WO2024022803A1 - Procédé pour faire fonctionner un système de réfrigération avec un fluide frigorigène à fonctionnement supercritique, système de réfrigération, et véhicule à moteur comprenant un système de réfrigération - Google Patents

Procédé pour faire fonctionner un système de réfrigération avec un fluide frigorigène à fonctionnement supercritique, système de réfrigération, et véhicule à moteur comprenant un système de réfrigération Download PDF

Info

Publication number
WO2024022803A1
WO2024022803A1 PCT/EP2023/069163 EP2023069163W WO2024022803A1 WO 2024022803 A1 WO2024022803 A1 WO 2024022803A1 EP 2023069163 W EP2023069163 W EP 2023069163W WO 2024022803 A1 WO2024022803 A1 WO 2024022803A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
operating mode
refrigeration system
refrigerant
pkm
Prior art date
Application number
PCT/EP2023/069163
Other languages
German (de)
English (en)
Inventor
Christian Rebinger
Helmut Rottenkolber
Dirk Schroeder
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Publication of WO2024022803A1 publication Critical patent/WO2024022803A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2113Temperatures of a suction accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Definitions

  • the invention relates to a method for operating a refrigeration system with supercritically operating refrigerant, wherein the refrigeration system can be operated in a first operating mode, in particular a regulated subcooling operation, or in a second operating mode, in particular a regulated high-pressure operation.
  • the invention further relates to a refrigeration system that is operated according to the method and a motor vehicle with such a refrigeration system.
  • an expansion unit for installation in a refrigeration system that is contaminated with supercritically operating refrigerant.
  • the expansion unit includes two expansion systems for setting different pressure levels of desired transcritical or subcooled operating states.
  • the object underlying the invention is to provide a method for operating a refrigeration system with supercritical refrigerant, with which efficient operation is possible and in particular an improved changeover between transcritical and subcooled operating states is achieved. Furthermore, the process should be able to be implemented with a simply constructed refrigeration system.
  • a type of transition range is defined to enable optimized operation of the refrigeration system in the desired operating mode.
  • the refrigeration system can be operated in the first operating mode or the second operating mode at a refrigerant pressure that lies within the limits of the lower pressure limit and the upper pressure limit.
  • a lower comparison pressure value can be determined during the comparison by the difference between the refrigerant pressure and the lower pressure limit value.
  • an upper comparison pressure value can be determined during the comparison by the difference between the refrigerant pressure and the upper pressure limit value.
  • the first operating mode can be set when the lower comparison pressure value is less than zero. This ensures that only the first operating mode is activated below the lower pressure limit.
  • the second operating mode can be set when the upper comparison pressure value is greater than or equal to zero. This ensures that only the second operating mode is activated when the upper pressure limit is reached or above.
  • the method can be used to decide whether a first or second operating mode should be implemented by a simple “less than” or “greater than” comparison of the determined or recorded pressure value with the specified lower and upper pressure limit values.
  • the first operating mode can be maintained in a controlled manner until the upper comparison pressure value is greater than or equal to zero. This makes it possible for the refrigeration system to be operated in the first operating mode until, coming from a lower pressure level, the upper pressure limit is reached and a switch to the second operating mode can take place.
  • the second operating mode can be maintained in a controlled manner until the lower comparison pressure value is less than zero.
  • a simple comparison method can also be used here between a recorded or determined pressure value and a lower pressure limit value, which switches from a second operating mode to a first as soon as a lower pressure limit value is reached or undershot. In analogy to the comparison method above, a change is made from a first operating mode to a second one as soon as an upper pressure limit is reached or exceeded.
  • a corresponding operating mode is maintained depending on how or from which pressure position the transition region is entered.
  • a kind of hysteresis can thus be achieved in order to make the transitions between the two operating modes smooth and not abrupt.
  • the first operating mode and the second operating mode can be set and/or maintained by setting at least one expansion valve.
  • the method is designed in particular in such a way that a single expansion valve is sufficient to set the desired operating modes.
  • the expansion valve can be adjusted in particular to achieve a specific system parameter such as high pressure and/or subcooling depending on the detected refrigerant pressure and can be carried out with a time delay. In this way, a kind of smooth or constant transition between the two operating modes can be achieved because the activation of the expansion valve is dampened so that there is no sudden change from one operating mode to the other.
  • the method may further include the following steps:
  • Monitoring the refrigerant pressure (actual pressure) and the refrigerant target pressure can be used in particular for the system operation described above.
  • a refrigeration system for a motor vehicle driven by an internal combustion engine or at least partially electrically, the refrigeration system being set up for operation with supercritically operating refrigerant and the refrigeration system comprising: a refrigerant compressor, a first heat exchanger, in particular gas cooler, a second heat exchanger, in particular evaporator, a sensor device arranged downstream of the first heat exchanger for detecting a refrigerant pressure and/or for detecting a refrigerant temperature; a controllable expansion valve arranged upstream of the second heat exchanger; a control device that is set up to operate the refrigeration system in the method described above.
  • a refrigeration system is the simplest variant for implementing this process.
  • Such a refrigeration system can be designed with additional heat exchangers such as additional gas coolers and/or evaporators (rear evaporator, chiller).
  • additional heat exchangers such as additional gas coolers and/or evaporators (rear evaporator, chiller).
  • evaporators rear evaporator, chiller
  • it can have heat pump functionality.
  • a motor vehicle with an internal combustion engine or at least partially electric drive can be equipped with such a refrigeration system.
  • Fig. 1 is a schematic circuit diagram of an example of a refrigeration system
  • FIG. 2 shows a simplified flowchart of a method for operating the refrigeration system
  • Fig. 3 is a simplified diagram to illustrate the relationship between operating modes and refrigerant pressure.
  • Fig. 1 shows a schematic and simplified circuit diagram of a refrigeration system 10 which is contaminated with supercritically operating refrigerant, for example R744.
  • the refrigeration system 10 includes a refrigerant compressor 12, a first (external or direct/indirect) heat exchanger 14, which acts as a gas cooler or condenser, a second heat exchanger 16, which acts as a (direct/indirect) evaporator, and a Refrigerant collector 18.
  • An expansion valve AE1 is connected upstream of the second heat exchanger 16 (evaporator).
  • the expansion valve AE1 is particularly designed to be controllable.
  • the refrigeration system 10 has an internal heat exchanger 20.
  • the internal heat exchanger 20 is arranged downstream of the refrigerant collector 18 and upstream of the refrigerant compressor 12 in relation to the low-pressure side of the refrigeration system.
  • pressure or temperature sensors pT1, pT2, pT3 are shown as examples, which are arranged at suitable or usual positions in a refrigeration system.
  • the sensor pT2 is arranged downstream of the first heat exchanger 14 for detecting a refrigerant pressure and/or for detecting a refrigerant temperature.
  • the refrigeration system can have a sensor device Tum for detecting an ambient temperature.
  • the refrigerant flow in the refrigeration system 10 is illustrated by the arrow symbols along the refrigerant lines shown schematically by lines. It should be noted that in Fig. 1 only a kind of basic configuration is shown. guration of the refrigeration system 10 is shown, which can of course be supplemented with further components.
  • the refrigeration system 10 can in particular also be set up to be operated in a heat pump mode, for example.
  • the refrigeration system 10 can, for example, have a third heat exchanger, not shown here, for example a chiller.
  • a third heat exchanger chloriller
  • the second heat exchanger evaporator
  • the third heat exchanger can be connected as an indirect heat exchanger to a coolant circuit, not shown, which can be used in particular for cooling electrical components of a motor vehicle, such as a high-voltage battery, an electric drive and the like.
  • the refrigeration system 10 further comprises a control device 30, which is set up to operate the refrigeration system 10 according to a method 500 described below.
  • the control device 30 is connected to various components of the refrigeration system 10 by means of signal lines shown in dashed lines, the connections to the sensor devices pT1, pT2, pT3, Tum as well as the expansion valve AE1 and the compressor 12 being shown in FIG.
  • FIG. 2 shows a simplified flowchart of a method 500 for operating a refrigeration system 10.
  • the refrigeration system 10 can be operated in a first operating mode BM1, in particular a regulated subcooling operation (also referred to as subcooling), or in a second operating mode BM2, in particular a regulated high-pressure operation.
  • a first operating mode BM1 in particular a regulated subcooling operation (also referred to as subcooling)
  • BM2 in particular a regulated high-pressure operation.
  • a lower pressure limit PGun and an upper pressure limit PGob are set such that the amount of the difference DPG between the upper pressure limit PGob and the lower pressure limit PGun is greater than 1, in particular greater than 5, preferably about 10.
  • a high-pressure-side refrigerant pressure Pkm_HD and/or a high-pressure-side refrigerant temperature Tkm_HD is determined or detected. Based on the refrigerant temperature Tkm_HD detected or determined or estimated, in particular via the sensor pT2, a potential target pressure value is determined and can be compared with the pressure value Pkm_HD detected and present in the system at this point. If the refrigerant pressure Pkm_HD is not recorded or measured directly, it can be determined or estimated based on the recorded refrigerant temperature Tkm_HD or via pressure loss characteristic Z maps based on another pressure (temperature) sensor available in the system, such as pT1.
  • the further operation of the refrigeration system takes place in the first operating mode BM1 or in the second operating mode BM2 depending on the comparison carried out in step S503 of the determined or detected refrigerant pressure Pkm_HD with the lower pressure limit PGun and/or the upper pressure limit PGob.
  • the control device 30 acts on the expansion valve AE1 in such a way that it actively acts on the resulting subcooling of the first operating mode BM1 or on the optimal high pressure to be set in the second operating mode BM2 via the variation of its internal cross section or sets these variables, wherein at a refrigerant pressure that lies within the limits of the lower pressure limit and the upper pressure limit, the refrigeration system is operated in the first operating mode BM1 or the second operating mode BM2.
  • a lower comparison pressure value VPun is determined by the difference between the lower pressure limit PGun and the refrigerant pressure Pkm_HD, i.e
  • an upper comparison pressure value VPob is alternatively or additionally determined by the difference between the upper pressure limit value PGob and the refrigerant pressure Pkm_HD, i.e
  • VPob PGob - Pkm_HD.
  • the first operating mode BM1 is thus set in a step S504 if the lower comparison pressure value VPun is less than zero.
  • the first operating mode BM1 is maintained in a controlled manner until the upper comparison pressure value VPob is greater than or equal to zero (S505).
  • step S505 If it is determined in step S505 that the upper comparison pressure value VPob is greater than or equal to zero, the second operating mode BM2 is set.
  • the second operating mode BM2 is then maintained in a controlled manner until the lower comparison pressure value VPun is less than zero (S504).
  • step S504 it is possible to estimate, based on the resting pressure and/or ambient temperature, which system high pressure (refrigerant pressure) is to be expected and, at least in addition, based on these variables, a forecast for the expected pressure and thus Operating mode BM1 or BM2 to be started or set can be given. If it is determined in step S504 that the lower comparison pressure value VPun is less than zero or if the lower pressure limit PGun is consequently reached or fallen below, the first operating mode BM1 is set (again).
  • the first operating mode BM1 and the second operating mode BM2 are set and/or maintained by adjusting an expansion valve, in particular the expansion valve AE1.
  • the expansion valve AE1 can be adjusted depending on the detected refrigerant pressure Pkm_HD and can be carried out with a time delay.
  • the setting can in particular also be carried out depending on a target refrigerant pressure to be set or achieved or a required subcooling T_SC.
  • FIG. 3 illustrates the method described above, which is explained below.
  • the refrigerant pressure Pkm_HD is entered on the x-axis of the diagram.
  • the two operating modes BM1 and BM2 are shown on the Y axis.
  • the two pressure limit values PGun and PGob are entered on the X-axis.
  • a wider, solid line provides a simplified illustration of the pressure progression.
  • the difference DPG between the upper pressure limit PGob and the lower pressure limit PGun results in that this is greater than 1, in particular greater than 5, and here preferably 10.
  • a transition region comprising, for example, 10 bar is formed between the two pressure limit values PGun and PGob, which is illustrated hatched in FIG. 3.
  • the first operating mode BM is always active when the refrigerant pressure Pkm_HD is below the lower pressure limit PGun.
  • the second operating mode BM2 is always active when the refrigerant pressure Pkm_HD is greater than the upper pressure limit PGob.
  • both operating modes BM1 or BM2 can be active in the transition area between the two pressure limit values PGun and PGob. If the refrigerant pressure Pkm_HD increases based on operation of the refrigeration system 10 in the first operating mode BM1, the operating mode BM1 is maintained within the transition range until the refrigerant pressure Pkm_HD reaches the upper pressure limit PGob. If the refrigerant pressure Pkm_HD drops due to operation of the refrigeration system 10 in the second operating mode BM2, the operating mode BM2 is maintained within the transition range until the refrigerant pressure Pkm_HD reaches the lower pressure limit PGun.
  • step S503 the refrigerant pressure Pkm_HD of, for example, 56 bar, which was determined or recorded in step S502, the following results from step S503:
  • VPun is therefore less than zero, so that the first operating mode BM1 is active according to step S504.
  • the first operating mode it is now continuously or repeatedly checked whether VPob is greater than zero.
  • a refrigerant pressure of, for example, 63 bar, the following results from the first operating mode:
  • VPob is greater than or equal to zero (S505) and the second operating mode BM2 is activated.
  • VPun is therefore less than zero (S504) and the first operating mode BM1 is activated (again).
  • the first operating mode is maintained in a controlled manner until the upper comparison pressure value VPob is greater than or equal to zero (S505).
  • the second operating mode BM2 is maintained in a controlled manner until the lower comparison pressure value VPun is less than zero (S504).
  • the alternative procedure for going through the process or for implementing the decision criteria as to which operating mode should be selected is based on the simple function of an actual value comparison between an existing system pressure Pkm_HD and the pressure limits PGun and PGob to be defined or specified.
  • the method 500 presented is based, based on the exemplary system sketch in FIG. 1, on the interaction of the sensor device pT2 and the expansion valve AE1.
  • the hatched transition area shown in the diagram in FIG. 3 enables a kind of sliding or constant transition between the two operating modes BM1 and BM2, whereby the activation of the expansion valve AE1 is dampened so that there is no sudden change from one operating mode to the other .
  • the method has been described here in general terms for a refrigeration system 10 and an ambient heat exchanger 14 operating as a gas cooler, the refrigerant temperature of which is measured downstream and the resulting target high pressure Pkm_HD_soll is used as the starting point for implementing the method.
  • This heat exchanger 14 can implement the heat emission directly or indirectly.
  • the method for this heat exchanger 14 in the described application for the refrigeration system 10 can also be set for a heat pump application (not outlined and described in more detail) with a heat exchanger acting, for example, as a heating register or indirect heat exchanger, based analogously on a measured temperature, a resulting high pressure setpoint Pkm_HD_soll, adjustable via an appropriately placed additional expansion element, always functioning taking into account the transfer criteria between the respective operating modes 1 and 2.
  • a heat exchanger acting, for example, as a heating register or indirect heat exchanger, based analogously on a measured temperature, a resulting high pressure setpoint Pkm_HD_soll, adjustable via an appropriately placed additional expansion element, always functioning taking into account the transfer criteria between the respective operating modes 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention concerne un procédé (500) pour faire fonctionner un système de réfrigération (10) avec un fluide frigorigène à fonctionnement supercritique, le système de réfrigération (10) pouvant fonctionner dans un premier mode de fonctionnement (BM1), en particulier un mode de surrefroidissement régulé, ou dans un second mode de fonctionnement (BM2), en particulier un mode à haute pression régulé, le procédé (500) comprenant les étapes suivantes consistant à : régler (S501) une limite de pression inférieure (PGun) et une limite de pression supérieure (PGob) de telle sorte que la valeur absolue de la différence (DPG) entre la limite de pression supérieure (PGob) et la limite de pression inférieure (PGun) est supérieure à 1, en particulier supérieure à 5, de préférence d'approximativement 10 ; déterminer ou détecter (S502) une pression de fluide frigorigène (Pkm_HD) sur le côté haute pression et/ou une température de fluide frigorigène sur le côté haute pression ; comparer (S503) la pression de fluide frigorigène (Pkm_HD) avec la limite de pression inférieure (PGun) et/ou la limite de pression supérieure (PGob) ; faire fonctionner le système de réfrigération (10) dans le premier mode de fonctionnement (BM1) ou dans le second mode de fonctionnement (BM2) en fonction de la comparaison (S503) de la pression de fluide frigorigène (Pkm_HD) déterminée ou détectée avec la limite de pression inférieure (PGun) et/ou la limite de pression supérieure (PGob). L'invention concerne également un système de réfrigération comprenant un dispositif de commande pour mettre en œuvre le procédé (500) et un véhicule à moteur comprenant un tel système de réfrigération.
PCT/EP2023/069163 2022-07-26 2023-07-11 Procédé pour faire fonctionner un système de réfrigération avec un fluide frigorigène à fonctionnement supercritique, système de réfrigération, et véhicule à moteur comprenant un système de réfrigération WO2024022803A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022118623.7A DE102022118623A1 (de) 2022-07-26 2022-07-26 Verfahren zum Betreiben einer Kälteanlage mit überkritisch arbeitendem Kältemittel, Kälteanlage und Kraftfahrzeug mit Kälteanlage
DE102022118623.7 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024022803A1 true WO2024022803A1 (fr) 2024-02-01

Family

ID=87312254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/069163 WO2024022803A1 (fr) 2022-07-26 2023-07-11 Procédé pour faire fonctionner un système de réfrigération avec un fluide frigorigène à fonctionnement supercritique, système de réfrigération, et véhicule à moteur comprenant un système de réfrigération

Country Status (2)

Country Link
DE (1) DE102022118623A1 (fr)
WO (1) WO2024022803A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137783A1 (fr) 2017-01-30 2018-08-02 Bitzer Kühlmaschinenbau Gmbh Unité d'expansion a intégrer dans un circuit de réfrigération
DE102019119751B3 (de) * 2019-07-22 2020-07-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Kältekreislaufs eines Kraftfahrzeugs und Kältekreislauf
DE102020120687A1 (de) * 2020-08-05 2022-02-10 Audi Aktiengesellschaft Nachheizverfahren zum Betreiben einer Kälteanlage für ein Kraftfahrzeug, Kälteanlage und Kraftfahrzeug mit einer solchen Kälteanlage
DE102020133636A1 (de) * 2020-12-16 2022-06-23 Audi Aktiengesellschaft Kraftfahrzeug mit Kälteanlage und Steuereinrichtung zum Nachkalibrieren von Druck-/Temperatursensoren sowie Verfahren zum Betreiben einer Kälteanlage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935731A1 (de) 1999-07-29 2001-02-15 Daimler Chrysler Ag Verfahren zum Betreiben einer unter- und transkritisch betriebenen Fahrzeugkälteanlage
FR2862573B1 (fr) 2003-11-25 2006-01-13 Valeo Climatisation Installation de climatisation de vehicule
JP2008137533A (ja) 2006-12-04 2008-06-19 Sanden Corp 車両用空調装置
DE102010024853B4 (de) 2009-06-26 2019-05-16 Denso Corporation Klimaanlage für Fahrzeug
DE102017001914A1 (de) 2017-02-27 2018-08-30 Liebherr-Transportation Systems Gmbh & Co. Kg Klimaanlage für ein Fahrzeug
EP3926256A1 (fr) 2018-09-10 2021-12-22 Carrier Corporation Fonctionnement de pompe à chaleur d'éjecteur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137783A1 (fr) 2017-01-30 2018-08-02 Bitzer Kühlmaschinenbau Gmbh Unité d'expansion a intégrer dans un circuit de réfrigération
DE102019119751B3 (de) * 2019-07-22 2020-07-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Kältekreislaufs eines Kraftfahrzeugs und Kältekreislauf
DE102020120687A1 (de) * 2020-08-05 2022-02-10 Audi Aktiengesellschaft Nachheizverfahren zum Betreiben einer Kälteanlage für ein Kraftfahrzeug, Kälteanlage und Kraftfahrzeug mit einer solchen Kälteanlage
DE102020133636A1 (de) * 2020-12-16 2022-06-23 Audi Aktiengesellschaft Kraftfahrzeug mit Kälteanlage und Steuereinrichtung zum Nachkalibrieren von Druck-/Temperatursensoren sowie Verfahren zum Betreiben einer Kälteanlage

Also Published As

Publication number Publication date
DE102022118623A1 (de) 2024-02-01

Similar Documents

Publication Publication Date Title
DE102016005782B4 (de) Verfahren zum Betreiben einer Fahrzeugklimaanlage mit einem Kältemittelkreislauf
EP0288658B1 (fr) Méthode et dispositif pour la commande d'une installation de climatisation pour véhicules
DE60112866T2 (de) Kühlungskreislauf und Steuerungsverfahren dafür
DE102018209769B4 (de) Verfahren zum Betreiben einer einen Kältemittelkreislauf aufweisenden Kälteanlage eines Fahrzeugs
DE102006051998B4 (de) Verfahren zur Steuerung einer Kühlkreisvorrichtung und Steuersystem für ein Fahrzeug
DE3829096C2 (fr)
DE10308268A1 (de) Klimaanlage
DE10357802A1 (de) Fahrzeug-Klimaanlage
DE60118588T2 (de) Fahrzeugklimaanlage unter verwendung eines überkritischen kreislaufes
EP1578628B1 (fr) Systeme de climatisation pour un vehicule et procede de fonctionnement associe
DE19706663B4 (de) Verfahren zur Regelung einer Klimaanlage in einem Kraftfahrzeug
EP3596412B1 (fr) Procédé permettant de faire fonctionner d'un circuit de réfrigérant pour un système de climatisation de véhicule
WO2024022803A1 (fr) Procédé pour faire fonctionner un système de réfrigération avec un fluide frigorigène à fonctionnement supercritique, système de réfrigération, et véhicule à moteur comprenant un système de réfrigération
EP1270292B1 (fr) Procédé permettant de détecter une fuite de réfrigérant dans un circuit de réfrigérant et installation frigorifique ou de conditionnement d'air
DE102019109379A1 (de) Verfahren zum Klimatisieren eines Fahrzeuginnenraums mit großem Volumen und hierfür eingerichtete Klimaanlage
EP3330644B1 (fr) Installation frigorifique et procédé de réglage d'une installation frigorifique
DE102005044029B3 (de) Wärmepumpe
DE102019119751B3 (de) Verfahren zum Betreiben eines Kältekreislaufs eines Kraftfahrzeugs und Kältekreislauf
DE102015105220B3 (de) Verfahren zum Durchführen einer Klopfregelung
EP1310391B1 (fr) Procédé et dispositif de réglage d'un système de climatisation avec boucle de contrôle de la pression d'entrée
DE102018128383B4 (de) Steuerungsverfahren für den Einschalt-Funktionsablauf einer Klimaanlage und Steuerungsvorrichtung zur Durchführung dieses Verfahrens
DE102019207637B4 (de) Verfahren zum Betreiben einer Kälteanlage für ein Fahrzeug mit einem Kältemittelkreislauf
DE102018210477A1 (de) Verfahren zum Betreiben eines Kältemittelkreislaufs einer Kälteanlage eines Fahrzeugs
EP2052894B1 (fr) Climatisation et procédé destiné au fonctionnement d'une climatisation
DE102004042887B3 (de) Klimaanlage für ein Fahrzeug, insbesondere für ein Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23741648

Country of ref document: EP

Kind code of ref document: A1