WO2024022460A1 - 用于正铲液压挖掘机调平油缸的液压系统及控制方法 - Google Patents

用于正铲液压挖掘机调平油缸的液压系统及控制方法 Download PDF

Info

Publication number
WO2024022460A1
WO2024022460A1 PCT/CN2023/109677 CN2023109677W WO2024022460A1 WO 2024022460 A1 WO2024022460 A1 WO 2024022460A1 CN 2023109677 W CN2023109677 W CN 2023109677W WO 2024022460 A1 WO2024022460 A1 WO 2024022460A1
Authority
WO
WIPO (PCT)
Prior art keywords
reversing valve
way reversing
cylinder
valve
working
Prior art date
Application number
PCT/CN2023/109677
Other languages
English (en)
French (fr)
Inventor
张志洋
杨裕丰
文俊
王春磊
汪允显
渠立红
张聪聪
刘永参
付桂山
史为杰
杨浩然
石立京
史继江
吕建森
李县军
李志鹏
刘凯
王鹏
Original Assignee
徐州徐工矿业机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州徐工矿业机械有限公司 filed Critical 徐州徐工矿业机械有限公司
Publication of WO2024022460A1 publication Critical patent/WO2024022460A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members

Definitions

  • the invention belongs to the technical field of excavators, and specifically relates to a hydraulic system and a control method for a leveling cylinder of a front shovel hydraulic excavator.
  • the hydraulic oil pressure in the large cavity of the leveling cylinder is always The hydraulic oil pressure is greater than that of the small cavity.
  • the leveling cylinder because the stress area of the large cavity of the leveling cylinder is larger than that of the small cavity, the leveling cylinder always maintains an elongation trend. Therefore, the leveling cylinder only plays a positive assisting role when the stick cylinder is extended forward. When the arm cylinder contracts, the leveling cylinder will hinder the contraction process of the arm cylinder and play a negative role, causing the traditional shovel excavator to work slower and with lower working efficiency.
  • the present invention provides a hydraulic system and a control method for a leveling cylinder of a front shovel hydraulic excavator.
  • the leveling cylinder can achieve both leveling and leveling.
  • the push function can also realize the function of the second arm cylinder of the auxiliary arm cylinder.
  • a hydraulic system for the leveling cylinder of a front shovel hydraulic excavator including a two-position four-way reversing valve, a three-position four-way reversing valve I and a three-position four-way reversing valve Valve II;
  • the first working oil port of the three-position four-way reversing valve I is connected with the large chamber of the boom cylinder, and the second working oil port of the three-position four-way reversing valve I is connected with the small chamber of the boom cylinder;
  • the large cavity of the oil cylinder and the small cavity of the boom cylinder are respectively connected with the two-position four-way reversing valve.
  • the two-position four-way reversing valve is also connected with the large cavity of the leveling cylinder and the small cavity of the leveling cylinder respectively;
  • the leveling cylinder is in the initial position when there is no signal.
  • the large cavity of the boom cylinder is connected to the large cavity of the leveling cylinder, and the small cavity of the boom cylinder is connected to the small cavity of the leveling cylinder; leveling
  • the oil cylinder receives the signal, it is in the working position.
  • the large cavity of the boom oil cylinder is connected with the small cavity of the leveling oil cylinder, and the small cavity of the boom oil cylinder is connected with the large cavity of the leveling oil cylinder;
  • the first working oil port of the three-position four-way reversing valve II is connected to the large cavity of the arm cylinder, and the second working oil port of the three-position four-way reversing valve II is connected to the small cavity of the arm cylinder;
  • the oil inlet of the three-position four-way reversing valve II and the oil inlet of the three-position four-way reversing valve I are both connected to the oil outlet of the hydraulic pump;
  • the oil return port and the oil return port of the three-position four-way reversing valve I are both connected to the hydraulic oil tank.
  • the four-position three-position reversing valve I is in the initial position when there is no signal.
  • each oil port of the four-position three-way reversing valve I is in a closed state;
  • the left control end of the three-position four-way reversing valve I is in the left working position when it receives a signal.
  • the oil inlet of the three-position four-way reversing valve I is in contact with the oil inlet of the three-position four-way reversing valve I.
  • the first working oil port of the four-position, three-position directional valve I is connected, and the second working oil port of the four-position, three-position directional valve I is connected with the oil return port of the four-position, three-position directional valve I;
  • the right control end of the directional control valve I receives a signal, it is in the right working position.
  • the 4-position, 4-way valve I is in the right working position, the oil inlet of the 4-position directional valve I is in the right working position with the 4-position, 3-position valve. It is connected to the second working oil port of valve I, and the first working oil port of three-position four-way reversing valve I is connected with the oil return port of three-position four-way reversing valve I;
  • the three-position four-way reversing valve II is in the initial position when there is no signal.
  • each oil port of the three-position four-way reversing valve II is in a closed state; the three-position four-way reversing valve II is in the initial position;
  • the left control end of the four-position four-way reversing valve II receives a signal, it is in the left working position.
  • the oil inlet of the three-position four-way reversing valve II is in contact with the three-position four-way reversing valve II.
  • the first working oil port of the reversing valve II is connected, and the second working oil port of the four-position, three-way reversing valve II is connected with the oil return port of the four-position, three-way reversing valve II; the four-position, three-position reversing valve
  • the right control end of valve II receives a signal, it is in the right working position.
  • the oil inlet of the four-position, three-way reversing valve II is in contact with the four-position, three-way reversing valve II.
  • the second working oil port of the three-position four-way reversing valve II is connected with the first working oil port of the three-position four-way reversing valve II and the oil return port of the three-position four-way reversing valve II.
  • control end of the two-position four-way reversing valve, the left control end of the three-position four-way reversing valve I, the right control end of the three-position four-way reversing valve I, the three-position four-way reversing valve I The left control end of valve II and the right control end of three-position four-way directional valve II are both connected to the controller signal.
  • the hydraulic pump is a swash plate plunger hydraulic pump.
  • boom oil cylinders there are two boom oil cylinders, and the two boom oil cylinders are connected in parallel.
  • the present invention also provides a method for controlling the leveling cylinder of a front shovel hydraulic excavator, using any of the above hydraulic systems for the leveling cylinder of a front shovel hydraulic excavator;
  • the four-position, three-position reversing valve I When the four-position, three-position reversing valve I is in the initial position, and the four-position, three-way reversing valve II is in the left working position, the four-position, three-position reversing valve is controlled to be in the initial position;
  • the four-position, three-way directional valve I When the four-position, three-way directional valve I is in the right working position, and the four-position, three-way directional valve II is also in the right working position, the four-position, three-way directional valve is controlled to be in the initial position.
  • the beneficial effects of the present invention are: when the excavator needs to perform horizontal pushing operation, the two-position four-way reversing valve and the three-position four-way reversing valve I are both in the initial position, and the three-position four-way reversing valve II is in the left working position.
  • the leveling cylinder can follow the stick cylinder to make normal horizontal pushing movements.
  • the valve position of the two-position four-way reversing valve is controlled according to the compound actions of the boom cylinder and the arm cylinder to achieve consistent actions of the leveling cylinder and the arm cylinder.
  • the leveling cylinder assists the arm cylinder to speed up the extension and contraction of the arm cylinder, improves the working efficiency of the excavator, and creates more economic benefits for users.
  • Figure 1 is a hydraulic schematic diagram of the present invention
  • Figure 2 is a hydraulic schematic diagram of the arm cylinder of the present invention when it performs a horizontal pushing action
  • Figure 3 is a hydraulic schematic diagram when the boom cylinder and the stick cylinder of the present invention operate together (compound action 1);
  • Figure 4 is a hydraulic schematic diagram when the boom cylinder and the stick cylinder of the present invention operate together (compound action 2);
  • Figure 5 is a hydraulic schematic diagram when the boom cylinder and the stick cylinder of the present invention operate together (compound action 3);
  • Figure 6 is a hydraulic schematic diagram when the boom cylinder and the stick cylinder operate together according to the present invention (compound action 4);
  • Figure 7 is a schematic structural diagram of the present invention.
  • a front shovel hydraulic excavator includes a leveling cylinder 1, a boom cylinder 3 and a stick cylinder 9.
  • the boom cylinder 3 is located between the frame and the boom 10 of the front shovel hydraulic excavator, and the leveling cylinder 1 and the arm cylinder 9 are both located between the boom 10 and the arm 11 .
  • a hydraulic system for the leveling cylinder of a front shovel hydraulic excavator including a two-position four-way reversing valve 2, a three-position four-way reversing valve I4 and a three-position four-way reversing valve I4.
  • Directional valve II8 As shown in Figures 1 to 6, a hydraulic system for the leveling cylinder of a front shovel hydraulic excavator is shown, including a two-position four-way reversing valve 2, a three-position four-way reversing valve I4 and a three-position four-way reversing valve I4.
  • Directional valve II8 As shown in Figures 1 to 6, a hydraulic system for the leveling cylinder of a front shovel hydraulic excavator is shown, including a two-position four-way reversing valve 2, a three-position four-way reversing valve I4 and a three-position four-way reversing valve I4.
  • the first working oil port of the three-position four-way reversing valve I4 is connected with the large cavity of the boom cylinder 3, and the second working oil port of the three-position four-way reversing valve I4 is connected with the small cavity of the boom cylinder 3.
  • the cavity is connected.
  • the four-position, three-position reversing valve I4 is in the initial position when there is no signal.
  • each oil port of the four-position, three-position reversing valve I4 is in a closed state.
  • the left control end of the three-position four-way reversing valve I4 is in the left working position when it receives a signal.
  • the oil inlet of the three-position four-way reversing valve I4 passes through
  • the first working oil port of the three-position four-way reversing valve I4 is connected with the large cavity of the boom cylinder 3, and the small cavity of the boom cylinder 3 is connected with the three-position four-way reversing valve I4 through the second working oil port of the three-position four-way reversing valve I4. It is connected to the oil return port of reversing valve I4.
  • the right control end of the three-position four-way reversing valve I4 is in the right working position when it receives a signal.
  • boom cylinders 3 There are two boom cylinders 3, and the two boom cylinders 3 are connected in parallel, that is, the large cavity of the first boom cylinder 3 is connected with the large cavity of the second boom cylinder 3, and the first boom cylinder 3 is connected in parallel.
  • the small cavity of the arm cylinder 3 is connected with the small cavity of the second boom cylinder 3.
  • the two-position four-way reversing valve 2 is arranged between the boom cylinder 3 and the leveling cylinder 1.
  • the leveling cylinder 1 is in the initial position when there is no signal.
  • the large cavity of the boom cylinder 3 is connected with the large cavity of the leveling cylinder 1
  • the small cavity of the boom cylinder 3 is connected with the leveling cylinder.
  • the small chambers of oil cylinder 1 are connected.
  • the leveling cylinder 1 receives the signal, it is in the working position.
  • the large cavity of the boom cylinder 3 is connected with the small cavity of the leveling cylinder 1, and the small cavity of the boom cylinder 3 is connected with the small cavity of the leveling cylinder 1.
  • the large cavity is connected.
  • the first working oil port of the three-position four-way reversing valve II8 is connected with the large cavity of the arm cylinder 9, and the second working oil port of the three-position four-way reversing valve II8 is connected with the small cavity of the arm cylinder 9. Connected.
  • the four-position, three-position reversing valve II8 is in the initial position when there is no signal.
  • each oil port of the four-position, three-position reversing valve II8 is in a closed state.
  • the left control end of the three-position four-way reversing valve II8 is in the left working position when it receives a signal.
  • the oil inlet of the three-position four-way reversing valve II8 passes through
  • the first working oil port of the three-position four-way reversing valve II8 is connected with the large cavity of the arm cylinder 9, and the small cavity of the arm cylinder 9 is connected with the three-position four-way reversing valve II8 through the second working oil port of the three-position four-way reversing valve II8. It is connected to the oil return port of reversing valve II8.
  • the right control end of the three-position four-way reversing valve II8 is in the right working position when it receives a signal.
  • the oil inlet of the three-position four-way reversing valve II8 passes through
  • the second working oil port of the three-position four-way reversing valve II8 is connected with the small cavity of the stick cylinder 9, and the large cavity of the stick cylinder 9 is connected with the three-position four-way reversing valve II8 through the first working oil port of the three-position four-way reversing valve II8. It is connected to the oil return port of reversing valve II8.
  • the oil inlet of the three-position four-way reversing valve II8 and the oil inlet of the three-position four-way reversing valve I4 are both connected to the oil outlet of the hydraulic pump 5; the hydraulic pump 5 is a swash plate column Plug the hydraulic pump.
  • the oil return port of the three-position four-way reversing valve II8 and the oil return port of the three-position four-way reversing valve I4 are both connected to the hydraulic oil tank 6 .
  • the control end of the two-position four-way reversing valve 2, the left control end of the three-position four-way reversing valve I4, the right control end of the three-position four-way reversing valve I4, and the three-position four-way reversing valve II8 The left control end of the two-position four-way reversing valve II8 and the right control end of the three-position four-way reversing valve II8 are both connected to the signal of the controller 7.
  • the controller 7 controls the two-position four-way reversing valve 2, the three-position four-way reversing valve I4 and The valve position of the three-position four-way directional valve II8.
  • the present invention also provides a method for controlling the leveling cylinder of a front shovel hydraulic excavator, using any of the above hydraulic systems for the leveling cylinder of a front shovel hydraulic excavator;
  • the boom cylinder 3 begins to shrink due to gravity. Since the four-position, two-way reversing valve 2 is in the initial position, the hydraulic oil in the large chamber of the boom cylinder 3 enters the large chamber of the leveling cylinder 1 through the four-position, two-way reversing valve 2. , causing the leveling cylinder 1 to also follow the arm cylinder 9 to push forward.
  • the controller 7 controls the four-position two-way reversing valve 2 in initial position.
  • the hydraulic oil from the outlet of the hydraulic pump 5 passes through the three-position four-way reversing valve I4 and enters the large cavity of the boom cylinder 3, and the boom cylinder 3 starts to extend.
  • the other way of hydraulic oil from the outlet of hydraulic pump 5 passes through the three-position four-way reversing valve II8 and enters the large cavity of the arm cylinder 9, and the arm cylinder 9 starts to extend.
  • the controller 7 controls the four-position two-way reversing valve 2 to be in the initial position, then the hydraulic oil in the large chamber of the boom cylinder 3 will enter the large chamber of the leveling cylinder 1 through the four-position two-way reversing valve 2, and the leveling cylinder 1 also begins to extend. At this time, the leveling cylinder 1 and the arm cylinder 9 act in the same manner, functioning as the second arm cylinder and accelerating the extension speed of the arm cylinder 9.
  • the controller 7 controls the four-position, two-way reversing valve 2 to be in the right working position. work station.
  • the hydraulic oil from the outlet of the hydraulic pump 5 passes through the three-position four-way reversing valve I4 and enters the large cavity of the boom cylinder 3, and the boom cylinder 3 starts to extend.
  • the other way of hydraulic oil from the oil outlet of hydraulic pump 5 enters the small cavity of arm cylinder 9 through three-position four-way reversing valve II8, and arm cylinder 9 starts to shrink.
  • the controller 7 controls the four-position two-way reversing valve 2 to be in the working position, then the hydraulic oil in the large chamber of the boom cylinder 3 will enter the small chamber of the leveling cylinder 1 through the four-position two-way reversing valve 2, and the leveling cylinder 1 also begins to shrink. At this time, the leveling cylinder 1 and the arm cylinder 9 act in the same manner, functioning as the second arm cylinder and accelerating the contraction speed of the arm cylinder 9.
  • the controller 7 controls the four-position, two-way reversing valve 2 to be in the right working position. work station.
  • the hydraulic oil from the outlet of the hydraulic pump 5 passes through the three-position four-way reversing valve I4 and enters the small cavity of the boom cylinder 3, and the boom cylinder 3 starts to contract.
  • the other way of hydraulic oil from the outlet of hydraulic pump 5 passes through the three-position four-way reversing valve II8 and enters the large cavity of the arm cylinder 9, and the arm cylinder 9 starts to extend.
  • the controller 7 controls the four-position two-way reversing valve 2 to be in the working position, then the hydraulic oil in the small chamber of the boom cylinder 3 will enter the large chamber of the leveling cylinder 1 through the four-position two-way reversing valve 2, and the leveling cylinder 1 also begins to extend. At this time, the leveling cylinder 1 and the arm cylinder 9 act in the same manner, functioning as the second arm cylinder and accelerating the extension speed of the arm cylinder 9.
  • the controller 7 controls the two-position four-way reversing valve 2 in initial position.
  • the hydraulic oil from the outlet of the hydraulic pump 5 passes through the three-position four-way reversing valve I4 and enters the small cavity of the boom cylinder 3, and the boom cylinder 3 starts to contract.
  • the other way of hydraulic oil from the oil outlet of hydraulic pump 5 enters the small cavity of arm cylinder 9 through three-position four-way reversing valve II8, and arm cylinder 9 starts to shrink.
  • the controller 7 controls the four-position two-way reversing valve 2 to be in the initial position, then the hydraulic oil in the small chamber of the boom cylinder 3 will enter the small chamber of the leveling cylinder 1 through the four-position two-way reversing valve 2, and the leveling cylinder 1 also begins to shrink. At this time, the leveling cylinder 1 and the arm cylinder 9 act in the same manner, functioning as the second arm cylinder and accelerating the contraction speed of the arm cylinder 9.
  • the invention realizes precise control of the action of the leveling cylinder through a two-position four-way directional valve, fully exerts the auxiliary role of the leveling cylinder in different actions of the shovel excavator, speeds up the extension and contraction speed of the arm cylinder, and improves the efficiency of the leveling cylinder. improve the working efficiency of the excavator.

Abstract

本发明属于挖掘机技术领域,具体涉及一种用于正铲液压挖掘机调平油缸的液压系统及控制方法,该液压系统包括二位四通换向阀、三位四通换向阀Ⅰ和三位四通换向阀Ⅱ;所述三位四通换向阀Ⅰ的第一工作油口与动臂油缸的大腔连通,三位四通换向阀Ⅰ的第二工作油口与动臂油缸的小腔连通;动臂油缸与调平油缸间设有二位四通换向阀;调平油缸处于初始位时,动臂油缸的大腔与调平油缸的大腔连通,动臂油缸的小腔与调平油缸的小腔连通;调平油缸处于工作位时,动臂油缸的大腔与调平油缸的小腔连通,动臂油缸的小腔与调平油缸的大腔连通。本发明通过二位四通换向阀对调平油缸动作的精准调控,充分发挥了调平油缸在挖掘机不同动作下的辅助作用。

Description

用于正铲液压挖掘机调平油缸的液压系统及控制方法 技术领域
本发明属于挖掘机技术领域,具体涉及一种用于正铲液压挖掘机调平油缸的液压系统及控制方法。
背景技术
传统正铲挖掘机,当挖掘机动臂做伸长动作时,动臂油缸大腔进油,动臂油缸小腔回油,所以动臂油缸大腔的液压压强大于动臂油缸小腔的液压压强。当挖掘机动臂做缩回动作时,再生阀开始发挥作用,由于再生阀联通着动臂油缸的大腔和小腔,此时只有动臂油缸大腔的液压油压强大于动臂油缸小腔的液压油压强时,动臂油缸大腔的液压油才能通过再生阀进入动臂油缸小腔,进而实现动臂油缸缩回动作,故当挖掘机动臂做缩回动作时,动臂油缸大腔的液压油压强大于动臂油缸小腔的液压油压强。
由于传统正铲挖掘机动臂油缸的大腔始终联通着调平油缸的大腔,动臂油缸的小腔始终联通着调平油缸的小腔,所以调平油缸大腔的液压油压强始终大于小腔的液压油压强,同时由于调平油缸大腔的受力面积大于小腔的受力面积,故调平油缸始终保持着伸长的趋势。所以调平油缸只有在斗杆油缸向前伸长的时候才起到正面的辅助作用。在斗杆油缸收缩时,调平油缸会阻碍斗杆油缸的收缩进程,起到负作用,造成传统正铲挖掘机的工作速度较慢,工作效率较低。
发明内容
为了克服上述现有技术的不足之处,本发明提供一种用于正铲液压挖掘机调平油缸的液压系统及控制方法,通过对换向阀的精确控制,使调平油缸既能实现平推功能,也能实现辅助斗杆油缸的第二斗杆油缸功能。
本发明是通过如下技术方案实现的:一种用于正铲液压挖掘机调平油缸的液压系统,包括二位四通换向阀、三位四通换向阀Ⅰ和三位四通换向阀Ⅱ;
所述三位四通换向阀Ⅰ的第一工作油口与动臂油缸的大腔连通,三位四通换向阀Ⅰ的第二工作油口与动臂油缸的小腔连通;动臂油缸的大腔和动臂油缸的小腔分别与二位四通换向阀连通,二位四通换向阀还分别与调平油缸的大腔和调平油缸的小腔连通;
调平油缸不得信号时处于初始位,调平油缸处于初始位时,动臂油缸的大腔与调平油缸的大腔连通,动臂油缸的小腔与调平油缸的小腔连通;调平油缸得到信号时处于工作位,调平油缸处于工作位时,动臂油缸的大腔与调平油缸的小腔连通,动臂油缸的小腔与调平油缸的大腔连通;
所述三位四通换向阀Ⅱ的第一工作油口与斗杆油缸的大腔连通,所述三位四通换向阀Ⅱ的第二工作油口与斗杆油缸的小腔连通;
所述三位四通换向阀Ⅱ的进油口与所述三位四通换向阀Ⅰ的进油口均与液压泵的出油口连通;所述三位四通换向阀Ⅱ的回油口与所述三位四通换向阀Ⅰ的回油口均与液压油箱连接。
进一步地,所述三位四通换向阀Ⅰ不得信号时处于初始位,三位四通换向阀Ⅰ处于初始位时,三位四通换向阀Ⅰ的各个油口均处于封闭状态;所述三位四通换向阀Ⅰ的左侧控制端得到信号时处于左工作位,三位四通换向阀Ⅰ处于左工作位时,三位四通换向阀Ⅰ的进油口与三位四通换向阀Ⅰ的第一工作油口连通,三位四通换向阀Ⅰ的第二工作油口与三位四通换向阀Ⅰ的回油口连通;所述三位四通换向阀Ⅰ的右侧控制端得到信号时处于右工作位,三位四通换向阀Ⅰ处于右工作位时,三位四通换向阀Ⅰ的进油口与三位四通换向阀Ⅰ的第二工作油口连通,三位四通换向阀Ⅰ的第一工作油口与三位四通换向阀Ⅰ的回油口连通;
所述三位四通换向阀Ⅱ不得信号时处于初始位,三位四通换向阀Ⅱ处于初始位时,三位四通换向阀Ⅱ的各个油口均处于封闭状态;所述三位四通换向阀Ⅱ的左侧控制端得到信号时处于左工作位,三位四通换向阀Ⅱ处于左工作位时,三位四通换向阀Ⅱ的进油口与三位四通换向阀Ⅱ的第一工作油口连通,三位四通换向阀Ⅱ的第二工作油口与三位四通换向阀Ⅱ的回油口连通;所述三位四通换向阀Ⅱ的右侧控制端得到信号时处于右工作位,三位四通换向阀Ⅱ处于右工作位时,三位四通换向阀Ⅱ的进油口与三位四通换向阀Ⅱ的第二工作油口连通,三位四通换向阀Ⅱ的第一工作油口与三位四通换向阀Ⅱ的回油口连通。
进一步地,所述二位四通换向阀的控制端、三位四通换向阀Ⅰ的左侧控制端、三位四通换向阀Ⅰ的右侧控制端、三位四通换向阀Ⅱ的左侧控制端和三位四通换向阀Ⅱ的右侧控制端均与控制器信号连接。
进一步地,所述液压泵为斜盘式柱塞液压泵。
进一步地,所述动臂油缸设置有两根,两根所述动臂油缸并联连接。
本发明还提供了一种正铲液压挖掘机调平油缸的控制方法,采用上述任意一项所述用于正铲液压挖掘机调平油缸的液压系统;
当三位四通换向阀Ⅰ处于初始位,且三位四通换向阀Ⅱ处于左工作位时,则控制二位四通换向阀处于初始位;
当三位四通换向阀Ⅰ处于左工作位,且三位四通换向阀Ⅱ也处于左工作位时,则控制二位四通换向阀处于初始位;
当三位四通换向阀Ⅰ处于左工作位,且三位四通换向阀Ⅱ处于右工作位时,则控制二位四通换向阀处于工作位;
当三位四通换向阀Ⅰ处于右工作位,且三位四通换向阀Ⅱ处于左工作位时,则控制二位四通换向阀处于工作位;
当三位四通换向阀Ⅰ处于右工作位,且三位四通换向阀Ⅱ也处于右工作位时,则控制二位四通换向阀处于初始位。
本发明的有益效果是:当挖掘机需要平推作业时,二位四通换向阀和三位四通换向阀Ⅰ均处于初始位,三位四通换向阀Ⅱ处于左工作位,调平油缸可以跟随斗杆油缸做出正常的平推动作。当挖掘机需要其他复合动作进行作业时,根据动臂油缸和斗杆油缸的复合动作情况,控制二位四通换向阀的阀位,以实现调平油缸和斗杆油缸的动作一致,让调平油缸辅助斗杆油缸,加快斗杆油缸的伸长和收缩速度,提高挖掘机的工作效率,为用户创造更多的经济效益。
附图说明
图1是本发明的液压原理图;
图2是本发明斗杆油缸做平推动作时的液压示意图;
图3是本发明动臂油缸与斗杆油缸一同动作时的液压示意图(复合动作1);
图4是本发明动臂油缸与斗杆油缸一同动作时的液压示意图(复合动作2);
图5是本发明动臂油缸与斗杆油缸一同动作时的液压示意图(复合动作3);
图6是本发明动臂油缸与斗杆油缸一同动作时的液压示意图(复合动作4);
图7是本发明的结构示意图;
图中,1、调平油缸,2、二位四通换向阀,3、动臂油缸,4、三位四通换向阀Ⅰ,5、液压泵,6、液压油箱,7、控制器,8、三位四通换向阀Ⅱ,9、斗杆油缸,10、动臂,11、斗杆。
实施方式
下面根据附图和实施例对本发明进一步说明。
如图7所示,一种正铲液压挖掘机,包括调平油缸1、动臂油缸3和斗杆油缸9。动臂油缸3设在正铲液压挖掘机的机架与动臂10之间,调平油缸1和斗杆油缸9均设置在动臂10与斗杆11之间。
如图1至图6所示,所示一种用于正铲液压挖掘机调平油缸的液压系统,包括二位四通换向阀2、三位四通换向阀Ⅰ4和三位四通换向阀Ⅱ8。
具体地,所述三位四通换向阀Ⅰ4的第一工作油口与动臂油缸3的大腔连通,三位四通换向阀Ⅰ4的第二工作油口与动臂油缸3的小腔连通。所述三位四通换向阀Ⅰ4不得信号时处于初始位,三位四通换向阀Ⅰ4处于初始位时,三位四通换向阀Ⅰ4的各个油口均处于封闭状态。所述三位四通换向阀Ⅰ4的左侧控制端得到信号时处于左工作位,三位四通换向阀Ⅰ4处于左工作位时,三位四通换向阀Ⅰ4的进油口通过三位四通换向阀Ⅰ4的第一工作油口与动臂油缸3的大腔连通,动臂油缸3的小腔通过三位四通换向阀Ⅰ4的第二工作油口与三位四通换向阀Ⅰ4的回油口连通。所述三位四通换向阀Ⅰ4的右侧控制端得到信号时处于右工作位,三位四通换向阀Ⅰ4处于右工作位时,三位四通换向阀Ⅰ4的进油口通过三位四通换向阀Ⅰ4的第二工作油口与动臂油缸3的小腔连通,动臂油缸3的大腔通过三位四通换向阀Ⅰ4的第一工作油口与三位四通换向阀Ⅰ4的回油口连通。
所述动臂油缸3设置有两根,两根所述动臂油缸3并联连接,即第一根动臂油缸3的大腔与第二根动臂油缸3的大腔连通,第一根动臂油缸3的小腔与第二根动臂油缸3的小腔连通。
二位四通换向阀2设置在动臂油缸3与调平油缸1之间。具体地,调平油缸1不得信号时处于初始位,调平油缸1处于初始位时,动臂油缸3的大腔与调平油缸1的大腔连通,动臂油缸3的小腔与调平油缸1的小腔连通。调平油缸1得到信号时处于工作位,调平油缸1处于工作位时,动臂油缸3的大腔与调平油缸1的小腔连通,动臂油缸3的小腔与调平油缸1的大腔连通。
所述三位四通换向阀Ⅱ8的第一工作油口与斗杆油缸9的大腔连通,所述三位四通换向阀Ⅱ8的第二工作油口与斗杆油缸9的小腔连通。所述三位四通换向阀Ⅱ8不得信号时处于初始位,三位四通换向阀Ⅱ8处于初始位时,三位四通换向阀Ⅱ8的各个油口均处于封闭状态。所述三位四通换向阀Ⅱ8的左侧控制端得到信号时处于左工作位,三位四通换向阀Ⅱ8处于左工作位时,三位四通换向阀Ⅱ8的进油口通过三位四通换向阀Ⅱ8的第一工作油口与斗杆油缸9的大腔连通,斗杆油缸9的小腔通过三位四通换向阀Ⅱ8的第二工作油口与三位四通换向阀Ⅱ8的回油口连通。所述三位四通换向阀Ⅱ8的右侧控制端得到信号时处于右工作位,三位四通换向阀Ⅱ8处于右工作位时,三位四通换向阀Ⅱ8的进油口通过三位四通换向阀Ⅱ8的第二工作油口与斗杆油缸9的小腔连通,斗杆油缸9的大腔通过三位四通换向阀Ⅱ8的第一工作油口与三位四通换向阀Ⅱ8的回油口连通。
所述三位四通换向阀Ⅱ8的进油口与所述三位四通换向阀Ⅰ4的进油口均与液压泵5的出油口连通;所述液压泵5为斜盘式柱塞液压泵。所述三位四通换向阀Ⅱ8的回油口与所述三位四通换向阀Ⅰ4的回油口均与液压油箱6连接。
所述二位四通换向阀2的控制端、三位四通换向阀Ⅰ4的左侧控制端、三位四通换向阀Ⅰ4的右侧控制端、三位四通换向阀Ⅱ8的左侧控制端和三位四通换向阀Ⅱ8的右侧控制端均与控制器7信号连接,由控制器7控制二位四通换向阀2、三位四通换向阀Ⅰ4和三位四通换向阀Ⅱ8的阀位。
本发明还提供了一种正铲液压挖掘机调平油缸的控制方法,采用上述任意一项所述用于正铲液压挖掘机调平油缸的液压系统;
如图2所示,当三位四通换向阀Ⅰ4处于初始位,且三位四通换向阀Ⅱ8处于左工作位时,则由控制器7控制二位四通换向阀2处于初始位。调平油缸1、二位四通换向阀2和动臂油缸3形成一个封闭的循环系统。此种情况下,当控制斗杆油缸9的三位四通换向阀Ⅱ8处于左工作位时,液压泵5出油口的液压油通过三位四通换向阀Ⅱ8进入斗杆油缸9的大腔,斗杆油缸9开始向前平推。动臂油缸3由于重力作用开始收缩,由于二位四通换向阀2处于初始位,动臂油缸3大腔中的液压油通过二位四通换向阀2进入调平油缸1的大腔,导致调平油缸1也跟随着斗杆油缸9向前做平推动作。
如图3所示,当三位四通换向阀Ⅰ4处于左工作位,且三位四通换向阀Ⅱ8也处于左工作位时,则由控制器7控制二位四通换向阀2处于初始位。此种情况下,液压泵5出油口的液压油一路通过三位四通换向阀Ⅰ4进入动臂油缸3的大腔,动臂油缸3开始伸长动作。液压泵5出油口的液压油另一路通过三位四通换向阀Ⅱ8进入斗杆油缸9的大腔,斗杆油缸9开始伸长动作。通过控制器7控制二位四通换向阀2处于初始位,则动臂油缸3大腔中的液压油将通过二位四通换向阀2进入调平油缸1的大腔,调平油缸1也开始伸长动作,此时调平油缸1和斗杆油缸9的动作一致,起到了第二斗杆油缸的作用,加快了斗杆油缸9伸长的速度。
如图4所示,当三位四通换向阀Ⅰ4处于左工作位,且三位四通换向阀Ⅱ8处于右工作位时,则由控制器7控制二位四通换向阀2处于工作位。此种情况下,液压泵5出油口的液压油一路通过三位四通换向阀Ⅰ4进入动臂油缸3的大腔,动臂油缸3开始伸长动作。液压泵5出油口的液压油另一路通过三位四通换向阀Ⅱ8进入斗杆油缸9的小腔,斗杆油缸9开始收缩动作。通过控制器7控制二位四通换向阀2处于工作位,则动臂油缸3大腔中的液压油将通过二位四通换向阀2进入调平油缸1的小腔,调平油缸1也开始收缩动作,此时调平油缸1和斗杆油缸9的动作一致,起到了第二斗杆油缸的作用,加快了斗杆油缸9收缩的速度。
如图5所示,当三位四通换向阀Ⅰ4处于右工作位,且三位四通换向阀Ⅱ8处于左工作位时,则由控制器7控制二位四通换向阀2处于工作位。此种情况下,液压泵5出油口的液压油一路通过三位四通换向阀Ⅰ4进入动臂油缸3的小腔,动臂油缸3开始收缩动作。液压泵5出油口的液压油另一路通过三位四通换向阀Ⅱ8进入斗杆油缸9的大腔,斗杆油缸9开始伸长动作。通过控制器7控制二位四通换向阀2处于工作位,则动臂油缸3小腔中的液压油将通过二位四通换向阀2进入调平油缸1的大腔,调平油缸1也开始伸长动作,此时调平油缸1和斗杆油缸9的动作一致,起到了第二斗杆油缸的作用,加快了斗杆油缸9伸长的速度。
如图6所示,当三位四通换向阀Ⅰ4处于右工作位,且三位四通换向阀Ⅱ8也处于右工作位时,则由控制器7控制二位四通换向阀2处于初始位。此种情况下,液压泵5出油口的液压油一路通过三位四通换向阀Ⅰ4进入动臂油缸3的小腔,动臂油缸3开始收缩动作。液压泵5出油口的液压油另一路通过三位四通换向阀Ⅱ8进入斗杆油缸9的小腔,斗杆油缸9开始收缩动作。通过控制器7控制二位四通换向阀2处于初始位,则动臂油缸3小腔中的液压油将通过二位四通换向阀2进入调平油缸1的小腔,调平油缸1也开始收缩动作,此时调平油缸1和斗杆油缸9的动作一致,起到了第二斗杆油缸的作用,加快了斗杆油缸9收缩的速度。
本发明通过二位四通换向阀实现对调平油缸动作的精准调控,充分发挥了调平油缸在正铲挖掘机不同动作下的辅助作用,加快了斗杆油缸的伸长和收缩速度,提高了挖掘机的工作效率。
以上所述仅是对本发明的较佳实施方式而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (6)

  1. 一种用于正铲液压挖掘机调平油缸的液压系统,其特征在于:
    包括二位四通换向阀(2)、三位四通换向阀Ⅰ(4)和三位四通换向阀Ⅱ(8);
    所述三位四通换向阀Ⅰ(4)的第一工作油口与动臂油缸(3)的大腔连通,三位四通换向阀Ⅰ(4)的第二工作油口与动臂油缸(3)的小腔连通;动臂油缸(3)的大腔和动臂油缸(3)的小腔分别与二位四通换向阀(2)连通,二位四通换向阀(2)还分别与调平油缸(1)的大腔和调平油缸(1)的小腔连通;
    调平油缸(1)不得信号时处于初始位,调平油缸(1)处于初始位时,动臂油缸(3)的大腔与调平油缸(1)的大腔连通,动臂油缸(3)的小腔与调平油缸(1)的小腔连通;调平油缸(1)得到信号时处于工作位,调平油缸(1)处于工作位时,动臂油缸(3)的大腔与调平油缸(1)的小腔连通,动臂油缸(3)的小腔与调平油缸(1)的大腔连通;
    所述三位四通换向阀Ⅱ(8)的第一工作油口与斗杆油缸(9)的大腔连通,所述三位四通换向阀Ⅱ(8)的第二工作油口与斗杆油缸(9)的小腔连通;
    所述三位四通换向阀Ⅱ(8)的进油口与所述三位四通换向阀Ⅰ(4)的进油口均与液压泵(5)的出油口连通;所述三位四通换向阀Ⅱ(8)的回油口与所述三位四通换向阀Ⅰ(4)的回油口均与液压油箱(6)连接。
  2. 根据权利要求1所述的用于正铲液压挖掘机调平油缸的液压系统,其特征在于:
    所述三位四通换向阀Ⅰ(4)不得信号时处于初始位,三位四通换向阀Ⅰ(4)处于初始位时,三位四通换向阀Ⅰ(4)的各个油口均处于封闭状态;所述三位四通换向阀Ⅰ(4)的左侧控制端得到信号时处于左工作位,三位四通换向阀Ⅰ(4)处于左工作位时,三位四通换向阀Ⅰ(4)的进油口与三位四通换向阀Ⅰ(4)的第一工作油口连通,三位四通换向阀Ⅰ(4)的第二工作油口与三位四通换向阀Ⅰ(4)的回油口连通;所述三位四通换向阀Ⅰ(4)的右侧控制端得到信号时处于右工作位,三位四通换向阀Ⅰ(4)处于右工作位时,三位四通换向阀Ⅰ(4)的进油口与三位四通换向阀Ⅰ(4)的第二工作油口连通,三位四通换向阀Ⅰ(4)的第一工作油口与三位四通换向阀Ⅰ(4)的回油口连通;
    所述三位四通换向阀Ⅱ(8)不得信号时处于初始位,三位四通换向阀Ⅱ(8)处于初始位时,三位四通换向阀Ⅱ(8)的各个油口均处于封闭状态;所述三位四通换向阀Ⅱ(8)的左侧控制端得到信号时处于左工作位,三位四通换向阀Ⅱ(8)处于左工作位时,三位四通换向阀Ⅱ(8)的进油口与三位四通换向阀Ⅱ(8)的第一工作油口连通,三位四通换向阀Ⅱ(8)的第二工作油口与三位四通换向阀Ⅱ(8)的回油口连通;所述三位四通换向阀Ⅱ(8)的右侧控制端得到信号时处于右工作位,三位四通换向阀Ⅱ(8)处于右工作位时,三位四通换向阀Ⅱ(8)的进油口与三位四通换向阀Ⅱ(8)的第二工作油口连通,三位四通换向阀Ⅱ(8)的第一工作油口与三位四通换向阀Ⅱ(8)的回油口连通。
  3. 根据权利要求2所述的用于正铲液压挖掘机调平油缸的液压系统,其特征在于:
    所述二位四通换向阀(2)的控制端、三位四通换向阀Ⅰ(4)的左侧控制端、三位四通换向阀Ⅰ(4)的右侧控制端、三位四通换向阀Ⅱ(8)的左侧控制端和三位四通换向阀Ⅱ(8)的右侧控制端均与控制器(7)信号连接。
  4. 根据权利要求1~3任意一项所述的用于正铲液压挖掘机调平油缸的液压系统,其特征在于:
    所述液压泵(5)为斜盘式柱塞液压泵。
  5. 根据权利要求1~3任意一项所述的用于正铲液压挖掘机调平油缸的液压系统,其特征在于:
    所述动臂油缸(3)设置有两根,两根所述动臂油缸(3)并联连接。
  6. 一种正铲液压挖掘机调平油缸的控制方法,其特征在于:
    采用权利要求2~5任意一项所述用于正铲液压挖掘机调平油缸的液压系统;
    当三位四通换向阀Ⅰ(4)处于初始位,且三位四通换向阀Ⅱ(8)处于左工作位时,则控制二位四通换向阀(2)处于初始位;
    当三位四通换向阀Ⅰ(4)处于左工作位,且三位四通换向阀Ⅱ(8)也处于左工作位时,则控制二位四通换向阀(2)处于初始位;
    当三位四通换向阀Ⅰ(4)处于左工作位,且三位四通换向阀Ⅱ(8)处于右工作位时,则控制二位四通换向阀(2)处于工作位;
    当三位四通换向阀Ⅰ(4)处于右工作位,且三位四通换向阀Ⅱ(8)处于左工作位时,则控制二位四通换向阀(2)处于工作位;
    当三位四通换向阀Ⅰ(4)处于右工作位,且三位四通换向阀Ⅱ(8)也处于右工作位时,则控制二位四通换向阀(2)处于初始位。
PCT/CN2023/109677 2022-07-28 2023-07-27 用于正铲液压挖掘机调平油缸的液压系统及控制方法 WO2024022460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210896423.0 2022-07-28
CN202210896423.0A CN115095567A (zh) 2022-07-28 2022-07-28 用于正铲液压挖掘机调平油缸的液压系统及控制方法

Publications (1)

Publication Number Publication Date
WO2024022460A1 true WO2024022460A1 (zh) 2024-02-01

Family

ID=83300750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109677 WO2024022460A1 (zh) 2022-07-28 2023-07-27 用于正铲液压挖掘机调平油缸的液压系统及控制方法

Country Status (2)

Country Link
CN (1) CN115095567A (zh)
WO (1) WO2024022460A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095567A (zh) * 2022-07-28 2022-09-23 徐州徐工矿业机械有限公司 用于正铲液压挖掘机调平油缸的液压系统及控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811232A (ja) * 1981-07-10 1983-01-22 Kobe Steel Ltd 作業機械の油圧回路
EP0072539A2 (en) * 1981-08-18 1983-02-23 Hitachi Construction Machinery Co., Ltd. Hydraulic circuit of hydraulic power shovel
US4923362A (en) * 1988-06-06 1990-05-08 Deere & Company Bucket leveling system with dual fluid supply
CN204213075U (zh) * 2014-09-28 2015-03-18 成都凯天电子股份有限公司 机务工作平台机车液压控制系统
CN105421509A (zh) * 2015-11-16 2016-03-23 潍柴动力股份有限公司 一种混合动力挖掘机动臂势能回收装置及混合动力挖掘机
CN108316389A (zh) * 2018-04-16 2018-07-24 福建晋工机械有限公司 一种轮式挖掘机用多路阀
CN110359516A (zh) * 2019-07-24 2019-10-22 青岛雷沃工程机械有限公司 挖掘机动臂下降液压控制系统及挖掘机
CN215927947U (zh) * 2021-09-30 2022-03-01 三一汽车制造有限公司 液压系统和车辆
CN114457869A (zh) * 2022-02-22 2022-05-10 哈尔滨工业大学(威海) 一种基于有限传感器的挖掘机智能控制系统和控制方法
CN115095567A (zh) * 2022-07-28 2022-09-23 徐州徐工矿业机械有限公司 用于正铲液压挖掘机调平油缸的液压系统及控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811232A (ja) * 1981-07-10 1983-01-22 Kobe Steel Ltd 作業機械の油圧回路
EP0072539A2 (en) * 1981-08-18 1983-02-23 Hitachi Construction Machinery Co., Ltd. Hydraulic circuit of hydraulic power shovel
US4923362A (en) * 1988-06-06 1990-05-08 Deere & Company Bucket leveling system with dual fluid supply
CN204213075U (zh) * 2014-09-28 2015-03-18 成都凯天电子股份有限公司 机务工作平台机车液压控制系统
CN105421509A (zh) * 2015-11-16 2016-03-23 潍柴动力股份有限公司 一种混合动力挖掘机动臂势能回收装置及混合动力挖掘机
CN108316389A (zh) * 2018-04-16 2018-07-24 福建晋工机械有限公司 一种轮式挖掘机用多路阀
CN110359516A (zh) * 2019-07-24 2019-10-22 青岛雷沃工程机械有限公司 挖掘机动臂下降液压控制系统及挖掘机
CN215927947U (zh) * 2021-09-30 2022-03-01 三一汽车制造有限公司 液压系统和车辆
CN114457869A (zh) * 2022-02-22 2022-05-10 哈尔滨工业大学(威海) 一种基于有限传感器的挖掘机智能控制系统和控制方法
CN115095567A (zh) * 2022-07-28 2022-09-23 徐州徐工矿业机械有限公司 用于正铲液压挖掘机调平油缸的液压系统及控制方法

Also Published As

Publication number Publication date
CN115095567A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2024022460A1 (zh) 用于正铲液压挖掘机调平油缸的液压系统及控制方法
WO2012094993A1 (zh) 一种提高挖掘机挖掘操纵特性和平整作业特性的方法
WO2012094991A1 (zh) 一种提高挖掘机挖掘操纵特性和平整作业特性的装置
CN101936018A (zh) 装载机电液比例控制系统
WO2021093300A1 (zh) 一种挖掘机动臂节能控制系统及控制方法
CN103541395A (zh) 一种液压挖掘机节能控制系统
WO2021114669A1 (zh) 一种动臂液压系统
CN102587445A (zh) 一种带有再生节能的负荷传感流量控制液压系统
CN215922319U (zh) 电液控制转向系统和装载机
CN113494111B (zh) 主控阀、定变量液压系统和装载机
CN209875588U (zh) 油源阀、液压系统和工程机械
WO2021114668A1 (zh) 一种开式液压泵及开式液压系统
CN114688115A (zh) 一种装载机复合动作控制液压系统及方法
CN109914519B (zh) 一种基于四口液压变压器的重力势能回收与再利用节能装置
CN214304596U (zh) 一种挖掘机的控制系统及挖掘机
JP2021032361A (ja) 建設機械
CN217759049U (zh) 先导信号阀组及全变量液压系统和装载机
JPS5916562Y2 (ja) 片ロッドシリンダの駆動油圧回路
CN217557055U (zh) 电控全变量液压系统和装载机
CN219529435U (zh) 一种液控手柄多动作切换控制系统
CN216153856U (zh) 电液控制转向系统和装载机
CN114250819B (zh) 流量再生阀组、挖掘机控制系统和液压挖掘机
CN219298298U (zh) 液控平地机液压系统
CN215759296U (zh) 小型挖掘机液压系统
CN117386687A (zh) 多路阀、液压系统及工程机械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845665

Country of ref document: EP

Kind code of ref document: A1