WO2024022272A1 - 回传链路的传输配置确定方法、装置、中继设备及网络侧设备 - Google Patents

回传链路的传输配置确定方法、装置、中继设备及网络侧设备 Download PDF

Info

Publication number
WO2024022272A1
WO2024022272A1 PCT/CN2023/108808 CN2023108808W WO2024022272A1 WO 2024022272 A1 WO2024022272 A1 WO 2024022272A1 CN 2023108808 W CN2023108808 W CN 2023108808W WO 2024022272 A1 WO2024022272 A1 WO 2024022272A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
backhaul link
tci
link
downlink
Prior art date
Application number
PCT/CN2023/108808
Other languages
English (en)
French (fr)
Inventor
杨坤
王欢
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024022272A1 publication Critical patent/WO2024022272A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a transmission configuration determination method, device, relay equipment and network side equipment for a backhaul link.
  • NCR network controlled repeater
  • UE User Equipment
  • NCR has beam forming capabilities and can receive control from the upstream base station (i.e., donor base station). That is, the base station can control the transmission parameters of NCR. For example, the base station can control the reception between NCR and base station or between NCR and UE. /send beam etc.
  • the network structure shown in Figure 2 includes three network nodes.
  • the intermediate network node is an NCR device, which includes a terminal module (mobile termination, MT) and a relay unit (forwarding unit/Fwd).
  • the MT can establish a connection with the upstream base station (i.e., control link).
  • the base station transmits control signaling to the NCR through the MT, and can control the backhaul link (BH) between the NCR and the base station or between the NCR and the UE.
  • Transmission/reception related parameters of the access link (AL) including power, amplification, beam, on/off and other parameters).
  • the link between the NCR and the base station needs to determine the downlink signal receiving beam and the uplink signal transmitting beam of the NCR.
  • the NCR can determine the receiving beam of the corresponding control link downlink signal according to the rules for the terminal to receive downlink signals.
  • the uplink signal of the backhaul link that the terminal sends to the NCR and is amplified by the NCR and forwarded to the base station there is no corresponding method for determining the transmission beam of the NCR uplink signal.
  • the current solution does not provide a method for determining the receiving beam of the downlink signal and the transmitting beam of the uplink signal of the NCR in the backhaul link.
  • the embodiments of the present application provide a transmission configuration determination method, device, relay equipment and network side equipment for a backhaul link, and provide the receiving beam of the downlink signal and/or the transmission of the uplink signal of NCR in the backhaul link. Beam determination method.
  • the first aspect provides a method for determining the transmission configuration of a backhaul link, including:
  • the relay device obtains a configurable set of candidate beams for the control link
  • the relay device determines, based on the candidate beam set, the transmission configuration indication TCI configuration of the downlink signal of the backhaul link and/or the transmission configuration of the uplink signal.
  • a method for determining the transmission configuration of the backhaul link including:
  • the network side device determines a configurable candidate beam set for the control link
  • the network side device sends the beam configuration signaling of the backhaul link to the relay device, where the beam configuration signaling is used to instruct the relay device to determine the beam configuration based on the configurable candidate beam set of the control link.
  • the transmission configuration of the downlink signal of the backhaul link indicates the TCI configuration and/or the transmission configuration of the uplink signal;
  • the network side device determines the transmitting beam of the downlink signal and/or the receiving beam of the uplink signal of the backhaul link based on the beam configuration signaling or protocol provisions.
  • a device for determining transmission configuration of a backhaul link including:
  • a candidate beam set acquisition module used to obtain a configurable candidate beam set of the control link
  • the first configuration determination module is configured to determine, according to the candidate beam set, the transmission configuration indication TCI configuration of the downlink signal of the backhaul link and/or the transmission configuration of the uplink signal.
  • a device for determining transmission configuration of a backhaul link including:
  • a candidate beam set determination module used to determine a configurable candidate beam set for the control link
  • the first sending module is configured to send beam configuration signaling of the backhaul link to the relay device, where the beam configuration signaling is used to instruct the relay device to configure a set of candidate beams according to the control link , determine the transmission configuration indication TCI configuration of the downlink signal of the backhaul link and/or the transmission configuration of the uplink signal;
  • the second configuration determination module is configured to determine the transmission beam of the downlink signal and/or the reception beam of the uplink signal of the backhaul link based on the beam configuration signaling or protocol provisions and the candidate beam set.
  • a relay device including a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following is implemented. The steps of the method described in one aspect.
  • a network-side device including a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in the second aspect.
  • a seventh aspect provides a system for determining the transmission configuration of a backhaul link, including: a relay device and a network side device.
  • the relay device can be used to perform the transmission of the backhaul link as described in the first aspect.
  • the network side device may be configured to perform the steps of the transmission configuration determination method of the backhaul link as described in the second aspect above.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in a ninth aspect, includes a processor and a communication interface, the communication interface and the The processor is coupled, and the processor is used to run programs or instructions, implement the method described in the first aspect, or implement the method described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect or the second aspect. The steps of the method described in this aspect.
  • embodiments of the present application provide a device for determining a transmission configuration of a backhaul link, the device being used to perform the method for determining a transmission configuration of a backhaul link as described in the first or second aspect. step.
  • the relay device may obtain a configurable candidate beam set of the control link, and thereby determine the TCI configuration of the downlink signal and/or the transmission configuration of the uplink signal of the backhaul link based on the candidate beam set. That is, in the embodiment of the present application, the receiving beam of the downlink signal and/or the transmitting beam of the uplink signal of the backhaul link can be selected from the candidate beam set of the control link. Therefore, the embodiments of the present application provide a method for determining the receiving beam of the downlink signal and/or the transmitting beam of the uplink signal of the NCR in the backhaul link.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of the transmission link between the base station, NCR and UE in the embodiment of the present application;
  • Figure 3 is a flow chart of a method for determining the transmission configuration of a backhaul link in an embodiment of the present application
  • Figure 4 is a flow chart of another method for determining transmission configuration of a backhaul link in an embodiment of the present application
  • Figure 5 is a structural block diagram of a device for determining transmission configuration of a backhaul link in an embodiment of the present application
  • Figure 6 is a structural block diagram of another device for determining transmission configuration of a backhaul link in an embodiment of the present application
  • Figure 7 is a structural block diagram of a communication device in an embodiment of the present application.
  • Figure 8 is a structural block diagram of a network side device in an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th generation Generation, 6G) communication system.
  • 6G 6th generation Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computers, PC), teller machines or self-service Terminal devices
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network unit.
  • Access network equipment can include base stations, WLAN access points or WiFi nodes, etc.
  • the base station can be called Node B, Evolved Node B (eNB), access point, Base Transceiver Station (BTS), radio base station , radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home B-Node, Home Evolved B-Node, Transmitting Receiving Point (TRP) or the above
  • eNB Evolved Node B
  • BTS Base Transceiver Station
  • ESS Extended Service Set
  • Home B-Node Home Evolved B-Node
  • TRP Transmitting Receiving Point
  • the first aspect is about beam control of access links.
  • the base station can control the beam of the NCR control link.
  • the beam indication information indicates the receiving or transmitting beam number of the control link or the associated reference signal (Reference Signals, RS) number.
  • RS Reference Signals
  • the second aspect is the method of uplink/downlink beam indication for terminals in Rel-15:
  • the terminal For downlink beams, the terminal needs to receive broadcast signals, such as Synchronization Signal Block (SSB), Channel State Information-Reference Signal (Channel State Information-Reference Signal, CSI-RS), cell-specific Physical Downlink Control Channel (cell-specific PDCCH), cell-specific Physical Downlink Shared Channel (cell-specific PDSCH), UE Specific physical downlink control channel (UE-specific PDCCH), and UE-specific physical downlink shared channel (UE-specific PDSCH).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information-Reference Signal
  • cell-specific PDCCH cell-specific Physical Downlink Control Channel
  • cell-specific PDSCH Cell-specific Physical Downlink Shared Channel
  • UE-specific PDCCH UE Specific physical downlink control channel
  • UE-specific PDSCH UE-specific physical downlink shared channel
  • the determination method of the terminal's downlink beam includes: implicitly determining the downlink beam from the SSB set according to predefined rules, and determining the downlink beam according to the downlink control information (Downlink Control Information, DCI) or the media access control control unit (Media Access Control Control Element). , MAC CE) or Radio Resource Control (Radio Resource Control, RRC) signaling to display and determine the downlink beam.
  • DCI Downlink Control Information
  • Media Access Control Element Media Access Control Control Element
  • MAC CE Radio Resource Control
  • RRC Radio Resource Control
  • the network side device can configure a transmission configuration indication (Transmission Configuration Indicator, TCI) candidate set through RRC signaling (such as physical downlink shared channel configuration (PDSCH-config)), which contains M sets of TCI configuration information, and the M value Determined by the terminal capabilities, up to 8 TCI configurations are selected from M groups of TCI configuration information through MAC CE activation signaling and mapped to the DCI field 'Transmission Configuration Indication (Transmission Configuration Indication)'.
  • the terminal determines the TCI configuration of the corresponding PDSCH by reading the DCI field 'Transmission Configuration Indication'.
  • the network side device can configure corresponding TCI for each type of control resource set (CORESET). Moreover, before the system configures TCI or when the activation signaling (i.e. MAC CE activation command) is not received, the terminal defaults to the SSB used in the last random access process as the quasi co-location (QCL) reference of the PDCCH beam. Moreover, after the terminal receives the MAC CE activation command, the terminal will starts to take effect, where time slot k is the time slot in which the Hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback message of the MAC CE activation command is located. Indicates the number of time slots included in a subframe when the subcarrier bandwidth is configured as ⁇ .
  • HARQ-ACK Hybrid automatic repeat request acknowledgement
  • the network side device can terminal configure a TCI candidate set and dynamically indicate the TCI configuration information of PDSCH through DCI. If the TCI configuration set is not configured or has not yet taken effect, the terminal uses the SSB used in the random access process as the quasi-co-located reference beam. Among them, the TCI of the PDSCH indicated by the DCI needs to take effect after the terminal receives the DCI (that is, after the quasi-co-location duration (timeDurationForQCL) time slot); if the scheduled PDSCH time offset is shorter than the timeDurationForQCL time slot, the terminal will use the latest COREST's quasi-colocated configuration receives PDSCH. Among them, the value of timeDurationForQCL can be predefined. For example, when the subcarrier spacing (SCS) is 60kHz, the optional values are 7, 14, and 28; when the SCS is not 120kHz, the optional values are 14 and 28.
  • SCS subcarrier spacing
  • the terminal determines it based on the channel sounding reference signal resource indicator (Sounding Reference Signal resource indicator, SRI) or the downlink beam.
  • SRI Sounding Reference Signal resource indicator
  • the network side device is configured through the Physical Uplink Control Channel SpatialRelationInfo (PUCCH-SpatialRelationInfo) parameter.
  • the uplink beam of PUCCH can, for example, indicate an SSB or Channel State Information-Reference Signal (CSI-RS).
  • CSI-RS Channel State Information-Reference Signal
  • the transmit beam of PUCCH spatial domain filter
  • SRS Channel State Information-Reference Signal
  • the transmit beam of PUCCH spatial domain filter
  • the transmit beam of PUCCH and SRS are the same.
  • the transmit beam of the Physical Uplink Shared Channel (PUSCH) needs to be the same as the PUCCH; if there is no PUCCH as a reference, the beam of the CORESET with the smallest number is used as a reference.
  • the third aspect is the method of uplink/downlink beam indication for terminals in Rel-17:
  • the beam indication mechanism includes TCI configuration, TCI state activation and TCI indication.
  • uplink and downlink TCI configurations can be configured uniformly or separately.
  • 8 TCI states can be activated through MAC CE;
  • gNB can activate 8 pairs of TCI states through MAC CE.
  • the 5G base station (NR Node B, gNB) sends beam indication information (that is, TCI indication information) to uniformly indicate the beams of uplink signals and downlink signals.
  • the content indicated by the beam indication information is one or a pair of TCI states activated by the MAC CE.
  • the start time when the TCI indication information takes effect is x time units after the ACK feedback corresponding to the TCI indication information, and the end time when the TCI indication information takes effect is the time when the next TCI indication information starts to take effect.
  • Downlink channels can be configured as different beams; for example, PDCCH and PDSCH can be configured with different TCIs, and CORESETs of different PDCCHs can be configured with different beams.
  • the beam of the downlink channel can be dynamically configured through signaling
  • the beam of the uplink channel can be determined according to the beam of the downlink channel or configured separately (SRI).
  • an embodiment of the present application provides a method for determining the transmission configuration of a backhaul link.
  • the method may include the following steps:
  • Step 301 The relay device obtains a configurable candidate beam set of the control link.
  • the candidate beam set includes at least one of the following:
  • the above-mentioned candidate TCI configuration is an available but ineffective TCI configuration;
  • the above-mentioned downlink reference signal of the control link may include SSB and/or CSI-RS;
  • the above-mentioned downlink physical channel of the control link It may include PDCCH and/or PDSCH;
  • the uplink reference signal of the control link mentioned above may include SRS and/or PRACH;
  • the uplink physical channel of the control link described above may include PUCCH and/or PUSCH.
  • Step 302 The relay device determines, based on the candidate beam set, the transmission configuration indication TCI configuration of the downlink signal of the backhaul link and/or the transmission configuration of the uplink signal.
  • the NCR backhaul link and PDSCH have different transmission requirements.
  • the dynamically scheduled PDSCH determines the transmission time and beam (that is, TCI configuration) through downlink control signaling DCI.
  • the NCR backhaul link is one of the relay links.
  • the backhaul link carries various downlink channels such as PDSCH, PDCCH, and SSB for terminals. It needs to be turned on for a long time, and the beam needs to remain unchanged for a long time.
  • the backhaul link carries multiple uplink channels such as PUCCH, PUSCH, and SRS from multiple terminals and occupies multiple uplink time slots. Therefore, the uplink of the backhaul link also needs to be turned on for a long time.
  • NCR prefers to use the same long-duration receive beam or transmit beam as the beam configuration of the backhaul link.
  • the traditional dynamic beam indication method ie, dynamic beam indication for PDSCH or PUSCH
  • the TCI configuration of the downlink signal and the transmission configuration of the uplink signal of the backhaul link can be valid for a long time.
  • the validity time can be specified by the protocol or explicitly indicated by the network, or it can continue to be valid until the new TCI configuration of the downlink signal. and the uplink signal sending configuration takes effect.
  • the relay device can obtain a configurable candidate beam set of the control link, and thereby determine the TCI configuration of the downlink signal and/or the transmission configuration of the uplink signal of the backhaul link based on the candidate beam set. That is, in the embodiment of the present application, the receiving beam of the downlink signal and/or the transmitting beam of the uplink signal of the backhaul link can be selected from the candidate beam set of the control link. Therefore, the embodiment of the present application provides a method for determining the receiving beam of the downlink signal and/or the transmitting beam of the uplink signal of the NCR in the backhaul link.
  • the TCI configuration of the downlink signal of the backhaul link includes at least one of the following:
  • the reference signal of the control link may be one of SSB and CSI-RS.
  • the QCL type included in the TCI configuration of the downlink signal can indicate different QCL parameters.
  • the QCL parameters include at least one item:
  • the relay device determines the TCI configuration of the downlink signal of the backhaul link based on the candidate beam set, including:
  • the relay device determines the TCI configuration of the downlink signal of the backhaul link based on the candidate beam set based on the protocol provisions;
  • the relay device receives the first configuration signaling sent by the network side device
  • the relay device determines the TCI configuration of the downlink signal of the backhaul link based on the first configuration signaling and the candidate beam set.
  • the relay device can, based on the above protocol provisions or the first configuration signaling, according to the control link
  • the candidate beam set determines the TCI configuration of the downlink signal of the backhaul link.
  • the relay device can use the following method 1 or 2 to determine the receiving beam of the downlink signal of the backhaul link:
  • Method 1 Based on the protocol provisions and the candidate beam set of the control link, determine the receiving beam of the downlink signal of the backhaul link;
  • Method 2 Based on the received first configuration signaling and the candidate beam set of the control link, determine the receiving beam of the downlink signal of the backhaul link.
  • the first and second methods described here can be combined into one solution.
  • the relay device can pre-stipulate in the protocol Determine the receiving beam of the downlink signal (ie, method 1); after receiving the dedicated signaling (ie, the above-mentioned first configuration signaling), determine the receiving beam of the downlink signal according to the dedicated signaling.
  • the above-mentioned first configuration signaling may be MAC CE, RRC or DCI.
  • the network side device can send MAC CE (such as TCI activation signaling) or RRC signaling aperiodically or periodically to indicate the TCI configuration of the downlink signal of the backhaul link;
  • MAC CE such as TCI activation signaling
  • RRC signaling aperiodically or periodically to indicate the TCI configuration of the downlink signal of the backhaul link
  • DCI signaling is sent on a dedicated CORESET or DCI signaling in a dedicated format is sent to indicate the TCI configuration of the downlink signal of the backhaul link.
  • the network side device can configure the TCI configuration of the downlink signal while configuring the backhaul link opening time period for the relay device. That is, the above-mentioned first configuration signaling may be signaling used to configure the time period for opening the backhaul link.
  • the relay device determines the TCI configuration of the downlink signal of the backhaul link based on the first configuration signaling and the candidate beam set, the TCI configuration of the backhaul link The TCI configuration of the downlink signal starts from the time expressed by k+X take effect;
  • k represents the time slot or the last symbol where the first configuration signaling is located, or the time slot or the last symbol where the hybrid automatic repeat request-confirmation feedback message corresponding to the first configuration signaling is located
  • X is represented by Determined according to the above protocol provisions or based on the capabilities of the relay device. That is, the delay requirement needs to be met before the TCI configuration of the downlink signal of the backhaul link from the relay device receiving the dedicated signaling (ie, the above-mentioned first configuration signaling) to the relay device takes effect.
  • X can be equal to Indicates the number of time slots included in a subframe when the subcarrier bandwidth is configured as ⁇ , and x is a value defined by the protocol.
  • the first configuration signaling may explicitly indicate the effective time of the TCI configuration of the downlink signal, including the effective start time point and/or the effective time length.
  • the above-mentioned first configuration signaling may also carry the valid time period or valid time period of the TCI configuration of the downlink signal.
  • the effective time period or effective time period may include a backhaul link opening or working time period, for example, the first configuration signaling indicates the backhaul link opening or working time period of the relay device and the TCI configuration of the corresponding downlink signal. and uplink signal sending configuration, then the relay device uses the corresponding TCI configuration and uplink signal sending configuration to perform downlink signal reception and uplink signal sending on the backhaul link within the working time period of the dedicated signaling configuration.
  • the backhaul link of the relay device can work according to the protocol provisions. For example, the TCI configuration of the original downlink signal is used for signal forwarding; or, the signal is not forwarded until the TCI configuration of the new downlink signal takes effect.
  • the relay device determines the TCI configuration of the downlink signal of the backhaul link based on the candidate beam set, which can be divided into situations A-1 to A-4 as follows:
  • Case A-1 In the case where the protocol stipulates or the first configuration signaling indicates that the downlink reference signal and/or downlink physical channel of the control link has a QCL relationship with the backhaul link, the The TCI configuration of the downlink signal of the backhaul link is determined based on the downlink reference signal and/or downlink physical channel of the control link.
  • the backhaul link In the case where the protocol stipulates or the first configuration signaling indicates that there is a QCL relationship between the downlink reference signal of the control link and the backhaul link, the backhaul link
  • the reference signal included in the TCI configuration of the downlink signal of the link is the downlink reference signal of the control link, and the QCL type is determined according to the protocol provisions or according to the configuration of the network side device.
  • the specific determination method can be:
  • the reference signal included in the TCI configuration of the downlink signal of the backhaul link is the downlink reference signal of the control link, and the QCL type is determined according to the protocol provisions or according to the configuration of the network side device.
  • the reference signal included in the TCI configuration of the downlink signal of the backhaul link selects the SSB selected during random access of the control link in accordance with the protocol provisions.
  • the reference signal included in the TCI configuration of the downlink signal of the backhaul link selects the CSI-RS of the control link according to the configuration of the network side device.
  • Another example is the parameters included in the TCI configuration of the downlink signal of the backhaul link.
  • the reference signal is the downlink reference signal of the latest transmission of the control link according to the protocol.
  • the quasi-co-located parameters may include at least one of the parameters defined in Spatial Rx parameter (i.e., QCL type D), average gain, and QCL Type A, B, and C.
  • the protocol stipulates that the QCL type can be configured as QCL TypeD by default, or the quasi-colocation parameters can be configured as QCL TypeD and average gain by default.
  • Explicit configuration of the network can be several parameters in the quasi-colocation parameters here.
  • the above downlink reference signal may be SSB or CSI-RS.
  • the above protocol stipulates that there is a QCL relationship between the SSB or CSI-RS that controls the link selection (such as the CSI-RS used for tracking) and the backhaul link (that is, the SSB or CSI-RS that controls the link selection is used as the backhaul link).
  • QCL associated signal the reference signal in the TCI configuration of the downlink signal of the backhaul link is SSB or CSI-RS
  • the QCL type in the TCI configuration of the downlink signal is specified by the protocol or configured by the network side device (i.e.
  • the downlink beam and SSB or CSI-RS of the backhaul link meet the QCL type specified by the protocol or configured by the network side device).
  • the SSB may be the SSB selected by the relay device during random access.
  • the following describes different situations where the downlink reference signals associated with the QCL associated with the backhaul link are SSB and CSI-RS respectively.
  • the backhaul link of the relay device selects the SSB used in the last random access process of the control link.
  • SSB serves as the reference signal of QCL.
  • the receiving beam of the downlink signal of the backhaul link and the SSB receiving beam of the control link meet the QCL specified by the protocol or configured on the network side.
  • Type that is, the receiving beam of the downlink signal of the backhaul link is the same as the receiving beam of the SSB of the control link
  • the network side device side on the time-frequency resource of SSB transmission, the downlink signal of the backhaul link
  • the transmit beam is consistent with the transmit beam of the SSB controlling the link.
  • the second configuration signaling sent by the network side device carries identification information of the SSB (for example, SSB number)
  • the reference signal included in the TCI configuration of the downlink signal of the backhaul link is the SSB corresponding to the identification information of the SSB carried in the second configuration signaling.
  • the second configuration signaling may be MAC CE or RRC or DCI.
  • the second configuration signaling may be the same as the above-mentioned first configuration signaling, or may be different.
  • the SSB represented by the identification information of the SSB carried in the second configuration signaling may be different from the SSB during the random access process of the relay device.
  • the receiving beam of the downlink signal of the backhaul link and the CSI-RS receiving beam of the control link meet the protocol requirements or the network
  • the QCL type configured on the network side that is, the receiving beam of the downlink signal of the backhaul link is the same as the receiving beam of the CSI-RS of the control link
  • the transmission beam of the downlink signal of the backhaul link is consistent with the CSI-RS transmission beam of the control link.
  • the backhaul link In the case where the protocol stipulates or the first configuration signaling indicates that there is a QCL relationship between the downlink physical channel of the control link and the backhaul link, the backhaul link
  • the TCI configuration of the downlink signal of the control link is the same or partially the same as the TCI configuration of the downlink physical channel of the control link.
  • the specific determination method can be: TCI configuration and control of the downlink signal of the backhaul link
  • the TCI configurations of the downlink physical channels of the links are the same or partially the same. Further, for example, according to the protocol, the TCI configuration of the downlink signal of the backhaul link is the same or partially the same as the TCI configuration of the latest downlink physical channel of the control link.
  • the partial similarity means that the reference signals included in the TCI configuration are the same, and the QCL type is specified by the protocol or indicated by the configuration message.
  • the QCL relationship between the downlink physical channel of the control link and the backhaul link may be indicated through protocol provisions, or the QCL relationship between the downlink physical channel of the control link and the backhaul link may be indicated through the first configuration signaling.
  • the TCI configuration of the downlink signal of the backhaul link is the same or partially the same as the TCI configuration of the downlink physical channel of the control link.
  • the reference signals in the two are the same, but the QCL types are different.
  • the QCL type can be individually indicated by the network side device or specified by the protocol.
  • the TCI configuration of the downlink signal and the TCI configuration of the downlink physical channel are consistent with the space receiver.
  • the TCI configuration corresponding to the parameters is the same or partially the same.
  • the downlink physical channel associated with the QCL of the backhaul link contains two TCI configurations.
  • the TCI configuration of the downlink signal of the backhaul link is consistent with the spatial receiver parameters (Spatial) of these two TCI configurations.
  • Rx parameter) i.e. QCL TypeD
  • corresponding TCI configuration is the same or partially the same.
  • the above-mentioned downlink physical channel may be PDCCH or PDSCH.
  • the protocol stipulates or the first configuration signaling indicates: there is a QCL association between the PDCCH of the backhaul link and the control link, then the TCI configuration of the downlink signal of the backhaul link is consistent with the specific search space of the PDCCH or The TCI configuration of a specific control resource set (CORESET) is the same or partially the same.
  • the method of determining the specific CORESET can be predefined by the protocol (for example, specifying the CORESET corresponding to Type0PDCCH as the specific CORESET, or the CORESET with the smallest CORESET number as the specific CORESET), or it can be configured on the network side (that is, it can be configured on the network side device If the sent signaling carries identification information of CORESET (for example, CORESET code), then the CORESET represented by the identification information is the specific CORESET).
  • the method of determining a specific search space is similar to the method of determining a specific CORESET, and will not be described again here.
  • the TCI configuration of the downlink signal of the backhaul link is consistent with the TCI configuration on the specific SS or specific CORESET.
  • the TCI configuration of the PDCCH is the same or partially the same; from the network side device side, in the specific search space of the PDCCH or the time-frequency resource where the specific CORESET is located, the downlink signal transmission beam of the backhaul link is consistent with the specific SS or specific CORESET.
  • the TCI configuration of the downlink signal of the backhaul link is consistent with the TCI configuration on the specific SS or specific CORESET.
  • the TCI configuration of PDCCH is the same or partially the same; from the network side device side, in the specific search space of PDCCH or v1 time units after a specific CORESET, the downlink signal transmission beam of the backhaul link is consistent with the specific search space or v1 time units.
  • the beams of PDCCH on a specific CORESET are consistent.
  • the value of v1 can be specified by the protocol or explicitly configured by the network side, or it will always be valid until a new TCI configuration is configured for this specific search space or specific CORESET, or it will be valid until the next control link PDCCH transmission.
  • the time unit is, for example, a slot, a symbol, or a millisecond (ms).
  • the protocol stipulates or the first configuration signaling indicates: there is a QCL association between the PDSCH of the backhaul link and the control link, then the TCI configuration of the downlink signal of the backhaul link is the same or partially the same as the TCI configuration corresponding to the PDSCH.
  • the backhaul link downlink signal can preferentially select the TCI configuration corresponding to the semi-static PDSCH (that is, the TCI configuration of the downlink signal of the backhaul link corresponds to the semi-static PDSCH
  • the TCI is the same or partially the same). That is, the control link includes dynamically scheduled PDSCH and semi-persistent scheduling (Semi-Persistent Scheduling, SPS) PDSCH.
  • the TCI configuration of the downlink signal of the backhaul link may be the same or partially the same as the TCI configuration corresponding to the semi-statically scheduled PDSCH of the control link.
  • the TCI configuration of the downlink signal of the backhaul link is the same or partially the same as the TCI configuration of the PDSCH of the control link; in the network From the side of the device, within v2 time units after the PDSCH is sent, the transmission beam of the downlink signal of the backhaul link is consistent with the beam of the PDSCH of the control link.
  • the v2 value may be specified by the protocol or explicitly configured by the network side, or it may be valid until a new TCI configuration is configured for PDSCH, or it may be valid until the next control link PDSCH transmission.
  • the TCI configuration of the downlink signal of the backhaul link is consistent with that of the control link.
  • the TCI configuration of the semi-statically scheduled PDSCH is the same or partially the same; from the network side device side, starting from v3 time units after the SPS activation signaling of the PDSCH is sent, the transmission beam and control of the downlink signal of the backhaul link.
  • the beams of the semi-statically scheduled PDSCH of the link are consistent.
  • v3 time units are greater than or equal to the quasi-colocation duration (timeDurationForQCL).
  • the TCI configuration of the downlink signal of the return link is equal to half of the control link.
  • the TCI configuration of the statically scheduled PDSCH is the same or partially the same; from the network side device side, the SPS activation signal from the PDSCH Starting v4 time units after the corresponding feedback signaling is sent, the transmission beam of the downlink signal of the backhaul link is consistent with the beam of the semi-statically scheduled PDSCH of the control link.
  • v4 time units are greater than or equal to the quasi-colocation duration (timeDurationForQCL).
  • the TCI configuration of the downlink signal of the backhaul link is the same or partially the same as the TCI configuration of the semi-statically scheduled PDSCH of the control link.
  • the transmission beam of the downlink signal of the backhaul link is consistent with the beam of the semi-statically scheduled PDSCH of the control link.
  • the TCI configuration of the downlink signal of the backhaul link is consistent with the semi-static scheduling of the control link.
  • the TCI configuration of the PDSCH is the same or partially the same; from the network side device side, within v5 time units after the semi-statically scheduled PDSCH transmission of the control link, the transmission beam of the downlink signal of the backhaul link is consistent with the control The beams of the semi-statically scheduled PDSCH of the link are consistent.
  • the time unit is, for example, a slot, a symbol, or a millisecond (ms).
  • the TCI configuration of the downlink signal of the return link is the same as the TCI of the semi-statically scheduled PDSCH of the control link.
  • the configuration is the same or partially the same; from the network side device side, within v6 time units after the last valid PDSCH of the SPS, the transmission beam of the downlink signal of the backhaul link is the same as the semi-statically scheduled PDSCH of the control link The beams are consistent.
  • the TCI configuration of the downlink signal of the return link and the semi-static scheduling of the control link is the same or partially the same; from the network side device side, within v7 time units after the relay device receives the SPS deactivation signaling, the transmission beam and control of the downlink signal of the return link.
  • the beams of the semi-statically scheduled PDSCH of the link are consistent.
  • the TCI configuration of the semi-static PDSCH is effective until the control link receives new TCI activation signaling/configuration signaling to re-indicate the TCI configuration for the semi-static PDSCH, or until the new semi-static The moment when the TCI indication information of PDSCH activation signaling/configuration signaling begins to take effect.
  • the backhaul link of the relay device will re-determine the TCI configuration of the downlink signal of the backhaul link based on the candidate beam set according to the protocol provisions or the instructions of the first configuration signaling. .
  • the TCI configuration of the dynamically scheduled PDSCH or PDCCH or the SSB selected in the last random access process of the control link is used to determine the TCI configuration of the downlink signal of the backhaul link.
  • the relay device can use the SSB beam by default, or use the beam indicated by dedicated signaling.
  • Case A-2 In the case where the first configuration signaling includes target identification information, the TCI configuration of the downlink signal of the backhaul link is the same or partially the same as the TCI configuration indicated by the target identification information, and the The target identification information indicates one of the TCI configurations in the set of candidate TCI configurations of the control link.
  • the TCI configuration indicated by the target identification information is: M candidates indicated in the high-level configuration information One of the TCI configurations, or one of the N TCI configurations indicated in the TCI activation command of the control link, where M and N are both integers greater than 0;
  • the N TCI configurations are part of the M TCI configurations.
  • the TCI configuration of the downlink signal of the backhaul link of the relay device can be selected from the M candidate TCI configurations provided in the high-level configuration information (such as PDSCH-Config), or can be activated from the TCI of the MAC CE of the control link Select from N TCI configurations in the command.
  • the high-level configuration information such as PDSCH-Config
  • the base station can first configure M candidate TCI configurations for the NCR control link through RRC signaling, and then select N configurations from these M candidate TCI configurations through MAC CE signaling for the control link of the relay device. , so that one can be selected from M candidate TCI configurations, or one from N candidate TCI configurations, and the selected TCI configuration can be carried through DCI.
  • the M candidate TCI configurations in the high-level configuration information (PDSCH-Config) or the N candidate TCI configurations in the TCI activation command are configured according to the SSB or CSI-RS in the control link of the relay device. , so it is essentially a special case of using the downlink reference signal on the control link of the relay device as the associated signal of the QCL of the backhaul link (that is, a special case of the above situation 1).
  • Case A-3 In the case where the first configuration signaling includes a TCI configuration, the TCI configuration of the downlink signal of the backhaul link is the TCI configuration in the first configuration signaling.
  • the specific parameters of the TCI configuration of the backhaul link of the relay device can also be directly indicated through dedicated signaling (ie, the above-mentioned first configuration signaling).
  • the first configuration signaling indicates: indication information (such as ID number) and QCL type of CSI-RS or SSB in the control link.
  • the indication of the QCL type may be omitted in the first configuration signaling.
  • the relay device does not receive a new QCL configuration (that is, the downlink reference signal of the control link associated with the backhaul link of the relay device and the QCL has not changed, and both If the associated QCL type has not changed), or the TCI configuration of the reference channel (that is, the backhaul link with the relay device and the downlink physical channel of the control link associated with the QCL) has not changed, the relay device maintains Existing QCL relationships and TCI configurations remain unchanged.
  • a new QCL configuration that is, the downlink reference signal of the control link associated with the backhaul link of the relay device and the QCL has not changed, and both If the associated QCL type has not changed
  • the TCI configuration of the reference channel that is, the backhaul link with the relay device and the downlink physical channel of the control link associated with the QCL
  • the TCI configuration of the backhaul link downlink signal is determined based on the highest priority one of the downlink reference signal of the control link and the downlink physical channel or the one closest to the current time. .
  • the priority between downlink reference signals can be defined according to the protocol regulations to select the physical channel of the control link. For example, assuming that the SSB priority is lower than the PDCCH priority and is lower than the PDSCH priority, when PDCCH and PDSCH are not configured with a dedicated TCI, the backhaul link of the relay device chooses to use SSB as the reference channel for QCL configuration; if the network side If the device is configured with the TCI of PDCCH but not the TCI of PDSCH, then the backhaul link of the relay device selects the TCI configuration of PDCCH to work; if the network side device is configured with the TCI of PDSCH, then the backhaul link of the relay device selects PDSCH The TCI configuration works.
  • control link PDCCH multiple Among different types of CORESET the CORESET with the smallest defined CORESET number has the highest priority.
  • the control link is configured with multiple CSI-RSs and/or SSBs
  • the reference signal with the smallest port number is preferentially selected as the reference signal included in the TCI configuration of the downlink signal of the backhaul link.
  • the control link is configured with dynamically scheduled PDSCH and semi-statically scheduled PDSCH
  • the TCI configuration of semi-statically scheduled PDSCH is preferably selected as the downlink signal TCI configuration of the backhaul link.
  • the SSB priority is lower than the PDSCH priority and the PDCCH priority is lower, and a similar channel or reference signal selection scheme is defined, which will not be repeated here.
  • the protocol regulations may also indicate that the TCI configuration of the downlink signal is determined according to the priority of the protocol version that controls the link operation.
  • the control link configures the TCI configuration of the downlink signal according to the Rel-17 protocol version (that is, the TCI configuration of the downlink signal is configured through high-level signaling information DLorJoint-TCIState or UL-TCIState), then the backhaul link preferentially configures the TCI configuration of the downlink signal according to the control link.
  • the TCI configuration of the link Rel-17 protocol version is used to determine the candidate beam set or to determine the TCI configuration of the physical channel of the control link or directly as the TCI configuration of the downlink signal of the backhaul link and the corresponding uplink signal transmission configuration. .
  • the candidate beam set of the backhaul link is formed according to the candidate control link TCI configuration set configured in DLorJoint-TCIState or UL-TCIState, and the TCI configuration scheme of the downlink signal of the backhaul link is determined, which is consistent with the aforementioned situation.
  • the plans described in A-1 to A-4 are parallel plans.
  • the scheme for determining the TCI configuration of the downlink signal of the backhaul link can be set to the highest priority scheme, that is, When DLorJoint-TCIState or UL-TCIState exists, the TCI configuration of the downlink signal of the backhaul link is determined according to the TCI configuration in DLorJoint-TCIState or UL-TCIState; when DLorJoint-TCIState and UL-TCIState do not exist, the TCI configuration of the downlink signal is determined according to The Rel-15/16 protocol version configures the TCI configuration (i.e., PDSCH-Config) of the downlink signal of the control link to determine the candidate beam set using the solution described in the aforementioned scenarios A-1 to A-4.
  • the method also includes:
  • the relay device performs one of the following:
  • the relay device uses the target TCI configuration to receive downlink signals of the backhaul link or uses the target uplink transmission configuration to forward the uplink signals of the backhaul link;
  • the relay device does not forward the downlink signal of the backhaul link or does not forward the uplink signal of the backhaul link within the target time;
  • the target TCI configuration is one of the TCI configurations used by the control link within the target time
  • the target uplink transmission configuration is an uplink transmission configuration used by the control link within the target time. Send configuration
  • the target time includes a time unit of the transmission of the control link of the relay device, a time unit before the transmission of the control link, and b time units after the transmission of the control link. At least one of , a and b respectively represent an integer greater than zero, and the time unit is one of an orthogonal frequency division multiplexing symbol, a time slot, a subframe, and a wireless frame.
  • the transmission of the control link by the relay device includes reception of downlink signals and transmission of uplink signals of the control link.
  • the priority of the TCI configuration of the downlink signal of the backhaul link of the relay device can be defined to be lower than the priority of the TCI configuration of the control link of the relay device.
  • the relay device can use The TCI configuration of the control link of the relay device is used to receive the downlink signal of the backhaul link, or the uplink transmission configuration of the control link of the relay device is used to forward the uplink signal; alternatively, the relay device can also transmit on the control link. No signal is forwarded on the backhaul link during this time period.
  • the solution executed by the relay device can be determined separately.
  • the backhaul link performs backhaul link downlink signal transmission according to the TCI configuration of the PDCCH or PDSCH of the control link; for the PUCCH or PUSCH transmission time period of the control link, The backhaul link does not transmit uplink signals; for the CSI-RS transmission period of the control link, the backhaul link does not transmit downlink signals.
  • the method also includes:
  • the relay device updates and activates the new TCI configuration of the downlink signal of the backhaul link
  • the sixth configuration signaling is used to indicate updating the TCI configuration of the downlink signal of the backhaul link.
  • the effective time of the TCI configuration of the downlink signal of the backhaul link can be static or adaptive.
  • the TCI configuration of the downlink signal of the backhaul link of the relay device is always valid after being determined until the network side device explicitly configures the new TCI configuration of the downlink signal of the backhaul link, or the physical control link as a reference
  • the TCI configuration of the channel changes;
  • the TCI configuration of the downlink signal of the backhaul link of the relay device is valid for a period of time after being determined, and the validity time length is indicated by the protocol provisions or explicitly indicated by the network side device;
  • the TCI configuration of the downlink signal of the backhaul link of the relay device is always the same or partially the same as the TCI configuration last used by the control link of the relay device, that is, the TCI configuration of the downlink signal of the backhaul link. Continues to be valid until the next signal is sent on the control link;
  • the protocol provisions indicate that there is a QCL association between the backhaul link of the relay device and the PDCCH of the control link, and when the PDCCH of the control link updates the TCI configuration, the backhaul link of the relay device also responds accordingly. Even The new TCI configuration, and the effective time of the TCI configuration of the backhaul link will not be earlier than the effective time of the TCI configuration of the control link (for example, the TCI configuration of the backhaul link takes effect immediately after the TCI configuration of the PDCCH of the control link takes effect) .
  • the protocol provisions indicate that there is a QCL association between the backhaul link of the relay device and the PDSCH of the control link, and when the PDSCH of the control link updates the TCI configuration, the backhaul link of the relay device also responds accordingly. Update the TCI configuration, and the TCI configuration of the backhaul link will not take effect earlier than the TCI configuration of the control link (for example, the TCI configuration of the backhaul link will take effect immediately after the TCI configuration of the PDSCH of the control link takes effect) .
  • the method further includes:
  • the relay device performs one of the following:
  • the first channel measurement result and the second channel measurement result are channel measurement results before and after updating and activating the new TCI configuration of the downlink signal of the backhaul link respectively.
  • the above-mentioned third configuration signaling and the above-mentioned first configuration signaling may be the same or different; the above-mentioned channel measurement results may include: L1 filtered reference signal receiving power (Reference Signal Receiving Power, RSRP), reference signal receiving quality ( At least one of Reference Signal Receiving Quality (RSRQ) and Signal to Interference plus Noise Ratio (SINR).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • SINR Signal to Interference plus Noise Ratio
  • Option 1 The amplification factor of the downlink signal of the backhaul link of the relay device remains unchanged.
  • Solution 2 If the adjustment value of the amplification coefficient is indicated through dedicated signaling (such as the above-mentioned third configuration signaling), the relay device updates the amplification coefficient of the downlink signal of the backhaul link according to the adjustment value.
  • the relay device adjusts the amplification factor of the downlink signal of the backhaul link on its own based on the difference between the channel measurement results before the TCI configuration update of the downlink signal and the channel measurement result after the update.
  • the transmission configuration of the uplink signal of the backhaul link represents the transmission spatial filter of the uplink signal of the backhaul link, and is associated with one of the following:
  • the spatial receiver parameter (Spatial Rx parameter) of the downlink signal of the return link is the spatial receiver parameter (Spatial Rx parameter) of the downlink signal of the return link
  • a transmit spatial domain filter (Tx spatial domain filter) for an uplink signal of the control link;
  • the receive spatial domain filter (Rx spatial domain filter) of a downlink signal of the control link is a receive spatial domain filter (Rx spatial domain filter) of a downlink signal of the control link.
  • the uplink signal transmission beam of the backhaul link of the relay device refers to the air domain filter for uplink signal transmission, which represents the energy distribution of the uplink signal energy in different directions.
  • the transmission configuration of the uplink signal of the backhaul link of the relay device can be Determined based on the downlink signal of the backhaul link, or the uplink signal of the control link, or the downlink signal of the control link.
  • the relay device determines the transmission configuration of the uplink signal of the backhaul link according to the candidate beam set, including:
  • the relay device directly determines the transmission configuration of the uplink signal of the backhaul link based on the candidate beam set based on the protocol provisions;
  • the relay device receives the fourth configuration signaling sent by the network side device
  • the relay device determines the transmission configuration of the uplink signal of the backhaul link based on the fourth configuration signaling and the candidate beam set;
  • the relay device determines the TCI configuration of the downlink signal of the backhaul link according to the candidate beam set
  • the relay device determines the transmission configuration of the uplink signal of the backhaul link based on the protocol provisions and the TCI configuration of the downlink signal of the backhaul link.
  • the relay device can, based on the above protocol provisions or the fourth configuration signaling, according to the candidate beam set, Determine the sending configuration of the uplink signal of the backhaul link.
  • the relay device can use the following method 1, method 2, or method 3 to determine the transmission beam of the uplink signal of the backhaul link:
  • Method 1 Based on the protocol provisions and the candidate beam set of the control link, directly determine the transmission beam of the uplink signal of the backhaul link;
  • Method 2 Based on the received fourth configuration signaling and the candidate beam set of the control link, determine the transmission beam of the uplink signal of the backhaul link;
  • Method 3 After the relay device determines the TCI configuration of the downlink signal of the backhaul link based on the candidate beam set, the relay device determines the TCI configuration of the downlink signal of the backhaul link based on the protocol provisions. The TCI configuration determines the transmission configuration of the uplink signal of the backhaul link.
  • the relay device can determine the transmission beam of the uplink signal according to the predetermined provisions of the protocol (i.e., method 1); when the receiving After receiving the dedicated signaling (that is, the above-mentioned fourth configuration signaling), the transmitting beam of the uplink signal is determined according to the dedicated signaling.
  • dedicated signaling i.e., the above-mentioned fourth configuration signaling
  • Method 3 and Method 2 described here can be combined into one solution.
  • the relay device can determine the transmitting beam of the uplink signal using the above method three according to the predetermined provisions of the protocol; when receiving After the dedicated signaling (that is, the above-mentioned fourth configuration signaling), the transmitting beam of the uplink signal is determined according to the dedicated signaling.
  • the above-mentioned fourth configuration signaling may be MAC CE, RRC or DCI.
  • the relay device determines the transmission configuration of the uplink signal of the backhaul link, which can be divided into the following situations: Case B-1 to Case B-4:
  • Case B-1 The protocol provisions indicate that the transmit spatial filter of the uplink signal of the backhaul link is associated with the spatial receiver parameters of the downlink signal of the backhaul link.
  • the transmitting beam of the uplink signal of the backhaul link of the relay device may be the same as the receiving beam of the downlink signal.
  • Case B-2 The protocol stipulates or the fourth configuration signaling indicates that the transmission configuration of the uplink signal of the backhaul link is determined based on the configuration of the uplink reference signal and/or the uplink physical channel of the control link.
  • the uplink reference signal of the control link may be SRS and/or PRACH; the uplink physical channel of the backhaul link may be PUSCH or PUSCH. That is, the backhaul link of the relay device can determine the transmission beam of the uplink signal of the backhaul link of the relay device based on the PUCCH channel or PUSCH channel or SRS of the control link of the relay device. For example, the relay device determines the transmission beam of the uplink signal of the backhaul link according to the configuration of the latest uplink transmission (PUCCH or PUSCH or SRS).
  • the SRS transmission beam is used as the transmission beam of the uplink signal of the backhaul link of the relay device. Specifically, it can be: on the time-frequency resource of SRS transmission, the transmission beam of the uplink signal of the backhaul link of the relay device and the The transmission beams of SRS are consistent.
  • the PUCCH transmission beam is used as the transmission beam for the uplink signal of the backhaul link of the relay device. Specifically, it can be one of the following:
  • the transmission beam of the uplink signal of the backhaul link of the relay device is consistent with the transmission beam of the PUCCH
  • the transmission beam of the uplink signal of the backhaul link of the relay device is consistent with the transmission beam of the PUCCH, where the time unit is, for example, a slot or a symbol. ) or milliseconds (ms).
  • the PUSCH transmission beam is used as the transmission beam for the uplink signal of the backhaul link of the relay device. Specifically, it can be one of the following:
  • the transmission beam of the uplink signal of the backhaul link of the relay device is consistent with the transmission beam of the PUSCH;
  • the transmission beam of the uplink signal of the backhaul link of the relay device is consistent with the transmission beam of the PUSCH; optionally, v9 time units are greater than or equal to timeDurationForQCL;
  • the transmission beam of the uplink signal of the backhaul link of the relay device is consistent with the transmission beam of the semi-static PUSCH;
  • the transmission beam of the uplink signal of the backhaul link of the relay device is consistent with the transmission beam of the semi-static PUSCH;
  • the transmission wave of the uplink signal of the backhaul link of the relay device The beam is consistent with the transmit beam of the semi-static PUSCH;
  • the transmission beam of the uplink signal of the backhaul link of the relay device is consistent with the transmission beam of the PUSCH, where the time unit is, for example, a slot or a symbol. or milliseconds (ms);
  • the transmission beam of the uplink signal of the backhaul link of the relay device is consistent with the transmission beam of the semi-static PUSCH, where the time unit is, for example, a time slot (slot) or symbol (symbol) or milliseconds (ms);
  • the transmission beam of the uplink signal of the backhaul link of the relay device is consistent with the transmission beam of the semi-static PUSCH.
  • the semi-static PUSCH resources are valid resources until the control link receives new activation signaling/configuration signaling that re-indicates the transmission resources/transmission beams and other information for the semi-static PUSCH, or until a new The moment when the activation signaling/configuration signaling indication information begins to take effect.
  • the SSB/CSI-RS beam will be used by default as the backhaul link of the relay device.
  • the SSB/CSI-RS is the downlink reference signal selected by the last random access performed by the control link.
  • Case B-3 The protocol stipulates or the fourth configuration signaling indicates that the transmission configuration of the uplink signal of the backhaul link is determined based on the downlink reference signal and/or downlink physical channel of the control link.
  • the specific situation of determining the transmission configuration of the uplink signal based on the downlink reference signal and/or the downlink physical channel of the control link is different from the specific situation of determining the TCI configuration of the downlink signal based on the downlink reference signal and/or downlink physical channel of the control link.
  • the situation is similar, please refer to the previous description and will not be repeated here.
  • the transmission beam of the uplink signal of the backhaul link of the relay device may use the beam indicated by dedicated signaling.
  • Case B-4 The fourth configuration signaling indicates that one of the target candidate configurations is the transmission configuration of the uplink signal of the backhaul link, wherein the target candidate configuration includes the configuration in the control link The configuration indicated by the uplink signal configuration information.
  • the uplink signal configuration information (PUCCH-SpatialRelationInfo) configured in the control link of the relay device can be used as a candidate configuration for the transmission beam of the uplink signal of the backhaul link through dedicated signaling (for example, the above-mentioned fourth configuration signaling). , and indicates one of the uplink signaling beam configurations configured as the backhaul link of the relay device.
  • dedicated signaling for example, the above-mentioned fourth configuration signaling.
  • the transmission configuration of the uplink signal of the backhaul link of the relay device can be determined according to the TCI configuration in DLorJoint-TCIState or UL-TCIState.
  • the solution described in the aforementioned situations B-1 to B-3 can be used to determine the uplink signal transmission beam configuration of the backhaul link of the relay device.
  • the method further includes:
  • the relay device performs one of the following:
  • the third channel measurement result and the fourth channel measurement result are respectively the channel measurement results before and after the transmission configuration update of the uplink signal of the backhaul link.
  • the update of the uplink transmission configuration of the backhaul link described here may refer to the determination method of the uplink transmission configuration described in the aforementioned situations B-1 to B-4. Update the uplink sending configuration of the transmission link.
  • the above-mentioned fifth configuration signaling and the above-mentioned fourth configuration signaling may be the same or different; the above-mentioned channel measurement results may include: L1 filtered reference signal receiving power (Reference Signal Receiving Power, RSRP), reference signal receiving quality ( At least one of Reference Signal Receiving Quality (RSRQ) and Signal to Interference plus Noise Ratio (SINR).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • SINR Signal to Interference plus Noise Ratio
  • Option 1 The amplification factor of the uplink signal of the backhaul link of the relay device remains unchanged.
  • Option 2 If the adjustment value of the amplification coefficient (that is, the above-mentioned second adjustment value) is indicated through dedicated signaling (such as the fifth configuration signaling above), the relay device updates the uplink signal of the backhaul link according to the adjustment value. amplification factor.
  • the relay device adjusts the amplification factor of the uplink signal of the backhaul link on its own based on the difference between the channel measurement results before the uplink signal transmission configuration is updated and the channel measurement results after the update.
  • the second adjustment value carried in the fifth configuration signaling may be an adjustment value based on the amplification factor of the downlink signal, or an adjustment value based on the amplification factor of the original uplink signal.
  • the amplification factor of the uplink signal and the amplification factor of the downlink signal of the backhaul link of the relay device may be the same or different.
  • the network side device can also separately configure the amplification factor of the uplink signal and the amplification factor of the downlink signal of the backhaul link (or the offset/correction value of the amplification factor of the uplink signal relative to the amplification factor of the downlink signal).
  • the backhaul link and The beams of the control link can be consistent, that is, the transmission beam of the downlink signal of the backhaul link of the relay device is consistent with the transmission beam of the downlink signal of the control link, and the transmission beam of the uplink signal of the backhaul link of the relay device is consistent. It is consistent with the transmission beam of the uplink signal of the control link.
  • v14 time units after the TCI indication information of the control link is sent, to Within v14 time units after the TCI indication information of the next control link is sent, or within v15 time units after the feedback information corresponding to the next TCI indication information is sent, the reception of the downlink signal of the backhaul link of the relay device
  • the beam and the uplink signal transmission beam are determined according to the beam indicated by the TCI.
  • the time domain unit where certain designated SRS/CSI-RS/CORESET is located (or the time domain unit extends forward and/or backward for a time period) can be used.
  • the validity time of the transmission configuration of the uplink signal of the backhaul link of the relay device can be static or adaptive or semi-statically indicated (that is, the validity time length is indicated while indicating the transmission configuration of the uplink signal of the backhaul link) .
  • the transmission configuration of the uplink signal of the backhaul link of the relay device is always valid after being determined until the network side device explicitly configures the new transmission configuration of the uplink signal of the backhaul link, or the physical control link as a reference
  • the transmission configuration of the channel changes;
  • the transmission configuration of the uplink signal of the backhaul link of the relay device is valid for a period of time after being determined, and the validity time length is indicated by the protocol regulations or explicitly indicated by the network side device;
  • the uplink signal transmission configuration of the relay device's backhaul link is always the same as the uplink signal transmission configuration most recently used by the relay device's control link, that is, the uplink signal transmission configuration of the relay device's backhaul link
  • the sending configuration remains valid until the next uplink signal is sent on the control link
  • the protocol provisions indicate that there is a QCL association between the backhaul link of the relay device and the PUCCH of the control link, and when the PUCCH of the control link updates the transmission configuration, the backhaul link of the relay device also responds accordingly.
  • Update the uplink signaling configuration, and the effective time of the uplink signaling configuration of the backhaul link will not be earlier than the effective time of the PUCCH sending configuration of the control link (for example, the uplink signaling configuration of the backhaul link is in the PUCCH of the control link). It will take effect immediately after sending the configuration to take effect).
  • the protocol regulations indicate: there is a QCL association between the backhaul link of the relay device and the PUSCH of the control link, and when the PUSCH of the control link updates the transmission configuration, the backhaul link of the relay device also corresponds Update the uplink signaling configuration, and the effective time of the uplink signaling configuration of the backhaul link will not be earlier than the effective time of the PUSCH sending configuration of the control link (for example, the uplink signaling configuration of the backhaul link is in the PUSCH of the control link) It will take effect immediately after sending the configuration to take effect).
  • the protocol provisions indicate that the relay device's backhaul link uplink transmission configuration is associated with the backhaul link's downlink signal TCI configuration, and that when the backhaul link's downlink TCI configuration is updated, the relay device's backhaul The link also updates the uplink signaling configuration accordingly, and the effective time of the uplink signaling configuration of the backhaul link will not be earlier than the effective time of the downlink signaling TCI configuration of the backhaul link.
  • the relay device described in this article can be an NCR, or a relay device with signal forwarding function such as a Reconfigurable Intelligence Surface (RIS), a metasurface, a reflective surface, or an intelligent reflective surface.
  • RIS Reconfigurable Intelligence Surface
  • the backhaul link of the relay device can use the beam training of the control link or Beamforming information comes from Determine its own transceiver beam, thereby reducing the complexity of beam control of the backhaul link of the relay device and avoiding additional beam training overhead.
  • this embodiment of the present application provides a method for determining the transmission configuration of a backhaul link.
  • the method may include the following steps:
  • Step 401 The network side device determines a configurable candidate beam set for the control link.
  • Step 402 The network side device sends the beam configuration signaling of the backhaul link to the relay device.
  • the beam configuration signaling is used to instruct the relay device to determine the transmission configuration of the downlink signal of the backhaul link according to the configurable candidate beam set of the control link, indicating the TCI configuration and/or the transmission of the uplink signal. configuration.
  • the beam configuration signaling may also include the aforementioned first configuration signaling and/or fourth configuration signaling, where the first configuration signaling is used to instruct the relay device to control the candidate beam set according to the link, Determine the TCI configuration of the downlink signal of the backhaul link, and the fourth configuration signaling is used to instruct the relay device to determine the transmission configuration of the uplink signal of the backhaul link based on the candidate beam set of the control link.
  • indication information used to instruct the TCI configuration of the downlink signal of the backhaul link based on the candidate beam set of the control link, and used to indicate the determination of the uplink transmission configuration of the backhaul link based on the candidate beam set of the control link.
  • the indication information can be carried in the same signaling or in different signaling.
  • Step 403 The network side device determines the transmission beam of the downlink signal and/or the reception beam of the uplink signal of the backhaul link based on the beam configuration signaling or protocol provisions and the candidate beam set.
  • step 403 what is determined is the transmission beam of the downlink signal and/or the reception beam of the uplink signal of the network side device in the backhaul link.
  • the backhaul link is the link between the relay device and the network side device.
  • the network side device sends the downlink signal, and the relay device receives the downlink signal; the relay device Send downlink signals, and the network side device receives the downlink signals.
  • the relay device can determine the transmission configuration indication TCI configuration and/or uplink signal of the downlink signal of the backhaul link based on the candidate beam set of the control link.
  • the transmission configuration (that is, determining the reception beam of the downlink signal and/or the transmission beam of the uplink signal of the relay device in the backhaul link), and in the network side device, it can be configured based on the beam configuration signaling or protocol provisions, According to the candidate beam set of the control link, the transmitting beam of the downlink signal and/or the receiving beam of the uplink signal of the backhaul link are determined.
  • the network side device can send the beam configuration signaling of the backhaul link to the relay device, so that the relay device can determine the backhaul link based on the candidate beam set of the control link.
  • the TCI configuration of the downlink signal and/or the transmission configuration of the uplink signal and the network side device can also determine the transmission beam of the downlink signal of the backhaul link based on the beam configuration signaling or protocol provisions and the candidate beam set of the control link. and/or the receiving beam of the uplink signal and the receiving beam of the uplink signal.
  • the relay device can select the receiving beam of the downlink signal and/or the transmitting beam of the uplink signal in the backhaul link from the candidate beam set of the control link, and select the network side device in the backhaul link.
  • the transmit beam of the link's downlink signal and/or the receive beam of the uplink signal Therefore, the embodiments of the present application provide the reception beam of the downlink signal and/or the transmission beam of the uplink signal in the backhaul link. Determine the method.
  • the candidate beam set includes at least one of the following:
  • the above-mentioned candidate TCI configuration is an available but ineffective TCI configuration
  • the above-mentioned downlink reference signal of the control link may include SSB and/or CSI-RS
  • the above-mentioned downlink physical channel of the control link It may include PDCCH and/or PDSCH
  • the above-mentioned uplink reference signal of the control link may include SRS and/or PRACH
  • the above-mentioned uplink physical channel of the control link may include PUCCH and/or PUSCH.
  • the network side device determines the transmission beam of the downlink signal of the backhaul link based on the candidate beam set, which can be divided into situations C-1 to C-4 as follows:
  • Case C-1 When the protocol stipulates or the beam configuration signaling indicates that the downlink reference signal and/or downlink physical channel of the control link has a QCL relationship with the backhaul link, the backhaul The transmission beam of the downlink signal of the link is determined based on the downlink reference signal and/or downlink physical channel of the control link.
  • the backhaul link In the case where the protocol stipulates or the beam configuration signaling indicates that there is a QCL relationship between the downlink reference signal of the control link and the backhaul link, the backhaul link
  • the transmission beam of the downlink signal is the same as the transmission beam of the downlink reference signal of the control link.
  • the downlink reference signal of the above-mentioned control link may be SSB or CSI-RS.
  • the following describes different situations where the downlink reference signals associated with the QCL associated with the backhaul link are SSB and CSI-RS respectively.
  • the relay device selects the transmit beam of the SSB used in the last random access process of the control link and returns The transmission beam of the downlink signal of the transmission link, the specific implementation details can be described as follows:
  • the transmission beam of the downlink signal of the backhaul link is consistent with the transmission beam of the SSB of the control link.
  • the second configuration signaling sent by the network side device to the relay device carries identification information of the SSB (for example, SSB number)
  • the transmission beam of the downlink signal of the backhaul link is the same as the transmission beam of the SSB corresponding to the identification information of the SSB carried in the second configuration signaling.
  • the second configuration signaling may be MAC CE or RRC or DCI.
  • the second configuration signaling may be the same as the above-mentioned beam configuration signaling, or may be different.
  • the SSB represented by the identification information of the SSB carried in the second configuration signaling may be different from the SSB during the random access process of the relay device.
  • the backhaul link of the relay device selects the CSI-RS as the reference beam of the QCL, specifically Examples of implementation details are as follows:
  • the transmission beam of the downlink signal of the backhaul link is consistent with the CSI-RS transmission beam of the control link.
  • C-1.2 In the case where the protocol stipulates or the beam configuration signaling indicates that there is a QCL relationship between the downlink physical channel of the control link and the backhaul link, the downlink signal of the backhaul link The transmitting beam is the same as the transmitting beam of the downlink physical channel of the control link.
  • the above-mentioned downlink physical channel may be PDCCH or PDSCH.
  • the downlink signal transmission beam of the backhaul link is consistent with the beam of the PDCCH on the specific SS or specific CORESET. consistent.
  • the method of determining the specific CORESET can be predefined by the protocol (for example, specifying the CORESET corresponding to Type0PDCCH as the specific CORESET, or the CORESET with the smallest CORESET number as the specific CORESET), or it can be configured on the network side (that is, it can be configured on the network side device If the sent signaling carries identification information of CORESET (for example, CORESET code), then the CORESET represented by the identification information is the specific CORESET).
  • the method of determining a specific search space is similar to the method of determining a specific CORESET, and will not be described again here.
  • the downlink signal transmission beam of the backhaul link is consistent with the PDCCH on the specific search space or the specific CORESET.
  • the beams are consistent.
  • the time unit is, for example, a slot, a symbol, or a millisecond (ms).
  • the transmission beam of the downlink signal of the backhaul link is the same as the transmission beam of the PDSCH.
  • the transmission beam of the backhaul link downlink signal may preferentially select the transmission beam of the semi-static PDSCH.
  • control link includes dynamically scheduled PDSCH and semi-persistent scheduling (Semi-Persistent Scheduling, SPS) PDSCH.
  • SPS semi-persistent Scheduling
  • the transmission beam of the downlink signal of the backhaul link is consistent with the beam of the PDSCH of the control link.
  • the v2 value can be specified by the protocol or explicitly configured by the network side, or it can be valid until a new TCI configuration is configured for PDSCH, or it can be valid until to the next control link PDCCH/PDSCH transmission.
  • the transmission beam of the downlink signal of the backhaul link is consistent with the semi-statically scheduled PDSCH of the control link.
  • the beams are consistent.
  • v3 time units are greater than or equal to the quasi-colocation duration (timeDurationForQCL).
  • the transmission beam of the downlink signal of the backhaul link is the same as half of the control link.
  • the beams of statically scheduled PDSCH are consistent.
  • v4 time units are greater than or equal to the quasi-colocation duration (timeDurationForQCL).
  • the transmission beam of the downlink signal of the backhaul link is consistent with the beam of the semi-statically scheduled PDSCH of the control link.
  • the transmission beam of the downlink signal of the backhaul link is consistent with the semi-statically scheduled control link
  • the PDSCH beams are consistent.
  • the time unit is, for example, a slot, a symbol, or a millisecond (ms).
  • the transmission beam of the downlink signal of the backhaul link is the same as the beam of the semi-statically scheduled PDSCH of the control link. consistent.
  • the transmission beam of the downlink signal of the return link and the semi-static scheduling of the control link are consistent.
  • the TCI configuration of the semi-static PDSCH is effective until the control link receives new TCI activation signaling/configuration signaling to re-indicate the TCI configuration for the semi-static PDSCH, or until the new semi-static The moment when the TCI indication information of PDSCH activation signaling/configuration signaling begins to take effect.
  • the backhaul link of the network side device will re-determine the backhaul link based on the physical channel of the control link in accordance with the protocol provisions or the instructions of the beam configuration signaling.
  • the transmission beam of the downlink signal For example, after the semi-static PDSCH is deactivated, the network side device uses dynamically scheduled PDSCH or PDCCH transmission beams or control the transmission beams of the SSB selected in the last random access process of the link to determine the transmission beam of the downlink signal of the backhaul link.
  • the network side equipment can use the SSB beam by default, or the beam indicated by dedicated signaling.
  • the transmission beam of the backhaul link downlink signal is determined based on the transmission beam of the one with the highest priority or the one closest to the current time among the downlink reference signal of the control link and the downlink physical channel.
  • the priority between downlink reference signals can be defined according to the protocol regulations to select the physical channel of the control link. For example, assuming that the SSB priority is lower than the PDCCH priority and is lower than the PDSCH priority, when PDCCH and PDSCH are not configured with a dedicated TCI, the transmission beam of the downlink signal of the backhaul link of the network side device is the same as the transmission beam of the SSB; If the network side device configures the TCI of the PDCCH but does not configure the TCI of the PDSCH, then the network side device The transmission beam of the downlink signal of the backhaul link is the same as the transmission beam of the PDCCH; if the network side device configures the TCI of the PDSCH, then the transmission beam of the downlink signal of the backhaul link of the network side device is the same as the transmission beam of the PDSCH.
  • the CORESET with the smallest defined CORESET number has the highest priority.
  • the control link is configured with multiple CSI-RS and/or SSB, and the transmission beam of the reference signal with the smallest port number is preferentially selected as the transmission beam of the downlink signal of the backhaul link of the network side device.
  • the control link is configured with dynamically scheduled PDSCH and semi-statically scheduled PDSCH, and the transmission beam of the semi-statically scheduled PDSCH is preferably selected as the downlink signal transmission beam of the backhaul link of the network side device.
  • the SSB priority is lower than the PDSCH priority and the PDCCH priority is lower, which will not be repeated here.
  • the network side device before starting the backhaul link, can be determined based on the beam of the physical channel of the control link (one of SSB, PDCCH, PDSCH, and CSI-RS) of the most recent transmission.
  • the transmission beam for the downlink signal of the backhaul link can be determined based on the beam of the physical channel of the control link (one of SSB, PDCCH, PDSCH, and CSI-RS) of the most recent transmission.
  • the transmission beam for the downlink signal of the backhaul link In the case where the beam configuration signaling includes target identification information, the transmission beam of the downlink signal of the backhaul link is the same as the beam corresponding to the TCI configuration indicated by the target identification information, and the target The identification information indicates one of the TCI configurations in the set of candidate TCI configurations of the control link.
  • the TCI configuration indicated by the target identification information is: one of the M candidate TCI configurations indicated in the high-layer configuration information, or one of the N TCI configurations indicated in the TCI activation command of the control link.
  • M and N are both integers greater than 0;
  • the N TCI configurations are part of the M TCI configurations.
  • the TCI configuration corresponding to the transmission beam of the downlink signal of the backhaul link of the network side device can be selected from the M candidate TCI configurations provided in the high-level configuration information (such as PDSCH-Config), or it can be selected from the MAC of the control link Select from N TCI configurations in the CE's TCI activation command.
  • the high-level configuration information such as PDSCH-Config
  • Case C-3 When the beam configuration signaling includes TCI configuration, the transmission beam of the downlink signal of the backhaul link is the beam corresponding to the TCI configuration in the beam configuration signaling.
  • the specific parameters of the TCI configuration of the backhaul link of the relay device can also be directly instructed through dedicated signaling (ie, the above-mentioned beam configuration signaling).
  • dedicated signaling ie, the above-mentioned beam configuration signaling.
  • the transmission beam of the downlink signal of the backhaul link of the network side device is the same as the beam corresponding to the TCI configuration in the beam configuration signaling.
  • the protocol regulations may also indicate that the transmission beam of the downlink signal of the backhaul link of the network side device is determined according to the priority of the protocol version that controls the operation of the link.
  • the control link configures the TCI configuration of the downlink signal according to the Rel-17 protocol version (that is, the TCI configuration of the downlink signal is configured through high-level signaling information DLorJoint-TCIState or UL-TCIState), then the backhaul link preferentially configures the TCI configuration of the downlink signal according to the control link.
  • the beam corresponding to the TCI configuration of the link Rel-17 protocol version is used to determine the candidate beam set or to determine the TCI configuration of the physical channel of the control link or directly as the transmission beam of the downlink signal of the backhaul link of the network side device and The corresponding receiving beam of the uplink signal.
  • the candidate beam set of the backhaul link is formed according to the candidate control link TCI configuration set configured in DLorJoint-TCIState or UL-TCIState, and the solution of the transmission beam of the downlink signal of the backhaul link of the network side device is determined.
  • the plans described in the aforementioned situations C-1.1 to C-1.3 and C-2 to C-3 are parallel plans.
  • the solution for determining the transmission beam of the downlink signal of the backhaul link of the network side device can be set to the highest priority.
  • the transmission beam of the downlink signal of the backhaul link is determined according to the TCI configuration in DLorJoint-TCIState or UL-TCIState; when DLorJoint-TCIState and UL-TCIState do not exist , then the solutions described in the aforementioned situations C-1.1 to C-1.3 and C-2 to C-3 can be adopted.
  • the method also includes:
  • the network side device performs one of the following:
  • the network side device uses a target transmit beam to send a downlink signal of the backhaul link or uses a target receive beam to receive an uplink signal of the backhaul link;
  • the network side device does not forward the downlink signal of the backhaul link or does not receive the uplink signal of the backhaul link within the target time;
  • the target transmit beam is a downlink transmit beam used by the control link within the target time
  • the target receive beam is an uplink receive beam used by the control link within the target time
  • the target time includes a time unit of the control link transmission of the network side device, a time units before the control link transmission, and b time units after the control link transmission. At least one of , a and b respectively represent an integer greater than zero, and the time unit is one of an orthogonal frequency division multiplexing symbol, a time slot, a subframe, and a wireless frame.
  • the transmission of the control link by the network side device includes downlink signal transmission and uplink signal reception of the control link.
  • the priority of the transmission beam of the downlink signal of the backhaul link of the network side device can be defined to be lower than the priority of the transmission beam of the downlink signal of the control link of the network side device.
  • the network side device can use the network or use the transmission beam of the downlink signal of the control link of the network side device to receive the downlink signal of the backhaul link, or use the receive beam of the uplink signal of the control link of the network side device to receive the uplink signal of the backhaul link; or , the network side device may also not perform signal transmission on the backhaul link during the control link transmission time period.
  • the solution executed by the network side device can be Determine separately.
  • the backhaul link of the network side device sends the backhaul link downlink signal according to the TCI configuration of the PDCCH or PDSCH of the control link; for the PUCCH or PUSCH of the control link During the transmission time period, the backhaul link of the network side device does not receive uplink signals; for the CSI-RS transmission time period of the control link, the backhaul link of the network side device does not send downlink signals.
  • the effective time of the transmission beam of the downlink signal of the backhaul link of the network side device may be static or Adaptive or semi-static.
  • the transmission beam of the downlink signal of the backhaul link of the network side device is always valid after being determined until a new transmission beam of the downlink signal of the backhaul link is configured, or the transmission beam of the physical channel of the control link as a reference occurs. Change;
  • the transmission beam of the downlink signal of the backhaul link of the network side device is valid for a period of time after being determined, and the validity time length is indicated by the protocol regulations;
  • the transmission beam of the downlink signal of the backhaul link of the network side device is always consistent with the most recently used transmission beam of the control link, that is, the transmission beam of the downlink signal of the backhaul link continues to be valid until the next time the control link is used. signal sending;
  • the protocol provisions indicate that there is a QCL association between the backhaul link and the PDCCH of the control link, and when the PDCCH of the control link updates the transmit beam, the backhaul link of the network side device also updates the downlink signal accordingly. Transmit beam, and the effective time of the downlink signal transmit beam of the backhaul link will not be earlier than the effective time of the PDCCH transmit beam of the control link (for example, the transmit beam of the backhaul link takes effect after the PDCCH transmit beam of the control link) Effective immediately thereafter).
  • the protocol regulations indicate: there is a QCL association between the backhaul link and the PDSCH of the control link, and when the PDSCH of the control link updates the TCI configuration, the backhaul link of the network side device also updates the downlink signal accordingly. Transmit beam, and the effective time of the downlink signal transmit beam of the backhaul link will not be earlier than the effective time of the PDSCH transmit beam of the control link (for example, the transmit beam of the backhaul link takes effect after the PDSCH transmit beam of the control link takes effect effective immediately).
  • the method also includes:
  • the network side device sends sixth configuration signaling to the relay device, where the sixth configuration signaling is used to indicate updating the TCI configuration of the downlink signal of the backhaul link.
  • the network side device can also instruct the relay device when to update the TCI configuration of the downlink signal of the backhaul link.
  • the network side device determines the reception configuration of the uplink signal of the backhaul link based on the candidate beam set, which can be divided into situations D-1 to D-4 as follows:
  • Case D-1 The protocol stipulation indicates that the receiving beam of the uplink signal of the backhaul link is the same as the transmit beam of the downlink signal of the backhaul link.
  • the receiving beam of the uplink signal of the backhaul link of the network side device may be the same as the transmitting beam of the downlink signal.
  • Case D-2 The protocol stipulates or the beam configuration signaling indicates that the receiving beam of the uplink signal of the backhaul link is determined based on the uplink reference signal of the control link and/or the receiving beam of the uplink physical channel.
  • the uplink reference signal of the control link may be SRS and/or PRACH; the uplink physical channel of the backhaul link may be PUSCH or PUSCH. That is, the backhaul link of the network side device can determine the receiving beam of the uplink signal of the backhaul link of the network side device based on the PUCCH channel or PUSCH channel or SRS or PRACH of the control link. For example, the network side device determines the receiving beam of the uplink signal of the backhaul link based on the beam of the latest uplink transmission (PUCCH or PUSCH or SRS or PRACH).
  • the SRS receiving beam is used as the receiving beam of the uplink signal of the backhaul link of the network side device. Specifically, it can be: on the time-frequency resource of SRS transmission, the receiving beam of the uplink signal of the backhaul link of the network side device and the The receiving beam of SRS is consistent.
  • the PUCCH receiving beam is used as the receiving beam for the uplink signal of the backhaul link of the network side device. Specifically, it can be one of the following:
  • the receiving beam of the uplink signal of the backhaul link of the network side device is consistent with the receiving beam of the PUCCH
  • the receiving beam of the uplink signal of the backhaul link of the network side device is consistent with the receiving beam of the PUCCH, where the time unit is, for example, a slot or a symbol. ) or milliseconds (ms).
  • the PUSCH receiving beam is used as the receiving beam for the uplink signal of the backhaul link of the network side device. Specifically, it can be one of the following:
  • the receiving beam of the uplink signal of the backhaul link of the network side device is consistent with the receiving beam of the PUSCH;
  • the receiving beam of the uplink signal of the backhaul link of the network side device is consistent with the receiving beam of the PUSCH; optionally, v9 time units are greater than or equal to timeDurationForQCL;
  • the receiving beam of the uplink signal of the backhaul link of the network side device is consistent with the receiving beam of the semi-static PUSCH;
  • the receiving beam of the uplink signal of the backhaul link of the network side device is consistent with the receiving beam of the semi-static PUSCH;
  • the receiving beam of the uplink signal of the backhaul link of the network side device is consistent with the receiving beam of the semi-static PUSCH;
  • the receiving beam of the uplink signal of the backhaul link of the network side device is consistent with the receiving beam of the PUSCH, where the time unit is, for example, a slot or a symbol. or milliseconds (ms);
  • the receiving beam of the uplink signal of the backhaul link of the network side device is consistent with the receiving beam of the semi-static PUSCH, where the time unit is, for example, a time slot (slot) or symbol (symbol) or milliseconds (ms);
  • the receiving beam of the uplink signal of the backhaul link of the network side device is consistent with the receiving beam of the semi-static PUSCH.
  • the semi-static PUSCH resources are valid resources until the control link receives a new activation.
  • Active signaling/configuration signaling means that the semi-static PUSCH re-indicates transmission resources/transmission beams and other information, or until the time when new activation signaling/configuration signaling indication information starts to take effect.
  • the receiving beam of the uplink signal of the backhaul link of the network side device cannot be determined based on the PUCCH/PUSCH/SRS beam, the receiving beam of SSB/CSI-RS will be used as the backhaul of the network side device by default.
  • the receiving beam of the uplink signal of the link, and the SSB/CSI-RS is the downlink reference signal selected for the last random access performed by the control link.
  • Case D-3 The protocol stipulates or the beam configuration signaling indicates that the receiving beam of the uplink signal of the backhaul link is determined based on the downlink reference signal of the control link and/or the transmit beam of the downlink physical channel.
  • the specific situation of the receiving beam of the uplink signal of the backhaul link of the network side device is determined based on the downlink reference signal and/or downlink physical channel of the control link, and the specific situation is determined based on the downlink reference signal and/or downlink physical channel of the control link.
  • the specific situation of channel determination of the transmission beam of the downlink signal of the backhaul link of the network-side device is similar and can be referred to the above description, and will not be described again here.
  • the receiving beam of the uplink signal of the backhaul link prepared by the network side can use the beam indicated by dedicated signaling.
  • Case D-4 The beam configuration signaling indicates that the beam corresponding to one of the target candidate configurations is the receiving beam of the uplink signal of the backhaul link, wherein the target candidate configuration includes the control link The configuration indicated by the uplink signal configuration information configured in .
  • the uplink signal configuration information (PUCCH-SpatialRelationInfo) configured in the control link of the network side device can be used as a candidate configuration for the receiving beam of the uplink signal of the backhaul link through dedicated signaling (such as the above-mentioned beam configuration signaling). And instruct one of the configured beams to send and receive uplink signals as the backhaul link of the network side device.
  • dedicated signaling such as the above-mentioned beam configuration signaling
  • the receiving beam of the uplink signal of the backhaul link of the network side device may be the beam corresponding to the TCI configuration in DLorJoint-TCIState or UL-TCIState.
  • the solution described in the aforementioned situations B-1 to B-3 can be used to determine the uplink signal receiving beam of the backhaul link of the network side device.
  • the effective time of the receiving beam of the uplink signal of the backhaul link of the network side device may be static, adaptive, or semi-static.
  • the receive beam of the uplink signal of the backhaul link of the network side device is always valid after being determined until a new receive beam of the uplink signal of the backhaul link is configured, or the receive beam of the physical channel of the control link as a reference occurs. Change;
  • the receiving beam of the uplink signal of the backhaul link of the network side device is valid for a period of time after being determined, and the valid time length is indicated by the protocol regulations;
  • the receiving beam of the uplink signal of the backhaul link of the network side device is always the same as the uplink signal receiving beam last used by the control link of the network side device, that is, the uplink signal of the backhaul link of the network side device
  • the receive beam setting remains valid until the next uplink signal reception of the control link
  • the protocol specification indicates: QCL exists for the PUCCH of the backhaul link and control link of the network side device. associated, and when the PUCCH of the control link updates the receiving beam, the backhaul link of the network side device also updates the uplink signal receiving beam accordingly, and the uplink signal receiving beam effective time of the backhaul link will not be earlier than the control
  • the PUCCH receiving beam effective time of the link (for example, the uplink signal receiving beam of the backhaul link takes effect immediately after the PUCCH receiving beam of the control link takes effect).
  • the protocol regulations indicate: there is a QCL association between the backhaul link of the network side device and the PUSCH of the control link, and when the PUSCH of the control link updates the receive beam, the backhaul link of the network side device also responds accordingly. Update the uplink signal receiving beam, and the effective time of the uplink signal receiving beam of the backhaul link will not be earlier than the effective time of the PUSCH receiving beam of the control link (for example, the uplink signal receiving beam of the backhaul link is in the PUSCH of the control link) It takes effect immediately after the receiving beam takes effect).
  • the protocol provisions indicate that the network-side device's backhaul link uplink receive beam is associated with the backhaul link's downlink signal transmit beam, and that when the backhaul link's downlink transmit beam updates, the backhaul link also responds accordingly
  • the uplink signal receiving beam is updated, and the effective time of the receiving beam of the uplink signal of the backhaul link will not be earlier than the effective time of the transmitting beam of the downlink signal of the backhaul link.
  • the execution subject may be a device for determining the transmission configuration of the backhaul link.
  • the method of determining the transmission configuration of the backhaul link by the transmission configuration determination device of the backhaul link is taken as an example to illustrate the device for determining the transmission configuration of the backhaul link provided by the embodiment of the present application.
  • embodiments of the present application provide a device for determining the transmission configuration of a backhaul link.
  • the device 50 for determining the transmission configuration of the backhaul link includes:
  • the candidate beam set acquisition module 501 is used to obtain a configurable candidate beam set of the control link;
  • the first configuration determination module 502 is configured to determine, according to the candidate beam set, the transmission configuration indication TCI configuration of the downlink signal of the backhaul link and/or the transmission configuration of the uplink signal.
  • the candidate beam set includes at least one of the following:
  • the first configuration determination module includes:
  • the first determination submodule is used to determine the TCI configuration of the downlink signal of the backhaul link based on the protocol provisions and the candidate beam set;
  • the first receiving submodule is used to receive the first configuration signaling sent by the network side device
  • the second determination submodule is configured to determine the TCI configuration of the downlink signal of the backhaul link based on the first configuration signaling and the candidate beam set.
  • the protocol stipulates or the first configuration signaling indicates the downlink reference signal of the control link and/or downlink physical channel. If there is a QCL relationship with the backhaul link, the TCI configuration of the downlink signal of the backhaul link is based on the downlink reference signal and/or downlink physical channel of the control link. Sure;
  • the TCI configuration of the downlink signal of the backhaul link is the same or partially the same as the TCI configuration indicated by the target identification information, and the target identification information indicates the TCI configuration.
  • the target identification information indicates the TCI configuration.
  • the TCI configuration of the downlink signal of the backhaul link is the TCI configuration in the first configuration signaling.
  • the downlink signal of the backhaul link is the downlink reference signal of the control link, and the QCL type is determined according to the protocol provisions or according to the configuration of the network side device;
  • the TCI configuration of the downlink signal of the backhaul link and The TCI configuration of the downlink physical channel of the control link is the same or partially the same.
  • the partial similarity means that the reference signals included in the TCI configuration are the same, and the QCL type is specified by the protocol or indicated by the configuration message.
  • the TCI configuration indicated by the target identification information is: one of the M candidate TCI configurations indicated in the high-layer configuration information, or one of the N TCI configurations indicated in the TCI activation command of the control link.
  • M and N are both integers greater than 0;
  • the N TCI configurations are part of the M TCI configurations.
  • the TCI configuration of the backhaul link downlink signal is determined based on the one with the highest priority or the one closest to the current time among the downlink reference signal of the control link and the downlink physical channel.
  • the TCI configuration of the downlink signal takes effect from the time indicated by k+X;
  • k represents the time slot or the last symbol where the first configuration signaling is located, or the time slot or the last symbol where the hybrid automatic repeat request-confirmation feedback message corresponding to the first configuration signaling is located, and X is represented by Determined according to the above protocol provisions or based on the capabilities of the relay device.
  • the device also includes:
  • a first processing module configured to perform one of the following when the transmission of the backhaul link and the control link overlap within the target time:
  • the target TCI configuration is one of the TCI configurations used by the control link within the target time
  • the target uplink transmission configuration is an uplink transmission configuration used by the control link within the target time. Send configuration
  • the target time includes a time unit of the transmission of the control link of the relay device, a time unit before the transmission of the control link, and b time units after the transmission of the control link. At least one of , a and b respectively represent an integer greater than zero, and the time unit is one of an orthogonal frequency division multiplexing symbol, a time slot, a subframe, and a wireless frame.
  • the device also includes:
  • the first update module is configured to update the TCI configuration of the control link, or when the relay device receives the new TCI configuration of the downlink signal of the backhaul link sent by the network side device, or when the When the relay device receives the sixth configuration signaling sent by the network side device, it updates and activates the new TCI configuration of the downlink signal of the backhaul link;
  • the sixth configuration signaling is used to indicate updating the TCI configuration of the downlink signal of the backhaul link.
  • the device also includes:
  • the second processing module is configured to perform one of the following after the first update module updates and activates the new TCI configuration of the downlink signal of the backhaul link:
  • the first channel measurement result and the second channel measurement result are channel measurement results before and after updating and activating the new TCI configuration of the downlink signal of the backhaul link respectively.
  • the transmission configuration of the uplink signal of the backhaul link represents the transmission spatial filter of the uplink signal of the backhaul link, and is associated with one of the following:
  • the spatial receiver parameters of the downlink signal of the backhaul link are The spatial receiver parameters of the downlink signal of the backhaul link.
  • a transmission spatial filter for an uplink signal of the control link
  • the control link receives a spatial filter for a downlink signal.
  • the first configuration determination module includes:
  • the third determination submodule is used to determine the transmission configuration of the uplink signal of the backhaul link based on the protocol provisions and the candidate beam set;
  • the second receiving submodule is used to receive the fourth configuration signaling sent by the network side device
  • a fourth determination submodule configured to determine the candidate beam set based on the fourth configuration signaling.
  • the fifth determination sub-module is used to determine the TCI configuration of the downlink signal of the backhaul link according to the candidate beam set;
  • a sixth determination submodule is configured to determine the transmission configuration of the uplink signal of the backhaul link based on the protocol provisions and the TCI configuration of the downlink signal of the backhaul link.
  • the protocol stipulates that the transmit spatial filter indicating the uplink signal of the backhaul link is associated with the spatial receiver parameter of the downlink signal of the backhaul link;
  • the protocol stipulates or the fourth configuration signaling indicates that the transmission configuration of the uplink signal of the backhaul link is determined based on the configuration of the uplink reference signal and/or the uplink physical channel of the control link;
  • the protocol stipulates or the fourth configuration signaling indicates that the transmission configuration of the uplink signal of the backhaul link is determined based on the downlink reference signal and/or downlink physical channel of the control link;
  • the fourth configuration signaling indicates that one of the target candidate configurations is the transmission configuration of the uplink signal of the backhaul link, wherein the target candidate configuration includes the uplink signal configuration information configured in the control link. indicated configuration.
  • the device also includes:
  • the third processing module is configured to perform one of the following after the uplink transmission configuration update of the backhaul link:
  • the third channel measurement result and the fourth channel measurement result are respectively the channel measurement results before and after the transmission configuration update of the uplink signal of the backhaul link.
  • the device for determining the transmission configuration of the backhaul link in the embodiment of the present application may be a relay device, such as a relay device with an operating system, or may be a component in the relay device, such as an integrated circuit or chip.
  • the device for determining the transmission configuration of the backhaul link provided by the embodiment of the present application can implement each process implemented by the method embodiment 3 and achieve the same technical effect. To avoid duplication, it will not be described again here.
  • embodiments of the present application provide a device for determining the transmission configuration of a backhaul link.
  • the device 60 for determining the transmission configuration of the backhaul link includes:
  • Candidate beam set determination module 601 used to determine a configurable candidate beam set of the control link
  • the first sending module 602 is configured to send beam configuration signaling of the backhaul link to the relay device, where the beam configuration signaling is used to instruct the relay device to configure the candidate beam according to the control link.
  • the beam configuration signaling is used to instruct the relay device to configure the candidate beam according to the control link.
  • the second configuration determination module 603 is configured to determine the transmission beam of the downlink signal and/or the reception beam of the uplink signal of the backhaul link based on the beam configuration signaling or protocol provisions and the candidate beam set.
  • the candidate beam set includes at least one of the following:
  • the backhaul link The transmission beam of the downlink signal of the transmission link is determined based on the downlink reference signal and/or downlink physical channel of the control link;
  • the transmission beam of the downlink signal of the backhaul link is the same as the beam corresponding to the TCI configuration indicated by the target identification information, and the target identification information indicates the Control one of the TCI configurations in the set of candidate TCI configurations for the link;
  • the transmission beam of the downlink signal of the backhaul link is the beam corresponding to the TCI configuration in the beam configuration signaling.
  • the downlink signal of the backhaul link is the same as the transmitting beam of the downlink reference signal of the control link;
  • the transmission beam of the downlink signal of the backhaul link is related to the QCL relationship.
  • the transmission beams of the downlink physical channels of the control links are the same.
  • the TCI configuration indicated by the target identification information is: one of the M candidate TCI configurations indicated in the high-layer configuration information, or one of the N TCI configurations indicated in the TCI activation command of the control link.
  • M and N are both integers greater than 0;
  • the N TCI configurations are part of the M TCI configurations.
  • the transmission beam of the backhaul link downlink signal is determined based on the transmission beam of the one with the highest priority or the one closest to the current time among the downlink reference signal of the control link and the downlink physical channel.
  • the device also includes:
  • the second sending module is configured to send sixth configuration signaling to the relay device, where the sixth configuration signaling is used to indicate updating the TCI configuration of the downlink signal of the backhaul link.
  • the protocol stipulates that the receiving beam of the uplink signal of the backhaul link is the same as the transmit beam of the downlink signal of the backhaul link;
  • the beam configuration signaling indicates that the beam corresponding to one of the target candidate configurations is the receiving beam of the uplink signal of the backhaul link, wherein the target candidate configuration includes the uplink signal configured in the control link The configuration indicated by the configuration information.
  • the device for determining the transmission configuration of the backhaul link in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a network side device.
  • the terminal may include but is not limited to the types of network side devices 12 listed above.
  • Other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the device for determining the transmission configuration of the backhaul link provided by the embodiment of the present application can implement each process implemented by the method embodiment 4, and achieve the same technical effect. To avoid duplication, it will not be described again here.
  • this embodiment of the present application also provides a communication device 700, which includes a processor 701 and a memory 702.
  • the memory 702 stores programs or instructions that can be run on the processor 701, such as , when the communication device 700 is a relay device, when the program or instruction is executed by the processor 701, each step of the method embodiment of determining the transmission configuration of the backhaul link described in the first aspect is implemented, and the same technology can be achieved Effect.
  • the communication device 700 is a network-side device, when the program or instruction is executed by the processor 701, each step of the method embodiment for determining the transmission configuration of the backhaul link described in the second aspect is implemented, and the same technical effect can be achieved. , to avoid repetition, will not be repeated here.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the communication interface is used to send beam configuration signaling of the backhaul link to the relay device, where the beam configuration signaling is used to indicate
  • the relay device determines the transmission configuration indication TCI configuration of the downlink signal of the backhaul link and the transmission configuration of the uplink signal based on the configurable candidate beam set of the control link; the processor is configured to determine based on the beam configuration signaling The transmission beam of the downlink signal of the backhaul link.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 800 includes: an antenna 81 , a radio frequency device 82 , a baseband device 83 , a processor 84 and a memory 85 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81 and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82.
  • the radio frequency device 82 processes the received information and then sends it out through the antenna 81.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 83, which includes a baseband processor.
  • the baseband device 83 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network-side device operations shown in the above method embodiments.
  • the network side device may also include a network interface 86, which is, for example, a common public radio interface (CPRI).
  • a network interface 86 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 800 in this embodiment of the present invention also includes: instructions or programs stored in the memory 85 and executable on the processor 84.
  • the processor 84 calls the instructions or programs in the memory 85 to execute the various operations shown in Figure 4. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium, with a program or instructions stored on the readable storage medium.
  • a program or instructions stored on the readable storage medium.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to realize the transmission of the above-mentioned backhaul link.
  • Each process of the configuration determination method embodiment can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above-mentioned backhaul link.
  • Each process of the embodiment of the transmission configuration determination method can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • Embodiments of the present application also provide a transmission configuration determination system for a backhaul link, including: a relay device and a network side device.
  • the terminal may be used to perform the transmission configuration determination of the backhaul link as described in the first aspect above.
  • the network side device may be configured to perform the steps of the method for determining the transmission configuration of the backhaul link as described in the second aspect above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , optical disk), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network-side device, etc.) to execute the method described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种回传链路的传输配置确定方法、装置、中继设备及网络侧设备,属于通信领域,本申请实施例的回传链路的传输配置确定方法包括:中继设备获取控制链路的可配置的候选波束集合;所述中继设备根据所述候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置。

Description

回传链路的传输配置确定方法、装置、中继设备及网络侧设备
相关申请的交叉引用
本申请要求在2022年7月25日提交中国专利局、申请号为202210879050.6、名称为“回传链路的传输配置确定方法、装置、中继设备及网络侧设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种回传链路的传输配置确定方法、装置、中继设备及网络侧设备。
背景技术
信号放大器广泛用于扩展小区的覆盖范围。例如,网络控制中继器(Network controlled repeater,NCR)作为一种中继节点,可以转发来自基站或者用户设备(也可称为终端设备)(User Equipment,UE)的信号,并对信号进行放大,从而实现扩展覆盖的目的。
其中,NCR具有波束赋形的能力,可以接收来自上游基站(即宿主(donor)基站)的控制,即基站可以控制NCR的传输参数,例如基站可以控制NCR和基站间或者NCR和UE间的接收/发送波束等。
例如图2所示网络结构中,包括三个网络节点,中间网络节点是一种NCR设备,其包括一个终端模块(mobile termination,MT)和一个中继单元(forwarding unit/Fwd)。其中MT可以与上游基站建立连接(即控制链路(control link)),基站通过MT向NCR传输控制信令,可以控制NCR和基站间的回程链路(backhaul link,BH)或者NCR和UE间的接入链路(access link,AL)的发送/接收相关参数(包括功率,放大倍数,波束,开启/关闭等参数)。
NCR与基站之间的链路需要确定NCR的下行信号接收波束和上行信号发送波束。对于基站发送给NCR的控制链路下行信号(包括PDCCH、PDSCH、SSB等),NCR可以按照终端接收下行信号的规则确定相应控制链路下行信号的接收波束。但是,对于基站发送给NCR并由NCR放大转发的回传链路下行信号,对应的接收波束还没有相应的确定方法。同样的,对于终端发送给NCR并由NCR放大转发给基站的回传链路上行信号,NCR的上行信号的发送波束也没有相应的确定方法。
由上述可知,目前的方案并未给出NCR在回传链路中的下行信号的接收波束以及上行信号的发送波束的确定方法。
发明内容
本申请实施例提供一种回传链路的传输配置确定方法、装置、中继设备及网络侧设备,给出了NCR在回传链路中的下行信号的接收波束和/或上行信号的发送波束的确定方法。
第一方面,提供了一种回传链路的传输配置确定方法,包括:
中继设备获取控制链路的可配置的候选波束集合;
所述中继设备根据所述候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置。
第二方面,提供了一种回传链路的传输配置确定方法,包括:
网络侧设备确定控制链路的可配置的候选波束集合;
所述网络侧设备向中继设备发送回传链路的波束配置信令,其中,所述波束配置信令,用于指示所述中继设备根据控制链路的可配置的候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置;
所述网络侧设备基于所述波束配置信令或者协议规定,确定所述回传链路的下行信号的发送波束和/或上行信号的接收波束。
第三方面,提供了一种回传链路的传输配置确定装置,包括:
候选波束集合获取模块,用于获取控制链路的可配置的候选波束集合;
第一配置确定模块,用于根据所述候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置。
第四方面,提供了一种回传链路的传输配置确定装置,包括:
候选波束集合确定模块,用于确定控制链路的可配置的候选波束集合;
第一发送模块,用于向中继设备发送回传链路的波束配置信令,其中,所述波束配置信令,用于指示所述中继设备根据控制链路的可配置的候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置;
第二配置确定模块,用于基于所述波束配置信令或者协议规定,根据所述候选波束集合,确定所述回传链路的下行信号的发送波束和/或上行信号的接收波束。
第五方面,提供了一种中继设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种回传链路的传输配置确定系统,包括:中继设备和网络侧设备,所述中继设备可用于执行如上述第一方面所述的回传链路的传输配置确定方法的步骤,所述网络侧设备可用于执行如上述第二方面所述的回传链路的传输配置确定方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所 述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或者第二方面所述的方法的步骤。
第十一方面,本申请实施例提供了一种回传链路的传输配置确定装置,所述装置用于执行如第一方面或第二方面所述的回传链路的传输配置确定方法的步骤。
在本申请实施例中,中继设备可以获取控制链路的可配置的候选波束集合,从而根据该候选波束集合,确定回传链路的下行信号的TCI配置和/或上行信号的发送配置。即本申请的实施例,可以从控制链路的候选波束集合中,选择回传链路的下行信号的接收波束和/或上行信号的发送波束。因此,本申请的实施例,给出了NCR在回传链路中的下行信号的接收波束和/或上行信号的发送波束的确定方法。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例中基站、NCR与UE之间的传输链路示意图;
图3是本申请实施例中的一种回传链路的传输配置确定方法的流程图;
图4是本申请实施例中的另一种回传链路的传输配置确定方法的流程图;
图5是本申请实施例中的一种回传链路的传输配置确定装置的结构框图;
图6是本申请实施例中的另一种回传链路的传输配置确定装置的结构框图;
图7是本申请实施例中的一种通信设备的结构框图;
图8是本申请实施例中的一种网络侧设备的结构框图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分 多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
其中,为了便于理解本申请实施例的回传链路的传输配置确定方法,现对如下相关技术进行介绍:
第一方面,关于接入链路的波束控制。
目前,基站可以对NCR控制链路的波束进行控制,例如通过波束指示信息指示控制链路的接收或发送的波束编号或关联的参考信号(Reference Signals,RS)编号,NCR根据基站指示调整控制链路的波束。
第二方面,Rel-15中终端的上/下行波束指示的方法:
对于下行波束,终端需要接收广播信号,例如同步信号块(Synchronization Signal Block,SSB)、信道状态信息参考信号(Channel State Information-Reference Signal, CSI-RS)、小区特定的物理下行控制信道(cell-specific Physical Downlink Control Channel,cell-specific PDCCH)、小区特定的物理下行共享信道(cell-specific Physical Downlink Shared Channel,cell-specific PDSCH)、UE特定的物理下行控制信道(UE-specific PDCCH),以及UE特定的物理下行共享信道(UE-specific PDSCH)。每个下行信号和下行物理信道需要确定对应的下行波束。
其中,终端的下行波束的确定方式包括:根据预定义规则从SSB集合中隐式的确定下行波束,以及根据下行控制信息(Downlink Control Information,DCI)或媒体访问控制控制单元(Media Access Control Control Element,MAC CE)或无线资源控制(Radio Resource Control,RRC)信令来显示确定下行波束。
具体的,网络侧设备可以通过RRC信令(例如物理下行共享信道配置(PDSCH-config))配置一个传输配置指示(Transmission Configuration Indicator,TCI)候选集合,其中包含M组TCI配置信息,M取值由终端能力决定,并通过MAC CE激活信令(activation command)从M组TCI配置信息中最多选择8个TCI配置,并映射到DCI字段'传输配置指示(Transmission Configuration Indication)'中。终端通过读取DCI字段'传输配置指示(Transmission Configuration Indication)'来确定对应的PDSCH的TCI配置。
对于PDCCH,网络侧设备可以为每一个类型的控制资源集(CORESET)配置相应的TCI。并且,在系统配置TCI之前或者未收到激活信令(即MAC CE activation command)时,终端默认最近一次随机接入过程中使用的SSB作为PDCCH的准共址(quasi co-location,QCL)参考波束。并且,在终端收到MAC CE activation command后,终端将在时隙开始生效,其中,时隙k为MAC CE activation command的混合自动重传请求应答(Hybrid automatic repeat request acknowledgement,HARQ-ACK)反馈消息所在时隙,表示子载波带宽配置为μ时一个子帧包含的时隙数量。
对于PDSCH,网络侧设备可以终端配置一个TCI候选集合,并通过DCI来动态指示PDSCH的TCI配置信息。如果TCI配置集合未配置或者还未生效,终端则按照随机接入过程中使用的SSB作为准共址的参考波束。其中,DCI指示的PDSCH的TCI,需要在终端接收到DCI之后(即准共址时长(timeDurationForQCL)时隙之后)才生效;如果调度的PDSCH时间偏移短于timeDurationForQCL时隙,则终端按照最近一次COREST的准共址配置接收PDSCH。其中,timeDurationForQCL的取值可以预先定义,例如子载波间隔(SubCarrier Spacing,SCS)为60kHz时,可选值为7、14、28;在SCS未120kHz,可选值为14、28。
对于上行波束,终端根据信道探测用参考信号资源指示(Sounding Reference Signal resource indicator,SRI)或者下行波束来确定。例如,对于物理上行控制信道(Physical Uplink Control Channel,PUCCH),网络侧设备通过物理上行控制信道空间关系(Physical Uplink Control Channel SpatialRelationInfo,PUCCH-SpatialRelationInfo)参数来配置 PUCCH的上行波束,例如可以指示一个SSB或者信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),则PUCCH的发送波束(spatial domain filter)与SSB或者CSI-RS的接收波束相对应;或者指示一个SRS,则PUCCH与SRS的发送波束相同。物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的发送波束需要与PUCCH保持相同;如果没有PUCCH作为参考,则以编号最小的CORESET的波束作为参考。
第三方面,Rel-17中终端的上/下行波束指示的方法:
波束指示机制包括TCI配置,TCI状态(state)激活和TCI指示。
对于TCI配置和TCI state激活,上行和下行的TCI配置可以统一配置或者分别配置。对于上下行统一配置的TCI state,可以通过MAC CE激活其中8个TCI state;对于上下行分别配置的TCI state,gNB可以通过MAC CE激活其中8对TCI state。
对于Rel-17的终端,5G基站(NR Node B,gNB)发送波束指示信息(即TCI指示信息)统一指示上行信号和下行信号的波束。波束指示信息指示的内容为MAC CE激活的TCI state中的一个或一对。TCI指示信息生效的开始时间为TCI指示信息对应ACK反馈后的x个时间单元,TCI指示信息生效的结束时间为下一个TCI指示信息生效开始的时刻。
由上述描述可知:
1.下行信道可以配置为不同的波束;例如PDCCH和PDSCH可以配置不同的TCI,不同PDCCH的CORESET可以配置不同的波束。
2.下行信道的波束可以通过信令进行动态配置;
3.上行信道的波束可以根据下行信道的波束来确定或者单独配置(SRI)。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的回传链路的传输配置确定方法进行详细地说明。
第一方面,参见图3,本申请实施例提供了一种回传链路的传输配置确定方法,该方法可以包括如下步骤:
步骤301:中继设备获取控制链路的可配置的候选波束集合。
可选地,所述候选波束集合包括如下中至少一项:
所述控制链路的候选TCI配置信息对应的波束;
所述控制链路的下行参考信号对应的波束;
所述控制链路的下行物理信道对应的波束;
所述控制链路的上行参考信号对应的波束;
所述控制链路的上行物理信道对应的波束。
其中,上述所述的候选TCI配置为可用但未生效的TCI配置;上述所述的控制链路的下行参考信号可以包括SSB和/或CSI-RS;上述所述的控制链路的下行物理信道可以包括PDCCH和/或PDSCH;上述所述的控制链路的上行参考信号可以包括SRS和/或 PRACH;上述所述的控制链路的上行物理信道可以包括PUCCH和/或PUSCH。
步骤302:所述中继设备根据所述候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置。
其中,确定回传链路的下行信号的TCI配置,即为确定中继设备在回传链路的下行信号的接收波束;确定回传链路的上行信号的发送配置,即为确定中继设备在回传链路的上行信号的发送波束。
另外,NCR回传链路与PDSCH有不同的传输需求。例如动态调度的PDSCH通过下行控制信令DCI来确定传输时间和波束(即TCI配置)。NCR回传链路是中继链路其中一条,回传链路承载了给终端的PDSCH、PDCCH、SSB等多种下行信道,需要长时间的开启,波束需要长时间保持不变。同理,回传链路承载来自多个终端的PUCCH、PUSCH、SRS等多种上行信道要占用多个上行时隙,因此回传链路的上行链路也是需要长时间开启的。因此,NCR更倾向于使用相同的持续时间长的接收波束或者发送波束作为回传链路的波束配置。对于长时间开启的回传链路,传统的动态波束指示方法(即用于PDSCH或者PUSCH的动态波束指示)并不适合于NCR回传链路。可以理解,回传链路的下行信号的TCI配置和上行信号的发送配置可以是长时间有效的,有效时间可以是协议规定的或者网络显式指示的或者持续有效直到新的下行信号的TCI配置和上行信号的发送配置生效。
而本申请实施例中,中继设备可以获取控制链路的可配置的候选波束集合,从而根据该候选波束集合,确定回传链路的下行信号的TCI配置和/或上行信号的发送配置。即本申请的实施例,可以从控制链路的候选波束集合中,选择回传链路的下行信号的接收波束和/或上行信号的发送波束。因此,本申请的实施例,给出了NCR在回传链路中的下行信号的接收波束和/或上行信号的发送波束的确定方法。
可选地,所述回传链路的下行信号的TCI配置包括如下中至少一项:
所述控制链路的参考信号;
准共址QCL类型。
其中,上述控制链路的参考信号可以为SSB、CSI-RS中的其中一种。
另外,不同的QCL类型对应不同的QCL参数,或者不同QCL类型指示不同的QCL参数,因此,下行信号的TCI配置中包括的QCL类型,可以指示出不同的QCL参数。这里,QCL参数包括至少一项:
空间接收机参数(Spatial Rx parameter);
多普勒频移(Doppler shift);
多普勒扩展(Doppler spread);
平均时延(average delay);
时延扩展(delay spread);
平均增益(average gain)。
可选地,所述中继设备根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置,包括:
所述中继设备基于协议规定,根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置;
或者,
所述中继设备接收网络侧设备发送的第一配置信令;
所述中继设备基于所述第一配置信令,根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置。
其中,上述协议规定中或者第一配置信令中存在回传链路的下行信号的TCI配置的相关信息,因此,中继设备可以基于上述协议规定或者第一配置信令,根据控制链路的候选波束集合,确定回传链路的下行信号的TCI配置。
由此可知,在本申请实施例中,中继设备可以采用如下中的方式一或者方式二确定回传链路的下行信号的接收波束:
方式一:基于协议规定,根据控制链路的候选波束集合,确定回传链路的下行信号的接收波束;
方式二:基于接收到的第一配置信令,根据控制链路的候选波束集合,确定回传链路的下行信号的接收波束。
可以理解的是,此处所述方式一与方式二可以合并为一个方案。例如,当网络侧设备没有使用专用信令(即上述第一配置信令)配置下行信号的TCI时或者专用信令配置TCI配置开始生效之前或者生效时间结束之后,中继设备可以按照协议预规定确定下行信号的接收波束(即方式一);当收到专用信令(即上述第一配置信令)后,则根据专用信令确定下行信号的接收波束。
其中,上述第一配置信令可以为MAC CE,RRC或者DCI。
例如网络侧设备可以非周期的或者周期的发送MAC CE(例如TCI激活信令)或者RRC信令,指示回传链路的下行信号的TCI配置;
又例如,在专用的CORESET上发送DCI信令或者发送专用格式的DCI信令来指示回传链路的下行信号的TCI配置。具体地,例如可以复用DCI字段'传输配置指示(Transmission Configuration Indication)'或者DCI中的保留字段(即可以在DCI字段'Transmission Configuration Indication'或者DCI中的保留字段中携带回传链路的下行信号的TCI配置的相关信息);或者,可以使用DCI中a(例如a=1)比特字段来指示'Transmission Configuration Indication'用于控制链路还是回传链路。
此外,网络侧设备可以在为中继设备配置开启回传链路时间段的同时配置下行信号的TCI配置。即上述第一配置信令可以为用于配置开启回传链路时间段的信令。可选地,在所述中继设备基于所述第一配置信令,根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置的情况下,所述回传链路的下行信号的TCI配置从k+X表示的时间 开始生效;
其中,k表示所述第一配置信令所在的时隙或最后一个符号,或者所述第一配置信令对应的混合自动重传请求-确认反馈消息所在时隙或最后一个符号,X由所述协议规定确定或根据所述中继设备的能力确定。即从中继设备收到专用信令(即上述第一配置信令)到中继设备的回传链路的下行信号的TCI配置生效需要满足时延要求。
其中,X可以等于表示子载波带宽配置为μ时一个子帧包含的时隙数量,x为协议定义的数值。
可选地,所述第一配置信令中可以显式的指示下行信号的TCI配置的生效时间,包括生效起始时间点和/或生效时间长度。
由此可知,在上述第一配置信令中,还可以携带下行信号的TCI配置的有效时间段或有效时间周期。所述有效时间段或有效时间周期可以包括回传链路开启或工作时间段,例如通过第一配置信令指示中继设备的回传链路开启或工作时间段和相应的下行信号的TCI配置和上行信号的发送配置,那么中继设备在专用信令配置的工作时间段内使用相应的TCI配置和上行信号的发送配置执行回传链路的下行信号接收和上行信号发送。
可以理解的是,在收到新的下行信号的TCI配置之后,并且在新的下行信号的TCI配置生效之前,中继设备的回传链路可以按照协议规定进行工作。例如,使用原有下行信号的TCI配置进行信号转发;或者,在新的下行信号的TCI配置生效之前不进行信号转发。
可选地,中继设备根据候选波束集合,确定回传链路的下行信号的TCI配置,可以分为如下所述的情况A-1至情况A-4:
情况A-1:在所述协议规定或者所述第一配置信令指示所述控制链路的下行参考信号和/或下行物理信道,与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的TCI配置,根据所述控制链路的下行参考信号和/或下行物理信道确定。
下面针对情况A-1的情况进行具体介绍:
A-1.1、可选地,在所述协议规定或者所述第一配置信令指示所述控制链路的下行参考信号与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的TCI配置中包括的参考信号为所述控制链路的下行参考信号,所述QCL类型根据所述协议规定确定或者根据所述网络侧设备的配置确定。
即上述所述的“回传链路的下行信号的TCI配置根据所述控制链路的下行参考信号确定”,在这里,具体确定方法可以为:
所述回传链路的下行信号的TCI配置中包括的参考信号为所述控制链路的下行参考信号,所述QCL类型根据所述协议规定确定或者根据所述网络侧设备的配置确定。例如,回传链路的下行信号的TCI配置中包括的参考信号按照协议规定选择控制链路随机接入时选择的SSB。又例如,回传链路的下行信号的TCI配置中包括的参考信号按照网络侧设备的配置选择控制链路的CSI-RS。又例如回传链路的下行信号的TCI配置中包括的参 考信号按照协议规定为控制链路的最近一次传输的下行参考信号。
可选地,准共址参数(即QCL类型对应的参数)可以包括Spatial Rx parameter(即QCL type D)、average gain、QCL TypeA、B、C中定义的参数中的至少一项。例如,协议规定可以默认配置QCL类型为QCL TypeD,或者默认配置准共址参数为QCL TypeD和average gain。网络显式配置可以是此处准共址参数中的若干个参数。
其中,上述下行参考信号可以为SSB或CSI-RS。例如上述协议规定指示控制链路选择的SSB或CSI-RS(例如用于跟踪的CSI-RS)与回传链路存在QCL关系(即控制链路选择的SSB或CSI-RS作为回传链路的QCL关联信号),则回传链路的下行信号的TCI配置中的参考信号为SSB或CSI-RS,且下行信号的TCI配置中的QCL类型为协议规定的或者网络侧设备配置的(即回传链路的下行波束与SSB或CSI-RS满足协议规定的或者网络侧设备配置的QCL类型)。其中,该SSB可以是中继设备随机接入过程中选择的SSB。
下面针对与回传链路建立QCL关联的下行参考信号分别为SSB和CSI-RS的不同情况进行说明。
(1)若协议规定或者第一配置信令指示:回传链路与控制链路的SSB存在QCL关联,那么中继设备的回传链路选择控制链路最近一次随机接入过程中使用的SSB作为QCL的参考信号,具体实现细节举例如下:
可选地:在中继设备一侧看来:SSB传输的时频资源上,回传链路的下行信号的接收波束和控制链路的SSB接收波束,满足协议规定的或者网络侧配置的QCL类型(即回传链路的下行信号的接收波束与控制链路的SSB的接收波束相同);在网络侧设备一侧看来,SSB传输的时频资源上,回传链路的下行信号的发送波束和控制链路的SSB的发送波束一致。
可选地,在控制链路的SSB与回传链路下行信号存在QCL关系,且所述网络侧设备发送的第二配置信令中携带有SSB的标识信息(例如SSB编号)的情况下,回传链路的下行信号的TCI配置中包括的参考信号为第二配置信令中携带的SSB的标识信息对应的SSB。其中,所述第二配置信令可以为MAC CE或者RRC或者DCI。另外,该第二配置信令与上述第一配置信令可以相同,也可以不同。
其中,第二配置信令中携带的SSB的标识信息表示的SSB可能与中继设备随机接入过程中的SSB不同。
(2)若协议规定或者第一配置信令指示:回传链路与控制链路的CSI-RS存在QCL关联,那么中继设备的回传链路则选择CSI-RS作为QCL的参考信号,具体实现细节举例如下:
可选地:在中继设备一侧看来:CSI-RS传输的时频资源上,回传链路的下行信号的接收波束和控制链路的CSI-RS接收波束,满足协议规定的或者网络侧配置的QCL类型(即回传链路的下行信号的接收波束与控制链路的CSI-RS的接收波束相同);在网络侧 设备一侧看来,CSI-RS传输的时频资源上,回传链路的下行信号的发送波束和控制链路的CSI-RS发送波束一致。
A-1.2、可选地,在所述协议规定或者所述第一配置信令指示所述控制链路的下行物理信道与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的TCI配置与所述控制链路的下行物理信道的TCI配置相同或部分相同。
即上述所述的“回传链路的下行信号的TCI配置根据所述控制链路的下行物理信道确定”,在这里,具体确定方法可以为:回传链路的下行信号的TCI配置与控制链路的下行物理信道的TCI配置相同或部分相同。进一步地,例如,按照协议规定回传链路的下行信号的TCI配置与控制链路的最近一次的下行物理信道的TCI配置相同或部分相同。
可选地,所述部分相同为TCI配置中包括的参考信号相同,QCL类型由所述协议规定指示或者由配置消息指示。
即可以通过协议规定指示控制链路的下行物理信道与回传链路存在QCL关系,也可以通过第一配置信令指示控制链路的下行物理信道与回传链路存在QCL关系,此种情况下,回传链路的下行信号的TCI配置与所述控制链路下行物理信道的TCI配置相同或部分相同。例如,二者中的参考信号相同,但是QCL类型不同,此时QCL类型可以由网络侧设备单独指示或者协议规定。
可选地,在所述控制链路的下行物理信道与所述回传链路存在QCL关系的情况下,所述下行信号的TCI配置,与所述下行物理信道的TCI配置中与空间接收机参数对应的TCI配置,相同或部分相同。
即与回传链路存在QCL关联的下行物理信道包含两个TCI配置,而本申请实施例中,回传链路的下行信号的TCI配置与这两个TCI配置中与空间接收机参数(Spatial Rx parameter)(即QCL TypeD)对应的TCI配置相同或部分相同。
其中,上述下行物理信道可以为PDCCH或PDSCH。下面针对与回传链路建立QCL关联的下行物理信道分别为PDCCH和PDSCH的不同情况进行说明。
(1)若协议规定或者第一配置信令指示:回传链路与控制链路的PDCCH存在QCL关联,则回传链路的下行信号的TCI配置与PDCCH的特定搜索空间(search space)或特定控制资源集(CORESET)的TCI配置相同或部分相同。其中,特定CORESET的确定方式可以是协议预定义的(例如指定使用Type0PDCCH对应的CORESET为特定CORESET,或者CORESET编号最小的CORESET为特定CORESET),也可以是网络侧配置的(即可以在网络侧设备发送的信令中携带CORESET的标识信息(例如CORESET编码),则该标识信息表示的CORESET即为特定CORESET)。同理,特定搜索空间的确定方式与特定CORESET的确定方式类似,此处不再赘述。
此种情况下的具体实现细节举例如下:
可选地,在中继设备一侧看来,在PDCCH的特定搜索空间或特定CORESET所在的时频资源上,回传链路的下行信号的TCI配置与该特定SS或特定CORESET上的 PDCCH的TCI配置相同或部分相同;在网络侧设备一侧看来,在PDCCH的特定搜索空间或特定CORESET所在的时频资源上,回传链路的下行信号发送波束与该特定SS或特定CORESET上的PDCCH的波束一致。
可选地,在中继设备一侧看来,在PDCCH的特定搜素空间或特定CORESET后的v1个时间单元内,回传链路的下行信号的TCI配置与该特定SS或特定CORESET上的PDCCH的TCI配置相同或部分相同;在网络侧设备一侧看来,在PDCCH的特定搜索空间或特定CORESET后的v1个时间单元,回传链路的下行信号发送波束与该特定搜素空间或特定CORESET上的PDCCH的波束一致。其中,v1取值可以由协议规定或者网络侧显式配置或者始终有效直到为该特定搜素空间或特定CORESET配置新TCI配置或者始终有效直到下一次控制链路PDCCH传输。该时间单元例如为时隙(slot)或符号(symbol)或毫秒(ms)。
(2)若协议规定或者第一配置信令指示:回传链路与控制链路的PDSCH存在QCL关联,则回传链路的下行信号的TCI配置与PDSCH对应的TCI配置相同或部分相同。
可选地,如果控制链路调度了动态PDSCH和半静态PDSCH,回传链路下行信号可以优先选择半静态PDSCH对应的TCI配置(即回传链路的下行信号的TCI配置与半静态PDSCH对应的TCI相同或部分相同)。即控制链路包含了动态调度的PDSCH和半静态调度(Semi-Persistent Scheduling,SPS)的PDSCH。考虑到回传链路需要长时间开启,因此,回传链路的下行信号的TCI配置可以与控制链路的半静态调度的PDSCH对应的TCI配置相同或部分相同。
此种情况下的具体实现细节举例如下:
可选地,在中继设备一侧看来,在PDSCH发送后的v2个时间单元内,回传链路的下行信号的TCI配置与控制链路的PDSCH的TCI配置相同或部分相同;在网络侧设备一侧看来,在PDSCH发送后的v2个时间单元内,回传链路的下行信号的发送波束与控制链路的PDSCH的波束一致。可选地,v2取值可以由协议规定或者网络侧显式配置或者始终有效直到为PDSCH配置新TCI配置或者始终有效直到下一次控制链路PDSCH传输。
可选地,对于半静态调度PDSCH,在中继设备一侧看来,从PDSCH的SPS激活信令发送后的v3个时间单元开始,回传链路的下行信号的TCI配置与控制链路的半静态调度的PDSCH的TCI配置相同或部分相同;在网络侧设备一侧看来,从PDSCH的SPS激活信令发送后的v3个时间单元开始,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。v3个时间单元大于或等于准共址时长(timeDurationForQCL)。
可选地,在中继设备一侧看来,从PDSCH的SPS激活信令对应的反馈信令发送后的v4个时间单元开始,回传链路的下行信号的TCI配置与控制链路的半静态调度的PDSCH的TCI配置相同或部分相同;在网络侧设备一侧看来,从PDSCH的SPS激活信 令对应的反馈信令发送后的v4个时间单元开始,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。v4个时间单元大于或等于准共址时长(timeDurationForQCL)。
可选地,在中继设备一侧看来,从SPS的第一个PDSCH资源开始,回传链路的下行信号的TCI配置与控制链路的半静态调度的PDSCH的TCI配置相同或部分相同;在网络侧设备一侧看来,从SPS的第一个PDSCH资源开始,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。
可选地,在中继设备一侧看来,在控制链路的半静态调度的PDSCH传输后的v5个时间单元内,回传链路的下行信号的TCI配置与控制链路的半静态调度的PDSCH的TCI配置相同或部分相同;在网络侧设备一侧看来,在控制链路的半静态调度的PDSCH传输后的v5个时间单元内,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。其中,该时间单元例如为时隙(slot)或符号(symbol)或毫秒(ms)。
可选地,在中继设备一侧看来,在SPS最后一个有效的PDSCH后的v6个时间单元内,回传链路的下行信号的TCI配置与控制链路的半静态调度的PDSCH的TCI配置相同或部分相同;在网络侧设备一侧看来,在SPS最后一个有效的PDSCH后的v6个时间单元内,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。
可选地,在中继设备一侧看来,在中继设备收到SPS去激活信令后的v7个时间单元内,回传链路的下行信号的TCI配置与控制链路的半静态调度的PDSCH的TCI配置相同或部分相同;在网络侧设备一侧看来,在中继设备收到SPS去激活信令后的v7个时间单元内,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。
此处需要说明的是,半静态PDSCH的TCI配置是有效的,直到控制链路接收到新的TCI激活信令/配置信令为该半静态PDSCH重新指示了TCI配置,或者直到新的半静态PDSCH激活信令/配置信令的TCI指示信息开始生效的时刻。
即当前回传链路TCI配置生效时间结束后,中继设备的回传链路按照协议规定或者第一配置信令的指示,重新根据候选波束集合来确定回传链路的下行信号的TCI配置。例如,半静态PDSCH去激活后,使用动态调度PDSCH或者PDCCH的TCI配置或者控制链路最近一次随机接入过程选择的SSB,确定回传链路的下行信号的TCI配置。
此外,需要说明的是,针对PDCCH/PDSCH/CSI-RS波束没有生效的时间段(例如某个场景下PDCCH/PDSCH/CSI-RS没有配置波束,或者配置了波束但未生效),中继设备的回传链路的下行信号的接收波束可以默认采用SSB波束,或者采用专用信令指示的波束。
情况A-2:在所述第一配置信令包括目标标识信息的情况下,所述回传链路的下行信号的TCI配置与所述目标标识信息指示的TCI配置相同或部分相同,所述目标标识信息指示所述控制链路的候选TCI配置集合中的其中一个TCI配置。
可选地,所述目标标识信息指示的TCI配置为:高层配置信息中指示的M个候选 TCI配置中的其中一个,或者所述控制链路的TCI激活命令中指示的N个TCI配置中的其中一个,M和N均为大于0的整数;
其中,所述N个TCI配置是所述M个TCI配置中的一部分。
即中继设备的回传链路的下行信号的TCI配置,可以从高层配置信息(例如PDSCH-Config)中提供的M个候选TCI配置中选择,也可以从控制链路的MAC CE的TCI激活命令中N个TCI配置中进行选择。
例如,基站可以先通过RRC信令为NCR的控制链路配置M个候选TCI配置,然后,再通过MAC CE信令从这M个候选TCI配置中选择N个配置给中继设备的控制链路,从而可以再从M个候选TCI配置中选一个,或者从N个候选TCI配置中选一个,并通过DCI携带所选出的这个TCI配置。
可以理解的是,高层配置信息(PDSCH-Config)中的M个候选TCI配置或者TCI激活命令中N个候选TCI配置,是根据中继设备的控制链路中的SSB或者CSI-RS进行配置的,所以本质上是将中继设备的控制链路上的下行参考信号作为回传链路的QCL的关联信号的特例(即上述情况一的特例)。
情况A-3:在所述第一配置信令包括TCI配置的情况下,所述回传链路的下行信号的TCI配置为所述第一配置信令中的TCI配置。
即还可以通过专用信令(即上述第一配置信令)直接指示中继设备的回传链路的TCI配置的具体参数。例如,在第一配置信令中指示:控制链路中的CSI-RS或者SSB的指示信息(例如ID编号)和QCL类型。
其中,如果QCL类型是协议规定中指示的(即默认的),则在第一配置信令中可以省略指示QCL类型。
可选地,需要说明的是,中继设备在没有收到新的QCL配置(即与中继设备的回传链路从存在QCL关联的控制链路的下行参考信号未发生变化,且二者关联的QCL类型未发生变化),或者参考信道(即与中继设备的回传链路从存在QCL关联的控制链路的下行物理信道)的TCI配置未发生变化的情况下,中继设备维持现有的QCL关系和TCI配置不变。
情况A-4:可选地,所述回传链路下行信号的TCI配置根据所述控制链路的下行参考信号和下行物理信道中优先级最高的一者或者距离当前时刻最近的一者确定。
由此可知,按照协议规定可以定义下行参考信号(例如CSI-RS、SSB)和下行物理信道(例如PDCCH和PDSCH)之间的优先级来选择控制链路的物理信道。例如,假设SSB优先级低于PDCCH优先级低于PDSCH优先级,则当PDCCH和PDSCH没有配置专门的TCI时,中继设备的回传链路选择使用SSB作为QCL配置的参考信道;如果网络侧设备配置了PDCCH的TCI但是没有配置PDSCH的TCI,那么中继设备的回传链路选择PDCCH的TCI配置进行工作;如果网络侧设备配置PDSCH的TCI,那么中继设备的回传链路选择PDSCH的TCI配置进行工作。进一步的,例如,控制链路PDCCH的多 个不同类型CORESET中,定义CORESET编号最小的CORESET优先级最高。又例如,控制链路配置了多个CSI-RS和/或SSB,优先选择端口号最小的参考信号作为回传链路的下行信号的TCI配置中包括的参考信号。又例如,控制链路配置了动态调度PDSCH和半静态调度PDSCH,优先选择半静态调度PDSCH的TCI配置作为回传链路的下行信号TCI配置。
类似的,还可以假设SSB优先级低于PDSCH优先级低于PDCCH优先级,并定义类似的信道或参考信号的选择方案,这里不再重复。
另外,还可以按照就近原则,选择中继设备的回传链路开启之前,最近一次传输的控制链路物理信道(SSB,PDCCH,PDSCH,CSI-RS的其中一种)传输所使用的TCI配置。
此外,所述协议规定还可以指示按照控制链路工作的协议版本优先级来确定下行信号的TCI配置。例如控制链路按照Rel-17协议版本配置控制链路的下行信号的TCI配置(即通过高层信令信息DLorJoint-TCIState或者UL-TCIState配置下行信号的TCI配置),那么回传链路优先按照控制链路Rel-17协议版本的TCI配置来确定所述候选波束集合或者确定控制链路的物理信道的TCI配置或者直接作为回传链路的下行信号的TCI配置和对应的上行信号发送配置。。
其中,根据DLorJoint-TCIState或者UL-TCIState中配置的候选的控制链路TCI配置集合构成所述回传链路的候选波束集合,确定回传链路的下行信号的TCI配置的方案,与前述情况A-1至A-4所述的方案,属于并列方案。可选地,根据DLorJoint-TCIState或者UL-TCIState中配置的候选TCI配置集合中已经激活使用的TCI配置,确定回传链路的下行信号的TCI配置的方案可以设置为最高优先级的方案,即当存在DLorJoint-TCIState或者UL-TCIState时,则回传链路的下行信号的TCI配置根据DLorJoint-TCIState或者UL-TCIState中的TCI配置确定;当不存在DLorJoint-TCIState和UL-TCIState时,则按照Rel-15/16协议版本配置控制链路的下行信号的TCI配置(即PDSCH-Config)确定候选波束集合采用前述情况A-1至A-4所述的方案。
可选地,所述方法还包括:
在所述回传链路与所述控制链路的传输在目标时间内存在交叠的情况下,所述中继设备执行如下中的其中一项:
所述中继设备使用目标TCI配置进行所述回传链路的下行信号接收或者使用目标上行发送配置进行所述回传链路的上行信号转发;
所述中继设备在所述目标时间内不进行回传链路的下行信号转发或者不进行回传链路的上行信号转发;
其中,所述目标TCI配置为所述控制链路在所述目标时间内使用的TCI配置的其中一个TCI配置,所述目标上行发送配置为所述控制链路在所述目标时间内使用的上行发送配置;
所述目标时间包括所述中继设备的所述控制链路的传输的时间单元、所述控制链路的传输之前的a个时间单元、所述控制链路的传输之后的b个时间单元中的至少一者,a、b分别表示大于零的整数,所述时间单元为正交频分复用符号、时隙、子帧、无线帧中的其中一种。
另外,上述中继设备的所述控制链路的传输包括控制链路的下行信号接收和上行信号发送。
由此可知,可以定义中继设备回传链路的下行信号的TCI配置的优先级,低于中继设备控制链路的TCI配置的优先级。
例如,中继设备的回传链路与中继设备的控制链路的传输(包括控制链路的下行信号接收和上行信号发送)在上述目标时间内存在交叠时,中继设备可以使用中继设备的控制链路的TCI配置,进行回传链路的下行信号接收,或者使用中继设备的控制链路的上行发送配置进行上行信号转发;或者,中继设备也可以在控制链路传输时间段内不对回传链路进行信号转发。
可选地,根据协议规定,控制链路的不同的参考信号或者物理信道的传输与回传链路的传输存在时间交叠的情况时,中继设备执行的方案可以分别确定。例如,对于控制链路的PDCCH或者PDSCH传输时间段,回传链路按照控制链路的PDCCH或者PDSCH的TCI配置进行回传链路下行信号传输;对于控制链路的PUCCH或者PUSCH传输时间段,回传链路不进行上行信号传输;对于控制链路的CSI-RS传输时间段,回传链路不进行下行信号传输。
可选地,所述方法还包括:
在所述控制链路的TCI配置更新时,或者在所述中继设备接收到网络侧设备发送的回传链路的下行信号新的TCI配置时,或者在所述中继设备接收到网络侧设备发送的第六配置信令时,所述中继设备更新并激活所述回传链路的下行信号新的TCI配置;
其中,所述第六配置信令用于指示更新所述回传链路的下行信号的TCI配置。
由此可知,回传链路的下行信号的TCI配置的有效时间可以是静态的或者自适应的。
例如,中继设备的回传链路的下行信号的TCI配置在确定之后始终有效,直到网络侧设备显式配置回传链路的下行信号新的TCI配置,或者作为参考的控制链路的物理信道的TCI配置发生改变;
或者,例如:中继设备的回传链路的下行信号的TCI配置在确定之后在一段时间内有效,有效时间长度由协议规定指示或者网络侧设备显式指示;
或者,例如,中继设备的回传链路的下行信号的TCI配置,始终与中继设备的控制链路最近一次使用的TCI配置相同或部分相同,即回传链路的下行信号的TCI配置持续有效直到控制链路下一次信号发送;
或者,例如,协议规定指示:中继设备的回传链路与控制链路的PDCCH存在QCL关联,并且当控制链路的PDCCH更新了TCI配置时,中继设备的回传链路也相应的更 新TCI配置,并且回传链路的TCI配置生效时间,不会早于控制链路的TCI配置生效时间(例如回传链路的TCI配置在控制链路的PDCCH的TCI配置生效之后立刻生效)。
或者,例如,协议规定指示:中继设备的回传链路与控制链路的PDSCH存在QCL关联,并且当控制链路的PDSCH更新了TCI配置时,中继设备的回传链路也相应的更新TCI配置,并且回传链路的TCI配置生效时间不会早于控制链路的TCI配置生效时间(例如,回传链路的TCI配置在控制链路的PDSCH的TCI配置生效之后立刻生效)。
可选地,所述中继设备更新并激活所述回传链路的下行信号新的TCI配置之后,所述方法还包括:
所述中继设备执行如下中的其中一项:
保持所述回传链路的下行信号的放大系数不变;
根据第一放大系数,调整所述回传链路的下行信号的放大系数,其中,所述第一放大系数携带在所述网络侧设备发送的第三配置信令中;
根据第一信道测量结果与第二信道测量结果之间的差异,调整所述回传链路的下行信号的放大系数;
其中,所述第一信道测量结果和所述第二信道测量结果分别为更新并激活所述回传链路的下行信号新的TCI配置之前和之后的信道测量结果。
另外,上述第三配置信令与上述第一配置信令可以相同也可以不同;上述信道测量结果可以包括:L1滤波后的参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)中的至少一者。
由此可知,中继设备的回传链路更新下行信号的TCI配置的时候,对于下行信号的放大系数的处理,可以采用如下的方案一至三中的其中一种:
方案一:中继设备的回传链路的下行信号的放大系数不变。
方案二:若通过专有信令(例如上述的第三配置信令)指示放大系数的调整值,则中继设备根据调整值更新回传链路的下行信号的放大系数。
方案三:中继设备根据下行信号的TCI配置更新前的信道测量结果与更新后的信道测量结果的差异,自行调整回传链路的下行信号的放大系数。
可选地,所述回传链路的上行信号的发送配置表示所述回传链路的上行信号的发送空域滤波器,与如下中其中一项相关联:
所述回传链路的下行信号的空间接收机参数(Spatial Rx parameter);
所述控制链路的一个上行信号的发送空域滤波器(Tx spatial domain filer);
所述控制链路的一个下行信号的接收空域滤波器(Rx spatial domain filer)。
其中,中继设备的回传链路的上行信号发送波束是指上行信号发送的空域滤波器,表示上行信号能量在不同方向上的能量分布情况。
由上述可知,在本申请实施例中,中继设备的回传链路的上行信号的发送配置可以 根据回传链路的下行信号,或者控制链路的上行信号,或者控制链路的下行信号确定。
可选地,所述中继设备根据所述候选波束集合,确定所述回传链路的上行信号的发送配置,包括:
所述中继设备基于协议规定,根据所述候选波束集合,直接确定所述回传链路的上行信号的发送配置;
或者,
所述中继设备接收网络侧设备发送的第四配置信令;
所述中继设备基于所述第四配置信令,根据所述候选波束集合,确定所述回传链路的上行信号的发送配置;
或者,
所述中继设备根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置;
所述中继设备基于所述协议规定,根据所述回传链路的下行信号的TCI配置,确定所述回传链路的上行信号的发送配置。
其中,上述协议规定中或者第四配置信令中存在回传链路的上行信号的发送配置的相关信息,因此,中继设备可以基于上述协议规定或者第四配置信令,根据候选波束集合,确定回传链路的上行信号的发送配置。
由此可知,在本申请实施例中,中继设备可以采用如下中的方式一或者方式二或者方式三确定回传链路的上行信号的发送波束:
方式一:基于协议规定,根据控制链路的候选波束集合,直接确定回传链路的上行信号的发送波束;
方式二:基于接收到的第四配置信令,根据控制链路的候选波束集合,确定回传链路的上行信号的发送波束;
方式三:在所述中继设备根据所述候选波束集合确定,所述回传链路的下行信号的TCI配置之后,所述中继设备基于协议规定,根据所述回传链路的下行信号的TCI配置,确定所述回传链路的上行信号的发送配置。
可以理解的是,此处所述方式一与方式二可以合并为一个方案。例如,当网络侧设备没有使用专用信令(即上述第四配置信令)配置上行信号的发送波束时,中继设备可以按照协议预规定确定上行信号的发送波束(即方式一);当收到专用信令(即上述第四配置信令)后,则根据专用信令确定上行信号的发送波束。
同理,此处所述方式三与方式二可以合并为一个方案。例如,当网络侧设备没有使用专用信令(即上述第四配置信令)配置上行信号的发送波束时,中继设备可以按照协议预规定采用上述方式三确定上行信号的发送波束;当收到专用信令(即上述第四配置信令)后,则根据专用信令确定上行信号的发送波束。
其中,上述第四配置信令可以为MAC CE,RRC或者DCI。
可选地,中继设备确定回传链路的上行信号的发送配置,可以分为如下所述的情况 B-1至情况B-4:
情况B-1:所述协议规定指示所述回传链路的上行信号的发送空域滤波器与所述回传链路的下行信号的空间接收机参数相关联。
即中继设备的回传链路的上行信号的发送波束可以与下行信号的接收波束相同。
情况B-2:所述协议规定或者所述第四配置信令指示所述回传链路的上行信号的发送配置根据所述控制链路的上行参考信号和/或上行物理信道的配置确定。
其中,所述控制链路的上行参考信号可以为SRS和/或PRACH;上述回传链路的上行物理信道可以为PUSCH或PUSCH。即中继设备的回传链路可以根据中继设备的控制链路的PUCCH信道或者PUSCH信道或者SRS,来确定中继设备的回传链路的上行信号的发送波束。例如中继设备根据最近一次上行传输(PUCCH或者PUSCH或者SRS)的配置来确定回传链路上行信号的发送波束。
下面针对根据中继设备的控制链路的PUCCH信道或者PUSCH信道或者SRS,来确定中继设备的回传链路的上行信号的发送波束的不同情况,分别进行说明。
(1)SRS发送波束作为中继设备的回传链路的上行信号的发送波束,具体可以为:SRS传输的时频资源上,中继设备的回传链路的上行信号的发送波束和该SRS的发送波束一致。
(2)PUCCH发送波束作为中继设备的回传链路的上行信号的发送波束,具体可以为如下中的其中一项:
在所述PUCCH所在的时频资源上,中继设备的回传链路的上行信号的发送波束和该PUCCH的发送波束一致;
在所述PUCCH后的v8个时间单元内,中继设备的回传链路的上行信号的发送波束和该PUCCH的发送波束一致,其中,该时间单元例如为时隙(slot)或符号(symbol)或毫秒(ms)。
(3)PUSCH发送波束作为中继设备的回传链路的上行信号的发送波束,具体可以为如下中的其中一项:
在所述PUSCH的传输时频资源上,中继设备的回传链路的上行信号的发送波束和该PUSCH的发送波束一致;
从PUSCH调度信令发送后的v9个时间单元开始,中继设备的回传链路的上行信号的发送波束和该PUSCH的发送波束一致;可选地,v9个时间单元大于等于timeDurationForQCL;
从半静态PUSCH激活信令发送后的v10个时间单元开始,中继设备的回传链路的上行信号的发送波束和该半静态PUSCH的发送波束一致;
从半静态PUSCH激活信令对应的反馈信令发送后的v11个时间单元开始,中继设备的回传链路的上行信号的发送波束和该半静态PUSCH的发送波束一致;
从半静态调度的第一个PUSCH资源开始,中继设备的回传链路的上行信号的发送波 束和该半静态PUSCH的发送波束一致;
在PUSCH传输后的v12个时间单元内,中继设备的回传链路的上行信号的发送波束和该PUSCH的发送波束一致,其中,该时间单元例如为时隙(slot)或符号(symbol)或毫秒(ms);
在半静态PUSCH最后一个有效的PUSCH后的v13个时间单元内,中继设备的回传链路的上行信号的发送波束和该半静态PUSCH的发送波束一致,其中,该时间单元例如为时隙(slot)或符号(symbol)或毫秒(ms);
在中继设备收到半静态PUSCH去激活信令后的v14个时间单元内,中继设备的回传链路的上行信号的发送波束和该半静态PUSCH的发送波束一致。
其中,需要说明的是,半静态PUSCH资源为有效资源,直到控制链路收到新的激活信令/配置信令为该半静态PUSCH重新指示了传输资源/传输波束等信息,或者直到新的激活信令/配置信令的指示信息开始生效的时刻。
此外,针对某时间段,如果中继设备的回传链路的上行信号的发送波束不能根据PUCCH/PUSCH/SRS波束确定,则默认采用SSB/CSI-RS的波束作为中继设备的回传链路的上行信号的发送波束的关联信号,所述SSB/CSI-RS为控制链路最近一次执行随机接入所选择的下行参考信号。
情况B-3:所述协议规定或者所述第四配置信令指示所述回传链路的上行信号的发送配置根据所述控制链路的下行参考信号和/或下行物理信道确定。
其中,根据控制链路的下行参考信号和/或下行物理信道,确定上行信号的发送配置的具体情况,与根据控制链路的下行参考信号和/或下行物理信道确定下行信号的TCI配置的具体情况类似,可参见前文所述,此处不再赘述。
另外,需要说明的是,针对PDCCH/PDSCH/CSI-RS波束没有生效的时间段,则中继设备的回传链路的上行信号的发送波束,可以采用专用信令指示的波束。
情况B-4:所述第四配置信令指示目标候选配置中的其中一个配置为所述回传链路的上行信号的发送配置,其中,所述目标候选配置包括所述控制链路中配置的上行信号配置信息指示的配置。
即可以通过专用信令(例如上述第四配置信令)以中继设备的控制链路中配置的上行信号配置信息(PUCCH-SpatialRelationInfo),作为回传链路的上行信号的发送波束的候选配置,并指示其中一个配置作为中继设备的回传链路的上行信号发送波束配置。例如,当存在DLorJoint-TCIState或者UL-TCIState时,则中继设备的回传链路的上行信号的发送配置可以根据DLorJoint-TCIState或者UL-TCIState中的TCI配置确定。其中,当不存在DLorJoint-TCIState和UL-TCIState时,则可以采用前述情况B-1至B-3所述的方案,确定中继设备的回传链路的上行信号发送波束配置。
可选地,在所述回传链路的上行发送配置更新之后,所述方法还包括:
所述中继设备执行如下中的其中一项:
保持所述回传链路的上行信号的放大系数不变;
根据第二放大系数,调整所述回传链路的上行信号的放大系数,其中,所述第二放大系数携带在网络侧设备发送第五配置信令中;
根据第三信道测量结果与第四信道测量结果之间的差异,调整所述回传链路的上行信号的放大系数;
其中,所述第三信道测量结果和所述第四信道测量结果分别为所述回传链路的上行信号的发送配置更新之前和之后的信道测量结果。
另外,需要说明的是,此处所述的回传链路的上行发送配置的更新,可以指采用前述所述的情况B-1至B-4所述的上行发送配置的确定方法,对回传链路的上行发送配置进行的更新。
此外,上述第五配置信令与上述第四配置信令可以相同也可以不同;上述信道测量结果可以包括:L1滤波后的参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)中的至少一者。
由此可知,中继设备的回传链路的更新上行信号的发送配置的时候,对于上行信号的放大系数的处理,可以采用如下的方案一至三中的其中一种:
方案一:中继设备的回传链路的上行信号的放大系数不变。
方案二:若通过专有信令(例如上述的第五配置信令)指示放大系数的调整值(即上述第二调整值),则中继设备根据调整值更新回传链路的上行信号的放大系数。
方案三:中继设备根据上行信号的发送配置更新前的信道测量结果与更新后的信道测量结果的差异,自行调整回传链路的上行信号的放大系数。
方案四:中继设备的回传链路的上行信号的放大系数的调整值复用中继设备的回传链路的下行信号的放大系数的调整值。
其中,上述第五配置信令中携带的第二调整值,可以是以下行信号的放大系数为基准的调整值,或者是以原有上行信号的放大系数为基准的调整值。
其中,需要说明的是,中继设备的回传链路的上行信号的放大系数与下行信号的放大系数可以相同,也可以不同。网络侧设备也可以分别配置回传链路的上行信号的放大系数和下行信号的放大系数(或者上行信号的放大系数相对于下行信号放大系数的偏移值/修正值)。
此外,可选地,对于回传链路,在控制链路的Rel-17协议版本的TCI配置(DLorJoint-TCIState或者UL-TCIState中指示的TCI配置)生效的时间段内,回传链路和控制链路的波束可以保持一致,即中继设备的回传链路的下行信号的发送波束与控制链路的下行信号的发送波束一致,中继设备的回传链路的上行信号的发送波束与控制链路的上行信号的发送波束一致。
可选地,对于回传链路,在控制链路的TCI指示信息发送后的v14个时间单元,到 下一个控制链路的TCI指示信息发送后的v14个时间单元内,或者到下一个TCI指示信息对应的反馈信息发送的v15个时间单元内,中继设备的回传链路的下行信号的接收波束和上行信号发送波束根据TCI指示的波束确定。
可选地,对于控制链路的SSB/PRACH,某些指定的SRS/CSI-RS/CORESET所在的时域单元(或者该时域单元向前和/或向后延伸一个时间段),可以采用前述情况A-1至A-4,前述情况B-1至B-4中所述的波束确定方法。
中继设备的回传链路的上行信号的发送配置的有效时间可以是静态的或者自适应的或者半静态指示的(即在指示回传链路上行信号的发送配置的同时指示有效时间长度)。
例如,中继设备的回传链路的上行信号的发送配置在确定之后始终有效,直到网络侧设备显式配置回传链路的上行信号新的发送配置,或者作为参考的控制链路的物理信道的发送配置发生改变;
或者,例如,中继设备的回传链路的上行信号的发送配置在确定之后在一段时间内有效,有效时间长度由协议规定指示或者网络侧设备显式指示;
或者,例如,中继设备的回传链路的上行信号的发送配置,始终与中继设备的控制链路最近一次使用的上行信号发送配置相同,即中继设备的回传链路的上行信号的发送配置持续有效直到控制链路下一次上行信号发送;
或者,例如,协议规定指示:中继设备的回传链路与控制链路的PUCCH存在QCL关联,并且当控制链路的PUCCH更新了发送配置时,中继设备的回传链路也相应的更新上行信号发送配置,并且回传链路的上行信号发送配置生效时间,不会早于控制链路的PUCCH发送配置生效时间(例如回传链路的上行信号发送配置在控制链路的PUCCH的发送配置生效之后立刻生效)。
或者,例如,协议规定指示:中继设备的回传链路与控制链路的PUSCH存在QCL关联,并且当控制链路的PUSCH更新了发送配置时,中继设备的回传链路也相应的更新上行信号发送配置,并且回传链路的上行信号发送配置生效时间不会早于控制链路的PUSCH发送配置生效时间(例如,回传链路的上行信号发送配置在控制链路的PUSCH的发送配置生效之后立刻生效)。
或者,例如,协议规定指示:中继设备的回传链路上行发送配置与回传链路的下行信号TCI配置关联,并且当回传链路的下行TCI配置更新时,中继设备的回传链路也相应的更新上行信号发送配置,并且回传链路的上行信号发送配置生效时间不会早于回传链路的下行信号TCI配置生效时间。
此外,本文中所述的中继设备可以为NCR,或者智能超表面(Reconfigurable Intelligence Surface,RIS)、超表面、反射表面、智能反射表面等具有信号转发功能的中继设备。
综上所述,在本申请实施例中,在假设中继设备的控制链路和回传链路共享射频硬件的情况下,中继设备的回传链路可以利用控制链路的波束训练或者波束赋形的信息来 确定自身的收发波束,从而降低了中继设备的回传链路波束控制的复杂度,避免额外的波束训练开销。
第二方面,参见图4,本申请实施例提供了一种回传链路的传输配置确定方法,该方法可以包括如下步骤:
步骤401:网络侧设备确定控制链路的可配置的候选波束集合。
步骤402:所述网络侧设备向中继设备发送回传链路的波束配置信令。
其中,所述波束配置信令,用于指示所述中继设备根据控制链路的可配置的候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置。
另外,该波束配置信令还可以包括前述所述的第一配置信令和/或第四配置信令,其中,第一配置信令用于指示中继设备根据控制链路的候选波束集合,确定回传链路的下行信号的TCI配置,第四配置信令用于指示中继设备根据控制链路的候选波束集合,确定回传链路的上行信号的发送配置。
即用于指示根据控制链路的候选波束集合,确定回传链路的下行信号的TCI配置的指示信息,以及用于指示根据控制链路的候选波束集合,确定回传链路的上行发送配置的指示信息,可以携带在同一个信令中,也可以携带在不同信令中。
步骤403:所述网络侧设备基于所述波束配置信令或者协议规定,根据所述候选波束集合,确定所述回传链路的下行信号的发送波束和/或上行信号的接收波束。
其中,在步骤403中,确定的是网络侧设备在回传链路的下行信号的发送波束和/或上行信号的接收波束。
此处需要说明的是,回传链路为中继设备与网络侧设备之间的链路,则在回传链路上,网络侧设备发送下行信号,中继设备接收下行信号;中继设备发送下行信号,网络侧设备接收下行信号。
其中,网络侧设备给中继设备发送上述波束配置信令之后,中继设备则可以根据控制链路的候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置(即确定中继设备在回传链路的下行信号的接收波束和/或上行信号的发送波束),而在网络侧设备中,则可以基于所述波束配置信令或者协议规定,根据控制链路的候选波束集合,确定所述回传链路的下行信号的发送波束和/或上行信号的接收波束。
由此可知,本申请实施例中,网络侧设备可以给中继设备发送回传链路的波束配置信令,以使得中继设备可以根据控制链路的候选波束集合,确定回传链路的下行信号的TCI配置和/或上行信号的发送配置,且网络侧设备也可以基于该波束配置信令或者协议规定,根据控制链路的候选波束集合,确定回传链路的下行信号的发送波束和/或上行信号的接收波束和上行信号的接收波束。即本申请的实施例,可以从控制链路的候选波束集合中,选择中继设备在回传链路的下行信号的接收波束和/或上行信号的发送波束,以及选择网络侧设备在回传链路的下行信号的发送波束和/或上行信号的接收波束。因此,本申请的实施例,给出了回传链路中的下行信号的接收波束和/或上行信号的发送波束的 确定方法。
可选地,所述候选波束集合包括如下中至少一项:
所述控制链路的候选TCI配置信息对应的波束;
所述控制链路的下行参考信号对应的波束;
所述控制链路的下行物理信道对应的波束;
所述控制链路的上行参考信号对应的波束;
所述控制链路的上行物理信道对应的波束。
其中,上述所述的候选TCI配置为可用但未生效的TCI配置;上述所述的控制链路的下行参考信号可以包括SSB和/或CSI-RS;上述所述的控制链路的下行物理信道可以包括PDCCH和/或PDSCH;上述所述的控制链路的上行参考信号可以包括SRS和/或PRACH;上述所述的控制链路的上行物理信道可以包括PUCCH和/或PUSCH。
可选地,网络侧设备根据候选波束集合,确定回传链路的下行信号的发送波束,可以分为如下所述的情况C-1至情况C-4:
情况C-1:在协议规定或者所述波束配置信令指示所述控制链路的下行参考信号和/或下行物理信道,与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的发送波束,根据所述控制链路的下行参考信号和/或下行物理信道确定。
下面针对情况C-1的情况进行具体介绍:
C-1.1:可选地,在所述协议规定或者所述波束配置信令指示所述控制链路的下行参考信号与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的发送波束为所述控制链路的下行参考信号的发送波束相同。
其中,上述所述的控制链路的下行参考信号可以为SSB或CSI-RS。
下面针对与回传链路建立QCL关联的下行参考信号分别为SSB和CSI-RS的不同情况进行说明。
(1)若协议规定或者波束配置信令指示:回传链路与控制链路的SSB存在QCL关联,那么中继设备选择控制链路最近一次随机接入过程中使用的SSB的发送波束,回传链路的下行信号的发送波束,具体实现细节可如下所述:
可选地:在网络侧设备一侧看来,SSB传输的时频资源上,回传链路的下行信号的发送波束和控制链路的SSB的发送波束一致。
可选地,在控制链路的SSB与回传链路存在QCL关系,且网络侧设备发送给中继设备的第二配置信令中携带有SSB的标识信息(例如SSB编号)的情况下,回传链路的下行信号的发送波束与第二配置信令中携带的SSB的标识信息对应的SSB的发送波束相同。其中,所述第二配置信令可以为MAC CE或者RRC或者DCI。另外,该第二配置信令与上述波束配置信令可以相同,也可以不同。
其中,第二配置信令中携带的SSB的标识信息表示的SSB可能与中继设备随机接入过程中的SSB不同。
(2)若协议规定或者波束配置信令指示:回传链路与控制链路的CSI-RS存在QCL关联,那么中继设备的回传链路则选择CSI-RS作为QCL的参考波束,具体实现细节举例如下:
可选地:在网络侧设备一侧看来,CSI-RS传输的时频资源上,回传链路的下行信号的发送波束和控制链路的CSI-RS发送波束一致。
C-1.2:在所述协议规定或者所述波束配置信令指示所述控制链路的下行物理信道与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的发送波束与所述控制链路的下行物理信道的发送波束相同。
其中,上述下行物理信道可以为PDCCH或PDSCH。下面针对与回传链路建立QCL关联的下行物理信道分别为PDCCH和PDSCH的不同情况进行说明。
(1)若协议规定或者波束配置信令指示:回传链路与控制链路的PDCCH存在QCL关联,则具体实现细节可如下所述:
可选地,在网络侧设备一侧看来,在PDCCH的特定搜索空间或特定CORESET所在的时频资源上,回传链路的下行信号发送波束与该特定SS或特定CORESET上的PDCCH的波束一致。其中,特定CORESET的确定方式可以是协议预定义的(例如指定使用Type0PDCCH对应的CORESET为特定CORESET,或者CORESET编号最小的CORESET为特定CORESET),也可以是网络侧配置的(即可以在网络侧设备发送的信令中携带CORESET的标识信息(例如CORESET编码),则该标识信息表示的CORESET即为特定CORESET)。同理,特定搜索空间的确定方式与特定CORESET的确定方式类似,此处不再赘述。
可选地,在网络侧设备一侧看来,在PDCCH的特定搜索空间或特定CORESET后的v1个时间单元,回传链路的下行信号发送波束与该特定搜索空间或特定CORESET上的PDCCH的波束一致。其中,该时间单元例如为时隙(slot)或符号(symbol)或毫秒(ms)。
(2)若协议规定或者波束配置信令指示:回传链路与控制链路的PDSCH存在QCL关联,则回传链路的下行信号的发送波束与PDSCH的发送波束相同。
可选地,如果控制链路调度了动态PDSCH和半静态PDSCH,回传链路下行信号的发送波束可以优先选择半静态PDSCH的发送波束。
即控制链路包含了动态调度的PDSCH和半静态调度(Semi-Persistent Scheduling,SPS)的PDSCH。考虑到回传链路需要长时间开启,因此,回传链路的下行信号的发送波束可以与控制链路的半静态调度的PDSCH的发送波束相同。
此种情况下的具体实现细节举例如下:
可选地,在网络侧设备一侧看来,在PDSCH发送后的v2个时间单元内,回传链路的下行信号的发送波束与控制链路的PDSCH的波束一致。可选地,v2取值可以由协议规定或者网络侧显式配置或者始终有效直到为PDSCH配置新TCI配置或者始终有效直 到下一次控制链路PDCCH/PDSCH传输。
可选地,在网络侧设备一侧看来,从PDSCH的SPS激活信令发送后的v3个时间单元开始,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。v3个时间单元大于或等于准共址时长(timeDurationForQCL)。
可选地,在网络侧设备一侧看来,从PDSCH的SPS激活信令对应的反馈信令发送后的v4个时间单元开始,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。v4个时间单元大于或等于准共址时长(timeDurationForQCL)。
可选地,在网络侧设备一侧看来,从SPS的第一个PDSCH资源开始,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。
可选地,在网络侧设备一侧看来,在控制链路的半静态调度的PDSCH传输后的v5个时间单元内,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。其中,该时间单元例如为时隙(slot)或符号(symbol)或毫秒(ms)。
可选地,在网络侧设备一侧看来,在SPS最后一个有效的PDSCH后的v6个时间单元内,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。
可选地,在网络侧设备一侧看来,在中继设备收到SPS去激活信令后的v7个时间单元内,回传链路的下行信号的发送波束与控制链路的半静态调度的PDSCH的波束一致。
此处需要说明的是,半静态PDSCH的TCI配置是有效的,直到控制链路接收到新的TCI激活信令/配置信令为该半静态PDSCH重新指示了TCI配置,或者直到新的半静态PDSCH激活信令/配置信令的TCI指示信息开始生效的时刻。
即当前回传链路的下行信号的发送波束的生效时间结束后,网络侧设备的回传链路按照协议规定或者波束配置信令的指示,重新根据控制链路的物理信道来确定回传链路的下行信号的发送波束。例如,半静态PDSCH去激活后,网络侧设备使用动态调度PDSCH或者PDCCH的发送波束或者控制链路最近一次随机接入过程选择的SSB的发送波束,确定回传链路的下行信号的发送波束。
此外,需要说明的是,针对PDCCH/PDSCH/CSI-RS波束没有生效的时间段(例如某个场景下PDCCH/PDSCH/CSI-RS没有配置波束,或者配置了波束但未生效),网络侧设备的回传链路的下行信号的发送波束可以默认采用SSB波束,或者采用专用信令指示的波束。
C-1.3:所述回传链路下行信号的发送波束根据所述控制链路的下行参考信号和下行物理信道中优先级最高的一者或者距离当前时刻最近的一者的发送波束确定。
由此可知,按照协议规定可以定义下行参考信号(例如CSI-RS、SSB)和下行物理信道(例如PDCCH和PDSCH)之间的优先级来选择控制链路的物理信道。例如,假设SSB优先级低于PDCCH优先级低于PDSCH优先级,则当PDCCH和PDSCH没有配置专门的TCI时,网络侧设备的回传链路的下行信号的发送波束与SSB的发送波束相同;如果网络侧设备配置了PDCCH的TCI但是没有配置PDSCH的TCI,那么网络侧设备的 回传链路的下行信号的发送波束与PDCCH的发送波束相同;如果网络侧设备配置PDSCH的TCI,那么网络侧设备的回传链路的下行信号的发送波束与PDSCH的发送波束相同。进一步的,例如,控制链路PDCCH的多个不同类型CORESET中,定义CORESET编号最小的CORESET优先级最高。又例如,控制链路配置了多个CSI-RS和/或SSB,优先选择端口号最小的参考信号的发送波束,作为网络侧设备的回传链路的下行信号的发送波束。又例如,控制链路配置了动态调度PDSCH和半静态调度PDSCH,优先选择半静态调度PDSCH的发送波束作为网络侧设备的回传链路的下行信号发送波束。类似的,还可以假设SSB优先级低于PDSCH优先级低于PDCCH优先级,这里不再重复。
另外,还可以按照就近原则,选择回传链路开启之前,根据最近一次传输的控制链路的物理信道(SSB,PDCCH,PDSCH,CSI-RS的其中一种)的波束,确定网络侧设备的回传链路的下行信号的发送波束。情况C-2:在所述波束配置信令包括目标标识信息的情况下,所述回传链路的下行信号的发送波束与所述目标标识信息指示的TCI配置对应的波束相同,所述目标标识信息指示所述控制链路的候选TCI配置集合中的其中一个TCI配置。
可选地,所述目标标识信息指示的TCI配置为:高层配置信息中指示的M个候选TCI配置中的其中一个,或者所述控制链路的TCI激活命令中指示的N个TCI配置中的其中一个,M和N均为大于0的整数;
其中,所述N个TCI配置是所述M个TCI配置中的一部分。
即网络侧设备的回传链路的下行信号的发送波束对应的TCI配置,可以从高层配置信息(例如PDSCH-Config)中提供的M个候选TCI配置中选择,也可以从控制链路的MAC CE的TCI激活命令中N个TCI配置中进行选择。
情况C-3:在所述波束配置信令包括TCI配置的情况下,所述回传链路的下行信号的发送波束为所述波束配置信令中的TCI配置对应的波束。
即还可以通过专用信令(即上述波束配置信令)直接指示中继设备的回传链路的TCI配置的具体参数。此种情况下,网络侧设备的回传链路的下行信号的发送波束,则与该波束配置信令中的TCI配置对应的波束相同。
此外,所述协议规定还可以指示按照控制链路工作的协议版本优先级来确定网络侧设备的回传链路的下行信号的发送波束。例如控制链路按照Rel-17协议版本配置控制链路的下行信号的TCI配置(即通过高层信令信息DLorJoint-TCIState或者UL-TCIState配置下行信号的TCI配置),那么回传链路优先按照控制链路Rel-17协议版本的TCI配置对应的波束来确定所述候选波束集合或者确定控制链路的物理信道的TCI配置或者直接作为,网络侧设备的回传链路的下行信号的发送波束和对应的上行信号的接收波束。
其中,根据DLorJoint-TCIState或者UL-TCIState中配置的候选的控制链路TCI配置集合构成所述回传链路的候选波束集合,确定网络侧设备的回传链路的下行信号的发送波束的方案,与前述情况C-1.1至C-1.3以及C-2至C-3所述的方案,属于并列方案。可 选地,根据DLorJoint-TCIState或者UL-TCIState中配置的候选TCI配置集合中已经激活使用的TCI配置,确定网络侧设备的回传链路的下行信号的发送波束的方案可以设置为最高优先级的方案,即当存在DLorJoint-TCIState或者UL-TCIState时,则回传链路的下行信号的发送波束根据DLorJoint-TCIState或者UL-TCIState中的TCI配置确定;当不存在DLorJoint-TCIState和UL-TCIState时,则可以采用前述情况C-1.1至C-1.3以及C-2至C-3所述的方案。
可选地,所述方法还包括:
在所述回传链路与所述控制链路的传输在目标时间内存在交叠的情况下,所述网络侧设备执行如下中的其中一项:
所述网络侧设备使用目标发送波束发送所述回传链路的下行信号或者使用目标接收波束接收所述回传链路的上行信号;
所述网络侧设备在所述目标时间内不发送所述回传链路的下行信号转发或者不接收所述回传链路的上行信号;
其中,所述目标发送波束为所述控制链路在所述目标时间内使用的下行发送波束,所述目标接收波束为所述控制链路在目标时间内使用的上行接收波束;
所述目标时间包括所述网络侧设备的所述控制链路的传输的时间单元、所述控制链路的传输之前的a个时间单元、所述控制链路的传输之后的b个时间单元中的至少一者,a、b分别表示大于零的整数,所述时间单元为正交频分复用符号、时隙、子帧、无线帧中的其中一种。
另外,上述网络侧设备的所述控制链路的传输包括控制链路的下行信号发送和上行信号接收。
由此可知,可以定义网络侧设备的回传链路的下行信号的发送波束的优先级,低于网络侧设备的控制链路的下行信号的发送波束的优先级。
例如,网络侧设备的回传链路与网络侧设备的控制链路的传输(包括控制链路的下行信号接收和上行信号发送)在上述目标时间内存在交叠时,网络侧设备可以使用网络侧设备的控制链路的下行信号的发送波束,进行回传链路的下行信号接收,或者使用网络侧设备的控制链路的上行信号的接收波束,进行回传链路的上行信号接收;或者,网络侧设备也可以在控制链路传输时间段内不对回传链路进行信号传输。
可选地,根据协议规定,在网络侧设备一侧,控制链路的不同的参考信号或者物理信道的传输与回传链路的传输存在时间交叠的情况时,网络侧设备执行的方案可以分别确定。例如,对于控制链路的PDCCH或者PDSCH传输时间段,网络侧设备的回传链路按照控制链路的PDCCH或者PDSCH的TCI配置进行回传链路下行信号发送;对于控制链路的PUCCH或者PUSCH传输时间段,网络侧设备的回传链路不进行上行信号接收;对于控制链路的CSI-RS传输时间段,网络侧设备的回传链路不进行下行信号发送。
此外,网络侧设备的回传链路的下行信号的发送波束的有效时间可以是静态的或者 自适应的或者半静态的。
例如,网络侧设备的回传链路的下行信号的发送波束在确定之后始终有效,直到配置回传链路的下行信号新的发送波束,或者作为参考的控制链路的物理信道的发送波束发生改变;
或者,例如:网络侧设备的回传链路的下行信号的发送波束在确定之后在一段时间内有效,有效时间长度由协议规定指示;
或者,例如,网络侧设备的回传链路的下行信号的发送波束始终与控制链路最近一次使用的发送波束一致,即回传链路的下行信号的发送波束持续有效直到控制链路下一次信号发送;
或者,例如,协议规定指示:回传链路与控制链路的PDCCH存在QCL关联,并且当控制链路的PDCCH更新了发送波束时,网络侧设备的回传链路也相应的更新下行信号的发送波束,并且回传链路的下行信号发送波束的生效时间,不会早于控制链路的PDCCH发送波束的生效时间(例如回传链路的发送波束在控制链路的PDCCH的发送波束生效之后立刻生效)。
或者,例如,协议规定指示:回传链路与控制链路的PDSCH存在QCL关联,并且当控制链路的PDSCH更新了TCI配置时,网络侧设备的回传链路也相应的更新下行信号的发送波束,并且回传链路的下行信号发送波束生效时间不会早于控制链路的PDSCH发送波束的生效时间(例如,回传链路的发送波束在控制链路的PDSCH的发送波束生效之后立刻生效)。
可选地,所述方法还包括:
所述网络侧设备向所述中继设备发送第六配置信令,其中,所述第六配置信令用于指示更新所述回传链路的下行信号的TCI配置。
即网络侧设备还可以指示中继设备何时更新回传链路的下行信号的TCI配置。
可选地,网络侧设备根据候选波束集合,确定回传链路的上行信号的接收配置,可以分为如下所述的情况D-1至情况D-4:
情况D-1:协议规定指示所述回传链路的上行信号的接收波束与所述回传链路的下行信号的发送波束相同。
即网络侧设备的回传链路的上行信号的接收波束可以与下行信号的发送波束相同。
情况D-2:所述协议规定或者所述波束配置信令指示所述回传链路的上行信号的接收波束根据所述控制链路的上行参考信号和/或上行物理信道的接收波束确定。
其中,所述控制链路的上行参考信号可以为SRS和/或PRACH;上述回传链路的上行物理信道可以为PUSCH或PUSCH。即网络侧设备的回传链路可以根据控制链路的PUCCH信道或者PUSCH信道或者SRS或者PRACH,来确定网络侧设备的回传链路的上行信号的接收波束。例如网络侧设备根据最近一次上行传输(PUCCH或者PUSCH或者SRS或者PRACH)的波束来确定回传链路上行信号的接收波束。
下面针对根据网络侧设备的控制链路的PUCCH信道或者PUSCH信道或者SRS或PRACH,来确定网络侧设备的回传链路的上行信号的接收波束的不同情况,分别进行说明。
(1)SRS接收波束作为网络侧设备的回传链路的上行信号的接收波束,具体可以为:SRS传输的时频资源上,网络侧设备的回传链路的上行信号的接收波束和该SRS的接收波束一致。
(2)PUCCH接收波束作为网络侧设备的回传链路的上行信号的接收波束,具体可以为如下中的其中一项:
在所述PUCCH所在的时频资源上,网络侧设备的回传链路的上行信号的接收波束和该PUCCH的接收波束一致;
在所述PUCCH后的v8个时间单元内,网络侧设备的回传链路的上行信号的接收波束和该PUCCH的接收波束一致,其中,该时间单元例如为时隙(slot)或符号(symbol)或毫秒(ms)。
(3)PUSCH接收波束作为网络侧设备的回传链路的上行信号的接收波束,具体可以为如下中的其中一项:
在所述PUSCH的传输时频资源上,网络侧设备的回传链路的上行信号的接收波束和该PUSCH的接收波束一致;
从PUSCH调度信令发送后的v9个时间单元开始,网络侧设备的回传链路的上行信号的接收波束和该PUSCH的接收波束一致;可选地,v9个时间单元大于等于timeDurationForQCL;
从半静态PUSCH激活信令发送后的v10个时间单元开始,网络侧设备的回传链路的上行信号的接收波束和该半静态PUSCH的接收波束一致;
从半静态PUSCH激活信令对应的反馈信令发送后的v11个时间单元开始,网络侧设备的回传链路的上行信号的接收波束和该半静态PUSCH的接收波束一致;
从半静态调度的第一个PUSCH资源开始,网络侧设备的回传链路的上行信号的接收波束和该半静态PUSCH的接收波束一致;
在PUSCH传输后的v12个时间单元内,网络侧设备的回传链路的上行信号的接收波束和该PUSCH的接收波束一致,其中,该时间单元例如为时隙(slot)或符号(symbol)或毫秒(ms);
在半静态PUSCH最后一个有效的PUSCH后的v13个时间单元内,网络侧设备的回传链路的上行信号的接收波束和该半静态PUSCH的接收波束一致,其中,该时间单元例如为时隙(slot)或符号(symbol)或毫秒(ms);
在网络侧设备发送半静态PUSCH去激活信令后的v14个时间单元内,网络侧设备的回传链路的上行信号的接收波束和该半静态PUSCH的接收波束一致。
其中,需要说明的是,半静态PUSCH资源为有效资源,直到控制链路收到了新的激 活信令/配置信令,为该半静态PUSCH重新指示了传输资源/传输波束等信息,或者直到新的激活信令/配置信令的指示信息开始生效的时刻。
此外,针对某时间段,如果网络侧设备的回传链路的上行信号的接收波束不能根据PUCCH/PUSCH/SRS波束确定,则默认采用SSB/CSI-RS的接收波束作为网络侧设备的回传链路的上行信号的接收波束,所述SSB/CSI-RS为控制链路最近一次执行随机接入所选择的下行参考信号。
情况D-3:所述协议规定或者所述波束配置信令指示所述回传链路的上行信号的接收波束根据所述控制链路的下行参考信号和/或下行物理信道的发送波束确定。
其中,根据控制链路的下行参考信号和/或下行物理信道,确定网络侧设备的回传链路的上行信号的接收波束的具体情况,与根据控制链路的下行参考信号和/或下行物理信道确定网络侧设备的回传链路的下行信号的发送波束的具体情况类似,可参见前文所述,此处不再赘述。
另外,需要说明的是,针对PDCCH/PDSCH/CSI-RS波束没有生效的时间段,则网络侧备的回传链路的上行信号的接收波束,可以采用专用信令指示的波束。
情况D-4:所述波束配置信令指示目标候选配置中的其中一个配置对应的波束为所述回传链路的上行信号的接收波束,其中,所述目标候选配置包括所述控制链路中配置的上行信号配置信息指示的配置。
即可以通过专用信令(例如上述波束配置信令)以网络侧设备的控制链路中配置的上行信号配置信息(PUCCH-SpatialRelationInfo),作为回传链路的上行信号的接收波束的候选配置,并指示其中一个配置对应的波束作为网络侧设备的回传链路的上行信号发送接收。例如,当存在DLorJoint-TCIState或者UL-TCIState时,则网络侧设备的回传链路的上行信号的接收波束可以为DLorJoint-TCIState或者UL-TCIState中的TCI配置对应的波束。其中,当不存在DLorJoint-TCIState和UL-TCIState时,则可以采用前述情况B-1至B-3所述的方案,确定网络侧设备的回传链路的上行信号接收波束。
此外,网络侧设备的回传链路的上行信号的接收波束的有效时间可以是静态的或者自适应的或者半静态的。
例如,网络侧设备的回传链路的上行信号的接收波束在确定之后始终有效,直到配置回传链路的上行信号新的接收波束,或者作为参考的控制链路的物理信道的接收波束发生改变;
或者,例如,网络侧设备的回传链路的上行信号的接收波束在确定之后在一段时间内有效,有效时间长度由协议规定指示;
或者,例如,网络侧设备的回传链路的上行信号的接收波束,始终与网络侧设备的控制链路最近一次使用的上行信号接收波束相同,即网络侧设备的回传链路的上行信号的接收波束置持续有效直到控制链路下一次上行信号接收;
或者,例如,协议规定指示:网络侧设备的回传链路与控制链路的PUCCH存在QCL 关联,并且当控制链路的PUCCH更新了接收波束时,网络侧设备的回传链路也相应的更新上行信号接收波束,并且回传链路的上行信号接收波束生效时间,不会早于控制链路的PUCCH接收波束生效时间(例如回传链路的上行信号接收波束在控制链路的PUCCH的接收波束生效之后立刻生效)。
或者,例如,协议规定指示:网络侧设备的回传链路与控制链路的PUSCH存在QCL关联,并且当控制链路的PUSCH更新了接收波束时,网络侧设备的回传链路也相应的更新上行信号接收波束,并且回传链路的上行信号接收波束生效时间不会早于控制链路的PUSCH接收波束生效时间(例如,回传链路的上行信号接收波束在控制链路的PUSCH的接收波束生效之后立刻生效)。
或者,例如,协议规定指示:网络侧设备的回传链路上行接收波束与回传链路的下行信号发送波束关联,并且当回传链路的下行发送波束更新时,回传链路也相应的更新上行信号接收波束,并且回传链路的上行信号的接收波束生效时间不会早于回传链路的下行信号的发送波束的生效时间。
本申请实施例提供的回传链路的传输配置确定方法,执行主体可以为回传链路的传输配置确定装置。本申请实施例中以回传链路的传输配置确定装置执行回传链路的传输配置确定的方法为例,说明本申请实施例提供的回传链路的传输配置确定装置。
第三方面,本申请实施例提供了一种回传链路的传输配置确定装置,如图5所示,该回传链路的传输配置确定装置50包括:
候选波束集合获取模块501,用于获取控制链路的可配置的候选波束集合;
第一配置确定模块502,用于根据所述候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置。
可选地,所述候选波束集合包括如下中至少一项:
所述控制链路的候选TCI配置信息对应的波束;
所述控制链路的下行参考信号对应的波束;
所述控制链路的下行物理信道对应的波束;
所述控制链路的上行参考信号对应的波束;
所述控制链路的上行物理信道对应的波束。
可选地,所述第一配置确定模块包括:
第一确定子模块,用于基于协议规定,根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置;
或者,
第一接收子模块,用于接收网络侧设备发送的第一配置信令;
第二确定子模块,用于基于所述第一配置信令,根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置。
可选地,在所述协议规定或者所述第一配置信令指示所述控制链路的下行参考信号 和/或下行物理信道,与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的TCI配置,根据所述控制链路的下行参考信号和/或下行物理信道确定;
或者,
在所述第一配置信令包括目标标识信息的情况下,所述回传链路的下行信号的TCI配置与所述目标标识信息指示的TCI配置相同或部分相同,所述目标标识信息指示所述控制链路的候选TCI配置集合中的其中一个TCI配置;
或者,
在所述第一配置信令包括TCI配置的情况下,所述回传链路的下行信号的TCI配置为所述第一配置信令中的TCI配置。
可选地,在所述协议规定或者所述第一配置信令指示所述控制链路的下行参考信号与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的TCI配置中包括的参考信号为所述控制链路的下行参考信号,所述QCL类型根据所述协议规定确定或者根据所述网络侧设备的配置确定;
或者,
在所述协议规定或者所述第一配置信令指示所述控制链路的下行物理信道与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的TCI配置与所述控制链路的下行物理信道的TCI配置相同或部分相同。
可选地,所述部分相同为TCI配置中包括的参考信号相同,QCL类型由所述协议规定指示或者由配置消息指示。
可选地,所述目标标识信息指示的TCI配置为:高层配置信息中指示的M个候选TCI配置中的其中一个,或者所述控制链路的TCI激活命令中指示的N个TCI配置中的其中一个,M和N均为大于0的整数;
其中,所述N个TCI配置是所述M个TCI配置中的一部分。
可选地,所述回传链路下行信号的TCI配置根据所述控制链路的下行参考信号和下行物理信道中优先级最高的一者或者距离当前时刻最近的一者确定。
可选地,在所述中继设备基于所述第一配置信令,根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置的情况下,所述回传链路的下行信号的TCI配置从k+X表示的时间开始生效;
其中,k表示所述第一配置信令所在的时隙或最后一个符号,或者所述第一配置信令对应的混合自动重传请求-确认反馈消息所在时隙或最后一个符号,X由所述协议规定确定或根据所述中继设备的能力确定。
可选地,所述装置还包括:
第一处理模块,用于在所述回传链路与所述控制链路的传输在目标时间内存在交叠的情况下,执行如下中的其中一项:
使用目标TCI配置进行所述回传链路的下行信号接收或者使用目标上行发送配置进 行所述回传链路的上行信号转发;
在所述目标时间内不进行回传链路的下行信号转发或者上行信号转发;
其中,所述目标TCI配置为所述控制链路在所述目标时间内使用的TCI配置的其中一个TCI配置,所述目标上行发送配置为所述控制链路在所述目标时间内使用的上行发送配置;
所述目标时间包括所述中继设备的所述控制链路的传输的时间单元、所述控制链路的传输之前的a个时间单元、所述控制链路的传输之后的b个时间单元中的至少一者,a、b分别表示大于零的整数,所述时间单元为正交频分复用符号、时隙、子帧、无线帧中的其中一种。
可选地,所述装置还包括:
第一更新模块,用于在所述控制链路的TCI配置更新时,或者在所述中继设备接收到网络侧设备发送的回传链路的下行信号新的TCI配置时,或者在所述中继设备接收到网络侧设备发送的第六配置信令时,更新并激活所述回传链路的下行信号新的TCI配置;
其中,所述第六配置信令用于指示更新所述回传链路的下行信号的TCI配置。
可选地,所述装置还包括:
第二处理模块,用于在所述第一更新模块更新并激活所述回传链路的下行信号新的TCI配置之后,执行如下中的其中一项:
保持所述回传链路的下行信号的放大系数不变;
根据第一放大系数,调整所述回传链路的下行信号的放大系数,其中,所述第一放大系数携带在所述网络侧设备发送的第三配置信令中;
根据第一信道测量结果与第二信道测量结果之间的差异,调整所述回传链路的下行信号的放大系数;
其中,所述第一信道测量结果和所述第二信道测量结果分别为更新并激活所述回传链路的下行信号新的TCI配置之前和之后的信道测量结果。
可选地,所述回传链路的上行信号的发送配置表示所述回传链路的上行信号的发送空域滤波器,与如下中其中一项相关联:
所述回传链路的下行信号的空间接收机参数;
所述控制链路的一个上行信号的发送空域滤波器;
所述控制链路的一个下行信号的接收空域滤波器。
可选地,所述第一配置确定模块包括:
第三确定子模块,用于基于协议规定,根据所述候选波束集合,确定所述回传链路的上行信号的发送配置;
或者,
第二接收子模块,用于接收网络侧设备发送的第四配置信令;
第四确定子模块,用于基于所述第四配置信令,根据所述候选波束集合,确定所述 回传链路的上行信号的发送配置;
或者,
第五确定子模块,用于根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置;
第六确定子模块,用于基于所述协议规定,根据所述回传链路的下行信号的TCI配置,确定所述回传链路的上行信号的发送配置。
可选地,所述协议规定指示所述回传链路的上行信号的发送空域滤波器与所述回传链路的下行信号的空间接收机参数相关联;
或者,
所述协议规定或者所述第四配置信令指示所述回传链路的上行信号的发送配置根据所述控制链路的上行参考信号和/或上行物理信道的配置确定;
或者,
所述协议规定或者所述第四配置信令指示所述回传链路的上行信号的发送配置根据所述控制链路的下行参考信号和/或下行物理信道确定;
或者,
所述第四配置信令指示目标候选配置中的其中一个配置为所述回传链路的上行信号的发送配置,其中,所述目标候选配置包括所述控制链路中配置的上行信号配置信息指示的配置。
可选地,所述装置还包括:
第三处理模块,用于在所述回传链路的上行发送配置更新之后,执行如下中的其中一项:
保持所述回传链路的上行信号的放大系数不变;
根据第二放大系数,调整所述回传链路的上行信号的放大系数,其中,所述第二放大系数携带在网络侧设备发送第五配置信令中;
根据第三信道测量结果与第四信道测量结果之间的差异,调整所述回传链路的上行信号的放大系数;
其中,所述第三信道测量结果和所述第四信道测量结果分别为所述回传链路的上行信号的发送配置更新之前和之后的信道测量结果。
本申请实施例中的回传链路的传输配置确定装置可以是中继设备,例如具有操作系统的中继设备,也可以是中继设备中的部件,例如集成电路或芯片。
本申请实施例提供的回传链路的传输配置确定装置能够实现3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
第四方面,本申请实施例提供了一种回传链路的传输配置确定装置,如图6所示,该回传链路的传输配置确定装置60包括:
候选波束集合确定模块601,用于确定控制链路的可配置的候选波束集合;
第一发送模块602,用于向中继设备发送回传链路的波束配置信令,其中,所述波束配置信令,用于指示所述中继设备根据控制链路的可配置的候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置;
第二配置确定模块603,用于基于所述波束配置信令或者协议规定,根据所述候选波束集合,确定所述回传链路的下行信号的发送波束和/或上行信号的接收波束。
可选地,所述候选波束集合包括如下中至少一项:
所述控制链路的候选TCI配置信息对应的波束;
所述控制链路的下行参考信号对应的波束;
所述控制链路的下行物理信道对应的波束;
所述控制链路的上行参考信号对应的波束;
所述控制链路的上行物理信道对应的波束。
可选地,在所述协议规定或者所述波束配置信令指示所述控制链路的下行参考信号和/或下行物理信道,与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的发送波束,根据所述控制链路的下行参考信号和/或下行物理信道确定;
或者,
在所述波束配置信令包括目标标识信息的情况下,所述回传链路的下行信号的发送波束与所述目标标识信息指示的TCI配置对应的波束相同,所述目标标识信息指示所述控制链路的候选TCI配置集合中的其中一个TCI配置;
或者,
在所述波束配置信令包括TCI配置的情况下,所述回传链路的下行信号的发送波束为所述波束配置信令中的TCI配置对应的波束。
可选地,在所述协议规定或者所述波束配置信令指示所述控制链路的下行参考信号与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的发送波束为所述控制链路的下行参考信号的发送波束相同;
或者,
在所述协议规定或者所述波束配置信令指示所述控制链路的下行物理信道与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的发送波束与所述控制链路的下行物理信道的发送波束相同。
可选地,所述目标标识信息指示的TCI配置为:高层配置信息中指示的M个候选TCI配置中的其中一个,或者所述控制链路的TCI激活命令中指示的N个TCI配置中的其中一个,M和N均为大于0的整数;
其中,所述N个TCI配置是所述M个TCI配置中的一部分。
可选地,所述回传链路下行信号的发送波束根据所述控制链路的下行参考信号和下行物理信道中优先级最高的一者或者距离当前时刻最近的一者的发送波束确定。
可选地,所述装置还包括:
第二发送模块,用于向所述中继设备发送第六配置信令,其中,所述第六配置信令用于指示更新所述回传链路的下行信号的TCI配置。
可选地,协议规定指示所述回传链路的上行信号的接收波束与所述回传链路的下行信号的发送波束相同;
或者,
所述协议规定或者所述波束配置信令指示所述回传链路的上行信号的接收波束根据所述控制链路的上行参考信号和/或上行物理信道的接收波束确定;
或者,
所述协议规定或者所述波束配置信令指示所述回传链路的上行信号的接收波束根据所述控制链路的下行参考信号和/或下行物理信道的发送波束确定;
或者,
所述波束配置信令指示目标候选配置中的其中一个配置对应的波束为所述回传链路的上行信号的接收波束,其中,所述目标候选配置包括所述控制链路中配置的上行信号配置信息指示的配置。
本申请实施例中的回传链路的传输配置确定装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是网络侧设备。示例性的,终端可以包括但不限于上述所列举的网络侧设备12的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的回传链路的传输配置确定装置能够实现4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701和存储器702,存储器702上存储有可在所述处理器701上运行的程序或指令,例如,该通信设备700为中继设备时,该程序或指令被处理器701执行时实现上述第一方面所述的回传链路的传输配置确定方法实施例的各个步骤,且能达到相同的技术效果。该通信设备700为网络侧设备时,该程序或指令被处理器701执行时实现上述第二方面所述的回传链路的传输配置确定方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于向中继设备发送回传链路的波束配置信令,其中,所述波束配置信令,用于指示所述中继设备根据控制链路的可配置的候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和上行信号的发送配置;处理器用于基于所述波束配置信令,确定所述回传链路的下行信号的发送波束。
该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络侧设备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备800还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图4所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述回传链路的传输配置确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述回传链路的传输配置确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述回传链路的传输配置确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种回传链路的传输配置确定系统,包括:中继设备及网络侧设备,所述终端可用于执行如上第一方面所述的回传链路的传输配置确定方法的步骤,所述网络侧设备可用于执行如上第二方面所述的回传链路的传输配置确定方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素, 而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络侧设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种回传链路的传输配置确定方法,其中,所述方法包括:
    中继设备获取控制链路的可配置的候选波束集合;
    所述中继设备根据所述候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置。
  2. 根据权利要求1所述的方法,其中,所述候选波束集合包括如下中至少一项:
    所述控制链路的候选TCI配置信息对应的波束;
    所述控制链路的下行参考信号对应的波束;
    所述控制链路的下行物理信道对应的波束;
    所述控制链路的上行参考信号对应的波束;
    所述控制链路的上行物理信道对应的波束。
  3. 根据权利要求2所述的方法,其中,所述中继设备根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置,包括:
    所述中继设备基于协议规定,根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置;
    或者,
    所述中继设备接收网络侧设备发送的第一配置信令;
    所述中继设备基于所述第一配置信令,根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置。
  4. 根据权利要求3所述的方法,其中,在所述协议规定或者所述第一配置信令指示所述控制链路的下行参考信号和/或下行物理信道,与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的TCI配置,根据所述控制链路的下行参考信号和/或下行物理信道确定;
    或者,
    在所述第一配置信令包括目标标识信息的情况下,所述回传链路的下行信号的TCI配置与所述目标标识信息指示的TCI配置相同或部分相同,所述目标标识信息指示所述控制链路的候选TCI配置集合中的其中一个TCI配置;
    或者,
    在所述第一配置信令包括TCI配置的情况下,所述回传链路的下行信号的TCI配置为所述第一配置信令中的TCI配置。
  5. 根据权利要求4所述的方法,其中,在所述协议规定或者所述第一配置信令指示所述控制链路的下行参考信号与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的TCI配置中包括的参考信号为所述控制链路的下行参考信号,所述QCL类型根据所述协议规定确定或者根据所述网络侧设备的配置确定;
    或者,
    在所述协议规定或者所述第一配置信令指示所述控制链路的下行物理信道与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的TCI配置与所述控制链路的下行物理信道的TCI配置相同或部分相同。
  6. 根据权利要求5所述的方法,其中,所述部分相同为TCI配置中包括的参考信号相同,QCL类型由所述协议规定指示或者由配置消息指示。
  7. 根据权利要求4所述的方法,其中,所述目标标识信息指示的TCI配置为:高层配置信息中指示的M个候选TCI配置中的其中一个,或者所述控制链路的TCI激活命令中指示的N个TCI配置中的其中一个,M和N均为大于0的整数;
    其中,所述N个TCI配置是所述M个TCI配置中的一部分。
  8. 根据权利要求3所述的方法,其中,所述回传链路下行信号的TCI配置根据所述控制链路的下行参考信号和下行物理信道中优先级最高的一者或者距离当前时刻最近的一者确定。
  9. 根据权利要求3所述的方法,其中,在所述中继设备基于所述第一配置信令,根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置的情况下,所述回传链路的下行信号的TCI配置从k+X表示的时间开始生效;
    其中,k表示所述第一配置信令所在的时隙或最后一个符号,或者所述第一配置信令对应的混合自动重传请求-确认反馈消息所在时隙或最后一个符号,X由所述协议规定确定或根据所述中继设备的能力确定。
  10. 根据权利要求1所述的方法,其中,所述方法还包括:
    在所述回传链路与所述控制链路的传输在目标时间内存在交叠的情况下,所述中继设备执行如下中的其中一项:
    所述中继设备使用目标TCI配置进行所述回传链路的下行信号接收或者使用目标上行发送配置进行所述回传链路的上行信号转发;
    所述中继设备在所述目标时间内不进行回传链路的下行信号转发或者不进行回传链路的上行信号转发;
    其中,所述目标TCI配置为所述控制链路在所述目标时间内使用的TCI配置的其中一个TCI配置,所述目标上行发送配置为所述控制链路在所述目标时间内使用的上行发送配置;
    所述目标时间包括所述控制链路的传输的时间单元、所述控制链路的传输之前的a个时间单元、所述控制链路的传输之后的b个时间单元中的至少一者,a、b分别表示大于零的整数,所述时间单元为正交频分复用符号、时隙、子帧、无线帧中的其中一种。
  11. 根据权利要求1所述的方法,其中,所述方法还包括:
    在所述控制链路的TCI配置更新时,或者在所述中继设备接收到网络侧设备发送的回传链路的下行信号新的TCI配置时,或者在所述中继设备接收到网络侧设备发送的第六配置信令时,所述中继设备更新并激活所述回传链路的下行信号新的TCI配置;
    其中,所述第六配置信令用于指示更新所述回传链路的下行信号的TCI配置。
  12. 根据权利要求11所述的方法,其中,所述中继设备更新并激活所述回传链路的下行信号新的TCI配置之后,所述方法还包括:
    所述中继设备执行如下中的其中一项:
    保持所述回传链路的下行信号的放大系数不变;
    根据第一放大系数,调整所述回传链路的下行信号的放大系数,其中,所述第一放大系数携带在所述网络侧设备发送的第三配置信令中;
    根据第一信道测量结果与第二信道测量结果之间的差异,调整所述回传链路的下行信号的放大系数;
    其中,所述第一信道测量结果和所述第二信道测量结果分别为更新并激活所述回传链路的下行信号新的TCI配置之前和之后的信道测量结果。
  13. 根据权利要求1所述的方法,其中,所述回传链路的上行信号的发送配置表示所述回传链路的上行信号的发送空域滤波器,与如下中其中一项相关联:
    所述回传链路的下行信号的空间接收机参数;
    所述控制链路的一个上行信号的发送空域滤波器;
    所述控制链路的一个下行信号的接收空域滤波器。
  14. 根据权利要求2所述的方法,其中,所述中继设备根据所述候选波束集合,确定所述回传链路的上行信号的发送配置,包括:
    所述中继设备基于协议规定,根据所述候选波束集合,直接确定所述回传链路的上行信号的发送配置;
    或者,
    所述中继设备接收网络侧设备发送的第四配置信令;
    所述中继设备基于所述第四配置信令,根据所述候选波束集合,确定所述回传链路的上行信号的发送配置;
    或者,
    所述中继设备根据所述候选波束集合,确定所述回传链路的下行信号的TCI配置;
    所述中继设备基于所述协议规定,根据所述回传链路的下行信号的TCI配置,确定所述回传链路的上行信号的发送配置。
  15. 根据权利要求14所述的方法,其中,
    所述协议规定指示所述回传链路的上行信号的发送空域滤波器与所述回传链路的下行信号的空间接收机参数相关联;
    或者,
    所述协议规定或者所述第四配置信令指示所述回传链路的上行信号的发送配置根据所述控制链路的上行参考信号和/或上行物理信道的配置确定;
    或者,
    所述协议规定或者所述第四配置信令指示所述回传链路的上行信号的发送配置根据所述控制链路的下行参考信号和/或下行物理信道确定;
    或者,
    所述第四配置信令指示目标候选配置中的其中一个配置为所述回传链路的上行信号的发送配置,其中,所述目标候选配置包括所述控制链路中配置的上行信号配置信息指示的配置。
  16. 根据权利要求1所述的方法,其中,在所述回传链路的上行发送配置更新之后,所述方法还包括:
    所述中继设备执行如下中的其中一项:
    保持所述回传链路的上行信号的放大系数不变;
    根据第二放大系数,调整所述回传链路的上行信号的放大系数,其中,所述第二放大系数携带在网络侧设备发送第五配置信令中;
    根据第三信道测量结果与第四信道测量结果之间的差异,调整所述回传链路的上行信号的放大系数;
    其中,所述第三信道测量结果和所述第四信道测量结果分别为所述回传链路的上行信号的发送配置更新之前和之后的信道测量结果。
  17. 一种回传链路的传输配置确定方法,其中,所述方法包括:
    网络侧设备确定控制链路的可配置的候选波束集合;
    所述网络侧设备向中继设备发送回传链路的波束配置信令,其中,所述波束配置信令,用于指示所述中继设备根据控制链路的可配置的候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置;
    所述网络侧设备基于所述波束配置信令或者协议规定,根据所述候选波束集合,确定所述回传链路的下行信号的发送波束和/或上行信号的接收波束。
  18. 根据权利要求17所述的方法,其中,所述候选波束集合包括如下中至少一项:
    所述控制链路的候选TCI配置信息对应的波束;
    所述控制链路的下行参考信号对应的波束;
    所述控制链路的下行物理信道对应的波束;
    所述控制链路的上行参考信号对应的波束;
    所述控制链路的上行物理信道对应的波束。
  19. 根据权利要求18所述的方法,其中,
    在协议规定或者所述波束配置信令指示所述控制链路的下行参考信号和/或下行物理信道,与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的发送波束,根据所述控制链路的下行参考信号和/或下行物理信道确定;
    或者,
    在所述波束配置信令包括目标标识信息的情况下,所述回传链路的下行信号的发送 波束与所述目标标识信息指示的TCI配置对应的波束相同,所述目标标识信息指示所述控制链路的候选TCI配置集合中的其中一个TCI配置;
    或者,
    在所述波束配置信令包括TCI配置的情况下,所述回传链路的下行信号的发送波束为所述波束配置信令中的TCI配置对应的波束。
  20. 根据权利要求19所述的方法,其中,
    在所述协议规定或者所述波束配置信令指示所述控制链路的下行参考信号与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的发送波束为所述控制链路的下行参考信号的发送波束相同;
    或者,
    在所述协议规定或者所述波束配置信令指示所述控制链路的下行物理信道与所述回传链路存在QCL关系的情况下,所述回传链路的下行信号的发送波束与所述控制链路的下行物理信道的发送波束相同。
  21. 根据权利要求19所述的方法,其中,所述目标标识信息指示的TCI配置为:高层配置信息中指示的M个候选TCI配置中的其中一个,或者所述控制链路的TCI激活命令中指示的N个TCI配置中的其中一个,M和N均为大于0的整数;
    其中,所述N个TCI配置是所述M个TCI配置中的一部分。
  22. 根据权利要求18所述的方法,其中,所述回传链路下行信号的发送波束根据所述控制链路的下行参考信号和下行物理信道中优先级最高的一者或者距离当前时刻最近的一者的发送波束确定。
  23. 根据权利要求17所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述中继设备发送第六配置信令,其中,所述第六配置信令用于指示更新所述回传链路的下行信号的TCI配置。
  24. 根据权利要求18所述的方法,其中,
    协议规定指示所述回传链路的上行信号的接收波束与所述回传链路的下行信号的发送波束相同;
    或者,
    所述协议规定或者所述波束配置信令指示所述回传链路的上行信号的接收波束根据所述控制链路的上行参考信号和/或上行物理信道的接收波束确定;
    或者,
    所述协议规定或者所述波束配置信令指示所述回传链路的上行信号的接收波束根据所述控制链路的下行参考信号和/或下行物理信道的发送波束确定;
    或者,
    所述波束配置信令指示目标候选配置中的其中一个配置对应的波束为所述回传链路的上行信号的接收波束,其中,所述目标候选配置包括所述控制链路中配置的上行信号 配置信息指示的配置。
  25. 一种回传链路的传输配置确定装置,其中,所述装置包括:
    候选波束集合获取模块,用于获取控制链路的可配置的候选波束集合;
    第一配置确定模块,用于根据所述候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置。
  26. 一种回传链路的传输配置确定装置,其中,所述装置包括:
    候选波束集合确定模块,用于确定控制链路的可配置的候选波束集合;
    第一发送模块,用于向中继设备发送回传链路的波束配置信令,其中,所述波束配置信令,用于指示所述中继设备根据控制链路的可配置的候选波束集合,确定回传链路的下行信号的传输配置指示TCI配置和/或上行信号的发送配置;
    第二配置确定模块,用于基于所述波束配置信令或者协议规定,根据所述候选波束集合,确定所述回传链路的下行信号的发送波束和/或上行信号的接收波束。
  27. 一种中继设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的回传链路的传输配置确定方法的步骤。
  28. 一种网络侧设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求17至24任一项所述的回传链路的传输配置确定方法的步骤。
  29. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-16任一项所述的回传链路的传输配置确定方法,或者实现如权利要求17至24任一项所述的回传链路的传输配置确定方法的步骤。
PCT/CN2023/108808 2022-07-25 2023-07-24 回传链路的传输配置确定方法、装置、中继设备及网络侧设备 WO2024022272A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210879050.6 2022-07-25
CN202210879050.6A CN117527159A (zh) 2022-07-25 2022-07-25 回传链路的传输配置确定方法、装置、中继设备及网络侧设备

Publications (1)

Publication Number Publication Date
WO2024022272A1 true WO2024022272A1 (zh) 2024-02-01

Family

ID=89705507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108808 WO2024022272A1 (zh) 2022-07-25 2023-07-24 回传链路的传输配置确定方法、装置、中继设备及网络侧设备

Country Status (2)

Country Link
CN (1) CN117527159A (zh)
WO (1) WO2024022272A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933749A (zh) * 2018-09-20 2020-03-27 成都华为技术有限公司 指示波束的方法和装置
CN113615103A (zh) * 2019-03-29 2021-11-05 高通股份有限公司 波束指示集确定
CN114270910A (zh) * 2021-11-26 2022-04-01 北京小米移动软件有限公司 一种智能中继服务链路的波束指示方法及其装置
CN114467351A (zh) * 2019-10-04 2022-05-10 高通股份有限公司 用于多发送-接收点部署中的通信的波束选择
CN114600380A (zh) * 2019-10-29 2022-06-07 高通股份有限公司 用于使用中继链路来进行波束训练的系统和方法
CN114788187A (zh) * 2019-12-13 2022-07-22 高通股份有限公司 基于下行链路控制信息的波束和路径损耗参考信号配置激活

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933749A (zh) * 2018-09-20 2020-03-27 成都华为技术有限公司 指示波束的方法和装置
CN113615103A (zh) * 2019-03-29 2021-11-05 高通股份有限公司 波束指示集确定
CN114467351A (zh) * 2019-10-04 2022-05-10 高通股份有限公司 用于多发送-接收点部署中的通信的波束选择
CN114600380A (zh) * 2019-10-29 2022-06-07 高通股份有限公司 用于使用中继链路来进行波束训练的系统和方法
CN114788187A (zh) * 2019-12-13 2022-07-22 高通股份有限公司 基于下行链路控制信息的波束和路径损耗参考信号配置激活
CN114270910A (zh) * 2021-11-26 2022-04-01 北京小米移动软件有限公司 一种智能中继服务链路的波束指示方法及其装置

Also Published As

Publication number Publication date
CN117527159A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN112640543B (zh) 新无线电中的定时提前
US11736250B2 (en) Method for transmitting reference signal, and communication device
EP3780847A1 (en) Communication method, terminal device and network device
EP3100556B1 (en) Method and apparatus for x2 signalling
CN112399543B (zh) 一种功率控制参数配置方法、终端和网络侧设备
CA3066297C (en) Signal processing method and apparatus
EP4224765A1 (en) Method and apparatus for determining transmission mode, and communication device
CN112019313A (zh) 确定小区激活时延的方法和装置
EP3579482B1 (en) Methods and corresponding devices for improved dci detection
WO2020238991A1 (zh) 一种状态信息发送、接收方法及装置
WO2024022272A1 (zh) 回传链路的传输配置确定方法、装置、中继设备及网络侧设备
WO2020187125A1 (zh) 数据传输方法和装置
WO2023198111A1 (zh) 中继器的资源复用方法、中继器及网络侧设备
WO2024012493A1 (zh) 波束调整方法、信息交互方法、装置及设备
WO2024012458A1 (zh) 传输参数调整方法、装置、中继设备、网络侧设备及介质
WO2023006091A1 (zh) 放大器的控制方法、放大器及网络侧设备
WO2024027652A1 (zh) 传输参数确定方法、装置、网络侧设备及介质
WO2023246682A1 (zh) Ncr节点的开关状态配置方法、ncr节点及网络侧设备
WO2023202632A1 (zh) 资源分配方法、设备及可读存储介质
CN111869275B (zh) 用于传输方案的方法、设备和计算机可读介质
JP2024519474A (ja) スマート信号増幅器の作動モード構成方法、装置及び機器
CN117014092A (zh) 定时调整方法、配置方法、装置、放大器及基站
KR102607062B1 (ko) 단말간 직접 통신에서의 데이터 전송 방법 및 장치
CN117858112A (zh) 波束确定方法、装置、通信设备、网络侧设备及存储介质
CN117676933A (zh) 中继设备的开关控制方法、装置、网络侧设备及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845482

Country of ref document: EP

Kind code of ref document: A1