WO2024022448A1 - 一种数据传输方法及相关装置 - Google Patents

一种数据传输方法及相关装置 Download PDF

Info

Publication number
WO2024022448A1
WO2024022448A1 PCT/CN2023/109605 CN2023109605W WO2024022448A1 WO 2024022448 A1 WO2024022448 A1 WO 2024022448A1 CN 2023109605 W CN2023109605 W CN 2023109605W WO 2024022448 A1 WO2024022448 A1 WO 2024022448A1
Authority
WO
WIPO (PCT)
Prior art keywords
video frames
information
data
terminal device
network device
Prior art date
Application number
PCT/CN2023/109605
Other languages
English (en)
French (fr)
Inventor
黄曲芳
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2024022448A1 publication Critical patent/WO2024022448A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present application relates to the field of communication technology, and in particular, to a data transmission method and related devices.
  • XR Extended Reality
  • AR Augmented Reality
  • VR Virtual Reality
  • XR refers to the use of computer technology and terminal devices (such as wearable devices) to carry out human activities in a real and virtual environment.
  • terminal equipment performs XR services, it needs to send and receive a large amount of data.
  • This application provides a data transmission method and related devices, which can transmit data according to the degree of data packet loss acceptable to the terminal equipment when the air interface quality is poor.
  • embodiments of the present application provide a data transmission method.
  • the method is explained from the perspective of a terminal device or a device such as a chip or processor in the terminal device.
  • the method includes: determining first information, the first The information is used to determine the degree of data packet loss that the terminal device can accept for N video frames; N video frames are the video frames to be received after the M video frames have been received; M and N are both positive integers; M The video frame and the N video frames are both video frames of the extended reality XR service; the first information is sent to the network device.
  • the network device transmits video frames according to the degree of data packet loss that the terminal device can accept, thereby improving the data transmission performance of the XR service.
  • the first information includes at least one of the following:
  • the degree of data packet loss that the terminal device can accept For each data type in N video frames, the degree of data packet loss that the terminal device can accept;
  • the importance threshold corresponding to each data type in M video frames is used to instruct the network device to discard data packets whose importance level of each data type is not higher than the corresponding importance threshold in N video frames;
  • the network device For N video frames, it is recommended that the network device needs to transmit a first percentage of the number of data packets and/or a second percentage of the number of data packets to discard.
  • the first percentage and the second percentage are both less than 1.
  • the method further includes:
  • Second information is sent to the network device.
  • the second information is used to indicate the frame number N or the duration T of video frames to be received for which the degree of data packet loss determined using the first information is greater than zero.
  • the first information is sent through the control information element MAC CE of the media access control; or the first information is sent through the preconfigured CG resource, and the CG resource is located in the video frame of the XR service Within the time range X after receiving, X is greater than zero.
  • the method further includes:
  • Receive third information from the network device is used to indicate, for each video frame, a percentage of the number of data packets received by the network device from the user plane function UPF, and a percentage of the number of data packets sent by the network device to the terminal device. and/or the percentage of the number of packets received from UPF.
  • the method further includes:
  • the fourth information is determined based on the third information and is used to indicate that for each video frame, it is recommended that the network device needs to transmit a percentage of the number of data packets and/or the number of data packets received from the UPF. The percentage of dropped packets.
  • embodiments of the present application provide a data transmission method.
  • the method is explained from the perspective of network equipment or related devices in the network equipment.
  • the method includes:
  • N video frames are the video frames to be sent after the M video frames have been sent;
  • M and N are both positive integers;
  • M video frames and N video frames are both video frames for the extended reality XR service;
  • N video frames are sent.
  • the network device can transmit video frames according to the degree of data packet loss that the terminal device can accept.
  • the first information includes at least one of the following:
  • the degree of data packet loss that the terminal device can accept For each data type in N video frames, the degree of data packet loss that the terminal device can accept;
  • the importance threshold corresponding to each data type in M video frames is used to instruct the network device to discard data packets whose importance level of each data type is not higher than the corresponding importance threshold in N video frames;
  • the network device For N video frames, it is recommended that the network device needs to transmit a first percentage of the number of data packets and/or a second percentage of the number of data packets to discard.
  • the first percentage and the second percentage are both less than 1.
  • the step of sending N video frames based on the first information is performed.
  • the data packets transmitted and/or the discarded data packets in the N video frames are determined based on the first information, and the method further includes:
  • the statistical results include information on discarded data packets in N video frames.
  • the method further includes:
  • Send third information to the terminal device the third information being used to indicate, for each video frame, a percentage of the number of data packets received by the network device from the user plane function UPF, and a percentage of the number of data packets sent by the network device to the terminal device. and/or the percentage of packets dropped from packets received from UPF.
  • the method further includes:
  • the fourth information is determined based on the third information and is used to indicate that for each video frame, it is recommended that the network device needs to transmit a percentage of the number of data packets and/or the data packets received from the UPF. The percentage of packets to discard.
  • the third information and/or the fourth information are control information elements through media access control. is sent by the MAC CE; or, the third information and/or the fourth information is sent through the Packet Data Convergence Protocol PDCP Control Protocol Data Unit PDU.
  • a data transmission device which includes:
  • a determining unit configured to determine first information, which is used to determine the degree of data packet loss that the terminal device can accept for N video frames;
  • N video frames are video frames to be received after M video frames have been received; M and N are both positive integers; M video frames and N video frames are both video frames of the extended reality XR service;
  • the sending unit is used to send the first information to the network device.
  • the data transmission device may perform optional implementations and beneficial effects as described in the above-mentioned first aspect, which will not be described in detail here.
  • a data transmission device which includes:
  • a receiving unit configured to receive first information from the terminal device, where the first information is used to determine the degree of data packet loss that the terminal device can accept for N video frames;
  • N video frames are the video frames to be sent after the M video frames have been sent;
  • M and N are both positive integers;
  • M video frames and N video frames are both video frames for the extended reality XR service;
  • a sending unit configured to send N video frames based on the first information.
  • the data transmission device performs optional implementations and beneficial effects. Please refer to the relevant content in the above-mentioned second aspect, which will not be described in detail here.
  • inventions of the present application provide a communication device.
  • the communication device includes: a processor and a memory.
  • the processor and the memory are connected to each other.
  • the memory is used to store a computer program.
  • the computer program includes program instructions, where the processing The processor executes the program instructions to implement the steps in the method designed in the first aspect.
  • the communication device may be a terminal device or a chip or chip module in the terminal device.
  • inventions of the present application provide a communication device.
  • the communication device includes: a processor and a memory.
  • the processor and the memory are connected to each other.
  • the memory is used to store a computer program.
  • the computer program includes program instructions.
  • the processing The processor executes the program instructions to implement the steps in the method designed in the second aspect.
  • the communication device may be a network device or a chip or chip module in the network device.
  • embodiments of the present application provide a chip, which includes a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • the chip may further include a memory and a computer program or instructions stored in the memory, and the processor executes the computer program or instructions to implement the method described in the first aspect or the second aspect.
  • embodiments of the present application provide a chip module, including a transceiver component and a chip.
  • the chip includes a processor, wherein the processor executes the method designed in the first aspect or the second aspect. step.
  • the chip may further include a memory and a computer program or instructions stored in the memory, and the processor executes the computer program or instructions to implement the method described in the first aspect or the second aspect.
  • inventions of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program includes program instructions. When the program instructions are executed, the above-mentioned first aspect or Steps in the method designed in the second aspect.
  • embodiments of the present application provide a computer program product, which includes a computer program or program instructions.
  • the computer program or program instructions When executed, the method described in the first aspect or the second aspect is implemented.
  • Figure 1 is a schematic architectural diagram of a data transmission system provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a data transmission method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of data transmission provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of another data transmission method provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • FIG. 1 is a schematic architectural diagram of a data transmission system provided by embodiments of the present application.
  • the data transmission system may include a network device 101 and a terminal device 102, wherein the network device 101 may transmit video frames of the XR service to the terminal device 102.
  • the equipment form shown in Figure 1 is used as an example and does not constitute a limitation on the embodiments of the present application.
  • Figure 1 may also include a user plane function (User Plane Function, UPF).
  • UPF User Plane Function
  • the network device 101 may receive video frames of the XR service from the UPF.
  • This application can be applied to 5G communication systems and various new communication systems in the future, such as sixth generation (6th Generation, 6G) communication systems, seventh generation (7th Generation, 7G) communication systems, etc.
  • 6G sixth generation
  • 7G seventh generation
  • the embodiments of this application are Not limited.
  • the network device can be an access network device used to perform wireless access functions.
  • the network device can be a Global System for Mobile Communications (GSM) or a Code Division Multiple Access (Code Division Multiple Access).
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • BTS base transceiver station
  • WCDMA Wideband Code Division Multiple Access
  • nodeB, NB base station
  • LTE Long-term evolution
  • evolutional node B, eNB or eNodeB in the communication system
  • base station (gNB) in the new radio (new radio, NR) communication system or equipment in the future communication system can be a Global System for Mobile Communications (GSM) or a Code Division Multiple Access (Code Division Multiple Access).
  • CDMA Code Division Multiple Access
  • BTS base transceiver station
  • WCDMA Wideband Code Division Multiple Access
  • nodeB, NB base station
  • LTE long-term evolution
  • evolutional node B, eNB or eNodeB evolution base station
  • gNB
  • the network device can also be an access point (AP), a relay station in a wireless local area network (Wireless Local Area Networks, WLAN), or a network device in a future evolved public land mobile network (public land mobile network, PLMN) network Or network equipment in non-terrestrial network (Non-terrestrial Network, NTN) communication systems, etc.
  • the network device includes network device 101.
  • terminal equipment is a device with transceiver functions, which can also be called user equipment (UE), access terminal equipment, user unit, user station, mobile station, mobile station, remote station, remote station, etc.
  • the terminal device may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a mobile phone with Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, relay devices, vehicle-mounted devices, wearable devices, terminal devices in next-generation communication systems such as NR networks or terminal devices in future evolved PLMNs etc., there is no specific limit on this.
  • terminal devices can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; they can be deployed on water (such as ships, etc.); they can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer, a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial device Wireless terminal equipment in industrial control, vehicle-mounted equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation safety Wireless terminal equipment in (transportation safety), wireless terminal equipment in smart city (smart city).
  • the terminal device includes terminal device 102 .
  • Figure 2 is a schematic flowchart of a data transmission method provided by an embodiment of the present application. As shown in Figure 2, the data transmission method may include but is not limited to the following steps:
  • the terminal device determines first information, which is used to determine the degree of data packet loss that the terminal device can accept for N video frames.
  • the terminal device sends the first information to the network device, and accordingly, the network device receives the first information from the terminal device.
  • the network device sends the N video frames based on the first information.
  • N video frames are video frames to be received after M video frames have been received; M and N are both positive integers; M video frames and N video frames are both video frames of the extended reality XR service.
  • M video frames and N video frames are correlated.
  • the network device if there is a correlation between N video frames and M video frames, the network device performs the step of sending N video frames based on the first information. That is to say, if there is no correlation between the N video frames and the M video frames (for example, there is a sudden change in the picture caused by lens switching), the network device may not send the N video frames according to the first information reported by the terminal device.
  • the degree of data packet loss acceptable to the terminal device may be characterized by the packet loss rate acceptable to the terminal device.
  • the packet loss rate that the terminal device can accept is the ratio of the number of discarded data packets in the video frame received by the terminal device to the total number of data packets in the video frame. For example, assume that the packet loss rate that the terminal device can accept is 20%, and the total number of data packets in the video frame is 100, then the number of discarded data packets in the video frame that the terminal device can accept is 20. In another case, the packet loss rate that the terminal device can accept is the number of discarded data packets in the video frame received by the terminal device to the number of data packets in the video frame received by the network device from the user plane function (User Plane Function, UPF). ratio.
  • UPF User Plane Function
  • the packet loss rate that the terminal device can accept is 20%
  • the total number of data packets of the video frame is 100
  • the number of data packets of the video frame received by the network device from UPF is 80 (that is, the number of data packets of the video frame received by the network device from UPF is 80).
  • 20 data packets have been discarded in the video frame)
  • the packet loss rate that the terminal device can accept is the number of packets dropped by UPF and the number of packets dropped by the network device. The ratio between the sum of the number of packets and the total number of packets in this video frame received by UPF from the data source.
  • the degree of data packet loss acceptable to the terminal device may be characterized by the data packet transmission rate acceptable to the terminal device.
  • the degree of data packet loss that the terminal device can accept may be characterized by the data volume transmission rate that the terminal device can accept.
  • the data transfer rate that the terminal device can accept is 80%
  • the total data amount of the video frame is 1000 Bytes
  • the data amount of the video frame received by the network device from UPF is 800 Bytes
  • Figure 3 is a schematic diagram of data transmission provided by an embodiment of the present application.
  • 1 represents a data packet in a video frame (for example, recorded as video frame a) that the network device has transmitted to the terminal device.
  • 2 represents the data packet in the video frame to be transmitted by the network device (recorded as video frame b).
  • video frame b is the next video frame of video frame a.
  • the first information sent by the terminal device to the network device determines that the transmission rate of the next frame of data packets is 70%, that is, the scheduling recommendation for the next video frame (ie, video frame b) is that 70% of the data needs to be received. Just pack it reach a level of satisfaction. In this way, the network device sends the video frame b based on the first information.
  • the first information is used to determine the degree of data packet loss that the terminal device can accept for N video frames.
  • the first information may include at least one of the following: for N video frames, the The degree of data packet loss that the terminal device can accept; the cache status report of each data type in the corresponding buffer in the M video frames; for each data type in the N video frames, the terminal device can accept The degree of data packet loss; an importance threshold used to instruct the network device to discard data packets whose importance level is not higher than the importance threshold in the N video frames; each data type in the M video frames corresponds to The importance threshold is used to instruct the network device to discard data packets whose importance level of each data type is not higher than the corresponding importance threshold among the N video frames; for the N video frames, the terminal device The minimum number of data packets expected to be received; for the N video frames, the minimum number of data packets of each data type expected to be received by the terminal device; for the N video frames, the minimum number of data packets expected to be received by the terminal device The minimum number of
  • the first information includes the degree of data packet loss acceptable to the terminal device for N video frames.
  • the network device sends N video frames based on the first information, which may include: determining the N video frames to be transmitted according to the degree of data packet loss that the terminal device can accept for the N video frames. Data packets; the network device sends the data packets to be transmitted in N video frames.
  • the first information includes the degree of data packet loss that the terminal device can accept for each data type in the N video frames.
  • the data types in the N video frames may include texture data types and light data types.
  • the terminal device determines the first information, including: the terminal device stores the M video frames in buffers corresponding to the data types according to the data types of the received M video frames, and obtains The cache status report of the buffer of each data type; furthermore, based on the cache status report of the buffer of each data type, the degree of data packet loss that the terminal device can accept for each data type in the N video frames can be determined.
  • the network device sends N video frames based on the first information, which may include: for each data type in the N video frames, the degree of data packet loss that the terminal device can accept, and the network device determines N Data packets of each data type in the video frame to be transmitted; the network device sends data packets of each data type in N video frames to be transmitted.
  • the first information includes the buffer status report (Buffer State Report, BSR) of each data type in the corresponding buffer (Buffer) in the M video frames.
  • BSR Buffer State Report
  • the terminal device determines the first information, including: the terminal device stores the M video frames in buffers corresponding to the data types according to the data types of the received M video frames, and obtains Cache status report for buffers of each data type.
  • the network device sends N video frames based on the first information, which may include: the network device determines the data to be transmitted of each data type in the N video frames based on the cache status report of the buffer of each data type. Packet; the network device sends data packets to be transmitted of each data type in N video frames.
  • the first information includes an importance threshold, which is used to instruct the network device to discard data packets in N video frames whose importance level is not higher than the importance threshold.
  • the network device sends N video frames based on the first information, which may include: the network device determines that the data packets in the N video frames whose importance level is higher than an importance threshold are used as the data packets in the N video frames.
  • the data packets to be transmitted are discarded and the data packets in the N video frames whose importance level is not higher than the importance threshold are discarded; the data packets to be transmitted in the N video frames are sent.
  • the first information includes the importance threshold corresponding to each data type in the M video frames, and is used to instruct the network device to discard the N video frames in which the importance level of each data type is not higher than the corresponding importance threshold. data pack.
  • the network device sends N video frames based on the first information, which may include: determining data packets whose importance level of each data type in the N video frames is higher than the corresponding importance threshold, as N The data packets to be transmitted in the video frame are discarded, and the data packets whose importance level of each data type is not higher than the corresponding importance threshold are discarded; the data packets to be transmitted in N video frames are sent.
  • the first information includes the minimum number of data packets that the terminal device expects to receive for N video frames;
  • the network device sends N video frames based on the first information, which may include: the network device determines the data packets to be transmitted in the N video frames according to the minimum number of data packets expected to be received by the terminal device; sending The data packets to be transmitted in the N video frames.
  • the first information includes the minimum number of data packets of each data type that the terminal device expects to receive for N video frames;
  • the network device sends N video frames based on the first information, which may include: the network device determines each data type in the N video frames based on the minimum number of data packets of each data type that the terminal device expects to receive. Data packets to be transmitted; send data packets of each data type in the N video frames to be transmitted.
  • the first information includes the minimum number of bits that the terminal device expects to receive for N video frames
  • the network device sends N video frames based on the first information, which may include: the network device determines the data packets to be transmitted in the N video frames according to the minimum number of bits expected to be received by the terminal device; sending the N video frames The data packets to be transmitted.
  • the first information includes the minimum number of bits of each data type that the terminal device expects to receive for N video frames.
  • the network device sends N video frames based on the first information, which may include: the network device determines each data type in the N video frames to be processed based on the minimum number of bits of each data type that the terminal device expects to receive. Transmitted data packets; send the data packets to be transmitted of each data type in the N video frames.
  • the first information includes, for N video frames, a first percentage of the number of data packets that the network device needs to transmit and/or a second percentage of the number of data packets that need to be discarded, the first percentage and the second percentage are both less than 1.
  • the network device sends N video frames based on the first information, which may include: the network device determines the first percentage of the number of data packets that the network device needs to transmit and/or the number of data packets that need to be discarded. The second percentage of the data packets to be transmitted in the N video frames is determined; and the data packets to be transmitted in the N video frames are sent.
  • the terminal device may also send second information to the network device, and accordingly, the network device receives the second information, where the second information is used to indicate the degree of data packet loss determined using the first information.
  • the frame number N or duration T of the video frames to be received is greater than zero.
  • the number N or duration T of video frames to be received for which the degree of data packet loss determined using the first information can be configured through the network device, and T is greater than zero. That is to say, the frame number N or the duration T of the video frame may be reported by the terminal device to the network device, or may be configured by the network device.
  • the first information sent by the terminal device to the network device is for N video frames.
  • the terminal device may send first information corresponding to multiple segmented video frames to the network device.
  • the terminal device may send to the network device the first information corresponding to N1 video frames, the first information corresponding to the N2 video frames after the N1 video frames, and the first information corresponding to the N3 video frames after the N2 video frames.
  • First information etc. the terminal device may send to the network device the first information corresponding to the video frames transmitted within the duration T1, the first information corresponding to the video frames transmitted within the duration T2 after the duration T1, and the first information corresponding to the duration T2 after the duration T2.
  • the first information for N video frames, or the first information corresponding to multiple segmented video frames is a control information element (Medium Access Control) through the terminal device media access control. Control Control Element, MAC CE) sent.
  • the first information for N video frames, or the first information corresponding to multiple segmented video frames is sent through a preconfigured (Configured Grant, CG) resource.
  • the CG resource is located in the video frame of the XR service. Within the time range X after receiving, X is greater than zero.
  • the terminal device sends the first information to the network device to determine that for N video frames, the final The degree of data packet loss that the terminal device can accept; in this way, the network device can transmit the video frame according to the degree of data packet loss that the terminal device can accept.
  • the embodiment of the present application can be determined by the receiving device. For parties, such as terminal equipment, it is recommended that the degree of data packet loss is beneficial to improving the data transmission performance of XR services.
  • Figure 4 is a schematic flow chart of another data transmission method provided by an embodiment of the present application.
  • the data transmission method shown in Figure 4 is helpful for the network device to promptly learn the degree of data packet loss that the terminal device can accept when the air interface quality is poor, and timely adjust the data packet transmission mechanism of N video frames.
  • the terminal device can also promptly suggest the network device to transmit more or less data packets.
  • the data transmission method includes but is not limited to the following steps:
  • the terminal device determines first information.
  • the first information is used to determine the degree of data packet loss that the terminal device can accept for N video frames;
  • the terminal device sends the first information, and accordingly, the network device receives the first information
  • the network device transmits N video frames according to the first information
  • the network device sends third information.
  • the terminal device receives the third information.
  • the third information is used to indicate for each video frame, the percentage of the number of data packets received by the network device from the UPF, and, the network device sends to Percentage of the number of packets received from the end device and/or percentage of the number of packets received from the UPF;
  • the percentage of the number of data packets received by the network device from UPF refers to the ratio of the number of data packets transmitted by the network device in the video frame received by UPF to the total number of data packets in the video frame. For example, assuming that the number of data packets in each video frame is 100, and the number of data packets in the video frame received by the network device from UPF is 80, then, for each video frame, the number of data packets received by the network device from UPF is The percentage is 80%.
  • the percentage of the number of data packets sent by the network device to the terminal device refers to the ratio of the number of data packets sent by the network device to the terminal device and the total number of data packets in the video frame. For example, assuming that the number of data packets in each video frame is 100, and the number of data packets in the video frame sent by the network device to the terminal device is 70, then, for each video frame, the number of data packets sent by the network device to the terminal device The percentage of quantity is 70%.
  • the percentage of the number of data packets received from UPF that the network device sends to the terminal device refers to the number of data packets transmitted in the video frame sent by the network device to the terminal device and the data transmitted in the video frame received by the network device from UPF
  • the third information is used to indicate, for each video frame, the number of data packets received by the network device from the UPF, the number of data packets discarded by the UPF, and the data packets sent by the network device to the terminal device. quantity.
  • the network device notifies the terminal device through the third information that the number of data packets it received from UPF is 95, the number of data packets discarded by UPF is 5, and the number of data packets sent by the network device to the terminal device is 90. It can be seen that using this implementation method, the terminal device can learn the details of the number of data packets in each video frame.
  • the terminal device may determine, for each video frame, a percentage of the number of data packets received by the network device from the UPF, and a percentage of the number of data packets sent by the network device to the terminal device and/or from Percentage of the number of packets received by UPF.
  • the third information is used to indicate, for each video frame, a percentage of the amount of data received by the network device from the user plane function UPF, and a percentage of the amount of data sent by the network device to the terminal device. and/or the percentage of data volume received from UPF.
  • the percentage of the amount of data sent by the network device to the terminal device refers to the ratio of the amount of data sent by the network device to the terminal device and the total amount of data in the video frame. For example, assuming that the data amount of each video frame is 1000 Bytes, and the data amount of the video frame sent by the network device to the terminal device is 700 Bytes, then, for each video frame, the percentage of the data amount sent by the network device to the terminal device is 70 %.
  • the third information is used to indicate, for each video frame, the amount of data received by the network device from the UPF, the amount of data discarded by the UPF, and the amount of data sent by the network device to the terminal device.
  • the network device notifies the terminal device through the third information that the amount of data it receives from UPF is 9000 Bytes, the amount of data discarded by UPF is 300 Bytes, and the amount of data sent by the network device to the terminal device is 8000 Bytes. It can be seen that using this implementation method, the terminal device can learn the details of the data amount for each video frame.
  • the terminal device is based on the third Information may determine, for each video frame, a percentage of the amount of data received by the network device from the UPF, and a percentage of the amount of data sent by the network device to the end device and/or a percentage of the amount of data received from the UPF.
  • the terminal device sends fourth information based on the third information.
  • the network device receives the fourth information.
  • the fourth information is used to indicate the percentage and/or the number of data packets that the network device needs to transmit for each video frame. Or the percentage of packets received from UPF that need to be dropped.
  • the terminal device may perform step S404 after sending the N video frames, or may perform step S404 before sending the N video frames, which is not limited in this application.
  • the percentage of the number of data packets that the network device needs to transmit refers to the ratio of the number of data packets transmitted in the video frame transmitted by the network device to the terminal device and the total number of data packets in the video frame. For example, assume that the number of data packets in each video frame is 100, and the number of data packets transmitted in the video frame transmitted by the network device to the terminal device is 70. For each video frame, the terminal device recommends the data packets that the network device needs to transmit. The percentage of the number is 80%. Then, for each video frame, the terminal device recommends that the number of data packets that the network device needs to transmit is 80.
  • the terminal device recommends that the percentage of the number of data packets that the network device needs to transmit (eg, 80%) may be greater than the percentage of the number of data packets that the network device needs to transmit (eg, 70%). It can be seen that this implementation method is conducive to when the air interface quality improves, the terminal device can promptly suggest the network device to transmit more data packets through the fourth information, or when the air interface quality further deteriorates, the terminal device can timely suggest the network through the fourth information The device transmits fewer packets.
  • the percentage of the number of data packets that the network device needs to transmit eg, 80%
  • the percentage of the number of data packets that the network device needs to transmit eg, 70%
  • the percentage of the number of data packets that the network device receives from the UPF needs to be discarded, which refers to the number of data packets that the network device sends to the terminal device that needs to be discarded and the number of data packets that the network device receives from the UPF.
  • the ratio of the number of data packets transmitted in this video frame refers to the number of data packets that the network device sends to the terminal device that needs to be discarded and the number of data packets that the network device receives from the UPF.
  • the number of data packets in each video frame is 100
  • the number of data packets in the video frame received by the network device from the UPF is 80
  • the number of data packets discarded in the video frame when the network device sends it to the terminal device is 10
  • the terminal device can directly report to the network device To send the first information, that is, the terminal device does not need to send the fourth information to the network device. That is to say, if the terminal device sends the first information to the network device, it means that for each video frame, it is recommended that the percentage of the number of data packets that the network device needs to discard from the data packets received from the UPF is less than 100%.
  • the terminal device sends the fourth information to the network device, it means that for each video frame, it is recommended to It is recommended that the percentage of the number of data packets that the network device receives from the UPF needs to be discarded can be greater than 100% or less than 100%.
  • the fourth information may also indicate, for each video frame, a change in the number of data packets that the network device needs to transmit and/or a change in the number of data packets that need to be discarded from the data packets received from the UPF.
  • the fourth information indicates that for each video frame, it is recommended that the network device transmits 6 more data packets; or, alternatively, transmits 4 less data packets.
  • the fourth information indicates that for each video frame, it is recommended that the network device discards 4 more data packets received from the UPF; or, alternatively, discards 6 less data packets.
  • the fourth information is used to indicate, for each video frame, a percentage of the amount of data that the network device needs to transmit and/or a percentage of the amount of data that needs to be discarded in the video frame received from the UPF. .
  • the percentage of the data amount that the network device is recommended to transmit refers to the ratio of the data amount of the video frame transmitted by the network device to the terminal device and the total data amount of the video frame. For example, assume that the amount of data in each video frame is 10,000 Bytes, and the amount of data transmitted by the network device to the terminal device is 7,000 Bytes. For each video frame, the terminal device recommends that the percentage of data that the network device needs to transmit is 80%. Then, for For each video frame, the terminal device recommends that the amount of data that the network device needs to transmit is 8000Bytes. It can be seen that for each video frame, the terminal device recommends that the percentage of the data volume that the network device needs to transmit (eg, 80%) may be greater than the percentage of the data volume that the network device transmits (eg, 70%).
  • the percentage of data that the network device needs to discard in the video frame received from the UPF refers to the ratio of the amount of data that needs to be discarded in the video frame sent by the network device to the terminal device and the amount of data that the network device needs to discard.
  • the ratio of the amount of data transmitted in this video frame received by UPF refers to the ratio of the amount of data transmitted in this video frame received by UPF.
  • the network device transmits a few more data packets.
  • the fourth information may also indicate, for each video frame, a change in the amount of data that the network device needs to transmit and/or a change in the amount of data that needs to be discarded in the data packets received from the UPF.
  • the fourth information indicates that for each video frame, it is recommended that the network device transmits more data packets of 600 Bytes; or, transmits less data packets of 400 Bytes.
  • the fourth information indicates that for each video frame, it is recommended that the network device discards 400 Bytes more data packets received from the UPF; or, Drop less 600Bytes packets.
  • the fourth information is used to indicate, for each video frame, a percentage of the number of data packets that the network device is recommended to discard.
  • UPF will also notify the network device of the number or percentage of discarded packets in the video frames transmitted by UPF to the network device.
  • the percentage is relative to the number of data packets in the video frame received by the UPF, or relative to the total number of data packets in the video frame.
  • the fourth information is used to indicate, for each video frame, a percentage of the amount of data that the network device is recommended to discard.
  • UPF will also notify the network device of the amount or percentage of data that has been discarded in the video frames transmitted by UPF to the network device.
  • the percentage is relative to the total data amount of the video frames received by the UPF, or relative to the total data amount of the video frames. For example, assuming that the amount of data in each video frame is 10,000 Bytes, for each video frame, the terminal device advises the network device through the fourth information that the percentage of the data amount that needs to be discarded is 10%, and the UPF notifies the network device of the video it transmits to the network device.
  • the network device can determine based on the 10% recommended by the terminal device and the UPF discarded data volume percentage of 5% or the discarded data volume of 500Bytes.
  • the network device can configure the fourth information through Radio Resource Control (Radio Resource Control, RRC), or can also provide instructions through MAC CE, Downlink Control Information (Downlink Control Information, DCI), etc.
  • Radio Resource Control Radio Resource Control, RRC
  • RRC Radio Resource Control
  • MAC CE Downlink Control Information
  • DCI Downlink Control Information
  • the data packets transmitted and/or the discarded data packets in N video frames are determined based on the first information, and the network device can also send statistical results to the network management platform, where the statistical results include Information about dropped packets in N video frames.
  • the information about the discarded data packets is, for example, the data packets that were not transmitted due to poor air interface conditions.
  • the third information and/or the fourth information is sent through MAC CE; or the third information and/or the fourth information is sent through Packet Data Convergence Protocol (PDCP). ) is sent by the control protocol data unit (Protocol Data Unit, PDU).
  • PDCP Packet Data Convergence Protocol
  • the network device when the air interface quality is poor, the network device can promptly learn the degree of data packet loss that the terminal device can accept through the first information, and promptly adjust the data packet transmission of N video frames. mechanism. exist When the air interface quality improves or worsens, the terminal device can also promptly recommend the network device to transmit more or less data packets through the fourth information.
  • Figure 5 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application. As shown in Figure 5, the data transmission device may include but is not limited to:
  • Determining unit 501 used to determine first information, which is used to determine the degree of data packet loss that the terminal device can accept for N video frames;
  • N video frames are video frames to be received after M video frames have been received; M and N are both positive integers; M video frames and N video frames are both video frames of the extended reality XR service;
  • the sending unit 502 is used to send the first information to the network device.
  • the first information includes at least one of the following:
  • the degree of data packet loss that the terminal device can accept For each data type in N video frames, the degree of data packet loss that the terminal device can accept;
  • the importance threshold corresponding to each data type in M video frames is used to instruct the network device to discard data packets whose importance level of each data type is not higher than the corresponding importance threshold in N video frames;
  • the network device For N video frames, it is recommended that the network device needs to transmit a first percentage of the number of data packets and/or a second percentage of the number of data packets to discard.
  • the first percentage and the second percentage are both less than 1.
  • the sending unit 502 is also configured to send second information to the network device.
  • the second information is used to indicate the degree of data packet loss determined using the first information of the video frame to be received.
  • the number of frames N or the duration T, T is greater than zero.
  • the first information is sent through the control cell MAC CE of the media access control;
  • the first information is sent through preconfigured CG resources, and the CG resources are located within the time range X after the video frame of the XR service is received, and X is greater than zero.
  • the data transmission device further includes:
  • the receiving unit 503 is configured to receive third information from the network device.
  • the third information is used to indicate, for each video frame, the percentage of the number of data packets the network device receives from the user plane function UPF, and what the network device sends to the terminal device. The percentage of the number of packets and/or the percentage of the number of packets received from UPF.
  • the sending unit 502 is also configured to send fourth information to the network device.
  • the fourth information is determined based on the third information and is used to indicate that for each video frame, it is recommended that the network device needs to transmit The percentage of packets and/or the number of packets received from the UPF that need to be dropped.
  • FIG. 6 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • the data transmission device may include but is not limited to:
  • the receiving unit 601 is configured to receive first information from the terminal device, where the first information is used to determine the degree of data packet loss that the terminal device can accept for N video frames;
  • N video frames are the video frames to be sent after the M video frames have been sent;
  • M and N are both positive integers;
  • M video frames and N video frames are both video frames for the extended reality XR service;
  • the sending unit 602 is configured to send N video frames based on the first information.
  • the first information includes at least one of the following:
  • the degree of data packet loss that the terminal device can accept For each data type in N video frames, the degree of data packet loss that the terminal device can accept;
  • the importance threshold corresponding to each data type in M video frames is used to instruct the network device to discard data packets whose importance level of each data type is not higher than the corresponding importance threshold in N video frames;
  • the network device For N video frames, it is recommended that the network device needs to transmit a first percentage of the number of data packets and/or a second percentage of the number of data packets to discard.
  • the first percentage and the second percentage are both less than 1.
  • the step of sending N video frames based on the first information is performed.
  • the data packets transmitted and/or the discarded data packets in the N video frames are determined based on the first information, and the sending unit 602 is also configured to send statistical results to the network management platform.
  • the statistical results Contains information about dropped packets in N video frames.
  • the sending unit 602 is also configured to send third information to the terminal device.
  • the third information is used to indicate the number of data packets received by the network device from the user plane function UPF for each video frame. Percentage of packets sent by the network device to the end device and/or dropped by the packets received from the UPF.
  • the receiving unit 601 is also configured to receive fourth information from the terminal device, where the fourth information is determined based on the third information. Indicates, for each video frame, the recommended percentage of packets that the network device needs to transmit and/or the percentage of packets that are received from the UPF that should be discarded.
  • the third information and/or the fourth information is sent through the control cell MAC CE of the media access control; or the third information and/or the fourth information is sent through packet data aggregation Protocol PDCP Control Protocol Data Unit PDU is sent.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device includes a processor 701, a transceiver 703 and a memory 702.
  • Processor 701 and memory 702 are connected through one or more communication buses.
  • the transceiver 703 is used to send data or receive data.
  • the memory 702 is used to store commands or computer programs.
  • the memory 702 includes, but is not limited to, random access memory (RAM), read-only memory (read-only memory, ROM), and erasable programmable read-only memory (ROM). erasable programmable read-only memory (EPROM) or portable read-only memory (compact disc read-only memory, CD-ROM).
  • RAM random access memory
  • ROM read-only memory
  • ROM erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • portable read-only memory compact disc read-only memory
  • the processor 701 can be a central processing unit (Central Processing Unit, CPU).
  • the processor 701 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC). ), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general processor may be a microprocessor, and optionally, the processor 701 may also be any conventional processor.
  • the communication device may be a terminal device or a chip or chip module in the terminal device.
  • the processor 701 can be used to execute computer programs or commands stored in the memory 702, so that the communication device executes:
  • N video frames are video frames to be received after M video frames have been received; M and N are both positive integers; M video frames and N video frames are both video frames of the extended reality XR service;
  • the first information includes at least one of the following:
  • the degree of data packet loss that the terminal device can accept For each data type in N video frames, the degree of data packet loss that the terminal device can accept;
  • the importance threshold corresponding to each data type in M video frames is used to instruct the network device to discard data packets whose importance level of each data type is not higher than the corresponding importance threshold in N video frames;
  • the network device For N video frames, it is recommended that the network device needs to transmit a first percentage of the number of data packets and/or a second percentage of the number of data packets to discard.
  • the first percentage and the second percentage are both less than 1.
  • processor 701 is also used to:
  • the frame number N or the duration T of the video frames to be received, T is greater than zero.
  • the first information is sent through the control cell MAC CE of the media access control; or, the first information is sent through the preconfigured CG resource, and the CG resource is located at the time after the video frame of the XR service is received. Within the range of X, X is greater than zero.
  • processor 701 is also used to:
  • Receive third information from the network device is used to indicate, for each video frame, a percentage of the number of data packets received by the network device from the user plane function UPF, and a percentage of the number of data packets sent by the network device to the terminal device. and/or the percentage of the number of packets received from UPF.
  • processor 701 is also used to:
  • the fourth information is determined based on the third information and is used to indicate that for each video frame, it is recommended that the network device needs to transmit a percentage of the number of data packets and/or the number of data packets received from the UPF. The percentage of dropped packets.
  • the communication device may be a network device or a chip or chip module in the network device.
  • the processor 701 can be used to execute computer programs or commands stored in the memory 702, so that the communication device executes:
  • N video frames are the video frames to be sent after the M video frames have been sent;
  • M and N are both positive integers;
  • M video frames and N video frames are both video frames for the extended reality XR service;
  • N video frames are sent.
  • the first information includes at least one of the following:
  • the degree of data packet loss that the terminal device can accept For each data type in N video frames, the degree of data packet loss that the terminal device can accept;
  • the importance threshold corresponding to each data type in M video frames is used to instruct the network device to discard data packets whose importance level of each data type is not higher than the corresponding importance threshold in N video frames;
  • the network device For N video frames, it is recommended that the network device needs to transmit a first percentage of the number of data packets and/or a second percentage of the number of data packets to discard.
  • the first percentage and the second percentage are both less than 1.
  • the step of sending N video frames based on the first information is performed.
  • the data packets transmitted and/or the discarded data packets in N video frames are determined based on the first information, and the processor 701 is also used to:
  • the statistical results include information on discarded data packets in N video frames.
  • processor 701 is also used to:
  • Send third information to the terminal device the third information being used to indicate, for each video frame, a percentage of the number of data packets received by the network device from the user plane function UPF, and a percentage of the number of data packets sent by the network device to the terminal device. and/or the percentage of packets dropped from packets received from UPF.
  • the processor 701 after the processor 701 is used to send the third information to the terminal device, it is also used to:
  • the fourth information is determined based on the third information and is used to indicate that for each video frame, it is recommended that the network device needs to transmit a percentage of the number of data packets and/or the data packets received from the UPF. The percentage of packets to discard.
  • the third information and/or the fourth information is sent through the control cell MAC CE of the media access control; or the third information and/or the fourth information is sent through the packet data convergence protocol PDCP control protocol data Sent by unit PDU.
  • An embodiment of the present application also provides a chip, which includes a processor, wherein the processor performs the steps described in the above method embodiment.
  • the chip may also include a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the steps described in the above method embodiments.
  • An embodiment of the present application also provides a chip module, including a transceiver component and a chip.
  • the chip includes a processor, where the processor performs the steps described in the above method embodiment.
  • the chip may also include memory as well as storage in The computer program or instructions are stored in the memory, and the processor executes the computer program or instructions to implement the steps described in the above method embodiments.
  • Embodiments of the present application also provide a computer-readable storage medium that stores computer programs or instructions. When the computer program or instructions are executed, the steps described in the above method embodiments are implemented.
  • Embodiments of the present application also provide a computer program product, which includes a computer program or instructions. When the computer program or instructions are executed, the steps described in the above method embodiments are implemented.
  • modules/units which may be software modules/units or hardware modules/units, or may be partly software modules/units and partly hardware modules/units.
  • each module/unit contained in each device or product of an application or integrated chip can be implemented in the form of hardware such as circuits, or at least some of the modules/units can be implemented in the form of software programs that run on the integrated processing within the chip.
  • the remaining modules/units can be implemented using hardware such as circuits; for each device or product that corresponds to or integrates a chip module, each module/unit included in it can be implemented using hardware such as circuits. Different modules/units can be implemented using hardware such as circuits.
  • the units can be located in the same piece of the chip module (such as a chip, circuit module, etc.) or in different components. At least some of the units/units can be implemented in the form of a software program that runs on the remaining modules/modules of the integrated processor inside the chip module.
  • the unit can be implemented in the form of hardware such as circuits; for each device or product that corresponds to or integrates the terminal, the modules/units contained therein can be implemented in the form of hardware such as circuits.
  • modules/units can be located in the same component within the terminal (for example, chips, circuit modules, etc.) or different components, or at least some modules/units can be implemented in the form of software programs, which run on the processor integrated within the terminal, and the remaining sub-modules/units can be implemented in hardware such as circuits.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in hardware, or may be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable ROM, EPROM), electrically erasable programmable read-only memory (EPROM, EEPROM), register, hard disk, removable hard disk, compact disc (CD-ROM) or any other form of storage media well known in the art .
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may be located in an application specific integrated circuit (ASIC). Additionally, the ASIC can be located in an end device or network device.
  • the processor and the storage medium may also exist as discrete components in the terminal device or network device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part through software, hardware, firmware, or any combination thereof.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means Transmission to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)) or semiconductor media (eg, solid state disk (SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种数据传输方法及相关装置。该方法中,终端设备确定第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;N个视频帧是已接收的M个视频帧之后待接收的视频帧;M和N均为正整数;M个视频帧和N个视频帧均是扩展现实XR业务的视频帧;向网络设备发送第一信息,相应的,网络设备接收来自终端设备的第一信息。可见,本申请实施例有利于网络设备根据终端设备能够接受的数据包丢包程度,传输视频帧,从而改善XR业务的数据传输性能。

Description

一种数据传输方法及相关装置
本申请要求于2022年07月27日提交中国专利局、申请号为2022108897522、申请名称为“一种数据传输方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及相关装置。
背景技术
随着第五代(5th Generation,5G)移动通信技术的不断发展,数据传输速率越来越高,利用5G网络传输扩展现实(Extended Reality,XR)业务渐渐成为可能。XR包括了增强现实(Augmented Reality,AR)和虚拟现实(Virtual Reality,VR)等,XR指的是在真实和虚拟融合的环境中,利用计算机技术和终端设备(例如是可穿戴设备)开展人机交互的技术,终端设备进行XR业务时,需要发送大量数据、接收大量数据。
然而,由于空口质量不稳定,会有波动,当空口质量变低时,可传输的瞬时数据量也会随之变低,此时,就需要网络设备针对XR业务,丢弃一些数据包,因此,网络设备针对XR业务,在空口质量较差时,如何传输数据成为一个亟待解决的问题。
发明内容
本申请提供了一种数据传输方法及相关装置,能够在空口质量较差时,根据终端设备能够接受的数据包丢包程度传输数据。
第一方面,本申请实施例提供了一种数据传输方法,该方法是从终端设备或终端设备中芯片或处理器等装置的角度进行阐述的,该方法包括:确定第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;N个视频帧是已接收的M个视频帧之后待接收的视频帧;M和N均为正整数;M个视频帧和N个视频帧均是扩展现实XR业务的视频帧;向网络设备发送第一信息。
可见,该方法中,网络设备根据终端设备能够接受的数据包丢包程度,传输视频帧,从而改善XR业务的数据传输性能。
在一种可选的实施方式中,第一信息包括以下至少一项:
针对N个视频帧,终端设备能够接受的数据包丢包程度;
M个视频帧中各数据类型在对应的缓冲区的缓存状态报告;
针对N个视频帧中各数据类型,终端设备分别能够接受的数据包丢包程度;
一个重要性门限,用于指示网络设备丢弃N个视频帧中重要性等级不高于该重要性门限的数据包;
M个视频帧中各数据类型对应的重要性门限,用于指示网络设备丢弃N个视频帧中,各数据类型的重要性等级不高于对应的重要性门限的数据包;
针对N个视频帧,终端设备期望接收到的最小数据包数量;
针对N个视频帧,终端设备期望接收到的各数据类型的最小数据包数量;
针对N个视频帧,终端设备期望接收到的最小比特数;
针对N个视频帧,终端设备期望接收到的各数据类型的最小比特数;或者,
针对N个视频帧,建议网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,第一百分比和第二百分比均小于1。
在一种可选的实施方式中,该方法还包括:
向网络设备发送第二信息,第二信息用于指示利用第一信息确定的数据包丢包程度所针对的待接收的视频帧的帧数量N或时长T,T大于零。
在一种可选的实施方式中,利用第一信息确定的数据包丢包程度所针对的待接收的视频帧的数量N或时长T是通过网络设备配置的,T大于零。
在一种可选的实施方式中,第一信息是通过媒体接入控制的控制信元MAC CE发送的;或者,第一信息是通过预配置CG资源发送的,CG资源位于XR业务的视频帧接收完之后的时长X范围内,X大于零。
在一种可选的实施方式中,该方法还包括:
接收来自网络设备的第三信息,第三信息用于指示针对每个视频帧,网络设备从用户平面功能UPF接收的数据包数量的百分比,以及,网络设备发送给终端设备的数据包数量的百分比和/或从UPF接收到的数据包数量的百分比。
在一种可选的实施方式中,该方法还包括:
向网络设备发送第四信息,第四信息是基于第三信息确定的,用于指示针对每个视频帧,建议网络设备需传输的数据包数量的百分比和/或从UPF接收到的数据包需丢弃的数据包数量的百分比。
第二方面,本申请实施例提供了一种数据传输方法,该方法是从网络设备或网络设备中相关装置的角度进行阐述的,该方法包括:
接收来自终端设备的第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;
N个视频帧是已发送的M个视频帧之后需待发送的视频帧;M和N均为正整数;M个视频帧和N个视频帧均是扩展现实XR业务的视频帧;
基于第一信息,发送N个视频帧。
可见,该方法中网络设备可根据终端设备能够接受的数据包丢包程度,传输视频帧。
在一种可选的实施方式中,第一信息包括以下至少一项:
针对N个视频帧,终端设备能够接受的数据包丢包程度;
M个视频帧中各数据类型在对应的缓冲区的缓存状态报告;
针对N个视频帧中各数据类型,终端设备分别能够接受的数据包丢包程度;
一个重要性门限,用于指示网络设备丢弃N个视频帧中重要性等级不高于该重要性门限的数据包;
M个视频帧中各数据类型对应的重要性门限,用于指示网络设备丢弃N个视频帧中,各数据类型的重要性等级不高于对应的重要性门限的数据包;
针对N个视频帧,终端设备期望接收到的最小数据包数量;
针对N个视频帧,终端设备期望接收到的各数据类型的最小数据包数量;
针对N个视频帧,终端设备期望接收到的最小比特数;
针对N个视频帧,终端设备期望接收到的各数据类型的最小比特数;或者,
针对N个视频帧,建议网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,第一百分比和第二百分比均小于1。
在一种可选的实施方式中,若N个视频帧和M个视频帧存在相关性,则执行的基于第一信息,发送N个视频帧的步骤。
在一种可选的实施方式中,N个视频帧中传输的数据包和/或丢弃的数据包是基于第一信息确定的,该方法还包括:
向网络管理平台发送统计结果,统计结果包括N个视频帧中丢弃的数据包的信息。
在一种可选的实施方式中,该方法还包括:
向终端设备发送第三信息,该第三信息用于指示针对每个视频帧,网络设备从用户平面功能UPF接收的数据包数量的百分比,以及,网络设备发送给终端设备的数据包数量的百分比和/或从UPF接收到的数据包丢弃的数据包数量的百分比。
在一种可选的实施方式中,向终端设备发送第三信息之后,该方法还包括:
接收来自终端设备的第四信息,第四信息是基于第三信息确定的,用于指示针对每个视频帧,建议网络设备需传输的数据包数量的百分比和/或从UPF接收到的数据包需丢弃的数据包数量的百分比。
在一种可选的实施方式中,第三信息和/或第四信息是通过媒体接入控制的控制信元 MAC CE发送的;或者,第三信息和/或第四信息是通过分组数据汇聚协议PDCP控制协议数据单元PDU发送的。
第三方面,本申请实施例提供了一种数据传输装置,该装置包括:
确定单元,用于确定第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;
N个视频帧是已接收的M个视频帧之后待接收的视频帧;M和N均为正整数;M个视频帧和N个视频帧均是扩展现实XR业务的视频帧;
发送单元,用于向网络设备发送第一信息。
可选地,该数据传输装置执行可选的实施方式以及有益效果可参见上述第一方面的相关内容,此处不再详述。
第四方面,本申请实施例提供了一种数据传输装置,该装置包括:
接收单元,用于接收来自终端设备的第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;
N个视频帧是已发送的M个视频帧之后需待发送的视频帧;M和N均为正整数;M个视频帧和N个视频帧均是扩展现实XR业务的视频帧;
发送单元,用于基于第一信息,发送N个视频帧。
可选地,该数据传输装置执行可选的实施方式以及有益效果可参见上述第二方面中的相关内容,此处不再详述。
第五方面,本申请实施例提供了一种通信装置,该通信装置包括:处理器、存储器,处理器和存储器相互连接,其中,存储器用于存储计算机程序,计算机程序包括程序指令,其中,处理器执行程序指令以实现上述第一方面所设计的方法中的步骤。可选的,该通信装置可以为终端设备或终端设备中的芯片或芯片模组。
第六方面,本申请实施例提供了一种通信装置,该通信装置包括:处理器、存储器,处理器和存储器相互连接,其中,存储器用于存储计算机程序,计算机程序包括程序指令,其中,处理器执行程序指令以实现上述第二方面所设计的方法中的步骤。可选的,该通信装置可以为网络设备或网络设备中的芯片或芯片模组。
第七方面,本申请实施例提供一种芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。可选的,所述芯片还可以包括存储器以及存储在存储器上的计算机程序或指令,所述处理器执行所述计算机程序或指令以实现上述第一方面或第二方面所述的方法。
第八方面,本申请实施例提供了一种芯片模组,包括收发组件和芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。可选的,所述芯片还可以包括存储器以及存储在存储器上的计算机程序或指令,所述处理器执行所述计算机程序或指令以实现上述第一方面或第二方面所述的方法。
第九方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。
第十方面,本申请实施例提供一种计算机程序产品,包括计算机程序或程序指令,所述计算机程序或程序指令被执行时实现上述第一方面或第二方面所述的方法。
附图说明
图1是本申请实施例提供的一种数据传输系统的架构示意图;
图2是本申请实施例提供的一种数据传输方法的流程示意图;
图3是本申请实施例提供的一种数据传输的示意图;
图4是本申请实施例提供的另一种数据传输方法的流程示意图;
图5是本申请实施例提供的一种数据传输装置的结构示意图;
图6是本申请实施例提供的另一种数据传输装置的结构示意图;
图7是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
需要说明的是,本申请中“第一”、“第二”、“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
本申请实施例可应用于如图1所示的数据传输系统,请参见图1,图1是本申请实施例提供的一种数据传输系统的架构示意图。如图1所示,该数据传输系统可包括网络设备101和终端设备102,其中,网络设备101可向终端设备102传输XR业务的视频帧。图1所示的设备形态用于举例并不构成对本申请实施例的限定。在一种可选的实施方式中,图1中还可包括用户平面功能(User Plane Functio,UPF)。该实施方式中,网络设备101可从UPF接收XR业务的视频帧。
本申请可适用于5G通信系统以及未来新的各种通信系统,例如,第六代(6th Generation,6G)通信系统、第七代(7th Generation,7G)通信系统等,本申请实施例对此并不限定。
以下对本申请涉及的一些概念进行阐述。
本申请中,网络设备可以为用于执行无线接入功能的接入网设备,该网络设备可以为全球移动通讯系统(Global System for Mobile Communications,GSM)或者码分多址接入(Code Division Multiple Access,CDMA)通信系统中的基站(base transceiver station,BTS)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通信系统中的基站(nodeB,NB)、长期演进(Long Term Evolution,LTE)通信系统中的演进型基站(evolutional node B,eNB或eNodeB)、新无线(new radio,NR)通信系统中的基站(gNB)或者未来通信系统中的设备。网络设备还可以是无线局域网(Wireless Local Area Networks,WLAN)中的接入点(access point,AP)、中继站、未来演进的公用陆地移动通信网络(public land mobile network,PLMN)网络中的网络设备或者非地面网络(Non-terrestrial Network,NTN)通信系统中的网络设备等。该网络设备包括网络设备101。
本申请中,终端设备为一种具有收发功能的设备,又可以称之为用户设备(user equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、智能终端设备、无线通信设备、用户代理或用户装置。示例的,终端设备可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、中继设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备或者未来演进的PLMN中的终端设备等,对此不作具体限定。其中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;可以部署在水面上(如轮船等);还可以部署在空中(如飞机、气球和卫星等)。示例性的,终端设备可以是手机(mobile phone)、平板电脑、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工 业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的车载设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备。该终端设备包括终端设备102。
以下结合附图对本申请实施例进行阐述。
请参见图2,图2是本申请实施例提供的一种数据传输方法的流程示意图。如图2所示,该数据传输方法可以包括但不限于以下步骤:
S201、终端设备确定第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度。
S202、终端设备向网络设备发送第一信息,相应的,网络设备接收来自终端设备的第一信息。
S203、网络设备基于该第一信息,发送该N个视频帧。
其中,N个视频帧是已接收的M个视频帧之后待接收的视频帧;M和N均为正整数;M个视频帧和N个视频帧均是扩展现实XR业务的视频帧。可选的,M个视频帧和N个视频帧具有相关性。
在一种可选的实施方式中,若N个视频帧和M个视频帧存在相关性,则网络设备执行基于第一信息,发送N个视频帧的步骤。也就是说,若N个视频帧和M个视频帧不存在相关性(例如是存在镜头切换导致的画面突变),则网络设备可以不根据终端设备上报的第一信息发送N个视频帧。
在一种可选的实施方式中,针对N个视频帧,终端设备能够接受的数据包丢包程度可以是由终端设备能够接受的丢包率表征的。
一种情况,终端设备能够接受的丢包率是终端设备接收的视频帧中丢弃的数据包数量占该视频帧中数据包总数量的比率。例如,假设终端设备能够接受的数据包的丢包率是20%,视频帧的数据包总数量为100,那么,终端设备能够接受的该视频帧中丢弃的数据包数量为20个。另一种情况,终端设备能够接受的丢包率是终端设备接收的视频帧中丢弃的数据包数量占网络设备从用户平面功能(User Plane Functio,UPF)接收的该视频帧中数据包数量的比率。例如,假设终端设备能够接受的丢包率是20%,视频帧的数据包总数量为100,网络设备从UPF接收到的该视频帧的数据包数量为80(即网络设备从UPF接收的该视频帧中已丢弃了20个数据包),那么,终端设备能够接受的该视频帧中丢弃的数据包数量是80*20%=16个。又一种情况,终端设备能够接受的丢包率是UPF丢弃的数据包数量和网络设备丢弃的数 据包数量之和与UPF从数据源接收的该视频帧中数据包的总数量之间的比率。例如,假设终端设备能够接受的丢包率是20%,并通过第一信息告知给网络设备,网络设备获知UPF丢弃的数据包数量为20个,UPF从数据源接收的该视频帧中数据包的总数量是100个,那么,网络设备还能丢弃的数据包数量是100*20%-20=0个,即针对该视频帧,网络设备至少需向终端设备传输80个数据包。
在另一种可选的实施方式中,针对N个视频帧,终端设备能够接受的数据包丢包程度可以是由终端设备能够接受的数据包传输率表征的。
一种情况,终端设备能够接受的数据包传输率是终端设备接收的视频帧中传输的数据包数量占该视频帧中数据包总数量的比率。例如,假设终端设备能够接受的数据包传输率是80%,视频帧的数据包总数量为100,那么,终端设备能够接受的该视频帧中需传输的数据包数量为100*80%=80个。另一种情况,终端设备能够接受的数据包传输率是终端设备接收的视频帧中传输的数据包数量占网络设备从UPF接收的该视频帧中数据包数量的比率。例如,假设终端设备能够接受的数据包传输率是80%,视频帧的数据包总数量为100,网络设备从UPF接收到的该视频帧中数据包数量为80,那么,终端设备能够接受的该视频帧需传输的数据包数量是80*80%=64个。
在又一种可选的实施方式中,针对N个视频帧,终端设备能够接受的数据包丢包程度可以是由终端设备能够接受的数据量传输率表征的。
一种情况下,终端设备能够接受的数据量传输率是终端设备接收的视频帧中传输的数据量占该视频帧的总数据量的比率。例如,假设终端设备能够接受的数据量传输率是80%,视频帧的总数据量为1000Bytes,那么,终端设备能够接受的该视频帧中需传输的数据量为1000Bytes*80%=800Bytes。另一种情况,终端设备能够接受的数据量传输率是终端设备接收的视频帧中传输的数据量占网络设备从UPF接收的该视频帧的数据量的比率。例如,假设终端设备能够接受的数据量传输率是80%,视频帧的总数据量为1000Bytes,网络设备从UPF接收到的该视频帧的数据量为800Bytes,那么,终端设备能够接受的该视频帧需传输的数据量是800Bytes*80%=640Bytes。
举例来说,请参见图3,图3是本申请实施例提供的一种数据传输的示意图。如图3所示,1表示的是网络设备已向终端设备传输的视频帧(例如记为视频帧a)中的数据包。2表示的是网络设备待传输的视频帧(记为视频帧b)中的数据包。其中,视频帧b是视频帧a的下一个视频帧。图3中,终端设备向网络设备发送的第一信息,确定下一帧数据包的传输率为70%,即针对下一视频帧(即视频帧b)的调度建议为需要接收70%的数据包,就可以 达到满意程度。这样,网络设备基于该第一信息,发送视频帧b。
本申请中,第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度,可选的,该第一信息可包括以下至少一项:针对N个视频帧,所述终端设备能够接受的数据包丢包程度;所述M个视频帧中各数据类型在对应的缓冲区的缓存状态报告;针对所述N个视频帧中各数据类型,所述终端设备分别能够接受的数据包丢包程度;一个重要性门限,用于指示网络设备丢弃所述N个视频帧中重要性等级不高于该重要性门限的数据包;所述M个视频帧中各数据类型对应的重要性门限,用于指示网络设备丢弃所述N个视频帧中,各数据类型的重要性等级不高于对应的重要性门限的数据包;针对所述N个视频帧,所述终端设备期望接收到的最小数据包数量;针对所述N个视频帧,所述终端设备期望接收到的各数据类型的最小数据包数量;针对所述N个视频帧,所述终端设备期望接收到的最小比特数;针对所述N个视频帧,所述终端设备期望接收到的各数据类型的最小比特数;或者,针对所述N个视频帧,建议所述网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,所述第一百分比和所述第二百分比均小于1。以下以实施方式1.1至1.10为例,对第一信息包括的内容进行阐述。
实施方式1.1,第一信息包括针对N个视频帧,终端设备能够接受的数据包丢包程度。
可选的,该实施方式中网络设备基于第一信息发送N个视频帧,可包括:根据针对N个视频帧所述终端设备能够接受的数据包丢包程度,确定N个视频帧中待传输的数据包;网络设备发送N个视频帧中待传输的数据包。
实施方式1.2,第一信息包括针对N个视频帧中各数据类型,终端设备分别能够接受的数据包丢包程度。
可选的,N个视频帧中数据类型可包括纹理数据类型和光线数据类型。
可选的,该实施方式中终端设备确定第一信息,包括:终端设备根据已接收的M个视频帧的各数据类型,将该M个视频帧分别存储在对应数据类型的缓冲区中,获得各数据类型的缓冲区的缓存状态报告;进而,可根据各数据类型的缓冲区的缓存状态报告,确定针对N个视频帧中的各数据类型,终端设备分别能够接受的数据包丢包程度。
可选的,该实施方式中网络设备基于第一信息发送N个视频帧,可包括:针对N个视频帧中各数据类型,终端设备分别能够接受的数据包丢包程度,网络设备确定N个视频帧中各数据类型待传输的数据包;网络设备发送N个视频帧中各数据类型待传输的数据包。
实施方式1.3,第一信息包括M个视频帧中各数据类型在对应的缓冲区(Buffer)的缓存状态报告(Buffer State Report,BSR)。
可选的,该实施方式中终端设备确定第一信息,包括:终端设备根据已接收的M个视频帧的各数据类型,将该M个视频帧分别存储在对应数据类型的缓冲区中,获得各数据类型的缓冲区的缓存状态报告。
可选的,该实施方式中网络设备基于第一信息发送N个视频帧,可包括:网络设备根据各数据类型的缓冲区的缓存状态报告,确定N个视频帧中各数据类型待传输的数据包;网络设备发送N个视频帧中各数据类型待传输的数据包。
实施方式1.4,第一信息包括一个重要性门限,用于指示网络设备丢弃N个视频帧中重要性等级不高于该重要性门限的数据包。
可选的,该实施方式中网络设备基于第一信息发送N个视频帧,可包括:网络设备确定N个视频帧中重要性等级高于一个重要性门限的数据包,作为N个视频帧中待传输的数据包,并丢弃N个视频帧中重要性等级不高于该重要性门限的数据包;发送N个视频帧中待传输的数据包。
实施方式1.5,第一信息包括M个视频帧中各数据类型对应的重要性门限,用于指示网络设备丢弃N个视频帧中,各数据类型的重要性等级不高于对应的重要性门限的数据包。
可选的,该实施方式中网络设备基于第一信息发送N个视频帧,可包括:确定N个视频帧中各数据类型的重要性等级高于对应的重要性门限的数据包,作为N个视频帧中待传输的数据包,并丢弃各数据类型的重要性等级不高于对应的重要性门限的数据包;发送N个视频帧中待传输的数据包。
实施方式1.6,第一信息包括针对N个视频帧,终端设备期望接收到的最小数据包数量;
可选的,该实施方式中网络设备基于第一信息发送N个视频帧,可包括:网络设备根据终端设备期望接收到的最小数据包数量,确定N个视频帧中待传输的数据包;发送该N个视频帧中待传输的数据包。
实施方式1.7第一信息包括针对N个视频帧,终端设备期望接收到的各数据类型的最小数据包数量;
可选的,该实施方式中网络设备基于第一信息发送N个视频帧,可包括:网络设备根据终端设备期望接收到的各数据类型的最小数据包数量,确定N个视频帧中各数据类型待传输的数据包;发送该N个视频帧中各数据类型待传输的数据包。
实施方式1.8,第一信息包括针对N个视频帧,终端设备期望接收到的最小比特数;
可选的,该实施方式中网络设备基于第一信息发送N个视频帧,可包括:网络设备根据终端设备期望接收到的最小比特数,确定N个视频帧中待传输的数据包;发送该N个视频帧 中待传输的数据包。
实施方式1.9,第一信息包括针对N个视频帧,终端设备期望接收到的各数据类型的最小比特数。
可选的,该实施方式中网络设备基于第一信息发送N个视频帧,可包括:网络设备根据终端设备期望接收到的各数据类型的最小比特数,确定N个视频帧中各数据类型待传输的数据包;发送该N个视频帧中各数据类型待传输的数据包。
实施方式1.10,第一信息包括针对N个视频帧,建议网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,第一百分比和第二百分比均小于1。
可选的,该实施方式中网络设备基于第一信息发送N个视频帧,可包括:网络设备根据建议网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,确定N个视频帧中待传输的数据包;发送该N个视频帧中待传输的数据包。
在一种可选的实施方式中,终端设备还可向网络设备发送第二信息,相应的,网络设备接收第二信息,该第二信息用于指示利用第一信息确定的数据包丢包程度所针对的待接收的视频帧的帧数量N或时长T,T大于零。在另一种可选的实施方式中,利用第一信息确定的数据包丢包程度所针对的待接收的视频帧的帧数量N或时长T可以是通过网络设备配置的,T大于零。也就是说,视频帧的帧数量N或时长T可以是终端设备上报给网络设备的,也可以是由网络设备配置的。
上述实施方式中,终端设备发送给网络设备的第一信息是针对N个视频帧而言的,可选的,终端设备可向网络设备发送多个分段的视频帧分别对应的第一信息。例如,终端设备可向网络设备发送针对N1个视频帧对应的第一信息,针对N1个视频帧之后的N2个视频帧对应的第一信息,针对N2个视频帧之后的N3个视频帧对应的第一信息等。再如,终端设备可向网络设备发送针对时长T1内所传输的视频帧对应的第一信息,针对时长T1之后的时长T2内所传输的视频帧对应的第一信息,针对时长T2之后的时长T3内所传输的视频帧对应的第一信息等。
在一种可选的实施方式中,针对N个视频帧的第一信息,或多个分段的视频帧分别对应的第一信息,是通过终端设备媒体接入控制的控制信元(Medium Access Control Control Element,MAC CE)发送的。或者,针对N个视频帧的第一信息,或多个分段的视频帧分别对应的第一信息,是通过预配置(Configured Grant,CG)资源发送的,该CG资源位于XR业务的视频帧接收完之后的时长X范围内,X大于零。
可见,本申请实施例中,终端设备向网络设备发送第一信息,确定针对N个视频帧,终 端设备能够接受的数据包丢包程度;这样,网络设备可根据终端设备能够接受的数据包丢包程度传输视频帧,相比于由网络设备确定丢弃数据包的机制,本申请实施例可由接收方,如终端设备,建议数据包丢包程度,有利于提升XR业务的数据传输性能。
请参见图4,图4是本申请实施例提供的另一种数据传输方法的流程示意图。图4所示的数据传输方法有利于在空口质量较差时,网络设备及时获知终端设备能够接受的数据包丢包程度,及时调整N个视频帧的数据包传输机制。在空口质量转好或更差时,图4所示的数据传输方法中,终端设备还能够及时建议网络设备多传输或少传输一些数据包。如图4所示,该数据传输方法包括但不限于如下步骤:
S401、终端设备在空口质量变差时,确定第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;
可选的,该步骤的相关内容,如第一信息的相关内容,可参见图2所示的数据传输方法中的相关阐述,此处不再详述。
S402、终端设备发送第一信息,相应的,网络设备接收第一信息;
S403、网络设备根据第一信息,传输N个视频帧;
S404、网络设备发送第三信息,相应的,终端设备接收第三信息,该第三信息用于指示针对每个视频帧,网络设备从UPF接收的数据包数量的百分比,以及,网络设备发送给终端设备的数据包数量的百分比和/或从UPF接收到的数据包数量的百分比;
针对每个视频帧,网络设备从UPF接收的数据包数量的百分比,是指网络设备从UPF接收的视频帧中传输的数据包数量与该视频帧中总的数据包数量之比。例如,假设每个视频帧中数据包数量是100个,网络设备从UPF接收的该视频帧中数据包数量是80个,那么,针对每个视频帧,网络设备从UPF接收的数据包数量的百分比为80%。
网络设备发送给终端设备的数据包数量的百分比,是指网络设备发送给终端设备的数据包数量与该视频帧中总的数据包数量之比。例如,假设每个视频帧中数据包数量是100个,网络设备发送给终端设备的该视频帧中数据包数量是70个,那么,针对每个视频帧,网络设备发送给终端设备的数据包数量的百分比为70%。
网络设备发送给终端设备的从UPF接收到的数据包数量的百分比,是指网络设备发送给终端设备的视频帧中传输的数据包数量与网络设备从UPF接收到的该视频帧中传输的数据包数量之比。例如,假设每个视频帧中数据包数量是100个,网络设备从UPF接收的该视频帧中数据包数量是80个,网络设备发送给终端设备时该视频帧中数据包数量是70个,那么, 针对每个视频帧,网络设备发送给终端设备的从UPF接收到的数据包数量的百分比为70/80=87.5%。
在另一种可选的实施方式中,第三信息用于指示针对每个视频帧,网络设备从UPF接收的数据包数量,UPF丢弃的数据包数量,以及网络设备发送给终端设备的数据包数量。例如,网络设备通过第三信息通知终端设备其从UPF接收的数据包数量为95个,UPF丢弃的数据包数量为5个,网络设备发送给终端设备的数据包数量为90个。可见,采用该实施方式,可使终端设备获知针对每个视频帧中数据包的数量细节。可选地,终端设备基于该第三信息,可确定针对每个视频帧,网络设备从UPF接收的数据包数量的百分比,以及,网络设备发送给终端设备的数据包数量的百分比和/或从UPF接收到的数据包数量的百分比。
在又一种可选的实施方式中,第三信息用于指示针对每个视频帧,网络设备从用户平面功能UPF接收的数据量的百分比,以及,网络设备发送给终端设备的数据量的百分比和/或从UPF接收到的数据量的百分比。
针对每个视频帧,网络设备从UPF接收的数据量的百分比,是指网络设备从UPF接收的视频帧中传输的数据量与该视频帧中总的数据量之比。例如,假设每个视频帧的数据量是1000Bytes,网络设备从UPF接收的该视频帧的数据量是800Bytes,那么,针对每个视频帧,网络设备从UPF接收的数据量的百分比为800Bytes/1000Bytes=80%。
网络设备发送给终端设备的数据量的百分比,是指网络设备发送给终端设备的数据量与该视频帧中总的数据量之比。例如,假设每个视频帧的数据量是1000Bytes,网络设备发送给终端设备的该视频帧的数据量是700Bytes,那么,针对每个视频帧,网络设备发送给终端设备的数据量的百分比为70%。
网络设备发送给终端设备的从UPF接收到的数据量的百分比,是指网络设备发送给终端设备的视频帧的数据量与网络设备从UPF接收到的该视频帧的数据量之比。例如,假设每个视频帧的数据量是1000Bytes,网络设备从UPF接收的该视频帧的数据量是800Bytes,网络设备发送给终端设备时该视频帧的数据量是700Bytes,那么,针对每个视频帧,网络设备发送给终端设备的从UPF接收到的数据量的百分比为700Bytes/800Bytes=87.5%。
在又一种可选的实施方式中,第三信息用于指示针对每个视频帧,网络设备从UPF接收的数据量,UPF丢弃的数据量,以及,网络设备发送给终端设备的数据量。例如,针对每个视频帧,网络设备通过第三信息通知终端设备其从UPF接收的数据量为9000Bytes,UPF丢弃的数据量为300Bytes,网络设备发送给终端设备的数据量为8000Bytes。可见,采用该实施方式,可使终端设备获知针对每个视频帧的数据量细节。可选地,终端设备基于该第三 信息,可确定针对每个视频帧,网络设备从UPF接收的数据量的百分比,以及,网络设备发送给终端设备的数据量的百分比和/或从UPF接收到的数据量的百分比。
S405、终端设备基于第三信息,发送第四信息,相应的,网络设备接收该第四信息,第四信息用于指示针对每个视频帧,建议网络设备需传输的数据包数量的百分比和/或从UPF接收到的数据包需丢弃的数据包数量的百分比。
可选的,终端设备可在发送该N个视频帧之后,执行步骤S404,也可以在发送该N个视频帧之前,执行步骤S404,本申请不做限定。
针对每个视频帧,建议网络设备需传输的数据包数量的百分比,是指网络设备传输给终端设备的视频帧中传输的数据包数量与该视频帧中总的数据包数量之比。例如,假设每个视频帧中数据包数量是100个,网络设备传输给终端设备的视频帧中传输的数据包数量是70个,针对每个视频帧,终端设备建议网络设备需传输的数据包数量的百分比为80%,那么,针对每个视频帧,终端设备建议网络设备需传输的数据包数量是80个。可见,针对每个视频帧,终端设备建议网络设备需传输的数据包数量的百分比(如80%)可大于网络设备传输的数据包数量的百分比(如70%)。可见,该实施方式有利于在空口质量改善时,终端设备可通过第四信息,及时建议网络设备多传输一些数据包,或者,在空口质量进一步变差时,可通过第四信息,及时建议网络设备再少传输一些数据包。
针对每个视频帧,建议网络设备从UPF接收到的数据包需丢弃的数据包数量的百分比,是指网络设备发送给终端设备的视频帧中需丢弃的数据包数量与网络设备从UPF接收到的该视频帧中传输的数据包数量之比。例如,假设每个视频帧中数据包数量是100个,网络设备从UPF接收的该视频帧中数据包数量是80个,网络设备发送给终端设备时该视频帧中丢弃的数据包数量10个,那么,针对每个视频帧,丢弃的数据包数量的百分比10/80=12.5%;可选的,在空口质量变好时,针对每个视频帧,可通过第四信息,建议网络设备从UPF接收到的数据包需丢弃的数据包数量的百分比为4/80=5%,建议网络设备再多传几个数据包。可选的,在空口质量变得更差时,针对每个视频帧,可通过第四信息,建议网络设备从UPF接收到的数据包需丢弃的数据包数量的百分比40/80=50%,即建议网络设备再少传一些数据包。
可选地,该实施方式中,若第四信息指示针对每个视频帧,建议网络设备从UPF接收到的数据包需丢弃的数据包数量的百分比小于100%,则终端设备可直接向网络设备发送第一信息,即终端设备无需向网络设备发送第四信息。也就是说,如果终端设备向网络设备发送第一信息,则说明针对每个视频帧,建议网络设备从UPF接收到的数据包需丢弃的数据包数量的百分比小于100%。如果终端设备向网络设备发送第四信息,则说明针对每个视频帧,建 议网络设备从UPF接收到的数据包需丢弃的数据包数量的百分比可以大于100%,也可以小于100%。
可选地,第四信息还可以指示针对每个视频帧,建议网络设备需传输的数据包数量的变化量和/或从UPF接收到的数据包需丢弃的数据包数量的变化量。例如,第四信息指示针对每个视频帧,建议网络设备再多传输6个数据包;或者,少传4个数据包。又如,第四信息指示针对每个视频帧,建议网络设备从UPF接收到的数据包再多丢弃4个数据包;或者,少丢弃6个数据包。
在另一种可选的实施方式中,第四信息用于指示针对每个视频帧,建议网络设备需传输的数据量的百分比和/或从UPF接收到的视频帧需丢弃的数据量的百分比。
该实施方式中,针对每个视频帧,建议网络设备需传输的数据量的百分比是指网络设备传输给终端设备的视频帧的数据量与该视频帧的总数据量之比。例如,假设每个视频帧中数据量是10000Bytes,网络设备传输给终端设备的数据量是7000Bytes,针对每个视频帧,终端设备建议网络设备需传输的数据量的百分比为80%,那么,针对每个视频帧,终端设备建议网络设备需传输的数据量是8000Bytes。可见,针对每个视频帧,终端设备建议网络设备需传输的数据量的百分比(如80%)可大于网络设备传输的数据量的百分比(如70%)。
该实施方式中,针对每个视频帧,建议网络设备从UPF接收到的视频帧需丢弃的数据量的百分比,是指网络设备发送给终端设备的视频帧中需丢弃的数据量与网络设备从UPF接收到的该视频帧中传输的数据量之比。例如,假设每个视频帧中数据量是10000Bytes,网络设备从UPF接收的该视频帧中数据量是8000Bytes,网络设备发送给终端设备时该视频帧中丢弃的数据量1000Bytes,那么,针对每个视频帧,可通过第四信息建议网络设备从UPF接收到的视频帧中需丢弃的数据包数量的百分比是1000Bytes/8000Bytes=12.5%;可选的,在空口质量变好时,针对每个视频帧,可通过第四信息,建议网络设备从UPF接收到的数据包需丢弃的数据量的百分比为400Bytes/8000Bytes=5%,建议网络设备再多传几个数据包。可选的,在空口质量变得更差时,针对每个视频帧,可通过第四信息,建议网络设备从UPF接收到的数据包需丢弃的数据量的百分比4000Bytes/8000Bytes=50%,即建议网络设备再少传一些数据包。
可选地,第四信息还可以指示针对每个视频帧,建议网络设备需传输的数据量的变化量和/或从UPF接收到的数据包需丢弃的数据量的变化量。第四信息指示针对每个视频帧,建议网络设备再多传输600Bytes的数据包;或者,少传400Bytes的数据包。又如,第四信息指示针对每个视频帧,建议网络设备从UPF接收到的数据包再多丢弃400Bytes的数据包;或者, 少丢弃600Bytes的数据包。
在又一种可选的实施方式中,第四信息用于指示针对每个视频帧,建议网络设备需丢弃的数据包数量的百分比。另外,UPF还会通知网络设备UPF传输给网络设备的视频帧已丢弃的数据包数量或百分比。其中,该实施方式中百分比是相对于UPF接收到的视频帧中数据包数量而言的,或是相对于视频帧中数据包的总数量而言的。例如,假设每个视频帧中数据包数量是200个,针对每个视频帧,终端设备通过第四信息建议网络设备需丢弃的数据包数量的百分比是10%,UPF通知网络设备其传输给网络设备的视频帧已丢弃的数据包百分比是5%或已丢弃的数据包数量是10个,那么,网络设备基于终端设备建议的10%和UPF已丢弃的10个数据包,可确定网络设备最多还可丢弃200*10%-10=10个数据包,即网络设备确定向终端设备传输180个数据包。
在又一种可选的实施方式中,第四信息用于指示针对每个视频帧,建议网络设备需丢弃的数据量的百分比。另外,UPF还会通知网络设备UPF传输给网络设备的视频帧已丢弃的数据量或百分比。其中,该实施方式中,百分比是相对于UPF接收到的视频帧的总数据量而言的,或是相对于视频帧的总数据量而言的。例如,假设每个视频帧中数据量是10000Bytes,针对每个视频帧,终端设备通过第四信息建议网络设备需丢弃的数据量的百分比是10%,UPF通知网络设备其传输给网络设备的视频帧已丢弃的数据量百分比是5%或已丢弃的数据量是500Bytes,那么,网络设备基于终端设备建议的10%和UPF已丢弃的数据量百分比5%或已丢弃的数据量500Bytes,可确定网络设备最多还可丢弃的数据量为10000Bytes*(10%-5%)=500Bytes,或10000Bytes*10%-500Bytes=500Bytes,即网络设备确定向终端设备传输每个视频帧的9000Bytes。
可选地,网络设备可通过无线资源控制(Radio Resource Control,RRC)配置第四信息,也可以通过MAC CE、下行控制信息(Downlink Control Information,DCI)等指示。
在一种可选的实施方式中,N个视频帧中传输的数据包和/或丢弃的数据包是基于第一信息确定的,网络设备还可向网络管理平台发送统计结果,该统计结果包括N个视频帧中丢弃的数据包的信息。其中,丢弃的数据包的信息例如是因为空口情况差而未传输的数据包情况。
在一种可选的实施方式中,第三信息和/或第四信息是通过MAC CE发送的;或者,第三信息和/或第四信息是通过分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)控制协议数据单元(Protocol Data Unit,PDU)发送的。
可见,图4所示的数据传输方法中,在空口质量较差时,网络设备能够通过第一信息,及时获知终端设备能够接受的数据包丢包程度,及时调整N个视频帧的数据包传输机制。在 空口质量转好或更差时,终端设备还能够通过第四信息,及时建议网络设备多传输或少传输一些数据包。
请参见图5,图5是本申请实施例提供的一种数据传输装置的结构示意图。如图5所示,该数据传输装置可以包括但不限于:
确定单元501,用于确定第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;
N个视频帧是已接收的M个视频帧之后待接收的视频帧;M和N均为正整数;M个视频帧和N个视频帧均是扩展现实XR业务的视频帧;
发送单元502,用于向网络设备发送第一信息。
在一种可选的实施方式中,第一信息包括以下至少一项:
针对N个视频帧,终端设备能够接受的数据包丢包程度;
M个视频帧中各数据类型在对应的缓冲区的缓存状态报告;
针对N个视频帧中各数据类型,终端设备分别能够接受的数据包丢包程度;
一个重要性门限,用于指示网络设备丢弃N个视频帧中重要性等级不高于该重要性门限的数据包;
M个视频帧中各数据类型对应的重要性门限,用于指示网络设备丢弃N个视频帧中,各数据类型的重要性等级不高于对应的重要性门限的数据包;
针对N个视频帧,终端设备期望接收到的最小数据包数量;
针对N个视频帧,终端设备期望接收到的各数据类型的最小数据包数量;
针对N个视频帧,终端设备期望接收到的最小比特数;
针对N个视频帧,终端设备期望接收到的各数据类型的最小比特数;或者,
针对N个视频帧,建议网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,第一百分比和第二百分比均小于1。
在一种可选的实施方式中,发送单元502还用于向网络设备发送第二信息,第二信息用于指示利用第一信息确定的数据包丢包程度所针对的待接收的视频帧的帧数量N或时长T,T大于零。
在一种可选的实施方式中,利用第一信息确定的数据包丢包程度所针对的待接收的视频帧的数量N或时长T是通过网络设备配置的,T大于零。
在一种可选的实施方式中,第一信息是通过媒体接入控制的控制信元MAC CE发送的; 或者,第一信息是通过预配置CG资源发送的,CG资源位于XR业务的视频帧接收完之后的时长X范围内,X大于零。
在一种可选的实施方式中,该数据传输装置还包括:
接收单元503,用于接收来自网络设备的第三信息,第三信息用于指示针对每个视频帧,网络设备从用户平面功能UPF接收的数据包数量的百分比,以及,网络设备发送给终端设备的数据包数量的百分比和/或从UPF接收到的数据包数量的百分比。
在一种可选的实施方式中,发送单元502还用于向网络设备发送第四信息,第四信息是基于第三信息确定的,用于指示针对每个视频帧,建议网络设备需传输的数据包数量的百分比和/或从UPF接收到的数据包需丢弃的数据包数量的百分比。
可以理解的是,本申请实施例提供的数据传输装置中各个单元的具体实现以及可以达到的有益效果可参考前述数据传输方法中任一实施例的描述,此处不再进行赘述。
请参见图6,图6是本申请实施例提供的另一种数据传输装置的结构示意图。如图6所示,该数据传输装置可以包括但不限于:
接收单元601,用于接收来自终端设备的第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;
N个视频帧是已发送的M个视频帧之后需待发送的视频帧;M和N均为正整数;M个视频帧和N个视频帧均是扩展现实XR业务的视频帧;
发送单元602,用于基于第一信息,发送N个视频帧。
在一种可选的实施方式中,第一信息包括以下至少一项:
针对N个视频帧,终端设备能够接受的数据包丢包程度;
M个视频帧中各数据类型在对应的缓冲区的缓存状态报告;
针对N个视频帧中各数据类型,终端设备分别能够接受的数据包丢包程度;
一个重要性门限,用于指示网络设备丢弃N个视频帧中重要性等级不高于该重要性门限的数据包;
M个视频帧中各数据类型对应的重要性门限,用于指示网络设备丢弃N个视频帧中,各数据类型的重要性等级不高于对应的重要性门限的数据包;
针对N个视频帧,终端设备期望接收到的最小数据包数量;
针对N个视频帧,终端设备期望接收到的各数据类型的最小数据包数量;
针对N个视频帧,终端设备期望接收到的最小比特数;
针对N个视频帧,终端设备期望接收到的各数据类型的最小比特数;或者,
针对N个视频帧,建议网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,第一百分比和第二百分比均小于1。
在一种可选的实施方式中,若N个视频帧和M个视频帧存在相关性,则执行的基于第一信息,发送N个视频帧的步骤。
在一种可选的实施方式中,N个视频帧中传输的数据包和/或丢弃的数据包是基于第一信息确定的,发送单元602还用于向网络管理平台发送统计结果,统计结果包括N个视频帧中丢弃的数据包的信息。
在一种可选的实施方式中,发送单元602还用于向终端设备发送第三信息,该第三信息用于指示针对每个视频帧,网络设备从用户平面功能UPF接收的数据包数量的百分比,以及,网络设备发送给终端设备的数据包数量的百分比和/或从UPF接收到的数据包丢弃的数据包数量的百分比。
在一种可选的实施方式中,发送单元602向终端设备发送第三信息之后,接收单元601还用于接收来自终端设备的第四信息,第四信息是基于第三信息确定的,用于指示针对每个视频帧,建议网络设备需传输的数据包数量的百分比和/或从UPF接收到的数据包需丢弃的数据包数量的百分比。
在一种可选的实施方式中,第三信息和/或第四信息是通过媒体接入控制的控制信元MAC CE发送的;或者,第三信息和/或第四信息是通过分组数据汇聚协议PDCP控制协议数据单元PDU发送的。
可以理解的是,本申请实施例提供的数据传输装置中各个单元的具体实现以及可以达到的有益效果可参考前述数据传输方法中任一实施例的描述,此处不再进行赘述。
请参见图7,图7是本申请实施例提供的一种通信装置的结构示意图。该通信装置包括处理器701、收发器703和存储器702。处理器701和存储器702通过一条或多条通信总线连接。
其中,收发器703用于发送数据或接收数据。
存储器702用于存储命令或计算机程序,存储器702包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器702用于存储所执行的程序代码和所传输的数 据,并向处理器701提供命令和数据。存储器702的一部分还可以包括非易失性随机存取存储器。
处理器701可以是中央处理单元(Central Processing Unit,CPU),该处理器701还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,可选的,该处理器701也可以是任何常规的处理器等。
在一种可选的实施方式中,该通信装置可以为终端设备或终端设备中的芯片或芯片模组。处理器701可用于执行存储器702所存储的计算机程序或命令,以使该通信装置执行:
确定第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;
N个视频帧是已接收的M个视频帧之后待接收的视频帧;M和N均为正整数;M个视频帧和N个视频帧均是扩展现实XR业务的视频帧;
向网络设备发送第一信息。
该实施方式中,第一信息包括以下至少一项:
针对N个视频帧,终端设备能够接受的数据包丢包程度;
M个视频帧中各数据类型在对应的缓冲区的缓存状态报告;
针对N个视频帧中各数据类型,终端设备分别能够接受的数据包丢包程度;
一个重要性门限,用于指示网络设备丢弃N个视频帧中重要性等级不高于该重要性门限的数据包;
M个视频帧中各数据类型对应的重要性门限,用于指示网络设备丢弃N个视频帧中,各数据类型的重要性等级不高于对应的重要性门限的数据包;
针对N个视频帧,终端设备期望接收到的最小数据包数量;
针对N个视频帧,终端设备期望接收到的各数据类型的最小数据包数量;
针对N个视频帧,终端设备期望接收到的最小比特数;
针对N个视频帧,终端设备期望接收到的各数据类型的最小比特数;或者,
针对N个视频帧,建议网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,第一百分比和第二百分比均小于1。
该实施方式中,处理器701还用于:
向网络设备发送第二信息,第二信息用于指示利用第一信息确定的数据包丢包程度所针 对的待接收的视频帧的帧数量N或时长T,T大于零。
该实施方式中,利用第一信息确定的数据包丢包程度所针对的待接收的视频帧的数量N或时长T是通过网络设备配置的,T大于零。
该实施方式中,第一信息是通过媒体接入控制的控制信元MAC CE发送的;或者,第一信息是通过预配置CG资源发送的,CG资源位于XR业务的视频帧接收完之后的时长X范围内,X大于零。
该实施方式中,处理器701还用于:
接收来自网络设备的第三信息,第三信息用于指示针对每个视频帧,网络设备从用户平面功能UPF接收的数据包数量的百分比,以及,网络设备发送给终端设备的数据包数量的百分比和/或从UPF接收到的数据包数量的百分比。
该实施方式中,处理器701还用于:
向网络设备发送第四信息,第四信息是基于第三信息确定的,用于指示针对每个视频帧,建议网络设备需传输的数据包数量的百分比和/或从UPF接收到的数据包需丢弃的数据包数量的百分比。
在另一种可选的实施方式中,该通信装置可以为网络设备或网络设备中的芯片或芯片模组。处理器701可用于执行存储器702所存储的计算机程序或命令,以使该通信装置执行:
接收来自终端设备的第一信息,该第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;
N个视频帧是已发送的M个视频帧之后需待发送的视频帧;M和N均为正整数;M个视频帧和N个视频帧均是扩展现实XR业务的视频帧;
基于第一信息,发送N个视频帧。
该实施方式中,第一信息包括以下至少一项:
针对N个视频帧,终端设备能够接受的数据包丢包程度;
M个视频帧中各数据类型在对应的缓冲区的缓存状态报告;
针对N个视频帧中各数据类型,终端设备分别能够接受的数据包丢包程度;
一个重要性门限,用于指示网络设备丢弃N个视频帧中重要性等级不高于该重要性门限的数据包;
M个视频帧中各数据类型对应的重要性门限,用于指示网络设备丢弃N个视频帧中,各数据类型的重要性等级不高于对应的重要性门限的数据包;
针对N个视频帧,终端设备期望接收到的最小数据包数量;
针对N个视频帧,终端设备期望接收到的各数据类型的最小数据包数量;
针对N个视频帧,终端设备期望接收到的最小比特数;
针对N个视频帧,终端设备期望接收到的各数据类型的最小比特数;或者,
针对N个视频帧,建议网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,第一百分比和第二百分比均小于1。
该实施方式中,若N个视频帧和M个视频帧存在相关性,则执行基于第一信息,发送N个视频帧的步骤。
该实施方式中,N个视频帧中传输的数据包和/或丢弃的数据包是基于第一信息确定的,处理器701还用于:
向网络管理平台发送统计结果,统计结果包括N个视频帧中丢弃的数据包的信息。
该实施方式中,处理器701还用于:
向终端设备发送第三信息,该第三信息用于指示针对每个视频帧,网络设备从用户平面功能UPF接收的数据包数量的百分比,以及,网络设备发送给终端设备的数据包数量的百分比和/或从UPF接收到的数据包丢弃的数据包数量的百分比。
该实施方式中,处理器701在用于向终端设备发送第三信息之后,还用于:
接收来自终端设备的第四信息,第四信息是基于第三信息确定的,用于指示针对每个视频帧,建议网络设备需传输的数据包数量的百分比和/或从UPF接收到的数据包需丢弃的数据包数量的百分比。
该实施方式中,第三信息和/或第四信息是通过媒体接入控制的控制信元MAC CE发送的;或者,第三信息和/或第四信息是通过分组数据汇聚协议PDCP控制协议数据单元PDU发送的。
可以理解的是,处理器701的具体实现以及可以达到的有益效可参考前述数据传输方法实施例的描述,在此不再赘述。
本申请实施例还提供了一种芯片,该芯片包括处理器,其中,该处理器执行上述方法实施例所描述的步骤。可选的,该芯片还可以包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种芯片模组,包括收发组件和芯片,该芯片包括处理器,其中,该处理器执行上述方法实施例所描述的步骤。可选的,该芯片还可以包括存储器以及存储在 存储器上的计算机程序或指令,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机可读存储介质,其存储有计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机程序产品,包括计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
关于上述实施例中描的各个装置、产品包含模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用或集成芯片的各个装置、产品其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者至少部分模块/单元可以采用软件程序的方式实现,该运行于芯片内部集成处理器,剩余的部分模块/单元可以采用电路等硬件方式实现;对于应于或集成芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同模块/单元可以位于芯片模组的同一件(例如片、电路模块等)或者不同组件中,至少部分/单元可以采用软件程序的方式实现,该软件程运行于芯片模组内部集成处理器剩余部分模块/单元可以采用电路等硬件方式实现;对于应或集成终端的各个装置、产品,其包含的模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者至少部分模块/单元可以采用软件程序的方式实现,该序运行于终端内部集成的处理器,剩余分模块/单元可以采用电路等硬件方式实现。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(application specific integrated circuit,ASIC)中。另外,该ASIC可以位于终端设备或网络设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备或网络设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可 以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (20)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    确定第一信息,所述第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;
    所述N个视频帧是已接收的M个视频帧之后待接收的视频帧;所述M和所述N均为正整数;所述M个视频帧和所述N个视频帧均是扩展现实XR业务的视频帧;
    向网络设备发送所述第一信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括以下至少一项:
    针对N个视频帧,所述终端设备能够接受的数据包丢包程度;
    所述M个视频帧中各数据类型在对应的缓冲区的缓存状态报告;
    针对所述N个视频帧中各数据类型,所述终端设备分别能够接受的数据包丢包程度;
    一个重要性门限,用于指示网络设备丢弃所述N个视频帧中重要性等级不高于该重要性门限的数据包;
    所述M个视频帧中各数据类型对应的重要性门限,用于指示网络设备丢弃所述N个视频帧中,各数据类型的重要性等级不高于对应的重要性门限的数据包;
    针对所述N个视频帧,所述终端设备期望接收到的最小数据包数量;
    针对所述N个视频帧,所述终端设备期望接收到的各数据类型的最小数据包数量;
    针对所述N个视频帧,所述终端设备期望接收到的最小比特数;
    针对所述N个视频帧,所述终端设备期望接收到的各数据类型的最小比特数;或者,
    针对所述N个视频帧,建议所述网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,所述第一百分比和所述第二百分比均小于1。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    向网络设备发送第二信息,所述第二信息用于指示利用所述第一信息确定的数据包丢包程度所针对的待接收的视频帧的帧数量N或时长T,所述T大于零。
  4. 根据权利要求1或2所述的方法,其特征在于,利用所述第一信息确定的数据包丢包程度所针对的待接收的视频帧的数量N或时长T是通过网络设备配置的,所述T大于零。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第一信息是通过媒体接入控制的控制信元MAC CE发送的;或者,
    所述第一信息是通过预配置CG资源发送的,所述CG资源位于所述XR业务的视频帧接收完之后的时长X范围内,所述X大于零。
  6. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第三信息,所述第三信息用于指示针对每个视频帧,所述网络设备从用户平面功能UPF接收的数据包数量的百分比,以及,所述网络设备发送给所述终端设备的数据包数量的百分比和/或从所述UPF接收到的数据包数量的百分比。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送第四信息,所述第四信息是基于所述第三信息确定的,用于指示针对每个视频帧,建议所述网络设备需传输的数据包数量的百分比和/或从所述UPF接收到的数据包需丢弃的数据包数量的百分比。
  8. 一种数据传输方法,其特征在于,所述方法包括:
    接收来自终端设备的第一信息,所述第一信息用于确定针对N个视频帧,所述终端设备能够接受的数据包丢包程度;
    所述N个视频帧是已发送的M个视频帧之后需待发送的视频帧;所述M和所述N均为正整数;所述M个视频帧和所述N个视频帧均是扩展现实XR业务的视频帧;
    基于所述第一信息,发送所述N个视频帧。
  9. 根据权利要求8所述的方法,其特征在于,所述第一信息包括以下至少一项:
    针对N个视频帧,所述终端设备能够接受的数据包丢包程度;
    所述M个视频帧中各数据类型在对应的缓冲区的缓存状态报告;
    针对所述N个视频帧中各数据类型,所述终端设备分别能够接受的数据包丢包程度;
    一个重要性门限,用于指示网络设备丢弃所述N个视频帧中重要性等级不高于该重要性门限的数据包;
    所述M个视频帧中各数据类型对应的重要性门限,用于指示网络设备丢弃所述N个视频帧中,各数据类型的重要性等级不高于对应的重要性门限的数据包;
    针对所述N个视频帧,所述终端设备期望接收到的最小数据包数量;
    针对所述N个视频帧,所述终端设备期望接收到的各数据类型的最小数据包数量;
    针对所述N个视频帧,所述终端设备期望接收到的最小比特数;
    针对所述N个视频帧,所述终端设备期望接收到的各数据类型的最小比特数;或者,
    针对所述N个视频帧,建议所述网络设备需传输的数据包数量的第一百分比和/或需丢弃的数据包数量的第二百分比,所述第一百分比和所述第二百分比均小于1。
  10. 根据权利要求8所述的方法,其特征在于,若所述N个视频帧和所述M个视频帧存在相关性,则执行所述的基于所述第一信息,发送所述N个视频帧的步骤。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述N个视频帧中传输的数据包和/或丢弃的数据包是基于所述第一信息确定的,
    所述方法还包括:
    向网络管理平台发送统计结果,所述统计结果包括所述N个视频帧中丢弃的数据包的信息。
  12. 根据权利要求8至10任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三信息,所述第三信息用于指示针对每个视频帧,所述网络设备从用户平面功能UPF接收的数据包数量的百分比,以及,所述网络设备发送给所述终端设备的数据包数量的百分比和/或从所述UPF接收到的数据包数量的百分比。
  13. 根据权利要求12所述的方法,其特征在于,所述向所述终端设备发送第三信息之后,所述方法还包括:
    接收来自所述终端设备的第四信息,所述第四信息是基于所述第三信息确定的,用于指示针对每个视频帧,建议所述网络设备需传输的数据包数量的百分比和/或从所述UPF接收到的数据包需丢弃的数据包数量的百分比。
  14. 根据权利要求13所述的方法,其特征在于,所述第三信息和/或所述第四信息是通过媒体接入控制的控制信元MAC CE发送的;或者,所述第三信息和/或所述第四信息是通过分组数据汇聚协议PDCP控制协议数据单元PDU发送的。
  15. 一种数据传输装置,其特征在于,所述装置包括:
    确定单元,用于确定第一信息,所述第一信息用于确定针对N个视频帧,终端设备能够接受的数据包丢包程度;
    所述N个视频帧是已接收的M个视频帧之后待接收的视频帧;所述M和所述M均为正整数;所述M个视频帧和所述N个视频帧均是扩展现实XR业务的视频帧;
    发送单元,用于向网络设备发送所述第一信息。
  16. 一种数据传输装置,其特征在于,所述装置包括:
    接收单元,用于接收来自终端设备的第一信息,所述第一信息用于确定针对N个视频帧,所述终端设备能够接受的数据包丢包程度;
    所述N个视频帧是已发送的M个视频帧之后需待发送的视频帧;所述M和所述N均为正整数;所述M个视频帧和所述N个视频帧均是扩展现实XR业务的视频帧;
    发送单元,用于基于所述第一信息,发送所述N个视频帧。
  17. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行如权利要求1至7任一项所述的数据传输方法,或者,执行如权利要求8至14任一项所述的数据传输方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时,使所述处理器执行如权利要求1至7任一项所述的数据传输方法,或者,使所述处理器执行如权利要求8至14任一项所述的数据传输方法。
  19. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器执行如权利要求1至7任一项所述的数据传输方法,或者,执行如权利要求8至14任一项所述的数据传输方法。
  20. 一种芯片模组,其特征在于,所述芯片模组包括收发组件和芯片,所述芯片包括处理器,所述处理器执行如权利要求1至7任一项所述的数据传输方法,或者,执行如权利要求8至14任一项所述的数据传输方法。
PCT/CN2023/109605 2022-07-27 2023-07-27 一种数据传输方法及相关装置 WO2024022448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210889752.2 2022-07-27
CN202210889752.2A CN117528638A (zh) 2022-07-27 2022-07-27 一种数据传输方法及相关装置

Publications (1)

Publication Number Publication Date
WO2024022448A1 true WO2024022448A1 (zh) 2024-02-01

Family

ID=89705455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109605 WO2024022448A1 (zh) 2022-07-27 2023-07-27 一种数据传输方法及相关装置

Country Status (2)

Country Link
CN (1) CN117528638A (zh)
WO (1) WO2024022448A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402143A (zh) * 2002-09-29 2003-03-12 清华大学 一种基于客户端反馈的流量控制方法
CN108713318A (zh) * 2016-10-31 2018-10-26 华为技术有限公司 一种视频帧的处理方法及设备
US20190244029A1 (en) * 2016-10-18 2019-08-08 Zhejiang Dahua Technology Co., Ltd. Methods and systems for video processing
CN114070459A (zh) * 2020-08-04 2022-02-18 成都鼎桥通信技术有限公司 数据传输方法、装置、终端设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402143A (zh) * 2002-09-29 2003-03-12 清华大学 一种基于客户端反馈的流量控制方法
US20190244029A1 (en) * 2016-10-18 2019-08-08 Zhejiang Dahua Technology Co., Ltd. Methods and systems for video processing
CN108713318A (zh) * 2016-10-31 2018-10-26 华为技术有限公司 一种视频帧的处理方法及设备
CN114070459A (zh) * 2020-08-04 2022-02-18 成都鼎桥通信技术有限公司 数据传输方法、装置、终端设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Potential enhancements for XR", 3GPP TSG RAN WG1 #107-E R1-2111766, 5 November 2021 (2021-11-05), XP052074316 *

Also Published As

Publication number Publication date
CN117528638A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
EP3720052B1 (en) Service identification method and device, and network device
US10917834B2 (en) Method for transmitting system information and related devices
KR101693282B1 (ko) 협력 통신 방법, 클라우드 서버, 및 코어 네트워크 서버
WO2019214617A1 (zh) 资源分配的方法和装置
CN110944358B (zh) 数据传输方法和设备
US11057905B2 (en) Communication method, network device and terminal device
US11259362B2 (en) Method for repeatedly transmitting data and device
EP4156770A1 (en) Communication method, apparatus and system
TW202008827A (zh) 資源配置的方法、終端設備和網路設備
US11757746B2 (en) Communication method, apparatus, and system
WO2018120107A1 (zh) 通信方法、网络设备和终端设备
WO2024022448A1 (zh) 一种数据传输方法及相关装置
EP4436133A1 (en) Communication method and communication apparatus
WO2019192442A1 (zh) 确定传输块大小的方法和通信装置
US20220174541A1 (en) Data transmission method and device
WO2018058372A1 (zh) 无线通信的方法、终端设备和接入网设备
WO2018195911A1 (zh) 传输数据的方法、终端设备和网络设备
WO2021026680A1 (zh) 一种信息配置方法、网络设备及终端
WO2024164792A1 (zh) Pdu丢弃方法及装置
WO2023208142A1 (zh) 数据的处理方法及通信设备
WO2023131291A1 (zh) 一种随机接入的方法、终端、装置及存储介质
CN110662265A (zh) 重选接入方法、装置及存储介质
WO2024012205A1 (zh) 一种通信方法、装置及系统
WO2024032211A1 (zh) 一种拥塞控制方法以及装置
US20240284258A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845655

Country of ref document: EP

Kind code of ref document: A1