WO2024022235A1 - 一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用 - Google Patents

一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用 Download PDF

Info

Publication number
WO2024022235A1
WO2024022235A1 PCT/CN2023/108526 CN2023108526W WO2024022235A1 WO 2024022235 A1 WO2024022235 A1 WO 2024022235A1 CN 2023108526 W CN2023108526 W CN 2023108526W WO 2024022235 A1 WO2024022235 A1 WO 2024022235A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel slag
chemical
slag powder
physical coupling
powder
Prior art date
Application number
PCT/CN2023/108526
Other languages
English (en)
French (fr)
Inventor
张文生
康明
叶家元
翟牧楠
曹黎颖
任雪红
王林
史迪
甘万贵
张洪滔
王宗森
燕海东
叶雁飞
Original Assignee
中国建筑材料科学研究总院有限公司
宝武集团环境资源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建筑材料科学研究总院有限公司, 宝武集团环境资源科技有限公司 filed Critical 中国建筑材料科学研究总院有限公司
Priority to KR1020247004818A priority Critical patent/KR20240031402A/ko
Priority to AU2023305026A priority patent/AU2023305026A1/en
Publication of WO2024022235A1 publication Critical patent/WO2024022235A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • C04B7/1535Mixtures thereof with other inorganic cementitious materials or other activators with alkali metal containing activators, e.g. sodium hydroxide or waterglass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/005Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the invention relates to the field of building materials, and specifically relates to a preparation method and application of a chemical-physical coupling excited steel slag powder cementitious material.
  • Steel slag is a by-product of steelmaking, accounting for 15 ⁇ 20 wt% of crude steel production. According to statistics, nearly 200 million tons of steel slag are produced in the world every year, and my country's annual steel slag production is as high as more than 100 million tons. However, only about 20% to 30% of steel slag is effectively utilized. Most steel slag is discarded randomly, which is not only a serious waste of resources, but also occupies a large amount of land and causes environmental pollution. Therefore, the resource utilization of steel slag is a hot issue discussed by scholars at home and abroad.
  • Steel slag contains a certain amount of C 3 S and C 2 S (the two main mineral phases of cement clinker), which gives it partial hydration activity and is often called “inferior” cement clinker.
  • the application of steel slag as an auxiliary cementing material in the field of building materials is not only one of the important ways to consume a large amount of steel slag, but also helps promote the sustainable development of the building materials industry and the steel smelting industry, helping "2030 carbon peak, 2060 carbon achieve the strategic goal of "neutralization”.
  • the purpose of the present invention is to overcome the technical difficulties in the above technical background and propose a chemical-physical coupling method for stimulating steel slag powder cementitious materials and its application.
  • This chemical-physical coupling stimulates steel slag powder with the characteristics of high specific surface area and high activity, which can realize the wide range of application of steel slag in the construction industry and provide a new way for the high resource utilization of steel slag.
  • the technical solution of the present invention includes the following steps:
  • the main chemical composition of the steel slag is calculated in mass percentage:
  • the steel slag is area A - hot stuffy steel slag, area A - air-hardened steel slag, area B - hot poured steel slag, area B - drum steel slag, area C - hot stuffy steel slag, area C - hot poured steel slag, area D - drum steel slag. Or area E - drum steel slag.
  • the activity activator is composed of 5-20 parts by mass of inorganic activation components and 80-95 parts by mass of organic activation components;
  • the inorganic activation component is a mixture of sodium sulfate, aluminum sulfate and sodium carbonate,
  • the organic activation component is a mixture of triethanolamine, ethylene glycol, tetrasodium glutamic acid diacetate and molasses.
  • the mass ratio of sodium sulfate, aluminum sulfate and sodium carbonate in the inorganic activation component is 2-4:2-3:3-5;
  • the mass ratio of triethanolamine, ethylene glycol, tetrasodium glutamic acid diacetate and molasses in the organic activation components is 2-4: 1-2:0.5-1: 2 ⁇ 5.
  • the added amount of the active activator is 0.05% ⁇ 0.6% of the steel slag mass.
  • step 3 the chemical-physical coupling excitation time is 20 ⁇ 78 minutes.
  • Chemical-physical coupling is used to excite steel slag powder for preparing steel slag cement, and the amount of steel slag powder incorporated is 30-35% of the total mass.
  • the inorganic activation components of the active activator in the present invention sodium sulfate, aluminum sulfate and sodium carbonate - can effectively promote the hydration of steel slag and enrich the number and types of hydration products in the system.
  • Sodium sulfate and aluminum sulfate provide additional SO 4 2- and Al 3+ ions to the system, accelerate and promote the reaction of C 3 A in the cement system and the generation of ettringite and calcium aluminate hydrate, forming a denser microscopic structure.
  • sodium sulfate and sodium carbonate can react with Ca(OH) 2 produced by hydration in the system to increase the alkalinity of the system and accelerate the further hydration of steel slag.
  • the fine calcium carbonate generated after the reaction of sodium carbonate and Ca(OH) 2 is deposited on the surface of unhydrated particles, causing more voids to be formed, which accelerates the transmission of water and ions and is conducive to the formation of hydration products.
  • the organic activation components of the active activator in the present invention are triethanolamine, ethylene glycol, tetrasodium glutamic acid diacetate and molasses.
  • triethanolamine, ethylene glycol and molasses can not only serve as foreign molecules to satisfy the unsaturated electrovalence bonds on the surface of steel slag particles during physical excitation, reducing the occurrence of agglomeration, but can also promote the hydrolysis of the mineral phase of steel slag and accelerate the formation of hydration products.
  • the formation of a large amount of hydration products will inevitably reduce the concentration of Ca 2+ in the liquid phase, creating favorable conditions for the dissolution of the iron-containing mineral phase in steel slag.
  • tetrasodium glutamic acid diacetate can easily complex with Ca 2+ , Fe 2+/3+ and other ions to form a relatively stable complex, which accelerates the dissolution of the mineral phase of steel slag and promotes the hydration reaction of steel slag. conduct.
  • the implementation of the method of the present invention can effectively improve the gelling activity of steel slag and solve the problem of low activity of steel slag.
  • the chemical-physical coupling excited steel slag powder prepared by the method of the present invention has a large specific surface area and high activity, which can increase the dosage of steel slag in cement and meet the mechanical performance indicators.
  • the method of the present invention is suitable for steel slag obtained from different regions and different slag making systems.
  • the method of the present invention has the advantages of simple process, low energy consumption, low requirements on processing equipment, and is easy to operate.
  • the physical-chemical coupling excitation steel slag powder gelling material proposed by the present invention is based on the characteristics of physical-chemical coupling excitation synergistically improving particle surface properties and enhancing the gelling activity of steel slag powder.
  • the physical-chemical coupling excitation technology causes lattice distortion, smaller grain size, dislocation and other phenomena in the mineral phase crystals on the surface of steel slag powder particles due to physical excitation, and increases the proportion of micron and below-sized particles in the powder.
  • the effective area and number of targets for chemical excitation are increased, laying the foundation for the implementation of chemical excitation. While chemical excitation improves the efficiency of physical excitation, it can also directly act on the surface of steel slag powder particles, reducing the reaction activation energy on its surface. This can further achieve the purpose of reducing the fineness of steel slag powder, improving its surface properties, and increasing hydration activity.
  • the physical-chemical coupling proposed by the present invention stimulates the steel slag powder cementitious material. Based on the characteristics of Ca 2+ , Fe 3+ , and Mg 2+ plasma dissolution in the steel slag powder when the steel slag powder is hydrated, it participates in the cement hydration reaction.
  • the physical-chemical coupling The surface of the powder that stimulates the steel slag powder is improved, the reaction activation energy on the surface is reduced, and the ions are dissolved more easily, resulting in a rapid increase in the pH value in the pores.
  • Figure 1 is a scanning electron microscope image of cement-steel slag (Area A-hot and stuffy steel slag) slurry at 7 days of age.
  • Figure 2 is a scanning electron microscope image of cement-steel slag (Area-air-hardened steel slag) pure slurry at 7 days of age.
  • Figure 3 shows the scanning electron microscope image of cement-steel slag (Area B-hot-spreading steel slag) slurry at 7 days of age.
  • Figure 4 is a scanning electron microscope image of cement-steel slag (Area B-drum steel slag) slurry at 7 days of age.
  • Figure 5 is a scanning electron microscope image of cement-steel slag (C area-hot-spreading steel slag) slurry at 7 days of age.
  • Figure 6 is a scanning electron microscope image of cement-steel slag (C area-hot and stuffy steel slag) slurry at 7 days of age.
  • Figure 7 shows the scanning electron microscope image of cement-steel slag (D area-drum steel slag) pure slurry at 7 days of age.
  • Figure 8 shows the scanning electron microscope image of cement-steel slag (E area-drum steel slag) pure slurry at 7 days of age.
  • a represents physical excitation
  • b represents physical excitation followed by the addition of chemical activator
  • c represents physical-chemical coupled excitation
  • the raw material steel slag needs to be controlled.
  • the main chemical composition is calculated in mass percentage:
  • the steel slag of the present invention is not limited to a specific environment.
  • the following types can be used: the steel slag is area A-hot and stuffy steel slag, area A-air-hardened steel slag, area B-hot splashed steel slag, area B-roller steel slag, area C-hot and stuffy steel slag.
  • the active activator of the present invention consists of 5-20 parts by mass of inorganic activation components and 80-95 parts by mass of organic activation components;
  • the inorganic activation component is a mixture of sodium sulfate, aluminum sulfate and sodium carbonate.
  • the mass ratio of sodium sulfate, aluminum sulfate and sodium carbonate in the inorganic activation component is 2-4:2-3:3-5;
  • the organic activation component is a mixture of triethanolamine, ethylene glycol, tetrasodium glutamic acid diacetate and molasses.
  • the mass ratio of triethanolamine, ethylene glycol, tetrasodium glutamic acid diacetate and molasses among the organic activation components is 2-4: 1-2:0.5-1:2 ⁇ 5.
  • the amount of active activator added is 0.05% ⁇ 0.6% of the steel slag mass.
  • Chemical-physical coupling is used to excite steel slag powder for preparing steel slag cement, and the amount of steel slag powder incorporated is 30-35% of the total mass.
  • This embodiment provides a preparation method and application of chemical-physical coupling excited steel slag powder cementitious material.
  • the specific preparation process includes the following steps: Area A - Hot and stuffy steel slag is crushed and pretreated with a jaw crusher or impact crusher to obtain particles with a particle size less than 2.36 mm. Spray the active activator on the steel slag particles (the dosage is 0.1% of the steel slag mass) and homogenize for a certain period of time.
  • the steel slag particles containing the active activator were placed in a ball mill, and the steel slag particles were chemically-physically coupled and excited for 68 minutes to obtain chemically-physically coupled excited steel slag powder with a specific surface area of 550 m 2 /kg.
  • Example 1 Area A - hot stuffy steel slag is only physically excited, and steel slag powder with the same surface area as the chemical-physical coupling excited steel slag powder in Example 1 can be produced in 82 minutes.
  • Example 1-1 Mix the steel slag powder in Example 1-1 with P.I cement in a ratio of 30:70, add 0.1% active activator by mass of steel slag, prepare cement mortar according to GB 17671, and test its 7d and 28d compressive strength. .
  • Table 1 The comparison results with Example 1 are shown in Table 1 below.
  • This embodiment provides a preparation method and application of chemical-physical coupling excited steel slag powder cementitious material.
  • the specific preparation process includes the following steps: Area A - air-quenched steel slag is crushed and pretreated with a jaw crusher or impact crusher to obtain particles with a particle size less than 2.36 mm. Spray the active activator on the steel slag particles (the dosage is 0.3% of the steel slag mass) and homogenize for a certain period of time.
  • the steel slag particles containing the active activator were placed in a ball mill, and the steel slag particles were chemically-physically coupled excited for 38 minutes to obtain chemically-physically coupled excited steel slag powder with a specific surface area of 370 m 2 /kg.
  • Example 2 Mix the steel slag powder in Example 2-1 with P.I cement in a ratio of 35:65, add 0.3% active activator by mass of steel slag, prepare cement mortar according to GB 17671, and test its 7d and 28d compressive strength. .
  • the comparison results with Example 2 are shown in Table 2 below.
  • This embodiment provides a preparation method and application of chemical-physical coupling excited steel slag powder cementitious material.
  • the specific preparation process includes the following steps: Area B - hot-sprayed steel slag is crushed and pretreated with a jaw crusher or impact crusher to obtain particles with a particle size less than 2.36 mm. Spray the active activator on the steel slag particles (the dosage is 0.2% of the steel slag mass) and homogenize for a certain period of time.
  • the steel slag particles containing the active activator are placed in a ball mill, and the steel slag particles are chemically-physically coupled and excited for 46 minutes to obtain chemically-physically coupled excited steel slag powder with a specific surface area of 440 m 2 /kg.
  • Example 3-1 Mix the steel slag powder in Example 3-1 with P.I cement in a ratio of 30:70, add 0.2% active activator by steel slag mass, prepare cement mortar according to GB 17671, and test its 7d and 28d compressive strength. .
  • Table 3 The comparison results with Example 3 are shown in Table 3 below.
  • This embodiment provides a preparation method and application of chemical-physical coupling excited steel slag powder cementitious material.
  • the specific preparation process includes the following steps: Area B - drum steel slag is crushed and pretreated with a jaw crusher or impact crusher to obtain particles with a particle size less than 2.36 mm. Spray the active activator on the steel slag particles (the dosage is 0.3% of the steel slag mass) and homogenize for a certain period of time.
  • the steel slag particles containing the active activator were placed in a ball mill, and the steel slag particles were chemically-physically coupled and excited for 44 minutes to obtain chemically-physically coupled excited steel slag powder with a specific surface area of 360 m 2 /kg.
  • Example 4-1 Mix the steel slag powder in Example 4-1 with P.I cement in a ratio of 30:70, add 0.3% active activator by mass of steel slag, prepare cement mortar according to GB 17671, and test its 7d and 28d compressive strength. .
  • Table 4 The comparison results with Example 4 are shown in Table 4 below.
  • This embodiment provides a preparation method and application of chemical-physical coupling excited steel slag powder cementitious material.
  • the specific preparation process includes the following steps: Area C - hot-sprayed steel slag is crushed and pretreated with a jaw crusher or impact crusher to obtain particles with a particle size less than 2.36 mm. Spray the active activator on the steel slag particles (the dosage is 0.05% of the steel slag mass) and homogenize for a certain period of time.
  • the steel slag particles containing the active activator were placed in a ball mill, and the steel slag particles were chemically-physically coupled and excited for 32 minutes to obtain chemically-physically coupled excited steel slag powder with a specific surface area of 420 m 2 /kg.
  • Example 5-1 Mix the steel slag powder in Example 5-1 with P.I cement in a ratio of 35:65, add 0.05% active activator by mass of steel slag, prepare cement mortar according to GB 17671, and test its 7d and 28d compressive strength. .
  • Table 5 The comparison results with Example 5 are shown in Table 5 below.
  • This embodiment provides a preparation method and application of chemical-physical coupling excited steel slag powder cementitious material.
  • the specific preparation process includes the following steps: Area C - Hot and stuffy steel slag is crushed and pretreated with a jaw crusher or impact crusher to obtain particles with a particle size less than 2.36 mm. Spray the active activator on the steel slag particles (the dosage is 0.1% of the steel slag mass) and homogenize for a certain period of time.
  • the steel slag particles containing the active activator are placed in a ball mill, and the steel slag particles are chemically-physically coupled and excited for 45 minutes to obtain chemically-physically coupled excited steel slag powder with a specific surface area of 500 m 2 /kg.
  • Example 6-1 Mix the steel slag powder in Example 6-1 with P.I cement in a ratio of 35:65, add 0.1% active activator by mass of steel slag, prepare cement mortar according to GB 17671, and test its 7d and 28d compressive strength. .
  • Table 6 The comparison results with Example 6 are shown in Table 6 below.
  • This embodiment provides a preparation method and application of chemical-physical coupling excited steel slag powder cementitious material.
  • the specific preparation process includes the following steps: Area D - drum steel slag is crushed and pretreated with a jaw crusher or impact crusher to obtain particles with a particle size less than 2.36 mm. Spray the active activator on the steel slag particles (the dosage is 0.6% of the steel slag mass) and homogenize for a certain period of time.
  • the steel slag particles containing the active activator were placed in a ball mill, and the steel slag particles were chemically-physically coupled and excited for 28 minutes to obtain chemically-physically coupled excited steel slag powder with a specific surface area of 380 m 2 /kg.
  • Example 7-2 Mix the steel slag powder in Example 7-2 with P.I cement in a ratio of 30:70, add 0.4% active activator by mass of steel slag, prepare cement mortar according to GB 17671, and test its 7d and 28d compressive strength. .
  • Table 7 The comparison results with Example 7 are shown in Table 7 below.
  • This embodiment provides a preparation method and application of chemical-physical coupling excited steel slag powder cementitious material.
  • the specific preparation process includes the following steps: Area E - drum steel slag is crushed and pretreated with a jaw crusher or impact crusher to obtain particles with a particle size less than 2.36 mm. Spray the active activator on the steel slag particles (the dosage is 0.2% of the steel slag mass) and homogenize for a certain period of time.
  • the steel slag particles containing the active activator are placed in a ball mill, and the steel slag particles are chemically-physically coupled and excited for 65 minutes to obtain chemically-physically coupled excited steel slag powder with a specific surface area of 470 m 2 /kg.
  • Example 8-2 Mix the steel slag powder in Example 8-2 with P.I cement in a ratio of 30:70, and add an active activator with 0.2% of the steel slag mass to replace the steel slag powder.
  • test sample was sprayed with gold, its microstructure was observed under a scanning electron microscope.
  • test samples in group (a) are all comparative examples in which steel slag powder is only physically excited. It can be seen that the boundaries of steel slag particles in the hardened slurry are relatively obvious, and hydration products are rarely present on the surface, and some steel slag particles only serve as inert fillings. Function; (b) Group of test samples are all comparative examples with active agents added during molding. There are relatively abundant hydration products around the steel slag particles, and the hydration products tightly wrap the steel slag particles, thereby optimizing the cement-steel slag-based cementitious material.
  • test sample in group (c) is an example of physical-chemical coupling to excite steel slag powder, and there are a large number of needles in the gaps of the sample.
  • Rod-shaped ettringite crystals and there are a large number of hydration products around or on the surface of the steel slag particles, and the density of the slurry is improved, indicating that the hydration degree of the steel slag powder is increased after the physical-chemical coupling stimulates the steel slag powder, and some less active mineral phases in the steel slag It will also participate in the hydration reaction of cement, promote the improvement of steel slag gelling activity, and improve the macroscopic properties of cement-steel slag-based cementitious materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)
  • Furnace Details (AREA)

Abstract

一种化学‑物理耦合激发钢渣粉胶凝活性的方法及其应用,属于建筑材料领域,目的在于提升钢渣粉的胶凝活性,提高利用率,并适用于不同处理工艺所制得的钢渣。包括如下步骤:(1)对不同地区、不同处理工艺制得钢渣进行破碎预处理,得到钢渣颗粒;(2)将活性激发剂加入预处理钢渣颗粒,并均化一定时间;(3)对含有活性激发剂的钢渣颗粒进行化学‑物理耦合激发处理,制得化学‑物理耦合激发钢渣粉。本发明的化学‑物理耦合激发钢渣粉制备工艺简单、成本低廉、能耗较低、适用范围广,可提高钢渣粉在水泥中的使用量,减少水泥熟料用量,实现工业固体废弃物在水泥领域中的有效利用,解决钢渣消纳难的问题。

Description

一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用 技术领域
本发明涉及建筑材料领域,具体涉及一种化学-物理耦合激发钢渣粉胶凝材料的制备方法及其应用。
背景技术
钢渣是一种炼钢的副产品,占粗钢产量的15 ~ 20 wt%。据统计,当今全球每年生产近2亿吨钢渣,我国的钢渣年产量高达1亿吨以上。然而,只有约20%~30%的钢渣被有效利用。大部分钢渣被随意丢弃,这不仅是严重的资源浪费,还会侵占大量土地、造成环境污染。因此,钢渣的资源化利用是国内外学者讨论的热点问题。钢渣中含有一定量的C 3S、C 2S(水泥熟料的两种主要矿物相),使其具有部分水化活性,从而也常被称为“劣质”水泥熟料。将钢渣作为辅助胶凝材料应用于建材领域不仅是大量消纳钢渣的重要途径之一,也有利于推动建筑材料行业和钢铁冶炼行业的可持续发展,助力“2030年碳达峰、2060年碳中和”这一战略目标的达成。
由于矿石来源、冶炼工艺、造渣制度的差异,钢渣的化学成分和矿物组成较为复杂、波动较大。其中,水化活性相对较低是制约钢渣在建材领域应用的一个重要原因。钢渣中惰性或水化活性较差的矿物相含量较多(约占40%~55%),如RO相、C 2F等,且其中具有水化活性的C 2S常以活性较弱的β型为主。因此,为提高钢渣水化活性,采用单纯的物理激发或化学激发等方式对钢渣进行预处理。但仍存在处理方法单一、激发效果较差、成本较高等问题。
发明内容
本发明的目的是为了克服上述技术背景中技术难题,提出了一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用。该化学-物理耦合激发钢渣粉具有高比表面积、高活性等特点,可实现钢渣在建筑行业的大范围应用,为钢渣的高资源化利用提供新途径。
为实现上述目的,本发明的技术方案包括如下步骤:
1)、将钢渣用颚式破碎机或反击式破碎机进行破碎预处理,使钢渣颗粒尺寸满足入磨细度;
2)、将活性激发剂喷洒至钢渣颗粒上,并均化;
3)、将含有活性激发剂的钢渣颗粒置于磨机中粉磨,对钢渣颗粒进行化学-物理耦合激发,粉磨至钢渣粉比表面积为350 ~ 550 m 2/kg,即制得化学-物理耦合激发钢渣粉。
所述钢渣主要化学组成按质量百分比计:
CaO 32.24% ~ 45.96%,
SiO 2 14.05% ~ 22.84%,
Fe 2O 3 22.91% ~ 33.69%,
MgO 2.1% ~ 11.23 %,和
Al 2O 3 1.52% ~ 6.24%。
所述钢渣为A地区-热闷钢渣、A地区-风淬钢渣、B地区-热泼钢渣、B地区-滚筒钢渣、C地区-热闷钢渣、C地区-热泼钢渣、D地区-滚筒钢渣或E地区-滚筒钢渣。
所述活性激发剂由5-20质量份的无机类活化组分和80-95质量份的有机类活化组分组成;
所述无机类活化组分为硫酸钠、硫酸铝和碳酸钠的混合物,
所述有机类活化组分为三乙醇胺、乙二醇、谷氨酸二乙酸四钠和糖蜜的混合物。
所述无机类活化组分中硫酸钠、硫酸铝和碳酸钠的质量比为2-4:2-3:3-5;
所述有机类活化组分中三乙醇胺、乙二醇、谷氨酸二乙酸四钠和糖蜜的质量比为 2-4: 1-2:0.5-1:2~5。
所述活性激发剂的加入量为钢渣质量的0.05% ~ 0.6%。
步骤3)中,所述的化学-物理耦合激发时间为20 ~ 78 min。
利用化学-物理耦合激发钢渣粉应用于制备钢渣水泥,所述钢渣粉的掺入量为总质量的30-35%。
本发明中活性激发剂的无机类活化组分——硫酸钠、硫酸铝和碳酸钠,均可以有效促进钢渣水化,丰富体系中水化产物数量与种类。硫酸钠与硫酸铝,为体系提供额外的SO 4 2-、Al 3+离子,加速与促进水泥体系中C 3A的反应与钙矾石、水化铝酸钙的生成,形成较为致密的微观结构。另一方面,硫酸钠和碳酸钠水解后,可与体系中水化产生的Ca(OH) 2反应,提升体系碱度,加速钢渣的进一步水化。此外,碳酸钠与Ca(OH) 2反应后生成的细小碳酸钙沉积在未水化颗粒表面,使其形成较多空隙,使得水和离子的传输加快,有利于水化产物的形成。
 本发明中活性激发剂的有机类活化组分——三乙醇胺、乙二醇、谷氨酸二乙酸四钠和糖蜜。其中,三乙醇胺、乙二醇和糖蜜不仅可以作为外来分子满足物理激发时钢渣颗粒表面未饱和的电价键,降低团聚现象的出现,还可以促进钢渣矿物相的水解,加速水化产物的形成。水化产物的大量形成必然会降低液相中Ca 2+的浓度,为钢渣中含铁矿物相的的溶解创造有利条件。谷氨酸二乙酸四钠作为金属螯合剂极易与Ca 2+、Fe 2+/3+等离子发生络合,形成较为稳定的络合物,加速钢渣矿物相的溶解,促进钢渣水化反应的进行。
本发明方案的实施,至少具有以下优势:
①、相比于目前已经公开的激发钢渣胶凝活性技术,本发明方法的实施,可有效提高钢渣胶凝活性,解决钢渣活性较低的问题。
②、本发明方法制备的化学-物理耦合激发钢渣粉比表面积大、活性高,可提高钢渣在水泥中的用量,满足力学性能指标。
③、本发明方法适用于不同地区、不同造渣制度所获得的钢渣。
④、本发明方法具有工艺简单、能耗较低,且对加工设备要求低等优点,方便操作。
 本发明提出的物理-化学耦合激发钢渣粉胶凝材料,基于物理-化学耦合激发作用协同改善颗粒表面性质、提升钢渣粉的胶凝活性的特点。物理-化学耦合激发技术在物理激发作用使钢渣粉料颗粒表面矿物相晶体出现晶格畸变、晶粒尺寸变小及位错等现象、粉料中微米及以下粒径颗粒的比例增加的同时,增加了化学激发的有效作用面积与标靶数量,为化学激发的实施奠定基础,而化学激发作用在提高物理激发效率的同时还可直接作用于钢渣粉颗粒表面,降低其表面的反应活化能,从而进一步达到降低钢渣粉细度、改善其表面性质、提升水化活性的目的。
本发明提出的物理-化学耦合激发钢渣粉胶凝材料,基于钢渣粉水化时,钢渣粉中Ca 2+、Fe 3+、Mg 2+等离子溶出参与水泥水化反应的特征,物理-化学耦合激发钢渣粉的粉体表面得到改善,其表面的反应活化能降低,离子溶出更加容易,致使孔隙中pH值快速增加,在与石膏作用下,促进体系中C-S-H凝胶和AFt的生成,进一步促使钢渣粉体颗粒不断水解,体系水化程度持续增长,改善体系微观结构。
附图说明
图1为水泥-钢渣(A地区-热闷钢渣)净浆7d龄期的扫描电镜图,
图2为水泥-钢渣(A地区-风淬钢渣)净浆7d龄期的扫描电镜图,
图3为水泥-钢渣(B地区-热泼钢渣)净浆7d龄期的扫描电镜图,
图4为水泥-钢渣(B地区-滚筒钢渣)净浆7d龄期的扫描电镜图,
图5为水泥-钢渣(C地区-热泼钢渣)净浆7d龄期的扫描电镜图,
图6为水泥-钢渣(C地区-热闷钢渣)净浆7d龄期的扫描电镜图,
图7为水泥-钢渣(D地区-滚筒钢渣)净浆7d龄期的扫描电镜图,
图8为水泥-钢渣(E地区-滚筒钢渣)净浆7d龄期的扫描电镜图,
各图中a为物理激发,b为物理激发后掺入化学激发剂 ,c为物理-化学耦合激发。
实施方式
本发明的技术方案包括如下步骤:
1)、将钢渣用颚式破碎机或反击式破碎机进行破碎预处理,使钢渣颗粒尺寸满足入磨细度;在具体实施中,我们控制钢渣粒径小于2.36mm,在该尺寸下,利于后续工序中活性激发剂的合理分布;
2)、将活性激发剂喷洒至钢渣颗粒上,并均化;在均化过程中,可以进行翻拌,但需维持一定时间使活性激发剂被颗粒“吸收”,从而固化在颗粒上;具体的均化时间控制,本领域技术人员可以根据实际操作环境的温度、湿度进行调整,在本案中不做赘述;
3)、将含有活性激发剂的钢渣颗粒置于磨机中粉磨,粉磨至钢渣粉比表面积为350 ~ 550 m 2/kg,即制得化学-物理耦合激发钢渣粉。这一步骤实质就是对钢渣颗粒进行化学-物理耦合激发,而耦合激发效应的本质在于化学激发可改变颗粒表面的物理、化学形态,从而改善颗粒的物理激发效率;而物理激发过程中颗粒表面形态的改变又会增加活性激发剂与颗粒的接触面积,促进化学激发程度的加深。在步骤中,化学-物理耦合激发时间为20 ~ 78 min。以比表面积指标为准,如时间过短,会导致反应不重复;时间过长,则严重降低生产效率。
鉴于本发明采用化学-物理耦合激发,对于原料钢渣需进行控制,主要化学组成按质量百分比计:
CaO 32.24% ~ 45.96%,
SiO 2 14.05% ~ 22.84%,
Fe 2O 3 22.91% ~ 33.69%,
MgO 2.1% ~ 11.23 %,和
Al 2O 3 1.52% ~ 6.24%。
本发明的钢渣不限于特定环境,如可以采用以下多种:钢渣为A地区-热闷钢渣、A地区-风淬钢渣、B地区-热泼钢渣、B地区-滚筒钢渣、C地区-热闷钢渣、C地区-热泼钢渣、D地区-滚筒钢渣或E地区-滚筒钢渣。
本发明的活性激发剂由5-20质量份的无机类活化组分和80-95质量份的有机类活化组分组成;
无机类活化组分为硫酸钠、硫酸铝和碳酸钠的混合物,无机类活化组分中硫酸钠、硫酸铝和碳酸钠的质量比为2-4:2-3:3-5;
有机类活化组分为三乙醇胺、乙二醇、谷氨酸二乙酸四钠和糖蜜的混合物。有机类活化组分中三乙醇胺、乙二醇、谷氨酸二乙酸四钠和糖蜜的质量比为2-4: 1-2:0.5-1:2~5。
活性激发剂的加入量为钢渣质量的0.05% ~ 0.6%。
利用化学-物理耦合激发钢渣粉应用于制备钢渣水泥,所述钢渣粉的掺入量为总质量的30-35%。
以下结合具体实施例对本发明进一步详细说明。
  实施例1:
本实施例提供化学-物理耦合激发钢渣粉胶凝材料的制备方法及其应用。具体制备过程包括以下步骤:A地区-热闷钢渣用颚式破碎机或反击式破碎机进行破碎预处理,制得粒径小于2.36 mm的颗粒。在钢渣颗粒上,喷洒活性激发剂(用量为钢渣质量的0.1%),并均化一定时间。将含有活性激发剂的钢渣颗粒置于球磨机中,对钢渣颗粒进行化学-物理耦合激发68 min,得到化学-物理耦合激发钢渣粉,其比表面积为550 m 2/kg。化学-物理耦合激发钢渣粉与P. I水泥以30:70比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。
对比例1-1:
A地区-热闷钢渣仅对其进行物理激发,经82min可制得与实施例1中的化学-物理耦合激发钢渣粉表面积相同的钢渣粉。将钢渣粉与P. I水泥以30:70比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例1的对比结果见下表1。
对比例1-2:
将对比例1-1中的钢渣粉与P. I水泥以30:70比例混合,并掺入钢渣质量0.1%的活性激发剂,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例1的对比结果见下表1。
  表1 实施例1与对比例1-1、1-2的对比结果:
粉磨效率 提升率/(%) 7d抗压强度 /(MPa) 28d抗压强度 /(MPa)
对比例1-1 - 29.3 40.6
对比例1-2 - 31.1 45.4
实施例1 17.1 32.6 49.8
实施例
本实施例提供化学-物理耦合激发钢渣粉胶凝材料的制备方法及其应用。具体制备过程包括以下步骤:A地区-风淬钢渣用颚式破碎机或反击式破碎机进行破碎预处理,制得粒径小于2.36 mm的颗粒。在钢渣颗粒上,喷洒活性激发剂(用量为钢渣质量的0.3%),并均化一定时间。将含有活性激发剂的钢渣颗粒置于球磨机中,对钢渣颗粒进行化学-物理耦合激发38 min,得到化学-物理耦合激发钢渣粉,其比表面积为370 m 2/kg。化学-物理耦合激发钢渣粉与P. I水泥以35:65比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。
 对比例2-1:
A地区-风淬钢渣仅对其进行物理激发,经48 min可制得与实施例2中的化学-物理耦合激发钢渣粉表面积相同的钢渣粉。将钢渣粉与P. I水泥以35:65比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例2的对比结果见下表2。
 对比例2-2:
将对比例2-1中的钢渣粉与P. I水泥以35:65比例混合,并掺入钢渣质量0.3%的活性激发剂,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例2的对比结果见下表2。
  表2 实施例2与对比例2-1、2-2的对比结果:
粉磨效率 提升率/(%) 7d抗压强度 /(MPa) 28d抗压强度 /(MPa)
对比例2-1 - 23.3 36.9
对比例2-2 - 24.1 40.0
实施例2 20.8 26.8 43.9
实施例
本实施例提供化学-物理耦合激发钢渣粉胶凝材料的制备方法及其应用。具体制备过程包括以下步骤:B地区-热泼钢渣用颚式破碎机或反击式破碎机进行破碎预处理,制得粒径小于2.36 mm的颗粒。在钢渣颗粒上,喷洒活性激发剂(用量为钢渣质量的0.2%),并均化一定时间。将含有活性激发剂的钢渣颗粒置于球磨机中,对钢渣颗粒进行化学-物理耦合激发46 min,得到化学-物理耦合激发钢渣粉,其比表面积为440 m 2/kg。化学-物理耦合激发钢渣粉与P. I水泥以30:70比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。
 对比例3-1:
B地区-热泼钢渣仅对其进行物理激发,经54min可制得与实施例3中的化学-物理耦合激发钢渣粉表面积相同的钢渣粉。将钢渣粉与P. I水泥以30:70比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例3的对比结果见下表3。
 对比例3-2:
将对比例3-1中的钢渣粉与P. I水泥以30:70比例混合,并掺入钢渣质量0.2%的活性激发剂,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例3的对比结果见下表3。
  表3 实施例3与对比例3-1、3-2的对比结果:
粉磨效率 提升率/(%) 7d抗压强度 /(MPa) 28d抗压强度 /(MPa)
对比例3-1 - 26.6 42.3
对比例3-2 - 29.1 46.9
实施例3 14.8 30.5 47.6
实施例
本实施例提供化学-物理耦合激发钢渣粉胶凝材料的制备方法及其应用。具体制备过程包括以下步骤:B地区-滚筒钢渣用颚式破碎机或反击式破碎机进行破碎预处理,制得粒径小于2.36 mm的颗粒。在钢渣颗粒上,喷洒活性激发剂(用量为钢渣质量的0.3%),并均化一定时间。将含有活性激发剂的钢渣颗粒置于球磨机中,对钢渣颗粒进行化学-物理耦合激发44 min,得到化学-物理耦合激发钢渣粉,其比表面积为360 m 2/kg。化学-物理耦合激发钢渣粉与P. I水泥以30:70比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。
 对比例4-1:
B地区-滚筒钢渣仅对其进行物理激发,经53min可制得与实施例3中的化学-物理耦合激发钢渣粉表面积相同的钢渣粉。将钢渣粉与P. I水泥以30:70比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例4的对比结果见下表4。
对比例4-2:
将对比例4-1中的钢渣粉与P. I水泥以30:70比例混合,并掺入钢渣质量0.3%的活性激发剂,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例4的对比结果见下表4。
 表4 实施例4与对比例4-1、4-2的对比结果:
粉磨效率 提升率/(%) 7d抗压强度 /(MPa) 28d抗压强度 /(MPa)
对比例4-1 - 24.9 38.3
对比例4-2 - 27.2 44.8
实施例4 17.0 29.0 46.2
实施例
本实施例提供化学-物理耦合激发钢渣粉胶凝材料的制备方法及其应用。具体制备过程包括以下步骤:C地区-热泼钢渣用颚式破碎机或反击式破碎机进行破碎预处理,制得粒径小于2.36 mm的颗粒。在钢渣颗粒上,喷洒活性激发剂(用量为钢渣质量的0.05%),并均化一定时间。将含有活性激发剂的钢渣颗粒置于球磨机中,对钢渣颗粒进行化学-物理耦合激发32 min,得到化学-物理耦合激发钢渣粉,其比表面积为420 m 2/kg。化学-物理耦合激发钢渣粉与P. I水泥以35:65比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。
对比例5-1:
C地区-热泼钢渣仅对其进行物理激发,经35min可制得与实施例3中的化学-物理耦合激发钢渣粉表面积相同的钢渣粉。将钢渣粉与P. I水泥以35:65比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例5的对比结果见下表5。
对比例5-2:
将对比例5-1中的钢渣粉与P. I水泥以35:65比例混合,并掺入钢渣质量0.05%的活性激发剂,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例5的对比结果见下表5。
  表5 实施例5与对比例5-1、5-2的对比结果:
粉磨效率 提升率/(%) 7d抗压强度 /(MPa) 28d抗压强度 /(MPa)
对比例5-1 - 26.8 40.0
对比例5-2 - 27.9 44.1
实施例5 8.6 30.2 47.3
实施例
本实施例提供化学-物理耦合激发钢渣粉胶凝材料的制备方法及其应用。具体制备过程包括以下步骤:C地区-热闷钢渣用颚式破碎机或反击式破碎机进行破碎预处理,制得粒径小于2.36 mm的颗粒。在钢渣颗粒上,喷洒活性激发剂(用量为钢渣质量的0.1%),并均化一定时间。将含有活性激发剂的钢渣颗粒置于球磨机中,对钢渣颗粒进行化学-物理耦合激发45 min,得到化学-物理耦合激发钢渣粉,其比表面积为500 m 2/kg。化学-物理耦合激发钢渣粉与P. I水泥以35:65比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。
对比例6-1:
C地区-热闷钢渣仅对其进行物理激发,经52min可制得与实施例3中的化学-物理耦合激发钢渣粉表面积相同的钢渣粉。将钢渣粉与P. I水泥以35:65比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例6的对比结果见下表6。
 对比例6-2:
将对比例6-1中的钢渣粉与P. I水泥以35:65比例混合,并掺入钢渣质量0.1%的活性激发剂,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例6的对比结果见下表6。
 表6 实施例6与对比例6-1、6-2的对比结果:
粉磨效率 提升率/(%) 7d抗压强度 /(MPa) 28d抗压强度 /(MPa)
对比例6-1 - 22.5 39.4
对比例6-2 - 26.6 45.1
实施例6 13.5 27.3 46.7
实施例
本实施例提供化学-物理耦合激发钢渣粉胶凝材料的制备方法及其应用。具体制备过程包括以下步骤:D地区-滚筒钢渣用颚式破碎机或反击式破碎机进行破碎预处理,制得粒径小于2.36 mm的颗粒。在钢渣颗粒上,喷洒活性激发剂(用量为钢渣质量的0.6%),并均化一定时间。将含有活性激发剂的钢渣颗粒置于球磨机中,对钢渣颗粒进行化学-物理耦合激发28 min,得到化学-物理耦合激发钢渣粉,其比表面积为380 m 2/kg。化学-物理耦合激发钢渣粉与P. I水泥以30:70比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。
对比例7-1:
D地区-滚筒钢渣仅对其进行物理激发,经38min可制得与实施例3中的化学-物理耦合激发钢渣粉表面积相同的钢渣粉。将钢渣粉与P. I水泥以30:70比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例7的对比结果见下表7。
对比例7-2:
将对比例7-2中的钢渣粉与P. I水泥以30:70比例混合,并掺入钢渣质量0.4%的活性激发剂,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例7的对比结果见下表7。
表7 实施例7与对比例7-1、7-2的对比结果:
粉磨效率 提升率/(%) 7d抗压强度 /(MPa) 28d抗压强度 /(MPa)
对比例7-1 - 28.9 41.9
对比例7-2 - 30.9 46.3
实施例7 26.3 31.2 48.2
实施例
本实施例提供化学-物理耦合激发钢渣粉胶凝材料的制备方法及其应用。具体制备过程包括以下步骤:E地区-滚筒钢渣用颚式破碎机或反击式破碎机进行破碎预处理,制得粒径小于2.36 mm的颗粒。在钢渣颗粒上,喷洒活性激发剂(用量为钢渣质量的0.2%),并均化一定时间。将含有活性激发剂的钢渣颗粒置于球磨机中,对钢渣颗粒进行化学-物理耦合激发65 min,得到化学-物理耦合激发钢渣粉,其比表面积为470 m 2/kg。化学-物理耦合激发钢渣粉与P. I水泥以30:70比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。
对比例8-1:
E地区-滚筒钢渣仅对其进行物理激发,经85min可制得与实施例3中的化学-物理耦合激发钢渣粉表面积相同的钢渣粉。将钢渣粉与P. I水泥以30:70比例混合,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例8的对比结果见下表8。
对比例8-2:
将对比例8-2中的钢渣粉与P. I水泥以30:70比例混合,并掺入钢渣质量0.2%的活性激发剂替代钢渣粉,按GB 17671制备水泥胶砂,检测其7d、28d抗压强度。与实施例8的对比结果见下表8。
表8 实施例8与对比例8-1、8-2的对比结果:
粉磨效率 提升率/(%) 7d抗压强度 /(MPa) 28d抗压强度 /(MPa)
对比例8-1 - 26.0 45.3
对比例8-2 - 28.7 47.3
实施例8 23.5 29.8 47.3
将实施例1~8与对比例1-1~8-1、1-2~8-2中钢渣粉与水泥按上述比例进行充分混合,制备水泥-钢渣净浆,在标准养护箱中养护至7d后制成检测样。
将检测样喷金处理后,在扫面电子显微镜下观察其微观结构。
对比检测的结果如图1-8所示。(a)组检测样均为仅物理激发钢渣粉的对比例,可以看出,硬化浆体中钢渣颗粒边界较为明显,且其表面罕见水化产物存在,部分钢渣颗粒在其中仅起到惰性填充作用;(b) 组检测样均为成型时掺入活性剂的对比例,钢渣颗粒周围存在较为丰富的水化产物,且水化产物紧密包裹住钢渣颗粒,从而优化水泥-钢渣基胶凝材料中的薄弱环节,提高试样的强度,但钢渣颗粒表面仍未发现水化产物的踪迹,;而(c)组检测样为物理-化学耦合激发钢渣粉的实施例,样品空隙中存在大量针棒状钙矾石晶体,且钢渣颗粒周围或表面存在大量水化产物,浆体密实度得到提升,说明物理-化学耦合激发钢渣粉后钢渣粉水化程度提升,钢渣中部分活性较差的矿物相亦会参与水泥的水化反应,促进钢渣胶凝活性的提升,改善水泥-钢渣基胶凝材料的宏观性能。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和重新选择,这些替换和重新选择均在本发明的保护范围内。

Claims (8)

  1.  一种化学-物理耦合激发钢渣粉胶凝活性的方法,其特征在于,包括如下步骤:
    1)、将钢渣用颚式破碎机或反击式破碎机进行破碎预处理,使钢渣颗粒尺寸满足入磨细度;
    2)、将活性激发剂喷洒至钢渣颗粒上,并均化;
    3)、将含有活性激发剂的钢渣颗粒置于磨机中粉磨,对钢渣颗粒进行化学-物理耦合激发,粉磨至钢渣粉比表面积为 350 ~ 550 m 2/kg,即制得化学-物理耦合激发钢渣粉。
  2.  根据权利要求 1 所述一种化学-物理耦合激发钢渣粉胶凝活性的方法,其特征在于,所述钢渣主要化学组成按质量百分比计:
    CaO 32.24% ~ 45.96%,
    SiO 2 14.05% ~ 22.84%,
    Fe 2O 3 22.91% ~ 33.69%,
    MgO 2.1% ~ 11.23 %,和
    Al 2O 3 1.52% ~ 6.24%。
  3.  根据权利要求 2 所述一种化学-物理耦合激发钢渣粉胶凝活性的方法,其特征在于,所述钢渣为A 地区-热闷钢渣、A 地区-风淬钢渣、B 地区-热泼钢渣、B 地区-滚筒钢渣、C 地区-热闷钢渣、C 地区-热泼钢渣、D 地区-滚筒钢渣或 E 地区-滚筒钢渣。
  4.  根据权利要求 1 所述一种化学-物理耦合激发钢渣粉胶凝活性的方法,其特征在于,所述活性激发剂由 5-20 质量份的无机类活化组分和 80-95 质量份的有机类活化组分组成;
    所述无机类活化组分为硫酸钠、硫酸铝和碳酸钠的混合物,
    所述有机类活化组分为三乙醇胺、乙二醇、谷氨酸二乙酸四钠和糖蜜的混合物。
  5.  根据权利要求 4 所述一种化学-物理耦合激发钢渣粉胶凝活性的方法,其特征在于,所述无机类活化组分中硫酸钠、硫酸铝和碳酸钠的质量比为 2-4:2-3:3-5;
    所述有机类活化组分中三乙醇胺、乙二醇、谷氨酸二乙酸四钠和糖蜜的质量比为 2-4:1-2:0.5-1:2~5。
  6.  根据权利要求 1 所述一种化学-物理耦合激发钢渣粉胶凝活性的方法,其特征在于,所述活性激发剂的加入量为钢渣质量的 0.05% ~ 0.6%。
  7.  根据权利要求 1 所述一种化学-物理耦合激发钢渣粉胶凝活性的方法,其特征在于,步骤 3)中,所述的化学-物理耦合激发时间为 20 ~ 78 min。
  8.  一种利用权利要求 1-7任一所述方法得到化学-物理耦合激发钢渣粉应用于制备钢渣水泥,所述钢渣粉的掺入量为总质量的 30-35%。 
PCT/CN2023/108526 2022-07-26 2023-07-21 一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用 WO2024022235A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247004818A KR20240031402A (ko) 2022-07-26 2023-07-21 일종 화학적 및 물리적 커플링으로 스틸 슬래그 분말 젤라틴 활성을 자극하는 방법 및 이의 응용
AU2023305026A AU2023305026A1 (en) 2022-07-26 2023-07-21 Method for exciting steel slag powder cementing material via chemical-physical coupling, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210882722.9 2022-07-26
CN202210882722.9A CN115159871A (zh) 2022-07-26 2022-07-26 一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用

Publications (1)

Publication Number Publication Date
WO2024022235A1 true WO2024022235A1 (zh) 2024-02-01

Family

ID=83497844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108526 WO2024022235A1 (zh) 2022-07-26 2023-07-21 一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用

Country Status (4)

Country Link
KR (1) KR20240031402A (zh)
CN (1) CN115159871A (zh)
AU (1) AU2023305026A1 (zh)
WO (1) WO2024022235A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159871A (zh) * 2022-07-26 2022-10-11 中国建筑材料科学研究总院有限公司 一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用
CN117658510B (zh) * 2024-01-31 2024-04-12 北京中航天业科技有限公司 一种基于高温-化学-机械耦合激发的钢渣微粉活性激发剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717217A (zh) * 2009-11-18 2010-06-02 中国建筑材料科学研究总院 混凝土用钢渣复合激发剂及其应用
CN109180031A (zh) * 2018-11-22 2019-01-11 龙岩学院 一种以铜渣和钢渣为原料生产胶凝材料的方法
TW202007672A (zh) * 2018-08-08 2020-02-16 大地亮環保服務有限公司 鋼碴膠結材的製造方法
CN112661433A (zh) * 2020-12-29 2021-04-16 北京建筑材料科学研究总院有限公司 一种低活性转炉热泼钢渣胶凝活性激发剂及其制备方法
CN115159871A (zh) * 2022-07-26 2022-10-11 中国建筑材料科学研究总院有限公司 一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105130215A (zh) * 2015-08-18 2015-12-09 湖北湖大天沭新能源材料工业研究设计院有限公司 一种用于加气混凝土钙质材料的钢渣微粉及其制备方法
CN109133694B (zh) * 2018-11-05 2021-08-13 李喜才 一种高活性钢渣粉、制备方法及应用
CN113135688B (zh) * 2021-05-27 2022-09-27 金明寓建设集团有限公司 一种立磨粉磨钢渣用活性助磨剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717217A (zh) * 2009-11-18 2010-06-02 中国建筑材料科学研究总院 混凝土用钢渣复合激发剂及其应用
TW202007672A (zh) * 2018-08-08 2020-02-16 大地亮環保服務有限公司 鋼碴膠結材的製造方法
CN109180031A (zh) * 2018-11-22 2019-01-11 龙岩学院 一种以铜渣和钢渣为原料生产胶凝材料的方法
CN112661433A (zh) * 2020-12-29 2021-04-16 北京建筑材料科学研究总院有限公司 一种低活性转炉热泼钢渣胶凝活性激发剂及其制备方法
CN115159871A (zh) * 2022-07-26 2022-10-11 中国建筑材料科学研究总院有限公司 一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, JIANRONG ET AL.: "Research on Preparation of High-Activity Auxiliary Cementing Materials by Exciting Converter Steel Slag", CEMENT, no. 07, 10 July 2011 (2011-07-10) *
WANG YU; ZHANG CHANG-SEN; WU FA-HONG; YANG FENG-LING; LI YANG: "The Influence of Different Activator on Activity of Steel Slag and Strength of Cement", CHINA CONCRETE AND CEMENT PRODUCTS, vol. 4, no. 4, 20 April 2018 (2018-04-20), pages 7 - 11, XP009552224, ISSN: 1000-4637, DOI: 10.19761/j.1000-4637.2018.04.002 *

Also Published As

Publication number Publication date
KR20240031402A (ko) 2024-03-07
CN115159871A (zh) 2022-10-11
AU2023305026A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
WO2024022235A1 (zh) 一种化学-物理耦合激发钢渣粉胶凝材料的方法及其应用
CN102745917B (zh) 一种矿渣立磨助磨活化剂及其复配方法
CN112723843B (zh) 一种弱碱激发镍渣高强混凝土的制备方法
CN101691047A (zh) 一种电解锰渣蒸压砖的制备方法
CN108623196A (zh) 一种石灰激发大掺量工业废渣低碳水泥及其制备方法
CN112661433B (zh) 一种低活性转炉热泼钢渣胶凝活性激发剂及其制备方法
CN101549977A (zh) 一种复合胶凝材料及其生产方法
CN110041035B (zh) 一种低胶材用量的c30高抗渗混凝土及其制备方法
CN108164169A (zh) 一种用于软基加固的赤泥-钢渣复合地聚物胶凝材料
CN111333377A (zh) 一种高抗拉强度混凝土及其制备方法
CN110627386A (zh) 一种钛渣水泥及其制备方法和应用
CN110937830A (zh) 一种利用镍渣生产新型矿粉及其制备的方法
CN114702255B (zh) 一种利用低活性酸性矿渣制备的超硫酸盐水泥及其制备方法
CN112194404B (zh) 一种适用于早龄期预应力张拉的低收缩低徐变混凝土复合添加剂
CN115093137A (zh) 一种水泥助磨剂及其制备方法
CN1212284C (zh) 活化废渣复合粉和将其用于水泥、混凝土和免烧砖及制法
CN115466098B (zh) 一种环保高抗裂性抹灰砂浆及其制备方法
CN115572096B (zh) 一种水化硅酸钙型水泥早强剂及其制备方法
CN117229012B (zh) 非碱类激发型钢渣胶凝材料及其制备方法
CN115650629B (zh) 锂基复合掺和料及制备方法、锂基早强混凝土和地铁管片
CN113387664B (zh) 一种低碳高强微膨胀灌浆料及其制备方法
CN106966626A (zh) 一种用于提高水泥混凝土中掺用石灰石粉活性的添加剂
CN112661460A (zh) 一种建筑固废混凝土及其制备方法
CN1111142C (zh) 复合激发剂
CN117700189A (zh) 一种高性能固废基胶凝材料及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: AU2023305026

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20247004818

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004818

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023305026

Country of ref document: AU

Date of ref document: 20230721

Kind code of ref document: A