WO2024024475A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2024024475A1
WO2024024475A1 PCT/JP2023/025424 JP2023025424W WO2024024475A1 WO 2024024475 A1 WO2024024475 A1 WO 2024024475A1 JP 2023025424 W JP2023025424 W JP 2023025424W WO 2024024475 A1 WO2024024475 A1 WO 2024024475A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
extending portion
thickness
nitride semiconductor
gate layer
Prior art date
Application number
PCT/JP2023/025424
Other languages
English (en)
French (fr)
Inventor
勇 西村
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024024475A1 publication Critical patent/WO2024024475A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present disclosure relates to a nitride semiconductor device.
  • Patent Document 1 describes an example of a nitride semiconductor device configured as a normally-off HEMT.
  • the nitride semiconductor device described in Patent Document 1 includes an electron transit layer, an electron supply layer provided on the electron transit layer, and a nitride semiconductor provided on the electron supply layer and containing acceptor type impurities. and a gate layer.
  • a gate electrode is provided on the gate layer.
  • 2DEG two-dimensional electron gas
  • a structure in which an extension portion (step) is provided in the gate layer may be adopted to improve gate breakdown voltage.
  • the extension part is required to be formed as thinly and uniformly as possible with a thickness that maintains the 2DEG in the electron transport layer well in the region immediately below the extension part.
  • a nitride semiconductor device includes an electron transit layer made of a nitride semiconductor, and a nitride semiconductor provided on the electron transit layer and having a larger band gap than the electron transit layer.
  • a gate layer provided on the electron supply layer and made of a nitride semiconductor containing acceptor type impurities, a gate electrode provided on the gate layer, and the electron supply layer. and a source electrode and a drain electrode provided on the.
  • the gate layer includes a gate layer main body portion, a first extending portion extending outward from a side surface of the gate layer main body portion, and a second extending portion extending outward from a side surface of the first extending portion.
  • the first extending portion includes a first groove portion formed at a first depth from an upper surface of the first extending portion along a side surface of the gate layer main body portion.
  • the extending portion of the gate layer can be formed with a uniform and appropriate thickness.
  • FIG. 1 is a schematic cross-sectional view of an exemplary nitride semiconductor device according to one embodiment.
  • FIG. 2 is a cross-sectional view taken along line F2-F2 in FIG. 1, showing a schematic cross-section of an exemplary nitride semiconductor device according to one embodiment.
  • FIG. 3 is an enlarged cross-sectional view of the gate layer and gate electrode in the nitride semiconductor device of FIG. 2.
  • FIG. 4 is a partially enlarged cross-sectional view of the gate layer of FIG. 3.
  • FIG. 5 is a schematic cross-sectional view illustrating an exemplary manufacturing process for the gate layer of FIGS. 3 and 4.
  • FIG. FIG. 6 is a schematic cross-sectional view showing an exemplary manufacturing process following FIG. 5.
  • FIG. 7 is a schematic cross-sectional view showing an exemplary manufacturing process following FIG. 6.
  • FIG. 8 is a schematic cross-sectional view showing an exemplary manufacturing process following FIG. 7.
  • FIG. 9 is a schematic cross-sectional view showing an exemplary manufacturing process following FIG. 8.
  • FIG. 10 is a schematic cross-sectional view showing an exemplary manufacturing process following FIG. 9.
  • FIG. 11 is a schematic cross-sectional view showing an exemplary manufacturing process following FIG. 10.
  • FIG. 12 is a schematic cross-sectional view showing an exemplary manufacturing process following FIG. 11.
  • FIG. 13 is a diagram showing the relationship between etching depth and groove depth (average value).
  • FIG. 1 is a schematic cross-sectional view of an exemplary nitride semiconductor device 10 according to one embodiment.
  • FIG. 2 is a cross-sectional view taken along line F2-F2 in FIG. 1, showing a schematic cross-section of the nitride semiconductor device 10.
  • the nitride semiconductor device 10 may be configured as a HEMT using GaN as the nitride semiconductor, for example.
  • the nitride semiconductor device 10 includes a semiconductor substrate 12, a buffer layer 14 formed on the semiconductor substrate 12, an electron transit layer 16 formed on the buffer layer 14, and an electron supply layer formed on the electron transit layer 16. layer 18.
  • Semiconductor substrate 12 may be formed of silicon (Si), silicon carbide (SiC), GaN, sapphire, or other substrate materials.
  • the semiconductor substrate 12 is a Si substrate.
  • the thickness of the semiconductor substrate 12 may be, for example, 200 ⁇ m or more and 1500 ⁇ m or less.
  • the Z-axis direction of the mutually orthogonal XYZ axes shown in each drawing is a direction that is orthogonal to the main surface of the semiconductor substrate 12.
  • the term "planar view" used in this specification refers to viewing the nitride semiconductor device 10 from above along the Z-axis direction, unless explicitly stated otherwise.
  • Buffer layer 14 may include one or more nitride semiconductor layers. Electron transit layer 16 may be formed on buffer layer 14 .
  • the buffer layer 14 may be made of any suitable material capable of suppressing warpage of the semiconductor substrate 12 and generation of cracks in the nitride semiconductor device 10 due to mismatching of thermal expansion coefficients between the semiconductor substrate 12 and the electron transit layer 16, for example. material.
  • buffer layer 14 includes at least one of an aluminum nitride (AlN) layer, an aluminum gallium nitride (AlGaN) layer, and a graded AlGaN layer having a different aluminum (Al) composition.
  • the buffer layer 14 may be formed by a single AlN layer, a single AlGaN layer, a layer having an AlGaN/GaN superlattice structure, a layer having an AlN/AlGaN superlattice structure, or a layer having an AlN/GaN superlattice structure. may be configured.
  • buffer layer 14 includes a first buffer layer formed on semiconductor substrate 12 and a second buffer layer formed on the first buffer layer.
  • the first buffer layer may be an AlN layer having a thickness of, for example, 200 nm
  • the second buffer layer may be formed by laminating multiple graded AlGaN layers, for example, having a thickness of 300 nm.
  • impurities may be introduced into a part of the buffer layer 14 to make it semi-insulating.
  • the impurity is, for example, carbon (C) or iron (Fe), and the concentration of the impurity may be, for example, 4 ⁇ 10 16 cm ⁇ 3 or more.
  • the electron transit layer 16 is made of a nitride semiconductor, and may be a GaN layer, for example.
  • the electron transit layer 16 may have a thickness of, for example, 0.5 ⁇ m or more and 2 ⁇ m or less.
  • impurities may be introduced into a part of the electron transit layer 16 to make the area other than the surface layer region of the electron transit layer 16 semi-insulating.
  • the impurity is, for example, C
  • the concentration of the impurity in the electron transit layer 16 may be, for example, 4 ⁇ 10 16 cm ⁇ 3 or more.
  • the electron supply layer 18 is made of a nitride semiconductor having a larger band gap than the electron transit layer 16, and may be an AlGaN layer, for example.
  • the electron supply layer 18, which is an AlGaN layer has a larger band gap than the electron transit layer 16, which is a GaN layer.
  • the electron supply layer 18 is made of Al x Ga 1-x N, where x satisfies 0 ⁇ x ⁇ 0.3, more preferably 0.1 ⁇ x ⁇ 0.3.
  • the electron supply layer 18 may have a thickness of, for example, 5 nm or more and 20 nm or less.
  • the electron transit layer 16 and the electron supply layer 18 are made of nitride semiconductors having different lattice constants. Therefore, the nitride semiconductor (eg, GaN) forming the electron transit layer 16 and the nitride semiconductor (eg, AlGaN) forming the electron supply layer 18 form a lattice mismatched heterojunction. Due to the spontaneous polarization of the electron transit layer 16 and the electron supply layer 18 and the piezo polarization caused by crystal strain near the heterojunction interface, the energy level of the conduction band of the electron transit layer 16 near the heterojunction interface is lower than the Fermi level. It gets lower.
  • the nitride semiconductor eg, GaN
  • the nitride semiconductor eg, AlGaN
  • two-dimensional electron gas (2DEG) 20 spreads within the electron transit layer 16 at a position close to the heterojunction interface between the electron transit layer 16 and the electron supply layer 18 (for example, at a distance of several nm from the interface). There is.
  • the nitride semiconductor device 10 further covers a gate layer 22 formed on the electron supply layer 18, a gate electrode 24 formed on the gate layer 22, and the electron supply layer 18, the gate layer 22, and the gate electrode 24.
  • a passivation layer 26 is included.
  • the gate layer 22 is made of a nitride semiconductor containing acceptor type impurities.
  • the gate layer 22 is formed on a portion of the electron supply layer 18 .
  • the gate layer 22 may be a GaN layer doped with acceptor type impurities, that is, a p-type GaN layer.
  • the acceptor type impurity may include, for example, at least one of zinc (Zn), magnesium (Mg), and carbon (C).
  • the maximum concentration of acceptor type impurities in the gate layer 22 may be, for example, 7 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less. The shape and structure of the gate layer 22 will be described later with reference to FIGS. 3 and 4.
  • the gate electrode 24 is composed of one or more metal layers.
  • gate electrode 24 may be comprised of a titanium nitride (TiN) layer.
  • the gate electrode 24 may be constituted by a first metal layer (for example, a Ti layer) and a second metal layer (for example, a TiN layer) provided on the first metal layer.
  • the gate electrode 24 is formed on part or all of the upper surface of the gate layer 22.
  • Gate electrode 24 may form a Schottky junction with gate layer 22.
  • the thickness of the gate electrode 24 can be appropriately determined in consideration of various parameters such as gate breakdown voltage.
  • the thickness of the gate electrode 24 may be greater than or equal to 50 nm and less than or equal to 200 nm.
  • the passivation layer 26 is made of, for example, at least one of silicon nitride (SiN), silicon dioxide (SiO 2 ), silicon oxynitride (SiON), alumina (Al 2 O 3 ), AlN, and aluminum oxynitride (AlON). It can be configured by The thickness of the passivation layer 26 may be, for example, 80 nm or more and 150 nm or less.
  • Passivation layer 26 includes a first opening 26A and a second opening 26B. The gate layer 22 is located between the first opening 26A and the second opening 26B.
  • the nitride semiconductor device 10 includes a source electrode 28 and a drain electrode 30 provided on the electron supply layer 18.
  • the source electrode 28 is in contact with the electron supply layer 18 via the first opening 26A.
  • the drain electrode 30 is in contact with the electron supply layer 18 via the second opening 26B.
  • the source electrode 28 and the drain electrode 30 may be composed of one or more metal layers using at least one of a Ti layer, a TiN layer, an Al layer, an AlSiCu layer, and an AlCu layer, for example.
  • source electrode 28 and drain electrode 30 may be formed of the same material. This case is advantageous in that the source electrode 28 and the drain electrode 30 can be formed in the same process.
  • the source electrode 28 includes a source electrode section 28A and a field plate electrode section 28B.
  • the source electrode portion 28A includes a filling region that fills the first opening 26A, and an upper region that is formed integrally with the filling region and is located above and around the first opening 26A in plan view.
  • the upper region may extend, for example, to a position covering the gate layer 22 and the gate electrode 24 in plan view.
  • the source electrode portion 28A (source electrode 28) is in ohmic contact with the 2DEG 20 directly below the electron supply layer 18 via the first opening 26A.
  • the field plate electrode section 28B is continuously and integrally formed with the source electrode section 28A. However, the field plate electrode section 28B may be formed separately and separated from the source electrode section 28A.
  • the field plate electrode portion 28B has a field plate end portion 28C at a position closer to the drain electrode 30.
  • the length of the field plate electrode section 28B from the drain side end of the gate electrode 24 to the field plate end 28C in the X-axis direction of FIG. 2 can be defined as a field plate length.
  • the field plate electrode portion 28B plays a role of extending a depletion layer in the region immediately below the field plate electrode portion 28B when a high voltage is applied to the source-drain voltage when the gate-source voltage is 0V, for example. Fulfill. Thereby, electric field concentration near the ends of the gate electrode 24 and the gate layer 22 can be alleviated, thereby suppressing the deterioration of the insulation properties of the passivation layer 26 and suppressing the occurrence of current collapse.
  • At least a portion of the drain electrode 30 is filled in the second opening 26B of the passivation layer 26.
  • the drain electrode 30 is in ohmic contact with the 2DEG 20 directly below the electron supply layer 18 via the second opening 26B.
  • a gate layer 22 containing acceptor type impurities is provided directly below the gate electrode 24.
  • the 2DEG 20 when the gate-source voltage exceeds a positive threshold voltage due to the gate input voltage applied to the gate electrode 24, the 2DEG 20 is formed in the region of the electron transit layer 16 directly under the gate layer 22, and the source- Conductivity occurs between the drains.
  • the 2DEG 20 disappears in at least a portion of the region of the electron transport layer 16 directly under the gate layer 22 (see FIG. 2).
  • the gate layer 22 contains acceptor type impurities, which raises the energy levels of the electron transit layer 16 and the electron supply layer 18, and depletes the 2DEG 20.
  • the nitride semiconductor device 10 is realized as a normally-off type HEMT.
  • FIG. 3 is an enlarged cross-sectional view of the gate layer 22 and gate electrode 24 of the nitride semiconductor device 10 of FIG.
  • the gate layer 22 has a step structure having a plurality of steps, and in the example of FIG. 3, a two-step structure.
  • the gate layer 22 includes a gate layer main body portion 32, a first source side extension portion 33 and a first drain side extension portion 34 forming the first step (upper step in FIG. 3), and a second step.
  • the second source-side extending portion 35 and the second drain-side extending portion 36 constitute a step (lower step in FIG. 3).
  • Each of the first source side extension part 33 and the first drain side extension part 34 corresponds to the first extension part
  • each of the second source side extension part 35 and the second drain side extension part 36 corresponds to the first extension part. 2 corresponding to the extension part.
  • the gate layer main body portion 32 corresponds to the central portion of the gate layer 22 where the gate electrode 24 is located.
  • the gate layer main body portion 32 can also be called a ridge portion.
  • the gate layer main body portion 32 may have a rectangular shape or a substantially rectangular shape (for example, a trapezoidal shape) in a cross section along the XZ plane in FIG. 2 .
  • the gate layer main body portion 32 includes a first side surface 32S1 and an opposite second side surface 32S2.
  • the first side surface 32S1 and the second side surface 32S2 are perpendicular to the upper surface of the electron supply layer 18, but may be inclined. Note that the "perpendicular" surface to the top surface of the electron supply layer 18 includes not only a surface completely at 90 degrees to the top surface of the electron supply layer 18 but also a surface slightly inclined due to the process. is intended.
  • the gate electrode 24 is formed over the entire upper surface of the gate layer main body portion 32.
  • the first side surface 24S1 of the gate electrode 24 is flush with the first side surface 32S1 of the gate layer main body section 32
  • the second side surface 24S2 of the gate electrode 24 is flush with the first side surface 32S1 of the gate layer main body section 32. It is flush with the side surface 32S2.
  • the gate layer main body part 32 has a surface extending from the upper surface 32S3 of the gate layer main body part 32 (the upper surface of the gate layer 22 in contact with the gate electrode 24) to the lower surface of the gate layer main body part 32 (the lower surface of the gate layer 22 in contact with the electron supply layer 18). It has a thickness corresponding to the distance. This thickness can be appropriately determined in consideration of various parameters such as gate breakdown voltage. For example, the thickness of the gate layer main body portion 32 may be greater than or equal to 80 nm and less than or equal to 150 nm.
  • the first source side extension portion 33 extends from the first side surface 32S1 of the gate layer main body portion 32 toward the first opening portion 26A (see FIG. 2).
  • the first drain side extension portion 34 extends from the second side surface 32S2 of the gate layer main body portion 32 toward the second opening portion 26B (see FIG. 2).
  • the length (dimensional value) in the extending direction (X-axis direction) of each of the first source-side extending portion 33 and the first drain-side extending portion 34 is not particularly limited, but is, for example, 30 nm or more and 100 nm or less. good.
  • the first source side extension part 33 and the first drain side extension part 34 are formed with the same length in the X-axis direction, but they are formed with different lengths in the X-axis direction. may be done.
  • the second source-side extending portion 35 extends from the side surface 33S1 of the first source-side extending portion 33 toward the first opening 26A (see FIG. 2).
  • the second drain side extending portion 36 extends from the side surface 34S1 of the first drain side extending portion 34 toward the second opening 26B (see FIG. 2).
  • the side surface 33S1 of the first source-side extension part 33 and the side surface 34S1 of the first drain-side extension part 34 are perpendicular to the upper surface of the electron supply layer 18, but may be inclined. .
  • each of the second source-side extending portion 35 and the second drain-side extending portion 36 in the extending direction (X-axis direction) is not particularly limited.
  • the second source-side extending portion 35 has a length from the side surface 33S1 of the first source-side extending portion 33 to the tip of the second source-side extending portion 35, for example, 0.2 ⁇ m or more and 0.3 ⁇ m or less. may have.
  • the second drain side extension part 36 has a length from the side surface 34S1 of the first drain side extension part 34 to the tip of the second drain side extension part 36, for example, 0.2 ⁇ m or more and 1.5 ⁇ m or less. It is possible.
  • the second drain side extension part 36 is formed longer than the second source side extension part 35 in the X-axis direction, but both may be formed to have the same length.
  • FIG. 4 is a partially enlarged cross-sectional view of the gate layer 22 of FIG.
  • the first source-side extending portion 33 has a thickness H1 from the top surface of the electron supply layer 18 to the top surface 33S2 of the first source-side extending portion 33.
  • the first drain side extension part 34 (see FIG. 3) also has the same thickness as the first source side extension part 33, that is, the thickness H1.
  • the second source-side extending portion 35 has a thickness H2 from the upper surface of the electron supply layer 18 to the upper surface 35S1 of the second source-side extending portion 35.
  • the second drain side extension part 36 (see FIG. 3) also has the same thickness as the second source side extension part 35, that is, the thickness H2.
  • the thickness H2 is smaller than the thickness H1. Furthermore, in the example of FIG. 3, the thickness H2 is smaller than the thickness difference H12 between the thickness H1 and the thickness H2.
  • the thickness H1 may be, for example, 30 nm or more and 80 nm or less, and the thickness H2 may be, for example, 5 nm or more and 20 nm or less. Note that the thickness H1 corresponds to the first thickness, and the thickness H2 corresponds to the second thickness.
  • the gate layer main body part 32 has a thickness H3 from the upper surface 32S3 of the gate layer main body part 32 to the upper surface 33S2 of the first source side extension part 33.
  • the thickness H3 is larger than the thickness difference H12 mentioned above. Note that the thickness H3 corresponds to the third thickness.
  • the first source-side extending portion 33 is formed at a depth D1 from the upper surface 33S2 of the first source-side extending portion 33 along the first side surface 32S1 of the gate layer main body portion 32.
  • a first source side groove portion 43 is included.
  • the first drain side extension portion 34 (see FIG. 3) also includes a first drain side groove portion 44 formed with a depth D1.
  • the depth D1 is smaller than the thickness H1, and further smaller than the thickness difference H12. Depth D1 corresponds to a first depth.
  • the first source side groove portion 43 and the first drain side groove portion 44 may each have, for example, a wedge shape or a tapered shape in a cross section along the XZ plane in FIG. 4 .
  • the upper surface 33S2 of the first source-side extending portion 33 is a plane, and the first source-side groove portion 43 includes a curved surface 43S that is continuous with the upper surface 33S2 (flat) of the first source-side extending portion 33.
  • This curved surface 43S and the first side surface 32S1 of the gate layer main body portion 32 form a first source side groove portion 43.
  • the first drain side groove portion 44 (see FIG.
  • 3) also includes a curved surface that is continuous with the upper surface 34S2 (plane) of the first drain side extension portion 34, and this curved surface and the second drain side groove portion 44 of the gate layer main body portion 32
  • a first drain groove portion 44 is formed by the side surface 32S2.
  • the curved surface 43S corresponds to the first curved surface.
  • the second source side extending portion 35 has a second source side groove portion 45 formed at a depth D2 from the upper surface 35S1 of the second source side extending portion 35 along the side surface 33S1 of the first source side extending portion 33.
  • the second drain side extension portion 36 (see FIG. 3) also includes a second drain side groove portion 46 formed at a depth D2. Depth D2 is smaller than thickness H2. Depth D2 corresponds to a second depth.
  • the second source side groove portion 45 and the second drain side groove portion 46 may each have, for example, a wedge shape or a tapered shape in a cross section along the XZ plane in FIG. 4 .
  • the upper surface 35S1 of the second source-side extending portion 35 is a plane
  • the second source-side groove portion 45 includes a curved surface 45S that is continuous with the upper surface 35S1 (flat) of the second source-side extending portion 35.
  • a second source side groove portion 45 is formed by this curved surface 45S and the side surface 33S1 of the first source side extension portion 33.
  • the second drain side groove portion 46 (see FIG.
  • the depth D1 of the first source side groove 43 and the first drain side groove 44 is larger than the depth D2 of the second source side groove 45 and the second drain side groove 46.
  • the dimensional values of each depth D1 and D2 are not particularly limited, the depth D1 may be, for example, 2 nm or more and 10 nm or less, and the depth D2 may be, for example, greater than 0 nm and 2 nm or less.
  • the curved surface 45S of the second source side groove 45 (and the curved surface of the second drain side groove 46) is larger than the curved surface 43S of the first source side groove 43 (and the curved surface of the first drain side groove 44). It has a small curvature.
  • a second source side groove part 45 and a second drain side groove part 46 are formed in the second source side extension part 35 and the second drain side extension part 36, respectively.
  • the second source side groove part 45 and the second drain side groove part 46 may not be formed.
  • depth D2 is 0 nm. Therefore, the depth D2 may be, for example, a value of 0 nm or more and 2 nm or less.
  • the first source side groove part 43 and the first drain side groove part 44 are formed in the process of forming the first source side extension part 33 and the first drain side extension part 34 by etching, for example.
  • the second source side groove part 45 and the second drain side groove part 46 are formed in the process of forming the second source side extension part 35 and the second drain side extension part 36, for example, by etching.
  • the nitride semiconductor device 10 includes a gate wiring 72, a source wiring 74, and a drain wiring 76.
  • the gate wiring 72, the source wiring 74, and the drain wiring 76 are formed on an interlayer insulating layer (not shown) that covers the source electrode 28 and the drain electrode 30.
  • the gate wiring 72 is connected to the gate electrode 24 by a gate connection conductor 73 that penetrates the interlayer insulating layer.
  • the source wiring 74 is connected to the source electrode portion 28A (source electrode 28) by a source connection conductor 75 that penetrates the interlayer insulating layer.
  • the drain wiring 76 is connected to the drain electrode 30 by a drain connection conductor 77 that penetrates the interlayer insulating layer.
  • the nitride semiconductor device 10 includes a plurality of transistor elements each having a HEMT structure in an element region.
  • FIG. 1 only shows a plurality of transistor elements arranged in the X-axis direction, in reality, the transistor elements may be arranged in the X-axis direction and the Y-axis direction.
  • the drain electrode 30 is provided for each transistor element and extends in the Y-axis direction in plan view.
  • the source electrode 28 is provided, for example, so as to surround each drain electrode 30 in a plan view.
  • the source electrode 28 includes the source electrode portion 28A and the field plate electrode portion 28B (FIG. 2).
  • the field plate electrode portion 28B is integrally formed with the source electrode portion 28A, and extends toward the adjacent drain electrode 30 in plan view.
  • the source electrode 28 is formed continuously in the X-axis direction across a plurality of transistor elements adjacent in the X-axis direction, but is not separated into a plurality of parts in the X-axis direction. It's okay.
  • the gate layer 22 and gate electrode 24 are provided for each transistor element. Each gate layer 22 and each gate electrode 24 is formed in an annular shape so as to surround one of the drain electrodes 30 in plan view.
  • illustration of the first source side extension part 33 and the first drain side extension part 34 is omitted, and the illustration of the second source side extension part 34 is omitted.
  • the extending portion 35 and the second drain side extending portion 36 are illustrated.
  • FIGS. 3 and 4 are schematic cross-sectional views showing exemplary manufacturing steps for the gate layer 22, and FIG. 13 is a diagram showing the relationship between etching depth and groove depth (average value).
  • Layer 56 is in turn formed by epitaxial growth.
  • the buffer layer 14 on the semiconductor substrate 12 is also formed by epitaxial growth.
  • the first nitride semiconductor layer 52 is formed on the buffer layer 14.
  • a metal organic chemical vapor deposition (MOCVD) method can be used for the epitaxial growth process.
  • the first to third nitride semiconductor layers 52, 54, and 56 are made of arbitrary materials corresponding to the structures of the electron transit layer 16, electron supply layer 18, and gate layer 22, respectively, described with reference to FIGS. 2 to 4. and thickness.
  • the first nitride semiconductor layer 52 (electron transit layer 16) is a GaN layer
  • the second nitride semiconductor layer 54 (electron supply layer 18) is an AlGaN layer
  • the third nitride semiconductor layer 56 (gate layer 22) is an AlGaN layer.
  • This is a p-type GaN layer doped with, for example, Mg as an acceptor type impurity.
  • a gate electrode layer 58 is formed on the third nitride semiconductor layer 56 by, for example, sputtering.
  • Gate electrode layer 58 is a layer for forming gate electrode 24.
  • Gate electrode layer 58 may be formed of any material and thickness that corresponds to the structure of gate electrode 24 described with reference to FIGS. 2-4.
  • gate electrode layer 58 is a TiN layer.
  • a first protective layer 60 is formed on the gate electrode layer 58 by, for example, plasma-enhanced chemical vapor deposition (PECVD).
  • PECVD plasma-enhanced chemical vapor deposition
  • the first protective layer 60 is a SiN layer, but the material and thickness of the first protective layer 60 are not particularly limited.
  • a mask 62 made of resist (for example, photoresist) is formed on the first protective layer 60.
  • the type of resist is not particularly limited.
  • the mask 62 is arranged at a position corresponding to the formation region of the gate electrode 24 in plan view.
  • the first protective layer 60 and the gate electrode layer 58 are selectively removed by etching (for example, dry etching) using a mask 62.
  • etching for example, dry etching
  • the gate electrode 24 is formed and the surface of the third nitride semiconductor layer 56 corresponding to the gate layer 22 is exposed.
  • the mask 62 is removed, as shown in FIG.
  • the third nitride semiconductor layer 56 is etched (eg, dry etched) using the first protective layer 60 as a mask.
  • a first layer portion 56L1 having a thickness corresponding to each of the first source-side extension portion 33 (see FIG. 3) and the first drain-side extension portion 34 (see FIG. 3) is formed.
  • a gate layer main body portion 32 is formed directly below the gate electrode 24 .
  • the third nitride semiconductor layer 56 is etched to an etching depth corresponding to the thickness H3 described with reference to FIG. 4, and the first layer portion 56L1 has a thickness H1 (see FIG. 4). is formed.
  • etching is performed under conditions that emphasize obtaining high in-plane uniformity (that is, thickness uniformity), and for example, low-pressure etching may be performed.
  • the etching depth (thickness H3) is not particularly limited, but is, for example, 60 nm or more and 110 nm or less, and in one example is about 90 nm.
  • the first source side groove portion 43 is formed along the first side surface 32S1 of the gate layer main body portion 32 at a depth D1 (see FIG. 4) from the upper surface of the first layer portion 56L1. Further, a first drain side groove portion 44 is formed along the second side surface 32S2 of the gate layer main body portion 32 from the upper surface of the first layer portion 56L1 at the same depth D1.
  • the depth D1 of each groove 43, 44 has a correlation with the etching depth (thickness H3) of the third nitride semiconductor layer 56, and as the etching depth increases, the depth D1 also increases. .
  • the etching depth (thickness H3) is approximately 60 nm
  • the average value of the depth D1 of each groove portion 43, 44 is approximately 2 nm.
  • the etching depth (thickness H3) is about 70 nm
  • the average value of the depth D1 is about 3.5 nm
  • the average value of the depth D1 is about 3.5 nm.
  • the average value of D1 is approximately 5.5 nm. Although other measured values are not shown in FIG. 13, when the etching depth is less than 60 nm, the grooves 43 and 44 are formed at a smaller depth D1, whereas when the etching depth exceeds 80 nm. In this case, the grooves 43, 44 are formed with a larger depth D1.
  • each of the third nitride semiconductor layer 56 (gate layer main body portion 32 and first layer portion 56L1), gate electrode layer 58, and first protective layer 60 is removed by, for example, PECVD.
  • a second protective layer 64 is formed to cover.
  • the second protective layer 64 is a SiN layer, but the material and thickness of the second protective layer 64 are not particularly limited.
  • the second protective layer 64 is etched back until the upper surface of the first layer portion 56L1 is exposed. As a result of this etchback, a first sidewall 64A and a second sidewall 64B using the second protective layer 64 are formed.
  • the first side wall 64A covers the first side surface 24S1 of the gate electrode 24, the first side surface 32S1 of the gate layer main body portion 32, the corresponding first side surface of the first protective layer 60, and the first source side groove portion 43. ing. The first side wall 64A is arranged at a position corresponding to the formation region of the first source-side extension portion 33 (see FIG. 3) in plan view.
  • the second side wall 64B covers the second side surface 24S2 of the gate electrode 24, the second side surface 32S2 of the gate layer main body 32, the corresponding second side surface of the first protective layer 60, and the first drain side groove 44. ing. The second side wall 64B is arranged at a position corresponding to the formation region of the first drain side extension portion 34 (see FIG. 3) in plan view.
  • the third nitride semiconductor layer 56 (first layer portion 56L1 in FIG. 10) is further formed using the first protective layer 60, the first sidewall 64A, and the second sidewall 64B as a mask. Etched (for example, dry etched). As a result, the first source-side extending portion 33 and the first drain-side extending portion 34 are formed with a thickness H1. Further, a second layer portion 56L2 having a thickness corresponding to each of the second source-side extension portion 35 (see FIG. 3) and the second drain-side extension portion 36 (see FIG. 3) is formed.
  • the third nitride semiconductor layer 56 is etched at an etching depth corresponding to the thickness difference H12 (that is, the difference between the thickness H1 and the thickness H2) explained with reference to FIG.
  • the two-layer portion 56L2 is formed with a thickness H2 (see FIG. 4).
  • the etching depth (thickness difference H12) is not particularly limited, but is, for example, 10 nm or more and 60 nm or less, and in one example is about 25 nm.
  • the thickness H1 (see FIG. 4) of each of the first source-side extending portion 33 and the first drain-side extending portion 34 is, for example, 30 nm or more and 80 nm or less, and is approximately 35 nm in one example.
  • the thickness H2 (see FIG. 4) of the second layer portion 56L2 corresponding to each of the second source side extension portion 35 (see FIG. 3) and the second drain side extension portion 36 (see FIG. 3) is as follows. As described above, the thickness is, for example, 5 nm or more and 20 nm or less, and one example is about 10 nm.
  • a second source side groove portion 45 is formed along the side surface 33S1 of the first source side extension portion 33 at a depth D2 (see FIG. 4) from the upper surface of the second layer portion 56L2.
  • a second drain side groove portion 46 is formed along the side surface 34S1 of the first drain side extension portion 34 from the upper surface of the second layer portion 56L2 at the same depth D2.
  • etching is performed under conditions that emphasize reducing the depth D2 (see FIG. 4) of each groove 45, 46.
  • Etching can be performed under pressure and low bias power conditions. However, this etching may be performed under the same conditions as the etching process of FIG.
  • the depth D2 of each groove portion 45, 46 has a correlation with the etching depth (thickness difference H12) of the third nitride semiconductor layer 56, and as the etching depth increases, the depth D2 also increases.
  • the depth corresponding to the thickness difference H12 (for example, about 90 nm) is The depth D2 of each of the grooves 45 and 46 generated when etching is performed with a depth of about 25 nm) becomes smaller.
  • the first protective layer 60, the first sidewall 64A, and the second sidewall 64B are removed by etching using hydrogen fluoride, for example. Thereafter, by selectively etching the second layer portion 56L2, the second source-side extension portion 35 (see FIG. 3) and the second drain-side extension portion 36 (see FIG. 3) are formed. For example, it covers the gate electrode 24, the gate layer main body 32, the first source side extension 33, and the first drain side extension 34, and also covers the second source side extension 35 and the second drain side extension 36.
  • a mask (not shown) covering the formation region is formed on the structure of FIG. Then, by etching (for example, dry etching) the second layer portion 56L2 using this mask, the second source side extending portion 35 and the second drain side extending portion 36 are formed.
  • the nitride semiconductor device 10 includes a gate layer 22 provided on the electron supply layer 18 and made of a nitride semiconductor containing acceptor type impurities.
  • the gate layer 22 has a two-step structure including two steps.
  • the first step (upper side in FIG. 3) of the gate layer 22 includes a first source side extension portion 33 extending outward from the first side surface 32S1 of the gate layer main body portion 32; It is formed by the first drain side extension part 34 extending outward from the second side surface 32S2 of the gate layer main body part 32.
  • the second level lower side in FIG.
  • an extension part is provided in the gate layer to improve the gate breakdown voltage, and the gate layer is stepped.
  • a structure formed in a shape may be adopted.
  • an etching process is generally used to form the extended portion (step).
  • a groove may be formed on the upper surface of the extending portion due to the etching. This groove is formed with a depth that corresponds to the etching depth, and as the etching depth increases, the groove depth also increases.
  • the extended portion of the gate layer has the effect of alleviating electric field concentration at the end of the gate electrode and improving gate breakdown voltage.
  • the thickness of the extension part is large, it becomes difficult to maintain good 2DEG in the electron transport layer in the region immediately below the extension part, which may cause an increase in on-resistance. Therefore, when employing a step structure in the gate layer, it is required that the extension part be formed as thinly and uniformly as possible with a thickness that can satisfactorily maintain the 2DEG in the region immediately below the extension part.
  • the thickness of the extension part is small, the groove caused by the etching may sometimes penetrate the layer of the extension part. As a result, there is a concern that the function of the extension portion may not be fully exerted.
  • the gate layer 22 of the nitride semiconductor device 10 has a two-stage structure as described above.
  • the etching depth (thickness H3 in FIG. 4) when forming the first source side extension part 33 and the first drain side extension part 34 corresponding to the first step compared to the etching depth (thickness difference H12 in FIG. 4) when forming the second source side extension part 35 and the second drain side extension part 36 corresponding to the second step becomes smaller.
  • the first layer portion 56L1 when forming the first layer portion 56L1 by etching the third nitride semiconductor layer 56 (see FIG. 8) to the thickness of the first step (extension portions 33, 34), Etching with an emphasis on uniformity (eg, low pressure etching) may be performed. Therefore, the first layer portion 56L1 is formed with high in-plane uniformity. As a result, when forming the second layer portion 56L2 (see FIG. 11) by etching the first layer portion 56L1 to the thickness of the second step (extension portions 35, 36), the second layer portion 56L2 Good in-plane uniformity can be maintained. As a result, it is possible to maintain good in-plane uniformity of the second source-side extending portion 35 and the second drain-side extending portion 36 formed by the second layer portion 56L2.
  • uniformity e.g, low pressure etching
  • etching the first layer portion 56L1 to form the second layer portion 56L2 it is recommended to reduce the depth D2 of the second source side groove portion 45 and the second drain side groove portion 46. Focused etching can be performed. For example, in the etching process of FIG. 11, etching is performed under conditions of higher pressure and lower bias power than in the etching process of FIG. Thereby, the depth D2 of each groove portion 45, 46 can be further reduced.
  • the second source-side extension part 35 and the second drain-side extension part 36 can be formed as thin as possible while maintaining in-plane uniformity, and the second The depth D2 of the source side groove portion 45 and the second drain side groove portion 46 can be reduced.
  • the gate layer 22 includes a gate layer main body portion 32, a first source side extension portion 33, a first drain side extension portion 34, a second source side extension portion 35, and a second drain side extension portion 36. It has a two-stage structure.
  • the first level difference (for example, on the upper side) is formed by the first source side extension part 33 and the first drain side extension part 34
  • the second level difference (for example, on the lower side) is formed by the second source side extension part 34. portion 35 and a second drain side extension portion 36.
  • the first source side extension part 33 includes a first source side groove part 43
  • the first drain side extension part 34 includes a first drain side groove part 44 .
  • the second source side extension part 35 includes a second source side groove part 45
  • the second drain side extension part 36 includes a second drain side groove part 46 .
  • etching conditions can be applied to the etching process for forming the step difference in each step.
  • etching conditions that improve in-plane uniformity can be applied to the etching process for forming the first step (extension portions 33, 34).
  • etching conditions that suppress the formation of grooves due to etching can be applied to the etching process for forming the second step (extension portions 35 and 36).
  • the depth D1 of the first source side groove 43 and the first drain side groove 44 is greater than the depth D2 of the second source side groove 45 and the second drain side groove 46.
  • the first source-side extending portion 33 has a thickness H1 from the upper surface of the electron supply layer 18 to the upper surface 33S2 of the first source-side extending portion 33.
  • the first drain side extension portion 34 also has a thickness H1.
  • the second source-side extending portion 35 has a thickness H2 from the upper surface of the electron supply layer 18 to the upper surface 35S1 of the second source-side extending portion 35.
  • the second drain side extension portion 36 also has a thickness H2.
  • the thickness H2 is smaller than the thickness difference H12 between the thickness H1 and the thickness H2.
  • the gate layer main body part 32 has a thickness H3 from the upper surface 32S3 of the gate layer main body part 32 to the upper surfaces 33S2, 34S2 of the extension parts 33, 34.
  • the thickness H3 is larger than the thickness difference H12 between the thickness H1 and the thickness H2. This configuration allows the depths D1 and D2 to be satisfactorily maintained in the relationship D1>D2.
  • the first step includes a first source-side extending portion 33 and a first drain-side extending portion 34 extending from the gate layer main body portion 32 to the source side and the drain side, respectively.
  • the second level difference includes a second source-side extending portion 35 and a second drain-side extending portion 36 extending from the gate layer main body portion 32 to the source side and the drain side, respectively.
  • the first side surface 24S1 of the gate electrode 24 may be flush with the first side surface 32S1 of the gate layer main body section 32, and the second side surface 24S2 of the gate electrode 24 may be flush with the first side surface 32S1 of the gate layer main body section 32. It may be flush with 32S2.
  • This configuration simplifies the etching process for forming the gate electrode 24 and the gate layer main body 32, compared to, for example, a case where the gate electrode 24 is formed on a part of the upper surface 32S3 of the gate layer main body 32. be able to.
  • a surface leakage current flowing through the first side surface 24S1 of the gate electrode 24 and the first side surface 32S1 of the gate layer main body portion 32 may occur.
  • a surface leakage current flowing through the second side surface 24S2 of the gate electrode 24 and the second side surface 32S2 of the gate layer main body portion 32 may occur. Even in such a case, the grooves 43 and 44 formed in the first level difference (extending parts 33 and 34) of the gate layer 22 allow surface leakage current to flow through the first level difference (extending parts 33 and 34). ) to the second level difference (extension portions 35, 36). Therefore, surface leakage current can be reduced.
  • the first side surface 32S1 and the second side surface 32S2 of the gate layer main body portion 32 may be perpendicular to the upper surface of the electron supply layer 18. Further, the side surface 33S1 of the first source-side extension part 33 and the side surface 34S1 of the first drain-side extension part 34 may be perpendicular to the upper surface of the electron supply layer 18. With this configuration, the etching process for forming the gate layer main body portion 32 and the first step (extension portions 33, 34) can be simplified.
  • the first source side groove portion 43 includes a curved surface 43S that is continuous with the upper surface 33S2 (plane) of the first source side extension portion 33.
  • the first drain side groove portion 44 also includes a curved surface that is continuous with the upper surface 34S2 (plane) of the first drain side extension portion 34.
  • the second source side groove portion 45 includes a curved surface 45S that is continuous with the upper surface 35S1 (plane) of the second source side extension portion 35.
  • the second drain side groove portion 46 also includes a curved surface that is continuous with the upper surface 36S1 (plane) of the second drain side extension portion 36.
  • the curved surface 45S of the second source side groove 45 (and the curved surface of the second drain side groove 46) has a smaller curvature than the curved surface 43S of the first source side groove 43 (and the curved surface of the first drain side groove 44). have. This configuration allows the depths D1 and D2 to be satisfactorily maintained in the relationship D1>D2.
  • -Nitride semiconductors are not limited to GaN.
  • the nitride semiconductor device 10 can also be constructed using a nitride semiconductor other than GaN.
  • Representative examples of nitride semiconductors include aluminum nitride (AlN) and indium nitride (InN) in addition to GaN. These can generally be expressed as Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1).
  • the depth D2 of the grooves 45, 46 formed in the second step (extension parts 35, 36) is 0 (zero). That is, it is not essential that the second source side groove part 45 be formed in the second source side extension part 35, and it is not essential that the second drain side groove part 46 be formed in the second drain side extension part 36. do not have. Therefore, the dimensional values of the thicknesses H1, H2, H3 and the thickness difference H12 may be adjusted so that the depth D2 becomes 0 or a value near 0, that is, so that the grooves 45 and 46 are not formed. For example, the smaller the thickness difference H12, the closer the depth D2 can be to 0 or a value near 0. Thus, in the present disclosure, the depth D2 can take a value of, for example, 0 nm or more and 2 nm or less.
  • the second thickness H2 is smaller than the thickness difference H12 between the first thickness H1 and the second thickness H2 (see FIG. 4), but the second thickness H2 is greater than or equal to the thickness difference H12. It may be.
  • the etching depth that is, the thickness difference H12
  • the second level difference extending portions 35, 36
  • the first side surface 32S1 and the second side surface 32S2 of the gate layer main body part 32 may be inclined with respect to the upper surface of the electron supply layer 18.
  • the first side surface 32S1 and the second side surface 32S2 are inclined surfaces.
  • the depth D1 of the grooves 43 and 44 formed in the first step is as in the above embodiment. can be reduced compared to
  • the side surface 33S1 of the first source side extension part 33 and the side surface 34S1 of the first drain side extension part 34 may be inclined with respect to the upper surface of the electron supply layer 18.
  • the side surfaces 33S1, 34S1 of the first level difference (33, 34) are inclined surfaces in this way, the depth D2 of the grooves 45, 46 formed in the second level difference (extension parts 35, 36) can be reduced compared to the case of the above embodiment.
  • the first step is not limited to including both the first source-side extending portion 33 and the first drain-side extending portion 34.
  • the second level difference is not limited to including both the second source-side extending portion 35 and the second drain-side extending portion 36.
  • the first level difference may include only the first drain side extension part 34, and the second level difference may include only the second drain side extension part 36.
  • the term “on” as used in this disclosure includes the meanings of “on” and “above” unless the context clearly indicates otherwise.
  • the phrase “the first layer is formed on the second layer” refers to the fact that in some embodiments the first layer may be directly disposed on the second layer in contact with the second layer, but in other embodiments. It is contemplated that the first layer may be placed above the second layer without contacting the second layer. That is, the term “on” does not exclude structures in which other layers are formed between the first layer and the second layer.
  • the expression that the electron supply layer 18 is provided on the electron transit layer 16 refers not only to the structure of each of the above embodiments in which the electron supply layer 18 is directly provided on the electron transit layer 16, but also to the structure in which the 2DEG 20 is stably formed. It also includes a structure in which an intermediate layer is located between the electron supply layer 18 and the electron transit layer 16.
  • the Z-axis direction used in the present disclosure does not necessarily have to be a vertical direction, nor does it need to completely coincide with the vertical direction. Accordingly, various structures according to the present disclosure (e.g., the structure shown in FIG. 2) are different from each other in that "upper” and “lower” in the Z-axis direction described herein are “upper” and “lower” in the vertical direction. Not limited to one thing.
  • the X-axis direction may be a vertical direction
  • the Y-axis direction may be a vertical direction.
  • the gate layer (22) is a gate layer main body (32); a first extending portion (33; 34) extending outward from a side surface (32S1; 32S2) of the gate layer main body portion (32); a second extending portion (35; 36) extending outward from the side surface (33S1; 34S1) of the first extending portion (33; 34); The first extending portion (33; 34) extends from the upper surface (33S2; 34S2) of the first extending portion (
  • the second extending portion (35; 36) extends along the side surface (33S1; 34S1) of the first extending portion (33; 34) and the upper surface (35S1; 36S1) to a second depth (D2);
  • the nitride semiconductor device (10) according to supplementary note 1, wherein the first depth (D1) is larger than the second depth (D2).
  • the first extending portion (33; 34) has a first thickness (H1) from the upper surface of the electron supply layer (18) to the upper surface (33S2; 34S2) of the first extending portion (33; 34).
  • the second extending portion (35; 36) has a second thickness (H2) from the upper surface of the electron supply layer (18) to the upper surface (35S1; 36S1) of the second extending portion (35; 36).
  • the nitride semiconductor device according to appendix 1 or 2 wherein the second thickness (H2) is smaller than a thickness difference (H12) between the first thickness (H1) and the second thickness (H2) ( 10).
  • the first extending portion (33; 34) has a first thickness (H1) from the upper surface of the electron supply layer (18) to the upper surface (33S2; 34S2) of the first extending portion (33; 34).
  • the second extending portion (35; 36) has a second thickness (H2) from the upper surface of the electron supply layer (18) to the upper surface (35S1; 36S1) of the second extending portion (35; 36).
  • the nitride semiconductor device according to appendix 1 or 2 wherein the second thickness (H2) is greater than or equal to a thickness difference (H12) between the first thickness (H1) and the second thickness (H2) ( 10).
  • the first extending portion (33; 34) has a first thickness (H1) from the upper surface of the electron supply layer (18) to the upper surface (33S2; 34S2) of the first extending portion (33; 34).
  • the second extending portion (35; 36) has a second thickness (H2) from the upper surface of the electron supply layer (18) to the upper surface (35S1; 36S1) of the second extending portion (35; 36).
  • the gate layer body part (32) has a third thickness (H3) from the upper surface (32S3) of the gate layer body part (32) to the upper surface (33S2; 34S2) of the first extension part (33; 34). has The nitride semiconductor device according to appendix 1 or 2, wherein the third thickness (H3) is larger than the thickness difference (H12) between the first thickness (H1) and the second thickness (H2) ( 10).
  • the side surface of the gate layer main body portion (32) is a first side surface (32S1)
  • the first extending portion (33) is a first source side extending portion (33) extending outward from the first side surface (32S1) of the gate layer main body portion (32)
  • the first groove portion (43) is a first source side groove portion (43) formed in the first source side extension portion (33)
  • the gate layer main body portion (32) includes a second side surface (32S2) on the opposite side to the first side surface (32S1)
  • the gate layer (22) includes a first drain side extension part (34) extending outward from the second side surface (32S2) of the gate layer main body part (32),
  • the first drain side extending portion (34) extends from the upper surface (34S2) of the first drain side extending portion (34) along the second side surface (32S2) of the gate layer main body portion (32).
  • the nitride semiconductor device (10) according to any one of Supplementary Notes 1 to 5, including a first drain groove portion (44) formed at a first
  • the side surface of the gate layer main body portion (32) is a first side surface (32S1)
  • the first extending portion (33) is a first source side extending portion (33) extending outward from the first side surface (32S1) of the gate layer main body portion (32)
  • the first groove portion (43) is a first source side groove portion (43) formed in the first source side extension portion (33)
  • the gate layer main body portion (32) includes a second side surface (32S2) on the opposite side to the first side surface (32S1)
  • the gate layer (22) includes a first drain side extension part (34) extending outward from the second side surface (32S2) of the gate layer main body part (32),
  • the first drain side extending portion (34) extends from the upper surface (34S2) of the first drain side extending portion (34) along the second side surface (32S2) of the gate layer main body portion (32).
  • the gate layer (22) includes a second drain side extension part (36) extending outward from the side surface (34S1) of the first drain side extension part (34), The second drain side extending portion (36) extends from the upper surface (36S1) of the second drain side extending portion (36) along the side surface (34S1) of the first drain side extending portion (34).
  • the nitride semiconductor device (10) according to supplementary note 2, including the second drain groove (46) formed at the second depth (D2).
  • the side surfaces (32S1; 32S2) of the gate layer main body portion (32) and the side surfaces (33S1; 34S1) of the first extension portion (33; 34) are each perpendicular to the upper surface of the electron supply layer (18).
  • the nitride semiconductor device (10) according to any one of Supplementary Notes 1 to 8.
  • the upper surface (33S2; 34S2) of the first extending portion (33; 34) is a flat surface, and the first groove portion (43; 44) is the upper surface (33S2; 34S2) of the first extending portion (33; 34).
  • the nitride semiconductor device (10) according to any one of Supplementary Notes 1 to 9, including a first curved surface (43S) continuous to the first curved surface (43S).
  • the upper surface (33S2; 34S2) of the first extending portion (33; 34) is a flat surface, and the first groove portion (43; 44) is the upper surface (33S2; 34S2) of the first extending portion (33; 34).
  • ) includes a first curved surface (43S) continuous to The upper surface (35S1; 36S1) of the second extension part (35; 36) is a flat surface, and the second groove part (45; 46) is the upper surface (35S1; 36S1) of the second extension part (35; 36).
  • ) includes a second curved surface (45S) continuous to The nitride semiconductor device (10) according to appendix 2, wherein the second curved surface (45S) has a smaller curvature than the first curved surface (43S).
  • the first thickness (H1) is 30 nm or more and 80 nm or less
  • First source side extension part (first extension) 34 ...First drain side extension part (first extension part) 35...Second source side extension part (second extension part) 36...Second drain side extension part (second extension part) 43...First source side groove part (first groove part) 44...First drain side groove part (first groove part) 45...Second source side groove (second groove) 46...Second drain side groove (second groove) H1...thickness (first thickness) H2...thickness (second thickness) H12...Thickness difference H3...Thickness (third thickness) D1...Depth (first depth) D2...Depth (second depth)

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

窒化物半導体装置(10)は、窒化物半導体で構成された電子走行層(16)と、電子走行層(16)上に設けられ、電子走行層(16)よりも大きなバンドギャップを有する窒化物半導体で構成された電子供給層(18)と、電子供給層(18)上に設けられ、アクセプタ型不純物を含む窒化物半導体で構成されたゲート層(22)と、ゲート層(22)上に設けられたゲート電極(24)と、電子供給層(18)上に設けられたソース電極(28)およびドレイン電極(30)とを備える。ゲート層(22)は、ゲート層本体部(32)と、ゲート層本体部(32)の側面から外方に延在する第1延在部(33,34)と、第1延在部(33,34)の側面から外方に延在する第2延在部(35,36)とを含む。第1延在部(33,34)は、ゲート層本体部(32)の側面に沿って第1延在部(33,34)の上面から第1深さで形成された第1溝部(43,44)を含む。

Description

窒化物半導体装置
 本開示は、窒化物半導体装置に関する。
 現在、窒化ガリウム(GaN)等のIII族窒化物半導体(以下、単に「窒化物半導体」と言う場合がある)を用いた高電子移動度トランジスタ(HEMT)の製品化が進んでいる。特許文献1は、ノーマリーオフ型のHEMTとして構成された窒化物半導体装置の一例を記載している。
 特許文献1に記載された窒化物半導体装置は、電子走行層と、電子走行層上に設けられた電子供給層と、電子供給層上に設けられるとともに、アクセプタ型不純物を含む窒化物半導体によって構成されたゲート層とを含む。ゲート層上には、ゲート電極が設けられている。この構造では、電子走行層と電子供給層との間のヘテロ接合界面付近において電子走行層内に二次元電子ガス(2DEG)がソース-ドレイン間の電流経路(チャネル)として発生する。そして、ゲート電極にバイアスが印加されていないゼロバイアス時には、ゲート電極の直下の領域における電子走行層内のチャネルが消失することで、ノーマリーオフが実現されている。
特開2017-73506号公報
 アクセプタ型不純物を含む窒化物半導体層がゲート層としてゲート電極の直下に設けられた窒化物半導体装置では、ゲート耐圧の向上のためにゲート層に延在部(段差)を設ける構造が採用され得る。この構造では、延在部の直下の領域において電子走行層内の2DEGを良好に維持する厚さで延在部をできるだけ薄くかつ均一に形成することが求められる。
 本開示の一態様による窒化物半導体装置は、窒化物半導体によって構成された電子走行層と、前記電子走行層の上に設けられ、前記電子走行層よりも大きなバンドギャップを有する窒化物半導体によって構成された電子供給層と、前記電子供給層の上に設けられ、アクセプタ型不純物を含む窒化物半導体によって構成されたゲート層と、前記ゲート層の上に設けられたゲート電極と、前記電子供給層の上に設けられたソース電極およびドレイン電極とを備える。前記ゲート層は、ゲート層本体部と、前記ゲート層本体部の側面から外方に延在する第1延在部と、前記第1延在部の側面から外方に延在する第2延在部とを含む。前記第1延在部は、前記ゲート層本体部の側面に沿って前記第1延在部の上面から第1深さで形成された第1溝部を含む。
 本開示の一態様による窒化物半導体装置は、ゲート層の延在部を均一かつ適切な厚さで形成することができる。
図1は、一実施形態に係る例示的な窒化物半導体装置の概略断面図である。 図2は、一実施形態に係る例示的な窒化物半導体装置の概略断面を示す、図1のF2-F2線断面図である。 図3は、図2の窒化物半導体装置におけるゲート層およびゲート電極の拡大断面図である。 図4は、図3のゲート層の部分拡大断面図である。 図5は、図3および図4のゲート層の例示的な製造工程を示す概略断面図である。 図6は、図5に続く例示的な製造工程を示す概略断面図である。 図7は、図6に続く例示的な製造工程を示す概略断面図である。 図8は、図7に続く例示的な製造工程を示す概略断面図である。 図9は、図8に続く例示的な製造工程を示す概略断面図である。 図10は、図9に続く例示的な製造工程を示す概略断面図である。 図11は、図10に続く例示的な製造工程を示す概略断面図である。 図12は、図11に続く例示的な製造工程を示す概略断面図である。 図13は、エッチング深さと溝深さ(平均値)との関係を示す図である。
 以下、添付図面を参照して本開示による半導体装置のいくつかの実施形態を説明する。なお、図面に示される構成要素は、分かり易さおよび明瞭化のために部分的に拡大されている場合があり、必ずしも一定の縮尺で描かれていない。また、理解を容易にするために、断面図では、ハッチング線が省略されている場合がある。添付の図面は、本開示の実施形態を例示するに過ぎず、本開示を制限するものとみなされるべきではない。
 以下の詳細な記載は、本開示の例示的な実施形態を具体化する装置、システム、および方法を含む。この詳細な記載は本来説明のためのものに過ぎず、本開示の実施形態またはこのような実施形態の適用および使用を限定することを意図しない。
 [1.窒化物半導体装置の全体構造]
 以下、一実施形態に係る例示的な窒化物半導体装置10について説明する。
 図1は、一実施形態に係る例示的な窒化物半導体装置10の概略断面図である。また、図2は、窒化物半導体装置10の概略断面を示す図1のF2-F2線断面図である。まず、図2を参照して、窒化物半導体装置10の断面構造を説明する。窒化物半導体装置10は、窒化物半導体として例えばGaNを用いたHEMTとして構成され得る。窒化物半導体装置10は、半導体基板12と、半導体基板12上に形成されたバッファ層14と、バッファ層14上に形成された電子走行層16と、電子走行層16上に形成された電子供給層18とを含む。
 半導体基板12は、シリコン(Si)、シリコンカーバイド(SiC)、GaN、サファイア、または他の基板材料で形成され得る。例えば、半導体基板12は、Si基板である。半導体基板12の厚さは、例えば200μm以上1500μm以下であってよい。なお、各図面(例えば図2)に示される互いに直交するXYZ軸のZ軸方向は、半導体基板12の主面と直交する方向である。本明細書において使用される「平面視」という用語は、明示的に別段の記載がない限り、Z軸方向に沿って上方から窒化物半導体装置10を視ることをいう。
 バッファ層14は、1つまたは複数の窒化物半導体層を含み得る。電子走行層16は、バッファ層14上に形成され得る。バッファ層14は、例えば半導体基板12と電子走行層16との間の熱膨張係数の不整合に起因する半導体基板12の反りおよび窒化物半導体装置10におけるクラックの発生を抑制することができる任意の材料によって構成され得る。例えば、バッファ層14は、窒化アルミニウム(AlN)層、窒化アルミニウムガリウム(AlGaN)層、および異なるアルミニウム(Al)組成を有するグレーテッドAlGaN層のうちの少なくとも1つを含む。例えば、バッファ層14は、単一のAlN層、単一のAlGaN層、AlGaN/GaN超格子構造を有する層、AlN/AlGaN超格子構造を有する層、またはAlN/GaN超格子構造を有する層によって構成されていてもよい。
 一例において、バッファ層14は、半導体基板12上に形成された第1バッファ層と、第1バッファ層上に形成された第2バッファ層とを含む。第1バッファ層は、例えば200nmの厚さを有するAlN層であってよく、第2バッファ層は、例えば300nmの厚さを有するグレーテッドAlGaN層を複数回積層することによって形成されていてもよい。なお、バッファ層14におけるリーク電流を抑制するために、バッファ層14の一部に不純物を導入して半絶縁性にしてもよい。その場合、不純物は、例えば炭素(C)または鉄(Fe)であり、不純物の濃度は、例えば4×1016cm-3以上であってよい。
 電子走行層16は、窒化物半導体によって構成されており、例えばGaN層であってよい。電子走行層16は、例えば0.5μm以上2μm以下の厚さを有し得る。なお、電子走行層16におけるリーク電流を抑制するために、電子走行層16の一部に不純物を導入して電子走行層16の表層領域以外を半絶縁性にしてもよい。その場合、不純物は、例えばCであり、電子走行層16中の不純物の濃度は、例えば4×1016cm-3以上であってよい。
 電子供給層18は、電子走行層16よりも大きなバンドギャップを有する窒化物半導体によって構成されており、例えばAlGaN層であってよい。AlGaN層の場合、Al組成が大きいほどバンドギャップが大きくなるため、AlGaN層である電子供給層18は、GaN層である電子走行層16よりも大きなバンドギャップを有している。例えば、電子供給層18は、AlGa1-xNによって構成されており、xは0<x<0.3であり、より好ましくは0.1<x<0.3である。電子供給層18は、例えば5nm以上20nm以下の厚さを有し得る。
 電子走行層16と電子供給層18とは、互いに異なる格子定数を有する窒化物半導体によって構成されている。したがって、電子走行層16を構成する窒化物半導体(例えば、GaN)と電子供給層18を構成する窒化物半導体(例えば、AlGaN)とは、格子不整合系のヘテロ接合を形成する。電子走行層16および電子供給層18の自発分極と、ヘテロ接合界面付近の結晶歪みに起因するピエゾ分極とによって、ヘテロ接合界面付近における電子走行層16の伝導帯のエネルギーレベルはフェルミ準位よりも低くなる。これにより、電子走行層16と電子供給層18とのヘテロ接合界面に近い位置(例えば、界面から数nm程度の距離)において電子走行層16内には二次元電子ガス(2DEG)20が広がっている。
 窒化物半導体装置10はさらに、電子供給層18上に形成されたゲート層22と、ゲート層22上に形成されたゲート電極24と、電子供給層18、ゲート層22、およびゲート電極24を覆うパッシベーション層26とを含む。
 ゲート層22は、アクセプタ型不純物を含む窒化物半導体によって構成されている。ゲート層22は、電子供給層18上の一部に形成されている。例えば、電子供給層18がAlGaN層である場合、ゲート層22は、アクセプタ型不純物がドーピングされたGaN層、すなわちp型GaN層であってよい。アクセプタ型不純物は、例えば、亜鉛(Zn)、マグネシウム(Mg)、および炭素(C)のうちの少なくとも1つを含み得る。ゲート層22中のアクセプタ型不純物の最大濃度は、例えば、7×1018cm-3以上1×1020cm-3以下であってよい。ゲート層22の形状および構造は、図3および図4を参照して後述する。
 ゲート電極24は、1つまたは複数の金属層によって構成されている。例えば、ゲート電極24は、窒化チタン(TiN)層によって構成され得る。あるいは、ゲート電極24は、第1金属層(例えば、Ti層)と、第1金属層上に設けられた第2金属層(例えば、TiN層)とによって構成され得る。ゲート電極24は、ゲート層22の上面の一部または全部に形成されている。ゲート電極24は、ゲート層22とショットキー接合を形成し得る。ゲート電極24の厚さは、ゲート耐圧等の種々のパラメータを考慮して適宜決定され得る。例えば、ゲート電極24の厚さは50nm以上200nm以下であってよい。
 パッシベーション層26は、例えば、窒化シリコン(SiN)、二酸化シリコン(SiO)、酸窒化シリコン(SiON)、アルミナ(Al)、AlN、および酸窒化アルミニウム(AlON)のうちの少なくとも1つによって構成され得る。パッシベーション層26の厚さは、例えば、80nm以上150nm以下であってよい。パッシベーション層26は、第1開口部26Aと第2開口部26Bを含む。ゲート層22は、第1開口部26Aと第2開口部26Bとの間に位置している。
 窒化物半導体装置10は、電子供給層18上に設けられたソース電極28およびドレイン電極30を含む。ソース電極28は、第1開口部26Aを介して電子供給層18に接している。ドレイン電極30は、第2開口部26Bを介して電子供給層18に接している。
 ソース電極28およびドレイン電極30は、例えば、Ti層、TiN層、Al層、AlSiCu層、およびAlCu層のうちの少なくとも1つを用いた1つまたは複数の金属層によって構成され得る。例えば、ソース電極28およびドレイン電極30は、同じ材料で形成されてよい。この場合、ソース電極28およびドレイン電極30を同一の工程で形成することができる点で有利である。
 図2の例では、ソース電極28は、ソース電極部28Aと、フィールドプレート電極部28Bとを含む。ソース電極部28Aは、第1開口部26Aに充填された充填領域と、充填領域と一体に形成されるとともに平面視で第1開口部26Aの上方およびその周囲に位置する上部領域とを含む。上部領域は、例えば、平面視でゲート層22およびゲート電極24を覆う位置まで延在していてよい。ソース電極部28A(ソース電極28)は、第1開口部26Aを介して電子供給層18の直下の2DEG20とオーミック接触している。
 フィールドプレート電極部28Bは、ソース電極部28Aに連続して一体的に形成されている。ただし、フィールドプレート電極部28Bは、ソース電極部28Aとは離間して別々に形成されてもよい。フィールドプレート電極部28Bは、ドレイン電極30寄りの位置にフィールドプレート端部28Cを有している。図2のX軸方向においてゲート電極24のドレイン側端部からフィールドプレート端部28Cまでのフィールドプレート電極部28Bの長さは、フィールドプレート長と定義され得る。フィールドプレート電極部28Bは、例えばゲート-ソース間電圧が0Vの状態でソース-ドレイン間電圧に高電圧が印加されたときに、フィールドプレート電極部28Bの直下の領域に空乏層を伸長させる役割を果たす。これにより、ゲート電極24およびゲート層22の端部近傍の電界集中を緩和して、パッシベーション層26の絶縁性の低下を抑制しつつ、電流コラプスの発生を抑制することができる。
 ドレイン電極30の少なくとも一部は、パッシベーション層26の第2開口部26B内に充填されている。ドレイン電極30は、第2開口部26Bを介して電子供給層18の直下の2DEG20とオーミック接触している。
 図2に示された窒化物半導体装置10では、アクセプタ型不純物を含むゲート層22がゲート電極24の直下に設けられている。この構成では、ゲート電極24に対し印加されたゲート入力電圧によってゲート-ソース間電圧が正の閾値電圧を超えると、ゲート層22の直下における電子走行層16の領域に2DEG20が形成されてソース-ドレイン間が導通する。一方、ゲート-ソース間電圧が閾値電圧を超えないときには、ゲート層22の直下における電子走行層16の領域の少なくとも一部において2DEG20が消失する(図2参照)。これは、ゲート層22がアクセプタ型不純物を含んでいるために電子走行層16および電子供給層18のエネルギーレベルが引き上げられて、2DEG20が空乏化されるためである。これにより、窒化物半導体装置10はノーマリーオフ型のHEMTとして実現されている。
 [2.ゲート層の段差構造]
 次に、図2および図3を参照してゲート層22の例示的な段差構造について説明する。図3は、図2の窒化物半導体装置10のゲート層22およびゲート電極24の拡大断面図である。
 ゲート層22は、複数の段差を有する段差構造、図3の例では2段構造を有している。ゲート層22は、ゲート層本体部32と、1段目の段差(図3では上側の段差)を構成する第1ソース側延在部33および第1ドレイン側延在部34と、2段目の段差(図3では下側の段差)を構成する第2ソース側延在部35および第2ドレイン側延在部36とを含む。第1ソース側延在部33および第1ドレイン側延在部34の各々は第1延在部に対応し、第2ソース側延在部35および第2ドレイン側延在部36の各々は第2延在部に対応する。
 ゲート層本体部32は、ゲート電極24が位置するゲート層22の中央部分に相当する。ゲート層本体部32は、リッジ部とも呼ぶこともできる。ゲート層本体部32は、図2のXZ平面に沿った断面において矩形状またはほぼ矩形状(例えば台形状)を有し得る。ゲート層本体部32は、第1側面32S1と、反対側の第2側面32S2とを含む。図3の例では、第1側面32S1および第2側面32S2は、電子供給層18の上面に対して垂直であるが傾斜していてもよい。なお、電子供給層18の上面に対して「垂直」な面とは、電子供給層18の上面に対して完全に90度の面だけでなく、プロセス上発生する僅かに傾斜した面も含むことが意図される。
 ゲート電極24は、ゲート層本体部32の上面全体にわたって形成されている。図3の例では、ゲート電極24の第1側面24S1は、ゲート層本体部32の第1側面32S1と面一であり、ゲート電極24の第2側面24S2は、ゲート層本体部32の第2側面32S2と面一である。
 ゲート層本体部32は、ゲート層本体部32の上面32S3(ゲート電極24に接するゲート層22の上面)からゲート層本体部32の下面(電子供給層18に接するゲート層22の下面)までの距離に相当する厚さを有している。この厚さは、ゲート耐圧等の種々のパラメータを考慮して適宜決定され得る。例えば、ゲート層本体部32の厚さは、80nm以上150nm以下であってよい。
 第1ソース側延在部33は、ゲート層本体部32の第1側面32S1から第1開口部26A(図2参照)に向かって延在している。第1ドレイン側延在部34は、ゲート層本体部32の第2側面32S2から第2開口部26B(図2参照)に向かって延在している。第1ソース側延在部33および第1ドレイン側延在部34の各々の延在方向(X軸方向)の長さ(寸法値)は特に限定されないが、例えば、30nm以上100nm以下であってよい。図3の例では、第1ソース側延在部33と第1ドレイン側延在部34とはX軸方向に同じ長さで形成されているが、両者はX軸方向に異なる長さで形成されてもよい。
 第2ソース側延在部35は、第1ソース側延在部33の側面33S1から第1開口部26A(図2参照)に向かって延在している。第2ドレイン側延在部36は、第1ドレイン側延在部34の側面34S1から第2開口部26B(図2参照)に向かって延在している。図3の例では、第1ソース側延在部33の側面33S1および第1ドレイン側延在部34の側面34S1は、電子供給層18の上面に対して垂直であるが傾斜していてもよい。
 第2ソース側延在部35および第2ドレイン側延在部36の各々の延在方向(X軸方向)の長さ(寸法値)は特に限定されない。一例では、第2ソース側延在部35は、第1ソース側延在部33の側面33S1から第2ソース側延在部35の先端まで、例えば0.2μm以上0.3μm以下の長さを有し得る。一方、第2ドレイン側延在部36は、第1ドレイン側延在部34の側面34S1から第2ドレイン側延在部36の先端まで、例えば0.2μm以上1.5μm以下の長さを有し得る。図3の例では、第2ドレイン側延在部36は、X軸方向に第2ソース側延在部35よりも長く形成されているが、両者は同じ長さで形成されてもよい。
 [3.ゲート層の段差構造における溝部]
 次に、図2~図4を参照して、ゲート層22の段差構造に生じる溝部について説明する。図4は、図3のゲート層22の部分拡大断面図である。
 図4に示されるように、第1ソース側延在部33は、電子供給層18の上面から第1ソース側延在部33の上面33S2まで厚さH1を有している。なお、図4には示されていないが、第1ドレイン側延在部34(図3参照)も、第1ソース側延在部33と同じ厚さ、すなわち厚さH1を有している。
 第2ソース側延在部35は、電子供給層18の上面から第2ソース側延在部35の上面35S1まで厚さH2を有している。なお、図4には示されていないが、第2ドレイン側延在部36(図3参照)も、第2ソース側延在部35と同じ厚さ、すなわち厚さH2を有している。
 厚さH2は、厚さH1よりも小さい。さらに、図3の例では、厚さH2は、厚さH1と厚さH2との厚み差H12よりも小さい。各厚さH1,H2の寸法値は特に限定されないが、厚さH1は、例えば30nm以上80nm以下であってよく、厚さH2は、例えば5nm以上20nm以下であってよい。なお、厚さH1は第1厚さに対応し、厚さH2は第2厚さに対応する。
 ゲート層本体部32は、ゲート層本体部32の上面32S3から第1ソース側延在部33の上面33S2まで、厚さH3を有している。厚さH3は、上述した厚み差H12よりも大きい。なお、厚さH3は第3厚さに対応する。
 図4に示されるように、第1ソース側延在部33は、ゲート層本体部32の第1側面32S1に沿って第1ソース側延在部33の上面33S2から深さD1で形成された第1ソース側溝部43を含む。なお、図4には示されていないが、第1ドレイン側延在部34(図3参照)も、深さD1で形成された第1ドレイン側溝部44を含む。深さD1は厚さH1よりも小さく、さらには厚み差H12よりも小さい。深さD1は第1深さに対応する。
 第1ソース側溝部43および第1ドレイン側溝部44は各々、図4のXZ平面に沿った断面において、例えばくさび形状またはテーパ形状を有し得る。第1ソース側延在部33の上面33S2は平面であり、第1ソース側溝部43は、第1ソース側延在部33の上面33S2(平面)に連続する湾曲面43Sを含む。この湾曲面43Sとゲート層本体部32の第1側面32S1とによって第1ソース側溝部43が形成されている。同様に、第1ドレイン側溝部44(図3参照)も、第1ドレイン側延在部34の上面34S2(平面)に連続する湾曲面を含み、この湾曲面とゲート層本体部32の第2側面32S2とによって第1ドレイン側溝部44が形成されている。湾曲面43Sは第1湾曲面に対応する。
 第2ソース側延在部35は、第1ソース側延在部33の側面33S1に沿って第2ソース側延在部35の上面35S1から深さD2で形成された第2ソース側溝部45を含む。なお、図4には示されていないが、第2ドレイン側延在部36(図3参照)も、深さD2で形成された第2ドレイン側溝部46を含む。深さD2は厚さH2よりも小さい。深さD2は第2深さに対応する。
 第2ソース側溝部45および第2ドレイン側溝部46は各々、図4のXZ平面に沿った断面において、例えばくさび形状またはテーパ形状を有し得る。第2ソース側延在部35の上面35S1は平面であり、第2ソース側溝部45は、第2ソース側延在部35の上面35S1(平面)に連続する湾曲面45Sを含む。この湾曲面45Sと第1ソース側延在部33の側面33S1とによって第2ソース側溝部45が形成されている。同様に、第2ドレイン側溝部46(図3参照)も、第2ドレイン側延在部36の上面36S1(平面)に連続する湾曲面を含み、この湾曲面と第1ドレイン側延在部34の側面34S1とによって第2ドレイン側溝部46が形成されている。湾曲面45Sは第2湾曲面に対応する。
 図4に示されるように、第1ソース側溝部43および第1ドレイン側溝部44の深さD1は、第2ソース側溝部45および第2ドレイン側溝部46の深さD2よりも大きい。各深さD1,D2の寸法値は特に限定されないが、深さD1は、例えば2nm以上10nm以下であってよく、深さD2は、例えば0nmよりも大きく2nm以下であってよい。また、第2ソース側溝部45の湾曲面45S(および第2ドレイン側溝部46の湾曲面)は、第1ソース側溝部43の湾曲面43S(および第1ドレイン側溝部44の湾曲面)よりも小さな曲率を有している。
 なお、図2~図4に示す実施例では、第2ソース側延在部35および第2ドレイン側延在部36に第2ソース側溝部45および第2ドレイン側溝部46がそれぞれ形成されているが、第2ソース側溝部45および第2ドレイン側溝部46が形成されない場合もある。そのような実施例では、深さD2は0nmである。したがって、深さD2は、例えば0nm以上2nm以下の値であってよい。
 第1ソース側溝部43および第1ドレイン側溝部44は、例えばエッチングにより第1ソース側延在部33および第1ドレイン側延在部34を形成する過程で形成される。同様に、第2ソース側溝部45および第2ドレイン側溝部46は、例えばエッチングにより第2ソース側延在部35および第2ドレイン側延在部36を形成する過程で形成される。
 [4.窒化物半導体装置の例示的な平面レイアウト]
 次に、図1を参照して、HEMT構造(窒化物半導体装置10)の例示的な平面レイアウトについて説明する。なお、図示を明瞭にするために、図1ではパッシベーション層26の図示を省略している。また、第1開口部26Aおよび第2開口部26Bとフィールドプレート端部28C(ソース電極28)が破線で描かれている。
 図1に示されるように、窒化物半導体装置10は、ゲート配線72、ソース配線74、およびドレイン配線76を含む。ゲート配線72、ソース配線74、およびドレイン配線76は、ソース電極28およびドレイン電極30を覆う図示しない層間絶縁層上に形成されている。例えば、ゲート配線72は、層間絶縁層を貫通するゲート接続導体73によりゲート電極24に接続されている。ソース配線74は、層間絶縁層を貫通するソース接続導体75によりソース電極部28A(ソース電極28)に接続されている。ドレイン配線76は、層間絶縁層を貫通するドレイン接続導体77によりドレイン電極30に接続されている。
 窒化物半導体装置10は、HEMT構造を各々有する複数のトランジスタ要素を素子領域内に含む。なお、図1は、X軸方向に並ぶ複数のトランジスタ要素のみを示しているが、実際には、トランジスタ要素はX軸方向およびY軸方向に並んで設けられ得る。
 ドレイン電極30は、トランジスタ要素毎に設けられており、平面視でY軸方向に延在している。ソース電極28は、例えば、平面視で各ドレイン電極30を囲むように設けられている。上記したように、ソース電極28は、ソース電極部28Aとフィールドプレート電極部28B(図2)を含む。フィールドプレート電極部28Bは、ソース電極部28Aと一体的に形成されており、平面視で隣接するドレイン電極30に向かって延在している。なお、図1の例では、ソース電極28は、X軸方向に隣接する複数のトランジスタ要素に亘ってX軸方向に連続的に形成されているが、X軸方向に複数の部分に分離されていてもよい。
 ゲート層22およびゲート電極24は、トランジスタ要素毎に設けられている。各ゲート層22および各ゲート電極24は、平面視においてドレイン電極30の一つを囲むように環状に形成されている。
 なお、図示が複雑になるのを避けるために、図1では、ゲート層22については、第1ソース側延在部33および第1ドレイン側延在部34の図示を省略し、第2ソース側延在部35および第2ドレイン側延在部36を図示している。
 [5.ゲート層の製造工程]
 次に、図5~図13を参照して、図3および図4のゲート層22の製造工程について説明する。図5~図12は、ゲート層22の例示的な製造工程を示す概略断面図であり、図13は、エッチング深さと溝深さ(平均値)との関係を示す図である。
 図5に示されるように、電子走行層16に対応する第1窒化物半導体層52、電子供給層18に対応する第2窒化物半導体層54、およびゲート層22に対応する第3窒化物半導体層56は順にエピタキシャル成長によって形成されている。なお、図示は省略しているが、半導体基板12上のバッファ層14もエピタキシャル成長によって形成されている。第1窒化物半導体層52はバッファ層14上に形成されている。エピタキシャル成長プロセスには、例えば有機金属気相成長(Metal Organic Chemical Vapor Deposition:MOCVD)法を用いることができる。
 第1~第3窒化物半導体層52,54,56は、図2~図4を参照して説明した電子走行層16、電子供給層18、およびゲート層22の構造にそれぞれ対応する任意の材料および厚さで形成され得る。一例では、第1窒化物半導体層52(電子走行層16)はGaN層、第2窒化物半導体層54(電子供給層18)はAlGaN層、第3窒化物半導体層56(ゲート層22)はアクセプタ型不純物として例えばMgがドープされたp型GaN層である。
 第3窒化物半導体層56上には、例えばスパッタ法によってゲート電極層58が形成されている。ゲート電極層58は、ゲート電極24を形成するための層である。ゲート電極層58は、図2~図4を参照して説明したゲート電極24の構造に対応する任意の材料および厚さで形成され得る。一例では、ゲート電極層58はTiN層である。
 ゲート電極層58上には、例えばプラズマ化学的蒸着(Plasma-Enhanced Chemical Vapor Deposition:PECVD)法によって第1保護層60が形成されている。一例では、第1保護層60はSiN層であるが、第1保護層60の材料および厚さは特に限定されない。
 第1保護層60上には、レジスト(例えばフォトレジスト)を用いたマスク62が形成されている。なお、レジストの種類は特に限定されない。マスク62は、平面視においてゲート電極24の形成領域に対応する位置に配置されている。
 次いで、図6に示されるように、マスク62を用いたエッチング(例えばドライエッチング)によって、第1保護層60とゲート電極層58(図5参照)とが選択的に除去される。このエッチングにより、ゲート電極24が形成されるとともに、ゲート層22に対応する第3窒化物半導体層56の表面が露出される。その後、図7に示されるように、マスク62が除去される。
 次いで、図8に示されるように、第1保護層60をマスクとして用いて第3窒化物半導体層56がエッチング(例えば、ドライエッチング)される。これにより、第1ソース側延在部33(図3参照)および第1ドレイン側延在部34(図3参照)の各々に対応する厚さを有する第1層部分56L1が形成される。また、ゲート電極24の直下にゲート層本体部32が形成される。この工程では、図4を参照して説明した厚さH3に対応するエッチング深さで第3窒化物半導体層56のエッチングが行われ、第1層部分56L1は、厚さH1(図4参照)で形成される。また、この工程では、高い面内均一性(すなわち、厚さ均一性)を得ることを重視した条件でエッチングが行われ、例えば低圧エッチングが行われ得る。エッチング深さ(厚さH3)は特に限定されないが、例えば60nm以上110nm以下であり、一例では約90nmである。
 このエッチングの結果、ゲート層本体部32の第1側面32S1に沿って第1層部分56L1の上面から深さD1(図4参照)で第1ソース側溝部43が形成される。さらに、ゲート層本体部32の第2側面32S2に沿って第1層部分56L1の上面から同じく深さD1で第1ドレイン側溝部44が形成される。
 ここで、各溝部43,44の深さD1は、第3窒化物半導体層56のエッチング深さ(厚さH3)と相関性があり、エッチング深さが増加するほど、深さD1も増加する。例えば、図13に示されるように、エッチング深さ(厚さH3)が約60nmの場合、各溝部43,44の深さD1の平均値は約2nmである。また、エッチング深さ(厚さH3)が約70nmの場合には、深さD1の平均値は約3.5nmであり、エッチング深さ(厚さH3)が約80nmの場合には、深さD1の平均値は約5.5nmである。なお、図13に他の計測値は示されていないが、エッチング深さが60nm未満の場合には、より小さな深さD1で溝部43,44が形成される一方、エッチング深さが80nmを越える場合には、より大きな深さD1で溝部43,44が形成される。
 次いで、図9に示されるように、例えばPECVD法によって第3窒化物半導体層56(ゲート層本体部32および第1層部分56L1)、ゲート電極層58、および第1保護層60のそれぞれ表面全体を覆うように第2保護層64が形成される。一例では、第2保護層64はSiN層であるが、第2保護層64の材料および厚さは特に限定されない。
 次いで、図10に示されるように、第1層部分56L1の上面が露出されるまで第2保護層64がエッチバックされる。このエッチバックの結果、第2保護層64を用いた第1側壁64Aと第2側壁64Bとが形成される。
 第1側壁64Aは、ゲート電極24の第1側面24S1と、ゲート層本体部32の第1側面32S1と、第1保護層60の対応する第1側面と、第1ソース側溝部43とを覆っている。第1側壁64Aは、平面視にて第1ソース側延在部33(図3参照)の形成領域に対応する位置に配置されている。第2側壁64Bは、ゲート電極24の第2側面24S2と、ゲート層本体部32の第2側面32S2と、第1保護層60の対応する第2側面と、第1ドレイン側溝部44とを覆っている。第2側壁64Bは、平面視にて第1ドレイン側延在部34(図3参照)の形成領域に対応する位置に配置されている。
 次いで、図11に示されるように、第1保護層60、第1側壁64A、および第2側壁64Bをマスクとして用いて第3窒化物半導体層56(図10の第1層部分56L1)がさらにエッチング(例えば、ドライエッチング)される。これにより、第1ソース側延在部33および第1ドレイン側延在部34が厚さH1で形成される。また、第2ソース側延在部35(図3参照)および第2ドレイン側延在部36(図3参照)の各々に対応する厚さを有する第2層部分56L2が形成される。この工程では、図4を参照して説明した厚み差H12(すなわち、厚さH1と厚さH2との差)に対応するエッチング深さで第3窒化物半導体層56のエッチングが行われ、第2層部分56L2は、厚さH2(図4参照)で形成される。エッチング深さ(厚み差H12)は特に限定されないが、例えば10nm以上60nm以下であり、一例では約25nmである。
 第1ソース側延在部33および第1ドレイン側延在部34の各々の厚さH1(図4参照)は、上記したように例えば30nm以上80nm以下であり、一例では約35nmである。また、第2ソース側延在部35(図3参照)および第2ドレイン側延在部36(図3参照)の各々に対応する第2層部分56L2の厚さH2(図4参照)は、上記したように例えば5nm以上20nm以下であり、一例では約10nmである。
 このエッチングの結果、第1ソース側延在部33の側面33S1に沿って第2層部分56L2の上面から深さD2(図4参照)で第2ソース側溝部45が形成される。さらに、第1ドレイン側延在部34の側面34S1に沿って第2層部分56L2の上面から同じく深さD2で第2ドレイン側溝部46が形成される。
 ここで、図11のエッチングプロセスでは、各溝部45,46の深さD2(図4参照)を低減することを重視した条件でエッチングが行われ、例えば、図8のエッチングプロセスのときよりも高い圧力かつ低いバイアスパワーの条件でエッチングが行われ得る。ただし、このエッチングは、図8のエッチングプロセスのときと同じ条件で行われてもよい。各溝部45,46の深さD2は、第3窒化物半導体層56のエッチング深さ(厚み差H12)と相関性があり、エッチング深さが増加するほど、深さD2も増加する。したがって、例えば、厚さH3に対応する深さ(例えば約90nm)でエッチングが行われた場合に発生する各溝部43,44の深さD1に比べて、厚み差H12に対応する深さ(例えば約25nm)でエッチングが行われた場合に発生する各溝部45,46の深さD2は小さくなる。
 次いで、図12に示されるように、例えばフッ化水素を用いたエッチングによって第1保護層60、第1側壁64A、および第2側壁64Bが除去される。その後、第2層部分56L2を選択的にエッチングすることで、第2ソース側延在部35(図3参照)および第2ドレイン側延在部36(図3参照)が形成される。例えば、ゲート電極24、ゲート層本体部32、第1ソース側延在部33、および第1ドレイン側延在部34を覆うとともに第2ソース側延在部35および第2ドレイン側延在部36の形成領域を覆うマスク(図示略)が図12の構造上に形成される。そして、このマスクを用いて第2層部分56L2をエッチング(例えば、ドライエッチング)することで、第2ソース側延在部35および第2ドレイン側延在部36が形成される。
 [6.窒化物半導体装置の作用]
 窒化物半導体装置10は、電子供給層18の上に設けられ、アクセプタ型不純物を含む窒化物半導体によって構成されたゲート層22を含む。ゲート層22は、2つの段差を含む2段構造を有している。図3の例では、ゲート層22の1段目(図3では上側)の段差は、ゲート層本体部32の第1側面32S1から外方に延在する第1ソース側延在部33と、ゲート層本体部32の第2側面32S2から外方に延在する第1ドレイン側延在部34とによって形成されている。2段目(図3では下側)の段差は、第1ソース側延在部33の側面33S1から外方に延在する第2ソース側延在部35と、第1ドレイン側延在部34の側面34S1から外方に延在する第2ドレイン側延在部36とによって形成されている。
 ここで、アクセプタ型不純物を含む窒化物半導体層がゲート層としてゲート電極の直下に設けられた窒化物半導体装置では、ゲート耐圧の向上のためにゲート層に延在部を設けてゲート層を段差状に形成する構造が採用され得る。この場合、延在部(段差)の形成には一般的にエッチングプロセスが用いられる。延在部をエッチングによって形成するとき、延在部の上面にはエッチングに起因した溝が形成され得る。この溝は、エッチング深さに応じた深さで形成され、エッチング深さが増加するにつれて、溝の深さも増加する。
 ゲート層の延在部は、ゲート電極の端部における電界集中を緩和してゲート耐圧を向上させる効果をもたらす。この際、延在部の厚さが大きいと、延在部の直下の領域において電子走行層内の2DEGを良好に維持することが困難となり、それによって、オン抵抗の増加が生じ得る。したがって、ゲート層に段差構造を採用する場合、延在部の直下の領域における2DEGを良好に維持し得る厚さで延在部をできるだけ薄くかつ均一に形成することが求められる。しかしながら、延在部の厚さが小さい場合、上記エッチングに起因した溝が延在部の層を貫通する場合が生じ得る。その結果、延在部の機能が十分発揮されなくなることが懸念される。
 この点、窒化物半導体装置10のゲート層22は、上記のように2段構造を有している。この構造では、1段目の段差に対応する第1ソース側延在部33および第1ドレイン側延在部34が形成される際のエッチング深さ(図4における厚さH3)に比べて、2段目の段差に対応する第2ソース側延在部35および第2ドレイン側延在部36が形成される際のエッチング深さ(図4における厚み差H12)が小さくなる。その結果、第1ソース側延在部33および第1ドレイン側延在部34にそれぞれ形成される第1ソース側溝部43および第1ドレイン側溝部44の深さD1に比べて、第2ソース側延在部35および第2ドレイン側延在部36にそれぞれ形成される第2ソース側溝部45および第2ドレイン側溝部46の深さD2が小さくなる。このため、電子走行層16内の2DEG20を良好に維持する厚さで第2ソース側延在部35および第2ドレイン側延在部36をできるだけ薄く形成することが可能となる。
 ここで、1段目の段差(延在部33,34)の厚さまで第3窒化物半導体層56(図8参照)をエッチングして第1層部分56L1を形成する際には、高い面内均一性を得ることを重視したエッチング(例えば、低圧エッチング)が実施され得る。このため、第1層部分56L1は高い面内均一性を有して形成される。これにより、2段目の段差(延在部35,36)の厚さまで第1層部分56L1をエッチングして第2層部分56L2(図11参照)を形成する際には、第2層部分56L2の面内均一性を良好に維持することができる。その結果、第2層部分56L2によって形成される第2ソース側延在部35および第2ドレイン側延在部36の面内均一性を良好に維持することが可能となる。
 また、第1層部分56L1をエッチングして第2層部分56L2(図11参照)を形成する際には、第2ソース側溝部45および第2ドレイン側溝部46の深さD2を低減することを重視したエッチングが実施され得る。例えば、図11のエッチングプロセスでは、図8のエッチングプロセスのときよりも高い圧力かつ低いバイアスパワーの条件でエッチングが実施される。これにより、各溝部45,46の深さD2をより低減することができる。したがって、ゲート層22の2段構造を採用することにより、第2ソース側延在部35および第2ドレイン側延在部36をできるだけ薄くかつ面内均一性を維持して形成しつつ、第2ソース側溝部45および第2ドレイン側溝部46の深さD2を低減することができる。
 窒化物半導体装置10は、以下の利点を有する。
 (1)ゲート層22は、ゲート層本体部32、第1ソース側延在部33、第1ドレイン側延在部34、第2ソース側延在部35、および第2ドレイン側延在部36を含み、2段構造を有している。1段目(例えば上側)の段差は、第1ソース側延在部33および第1ドレイン側延在部34によって形成され、2段目(例えば下側)の段差は、第2ソース側延在部35および第2ドレイン側延在部36によって形成されている。第1ソース側延在部33は第1ソース側溝部43を含み、第1ドレイン側延在部34は第1ドレイン側溝部44を含む。第2ソース側延在部35は第2ソース側溝部45を含み、第2ドレイン側延在部36は第2ドレイン側溝部46を含む。ゲート層22に2段構造を採用することで、2段目の段差(延在部35,36)に形成される溝部45,46の深さD2を相対的に小さくすることができる。
 (2)また、ゲート層22に2段構造を採用することで、各段の段差を形成するエッチングプロセスに異なるエッチング条件を適用することができる。例えば、1段目の段差(延在部33,34)を形成するエッチングプロセスに、面内均一性を向上させるエッチング条件を適用することができる。一方、2段目の段差(延在部35,36)を形成するエッチングプロセスに、エッチングに起因した溝の形成を抑制するエッチング条件を適用することができる。このような異なるエッチング条件を採用することで、溝部45,46の深さD2を低減しつつ、2段目の段差(延在部35,36)をできるだけ薄くかつ均一に形成することが可能となる。
 (3)第1ソース側溝部43および第1ドレイン側溝部44の深さD1は、第2ソース側溝部45および第2ドレイン側溝部46の深さD2よりも大きい。この関係を維持することにより、溝部45,46の深さD2を低減して2段目の段差(延在部35,36)をできるだけ薄く形成することが可能となる。
 (4)第1ソース側延在部33は、電子供給層18の上面から第1ソース側延在部33の上面33S2まで厚さH1を有している。同様に、第1ドレイン側延在部34も厚さH1を有している。第2ソース側延在部35は、電子供給層18の上面から第2ソース側延在部35の上面35S1まで厚さH2を有している。同様に、第2ドレイン側延在部36も厚さH2を有している。厚さH2は、厚さH1と厚さH2との厚み差H12よりも小さい。この構成では、第2ソース側延在部35の厚さH2および第2ドレイン側延在部36の厚さH2をできるだけ小さくすることができる。
 (5)ゲート層本体部32は、ゲート層本体部32の上面32S3から延在部33,34の上面33S2,34S2まで厚さH3を有している。厚さH3は、厚さH1と厚さH2との厚み差H12よりも大きい。この構成により、深さD1,D2をD1>D2の関係に良好に維持することが可能となる。
 (6)ゲート層22において、1段目の段差は、ゲート層本体部32からソース側およびドレイン側にそれぞれ延在する第1ソース側延在部33および第1ドレイン側延在部34を含む。同様に、2段目の段差は、ゲート層本体部32からソース側およびドレイン側にそれぞれ延在する第2ソース側延在部35および第2ドレイン側延在部36を含む。このように各段の段差(延在部)がソース側およびドレイン側の双方に設けられることにより、ゲート耐圧を向上させる効果を高めることができる。
 (7)ゲート電極24の第1側面24S1は、ゲート層本体部32の第1側面32S1と面一であってよく、ゲート電極24の第2側面24S2は、ゲート層本体部32の第2側面32S2と面一であってよい。この構成では、例えばゲート層本体部32の上面32S3の一部の上にゲート電極24が形成されている場合に比べて、ゲート電極24およびゲート層本体部32を形成するエッチングプロセスを簡素化することができる。ここで、この構成では、ゲート電極24の第1側面24S1およびゲート層本体部32の第1側面32S1を流れる表面リーク電流が発生し得る。同様に、ゲート電極24の第2側面24S2およびゲート層本体部32の第2側面32S2を流れる表面リーク電流が発生し得る。このような場合にも、ゲート層22の1段目の段差(延在部33,34)に形成された溝部43,44は、表面リーク電流が1段目の段差(延在部33,34)の表面を介して2段目の段差(延在部35,36)へ流れることを抑制する役割を果たす。したがって、表面リーク電流を低減することができる。
 (8)ゲート層本体部32の第1側面32S1および第2側面32S2は、電子供給層18の上面に対して垂直であってよい。また、第1ソース側延在部33の側面33S1および第1ドレイン側延在部34の側面34S1は、電子供給層18の上面に対して垂直であってよい。この構成では、ゲート層本体部32および1段目の段差(延在部33,34)を形成するエッチングプロセスを簡素化することができる。
 (9)第1ソース側溝部43は、第1ソース側延在部33の上面33S2(平面)に連続する湾曲面43Sを含む。同様に、第1ドレイン側溝部44も、第1ドレイン側延在部34の上面34S2(平面)に連続する湾曲面を含む。また、第2ソース側溝部45は、第2ソース側延在部35の上面35S1(平面)に連続する湾曲面45Sを含む。同様に、第2ドレイン側溝部46も、第2ドレイン側延在部36の上面36S1(平面)に連続する湾曲面を含む。第2ソース側溝部45の湾曲面45S(および第2ドレイン側溝部46の湾曲面)は、第1ソース側溝部43の湾曲面43S(および第1ドレイン側溝部44の湾曲面)よりも小さな曲率を有している。この構成により、深さD1,D2をD1>D2の関係に良好に維持することが可能となる。
 [変更例]
 上記各実施形態は、以下のように変更して実施することができる。また、上記各実施形態および以下の各変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・窒化物半導体は、GaNに限定されない。窒化物半導体装置10は、GaN以外の他の窒化物半導体を用いて構成することもできる。窒化物半導体の代表例としては、GaNの他に、窒化アルミニウム(AlN)、窒化インジウム(InN)が挙げられる。これらは、一般には、AlInGa1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)と表すことができる。
 ・2段目の段差(延在部35,36)に形成される溝部45,46の深さD2は理想的には0(ゼロ)であることが望ましい。すなわち、第2ソース側延在部35に第2ソース側溝部45が形成されることは必須ではなく、第2ドレイン側延在部36に第2ドレイン側溝部46が形成されることは必須ではない。したがって、深さD2が0または0付近の値となるように、すなわち溝部45,46が形成されないように、厚さH1,H2,H3および厚み差H12の寸法値が調整されてもよい。例えば、厚み差H12を小さくするほど、深さD2を0または0付近の値に近づけることができる。このように、本開示において、深さD2は、例えば0nm以上2nm以下の値をとり得る。
 ・上記実施形態では、第2厚さH2は、第1厚さH1と第2厚さH2との厚み差H12よりも小さい(図4参照)が、第2厚さH2は、厚み差H12以上であってもよい。この場合、2段目の段差(延在部35,36)が形成される際のエッチング深さ(すなわち、厚み差H12)が上記実施形態の場合に比べて小さくなる。したがって、溝部45,46の深さD2が上記実施形態の場合に比べてより低減され得る。
 ・ゲート層本体部32の第1側面32S1および第2側面32S2は、電子供給層18の上面に対して傾斜していてもよい。例えば、ゲート層本体部32が断面台形状を有する場合、第1側面32S1および第2側面32S2は傾斜面となる。第1側面32S1および第2側面32S2がこのように傾斜面である場合、1段目の段差(延在部33,34)に形成される溝部43,44の深さD1が上記実施形態の場合に比べて低減され得る。
 ・第1ソース側延在部33の側面33S1および第1ドレイン側延在部34の側面34S1は、電子供給層18の上面に対して傾斜していてもよい。1段目の段差(33,34)の側面33S1,34S1がこのように傾斜面である場合、2段目の段差(延在部35,36)に形成される溝部45,46の深さD2が上記実施形態の場合に比べて低減され得る。
 ・ゲート層22において、1段目の段差が第1ソース側延在部33および第1ドレイン側延在部34の双方を含むことに限定されない。また、2段目の段差が第2ソース側延在部35および第2ドレイン側延在部36の双方を含むことに限定されない。例えば、1段目の段差が第1ドレイン側延在部34のみを含み、2段目の段差が第2ドレイン側延在部36のみを含んでもよい。
 ・本開示で使用される「~上に」という用語は、文脈によって明らかにそうでないことが示されない限り、「~上に」と「~の上方に」の意味を含む。したがって、「第1層が第2層上に形成される」という表現は、或る実施形態では第1層が第2層に接触して第2層上に直接配置され得るが、他の実施形態では第1層が第2層に接触することなく第2層の上方に配置され得ることが意図される。すなわち、「~上に」という用語は、第1層と第2層との間に他の層が形成される構造を排除しない。例えば、電子供給層18が電子走行層16上に設けられるという表現は、電子供給層18が電子走行層16上に直接設けられる上記各実施形態の構造だけでなく、2DEG20を安定して形成するべく電子供給層18と電子走行層16との間に中間層が位置する構造も含む。
 ・本開示で使用されるZ軸方向は必ずしも鉛直方向である必要はなく、鉛直方向に完全に一致している必要もない。したがって、本開示による種々の構造(例えば、図2に示される構造)は、本明細書で説明されるZ軸方向の「上」および「下」が鉛直方向の「上」および「下」であることに限定されない。例えば、X軸方向が鉛直方向であってもよく、またはY軸方向が鉛直方向であってもよい。
 ・本開示で使用される「垂直」、「水平」、「上方」、「下方」、「上」、「下」、「前方」、「後方」、「横」、「左」、「右」、「前」、「後」等の方向を示す用語は、説明および図示された装置の特定の向きに依存する。本開示においては、様々な代替的な向きを想定することができ、したがって、これらの方向を示す用語は、狭義に解釈されるべきではない。
 [付記]
 上記各実施形態および各変更例から把握できる技術的思想を以下に記載する。なお、各付記に記載された構成要素に対応する実施形態の構成要素の符号を括弧書きで示す。符号は、理解の補助のために例として示すものであり、各付記に記載された構成要素は、符号で示される構成要素に限定されるべきではない。
 (付記1)
 窒化物半導体によって構成された電子走行層(16)と、
 前記電子走行層(16)の上に設けられ、前記電子走行層(16)よりも大きなバンドギャップを有する窒化物半導体によって構成された電子供給層(18)と、
 前記電子供給層(18)の上に設けられ、アクセプタ型不純物を含む窒化物半導体によって構成されたゲート層(22)と、
 前記ゲート層(22)の上に設けられたゲート電極(24)と、
 前記電子供給層(18)の上に設けられたソース電極(28)およびドレイン電極(30)と、を備え、
 前記ゲート層(22)は、
  ゲート層本体部(32)と、
  前記ゲート層本体部(32)の側面(32S1;32S2)から外方に延在する第1延在部(33;34)と、
  前記第1延在部(33;34)の側面(33S1;34S1)から外方に延在する第2延在部(35;36)と、を含み、
 前記第1延在部(33;34)は、前記ゲート層本体部(32)の側面(32S1;32S2)に沿って前記第1延在部(33;34)の上面(33S2;34S2)から第1深さ(D1)で形成された第1溝部(43;44)を含む、窒化物半導体装置(10)。
 (付記2)
 前記第2延在部(35;36)は、前記第1延在部(33;34)の側面(33S1;34S1)に沿って前記第2延在部(35;36)の上面(35S1;36S1)から第2深さ(D2)で形成された第2溝部(45;46)を含み、
 前記第1深さ(D1)は前記第2深さ(D2)よりも大きい、付記1に記載の窒化物半導体装置(10)。
 (付記3)
 前記第1延在部(33;34)は、前記電子供給層(18)の上面から前記第1延在部(33;34)の上面(33S2;34S2)まで第1厚さ(H1)を有し、
 前記第2延在部(35;36)は、前記電子供給層(18)の上面から前記第2延在部(35;36)の上面(35S1;36S1)まで第2厚さ(H2)を有し、
 前記第2厚さ(H2)は、前記第1厚さ(H1)と前記第2厚さ(H2)との厚み差(H12)よりも小さい、付記1または2に記載の窒化物半導体装置(10)。
 (付記4)
 前記第1延在部(33;34)は、前記電子供給層(18)の上面から前記第1延在部(33;34)の上面(33S2;34S2)まで第1厚さ(H1)を有し、
 前記第2延在部(35;36)は、前記電子供給層(18)の上面から前記第2延在部(35;36)の上面(35S1;36S1)まで第2厚さ(H2)を有し、
 前記第2厚さ(H2)は、前記第1厚さ(H1)と前記第2厚さ(H2)との厚み差(H12)以上である、付記1または2に記載の窒化物半導体装置(10)。
 (付記5)
 前記第1延在部(33;34)は、前記電子供給層(18)の上面から前記第1延在部(33;34)の上面(33S2;34S2)まで第1厚さ(H1)を有し、
 前記第2延在部(35;36)は、前記電子供給層(18)の上面から前記第2延在部(35;36)の上面(35S1;36S1)まで第2厚さ(H2)を有し、
 前記ゲート層本体部(32)は、前記ゲート層本体部(32)の上面(32S3)から前記第1延在部(33;34)の上面(33S2;34S2)まで第3厚さ(H3)を有し、
 前記第3厚さ(H3)は、前記第1厚さ(H1)と前記第2厚さ(H2)との厚み差(H12)よりも大きい、付記1または2に記載の窒化物半導体装置(10)。
 (付記6)
 前記ゲート層本体部(32)の前記側面は第1側面(32S1)であり、
 前記第1延在部(33)は、前記ゲート層本体部(32)の前記第1側面(32S1)から外方に延在する第1ソース側延在部(33)であり、
 前記第1溝部(43)は、前記第1ソース側延在部(33)に形成された第1ソース側溝部(43)であり、
 前記ゲート層本体部(32)は、前記第1側面(32S1)とは反対側に第2側面(32S2)を含み、
 前記ゲート層(22)は、前記ゲート層本体部(32)の前記第2側面(32S2)から外方に延在する第1ドレイン側延在部(34)を含み、
 前記第1ドレイン側延在部(34)は、前記ゲート層本体部(32)の前記第2側面(32S2)に沿って前記第1ドレイン側延在部(34)の上面(34S2)から前記第1深さ(D1)で形成された第1ドレイン側溝部(44)を含む、付記1~5のうちのいずれか一つに記載の窒化物半導体装置(10)。
 (付記7)
 前記ゲート層本体部(32)の前記側面は第1側面(32S1)であり、
 前記第1延在部(33)は、前記ゲート層本体部(32)の前記第1側面(32S1)から外方に延在する第1ソース側延在部(33)であり、
 前記第1溝部(43)は、前記第1ソース側延在部(33)に形成された第1ソース側溝部(43)であり、
 前記ゲート層本体部(32)は、前記第1側面(32S1)とは反対側に第2側面(32S2)を含み、
 前記ゲート層(22)は、前記ゲート層本体部(32)の前記第2側面(32S2)から外方に延在する第1ドレイン側延在部(34)を含み、
 前記第1ドレイン側延在部(34)は、前記ゲート層本体部(32)の前記第2側面(32S2)に沿って前記第1ドレイン側延在部(34)の上面(34S2)から前記第1深さ(D1)で形成された第1ドレイン側溝部(44)を含み、
 前記第2延在部(35)は、前記第1ソース側延在部(33)の側面(33S1)から外方に延在する第2ソース側延在部(35)であり、
 前記第2溝部(45)は、前記第2ソース側延在部(35)に形成された第2ソース側溝部(45)であり、
 前記ゲート層(22)は、前記第1ドレイン側延在部(34)の側面(34S1)から外方に延在する第2ドレイン側延在部(36)を含み、
 前記第2ドレイン側延在部(36)は、前記第1ドレイン側延在部(34)の側面(34S1)に沿って前記第2ドレイン側延在部(36)の上面(36S1)から前記第2深さ(D2)で形成された第2ドレイン側溝部(46)を含む、付記2に記載の窒化物半導体装置(10)。
 (付記8)
 前記ゲート層本体部(32)の側面(32S1;32S2)と、前記ゲート電極(24)の側面(24S1;24S2)とが面一である、付記1~7のうちのいずれか一つに記載の窒化物半導体装置(10)。
 (付記9)
 前記ゲート層本体部(32)の側面(32S1;32S2)および前記第1延在部(33;34)の側面(33S1;34S1)は各々、前記電子供給層(18)の上面に対して垂直である、付記1~8のうちのいずれか一つに記載の窒化物半導体装置(10)。
 (付記10)
 前記第1延在部(33;34)の上面(33S2;34S2)は平面であり、前記第1溝部(43;44)は前記第1延在部(33;34)の上面(33S2;34S2)に連続する第1湾曲面(43S)を含む、付記1~9のうちのいずれか一つに記載の窒化物半導体装置(10)。
 (付記11)
 前記第1延在部(33;34)の上面(33S2;34S2)は平面であり、前記第1溝部(43;44)は前記第1延在部(33;34)の上面(33S2;34S2)に連続する第1湾曲面(43S)を含み、
 前記第2延在部(35;36)の上面(35S1;36S1)は平面であり、前記第2溝部(45;46)は前記第2延在部(35;36)の上面(35S1;36S1)に連続する第2湾曲面(45S)を含み、
 前記第2湾曲面(45S)は前記第1湾曲面(43S)よりも小さな曲率を有している、付記2に記載の窒化物半導体装置(10)。
 (付記12)
 前記第1深さ(D1)は、2nm以上10nm以下である、付記1~11のうちのいずれか一つに記載の窒化物半導体装置(10)。
 (付記13)
 前記第2深さ(D2)は、0nmよりも大きく2nm以下である、付記2に記載の窒化物半導体装置(10)。
 (付記14)
 前記第1厚さ(H1)は、30nm以上80nm以下であり、
 前記第2厚さ(H2)は、5nm以上20nm以下である、付記3~5のうちのいずれか一つに記載の窒化物半導体装置(10)。
 以上の説明は単に例示である。本開示の技術を説明する目的のために列挙された構成要素および方法(製造プロセス)以外に、より多くの考えられる組み合わせおよび置換が可能であることを当業者は認識し得る。本開示は、特許請求の範囲を含む本開示の範囲内に含まれるすべての代替、変形、および変更を包含することが意図される。
 10…窒化物半導体装置
 16…電子走行層
 18…電子供給層
 20…二次元電子ガス(2DEG)
 22…ゲート層
 24…ゲート電極
 26…パッシベーション層
 26A…第1開口部
 26B…第2開口部
 28…ソース電極
 30…ドレイン電極
 32…ゲート層本体部
 33…第1ソース側延在部(第1延在部)
 34…第1ドレイン側延在部(第1延在部)
 35…第2ソース側延在部(第2延在部)
 36…第2ドレイン側延在部(第2延在部)
 43…第1ソース側溝部(第1溝部)
 44…第1ドレイン側溝部(第1溝部)
 45…第2ソース側溝部(第2溝部)
 46…第2ドレイン側溝部(第2溝部)
 H1…厚さ(第1厚さ)
 H2…厚さ(第2厚さ)
 H12…厚み差
 H3…厚さ(第3厚さ)
 D1…深さ(第1深さ)
 D2…深さ(第2深さ)

Claims (14)

  1.  窒化物半導体によって構成された電子走行層と、
     前記電子走行層の上に設けられ、前記電子走行層よりも大きなバンドギャップを有する窒化物半導体によって構成された電子供給層と、
     前記電子供給層の上に設けられ、アクセプタ型不純物を含む窒化物半導体によって構成されたゲート層と、
     前記ゲート層の上に設けられたゲート電極と、
     前記電子供給層の上に設けられたソース電極およびドレイン電極と、を備え、
     前記ゲート層は、
      ゲート層本体部と、
      前記ゲート層本体部の側面から外方に延在する第1延在部と、
      前記第1延在部の側面から外方に延在する第2延在部と、を含み、
     前記第1延在部は、前記ゲート層本体部の側面に沿って前記第1延在部の上面から第1深さで形成された第1溝部を含む、窒化物半導体装置。
  2.  前記第2延在部は、前記第1延在部の側面に沿って前記第2延在部の上面から第2深さで形成された第2溝部を含み、
     前記第1深さは前記第2深さよりも大きい、請求項1に記載の窒化物半導体装置。
  3.  前記第1延在部は、前記電子供給層の上面から前記第1延在部の上面まで第1厚さを有し、
     前記第2延在部は、前記電子供給層の上面から前記第2延在部の上面まで第2厚さを有し、
     前記第2厚さは、前記第1厚さと前記第2厚さとの厚み差よりも小さい、請求項1または2に記載の窒化物半導体装置。
  4.  前記第1延在部は、前記電子供給層の上面から前記第1延在部の上面まで第1厚さを有し、
     前記第2延在部は、前記電子供給層の上面から前記第2延在部の上面まで第2厚さを有し、
     前記第2厚さは、前記第1厚さと前記第2厚さとの厚み差以上である、請求項1または2に記載の窒化物半導体装置。
  5.  前記第1延在部は、前記電子供給層の上面から前記第1延在部の上面まで第1厚さを有し、
     前記第2延在部は、前記電子供給層の上面から前記第2延在部の上面まで第2厚さを有し、
     前記ゲート層本体部は、前記ゲート層本体部の上面から前記第1延在部の上面まで第3厚さを有し、
     前記第3厚さは、前記第1厚さと前記第2厚さとの厚み差よりも大きい、請求項1または2に記載の窒化物半導体装置。
  6.  前記ゲート層本体部の前記側面は第1側面であり、
     前記第1延在部は、前記ゲート層本体部の前記第1側面から外方に延在する第1ソース側延在部であり、
     前記第1溝部は、前記第1ソース側延在部に形成された第1ソース側溝部であり、
     前記ゲート層本体部は、前記第1側面とは反対側に第2側面を含み、
     前記ゲート層は、前記ゲート層本体部の前記第2側面から外方に延在する第1ドレイン側延在部を含み、
     前記第1ドレイン側延在部は、前記ゲート層本体部の前記第2側面に沿って前記第1ドレイン側延在部の上面から前記第1深さで形成された第1ドレイン側溝部を含む、請求項1~5のうちのいずれか一項に記載の窒化物半導体装置。
  7.  前記ゲート層本体部の前記側面は第1側面であり、
     前記第1延在部は、前記ゲート層本体部の前記第1側面から外方に延在する第1ソース側延在部であり、
     前記第1溝部は、前記第1ソース側延在部に形成された第1ソース側溝部であり、
     前記ゲート層本体部は、前記第1側面とは反対側に第2側面を含み、
     前記ゲート層は、前記ゲート層本体部の前記第2側面から外方に延在する第1ドレイン側延在部を含み、
     前記第1ドレイン側延在部は、前記ゲート層本体部の前記第2側面に沿って前記第1ドレイン側延在部の上面から前記第1深さで形成された第1ドレイン側溝部を含み、
     前記第2延在部は、前記第1ソース側延在部の側面から外方に延在する第2ソース側延在部であり、
     前記第2溝部は、前記第2ソース側延在部に形成された第2ソース側溝部であり、
     前記ゲート層は、前記第1ドレイン側延在部の側面から外方に延在する第2ドレイン側延在部を含み、
     前記第2ドレイン側延在部は、前記第1ドレイン側延在部の側面に沿って前記第2ドレイン側延在部の上面から前記第2深さで形成された第2ドレイン側溝部を含む、請求項2に記載の窒化物半導体装置。
  8.  前記ゲート層本体部の側面と、前記ゲート電極の側面とが面一である、請求項1~7のうちのいずれか一項に記載の窒化物半導体装置。
  9.  前記ゲート層本体部の側面および前記第1延在部の側面は各々、前記電子供給層の上面に対して垂直である、請求項1~8のうちのいずれか一項に記載の窒化物半導体装置。
  10.  前記第1延在部の上面は平面であり、前記第1溝部は前記第1延在部の上面に連続する第1湾曲面を含む、請求項1~9のうちのいずれか一項に記載の窒化物半導体装置。
  11.  前記第1延在部の上面は平面であり、前記第1溝部は前記第1延在部の上面に連続する第1湾曲面を含み、
     前記第2延在部の上面は平面であり、前記第2溝部は前記第2延在部の上面に連続する第2湾曲面を含み、
     前記第2湾曲面は前記第1湾曲面よりも小さな曲率を有している、請求項2に記載の窒化物半導体装置。
  12.  前記第1深さは、2nm以上10nm以下である、請求項1~11のうちのいずれか一項に記載の窒化物半導体装置。
  13.  前記第2深さは、0nmよりも大きく2nm以下である、請求項2に記載の窒化物半導体装置。
  14.  前記第1厚さは、30nm以上80nm以下であり、
     前記第2厚さは、5nm以上20nm以下である、請求項3~5のうちのいずれか一項に記載の窒化物半導体装置。
PCT/JP2023/025424 2022-07-27 2023-07-10 窒化物半導体装置 WO2024024475A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022119516 2022-07-27
JP2022-119516 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024024475A1 true WO2024024475A1 (ja) 2024-02-01

Family

ID=89706204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025424 WO2024024475A1 (ja) 2022-07-27 2023-07-10 窒化物半導体装置

Country Status (1)

Country Link
WO (1) WO2024024475A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159681A (ja) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd トランジスタおよびその製造方法
JP2015173151A (ja) * 2014-03-11 2015-10-01 株式会社東芝 半導体装置
WO2020213291A1 (ja) * 2019-04-15 2020-10-22 ローム株式会社 窒化物半導体装置およびその製造方法
WO2022113536A1 (ja) * 2020-11-26 2022-06-02 ローム株式会社 窒化物半導体装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159681A (ja) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd トランジスタおよびその製造方法
JP2015173151A (ja) * 2014-03-11 2015-10-01 株式会社東芝 半導体装置
WO2020213291A1 (ja) * 2019-04-15 2020-10-22 ローム株式会社 窒化物半導体装置およびその製造方法
WO2022113536A1 (ja) * 2020-11-26 2022-06-02 ローム株式会社 窒化物半導体装置およびその製造方法

Similar Documents

Publication Publication Date Title
US11114554B2 (en) High-electron-mobility transistor having a buried field plate
US8648390B2 (en) Transistor with enhanced channel charge inducing material layer and threshold voltage control
US8841702B2 (en) Enhancement mode III-N HEMTs
US10283632B2 (en) Nitride semiconductor device and manufacturing method thereof
US20110227132A1 (en) Field-effect transistor
US8338862B2 (en) Semiconductor device
KR20150062135A (ko) 반도체 장치 및 반도체 장치의 제조 방법
US20100102357A1 (en) Nitride semiconductor device
US9263545B2 (en) Method of manufacturing a high breakdown voltage III-nitride device
US10541313B2 (en) High Electron Mobility Transistor with dual thickness barrier layer
JP6272557B2 (ja) 窒化物半導体電界効果トランジスタ
JP2007173426A (ja) 半導体装置
WO2023276972A1 (ja) 窒化物半導体装置
TWI670851B (zh) 半導體功率元件
TWI815160B (zh) 氮化物半導體裝置
WO2024024475A1 (ja) 窒化物半導体装置
US11335798B2 (en) Enhancement mode MISHEMT with GaN channel regrowth under a gate area
CN110875379B (zh) 一种半导体器件及其制造方法
WO2022172588A1 (ja) 窒化物半導体装置および窒化物半導体装置の製造方法
US20240128366A1 (en) Nitride semiconductor device
WO2023238745A1 (ja) 窒化物半導体装置
US12002879B2 (en) High electron mobility transistor and method of manufacturing the same
US20240282826A1 (en) Nitride semiconductor device
US20220165874A1 (en) Nitride semiconductor device
WO2023219046A1 (ja) 窒化物半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846207

Country of ref document: EP

Kind code of ref document: A1