  • the anode body may be formed by etching the surface of a metal foil (for example, aluminum foil) as a material.
  • the dielectric layer formed on the surface of the anode body may be formed by subjecting the surface of the anode body to a chemical conversion treatment. There is no limitation on the chemical conversion treatment method, and any known chemical conversion treatment method may be applied.
  • the anode portion may include an anode wire.
  • the anode wire may be a wire made of metal. Examples of materials for the anode wire include the above-mentioned valve metals and copper. A portion of the anode wire is embedded in the anode body, and the remaining portion protrudes from the end face of the anode body.
  • the cathode portion may include an electrolyte layer and a cathode foil.
  • the cathode section may include an electrolyte layer and a cathode extraction layer.
  • the cathode foil is not particularly limited as long as it has a function as a cathode.
  • cathode foils include metal foils (eg, aluminum foils).
  • the type of metal is not particularly limited, and may be a valve metal or an alloy containing a valve metal.
  • the thickness of the cathode foil is not particularly limited and may be in the range of 15 ⁇ m to 300 ⁇ m.
  • the surface of the cathode foil may be roughened or chemically treated, if necessary.
  • the cathode foil may include a conductive coating layer.
  • the coating layer may include carbon and at least one metal that has a lower ionization tendency than the valve metal. This makes it easier to improve the acid resistance of the metal foil.
  • the coating layer may contain at least one selected from the group consisting of carbon, nickel, titanium, tantalum, and zirconium. Among them, the coating layer may contain nickel and/or titanium because of their low cost and resistance.
  • the cathode extraction layer is a conductive layer and is arranged to cover at least a portion of the electrolyte layer.
  • the cathode extraction layer may include a carbon layer formed on the electrolyte layer and a metal paste layer formed on the carbon layer.
  • the carbon layer may be formed of a conductive carbon material such as graphite and a resin.
  • the metal paste layer may be formed of metal particles (for example, silver particles) and resin, and may be formed of, for example, a known silver paste.
  • the electrolyte layer is arranged between the dielectric layer formed on the surface of the anode section and the cathode section.
  • the electrolyte layer includes a conductive polymer (eg, a conductive polymer layer).
  • the electrolyte layer may include a conductive polymer and a liquid component (L) (for example, an electrolytic solution). Since the conductive polymer has been described above, repeated explanation will be omitted.
  • liquid component (L) examples include non-aqueous solvents and electrolytes.
  • a nonaqueous electrolyte containing a nonaqueous solvent and a solute dissolved in the nonaqueous solvent can be used as the electrolyte.
  • the liquid component (L) may contain a trace amount of water.
  • the liquid component (L) may be a component that is liquid at room temperature (25 ° C.) or a component that is liquid at the temperature at which the electrolytic capacitor is used. .
  • the non-aqueous solvent may be an organic solvent or an ionic liquid.
  • non-aqueous solvents include polyhydric alcohols such as ethylene glycol and propylene glycol, cyclic sulfones such as sulfolane (SL), lactones such as ⁇ -butyrolactone ( ⁇ BL), N-methylacetamide, N,N- Contains amides such as dimethylformamide and N-methyl-2-pyrrolidone, esters such as methyl acetate, carbonate compounds such as propylene carbonate, ethers such as 1,4-dioxane, ketones such as methyl ethyl ketone, formaldehyde, etc. .
  • a polymeric solvent may be used as the nonaqueous solvent.
  • polymeric solvents include polyalkylene glycols, derivatives of polyalkylene glycols, and compounds in which at least one hydroxyl group in a polyhydric alcohol is substituted with polyalkylene glycol (including derivatives).
  • examples of polymeric solvents include polyethylene glycol (PEG), polyethylene glycol glyceryl ether, polyethylene glycol diglyceryl ether, polyethylene glycol sorbitol ether, polypropylene glycol, polypropylene glycol glyceryl ether, polypropylene glycol diglyceryl ether, Includes polypropylene glycol sorbitol ether, polybutylene glycol, etc.
  • polymeric solvents further include ethylene glycol-propylene glycol copolymers, ethylene glycol-butylene glycol copolymers, propylene glycol-butylene glycol copolymers, and the like.
  • the non-aqueous solvents may be used alone or in combination of two or more.
  • the liquid component (L) may contain an acid component and a base component.
  • acid components include maleic acid, phthalic acid, benzoic acid, pyromellitic acid, resorcinic acid, and the like.
  • base components include 1,8-diazabicyclo[5,4,0]undecene-7, 1,5-diazabicyclo[4,3,0]nonene-5, 1,2-dimethylimidazolinium, 1, 2,4-trimethylimidazoline, 1-methyl-2-ethyl-imidazoline, 1,4-dimethyl-2-ethylimidazoline, 1-methyl-2-heptylimidazoline, 1-methyl-2-(3'heptyl)imidazoline, These include 1-methyl-2-dodecylimidazoline, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1-methylimidazole, 1-methylbenzimidazole, and the like.
  • the non-aqueous electrolyte includes a non-aqueous solvent and a solute (eg, an organic salt) dissolved therein.
  • a solute eg, an organic salt
  • examples of the non-aqueous solvent constituting the non-aqueous electrolyte include the above-mentioned non-aqueous solvents.
  • solutes include inorganic and organic salts.
  • An organic salt is a salt in which at least one of an anion and a cation contains an organic substance.
  • organic salts include trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono-1,2,3,4-tetramethylimidazolinium phthalate, mono-1,3-dimethyl-2-phthalate. Includes ethylimidazolinium.
  • the pH of the liquid component (L) may be less than 7.0 or 5.0 or less, 1.0 or more, or 2.0 or more.
  • the pH may be 1.0 or more and less than 7.0 (eg, in the range of 2.0 to 5.0).
  • a porous sheet can be used as the separator.
  • porous sheets include woven fabrics, nonwoven fabrics, and microporous membranes.
  • the thickness of the separator is not particularly limited and may be in the range of 10 to 300 ⁇ m.
  • separator materials include cellulose, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, vinylon, nylon, aromatic polyamide, polyimide, polyamideimide, polyetherimide, rayon, glass, and the like.
  • the electrolytic capacitor may include other components (leads, exterior body, etc.) as necessary.
  • the lead and the exterior body are not particularly limited, and known leads and exterior bodies may be used.
  • the electrolytic capacitor according to this embodiment may be referred to as an "electrolytic capacitor (E)" below.
  • the electrolytic capacitor (E) can be manufactured by the manufacturing method described above.
  • the matters explained regarding the above-mentioned manufacturing method can also be applied to the electrolytic capacitor (E), so redundant explanation may be omitted.
  • the matters described regarding the electrolytic capacitor (E) may be applied to the manufacturing method described above.
  • the electrolytic capacitor (E) may be manufactured by a manufacturing method other than the manufacturing method described above.
  • An electrolytic capacitor (E) includes an anode part with a dielectric layer formed on the surface, a cathode part, and a conductive polymer and an insulating substance (I) arranged between the dielectric layer and the cathode part. including.
  • the insulating substance (I) contains at least one selected from the group consisting of insulating fibers and insulating particles.
  • the electrolytic capacitor (E) includes a conductive polymer and an insulating substance (I) arranged between a dielectric layer and a cathode part. Therefore, it is possible to prevent the anode portion and the cathode portion from coming too close together. Further, by arranging the insulating substance (I) near the dielectric layer, it is possible to suppress adhesion of the conductive polymer to the defective portion of the dielectric layer on the surface of the anode foil. Thereby, a decrease in withstand voltage and an increase in leakage current can be suppressed.
  • the electrolytic capacitor (E) may further contain an additive (A) placed between the dielectric layer and the cathode part.
  • the additive (A) contains a hydroxy group, and the ratio Mh/Mt of the total formula weight Mh of the hydroxy groups contained in the additive and the molecular weight Mt of the additive is 0.03 or more. be.
  • At least a portion of the insulating substance (I) may be attached to the dielectric layer.
  • the electrolytic capacitor (E) may include a laminate formed by an anode part, a cathode part, and a separator disposed between the dielectric layer and the cathode part. In that case, at least a portion of the insulating material may be attached to at least one element selected from the group consisting of the dielectric layer, the cathode portion, and the separator.
  • the laminate may be impregnated with a liquid component (L).
  • An organic compound (C) containing two or more hydroxy groups may be placed between the dielectric layer and the cathode part.
  • the ratio between the content of the conductive polymer and the content of the insulating substance (I) between the dielectric layer and the cathode part is determined by the ratio Ci/of the content Ci and the content Cc in the dispersion (D1). It may be within the range exemplified for Cc.
  • the ratio between the content of the additive A and the content of the insulating substance (I) between the dielectric layer and the cathode part is determined by the ratio Ca/Ci between the content Ca and the content Ci in the dispersion (D1). may be within the range exemplified.
  • FIG. 1 is a cross-sectional view schematically showing an example of an electrolytic capacitor 100 according to the present embodiment.
  • FIG. 2 is a partially expanded schematic diagram of capacitor element 10 included in electrolytic capacitor 100.
  • the electrolytic capacitor 100 is a laminated capacitor including a wound body (laminated body).
  • the electrolytic capacitor 100 includes a capacitor element 10, a bottomed case 101 that houses the capacitor element 10, a sealing member 102 that closes the opening of the bottomed case 101, a seat plate 103 that covers the sealing member 102, and a sealing member. It includes lead wires 104A, 104B led out from 102 and penetrating the seat plate 103, and lead tabs 105A, 105B connecting the lead wires to the electrodes of the capacitor element 10. The vicinity of the open end of the bottomed case 101 is drawn inward, and the open end is curled so as to be caulked to the sealing member 102.
  • the capacitor element 10 is, for example, a wound body as shown in FIG.
  • the wound body is formed by winding an anode foil 11, a cathode foil 12, and a separator 13.
  • a dielectric layer (not shown) is formed on the surface of the anode foil 11.
  • Capacitor element 10 includes a conductive polymer layer (not shown) disposed between anode foil 11 (more specifically, a dielectric layer on the surface of anode foil 11) and cathode foil 12.
  • the conductive polymer layer contains an insulating substance (I).
  • the electrolytic capacitor 100 may include a liquid component (L) (for example, an electrolytic solution) impregnated into the capacitor element 10.
  • FIG. 2 shows a partially unfolded state before the outermost periphery of the wound body is stopped.
  • the electrolytic capacitor only needs to have at least one capacitor element, and may have multiple capacitor elements.
  • the number of capacitor elements included in an electrolytic capacitor may be determined depending on the application.
  • a dispersion used for manufacturing electrolytic capacitors comprising: Contains a conductive polymer, an insulating substance, and a dispersion medium,
  • the insulating substance is a conductive polymer dispersion containing at least one selected from the group consisting of insulating fibers and insulating particles.
  • Technology 2 further comprising an additive containing a hydroxy group,
  • the dispersion medium contains water,
  • the dispersion according to technique 1 wherein the ratio Mh/Mt of the total formula weight Mh of hydroxy groups contained in the additive to the molecular weight Mt of the additive is 0.03 or more.
  • a method for manufacturing an electrolytic capacitor including an anode portion and a cathode portion each having a dielectric layer formed on its surface comprising: comprising a step (X) of disposing a conductive polymer and an insulating substance between the dielectric layer and the cathode part, The method for manufacturing an electrolytic capacitor, wherein the insulating substance includes at least one selected from the group consisting of insulating fibers and insulating particles.
  • the step (X) is By applying a first dispersion containing the conductive polymer, the insulating substance, and a dispersion medium to the dielectric layer and drying it, the conductive polymer and the insulating material are coated on the surface of the dielectric layer.
  • the manufacturing method according to technique 5, comprising the step (a) of attaching a sexual substance.
  • the electrolytic capacitor further includes a separator disposed between the dielectric layer and the cathode part,
  • the step (X) is A first dispersion containing the conductive polymer, the insulating substance, and a dispersion medium is applied to at least one element selected from the group consisting of the dielectric layer, the cathode portion, and the separator.
  • the manufacturing method according to technique 5, comprising a step (X2) of laminating the anode part, the separator, and the cathode part to form a laminate in this order.
  • the step (X) is a step (b1) of attaching the insulating substance to the surface of the dielectric layer by applying a second dispersion containing the insulating substance to the dielectric layer and drying it; A third dispersion containing the conductive polymer is applied onto the dielectric layer to which the insulating substance has been adhered, and then dried, thereby dispersing the conductive material onto the dielectric layer to which the insulating substance has adhered.
  • Example 1 In Experimental Example 1, a plurality of electrolytic capacitors were manufactured and evaluated using the following method.
  • Capacitor A1 An electrolytic capacitor (capacitor A1) was produced by the following method.
  • Aluminum foil (thickness: 100 ⁇ m) was subjected to etching treatment to roughen the surface of the aluminum foil.
  • a dielectric layer was formed by chemically treating the surface of the roughened aluminum foil. In this way, an anode foil having dielectric layers formed on both sides was obtained.
  • An aluminum foil (thickness: 50 ⁇ m) was subjected to etching treatment to roughen the surface of the aluminum foil, thereby obtaining a cathode foil.
  • a nonwoven fabric (thickness: 50 ⁇ m) was prepared as a separator.
  • the nonwoven fabric is composed of 50% by mass of synthetic fibers (25% by mass of polyester fibers, 25% by mass of aramid fibers) and 50% by mass of cellulose, and contains polyacrylamide as a paper strength agent.
  • the density of the nonwoven fabric was 0.35 g/cm 3 .
  • dispersion (d1) Prepare a dispersion (commercial product) in which poly(3,4-ethylenedioxythiophene) (PEDOT) particles doped with polystyrene sulfonic acid (PSS) are dispersed in water. did. To this dispersion, mixed water of insulating fibers made of cellulose (insulating substance (I)) and additive (A) were added to obtain a dispersion (d1). In the dispersion (d1), the content of insulating fibers was 0.2% by mass, and the content of additive (A) was 5.0% by mass. The content of PEDOT in the dispersion (d1) was 2.0% by mass. Ethylene glycol was used as the additive (A).
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonic acid
  • Conductive polymer layers were formed on both sides of the cathode foil using the same method as the method used to form them on both sides of the anode foil. Further, a conductive polymer layer was formed on the separator by applying the dispersion (d1) to the separator and then drying it in the same manner as the method used to form it on both sides of the anode foil.
  • Capacitor A2 An electrolytic capacitor (capacitor A2) was manufactured by the following method.
  • conductive polymer layer is applied to the dielectric layer formed on both sides of the anode foil and both sides of the cathode foil using the dispersion (d1) in the same manner as in the production of capacitor A1. formed a layer. Furthermore, a conductive polymer layer was formed on the separator in the same manner as in the production of capacitor A1, except that dispersion (cd1) was used instead of dispersion (d1).
  • Capacitor A2 Fabrication of Capacitor A2 Thereafter, a capacitor element was fabricated, impregnated with a liquid component, and sealed, in the same manner as in the fabrication of Capacitor A1. In this way, capacitor A2 was manufactured.
  • Capacitor C1 was produced in the same manner as capacitor A1, except that the dispersion used to form the conductive polymer layer on each component was changed as shown in Table 1.
  • capacitors A1 and A2 are capacitors (E) according to the present embodiment, and capacitor C1 is a capacitor of a comparative example.
  • the withstand voltage was improved by using the dispersion (d1) containing insulating fibers. Furthermore, the ESR of capacitors A1 and A2 was approximately equivalent to the ESR of Comparative Example C1. Thus, according to this embodiment, an electrolytic capacitor with stable and high performance was obtained.
  • Capacitor element 11 Anode foil 12: Cathode foil 13: Separator 14: Winding tape 100: Electrolytic capacitor 101: Bottomed case 102: Sealing member 103: Seat plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

開示される分散体は、電解コンデンサの製造に用いられる分散体であって、導電性高分子、絶縁性物質、および分散媒を含む。前記絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む。

Description

電解コンデンサの製造に用いられる分散体、電解コンデンサの製造方法、および電解コンデンサ
 本開示は、電解コンデンサの製造に用いられる分散体、電解コンデンサの製造方法、および電解コンデンサに関する。
 電解コンデンサとして、陽極箔とセパレータと陰極箔との巻回体を含む電解コンデンサが知られている。そのような電解コンデンサの一例は、巻回体中に配置された導電性高分子層を含む。導電性高分子層は、例えば、導電性高分子を含む分散液を巻回体に含浸させることによって形成されている。導電性高分子層を含む電解コンデンサおよびその製造方法については、従来から様々な提案がなされている。
 特許文献1(特許第5062738号公報)は、「数平均分子量が1万~30万のポリスチレンスルホン酸塩と芳香族スルホン酸塩とからなる有機スルホン酸塩であって、上記ポリスチレンスルホン酸塩のポリスチレンスルホン酸部分に対して芳香族スルホン酸塩の芳香族スルホン酸部分が質量基準で20~50%である有機スルホン酸塩と、過硫酸塩とを用いてピロールまたはその誘導体を酸化重合して合成された導電性高分子を含み、上記導電性高分子と添加したpH向上剤に由来するものとの合計量の濃度が1質量%の分散液にしたときのpHが1.5~4.5であることを特徴とする導電性組成物。」を開示している。
 特許文献2(特開2007-27767号公報)は、固体電解質を少なくとも含むコンデンサ本体に、所定の導電性ポリマーの粒子b)、結合剤c)、および分散剤d)を少なくとも含む分散物a)を適用する工程、および、導電性ポリマー外層の形成のために、分散剤d)を少なくとも部分的に除去し、かつ/または結合剤c)を硬化させる工程を含む方法を開示している。
 特許文献3(特許第6951159号公報)は、「弁金属からなる陽極と、前記弁金属の酸化物からなる誘電体層と、前記誘電体層の、前記陽極と反対側に設けられた導電物質製の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備し、前記固体電解質層が、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、バインダーとを有する、キャパシタであり、前記バインダーはスチレン-ブタジエン系ゴムを含有する、キャパシタ。」を開示している。
特許第5062738号公報 特開2007-27767号公報 特許第6951159号公報
 導電性高分子を含む従来の分散体を用いて導電性高分子層を形成した場合、陽極箔表面の誘電体層の欠損部分に導電性高分子が付着したり、陽極部と陰極部とが近づきすぎたりした場合に、コンデンサの性能が低下することがあった。例えば、陽極箔表面の誘電体層の欠損部分に導電性高分子が付着すると、耐電圧の低下やリーク電流の増大が生じることがあった。
 このような状況において、本開示の目的の1つは、性能が安定して高い電解コンデンサ、およびそれを製造するための分散液および製造方法を提供することである。
 本開示の第一の局面は、電解コンデンサの製造に用いられる分散体に関する。当該分散体は、導電性高分子、絶縁性物質、および分散媒を含み、前記絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む。
 本開示の他の一局面は、電解コンデンサの製造方法に関する。当該製造方法は、表面に誘電体層が形成された陽極部と陰極部とを含む電解コンデンサの製造方法であって、前記誘電体層と前記陰極部との間に導電性高分子と絶縁性物質とを配置する工程(X)を含み、前記絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む。
 本開示の他の一局面は、電解コンデンサに関する。当該電解コンデンサは、電解コンデンサであって、表面に誘電体層が形成された陽極部と、陰極部と、前記誘電体層と前記陰極部との間に配置された、導電性高分子および絶縁性物質とを含み、前記絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む。
 本開示によれば、性能が安定して高い電解コンデンサを得ることが可能である。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の実施形態に係る電解コンデンサを模式的に示す側面図である。 本開示の実施形態に係るコンデンサ素子を模式的に示す分解斜視図である。
 以下では、本開示に係る実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や他の材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかとを任意に組み合わせることができる。以下の説明において、構成要素の例を列挙する場合、特に記載がない限り、列挙された例のうちの1つのみを用いてもよいし、列挙された例のうちの複数を併用してもよい。
 (電解コンデンサの製造に用いられる分散体)
 本実施形態に係る分散体は、電解コンデンサの製造に用いられる。本実施形態に係る分散体を、以下では、「分散体(D1)」と称する場合がある。
 分散体(D1)は、導電性高分子、絶縁性物質、および分散媒を含む。絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む。当該絶縁性物質を、以下では、「絶縁性物質(I)」と称する場合がある。
 分散体(D1)は、絶縁性物質(I)を含む。そのため、分散体(D1)を用いて導電性高分子層を形成することによって、陽極箔表面の誘電体層の欠損部分に導電性高分子が付着したり、陽極部と陰極部とが近づきすぎたりすることを抑制でき、その結果、電解コンデンサの耐電圧の低下やリーク電流の増大を抑制できる。そのため、分散体(D1)を用いることによって、性能が安定して高い電解コンデンサを得ることが可能である。分散体(D1)の構成要素の例について、以下に説明する。
 (絶縁性物質(I))
 上述したように、絶縁性物質(I)は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む。絶縁性物質(I)は、絶縁性繊維のみで構成されていてもよいし、絶縁性粒子のみで構成されていてもよいし、それらの両方を含んでもよい。絶縁性物質(I)は、分散体(D1)への分散性の点で、絶縁性繊維を含むことが好ましい。
 絶縁性物質(I)として用いられる絶縁性繊維は、セルロース、レーヨン、アラミド、ポリエステル、ポリイミド、およびナイロンからなる群より選択される少なくとも1種の物質を含有する繊維を含んでもよく、当該少なくとも1種の物質からなる繊維であってもよい。これらの絶縁性繊維を用いることによって、分散体(D1)中における分散性を高めることができ、且つ、電解コンデンサの耐電圧の低下を特に抑制できる。あるいは、これら以外の絶縁性繊維を用いてもよい。
 絶縁性繊維の平均径は、0.1μm以上、1μm以上、または10μm以上であってもよく、100μm以下、または50μm以下であってもよい。なお、絶縁性繊維の断面は、ほぼ真円であってもよいし、それ以外の形状(例えば楕円形)であってもよい。繊維の径とは、円相当径を意味する。絶縁性繊維の平均径を1μm~50μmの範囲(例えば10μm~50μmの範囲)とすることによって、本開示による効果を高めることができる。繊維の平均径は、任意に選択した30本の繊維の任意の位置の径(円相当径)を測定し、測定された30の径を算術平均することによって求められる。円相当径は、例えば、繊維の断面の画像を解析することによって測定できる。
 絶縁性繊維の平均繊維長は、100μm以上であってもよい。平均繊維長の上限は特に限定されないが、例えば5000μm以下であってもよい。平均繊維長は、任意に選択した30本の繊維の長さを算術平均することによって求められる。
 絶縁性物質(I)として用いられる絶縁性粒子は、電解コンデンサの耐電圧の低下を抑制する観点で、ポリオレフィン、ポリエステル、ポリテトラフルオロエチレン、およびセラミックス(絶縁性のセラミックス)からなる群より選択される少なくとも1種の物質を含有する粒子を含んでもよいし、当該少なくとも1種の物質からなる粒子であってもよい。あるいは、これら以外の絶縁性粒子を用いてもよい。
 絶縁性粒子の平均粒径は、0.1μm以上、10μm以上、または20μm以上であってもよく、100μm以下、または50μm以下であってもよい。この明細書において、平均粒径は、体積基準の粒度分布において累積体積が50%になるメジアン径(D50)である。メジアン径は、レーザ回折/散乱式粒度分布測定装置を用いて求められる。
 絶縁性粒子の形状は、特に限定されず、球状(楕円球状などを含む)、鱗片状、針状、格子状であってもよい。あるいは、絶縁性粒子の形状は、特に定まっていなくてもよい。
 絶縁性繊維および絶縁性粒子はそれぞれ、様々な材質および形状のものが市販されている。絶縁性物質(I)には、市販されている絶縁性繊維および/または絶縁性粒子を用いてもよい。あるいは、公知の方法で製造された絶縁性繊維および/または絶縁性粒子を用いてもよい。
 分散体(D1)における絶縁性物質(I)の含有率Ci(質量%)は、0.1質量%以上、または1.0質量%以上であってもよく、5.0質量%以下、または3.0質量%以下であってもよい。当該含有率を1.0質量%以上とすることによって、本開示による効果を高めることができる。当該含有率を3.0質量%以下とすることによって、導電性高分子層の導電性が低下することを抑制できる。
 含有率Ci(質量%)と、分散体(D1)における導電性高分子の含有率Cc(質量%)との比Ci/Ccは、0.1以上、または0.5以上であってもよく、2.0以下、または1.0以下であってもよい。比Ci/Ccを0.5以上とすることによって、本開示による効果を高めることができる。比Ci/Ccを1.0以下とすることによって、導電性高分子層の導電性が低下することを抑制できる。
 (分散媒)
 分散媒は、導電性高分子が分散される媒体である。分散媒は水を含むことが好ましい。分散媒における水の含有率は、50質量%以上、70質量%以上、90質量%以上、または95質量%以上であってもよい。当該含有率は100質量%であってもよい。すなわち、分散媒は水であってもよい。分散媒は、水以外の有機溶媒を含んでもよい。なお、添加剤(A)は、分散媒には含めない。
 (導電性高分子)
 導電性高分子は特に限定されず、電解コンデンサに用いることが可能な導電性高分子であればよい。導電性高分子には、電解コンデンサの電解質として用いられている公知の導電性高分子を用いてもよい。
 導電性高分子の例には、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、およびそれらの誘導体などが含まれる。当該誘導体には、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、およびポリアセチレンを基本骨格とするポリマーが含まれる。例えば、ポリチオフェンの誘導体には、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。これらの導電性高分子は、単独で用いてもよく、複数種を組み合わせて用いてもよい。また、導電性高分子は、2種以上のモノマーの共重合体であってもよい。導電性高分子の重量平均分子量は特に限定されず、例えば1000~100000の範囲にあってもよい。導電性高分子の好ましい一例は、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)である。
 導電性高分子にはドーパントがドープされてもよい。導電性高分子からの脱ドープを抑制する観点から、ドーパントとして、高分子ドーパントを用いることが好ましい。高分子ドーパントの例には、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸などが含まれる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの少なくとも一部は、塩の形態で添加されてもよい。ドーパントの好ましい一例は、ポリスチレンスルホン酸(PSS)である。好ましい一例では、導電性高分子がポリ(3,4-エチレンジオキシチオフェン)であり、ドーパントがポリスチレンスルホン酸である。
 ドーパントは、酸性基を含有するドーパントであってもよく、酸性基を含有する高分子ドーパントであってもよい。酸性基の例には、スルホン酸基、カルボキシル基などが含まれる。酸性基を含有する高分子ドーパントは、少なくとも一部の構成単位が酸性基を含有する高分子(ポリマー)である。そのような高分子ドーパントの例には、上述した高分子ドーパントが含まれる。
 ドーパントの重量平均分子量は特に限定されない。均質な導電性高分子層の形成を容易にする観点から、ドーパントの重量平均分子量を1000~100000の範囲としてもよい。
 ドーパントがドープされた導電性高分子を用いる場合、ドーパントの脱ドープを抑制するために、分散体(D1)のpHは7.0未満であることが好ましく、6.0以下または5.0以下であってもよい。分散体(D1)のpHは、1.0以上、2.0以上、または3.0以上であってもよい。
 導電性高分子は粒子の状態で分散体(D1)中に存在してもよい。導電性高分子の粒子の平均粒径(D50)は、10μm以上、または20μm以上であってもよく、100μm以下であってもよい。
 分散体(D1)における導電性高分子の含有率は、0.5質量%以上、または1.0質量%以上であってもよく、7.0質量%以下、5.0質量%以下、または3.0質量%以下であってもよい。当該含有率は、0.5~7.0質量%の範囲、1.0~5.0質量%の範囲であってもよい。これらの範囲のいずれかにおいて、上限を3.0質量%または2.0質量%としてもよい。分散体(D1)の物性とその経時的安定性が優れている点や、電解コンデンサのESRとコスト面とのバランスが良い点で、当該含有率は1.0~5.0質量%の範囲(例えば、1.0~3.0質量%の範囲)にあることが好ましい。
 分散体(D1)に含まれるドーパントの質量に特に限定はなく、分散体(D1)に含まれる導電性高分子の質量の0.1~5倍の範囲(例えば0.5~3倍の範囲)にあってもよい。
 (添加剤)
 分散体(D1)は、ヒドロキシ基を含有する添加剤をさらに含んでもよく、分散媒は水を含んでもよい。当該添加剤を以下では、「添加剤(A)」と称する場合がある。添加剤(A)に含有されるヒドロキシ基の合計の式量Mhと添加剤の分子量Mtとの比Mh/Mtは0.001以上であってもよい。エチレングリコール(HO-CH-CH-OH)の場合、分子量Mtは62であり、2つのヒドロキシ基の合計の式量Mhは34である。そのため、Mh/Mt=34/62=0.55である。添加剤(A)の分子量が一定ではない場合、添加剤(A)の分子量には、重量平均分子量が用いられる。
 導電性高分子(例えば導電性高分子の粒子)と絶縁性物質(I)とは凝集しやすい。添加剤(A)を添加することによって、両者が凝集することを抑制できる。そのため、添加剤(A)を添加した分散体(D1)を用いて導電性高分子層を形成することによって、絶縁性物質(I)の分散性が高い導電性高分子層を形成できる。
 比Mh/Mtは、0.03以上、または0.07以上であってもよく、0.9以下であってもよい。比Mh/Mtを0.03以上とすることによって、添加剤(A)の効果を充分に得ることができる。
 添加剤(A)の分子量は500以下であることが好ましい。分子量を500以下とすることによって、分散体(D1)における分散性を高めることができる。その結果、誘電体層の欠損部分に添加剤(A)が付着しやすくなる。当該分子量の下限については特に限定はないが、44以上、80以上、または150以上であってもよい。当該分子量は、500以下、400以下、200以下、または120以下であってもよい。
 添加剤(A)に含まれるヒドロキシ基の数は、1つ以上または2つ以上であり、6以下または3以下であってもよい。誘電体層の欠損部分における修復性の点で、当該ヒドロキシ基の数は3以下であることが好ましい。
 添加剤(A)の例には、ポリオールが含まれる。この明細書において、ポリオールとは、2つ以上のヒドロキシ基を含む有機化合物を意味する。ポリオールの例には、グリコール類、グリセリン類、および糖アルコールなどが含まれる。ポリオールは、2つ以上のヒドロキシ基で置換された炭化水素化合物(例えば、2つ以上のヒドロキシ基で置換された脂肪族炭化水素)であってもよい。添加剤(A)は、水に溶解する化合物であることが好ましい。添加剤(A)は、ヒドロキシ基の数が3つ以下の有機化合物(例えば3価以下の低級アルコール)であってもよい。当該有機化合物の分子量は500以下であってもよい。
 グリコール類の例には、アルキレングリコール(エチレングリコール、プロピレングリコールなど)、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール(例えばポリエチレングリコール)、ポリオキシエチレンポリオキシプロピレングリコール(エチレンオキサイド・プロピレンオキサイド共重合体)などが含まれる。グリセリン類の例には、グリセリンおよびポリグリセリンなどが含まれる。糖アルコールの例には、マンニトール、キシリトール、ソルビトール、エリトリトール、およびペンタエリトリトールなどが含まれる。
 添加剤(A)は、グリコール類、グリセリン類、および糖アルコールからなる群より選択される少なくとも1種であってもよい。例えば、添加剤(A)は、エチレングリコール、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、ポリグリセリン、エリスリトール、キシリトール、ソルビトール、マンニトールからなる群より選択される少なくとも1種であってもよい。添加剤(A)の好ましい一例は、エチレングリコールである。
 分散体(D1)における添加剤(A)の含有率Ca(質量%)と、分散体(D1)における絶縁性物質(I)の含有率Ci(質量%)との比Ca/Ciは、0.1以上、または1.0以上であってもよく、8.0以下、または4.0以下であってもよい。
 (分散体(D1)の製造方法)
 分散体(D1)の製造方法は特に限定されない。例えば、分散体(D1)は、分散体(D1)の成分を分散媒に分散・溶解させることによって製造できる。具体的には、分散体(D1)の成分を分散媒に添加して攪拌することによって分散体(D1)を製造できる。
 (電解コンデンサの製造方法)
 本実施形態に係る製造方法は、表面に誘電体層が形成された陽極部と陰極部とを含む電解コンデンサの製造方法である。この製造方法は、積層型の電解コンデンサおよび焼結体型の電解コンデンサのいずれの製造にも用いることができる。積層型の電解コンデンサのコンデンサ素子は、少なくとも1つのシート状の陽極部と少なくとも1つのシート状の陰極部と少なくとも1つのセパレータとの積層体を含む。積層体は、それらを一方向に積層することによって形成される積層体であってもよい。この場合、電解コンデンサは複数のコンデンサ素子を含んでもよい。あるいは、積層体は、シート状の陽極部とシート状の陰極部とセパレータとを巻回することによって得られる巻回体であってもよい。焼結体型の電解コンデンサの陽極部には、弁金属を含む金属または弁金属を含む金属化合物の焼結体を用いることができる。電解コンデンサの構成要素の例については後述する。
 この製造方法は、上述した分散体(D1)を用いて実施してもよい。分散体(D1)について説明した事項はこの製造方法に適用できるため、重複する説明を省略する場合がある。
 この製造方法は、陽極部の表面に形成された誘電体層と陰極部との間に導電性高分子と絶縁性物質とを配置する工程(X)を含む。当該絶縁性物質は、上述した絶縁性物質(I)である。上述したように、絶縁性物質(I)は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む。工程(X)によれば、陽極箔表面の誘電体層の欠損部分に導電性高分子が付着したり、陽極部と陰極部とが近づきすぎたりすることを抑制できる。そのため、本製造方法によれば、性能が安定して高い電解コンデンサを製造できる。
 工程(X)によれば、誘電体層と陰極部との間に、導電性高分子を含む層を形成することが可能である。導電性高分子を含む層を、以下では、「導電性高分子層」と称する場合がある。
 工程(X)は、導電性高分子と絶縁性物質(I)と分散媒とを含む第1の分散体を用いて行われてもよい。第1の分散体は、上述した分散体(D1)である。例えば、工程(X)は、陽極部の表面に形成された誘電体層、および、陰極部からなる群より選択される少なくとも1種(被塗布物)に分散体(D1)を塗布して乾燥する工程を含んでもよい。あるいは、工程(X)は、陽極部の表面に形成された誘電体層、陰極部、およびセパレータからなる群より選択される少なくとも1種(被塗布物)に分散体(D1)を塗布して乾燥する工程を含んでもよい。
 工程(X)において導電性高分子と絶縁性物質(I)とを配置する方法は特に限定されない。例えば、分散体(D1)を被塗布物に塗布して乾燥してもよい。塗布方法は特に限定されず、公知の方法を用いてもよい。塗布方法は、コーターを用いた方法であってもよいし、分散体(D1)をスプレーする方法であってもよい。あるいは、分散体(D1)に被塗布物を浸漬してもよい。分散体(D1)の乾燥は、加熱によって分散媒の少なくとも一部を除去することによって行ってもよい。例えば、加熱は、100℃以上(例えば120℃以上や140℃以上)の温度で行われてもよい。加熱温度に上限はないが、導電性高分子などの成分に影響がでない温度で行われ、例えば160℃以下の温度で行われる。加熱時間に限定はなく、分散媒の蒸発量などを考慮して加熱時間を決定すればよい。乾燥は減圧下で行われてもよい。これらの塗布方法および乾燥方法は、以下で説明する塗布および乾燥にも適用できる。
 工程(X)は、陽極部の表面に形成された誘電体層に分散体(D1)を塗布して乾燥させることによって、誘電体層の表面に導電性高分子と絶縁性物質(I)とを付着させる工程(a)を含んでもよい。工程(a)によれば、誘電体層の欠損部分に絶縁性物質(I)を配置しやすくなる。積層型の電解コンデンサを製造する場合、積層体を形成する前の陽極部に分散体(D1)を塗布して乾燥させることによって工程(a)を行ってもよい。あるいは、積層体を形成し、当該積層体に分散体(D1)を含浸させた後に乾燥させることによって、工程(a)を行ってもよい。焼結体型の電解コンデンサを製造する場合、誘電体層が形成された陽極部(焼結体)に分散体(D1)を塗布(例えば含浸)させた後に、分散体(D1)を乾燥させればよい。
 電解コンデンサは、陽極部の表面に形成された誘電体層と陰極部との間に配置されたセパレータをさらに含んでもよい。その場合、工程(X)は、工程(X1)と工程(X2)とのこの順に含んでもよい。工程(X1)は、誘電体層、陰極部、およびセパレータからなる群より選択される少なくとも1つの要素に分散体(D1)を塗布して乾燥させることによって、少なくとも1つの要素に導電性高分子と絶縁性物質とを付着させる工程である。工程(X2)は、陽極部とセパレータと陰極部とを積層して積層体を形成する工程である。これらの工程は、積層体型の電解コンデンサの製造に好ましく用いられる。工程(X1)において、少なくとも誘電体層に分散体(D1)を塗布して乾燥させることが好ましい。それによって、誘電体層の欠損部分に絶縁性物質(I)を配置することができ、誘電体層の欠損によるコンデンサの性能の低下を抑制できる。
 本実施形態の製造方法は、工程(X)の後に、積層体に液状成分(以下では、「液状成分(L)」と称する場合がある)を含浸させる工程(Z)をさらに含んでもよい。液状成分(L)の例については後述する。
 本実施形態の製造方法は、工程(X)の後であって工程(Z)の前に、工程(Y1)と工程(Y2)とを含んでもよい。以下では、工程(Y1)と工程(Y2)とをあわせて「工程(Y)」と称する場合がある。工程(Y1)は、2つ以上のヒドロキシ基を含む有機化合物と水とを含有する処理液を積層体に含浸させる工程である。当該有機化合物および処理液を以下では、「有機化合物(C)」および「処理液(S)」と称する場合がある。工程(Y2)は、処理液(S)中の水の少なくとも一部を蒸発させる工程である。
 工程(Y)を行うことによって、有機化合物(C)を、導電性高分子層中に配置することが可能である。これによって、工程(Z)において、液状成分(L)が積層体に含浸されやすくなる。
 工程(Y1)において、積層体への処理液(S)の含浸の方法は限定されない。例えば、積層体を処理液(S)に浸漬してもよい。工程(Y2)において、処理液(S)中の水の少なくとも一部を蒸発させる工程は限定されない。工程(Y2)は、分散体(D1)の乾燥について例示した条件で行ってもよい。
 有機化合物(C)の例には、ポリオールが含まれる。ポリオールの例には、添加剤(A)のポリオールの例として挙げた化合物が含まれる。
 処理液(S)における水の含有率は、40質量%以上、60質量%以上、80質量%以上、90質量%以上、または95質量%以上であってもよい。当該含有率は、99質量%以下、95質量%以下、90質量%以下、または80質量%以下であってもよい。
 処理液(S)における有機化合物(C)の含有率は、1.0質量%以上、5.0質量%以上、10質量%以上、または20質量%以上であってもよい。当該含有率は、60質量%以下、40質量%以下、20質量%以下、または10質量%以下であってもよい。
 工程(X)は、工程(b1)と工程(b2)とをこの順に含んでもよい。工程(b1)は、陽極部の表面に形成された誘電体層に絶縁性物質(I)を含む第2の分散体(D2)を塗布して乾燥させることによって、誘電体層の表面に絶縁性物質(I)を付着させる工程である。工程(b2)は、絶縁性物質(I)が付着した誘電体層上に上記導電性高分子を含む第3の分散体(D3)を塗布して乾燥させることによって、絶縁性物質(I)が付着した誘電体層上に導電性高分子を付着させる工程である。分散体(D2)は、分散体(D1)として例示した分散体から導電性高分子を除いた分散体である。分散体(D3)は、導電性高分子を含む分散体である。分散体(D3)は、分散体(D1)として例示した分散体であってもよいし、分散体(D1)として例示した分散体から絶縁性物質(I)を除いた分散体であってもよい。
 本実施形態に係る製造方法は、第4の分散体(D4)を用いて導電性高分子層を形成する工程を含んでもよい。分散体(D4)は、分散体(D1)として例示した分散体から絶縁性物質(I)を除いた分散体である。例えば、分散体(D1)を用いて第1の導電性高分子層を形成した後に、分散体(D4)を用いて、第1の導電性高分子層上に第2の導電性高分子層を形成してもよい。なお、上記の工程において、分散体(分散体(D1)~(D4))を塗布して乾燥する工程は、1回だけ行ってもよいし、複数回繰り返して行ってもよい。
 上記の工程を除いて、電解コンデンサの製造工程は限定されず、公知の製造方法を適用してもよい。積層型の電解コンデンサの製造方法の一例について以下に説明する。
 まず、表面に誘電体層が形成された陽極箔(陽極部)、陰極箔(陰極部)、およびセパレータを準備する。そして、それらを用いて積層体を形成する。セパレータは、陽極箔と陰極箔との間に配置される。陽極箔および陰極箔のそれぞれには、必要に応じてリードが接続される。
 少なくとも1つの陽極箔と少なくとも1つの陰極箔と少なくとも1つのセパレータとを一方向に積層して積層体を形成してもよい。あるいは、陽極箔と陰極箔とセパレータとを巻回して巻回体(積層体)を形成してもよい。巻回体において、陽極箔と陰極箔とセパレータとは径方向に積層されている。そのため、巻回体も積層体である。
 工程(X)は、積層体を形成する前の部材に対して行われてもよい。例えば、工程(X1)および工程(X2)が行われてもよい。あるいは、工程(X)は、積層体を形成した後に行われてもよい。その場合、積層体に分散体(D1)を含浸した後に乾燥させることによって、工程(X)を行うことができる。工程(X)によって、誘電体層と陰極箔(陰極部)との間に導電性高分子層を形成することができる。
 工程(X)を経た積層体(コンデンサ素子)は、外装体に封入される。このようにして、積層型の電解コンデンサを製造できる。上述したように、工程(X)の後に、工程(Z)が行われてもよい。あるいは、工程(X)の後に、工程(Y)、および工程(Z)が行われてもよい。
 積層体への液体(分散体(D1)、分散体(D2)、分散体(D3)、分散体(D4)、処理液(S)、液状成分(L)など)の含浸は、積層体を液体に浸漬することによって行ってもよい。その後の乾燥は、積層体を加熱することによって行ってもよい。加熱は、減圧下で行ってもよい。
 焼結体型の電解コンデンサの製造方法の一例について以下に説明する。まず、表面に誘電体層が形成された焼結体(陽極部)を準備する。焼結体には、必要に応じて陽極リードが接続される。
 次に、誘電体層が形成された焼結体に分散体(D1)を塗布して乾燥させることによって、誘電体層の表面に導電性高分子と絶縁性物質とを付着させる(工程(a))。この工程によって、誘電体層の表面に導電性高分子層が形成される。分散体(D1)の塗布方法は限定されず、一般的な方法で塗布してもよいし、焼結体を分散体(D1)に浸漬することによって行ってもよい。その後の乾燥は、上述した方法で実施できる。
 次に、導電性高分子層上に、陰極部を形成する。陰極部の形成方法は特に限定されず、公知の方法で形成してもよい。このようにして、コンデンサ素子が形成される。なお、必要に応じて陽極リード端子が陽極部と電気的に接続され、陰極リード端子が陰極部と電気的に接続される。さらに、必要に応じてコンデンサ素子が外装体(例えば封止樹脂)で封止される。このようにして、焼結体型の電解コンデンサが製造される。
 本実施形態の製造方法によって製造される電解コンデンサの構成および構成要素の一例を以下に説明する。なお、電解コンデンサの構成および構成要素は、以下の例に限定されない。本開示に特徴的な構成要素以外の構成要素には、公知の電解コンデンサの構成要素を用いてもよい。
 電解コンデンサは、コンデンサ素子を含む。コンデンサ素子は、陽極部、および陰極部を含み、陽極部の表面には誘電体層が形成されている。積層型の電解コンデンサのコンデンサ素子は、陽極部と陰極部との間に配置されたセパレータをさらに含む。
 (陽極部)
 陽極部は、陽極体を含む。陽極体は、多孔質焼結体であってもよいし、表面が多孔質化された金属箔であってもよい。金属箔の厚さは特に限定されず、15μm~300μmの範囲にあってもよい。誘電体層は、陽極体の表面の少なくとも一部に形成される。
 陽極体の材料には、弁金属、弁金属を含む合金、または弁金属の化合物を用いることができる。弁金属の例には、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)などが含まれる。陽極体は、材料となる粒子(例えば弁金属の粒子)を焼結することによって形成された焼結体であってもよい。あるいは、陽極体は、材料となる金属箔(例えばアルミニウム箔)の表面をエッチングすることによって形成してもよい。陽極体の表面に形成される誘電体層は、陽極体の表面を化成処理することによって形成してもよい。化成処理の方法に限定はなく、公知の化成処理の方法を適用してもよい。
 陽極体が焼結体である場合、陽極部は陽極ワイヤを含みうる。陽極ワイヤは、金属からなるワイヤであってもよい。陽極ワイヤの材料の例には、上記の弁金属や銅などが含まれる。陽極ワイヤの一部は陽極体に埋設され、残りの部分は陽極体の端面から突き出している。
 (陰極部)
 陰極部は、電解質層と陰極箔とを含んでもよい。あるいは、陰極部は、電解質層と陰極引出層とを含んでもよい。
 陰極箔は、陰極としての機能を有していればよく、特に限定されない。陰極箔の例には、金属箔(例えばアルミニウム箔)が含まれる。金属の種類は特に限定されず、弁金属または弁金属を含む合金であってよい。陰極箔の厚さは特に限定されず、15μm~300μmの範囲にあってもよい。陰極箔の表面は、必要に応じて、粗面化されていてもよいし、化成処理されていてもよい。
 陰極箔は、導電性の被覆層を含んでもよい。金属箔が弁金属を含む場合、被覆層は、カーボンおよび弁金属よりもイオン化傾向の低い少なくとも1種の金属を含んでもよい。これにより、金属箔の耐酸性が向上し易くなる。金属箔がアルミニウムを含む場合、被覆層は、カーボン、ニッケル、チタン、タンタルおよびジルコニウムからなる群より選択される少なくとも1種を含んでもよい。なかでも、コストおよび抵抗が低い点で、被覆層は、ニッケルおよび/またはチタンを含んでもよい。
 陰極引出層は、導電層であり、電解質層の少なくとも一部を覆うように配置されている。陰極引出層は、電解質層上に形成されたカーボン層と、カーボン層上に形成された金属ペースト層とを含んでもよい。カーボン層は、黒鉛等の導電性炭素材料と樹脂とによって形成されてもよい。金属ペースト層は、金属粒子(例えば銀粒子)と樹脂とによって形成されてもよく、例えば公知の銀ペーストによって形成されてもよい。
 (電解質層)
 電解質層は、陽極部の表面に形成された誘電体層と陰極部との間に配置される。電解質層は、導電性高分子(例えば導電性高分子層)を含む。電解質層は、導電性高分子と液状成分(L)(例えば電解液)とを含んでもよい。導電性高分子については上述したため、重複する説明を省略する。
 (液状成分(L))
 液状成分(L)の例には、非水溶媒および電解液が含まれる。電解液には、非水溶媒と非水溶媒に溶解された溶質とを含む非水電解液を用いることができる。液状成分(L)は、微量の水を含んでもよい。なお、この明細書において、液状成分(L)は、室温(25℃)において液体状である成分であってもよいし、電解コンデンサの使用時の温度において液体状である成分であってもよい。
 非水溶媒は、有機溶媒であってもよいし、イオン性液体であってもよい。非水溶媒の例には、エチレングリコール、プロピレングリコールなどの多価アルコール類、スルホラン(SL)などの環状スルホン類、γ-ブチロラクトン(γBL)などのラクトン類、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類、酢酸メチルなどのエステル類、炭酸プロピレンなどのカーボネート化合物、1,4-ジオキサンなどのエーテル類、メチルエチルケトンなどのケトン類、ホルムアルデヒドなどが含まれる。
 また、非水溶媒として、高分子系溶媒を用いてもよい。高分子系溶媒の例には、ポリアルキレングリコール、ポリアルキレングリコールの誘導体、多価アルコール中の水酸基の少なくとも1つがポリアルキレングリコール(誘導体を含む)に置換された化合物などが含まれる。具体的には、高分子系溶媒の例には、ポリエチレングリコール(PEG)、ポリエチレングリコールグリセリルエーテル、ポリエチレングリコールジグリセリルエーテル、ポリエチレングリコールソルビトールエーテル、ポリプロピレングリコール、ポリプロピレングリコールグリセリルエーテル、ポリプロピレングリコールジグリセリルエーテル、ポリプロピレングリコールソルビトールエーテル、ポリブチレングリコールなどが含まれる。高分子系溶媒の例には、さらに、エチレングリコール-プロピレングリコールの共重合体、エチレングリコール-ブチレングリコールの共重合体、プロピレングリコール-ブチレングリコールの共重合体などが含まれる。非水溶媒は、一種を単独で用いてもよいし、2種以上を混合して用いてもよい。
 液体成分(L)は、酸成分および塩基成分を含有していてもよい。酸成分の例には、マレイン酸、フタル酸、安息香酸、ピロメリット酸、レゾルシン酸などが含まれる。塩基成分の例には、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1,5-ジアザビシクロ[4,3,0]ノネン-5、1,2-ジメチルイミダゾリニウム、1,2,4-トリメチルイミダゾリン、1-メチル-2-エチル-イミダゾリン、1,4-ジメチル-2-エチルイミダゾリン、1-メチル-2-ヘプチルイミダゾリン、1-メチル-2-(3’ヘプチル)イミダゾリン、1-メチル-2-ドデシルイミダゾリン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1-メチルイミダゾール、1-メチルベンゾイミダゾールなどが含まれる。
 非水電解液は、非水溶媒とこれに溶解された溶質(例えば有機塩)とを含む。非水電解液を構成する非水溶媒の例には、上述した非水溶媒の例が含まれる。溶質の例には、無機塩よび有機塩が含まれる。有機塩とは、アニオンおよびカチオンの少なくとも一方が有機物を含む塩である。有機塩の例には、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどが含まれる。
 ドーパントの脱ドープを抑制するために、液状成分(L)のpHを、7.0未満または5.0以下としてもよく、1.0以上、または2.0以上としてもよい。当該pHは、1.0以上で7.0未満(例えば2.0~5.0の範囲)としてもよい。
 (セパレータ)
 セパレータには、多孔質のシートを用いることができる。多孔質のシートの例には、織布、不織布、および微多孔膜が含まれる。セパレータの厚さは特に限定されず、10~300μmの範囲にあってもよい。セパレータの材料の例には、セルロース、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ビニロン、ナイロン、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、レーヨン、およびガラスなどが含まれる。
 (その他)
 電解コンデンサは、必要に応じて、他の構成要素(リード、外装体など)を含んでもよい。リードおよび外装体は特に限定されず、公知のリードおよび外装体を用いてもよい。
 (電解コンデンサ)
 本実施形態に係る電解コンデンサを以下では、「電解コンデンサ(E)」と称する場合がある。電解コンデンサ(E)は、上述した製造方法で製造できる。上述した製造方法について説明した事項については、電解コンデンサ(E)にも適用できるため、重複する説明を省略する場合がある。また、電解コンデンサ(E)について説明した事項は、上述した製造方法に適用してもよい。なお、電解コンデンサ(E)は、上述した製造方法以外の製造方法で製造してもよい。
 電解コンデンサ(E)は、表面に誘電体層が形成された陽極部と、陰極部と、誘電体層と陰極部との間に配置された、導電性高分子および絶縁性物質(I)とを含む。絶縁性物質(I)は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む。
 電解コンデンサ(E)は、誘電体層と陰極部との間に配置された、導電性高分子および絶縁性物質(I)とを含む。そのため、陽極部と陰極部とが近づきすぎることを抑制できる。また、誘電体層近傍に絶縁性物質(I)を配置することによって、陽極箔表面の誘電体層の欠損部分に導電性高分子が付着することを抑制できる。それによって、耐電圧の低下やリーク電流の増大などを抑制できる。
 電解コンデンサ(E)は、誘電体層と陰極部との間に配置された添加剤(A)をさらに含有してもよい。上述したように、添加剤(A)は、ヒドロキシ基を含有し、添加剤に含有されるヒドロキシ基の合計の式量Mhと添加剤の分子量Mtとの比Mh/Mtは0.03以上である。
 電解コンデンサ(E)において、絶縁性物質(I)の少なくとも一部は誘電体層に付着していてもよい。
 電解コンデンサ(E)は、陽極部、陰極部、および、誘電体層と陰極部との間に配置されたセパレータによって形成された積層体を含んでもよい。その場合、誘電体層、陰極部、およびセパレータからなる群より選択される少なくとも1つの要素に、絶縁性物質の少なくとも一部が付着していてもよい。上記積層体に液状成分(L)が含浸されていてもよい。
 誘電体層と陰極部との間に、2つ以上のヒドロキシ基を含む有機化合物(C)が配置されていてもよい。
 誘電体層と陰極部との間における導電性高分子の含有率と絶縁性物質(I)の含有率との比率は、分散体(D1)における含有率Ciと含有率Ccとの比Ci/Ccについて例示した範囲にあってもよい。誘電体層と陰極部との間における添加剤Aの含有率と絶縁性物質(I)の含有率との比率は、分散体(D1)における含有率Caと含有率Ciとの比Ca/Ciについて例示した範囲にあってもよい。
 以下では、電解コンデンサ(E)の一例について、図面を参照して具体的に説明する。以下で説明する一例の構成要素には、上述した構成要素を適用できる。また、以下で説明する一例の構成要素は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。また、以下で説明する一例において、本開示の電解コンデンサに必須ではない構成要素は省略してもよい。
 図1は、本実施形態に係る一例の電解コンデンサ100を模式的に示す断面図である。図2は、電解コンデンサ100に含まれるコンデンサ素子10の一部を展開した概略図である。電解コンデンサ100は、巻回体(積層体)を含む積層型のコンデンサである。
 電解コンデンサ100は、コンデンサ素子10と、コンデンサ素子10を収容する有底ケース101と、有底ケース101の開口を塞ぐ封止部材102と、封止部材102を覆う座板103と、封止部材102から導出され、座板103を貫通するリード線104A、104Bと、リード線とコンデンサ素子10の電極とを接続するリードタブ105A、105Bとを含む。有底ケース101の開口端近傍は、内側に絞り加工されており、開口端は封止部材102にかしめるようにカール加工されている。
 コンデンサ素子10は、例えば、図2に示すような巻回体である。巻回体は、陽極箔11と陰極箔12とセパレータ13とを巻回することによって形成されている。陽極箔11の表面には、誘電体層(図示せず)が形成されている。コンデンサ素子10は、陽極箔11(より詳細には、陽極箔11の表面の誘電体層)と陰極箔12との間に配置された導電性高分子層(図示せず)を含む。導電性高分子層は、絶縁性物質(I)を含む。電解コンデンサ100は、コンデンサ素子10に含浸された液状成分(L)(例えば電解液)を含んでもよい。
 陽極箔11および陰極箔12は、セパレータ13を介して巻回されている。巻回体の最外周は、巻止めテープ14により固定される。なお、図2は、巻回体の最外周を止める前の、一部が展開された状態を示している。
 電解コンデンサは、少なくとも1つのコンデンサ素子を有していればよく、複数のコンデンサ素子を有していてもよい。電解コンデンサに含まれるコンデンサ素子の数は、用途に応じて決定すればよい。
 (付記)
 以上の実施形態の記載によって、下記の技術が開示される。
(技術1)
 電解コンデンサの製造に用いられる分散体であって、
 導電性高分子、絶縁性物質、および分散媒を含み、
 前記絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む、導電性高分子の分散体。
(技術2)
 ヒドロキシ基を含有する添加剤をさらに含み、
 前記分散媒は水を含み、
 前記添加剤に含有されるヒドロキシ基の合計の式量Mhと前記添加剤の分子量Mtとの比Mh/Mtは0.03以上である、技術1に記載の分散体。
(技術3)
 前記絶縁性繊維は、セルロース、レーヨン、アラミド、ポリエステル、ポリイミド、およびナイロンからなる群より選択される少なくとも1種の物質を含有する繊維を含む、技術1または2に記載の分散体。
(技術4)
 前記絶縁性粒子は、ポリオレフィン、ポリエステル、ポリテトラフルオロエチレン、およびセラミックスからなる群より選択される少なくとも1種の物質を含有する粒子を含む、技術1~3のいずれか1つに記載の分散体。
(技術5)
 表面に誘電体層が形成された陽極部と陰極部とを含む電解コンデンサの製造方法であって、
 前記誘電体層と前記陰極部との間に導電性高分子と絶縁性物質とを配置する工程(X)を含み、
 前記絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む、電解コンデンサの製造方法。
(技術6)
 前記工程(X)は、
 前記誘電体層に前記導電性高分子と前記絶縁性物質と分散媒とを含む第1の分散体を塗布して乾燥させることによって、前記誘電体層の表面に前記導電性高分子と前記絶縁性物質とを付着させる工程(a)を含む、技術5に記載の製造方法。
(技術7)
 前記電解コンデンサは前記誘電体層と前記陰極部との間に配置されたセパレータをさらに含み、
 前記工程(X)は、
  前記誘電体層、前記陰極部、および前記セパレータからなる群より選択される少なくとも1つの要素に、前記導電性高分子と前記絶縁性物質と分散媒とを含む第1の第1の分散体を塗布して乾燥させることによって、前記少なくとも1つの要素に前記導電性高分子と前記絶縁性物質とを付着させる工程(X1)と、
  前記陽極部と前記セパレータと前記陰極部とを積層して積層体を形成する工程(X2)とをこの順に含む、技術5に記載の製造方法。
(技術8)
 前記工程(X)の後に、前記積層体に液状成分を含浸させる工程(Z)をさらに含む、技術7に記載の製造方法。
(技術9)
 前記工程(X)の後であって前記工程(Z)の前に、
 2つ以上のヒドロキシ基を含む有機化合物と水とを含有する処理液を前記積層体に含浸させる工程(Y1)と、
 前記処理液中の水の少なくとも一部を蒸発させる工程(Y2)とを含む、技術8に記載の製造方法。
(技術10)
 前記工程(X)は、
 前記誘電体層に前記絶縁性物質を含む第2の分散体を塗布して乾燥させることによって、前記誘電体層の表面に前記絶縁性物質を付着させる工程(b1)と、
 前記絶縁性物質が付着した前記誘電体層上に前記導電性高分子を含む第3の分散体を塗布して乾燥させることによって、前記絶縁性物質が付着した前記誘電体層上に前記導電性高分子を付着させる工程(b2)とをこの順に含む、技術5に記載の製造方法。
(技術11)
 電解コンデンサであって、
 表面に誘電体層が形成された陽極部と、
 陰極部と、
 前記誘電体層と前記陰極部との間に配置された、導電性高分子および絶縁性物質とを含み、
 前記絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む、電解コンデンサ。
(技術12)
 前記誘電体層と前記陰極部との間に配置された添加剤をさらに含有し、
 前記添加剤はヒドロキシ基を含有し、
 前記添加剤に含有されるヒドロキシ基の合計の式量Mhと前記添加剤の分子量Mtとの比Mh/Mtは0.03以上である、技術11に記載の電解コンデンサ。
(技術13)
 前記絶縁性物質の少なくとも一部は前記誘電体層に付着している、技術11または12に記載の電解コンデンサ。
(技術14)
 前記陽極部、前記陰極部、および、前記誘電体層と前記陰極部との間に配置されたセパレータによって形成された積層体を含み、
 前記誘電体層、前記陰極部、および前記セパレータからなる群より選択される少なくとも1つの要素に、前記絶縁性物質の少なくとも一部が付着している、技術11~13のいずれか1つに記載の電解コンデンサ。
(技術15)
 前記積層体に液状成分が含浸されている、技術14に記載の電解コンデンサ。
 以下、実施例に基づいて、本開示をより詳細に説明するが、本開示は実施例に限定されない。
 (実験例1)
 実験例1では、以下の方法で複数の電解コンデンサを作製して評価した。
 (コンデンサA1)
 電解コンデンサ(コンデンサA1)を以下の方法で作製した。
 (a)構成部材の準備
 アルミニウム箔(厚さ100μm)にエッチング処理を行い、アルミニウム箔の表面を粗面化した。粗面化されたアルミニウム箔の表面を化成処理して誘電体層を形成した。このようにして、両面に誘電体層が形成された陽極箔を得た。アルミニウム箔(厚さ50μm)にエッチング処理を行い、アルミニウム箔の表面を粗面化し、陰極箔を得た。
 セパレータとして、不織布(厚さ50μm)を準備した。不織布は、合成繊維50質量%(ポリエステル繊維25質量%、アラミド繊維25質量%)とセルロース50質量%とから構成されており、紙力増強剤としてポリアクリルアミドを含む。不織布の密度は0.35g/cmであった。
 (b)分散体(d1)の調製
 ポリスチレンスルホン酸(PSS)がドープされたポリ(3,4-エチレンジオキシチオフェン)(PEDOT)の粒子が水に分散された分散液(市販品)を準備した。この分散液に、セルロースからなる絶縁性繊維(絶縁性物質(I))の混合水と添加剤(A)とを加えて分散体(d1)を得た。分散体(d1)において、絶縁性繊維の含有率を0.2質量%とし、添加剤(A)の含有率を5.0質量%とした。分散体(d1)におけるPEDOTの含有率は、2.0質量%とした。添加剤(A)には、エチレングリコールを用いた。
 (c)導電性高分子層の形成
 グラビアコーターを用いて、陽極箔の一方の片面(誘電体層の表面)に分散体(d1)を塗布した。その後、乾燥処理を行って、陽極箔の一方の片面(誘電体層の表面)に導電性高分子層を形成した。乾燥処理は、分散体(d1)が塗布された陽極箔を、125℃で5分間加熱することによって行った。次に、陽極箔の他方の片面(誘電体層の表面)にも、同様の方法で導電性高分子層を形成した。
 陽極箔の両面に形成した方法と同様の方法で、陰極箔の両面に導電性高分子層を形成した。また、陽極箔の両面に形成した方法と同様の方法で、セパレータに分散体(d1)を塗布した後に乾燥処理を行うことによって、セパレータに導電性高分子層を形成した。
 (d)コンデンサ素子の作製
 陽極箔、陰極箔、およびセパレータをそれぞれ所定の大きさに切断した。陽極箔および陰極箔に、陽極リードタブおよび陰極リードタブを接続した。次に、陽極箔と陰極箔とをセパレータを介して巻回した。巻回体から突出する各リードタブの端部に、陽極リード線および陰極リード線をそれぞれ接続した。得られた巻回体に再度化成処理を行い、陽極箔の端面に誘電体層を形成した。巻回体の外側表面の端部を巻止めテープで固定して、コンデンサ素子を得た。
 (e)液状成分の含浸
 エチレングリコール(溶媒)に、o-フタル酸、トリエチルアミン(塩基成分)を合計で25質量%の濃度で溶解させて電解液(液状成分(L))を調製した。減圧雰囲気(40kPa)中で、電解液にコンデンサ素子を5分間浸漬した。これによって、コンデンサ素子(積層体)に電解液を含浸させた。
 (f)コンデンサ素子の封止
 電解液を含浸させたコンデンサ素子を封止して、図1に示すような電解コンデンサを作製した。その後、電圧を印加しながら、95℃で90分のエージングを行った。このようにして、電解コンデンサ(コンデンサA1)を得た。
 (コンデンサA2)
 電解コンデンサ(コンデンサA2)を以下の方法で作製した。
 (a)構成部材の準備
 コンデンサA1の作製と同様に各構成部材を準備した。
 (b)分散体(cd1)の調製
 絶縁性繊維を添加しないことを除いて、分散体(d1)の作製と同様の方法および条件で、分散体(cd1)を調製した。
 (c)導電性高分子層の形成
 陽極箔の両面に形成された誘電体層および陰極箔の両面に、コンデンサA1の作製と同様の方法で、分散体(d1)を用いて導電性高分子層を形成した。さらに、分散体(d1)の代わりに分散体(cd1)を用いることを除いて、コンデンサA1の作製と同様の方法で、セパレータに導電性高分子層を形成した。
 (d)コンデンサA2の作製
 その後は、コンデンサA1の作製と同様の方法で、コンデンサ素子の作製、液状成分の含浸、およびコンデンサ素子の封止を行った。このようにして、コンデンサA2を作製した。
 (コンデンサC1の作製)
 各構成部材上の導電性高分子層の形成に用いられる分散体を表1に示すように変更したことを除いて、コンデンサA1と同様の方法でコンデンサC1を作製した。
 (評価)
 作製されたコンデンサについて、耐電圧と、100kHzでの等価直列抵抗(ESR)とを測定した。なお、評価は、コンデンサA1、A2、およびC1のそれぞれについて3個のコンデンサを準備し、それらの測定値の算術平均を求めることによって行った。
 導電性高分子層の形成条件の一部と評価結果を表1に示す。なお、コンデンサA1およびA2は、本実施形態に係るコンデンサ(E)であり、コンデンサC1は比較例のコンデンサである。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、絶縁性繊維を添加した分散体(d1)を用いることによって、耐電圧が向上した。さらに、コンデンサA1およびA2のESRは、比較例C1のESRとほぼ同等であった。このように、本実施形態によれば、性能が安定して高い電解コンデンサが得られた。
 本開示は、電解コンデンサおよびその製造方法、ならびに電解コンデンサの製造に用いられる分散体に利用できる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
  10:コンデンサ素子
  11:陽極箔
  12:陰極箔
  13:セパレータ
  14:巻止めテープ
  100:電解コンデンサ
  101:有底ケース
  102:封止部材
  103:座板

Claims (15)

  1.  電解コンデンサの製造に用いられる分散体であって、
     導電性高分子、絶縁性物質、および分散媒を含み、
     前記絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む、導電性高分子の分散体。
  2.  ヒドロキシ基を含有する添加剤をさらに含み、
     前記分散媒は水を含み、
     前記添加剤に含有されるヒドロキシ基の合計の式量Mhと前記添加剤の分子量Mtとの比Mh/Mtは0.03以上である、請求項1に記載の分散体。
  3.  前記絶縁性繊維は、セルロース、レーヨン、アラミド、ポリエステル、ポリイミド、およびナイロンからなる群より選択される少なくとも1種の物質を含有する繊維を含む、請求項1または2に記載の分散体。
  4.  前記絶縁性粒子は、ポリオレフィン、ポリエステル、ポリテトラフルオロエチレン、およびセラミックスからなる群より選択される少なくとも1種の物質を含有する粒子を含む、請求項1または2に記載の分散体。
  5.  表面に誘電体層が形成された陽極部と陰極部とを含む電解コンデンサの製造方法であって、
     前記誘電体層と前記陰極部との間に導電性高分子と絶縁性物質とを配置する工程(X)を含み、
     前記絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む、電解コンデンサの製造方法。
  6.  前記工程(X)は、
     前記誘電体層に前記導電性高分子と前記絶縁性物質と分散媒とを含む第1の分散体を塗布して乾燥させることによって、前記誘電体層の表面に前記導電性高分子と前記絶縁性物質とを付着させる工程(a)を含む、請求項5に記載の製造方法。
  7.  前記電解コンデンサは前記誘電体層と前記陰極部との間に配置されたセパレータをさらに含み、
     前記工程(X)は、
      前記誘電体層、前記陰極部、および前記セパレータからなる群より選択される少なくとも1つの要素に、前記導電性高分子と前記絶縁性物質と分散媒とを含む第1の第1の分散体を塗布して乾燥させることによって、前記少なくとも1つの要素に前記導電性高分子と前記絶縁性物質とを付着させる工程(X1)と、
      前記陽極部と前記セパレータと前記陰極部とを積層して積層体を形成する工程(X2)とをこの順に含む、請求項5に記載の製造方法。
  8.  前記工程(X)の後に、前記積層体に液状成分を含浸させる工程(Z)をさらに含む、請求項7に記載の製造方法。
  9.  前記工程(X)の後であって前記工程(Z)の前に、
     2つ以上のヒドロキシ基を含む有機化合物と水とを含有する処理液を前記積層体に含浸させる工程(Y1)と、
     前記処理液中の水の少なくとも一部を蒸発させる工程(Y2)とを含む、請求項8に記載の製造方法。
  10.  前記工程(X)は、
     前記誘電体層に前記絶縁性物質を含む第2の分散体を塗布して乾燥させることによって、前記誘電体層の表面に前記絶縁性物質を付着させる工程(b1)と、
     前記絶縁性物質が付着した前記誘電体層上に前記導電性高分子を含む第3の分散体を塗布して乾燥させることによって、前記絶縁性物質が付着した前記誘電体層上に前記導電性高分子を付着させる工程(b2)とをこの順に含む、請求項5に記載の製造方法。
  11.  電解コンデンサであって、
     表面に誘電体層が形成された陽極部と、
     陰極部と、
     前記誘電体層と前記陰極部との間に配置された、導電性高分子および絶縁性物質とを含み、
     前記絶縁性物質は、絶縁性繊維および絶縁性粒子からなる群より選択される少なくとも1種を含む、電解コンデンサ。
  12.  前記誘電体層と前記陰極部との間に配置された添加剤をさらに含有し、
     前記添加剤はヒドロキシ基を含有し、
     前記添加剤に含有されるヒドロキシ基の合計の式量Mhと前記添加剤の分子量Mtとの比Mh/Mtは0.03以上である、請求項11に記載の電解コンデンサ。
  13.  前記絶縁性物質の少なくとも一部は前記誘電体層に付着している、請求項11または12に記載の電解コンデンサ。
  14.  前記陽極部、前記陰極部、および、前記誘電体層と前記陰極部との間に配置されたセパレータによって形成された積層体を含み、
     前記誘電体層、前記陰極部、および前記セパレータからなる群より選択される少なくとも1つの要素に、前記絶縁性物質の少なくとも一部が付着している、請求項11または12に記載の電解コンデンサ。
  15.  前記積層体に液状成分が含浸されている、請求項14に記載の電解コンデンサ。
PCT/JP2023/027569 2022-07-29 2023-07-27 電解コンデンサの製造に用いられる分散体、電解コンデンサの製造方法、および電解コンデンサ WO2024024887A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022121573 2022-07-29
JP2022-121573 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024887A1 true WO2024024887A1 (ja) 2024-02-01

Family

ID=89706611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027569 WO2024024887A1 (ja) 2022-07-29 2023-07-27 電解コンデンサの製造に用いられる分散体、電解コンデンサの製造方法、および電解コンデンサ

Country Status (1)

Country Link
WO (1) WO2024024887A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197468A (ja) * 2001-10-19 2003-07-11 Nec Tokin Toyama Ltd 固体電解コンデンサ及びその製造方法
JP2014027040A (ja) * 2012-07-25 2014-02-06 Japan Carlit Co Ltd 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
WO2016031207A1 (ja) * 2014-08-26 2016-03-03 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法
WO2020111093A1 (ja) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197468A (ja) * 2001-10-19 2003-07-11 Nec Tokin Toyama Ltd 固体電解コンデンサ及びその製造方法
JP2014027040A (ja) * 2012-07-25 2014-02-06 Japan Carlit Co Ltd 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
WO2016031207A1 (ja) * 2014-08-26 2016-03-03 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法
WO2020111093A1 (ja) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法

Similar Documents

Publication Publication Date Title
US11348739B2 (en) Electrolytic capacitor
US10984960B2 (en) Electrolytic capacitor
WO2016174807A1 (ja) 電解コンデンサ
WO2021166927A1 (ja) 電解コンデンサおよびその製造方法
WO2021153752A1 (ja) 電解コンデンサおよびその製造方法
JP2022117355A (ja) 電解コンデンサおよびその製造方法
JP7496519B2 (ja) 導電性高分子分散液、電解コンデンサならびに電解コンデンサの製造方法
CN112424893B (zh) 电解电容器
WO2024024887A1 (ja) 電解コンデンサの製造に用いられる分散体、電解コンデンサの製造方法、および電解コンデンサ
WO2024024888A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
JP7496518B2 (ja) 電解コンデンサおよびその製造方法
WO2021153749A1 (ja) 電解コンデンサおよびその製造方法
WO2021153750A1 (ja) 電解コンデンサおよびその製造方法
WO2023145889A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
WO2023145891A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
WO2023182509A1 (ja) 電解コンデンサ用セパレータの製造方法、電解コンデンサの製造方法、電解コンデンサ用セパレータ、および電解コンデンサ
WO2022145451A1 (ja) 電解コンデンサ
WO2024116845A1 (ja) 電解コンデンサの製造方法、電解コンデンサ、第1処理液、および第2処理液
WO2022210513A1 (ja) 電解コンデンサの製造方法
WO2022071223A1 (ja) 電解コンデンサおよびその製造方法
WO2021200776A1 (ja) 電解コンデンサおよびその製造方法
WO2024143344A1 (ja) 電解コンデンサおよびその製造方法
WO2023120708A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
WO2023145893A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
WO2021200775A1 (ja) 電解コンデンサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846617

Country of ref document: EP

Kind code of ref document: A1