WO2024022148A1 - 定位方法、终端、网络侧设备、lmf和存储介质 - Google Patents

定位方法、终端、网络侧设备、lmf和存储介质 Download PDF

Info

Publication number
WO2024022148A1
WO2024022148A1 PCT/CN2023/107704 CN2023107704W WO2024022148A1 WO 2024022148 A1 WO2024022148 A1 WO 2024022148A1 CN 2023107704 W CN2023107704 W CN 2023107704W WO 2024022148 A1 WO2024022148 A1 WO 2024022148A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
measurement
measurement quantity
following
information
Prior art date
Application number
PCT/CN2023/107704
Other languages
English (en)
French (fr)
Inventor
任斌
达人
任晓涛
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024022148A1 publication Critical patent/WO2024022148A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a positioning method, a terminal, a network side device, a location management function (LMF), and a storage medium.
  • LMF location management function
  • PRS Positioning Reference Signal
  • PRB Physical Resource Block
  • Embodiments of the present disclosure provide a positioning method, terminal, network side device, LMF and storage medium to solve the problem of poor transmission reliability of PRS.
  • Embodiments of the present disclosure provide a positioning method, including:
  • the first terminal obtains configuration information of the PRS, the PRS includes a first PRS, the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS, and the first time domain configuration
  • the domain configuration includes at least one of the following: the maximum number of symbols occupied by the periodic first PRS in one cycle is 14, and the aperiodic first PRS occupies N consecutive time slots, where N is greater than or equal to 1 an integer; and the first bandwidth configuration is used to indicate that the PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the first terminal performs a positioning operation based on the configuration information.
  • the configuration information also includes at least one of the following:
  • the number of first spaced subcarriers of the first PRS includes a large number of The number of spaced subcarriers is greater than 12, which is the number of spaced subcarriers between two adjacent subcarriers in the frequency domain occupied by the first PRS on the same symbol;
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive N time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRS are semi-persistent signals or aperiodic signals; or, the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • the first terminal performs a positioning operation based on the configuration information, including one of the following:
  • the first terminal measures at least one of the first PRS and the second PRS, obtains first measurement information, and sends the first measurement information to the location management function LMF or the second terminal; wherein , at least one of the first PRS and the second PRS is sent by the network side device or the second terminal;
  • the first terminal sends one of the first PRS and the second PRS to the network side device, and the first terminal sends the other one of the first PRS and the second PRS to the network side device. Perform a measurement to obtain second measurement information, and send the second measurement information to the LMF or the second terminal;
  • the first terminal sends at least one of the first PRS and the second PRS to the network side device.
  • the first measurement information is used to report at least one of the following:
  • the first positioning measurement quantity the first positioning measurement quality
  • the second measurement information is used to report at least one of the following:
  • the second positioning measurement quantity and the second positioning measurement quality are the same.
  • the first positioning measurement quantity includes at least one of the following:
  • the first positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the first positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement obtained based on the second PRS measurement, the angle measurement obtained based on the second PRS measurement, and the power measurement obtained based on the second PRS measurement;
  • the second positioning measurement quantity includes at least one of the following:
  • the second positioning measurement quantity includes at least one of the following:
  • An embodiment of the present disclosure also provides a positioning method, including:
  • the network side device sends configuration information of a positioning reference signal PRS to the first terminal, where the PRS includes a first PRS, and the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS.
  • the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies N consecutive N time slots. , N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the network side device performs a positioning operation based on the configuration information.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRS are semi-persistent signals or aperiodic signals; or, the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • the network side device performs a positioning operation based on the configuration information, including one of the following:
  • the network side device measures at least one of the first PRS and the second PRS sent by the first terminal, obtains first measurement information, and sends the first measurement to the location management function LMF. information;
  • the network side device sends one of the first PRS and the second PRS to the first terminal, and the network side device responds to the first PRS and the second PRS sent by the first terminal. Measure another item in the second PRS, obtain second measurement information, and send the second measurement information to the LMF;
  • the network side device sends at least one of the first PRS and the second PRS to the first terminal.
  • the first measurement information is used to report at least one of the following:
  • the first positioning measurement quantity the first positioning measurement quality
  • the second measurement information is used to report at least one of the following:
  • the second positioning measurement quantity and the second positioning measurement quality are the same.
  • the first positioning measurement quantity includes at least one of the following:
  • the first positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the first positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement obtained based on the second PRS measurement, the angle measurement obtained based on the second PRS measurement, and the power measurement obtained based on the second PRS measurement;
  • the second positioning measurement quantity includes at least one of the following:
  • the second positioning measurement quantity includes at least one of the following:
  • An embodiment of the present disclosure also provides a positioning method, including:
  • the second terminal sends a PRS to the first terminal based on the configuration information of the positioning reference signal PRS, where the PRS includes a first PRS, and the configuration information includes a first time domain configuration and a first bandwidth configuration of the first PRS.
  • the first time domain configuration includes at least one of the following: the maximum number of symbols occupied by one cycle of the periodic first PRS is 14, and the aperiodic third One PRS occupies N consecutive time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the second terminal receives the measurement information sent by the first terminal.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRS are semi-persistent signals or aperiodic signals; or, the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • the second terminal sends a PRS to the first terminal based on the PRS configuration information, including one of the following:
  • the second terminal sends at least one of the first PRS and the second PRS to the first terminal;
  • the measurement information is measurement information obtained by measuring at least one of the first PRS and the second PRS by the first terminal.
  • the measurement information is used to report at least one of the following:
  • the positioning measurement quantity includes at least one of the following:
  • the positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement quantity measured based on the second PRS, the angle measurement quantity measured based on the second PRS, and the power measurement quantity measured based on the second PRS.
  • An embodiment of the present disclosure also provides a positioning method, including:
  • the LMF sends the configuration information of the positioning reference signal PRS to the first terminal.
  • the PRS includes the first PRS.
  • the configuration information includes the first time domain configuration and the first bandwidth configuration of the first PRS. At least one of the following, and the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic first PRS occupies a continuous N time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the LMF acquires measurement information and calculates the position of the first terminal based on the measurement information.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRSs are semi-continuous or aperiodic signals; or, the first PRS is a non-periodic signal, and the second PRS is a semi-permanent or periodic signal.
  • the measurement information is used to report at least one of the following:
  • the positioning measurement quantity includes at least one of the following:
  • the positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement quantity measured based on the second PRS, the angle measurement quantity measured based on the second PRS, and the power measurement quantity measured based on the second PRS.
  • An embodiment of the present disclosure also provides a terminal, which is a first terminal and includes: a memory, a transceiver and a processor, wherein:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS, and the first time domain configuration is The domain configuration includes at least one of the following: periodic occupation of the first PRS for one period The maximum number of symbols is 14, the aperiodic first PRS occupies N consecutive time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to represent the first PRS occupied Physical resource block PRB resources include PRB resources less than 24 PRBs;
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • An embodiment of the present disclosure also provides a network side device, including: a memory, a transceiver, and a processor, wherein:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the PRS includes a first PRS
  • the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS
  • the The first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic first PRS occupies N consecutive time slots, and N is An integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;;
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • An embodiment of the present disclosure also provides a terminal, which is a second terminal, including: a memory, a transceiver, and a processor, wherein:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the PRS includes a first PRS
  • the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS.
  • the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies N consecutive times. slot, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the configuration information also includes at least one of the following:
  • the number of first spaced subcarriers of the first PRS includes the number of spaced subcarriers greater than 12, and the number of spaced subcarriers is the number of first spaced subcarriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • An embodiment of the present disclosure also provides an LMF, including: a memory, a transceiver, and a processor, wherein:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the PRS includes a first PRS
  • the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS
  • the The first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of 14 symbols in one cycle, and the aperiodic first PRS occupies N consecutive symbols.
  • Time slot, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • An embodiment of the present disclosure also provides a terminal, where the terminal is a first terminal and includes:
  • an acquisition unit configured to acquire configuration information of a positioning reference signal PRS, where the PRS includes a first PRS, where the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS, and
  • the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies N consecutive time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • An execution unit configured to perform positioning operations based on the configuration information.
  • An embodiment of the present disclosure also provides a network side device, including:
  • a sending unit configured to send configuration information of a positioning reference signal PRS to the first terminal, where the PRS includes a first PRS, and the configuration information includes at least a first time domain configuration and a first bandwidth configuration of the first PRS.
  • the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of 14 symbols in one cycle, and the aperiodic first PRS occupies N consecutive symbols. Time slot, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • An execution unit configured to perform positioning operations based on the configuration information.
  • An embodiment of the present disclosure also provides a terminal, where the terminal is a second terminal, including:
  • a sending unit configured to send a PRS to the first terminal based on configuration information of the positioning reference signal PRS, where the PRS includes a first PRS, and the configuration information includes a first time domain configuration and a first bandwidth of the first PRS.
  • At least one of the configurations, and the first time domain configuration includes at least one of the following: the maximum number of symbols occupied by the periodic first PRS in one cycle is 14, and the aperiodic first PRS occupies N consecutive time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • a receiving unit configured to receive measurement information sent by the first terminal.
  • An embodiment of the present disclosure also provides an LMF, including:
  • a sending unit configured to send configuration information of a positioning reference signal PRS to the first terminal, where the PRS includes a first PRS, and the configuration information includes at least a first time domain configuration and a first bandwidth configuration of the first PRS.
  • the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of 14 symbols in one cycle, and the aperiodic first PRS occupies N consecutive symbols. Time slot, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • a calculation unit configured to obtain measurement information and calculate the position of the first terminal based on the measurement information.
  • Embodiments of the present disclosure also provide a processor-readable storage medium, the processor-readable storage medium stores a computer program, the computer program is used to cause the processor to execute a positioning method on the first terminal side, or, The computer program is used to cause the processor to execute the positioning method on the network side device side, or the computer program is used to cause the processor to execute the positioning method on the second terminal side, or the computer program is used to The processor is caused to execute the positioning method on the LMF side.
  • the first terminal obtains the configuration information of the PRS, the PRS includes the first PRS, and the configuration information includes at least one of the first time domain configuration and the first bandwidth configuration of the first PRS, And the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies N consecutive N time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs; so The first terminal performs a positioning operation based on the configuration information.
  • the periodic PRS used for positioning supports a maximum number of 14 symbols occupied in one cycle, and the aperiodic PRS supports occupying N consecutive time slots, thus supporting PRS to occupy more symbols to improve the transmission reliability of PRS.
  • the minimum PRB of PRS resources occupied by supported PRS is less than 24 PRBs, so that small-bandwidth terminals can also receive PRS, thereby improving the transmission reliability of PRS.
  • Figure 1 is a schematic structural diagram of a network architecture applicable to the implementation of the present disclosure
  • Figure 2 is a flow chart of a positioning method provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of a signal configuration provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of another signal configuration provided by an embodiment of the present disclosure.
  • Figure 5 is a flow chart of another signal configuration provided by an embodiment of the present disclosure.
  • Figure 6 is a flow chart of another signal configuration provided by an embodiment of the present disclosure.
  • Figure 7 is a flow chart of another signal configuration provided by an embodiment of the present disclosure.
  • Figure 8 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • Figure 9 is a structural diagram of a network side device provided by an embodiment of the present disclosure.
  • Figure 10 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • FIG 11 is a structural diagram of an LMF provided by an embodiment of the present disclosure.
  • Figure 12 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • Figure 13 is a structural diagram of another network-side device provided by an embodiment of the present disclosure.
  • Figure 14 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • Figure 15 is a structural diagram of an LMF provided by an embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone. these three situations.
  • the character "/” generally indicates that the related objects are an "or” relationship. Tie.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar to it.
  • Embodiments of the present disclosure provide a service data transmission method, a terminal, a network node, and a storage medium to solve the problem of reduced transmission rate of the terminal.
  • the method and the equipment are based on the concept of the same application. Since the methods and equipment solve problems in similar principles, the implementation of the equipment and the method can be referred to each other, and repeated details will not be repeated.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS Universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • 5G Fifth Generation Mobile Communication Technology
  • 5G New Radio
  • 6G 6th Generation Mobile Communication Technology
  • the system can also include the core network part, such as the Evolved Packet System (EPS), 5G System (5G System, 5GS
  • Figure 1 is a schematic structural diagram of a network architecture applicable to the implementation of the present disclosure. As shown in Figure 1, it includes multiple terminals 11, network side devices 12, and LMF 13, where:
  • the terminal 11 involved in the embodiment of the present disclosure may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or a device connected to a wireless modem. Other processing equipment, etc.
  • the names of terminal equipment may also be different.
  • the terminal equipment may be called User Equipment (UE).
  • UE User Equipment
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (also known as a "cellular phone").
  • Wireless terminal equipment may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, or an access point.
  • remote terminal equipment remote terminal equipment
  • access terminal equipment access terminal
  • user terminal user terminal
  • user agent user agent
  • user device user device
  • the network side device 12 involved in the embodiment of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • a base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or it can be named by another name.
  • the network side device can be used to exchange received air frames and Internet Protocol (IP) packets with each other, serving as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include Internet Protocol (IP) communications network.
  • IP Internet Protocol
  • the network side device can also coordinate the attribute management of the air interface.
  • the network side device involved in the embodiment of the present disclosure may be a network side device (Base Transceiver Station) in Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA).
  • BTS Global System for Mobile communications
  • BTS can also be the network side device (NodeB) in the Wide-band Code Division Multiple Access (WCDMA), or it can be the evolution in the long term evolution (long term evolution, LTE) system Type network side equipment (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), base station in 6G, or home evolution Base station (Home evolved Node B, HeNB), relay node (relay node), home base station (femto), pico base station (pico), etc.
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • WCDMA Wide-band Code Division Multiple Access
  • LTE long term evolution
  • network-side equipment may include a centralized unit (CU) and a distributed unit (DU).
  • the centralized unit and distributed unit may also be arranged geographically separately.
  • the network side device may include a Transmitting Receiving Point (TRP).
  • TRP Transmitting Receiving Point
  • the terminal 11 communicates with the LMF 13 through the network side device 12 as an example.
  • the network side and the terminal can each use one or more antennas for multiple input multiple output (Multi Input Multi Output, MIMO) transmission.
  • the MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO). ) or multi-user MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be two-dimensional MIMO (2Dimension MIMO, 2D-MIMO), three-dimensional MIMO (3Dimension MIMO, 3D-MIMO), full-dimensional MIMO (Full Dimension MIMO, FD-MIMO) or ultra-large Massive-MIMO (massive-MIMO) can also be diversity transmission, precoding transmission, beamforming transmission, etc.
  • Figure 2 is a flow chart of a positioning method provided by an embodiment of the present disclosure. As shown in Figure 2, it includes the following steps:
  • Step 201 The first terminal obtains the configuration information of the PRS, the PRS includes a first PRS, the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS, and the The first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic first PRS occupies N consecutive time slots, and N is greater than Or an integer equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • Step 202 The first terminal performs a positioning operation based on the configuration information.
  • the above-mentioned first PRS may be a PRS newly defined in the protocol in the embodiment of the present disclosure, which is a different PRS from the PRS already defined in the protocol.
  • the first PRS may also be called the first new PRS (New PRS, N-PRS).
  • the above configuration information may be received from the network side device, or may be received from the LMF. Alternatively, the above configuration information may be obtained from preconfigured configuration information, such as obtaining the above configuration information from a preconfigured resource pool.
  • the maximum number of symbols occupied by the above-mentioned periodic first PRS in one cycle may be 14.
  • the maximum number of OFDM symbols occupied by the N-PRS resource in one cycle is 14, that is, including 1 All 14 OFDM symbols within the slot.
  • the aperiodic first PRS occupies N consecutive time slots.
  • N For an aperiodic PRS resource, it can also be supported to occupy N consecutive time slots. That is, one trigger can transmit N consecutive time slots.
  • the maximum value of N depends on the terminal capability (UE capability).
  • the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs.
  • the PRS resources occupied by the first PRS support resources less than 24 PRBs.
  • the bandwidth of the PRS resources occupied by the first PRS is other than 5G.
  • it also supports less than 24 PRBs, such as: 4/8/12/16/20 PRBs, etc. That is to say, the PRS resources occupied by the first PRS may be less than 24 PRBs, or may be greater than or equal to 24 PRBs.
  • the above configuration information is used to assist positioning, so the above configuration information can also be called positioning assistance data information.
  • Performing the positioning operation based on the configuration information may include performing at least one of uplink, downlink, sidelink and joint positioning operations on the resources corresponding to the configuration information.
  • the above steps can be used to realize that the periodic PRS used for positioning supports a maximum number of 14 symbols occupied in one cycle, and the aperiodic PRS supports occupying N consecutive N time slots, thereby supporting the PRS to occupy more symbols. Multiple symbols to improve the transmission reliability of PRS.
  • the PRS resources occupied by supported PRS include PRB resources with less than 24 PRBs, so that small-bandwidth terminals can also receive PRS, thereby improving the transmission reliability of PRS.
  • the positioning based on the above PRS can be applied to application scenarios such as Internet of Things (IoT). It should be noted that the embodiments of the present disclosure are not limited to IoT application scenarios. For example, conventional terminal communication, Internet of Vehicles and other scenarios can be applicable.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: Periodic, semi-periodic, aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the number of first interval subcarriers of the above-mentioned first PRS may be, on the same orthogonal frequency division multiplex (OFDM), between two adjacent subcarriers in the PRB resources occupied by the first PRS.
  • the number of spacing subcarriers In the embodiment of the present disclosure, the number of spaced subcarriers may also be called comb size (Comb Size).
  • Comb Size comb size
  • the above-mentioned number of first spaced subcarriers includes the number of spaced subcarriers greater than 12. It can be understood that the number of spaced subcarriers supports greater than 12, for example: 24, and also supports less than 12, such as 2, 4, 6, 12, etc.
  • the above-mentioned first periodic information includes at least one of the following: periodic, semi-persistent, and aperiodic.
  • the first PRS can be periodic PRS, semi-periodic PRS or aperiodic PRS, wherein the periodic PRS supports more than 4 time slots.
  • the same period if it supports ⁇ 4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240 ⁇ time slots, it supports less than or equal to 4 time slots.
  • Period for example: period of 1/2/4 slots is also supported.
  • continuous PRS is achieved when the period is one time slot and occupies 14 OFDM symbols in one time slot.
  • the above first pattern information includes at least one of no stagger pattern, stagger pattern, and partial stagger pattern. It can be understood that the first PRS supports the following three options:
  • Stagger pattern where the stagger pattern can be the stagger pattern of the New Radio Downlink Positioning Reference Signal (NR DL PRS) and/or the Uplink Positioning Probe Reference Signal (UL SRS-Pos) defined in the protocol;
  • NR DL PRS New Radio Downlink Positioning Reference Signal
  • UL SRS-Pos Uplink Positioning Probe Reference Signal
  • the partial Stagger pattern can be that the resource unit (Resource element, RE) offset (RE shift) on some symbols occupied by a PRS resource is the same, but the RE Shift on other symbols is different.
  • RE resource unit
  • RE shift RE shift
  • the PRS pattern may define the relationship between the number of PRS spacing subcarriers and OFDM symbols and the RE offset.
  • the RE offset of all OFDM symbols in the same cell RE shift is the same but different in different cells.
  • the relative RE offset of PRS resources on adjacent OFDM symbols is shown in Table 1, where M is the number of symbols, N is the number of spaced subcarriers, and N ⁇ M.
  • Table 1 shows the relative RE offset under the combination of the number of spaced subcarriers supported by PRS (that is, the comb size is N) and the number of OFDM symbols M.
  • the NR DL PRS stagger pattern defined in the protocol can be used, in which the relative RE offset of the NR DL PRS resource on adjacent OFDM symbols adopts a predefined table, and the number of subcarriers is separated by the DL PRS
  • Table 2 shows the relative RE under the combination of the number N of spaced subcarriers supported by DL PRS and the number M of OFDM symbols. offset.
  • the RE Shift on some symbols occupied by an N-PRS resource may be the same, but the RE Shift on other symbols may be different.
  • the first PRS can support more flexible transmission through the comb, period and pattern in the configuration information.
  • the purpose of using the non-stagger pattern for the first PRS may be to improve the current carrier phase measurement algorithm based on digital phase-locked loop (Phase Locked Loop, PLL). Since different OFDM symbols are The PRS on the same RE avoids moving to the same resource element (Resource Element, RE) (for example: central carrier frequency RE) when estimating the carrier phase measurement between each OFDM symbol, thereby ensuring the estimation accuracy while reducing The computational complexity of the receiver is reduced.
  • RE resource element
  • RE for example: central carrier frequency RE
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the third The second time domain configuration includes at least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the third The second bandwidth configuration is used to indicate that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the second PRS is a PRS newly defined in the protocol according to the embodiment of the present disclosure, or the second PRS is a PSR already defined in the protocol.
  • the PRS may be called a second N-PRS.
  • the PSR defined in the above protocol is the DL PRS and/or UL defined by 5G NR Rel-16 SRS-Pos.
  • the first PRS includes the following:
  • the first uplink PRS, the first downlink PRS, and the first direct link Sidelink PRS are The first uplink PRS, the first downlink PRS, and the first direct link Sidelink PRS;
  • the second PRS includes the following items:
  • the second uplink PRS, the second downlink PRS, and the second Sidelink PRS are the second uplink PRS, the second downlink PRS, and the second Sidelink PRS.
  • the second PRS may be a downlink PRS or an uplink PRS.
  • the second PRS may be a downlink N-PRS or an uplink N-PRS.
  • the first PRS may be a downlink PRS or an uplink PRS.
  • the first PRS may be a downlink N-PRS or an uplink N-PRS.
  • the above-mentioned first PRS and second PRS may be Sidelink-PRS.
  • configuration information of the second PRS please refer to the corresponding description of the configuration information of the first PRS, which will not be described again here.
  • the first PRS and the second PRS can be configured for the terminal, so that the terminal can perform positioning operations with at least one of the first PRS and the second PRS, which is beneficial to improving positioning accuracy.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • period information and pattern information of the second PRS please refer to the corresponding description of the first PRS, and will not be described again here.
  • the purpose can be to improve the current carrier phase measurement based on a digital phase locked loop (Phase Locked Loop, PLL).
  • PLL Phase Locked Loop
  • the patterns of the first PRS and the second PRS may be different.
  • the second PRS may have a stagger pattern
  • the first PRS may have a non-stagger pattern or a partial stagger pattern.
  • the patterns of the first PRS and the second PRS may be the same.
  • both the second PRS and the first PRS may have no stagger pattern or partial stagger pattern.
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resource occupied by the first PRS is smaller than the resource size of the frequency domain resource occupied by the second PRS.
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, so
  • the second PRS is a semi-persistent signal or an aperiodic signal; or the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • the second N-PRS may be periodic PRS or semi-persistent PRS.
  • the resource type of the time domain resource configured by the first PRS is to occupy N consecutive time slots, that is, aperiodic PRS, to assist in completing sudden carrier phase positioning (Carrier Phase Positioning, CPP) high-precision positioning (for example: the positioning error is within Centimeter level)
  • the resource type of the time domain resources configured by the second N-PRS is periodic time domain resources, that is, periodic PRS with lower overhead, which is used to complete coarse-precision positioning (for example, the positioning error is at the meter level).
  • the first terminal performs a positioning operation based on the configuration information, including one of the following:
  • the first terminal measures at least one of the first PRS and the second PRS, obtains first measurement information, and sends the first measurement information to the location management function LMF or the second terminal; wherein , at least one of the first PRS and the second PRS is sent by the network side device or the second terminal;
  • the first terminal sends one of the first PRS and the second PRS to the network side device, and the first terminal sends the other one of the first PRS and the second PRS to the network side device.
  • One measurement is performed, the second measurement information is obtained, and the second measurement information is sent to the LMF or the second terminal. interest;
  • the first terminal sends at least one of the first PRS and the second PRS to the network side device.
  • downlink positioning can be achieved.
  • the first terminal receives and measures the first PRS and the second PRS from the network side device.
  • At least one PRS in the system is used to obtain the positioning measurement quantity and positioning measurement quality.
  • Sidelink positioning can be performed.
  • the first terminal receives and measures the first PRS and the second PRS from the second terminal. At least one PRS to obtain positioning measurement quantity and positioning measurement quality.
  • the first terminal sends one of the first PRS and the second PRS to the network side device, and the first terminal sends the other one of the first PRS and the second PRS to the network side device.
  • Measurement of items can achieve joint uplink and downlink positioning of the Uu port.
  • the above-mentioned first terminal sends at least one of the first PRS and the second PRS to the network side device to achieve uplink positioning.
  • the first terminal sends at least one of the first PRS and the second PRS to the network side device.
  • a PRS used by network-side devices to obtain positioning measurement quantity and positioning measurement quality.
  • the above first measurement information can be used to report at least one of the following:
  • the first positioning measurement quantity the first positioning measurement quality
  • the above second measurement information can be used to report at least one of the following:
  • the second positioning measurement quantity and the second positioning measurement quality are the same.
  • the above-mentioned first positioning measurement quantity and the second positioning measurement quantity may include phase measurement quantities, such as phase of arrival (Phase of Arrival, POA) and signal phase difference of arrival (Phase Difference of Arrival, PDOA).
  • phase measurement quantities such as phase of arrival (Phase of Arrival, POA) and signal phase difference of arrival (Phase Difference of Arrival, PDOA).
  • it can include delay measurement quantities, such as Time of Arrival (TOA), Reference Signal Time Difference (RSTD); or it can include angle measurement quantities, such as arrival angle ranging ( Angle-of-Arrival (AOA), Angle of Departure (AoD); or, it can include power measurement quantities, such as Reference Signal Received Power (RSRP), Reference Signal Receiving Quality (Reference Signal Receiving Quality, RSRQ), etc.
  • TOA Time of Arrival
  • RSTD Reference Signal Time Difference
  • angle measurement quantities such as arrival angle ranging ( Angle-of-Arrival (AOA), Angle of Departure (AoD)
  • the above-mentioned first positioning measurement quality and second positioning measurement quality may be the reliability and accuracy of the measurement quantity. Measurement quality such as accuracy or variance.
  • the positioning measurement quantity may be obtained independently, or may be obtained after smoothing based on the carrier phase measurement quantity.
  • the first measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form;
  • the second measurement information reports the second positioning measurement quantity and the second positioning measurement quality in a non-differential form or a differential form.
  • reporting can be implemented in a non-differential form or a differential form, thereby improving the flexibility of reporting.
  • the first positioning measurement quantity includes at least one of the following:
  • the first positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • phase measurement quantity, delay measurement quantity, angle measurement quantity and power measurement quantity may be corresponding measurement quantities obtained by adopting a corresponding algorithm of joint measurement based on the first PRS and the second PRS. Due to the joint measurement, thus The accuracy of positioning measurements can be improved.
  • Three algorithm examples are given below: Example 1: Perform frequency domain cascade processing on the first PRS and the second PRS to construct a new PRS (the signal bandwidth of the new PRS is greater than the signal bandwidth of the first PRS and the second PRS), Measure again to obtain higher-precision measurements.
  • Example 2 Perform time domain combining processing on the first PRS and the second PRS to construct a new PRS (for example: based on PRS signal combining on different OFDM symbols, the received signal-to-noise ratio of the new PRS (Signal-to-noise ratio, SNR) is greater than the receiving SNR) of the first PRS and the second PRS, and then perform the measurement to obtain a higher-precision measurement quantity.
  • a new PRS for example: based on PRS signal combining on different OFDM symbols, the received signal-to-noise ratio of the new PRS (Signal-to-noise ratio, SNR) is greater than the receiving SNR) of the first PRS and the second PRS, and then perform the measurement to obtain a higher-precision measurement quantity.
  • SNR Signal-to-noise ratio
  • Example 3 Based on the combination of Example 1 and Example 2, the first PRS and the second PRS are subjected to frequency domain concatenation and time domain merging processing to construct a new PRS (where, The frequency domain cascade processing makes the signal bandwidth of the new PRS larger than the signal bandwidth of the first PRS and the second PRS; the time domain processing is based on the combination of PRS signals on different OFDM symbols, and the received signal-to-noise ratio SNR of the new PRS is larger than that of the first PRS. and the received signal-to-noise ratio (SNR) of the second PRS), and then measure to obtain a higher-precision measurement quantity.
  • the frequency domain cascade processing makes the signal bandwidth of the new PRS larger than the signal bandwidth of the first PRS and the second PRS; the time domain processing is based on the combination of PRS signals on different OFDM symbols, and the received signal-to-noise ratio SNR of the new PRS is larger than that of the first PRS. and the received signal-to-noise ratio
  • the first positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement quantity measured based on the second PRS, the angle measurement quantity measured based on the second PRS, and the power measurement quantity measured based on the second PRS.
  • the first terminal first obtains the first measurement quantity (such as the phase measurement quantity) based on the first PRS, and obtains the second measurement quantity (such as the delay/angle/power measurement quantity) based on the second PRS, Then the second measurement quantity is smoothed based on the first measurement quantity to obtain the third measurement quantity.
  • the smoothing process may be based on a smoother function (for example, a Hatch smoother function) or an average function.
  • the second positioning measurement quantity includes at least one of the following:
  • the second positioning measurement quantity includes at least one of the following:
  • the first terminal can obtain at least one of a phase measurement quantity, a delay measurement quantity, an angle measurement quantity or a power measurement quantity based only on the first PRS or the second PRS, so as to save computing overhead.
  • the first measurement information is also used to report at least one of the following:
  • the second measurement information is used to report at least one of the following:
  • the first terminal obtains PRS configuration information, including at least one of the following:
  • the first terminal receives the PRS configuration information sent by the network side device
  • the first terminal receives the PRS configuration information sent by the LMF.
  • the above-mentioned first terminal may be configured information sent through Radio Resource Control (Radio Resource Control, RRC) signaling sent by the network side device, or configuration information sent through NR Positioning Protocol (NR Positioning Protocol A, NRPPa) signaling sent by the LMF. .
  • RRC Radio Resource Control
  • NR Positioning Protocol A NR Positioning Protocol A
  • the first terminal obtains the configuration information of the first PRS and the second PRS through the NRPPa signaling of the LMF; another example: for the NR Uu port uplink positioning and NR Uu port uplink and downlink joint positioning method, the first terminal obtains the configuration information of the first PRS and the second PRS through the RRC signaling of the network side device; for another example: for the NR Sidelink positioning method, the first terminal uses the NRPPa signaling of the LMF, The network side device uses RRC signaling or pre-configured resource pool to obtain the configuration information of the first PRS and the second PRS. Alternatively, the network side device sends the configuration information of the first PRS, and the LMF sends the configuration information of the second PRS.
  • the first terminal obtains the configuration information of the PRS, the PRS includes the first PRS, and the configuration information includes at least one of the first time domain configuration and the first bandwidth configuration of the first PRS, And the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies N consecutive N time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs; the first terminal is based on the configuration information , perform positioning operations.
  • the periodic PRS used for positioning supports a maximum number of 14 symbols occupied in one cycle, and the aperiodic PRS supports occupying N consecutive time slots, thus supporting PRS to occupy more symbols to improve the transmission reliability of PRS.
  • the minimum PRB of PRS resources occupied by supported PRS is less than 24 PRBs, so that small-bandwidth terminals can also receive PRS, thereby improving the transmission reliability of PRS.
  • Figure 5 is a flow chart of another positioning method provided by an embodiment of the present disclosure. As shown in Figure 5, it includes the following steps:
  • Step 501 The network side device sends configuration information of the positioning reference signal PRS to the first terminal.
  • the PRS includes a first PRS, and the configuration information includes a first time domain configuration and a first bandwidth configuration of the first PRS.
  • At least one item, and the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies a continuous N time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • Step 502 The network side device performs a positioning operation based on the configuration information.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRS are semi-persistent signals or aperiodic signals; or, the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • the network side device performs a positioning operation based on the configuration information, including one of the following:
  • the network side device measures at least one of the first PRS and the second PRS sent by the first terminal, obtains first measurement information, and sends the first measurement to the location management function LMF. information;
  • the network side device sends one of the first PRS and the second PRS to the first terminal, and the network side device responds to the first PRS and the second PRS sent by the first terminal. Measure another item in the second PRS, obtain second measurement information, and send the second measurement information to the LMF;
  • the network side device sends at least one of the first PRS and the second PRS to the first terminal.
  • the first measurement information is used to report at least one of the following:
  • the first positioning measurement quantity the first positioning measurement quality
  • the second measurement information is used to report at least one of the following:
  • the second positioning measurement quantity and the second positioning measurement quality are the same.
  • the first measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form;
  • the second measurement information reports the second positioning measurement quantity and the second positioning measurement quality in a non-differential form or a differential form.
  • the first positioning measurement quantity includes at least one of the following:
  • the first positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the first positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement obtained based on the second PRS measurement, the angle measurement obtained based on the second PRS measurement, and the power measurement obtained based on the second PRS measurement;
  • the second positioning measurement quantity includes at least one of the following:
  • the second positioning measurement quantity includes at least one of the following:
  • the first measurement information is also used to report at least one of the following:
  • the second measurement information is used to report at least one of the following:
  • the first PRS includes the following:
  • the first uplink PRS, the first downlink PRS, and the first direct link Sidelink PRS are The first uplink PRS, the first downlink PRS, and the first direct link Sidelink PRS;
  • the second PRS includes the following items:
  • the second uplink PRS, the second downlink PRS, and the second Sidelink PRS are the second uplink PRS, the second downlink PRS, and the second Sidelink PRS.
  • this embodiment is an implementation of the network side device corresponding to the embodiment shown in Figure 2.
  • the relevant description of the embodiment shown in Figure 2. In order to avoid repeated description, This embodiment will not be described in detail, and the same beneficial effects can also be achieved.
  • Figure 6 is a flow chart of another positioning method provided by an embodiment of the present disclosure. As shown in Figure 6, it includes the following steps:
  • Step 601 The second terminal sends a PRS to the first terminal based on the configuration information of the positioning reference signal PRS, where the PRS includes a first PRS, and the configuration information includes a first time domain configuration of the first PRS and a first At least one of the bandwidth configurations, and the first time domain configuration includes at least one of the following: the maximum number of symbols occupied by one cycle of the periodic first PRS is 14, and the aperiodic first PRS Occupying N consecutive time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • Step 606 The second terminal receives the measurement information sent by the first terminal.
  • the above-mentioned measurement information may include positioning measurement quantity and measurement quality.
  • the second terminal may perform position calculation of the first UE based on the measurement information to obtain the relative positioning or absolute positioning of the first terminal. Or, the second terminal sends the measurement information to the LMF for calculation.
  • the configuration information also includes at least one of the following:
  • the number of first spaced subcarriers of the first PRS includes the number of spaced subcarriers greater than 12, and the number of spaced subcarriers is the number of first spaced subcarriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes like At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive N time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRS are semi-persistent signals or aperiodic signals; or, the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • the second terminal sends a PRS to the first terminal based on the PRS configuration information, including one of the following:
  • the second terminal sends at least one of the first PRS and the second PRS to the first terminal;
  • the measurement information is measurement information obtained by measuring at least one of the first PRS and the second PRS by the first terminal.
  • the measurement information is used to report at least one of the following:
  • the measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form.
  • the positioning measurement quantity includes at least one of the following:
  • the positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement quantity measured based on the second PRS, the angle measurement quantity measured based on the second PRS, and the power measurement quantity measured based on the second PRS.
  • the measurement information is also used to report at least one of the following:
  • the method also includes:
  • the second terminal calculates the position of the first terminal based on the measurement information.
  • this embodiment is an implementation of the second terminal corresponding to the embodiment shown in Figure 2.
  • This embodiment will not be described in detail, and the same beneficial effects can also be achieved.
  • Figure 7 is a flow chart of another positioning method provided by an embodiment of the present disclosure. As shown in Figure 7, it includes the following steps:
  • Step 701 The LMF sends the configuration information of the positioning reference signal PRS to the first terminal.
  • the PRS includes a first PRS.
  • the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS. items, and the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies N consecutive times. gap, N is an integer greater than or equal to 1; and the first bandwidth configuration is means that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • Step 702 The LMF obtains measurement information, and calculates the position of the first terminal based on the measurement information.
  • the above-mentioned calculation of the position of the first terminal based on the measurement information may be to calculate the relative positioning or absolute positioning of the first terminal.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRSs are semi-continuous or aperiodic signals; or, the first PRS is a non-periodic signal, and the second PRS is a semi-permanent or periodic signal.
  • the measurement information is used to report at least one of the following:
  • the first measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form.
  • the positioning measurement quantity includes at least one of the following:
  • the positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement quantity measured based on the second PRS, the angle measurement quantity measured based on the second PRS, and the power measurement quantity measured based on the second PRS.
  • the measurement information is also used to report at least one of the following:
  • this embodiment is an implementation of LMF corresponding to the embodiment shown in Figure 2.
  • LMF LMF
  • the same beneficial effects can also be achieved.
  • the downlink positioning of the NR Uu interface or the joint uplink and downlink positioning of the NR Uu interface is used as an example.
  • the involved entities for the NR Uu port downlink positioning and NR Uu port uplink and downlink joint positioning methods described in this embodiment are the first terminal, the network side device and the LMF.
  • the parameter N that occupies consecutive N time slots can also be supported. It depends on the terminal capability (UE capability).
  • Step 1 The first terminal receives network (network side equipment/LMF) configuration or preconfigured PRS configuration information (which can also be called positioning assistance data information).
  • This information includes the first N-PRS and the second N-PRS. configuration information.
  • the first N-PRS is the newly defined downlink N-PRS or uplink N-PRS;
  • the second PRS can be the newly defined downlink N-PRS or uplink N-PRS, or it can be the DL defined by 5G NR Rel-16 PRS and/or UL SRS-Pos.
  • the specific processing method of the first terminal may be as follows:
  • the first terminal obtains the configuration information of the first N-PRS and the second N-PRS through the NRPPa signaling of the LMF;
  • the configuration information of the first N-PRS and the second N-PRS includes at least one of the following:
  • Frequency domain Comb Size supports greater than 12, for example: 24;
  • option 1 no stagger pattern, that is, the RE shift of all OFDM symbols in the same cell is the same, but different in different cells
  • option 2 stagger pattern, for example: NR DL PRS and/or UL based on Rel-16 Stagger pattern of SRS-Pos
  • option 3 Partial Stagger pattern, for example: the RE Shift on some symbols occupied by a PRS resource is the same, but the RE Shift on other symbols is different.
  • option 2 stagger pattern
  • option 1 no stagger pattern
  • option 3 Partial stagger pattern
  • Periodic Supports periodic N-PRS, semi-persistent N-PRS and aperiodic N-PRS.
  • periodic N-PRS support ⁇ 4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240 ⁇ time slots (slots), as well as 1 and 2 slots
  • slots time slots
  • the period; among them, continuous N-PRS is achieved when the period is 1 slot + 14 OFDM symbols in 1 slot;
  • Bandwidth In addition to the number of PRBs of DL PRS defined by 5G NR Rel-16, it also supports less than 24 PRBs, such as: 4/8/12/16/20, etc.;
  • a configuration relationship between the first N-PRS resource and the second N-PRS resource can be as follows:
  • the bandwidth is different: the bandwidth of the first N-PRS is smaller than the bandwidth of the second N-PRS;
  • the period of the first N-PRS is smaller than the period of the second N-PRS; when the first N-PRS is periodic N-PRS When, the second N-PRS is a semi-persistent N-PRS or aperiodic N-PRS.
  • the second N-PRS can be periodic N-PRS or semi-persistent N-PRS.
  • Step 2 Based on the configuration information obtained in step 1, the first terminal performs the following processing for the positioning method in this embodiment:
  • the first terminal receives and measures the first N-PRS and the second N-PRS from the network side device or the second terminal, and obtains the positioning measurement quantity and positioning measurement quality;
  • the positioning measurement quantities include phase measurement quantities POA and PDOA by default, and optionally also include one or more of the following measurement quantities; delay measurement quantities TOA, RSTD; angle measurement quantities AoA, AoD; power type measurement quantities Measured quantities RSRP, RSRPP, etc.
  • the above three types of optional measurement quantities can be obtained independently, or can be obtained after smoothing based on the carrier phase measurement quantity. Specifically, it can include the following four methods:
  • Method 1 The first terminal only obtains the phase measurement quantity based on the first N-PRS, and obtains the phase measurement quantity based on the second N-PRS. Get delay/angle/power measurements;
  • Method 2 The first terminal only jointly obtains the phase measurement quantity based on the first N-PRS and the second N-PRS, and obtains the delay/angle/power measurement quantity based on the first N-PRS and the second N-PRS;
  • Method 3 The first terminal first obtains the first measurement quantity (phase) based on the first N-PRS, and obtains the second measurement quantity (delay/angle/power) based on the second N-PRS; then based on the first measurement quantity The second measurement quantity is smoothed to obtain the third measurement quantity;
  • Method 4 The first terminal only obtains the phase measurement quantity and the delay/angle/power measurement quantity based on the first N-PRS or the second N-PRS.
  • Step 3 The first terminal reports the positioning measurement quantity and measurement quality obtained in step 2 to the LMF or other terminals, so that the LMF or the second terminal can calculate the position of the first terminal based on the above information.
  • the positioning measurement quantity and measurement quality can be reported in non-differential form or differential form, and also include the calculation method used in step 2 and the configuration ID of the first N-PRS and the second N-PRS and other information.
  • the network side equipment (base station/TRP) performs the following steps:
  • Step 1 For NR Uu port uplink positioning and NR Uu port uplink and downlink joint positioning, the network side device sends configured or preconfigured positioning assistance data information to the first terminal through RRC signaling. This information includes the first N-PRS and the first N-PRS. 2. N-PRS related configuration information.
  • the first N-PRS is the newly defined downlink N-PRS or uplink N-PRS;
  • the second PRS can be the newly defined downlink N-PRS or uplink N-PRS, or it can be the DL defined by 5G NR Rel-16 PRS and/or UL SRS-Pos.
  • the configuration information of the first N-PRS and the second N-PRS may include at least one of the following:
  • Frequency domain Comb Size supports greater than 12, for example: 24;
  • option 1 no stagger pattern, that is, the RE shift of all OFDM symbols in the same cell is the same, but different in different cells
  • option 2 stagger pattern, for example: NR DL PRS and/or UL based on Rel-16 SRS-Pos stagger pattern
  • option 3 partial stagger Pattern, for example: the RE Shift on some symbols occupied by a PRS resource is the same, but the RE Shift on other symbols is different.
  • option 2 stagger pattern
  • option 1 no stagger pattern
  • option 3 partial stagger pattern
  • Periodic Supports periodic N-PRS, semi-persistent N-PRS and aperiodic N-PRS.
  • periodic N-PRS it supports ⁇ 4, 8, 16, 32, 64, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240 ⁇ slots, and periods of 1 and 2 slots; where , continuous N-PRS is achieved when the period is 1 slot + 14 OFDM symbols in 1 slot;
  • Bandwidth In addition to the number of PRBs of DL PRS defined by 5G NR Rel-16, it also supports less than 24 PRBs, such as: 4/8/12/16/20, etc.;
  • a configuration relationship between the first N-PRS resource and the second N-PRS resource is as follows:
  • the bandwidth is different: the bandwidth of the first N-PRS is smaller than the bandwidth of the second N-PRS;
  • the period of the first N-PRS is smaller than the period of the second N-PRS; when the first N-PRS is periodic N-PRS When, the second N-PRS is a semi-persistent N-PRS or aperiodic N-PRS.
  • the second N-PRS can be periodic N-PRS or semi-persistent N-PRS.
  • Step 2 For the downlink positioning of the NR Uu port and the joint uplink and downlink positioning of the NR Uu port, the network side device sends the first N-PRS and the second N-PRS to the first terminal for the first terminal to obtain positioning measurements and positioning measurements. quality.
  • the positioning measurement quantity includes the phase measurement quantity POA and PDOA by default, and optionally also includes one or more of the following measurement quantities; the delay type measurement quantity TOA, RSTD; the angle type measurement quantity AoA, AoD; and the power type measurement quantity.
  • Measured quantities RSRP, RSRPP can be obtained independently, or can be obtained after smoothing based on the carrier phase measurement quantity. Specifically, it can include the following four methods:
  • Method 1 The network side device only obtains the phase measurement quantity based on the first N-PRS and the second N-PRS. Get delay/angle/power measurements;
  • Method 2 The network side device only jointly obtains the phase measurement quantity based on the first N-PRS and the second N-PRS, and obtains the delay/angle/power measurement quantity based on the first N-PRS and the second N-PRS;
  • Method 3 The network side device first obtains the first measurement quantity (phase) based on the first N-PRS, and obtains the second measurement quantity (delay/angle/power type) based on the second N-PRS; then based on the first measurement quantity Smooth the second measurement quantity to obtain the third measurement quantity;
  • Method 4 The network side device only obtains the phase measurement quantity and the delay/angle/power measurement quantity based on the first N-PRS or the second N-PRS.
  • Step 3 The network-side device reports the positioning measurement quantity and measurement quality obtained in Step 2 to the LMF, which is used by the LMF to calculate the position of the first terminal based on the above information.
  • the positioning measurement quantity and measurement quality can be reported in non-differential form or differential form, and also include the calculation method used in step 2 and the configuration ID of the first N-PRS and the second N-PRS and other information.
  • LMF performs the following steps:
  • Step 1 For NR Uu interface downlink positioning and NR Uu interface uplink and downlink joint positioning, the LMF notifies the first terminal of the configuration information of the first N-PRS and the second N-PRS through NRPPa signaling.
  • the first N-PRS is the newly defined downlink N-PRS or uplink N-PRS;
  • the second PRS can be the newly defined downlink N-PRS or uplink N-PRS, or it can be the DL defined by 5G NR Rel-16 PRS and/or UL SRS-Pos.
  • the configuration information of the first N-PRS and the second N-PRS is as follows:
  • Frequency domain Comb Size supports greater than 12, for example: 24;
  • option 1 no stagger pattern, that is, the RE shift of all OFDM symbols in the same cell is the same, but different in different cells
  • option 2 stagger pattern, for example: NR DL PRS and/or UL based on Rel-16 Stagger pattern of SRS-Pos
  • option 3 Partial Stagger pattern, for example: RE Shift on part of the symbol occupied by a PRS resource is the same, but on other RE Shift on its symbol is different.
  • option 2 stagger pattern
  • option 1 no stagger pattern
  • option 3 Partial stagger pattern
  • Periodic Supports periodic N-PRS, semi-persistent N-PRS and aperiodic N-PRS.
  • periodic N-PRS it supports ⁇ 4, 8, 16, 32, 64, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240 ⁇ slots, and periods of 1 and 2 slots; where , continuous N-PRS is achieved when the period is 1 slot + 14 OFDM symbols in 1 slot;
  • Bandwidth In addition to the number of PRBs of DL PRS defined by 5G NR Rel-16, it also supports less than 24 PRBs, such as: 4/8/12/16/20, etc.;
  • a configuration relationship between the first N-PRS resource and the second N-PRS resource can be as follows:
  • the bandwidth is different: the bandwidth of the first N-PRS is smaller than the bandwidth of the second N-PRS;
  • the period of the first N-PRS is smaller than the period of the second N-PRS; when the first N-PRS is periodic N-PRS When, the second N-PRS is semi-persistent N-PRS or aperiodic N-PRS;
  • the second N-PRS can be periodic N-PRS or semi-persistent N-PRS.
  • the second N-PRS is a periodic N-PRS with lower overhead, which is used to complete coarse-precision positioning (for example, the positioning error is at the meter level).
  • Step 2 The LMF receives the positioning measurement quantity and measurement quality reported by the first terminal, and performs position calculation of the first terminal based on the above information.
  • the positioning measurement quantity and measurement quality can be reported in non-differential form or differential form, and also include the calculation method used in step 2 and the configuration ID of the first N-PRS and the second N-PRS and other information.
  • This embodiment mainly describes NR Uu interface uplink positioning or NR Uu interface uplink and downlink joint positioning.
  • the entities involved are the first terminal, the network side device, and the LMF.
  • the first terminal performs the following steps:
  • Step 1 The first terminal receives network (network side equipment/LMF) configuration or preconfigured positioning assistance data information, which information includes configuration information related to the first N-PRS and the second N-PRS.
  • network network side equipment/LMF
  • preconfigured positioning assistance data information which information includes configuration information related to the first N-PRS and the second N-PRS.
  • the first N-PRS is the newly defined downlink N-PRS or uplink N-PRS;
  • the second PRS can be the newly defined downlink N-PRS or uplink N-PRS, or it can be the DL defined by 5G NR Rel-16 PRS and/or UL SRS-Pos.
  • the specific processing method of the terminal is as follows:
  • the first terminal obtains the configuration information of the first N-PRS and the second N-PRS through RRC signaling of the service network side device.
  • the configuration information of the first N-PRS and the second N-PRS includes at least one of the following:
  • Frequency domain Comb Size supports greater than 12, for example: 24;
  • option 1 no stagger pattern, that is, the RE shift of all OFDM symbols in the same cell is the same, but different in different cells
  • option 2 stagger pattern, such as: NR DL PRS and/or UL based on Rel-16 Stagger pattern of SRS-Pos
  • option 3 Partial Stagger pattern, for example: the RE Shift on some symbols occupied by a PRS resource is the same, but the RE Shift on other symbols is different.
  • option 2 stagger pattern
  • option 1 no stagger pattern
  • option 3 Partial stagger pattern
  • Periodic Supports periodic N-PRS, semi-persistent N-PRS and aperiodic N-PRS.
  • periodic N-PRS it supports ⁇ 4, 8, 16, 32, 64, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240 ⁇ slots, and periods of 1 and 2 slots; where , continuous N-PRS is achieved when the period is 1 slot + 14 OFDM symbols in 1 slot;
  • Bandwidth In addition to the number of PRBs for DL PRS defined by 5G NR Rel-16, it also supports less than 24 PRBs, such as: 4/8/12/16/20, etc.
  • a configuration relationship between the first N-PRS resource and the second N-PRS resource is as follows:
  • the bandwidth is different: the bandwidth of the first N-PRS is smaller than the bandwidth of the second N-PRS;
  • the period of the first N-PRS is smaller than the period of the second N-PRS; when the first N-PRS is periodic N-PRS When, the second N-PRS is a semi-persistent N-PRS or aperiodic N-PRS.
  • the second N-PRS can be periodic N-PRS or semi-persistent N-PRS.
  • the second N-PRS is a periodic N-PRS with lower overhead, which is used to complete coarse-precision positioning (for example, the positioning error is at the meter level).
  • Step 2 The first terminal performs processing for the positioning method in this embodiment based on the positioning assistance data information obtained in step 1.
  • the details may be as follows:
  • the first terminal sends the first N-PRS and the second N-PRS to the network side device, which is used by the network side device to obtain the positioning measurement quantity and positioning measurement quality.
  • the positioning measurement quantities include phase measurement quantities POA and PDOA by default, and optionally also include one or more of the following measurement quantities; delay measurement quantities TOA, RSTD; angle measurement quantities AoA, AoD; power type measurement quantities Measured quantities RSRP, RSRPP, etc.
  • the above three types of optional measurement quantities can be obtained independently, or can be obtained after smoothing based on the carrier phase measurement quantity. Specifically, it can include the following three methods:
  • Method 1 The first terminal only obtains the phase measurement quantity based on the first N-PRS, and obtains the delay/angle/power measurement quantity based on the second N-PRS;
  • Method 2 The first terminal only jointly obtains the phase measurement quantity based on the first N-PRS and the second N-PRS, and obtains the delay/angle/power measurement quantity based on the first N-PRS and the second N-PRS;
  • Method 3 The first terminal first obtains the first measurement quantity (phase) based on the first N-PRS, and obtains the second measurement quantity (delay/angle/power) based on the second N-PRS; then based on the first measurement quantity The second measurement quantity is smoothed to obtain the third measurement quantity;
  • Method 4 The first terminal only obtains the phase measurement quantity and the delay/angle/power measurement quantity based on the first N-PRS or the second N-PRS.
  • Step 3 The first terminal reports the positioning measurement quantity and measurement quality obtained in step 2 to the LMF, which is used by the LMF to calculate the position of the first terminal based on the above information.
  • the positioning measurement quantity and measurement quality can be reported in non-differential form or differential form, and also include the calculation method used in step 2 and the configuration ID of the first N-PRS and the second N-PRS and other information.
  • the network side equipment (base station/TRP) performs the following steps:
  • Step 1 For the NR Uu port uplink positioning and NR Uu port uplink and downlink joint positioning methods, the network side device receives the first N-PRS and the second N-PRS sent by the first terminal, and obtains the positioning measurement quantity and positioning measurement quality.
  • the positioning measurement quantities include phase measurement quantities POA and PDOA by default, and optionally also include one or more of the following measurement quantities; delay measurement quantities TOA, RSTD; angle measurement quantities AoA, AoD; power type measurement quantities Measured quantities RSRP, RSRPP.
  • the above three types of optional measurement quantities can be obtained independently, or can be obtained after smoothing based on the carrier phase measurement quantity. Specifically, it can include the following methods:
  • Method 1 The network side device only obtains the phase measurement quantity based on the first N-PRS, and obtains the delay/angle/power measurement quantity based on the second N-PRS;
  • Method 2 The network side device only jointly obtains the phase measurement quantity based on the first N-PRS and the second N-PRS, and obtains the delay/angle/power measurement quantity based on the first N-PRS and the second N-PRS;
  • Method 3 The network side device first obtains the first measurement quantity (phase) based on the first N-PRS, and obtains the second measurement quantity (delay/angle/power type) based on the second N-PRS; then based on the first measurement quantity Smooth the second measurement quantity to obtain the third measurement quantity;
  • Method 4 The network side device only obtains the phase measurement quantity and the delay/angle/power measurement quantity based on the first N-PRS or the second N-PRS.
  • Step 2 The network-side device reports the positioning measurement quantity and measurement quality obtained in Step 1 to the LMF, which is used by the LMF to calculate the position of the first terminal based on the above information.
  • the positioning measurement quantity and measurement quality can be reported in non-differential form or differential form, and also include the calculation method used in step 2 and the configuration ID of the first N-PRS and the second N-PRS and other information.
  • LMF performs the following steps:
  • Step 1 The LMF receives the positioning measurement quantity and measurement quality reported by the first terminal, and performs position calculation of the first terminal based on the above information.
  • the positioning measurement quantity and measurement quality can be reported in non-differential form or differential form, and also include information such as the calculation method used in step 2 and the configuration identifier (Identifier, ID) of the first N-PRS and the second N-PRS.
  • the NR Sidelink positioning method described in this embodiment involves entities including the first terminal, the network side device, the LMF, and the second terminal.
  • the parameter N that occupies consecutive N time slots can also be supported. It depends on the terminal capability (UE capability).
  • the first terminal performs the following steps:
  • Step 1 The first terminal receives network (network side equipment/LMF) configuration or preconfigured positioning assistance data information, which information includes configuration information related to the first N-PRS and the second N-PRS.
  • network network side equipment/LMF
  • preconfigured positioning assistance data information which information includes configuration information related to the first N-PRS and the second N-PRS.
  • the first N-PRS is the newly defined downlink N-PRS or uplink N-PRS;
  • the second PRS can be the newly defined downlink N-PRS or uplink N-PRS, or it can be the DL defined by 5G NR Rel-16 PRS and/or UL SRS-Pos.
  • the specific processing method of the first terminal is as follows:
  • the first terminal obtains the configuration information of the first N-PRS and the second N-PRS through the NRPPa signaling of the LMF, the RRC signaling of the service network side device, or the preconfigured resource pool.
  • the configuration information of the first N-PRS and the second N-PRS includes at least one of the following:
  • Frequency domain Comb Size supports greater than 12, for example: 24;
  • Option 1 No stagger pattern, that is, the RE shift of all OFDM symbols in the same cell is the same, but different in different cells;
  • Option 2 Stagger pattern, for example: based on Stagger pattern of NR DL PRS and/or UL SRS-Pos of Rel-16;
  • Option 3 Partial Stagger pattern, for example: the RE Shift on some symbols occupied by a PRS resource is the same, and the RE Shift on other symbols different.
  • option 2 stagger pattern
  • option 1 no stagger pattern
  • option 3 partial stagger pattern
  • Periodic Supports periodic N-PRS, semi-persistent N-PRS and aperiodic N-PRS.
  • periodic N-PRS it supports ⁇ 4, 8, 16, 32, 64, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240 ⁇ slots, and periods of 1 and 2 slots; where , continuous N-PRS is achieved when the period is 1 slot + 14 OFDM symbols in 1 slot;
  • Bandwidth In addition to the number of PRBs of DL PRS defined by 5G NR Rel-16, it also supports less than 24 PRBs, such as: 4/8/12/16/20, etc.
  • a configuration relationship between the first N-PRS resource and the second N-PRS resource is as follows:
  • the bandwidth is different: the bandwidth of the first N-PRS is smaller than the bandwidth of the second N-PRS;
  • the period of the first N-PRS is smaller than the period of the second N-PRS; when the first N-PRS is periodic N-PRS When, the second N-PRS is semi-persistent N-PRS or aperiodic N-PRS;
  • the second N-PRS can be periodic N-PRS or semi-persistent N-PRS.
  • the second N-PRS is a periodic N-PRS with lower overhead, which is used to complete coarse-precision positioning (for example, the positioning error is at the meter level).
  • Step 2 The first terminal performs processing for the positioning method in this embodiment based on the positioning assistance data information obtained in step 1.
  • the details may be as follows:
  • the first terminal receives and measures the first N-PRS and the second N-PRS from the second terminal to obtain the positioning measurement quantity and positioning measurement quality.
  • the positioning measurement quantities include phase measurement quantities POA and PDOA by default, and optionally also include one or more of the following measurement quantities; delay measurement quantities TOA, RSTD; angle measurement quantities AoA, AoD; power type measurement quantities Measured quantities RSRP, RSRPP, etc.
  • the above three types of optional measurement quantities can be obtained independently, or can be obtained after smoothing based on the carrier phase measurement quantity. specific It can include the following four methods:
  • Method 1 The first terminal only obtains the phase measurement quantity based on the first N-PRS, and obtains the delay/angle/power measurement quantity based on the second N-PRS;
  • Method 2 The first terminal only jointly obtains the phase measurement quantity based on the first N-PRS and the second N-PRS, and obtains the delay/angle/power measurement quantity based on the first N-PRS and the second N-PRS;
  • Method 3 The first terminal first obtains the first measurement quantity (phase) based on the first N-PRS, and obtains the second measurement quantity (delay/angle/power) based on the second N-PRS; then based on the first measurement quantity The second measurement quantity is smoothed to obtain the third measurement quantity;
  • Method 4 The first terminal only obtains the phase measurement quantity and the delay/angle/power measurement quantity based on the first N-PRS or the second N-PRS.
  • Step 3 The first terminal reports the positioning measurement quantity and measurement quality obtained in step 2 to the second terminal, so that the second terminal can calculate the position of the first terminal based on the above information.
  • the positioning measurement quantity and measurement quality can be reported in non-differential form or differential form, and also include the calculation method used in step 2 and the configuration ID of the first N-PRS and the second N-PRS and other information.
  • the second terminal performs the following steps:
  • Step 1 For the NR Sidelink positioning method, the second terminal sends the first N-PRS and the second N-PRS to the first terminal for the first terminal to receive and obtain the positioning measurement quantity and positioning measurement quality.
  • the first N-PRS is the newly defined downlink N-PRS or uplink N-PRS;
  • the second PRS can be the newly defined downlink N-PRS or uplink N-PRS, or it can be the DL defined by 5G NR Rel-16 PRS and/or UL SRS-Pos.
  • the configuration information of the first N-PRS and the second N-PRS includes at least one of the following:
  • Frequency domain Comb Size supports greater than 12, for example: 24;
  • Option 1 No stagger pattern, that is, the RE shift of all OFDM symbols in the same cell is the same, but different in different cells;
  • Option 2 Stagger pattern, for example: based on Stagger pattern of NR DL PRS and/or UL SRS-Pos of Rel-16;
  • Option 3 Partial Stagger pattern, for example: the RE Shift on some symbols occupied by a PRS resource is the same, and the RE Shift on other symbols different.
  • option 2 stagger pattern
  • option 1 no stagger pattern
  • option 3 partial stagger pattern
  • Periodic Supports periodic N-PRS, semi-persistent N-PRS and aperiodic N-PRS.
  • periodic N-PRS it supports ⁇ 4, 8, 16, 32, 64, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240 ⁇ slots, and periods of 1 and 2 slots; where , continuous N-PRS is achieved when the period is 1 slot + 14 OFDM symbols in 1 slot;
  • Bandwidth In addition to the number of PRBs of DL PRS defined by 5G NR Rel-16, it also supports less than 24 PRBs, such as: 4/8/12/16/20, etc.
  • a configuration relationship between the first N-PRS resource and the second N-PRS resource is as follows:
  • the bandwidth is different: the bandwidth of the first N-PRS is smaller than the bandwidth of the second N-PRS;
  • the period of the first N-PRS is smaller than the period of the second N-PRS; when the first N-PRS is periodic N-PRS When, the second N-PRS is semi-persistent N-PRS or aperiodic N-PRS;
  • the second N-PRS can be periodic N-PRS or semi-persistent N-PRS.
  • the second N-PRS is a periodic N-PRS with lower overhead, which is used to complete coarse-precision positioning (for example, the positioning error is at the meter level).
  • Step 2 The second terminal receives the positioning measurement quantity and measurement quality reported by the first terminal, and performs position calculation of the first terminal based on the above information to obtain relative positioning or absolute positioning.
  • the positioning measurement quantity and measurement quality can be reported in non-differential form or differential form, and also include the calculation method used in step 2 and the configuration ID of the first N-PRS and the second N-PRS and other information.
  • the network side equipment (base station/TRP) performs the following steps:
  • Step 1 the serving network side device notifies the first terminal of the configuration information of the first N-PRS and the second N-PRS through RRC signaling.
  • the first N-PRS is the newly defined downlink N-PRS or uplink N-PRS;
  • the second PRS can be the newly defined downlink N-PRS or uplink N-PRS, or it can be the DL defined by 5G NR Rel-16 PRS and/or UL SRS-Pos.
  • the configuration information of the first N-PRS and the second N-PRS resource includes at least one of the following:
  • Frequency domain Comb Size supports greater than 12, for example: 24;
  • option 1 no stagger pattern, that is, the RE shift of all OFDM symbols in the same cell is the same, but different in different cells
  • option 2 stagger pattern, such as: NR DL PRS and/or UL based on Rel-16 Stagger pattern of SRS-Pos
  • option 3 Partial Stagger pattern, for example: the RE Shift on some symbols occupied by a PRS resource is the same, but the RE Shift on other symbols is different.
  • option 2 stagger pattern
  • option 1 no stagger pattern
  • option 3 Partial stagger pattern
  • Periodic Supports periodic N-PRS, semi-persistent N-PRS and aperiodic N-PRS.
  • periodic N-PRS it supports ⁇ 4, 8, 16, 32, 64, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240 ⁇ slots, and periods of 1 and 2 slots; where , continuous N-PRS is achieved when the period is 1 slot + 14 OFDM symbols in 1 slot;
  • Bandwidth In addition to the number of PRBs of DL PRS defined by 5G NR Rel-16, it also supports less than 24 PRBs, such as: 4/8/12/16/20, etc.;
  • a configuration relationship between the first N-PRS resource and the second N-PRS resource is as follows:
  • the bandwidth is different: the bandwidth of the first N-PRS is smaller than the bandwidth of the second N-PRS;
  • the period of the first N-PRS is smaller than the period of the second N-PRS; when the first N-PRS is periodic N-PRS When, the second N-PRS is semi-persistent N-PRS or aperiodic N-PRS;
  • the second N-PRS can be periodic N-PRS or semi-persistent N-PRS.
  • the aperiodic N-PRS of time slots helps to complete high-precision positioning of sudden CPP (for example, the positioning error is at the centimeter level).
  • the second N-PRS is a periodic N-PRS with lower overhead, which is used to complete coarse-precision positioning (for example, the positioning error is at the meter level).
  • LMF performs the following steps:
  • Step 1 the LMF notifies the first terminal of the configuration information of the first N-PRS and the second N-PRS through LPP signaling.
  • the first N-PRS is the newly defined downlink N-PRS or uplink N-PRS;
  • the second PRS can be the newly defined downlink N-PRS or uplink N-PRS, or it can be the DL defined by 5G NR Rel-16 PRS and/or UL SRS-Pos.
  • Figure 8 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the terminal is a first terminal. As shown in Figure 8, it includes a memory 820, a transceiver 800 and a processor 810:
  • Memory 820 is used to store computer programs; transceiver 800 is used to send and receive data under the control of the processor 810; processor 810 is used to read the computer program in the memory 820 and perform the following operations:
  • the PRS includes a first PRS
  • the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS
  • the first time domain configuration includes At least one of the following: the maximum number of symbols occupied by one cycle of the periodic first PRS is 14, and the aperiodic first PRS occupies N consecutive time slots, where N is an integer greater than or equal to 1;
  • the first bandwidth configuration is used to indicate that the PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 810 and various circuits of the memory represented by memory 820 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 800 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, etc. Transmission medium.
  • the user interface can also be an interface that can connect external and internal devices as needed. Connected devices include, but are not limited to, keypads, monitors, speakers, microphones, joysticks, etc.
  • the processor 810 is responsible for managing the bus architecture and general processing, and the memory 820 can store data used by the processor 800 when performing operations.
  • the processor 810 can be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory can also be physically separated.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRS are semi-persistent signals or aperiodic signals; or, the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • performing a positioning operation based on the configuration information includes one of the following:
  • the first measurement information is used to report at least one of the following:
  • the first positioning measurement quantity the first positioning measurement quality
  • the second measurement information is used to report at least one of the following:
  • the second positioning measurement quantity and the second positioning measurement quality are the same.
  • the first measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form;
  • the second measurement information reports the second positioning measurement quantity and the second positioning measurement quality in a non-differential form or a differential form.
  • the first positioning measurement quantity includes at least one of the following:
  • phase measurement quantity measured based on the first PRS The phase measurement quantity measured based on the second PRS
  • the delay measurement The delay measurement, the angle measurement based on the second PRS measurement, and the power measurement based on the second PRS measurement;
  • the first positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the first positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement obtained based on the second PRS measurement, the angle measurement obtained based on the second PRS measurement, and the power measurement obtained based on the second PRS measurement;
  • the second positioning measurement quantity includes at least one of the following:
  • the second positioning measurement quantity includes at least one of the following:
  • the first measurement information is also used to report at least one of the following:
  • the second measurement information is used to report at least one of the following:
  • the first terminal obtains PRS configuration information, including at least one of the following:
  • the first terminal receives the PRS configuration information sent by the network side device
  • the first terminal receives the PRS configuration information sent by the LMF.
  • the first PRS includes the following:
  • the first uplink PRS, the first downlink PRS, and the first Sidelink PRS are The first uplink PRS, the first downlink PRS, and the first Sidelink PRS;
  • the second PRS includes the following items:
  • the second uplink PRS, the second downlink PRS, and the second Sidelink PRS are the second uplink PRS, the second downlink PRS, and the second Sidelink PRS.
  • first terminal provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect.
  • the methods in this embodiment will no longer be implemented here.
  • the same parts and beneficial effects will be described in detail.
  • Figure 9 is a structural diagram of a network side device provided by an embodiment of the present disclosure. As shown in Figure 9, it includes a memory 920, a transceiver 900 and a processor 910:
  • Memory 920 is used to store computer programs; transceiver 900 is used to send and receive data under the control of the processor 910; processor 910 is used to read the computer program in the memory 920 and perform the following operations:
  • the PRS includes a first PRS
  • the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS
  • the The first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic first PRS occupies N consecutive time slots, and N is An integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the number of PRBs occupied by the first PRS includes a number of PRBs less than 24.
  • the resources include PRB resources less than 24 PRBs;
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 910 and various circuits of the memory represented by memory 920 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 900 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, etc. Transmission medium.
  • the user interface can also be an interface that can connect external and internal required devices.
  • the connected devices include but are not limited to small keyboards, monitors, speakers, microphones, joysticks, etc.
  • the processor 910 is responsible for managing the bus architecture and general processing, and the memory 920 can store data used by the processor 900 when performing operations.
  • the processor 910 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex). Programmable Logic Device (CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • Complex complex programmable logic device
  • CPLD Programmable Logic Device
  • the processor can also adopt a multi-core architecture.
  • the processor is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory can also be physically separated.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRS are semi-persistent signals or aperiodic signals; or, the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • performing a positioning operation based on the configuration information includes one of the following:
  • the first measurement information is used to report at least one of the following:
  • the first positioning measurement quantity the first positioning measurement quality
  • the second measurement information is used to report at least one of the following:
  • the second positioning measurement quantity and the second positioning measurement quality are the same.
  • the first measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form;
  • the second measurement information reports the second positioning measurement quantity and the second positioning measurement quality in a non-differential form or a differential form.
  • the first positioning measurement quantity includes at least one of the following:
  • the first positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the first positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement obtained based on the second PRS measurement, the angle measurement obtained based on the second PRS measurement, and the power measurement obtained based on the second PRS measurement;
  • the second positioning measurement quantity includes at least one of the following:
  • the second positioning measurement quantity includes at least one of the following:
  • the first measurement information is also used to report at least one of the following:
  • the second measurement information is used to report at least one of the following:
  • the first PRS includes the following:
  • the first uplink PRS, the first downlink PRS, and the first direct link Sidelink PRS are The first uplink PRS, the first downlink PRS, and the first direct link Sidelink PRS;
  • the second PRS includes the following items:
  • the second uplink PRS, the second downlink PRS, and the second Sidelink PRS are the second uplink PRS, the second downlink PRS, and the second Sidelink PRS.
  • the above-mentioned network side device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. This is not Next, the parts and beneficial effects in this embodiment that are the same as those in the method embodiment will be described in detail.
  • Figure 10 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the terminal is a second terminal. As shown in Figure 10, it includes a memory 1020, a transceiver 1000 and a processor 1010:
  • Memory 1020 is used to store computer programs; transceiver 1000 is used to send and receive data under the control of the processor 1010; processor 1010 is used to read the computer program in the memory 1020 and perform the following operations:
  • the PRS includes a first PRS
  • the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS.
  • the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies N consecutive times. slot, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1010 and various circuits of the memory represented by memory 1020 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 1000 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, etc. Transmission medium.
  • the user interface can also be an interface that can connect external and internal required devices.
  • the connected devices include but are not limited to small keyboards, monitors, speakers, microphones, joysticks, etc.
  • the processor 1010 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 when performing operations.
  • the processor 1010 may be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable gate array.
  • Logic device Complex Programmable Logic Device, CPLD
  • the processor can also adopt a multi-core architecture.
  • the processor is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory can also be physically separated.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the first PRS and the second PRS are periodic signals
  • the first PRS The period of is less than the period of the second PRS; or, the first PRS is a periodic signal, and the second PRS is a semi-continuous signal or an aperiodic signal; or, the first PRS is an aperiodic signal, so The second PRS is a semi-persistent signal or a periodic signal.
  • the second terminal sends a PRS to the first terminal based on the PRS configuration information, including one of the following:
  • the second terminal sends at least one of the first PRS and the second PRS to the first terminal;
  • the measurement information is measurement information obtained by measuring at least one of the first PRS and the second PRS by the first terminal.
  • the measurement information is used to report at least one of the following:
  • the measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form.
  • the positioning measurement quantity includes at least one of the following:
  • the positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement quantity measured based on the second PRS, the angle measurement quantity measured based on the second PRS, and the power measurement quantity measured based on the second PRS.
  • the measurement information is also used to report at least one of the following:
  • processor 1010 is also used to:
  • the position of the first terminal is calculated based on the measurement information.
  • Figure 11 is a structural diagram of an LMF provided by an embodiment of the present disclosure. As shown in Figure 11, it includes a memory 1120, a transceiver 1100 and a processor 1110:
  • Memory 1120 is used to store computer programs; transceiver 1100 is used to send and receive data under the control of the processor 1110; processor 1110 is used to read the computer program in the memory 1120 and perform the following operations:
  • the PRS includes a first PRS
  • the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS
  • the The first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic first PRS occupies N consecutive time slots, and N is An integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the number of PRBs occupied by the first PRS includes a number of PRBs less than 24.
  • the resources include PRB resources less than 24 PRBs;
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1110 and various circuits of the memory represented by memory 1120 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 1100 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, etc. Transmission medium.
  • the user interface can also be an interface that can connect external and internal required devices.
  • the connected devices include but are not limited to small keyboards, monitors, speakers, microphones, joysticks, etc.
  • the processor 1110 is responsible for managing the bus architecture and general processing, and the memory 1120 may store the processing Data used by processor 1100 when performing operations.
  • the processor 1110 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex). Programmable Logic Device (CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • Complex complex programmable logic device
  • CPLD Programmable Logic Device
  • the processor can also adopt a multi-core architecture.
  • the processor is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory can also be physically separated.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRSs are semi-continuous or aperiodic signals; or, the first PRS is a non-periodic signal, and the second PRS is a semi-permanent or periodic signal.
  • the measurement information is used to report at least one of the following:
  • the first measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form.
  • the positioning measurement quantity includes at least one of the following:
  • the positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement quantity measured based on the second PRS, the angle measurement quantity measured based on the second PRS, and the power measurement quantity measured based on the second PRS.
  • the measurement information is also used to report at least one of the following:
  • Figure 12 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the terminal is a first terminal.
  • terminal 1200 includes:
  • Acquisition unit 1201 configured to acquire configuration information of a positioning reference signal PRS, where the PRS includes a first PRS, and the configuration information includes at least one of a first time domain configuration and a first bandwidth configuration of the first PRS, And the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies N consecutive N time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the execution unit 1202 is configured to perform a positioning operation based on the configuration information.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRS are semi-persistent signals or aperiodic signals; or, the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • the first terminal performs a positioning operation based on the configuration information, including one of the following:
  • the first terminal measures at least one of the first PRS and the second PRS, obtains first measurement information, and sends the first measurement information to the location management function LMF or the second terminal; wherein , at least one of the first PRS and the second PRS is sent by the network side device or the second terminal;
  • the first terminal sends one of the first PRS and the second PRS to the network side device, and the first terminal sends the other one of the first PRS and the second PRS to the network side device. Perform a measurement to obtain second measurement information, and send the second measurement information to the LMF or the second terminal;
  • the first terminal sends at least one of the first PRS and the second PRS to the network side device.
  • the first measurement information is used to report at least one of the following:
  • the first positioning measurement quantity the first positioning measurement quality
  • the second measurement information is used to report at least one of the following:
  • the second positioning measurement quantity and the second positioning measurement quality are the same.
  • the first measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form;
  • the second measurement information reports the second positioning measurement quantity and the second positioning measurement quality in a non-differential form or a differential form.
  • the first positioning measurement quantity includes at least one of the following:
  • the first positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the first positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement obtained based on the second PRS measurement, the angle measurement obtained based on the second PRS measurement, and the power measurement obtained based on the second PRS measurement;
  • the second positioning measurement quantity includes at least one of the following:
  • the second positioning measurement quantity includes at least one of the following:
  • the first measurement information is also used to report at least one of the following:
  • the second measurement information is used to report at least one of the following:
  • the first terminal obtains PRS configuration information, including at least one of the following:
  • the first terminal receives the PRS configuration information sent by the network side device
  • the first terminal receives the PRS configuration information sent by the LMF.
  • the first PRS includes the following:
  • the first uplink PRS, the first downlink PRS, and the first Sidelink PRS are The first uplink PRS, the first downlink PRS, and the first Sidelink PRS;
  • the second PRS includes the following items:
  • the second uplink PRS, the second downlink PRS, and the second Sidelink PRS are the second uplink PRS, the second downlink PRS, and the second Sidelink PRS.
  • first terminal provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect.
  • the methods in this embodiment will no longer be implemented here.
  • the same parts and beneficial effects will be described in detail.
  • Figure 13 is a structural diagram of a network side device provided by an embodiment of the present disclosure. As shown in Figure 13, the network side device 1300 includes:
  • Sending unit 1301, configured to send configuration information of a positioning reference signal PRS to the first terminal, where the PRS includes a first PRS, and the configuration information includes a first time domain configuration and a first bandwidth configuration of the first PRS.
  • At least one item, and the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies a continuous N time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the execution unit 1302 is configured to perform a positioning operation based on the configuration information.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRS are semi-persistent signals or aperiodic signals; or, the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • the network side device performs a positioning operation based on the configuration information, including one of the following:
  • the network side device measures at least one of the first PRS and the second PRS sent by the first terminal, obtains first measurement information, and sends the first measurement to the location management function LMF. information;
  • the network side device sends the first PRS and the second PRS to the first terminal.
  • One item, and the network side device measures the other one of the first PRS and the second PRS sent by the first terminal, obtains second measurement information, and sends the second measurement information to the LMF. measurement information;
  • the network side device sends at least one of the first PRS and the second PRS to the first terminal.
  • the first measurement information is used to report at least one of the following:
  • the first positioning measurement quantity the first positioning measurement quality
  • the second measurement information is used to report at least one of the following:
  • the second positioning measurement quantity and the second positioning measurement quality are the same.
  • the first measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form;
  • the second measurement information reports the second positioning measurement quantity and the second positioning measurement quality in a non-differential form or a differential form.
  • the first positioning measurement quantity includes at least one of the following:
  • the first positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the first positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement obtained based on the second PRS measurement, the angle measurement obtained based on the second PRS measurement, and the power measurement obtained based on the second PRS measurement;
  • the second positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS the phase measurement quantity measured based on the first PRS
  • the delay measurement the angle measurement based on the first PRS measurement, and the power measurement based on the first PRS measurement;
  • the second positioning measurement quantity includes at least one of the following:
  • the first measurement information is also used to report at least one of the following:
  • the second measurement information is used to report at least one of the following:
  • the first PRS includes the following:
  • the first uplink PRS, the first downlink PRS, and the first direct link Sidelink PRS are The first uplink PRS, the first downlink PRS, and the first direct link Sidelink PRS;
  • the second PRS includes the following items:
  • the second uplink PRS, the second downlink PRS, and the second Sidelink PRS are the second uplink PRS, the second downlink PRS, and the second Sidelink PRS.
  • Figure 14 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • the terminal is a second terminal.
  • terminal 1400 includes:
  • the sending unit 1401 is configured to send a PRS to the first terminal based on the configuration information of the positioning reference signal PRS, where the PRS includes a first PRS, and the configuration information includes a first time domain configuration of the first PRS and a first At least one of the bandwidth configurations, and the first time domain configuration includes at least one of the following: the maximum number of symbols occupied by one cycle of the periodic first PRS is 14, and the aperiodic first PRS Occupying N consecutive time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the receiving unit 1402 is configured to receive measurement information sent by the first terminal.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced sub-carriers of the second PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the second number of spaced sub-carriers on the same symbol.
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRS are semi-persistent signals or aperiodic signals; or, the first PRS is an aperiodic signal, and the second PRS is a semi-permanent signal or a periodic signal.
  • the second terminal sends a PRS to the first terminal based on the PRS configuration information, including one of the following:
  • the second terminal sends at least one of the first PRS and the second PRS to the first terminal;
  • the measurement information is measurement information obtained by measuring at least one of the first PRS and the second PRS by the first terminal.
  • the measurement information is used to report at least one of the following:
  • the measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form.
  • the positioning measurement quantity includes at least one of the following:
  • the positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the positioning measurement quantity includes at least one of the following:
  • the first measurement quantity is a measurement quantity measured based on the first PRS.
  • the second measurement quantity includes at least one of the following: : The delay measurement quantity measured based on the second PRS, the angle measurement quantity measured based on the second PRS, and the power measurement quantity measured based on the second PRS.
  • the measurement information is also used to report at least one of the following:
  • the terminal also includes:
  • a calculation unit configured to calculate the position of the first terminal based on the measurement information.
  • FIG 15 is a structural diagram of another LMF provided by an embodiment of the present disclosure.
  • LMF1500 includes:
  • Sending unit 1501 configured to send configuration information of the positioning reference signal PRS to the first terminal, where the PRS includes a first PRS, and the configuration information includes a first time domain configuration and a first bandwidth configuration of the first PRS.
  • the first time domain configuration includes at least one of the following: the periodic first PRS occupies a maximum number of symbols in one cycle of 14, and the aperiodic first PRS occupies a continuous N time slots, N is an integer greater than or equal to 1; and the first bandwidth configuration is used to indicate that the physical resource block PRB resources occupied by the first PRS include PRB resources less than 24 PRBs;
  • the calculating unit 1502 is configured to obtain measurement information and calculate the position of the first terminal based on the measurement information.
  • the configuration information also includes at least one of the following:
  • the number of first spaced sub-carriers of the first PRS includes the number of spaced sub-carriers greater than 12, and the number of spaced sub-carriers is the number of first spaced sub-carriers on the same symbol.
  • the first period information of the first PRS includes at least one of the following: periodic, semi-periodic, and aperiodic;
  • the first pattern information of the first PRS includes at least one of the following:
  • the PRS further includes a second PRS
  • the configuration information further includes at least one of a second time domain configuration and a second bandwidth configuration of the second PRS
  • the second time domain configuration includes At least one of the following: the periodic second PRS occupies a maximum number of symbols in one cycle of 14, the aperiodic second PRS occupies N consecutive time slots; and the second bandwidth is configured for Indicates that the number of PRB resources occupied by the second PRS includes less than 24 PRBs.
  • the configuration information also includes at least one of the following:
  • the number of second spaced subcarriers of the second PRS includes a large number of The number of spaced subcarriers is greater than 12, and the number of spaced subcarriers is the number of spaced subcarriers between two adjacent subcarriers in the frequency domain occupied by the second PRS on the same symbol;
  • the second periodic information of the second PRS includes at least one of the following: periodic, semi-persistent, and aperiodic;
  • the second pattern information of the second PRS includes at least one of the following:
  • the first PRS and the second PRS are different from each other in at least one of the following:
  • the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources are the resource size and period of the occupied frequency domain resources, and the resource type of the occupied time domain resources.
  • the resource size of the frequency domain resources occupied by the first PRS is smaller than the resource size of the frequency domain resources occupied by the second PRS;
  • the period of the first PRS is smaller than the period of the second PRS; or, the first PRS is a periodic signal, and the period of the first PRS is smaller than the period of the second PRS.
  • the two PRSs are semi-continuous or aperiodic signals; or, the first PRS is a non-periodic signal, and the second PRS is a semi-permanent or periodic signal.
  • the measurement information is used to report at least one of the following:
  • the first measurement information reports the first positioning measurement quantity and the first positioning measurement quality in a non-differential form or a differential form.
  • the positioning measurement quantity includes at least one of the following:
  • the positioning measurement quantity includes at least one of the following:
  • the phase measurement quantity measured based on the first PRS and the second PRS The phase measurement quantity measured based on the first PRS and the second PRS, the delay measurement quantity measured based on the first PRS and the second PRS, the phase measurement quantity measured based on the first PRS and the second PRS.
  • the positioning measurement quantity includes at least one of the following:
  • the measurement information is also used to report at least one of the following:
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • Embodiments of the present disclosure also provide a processor-readable storage medium, the processor-readable storage medium stores a computer program, the computer program is used to cause the processor to execute a positioning method on the first terminal side, or, The computer program is used to cause the processor to execute the positioning method on the network side device side, or the computer program is used to cause the processor to execute the positioning method on the second terminal side, or the computer program is used to The processor is caused to execute the positioning method on the LMF side.
  • the processor-readable storage medium may be any available media or data that can be accessed by the processor Storage devices, including but not limited to magnetic storage (such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (Magneto-Optical Disk, MO), etc.), optical storage (such as compact disks (Compact Disk, CD), digital video discs (Digital Versatile Disc, DVD), Blu-ray Disc (BD), High-Definition Versatile Disc (HVD), etc.), and semiconductor memories (such as read-only memory (Read-Only Memory, ROM), erasable Programmable Read-Only Memory (Erasable Programmable Read-Only Memory, EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Non-Volatile Memory (NAND FLASH), Solid State Disk Or Solid State Drive, SSD)), etc.
  • magnetic storage such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (Magneto-Optical Disk,
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, magnetic disk storage, optical storage, and the like) embodying computer-usable program code therein.
  • a computer-usable storage media including, but not limited to, magnetic disk storage, optical storage, and the like
  • processor-executable instructions may also be stored in a processor-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the generation of instructions stored in the processor-readable memory includes the manufacture of the instruction means product, the instruction device implements the function specified in one process or multiple processes in the flow chart and/or one block or multiple blocks in the block diagram.
  • processor-executable instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby causing the computer or other programmable device to
  • the instructions for execution are provided for implementation in the flowchart A process or processes and/or block diagram The steps of a function specified in a block or blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种定位方法、终端、网络侧设备、LMF和存储介质,该方法包括:第一终端获取PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;所述第一终端基于所述配置信息,执行定位操作。

Description

定位方法、终端、网络侧设备、LMF和存储介质
相关申请的交叉引用
本申请主张在2022年07月25日在中国提交的中国专利申请No.202210879283.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种定位方法、终端、网络侧设备、位置管理功能(Location Management Function,LMF)和存储介质。
背景技术
目前通信系统中主要是采用定位参考信号(Positioning Reference Signal,PRS)进行定位,但目前通信系统中PRS占用的符号数量最大为12,且PRS占用资源最小带宽为24个物理资源块(Physical Resource Block,PRB),这样导致PRS的传输可靠性比较差。
发明内容
本公开实施例提供一种定位方法、终端、网络侧设备、LMF和存储介质,以解决PRS的传输可靠性比较差的问题。
本公开实施例提供一种定位方法,包括:
第一终端获取PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的PRB资源包括小于24个PRB的PRB资源;
所述第一终端基于所述配置信息,执行定位操作。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大 于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无交叉(stagger)图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述第一终端基于所述配置信息,执行定位操作,包括如下一项:
所述第一终端对所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF或者第二终端发送所述第一测量信息;其中,所述第一PRS和所述第二PRS中的至少一项为网络侧设备或者第二终端发送的;
所述第一终端向网络侧设备发送所述第一PRS和所述第二PRS中的一项,以及第一终端对网络侧设备发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF或者第二终端发送所述第二测量信息;
所述第一终端向网络侧设备发送所述第一PRS和所述第二PRS中的至少一项。
可选的,所述第一测量信息用于上报如下至少一项:
第一定位测量量、第一定位测量质量;
或,所述第二测量信息用于上报如下至少一项:
第二定位测量量、第二定位测量质量。
可选的,所述第一定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
本公开实施例还提供一种定位方法,包括:
网络侧设备向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
所述网络侧设备基于所述配置信息,执行定位操作。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述网络侧设备基于所述配置信息,执行定位操作,包括如下一项:
所述网络侧设备对所述第一终端发送的所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF发送所述第一测量信息;
所述网络侧设备向所述第一终端发送所述第一PRS和所述第二PRS中的一项,以及所述网络侧设备对所述第一终端发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF发送所述第二测量信息;
所述网络侧设备向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项。
可选的,所述第一测量信息用于上报如下至少一项:
第一定位测量量、第一定位测量质量;
或,所述第二测量信息用于上报如下至少一项:
第二定位测量量、第二定位测量质量。
可选的,所述第一定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
本公开实施例还提供一种定位方法,包括:
第二终端基于定位参考信号PRS的配置信息向第一终端发送PRS,其中,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第 一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
所述第二终端接收所述第一终端发送的测量信息。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述第二终端基于PRS的配置信息向第一终端发送PRS,包括如下一项:
所述第二终端向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项;
所述测量信息为所述第一终端对所述第一PRS和所述第二PRS中的至少一项进行测量得到的测量信息。
可选的,所述测量信息用于上报如下至少一项:
定位测量量、定位测量质量。
可选的,所述定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
本公开实施例还提供一种定位方法,包括:
LMF向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中 的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
所述LMF获取测量信息,并基于所述测量信息对所述第一终端的位置进行解算。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续或者非周期的信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续或者周期的信号。
可选的,所述测量信息用于上报如下至少一项:
定位测量量、定位测量质量。
可选的,所述定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
本公开实施例还提供一种终端,所述终端为第一终端,包括:存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
获取定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用 的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
基于所述配置信息,执行定位操作。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
本公开实施例还提供一种网络侧设备,包括:存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;;
基于所述配置信息,执行定位操作。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
本公开实施例还提供一种终端,所述终端为第二终端,包括:存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
基于定位参考信号PRS的配置信息向第一终端发送PRS,其中,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
接收所述第一终端发送的测量信息。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
本公开实施例还提供一种LMF,包括:存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个 时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
获取测量信息,并基于所述测量信息对所述第一终端的位置进行解算。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
本公开实施例还提供一种终端,所述终端为第一终端,包括:
获取单元,用于获取定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
执行单元,用于基于所述配置信息,执行定位操作。
本公开实施例还提供一种网络侧设备,包括:
发送单元,用于向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
执行单元,用于基于所述配置信息,执行定位操作。
本公开实施例还提供一种终端,所述终端为第二终端,包括:
发送单元,用于基于定位参考信号PRS的配置信息向第一终端发送PRS,其中,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
接收单元,用于接收所述第一终端发送的测量信息。
本公开实施例还提供一种LMF,包括:
发送单元,用于向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
解算单元,用于获取测量信息,并基于所述测量信息对所述第一终端的位置进行解算。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行第一终端侧的定位方法,或者,所述计算机程序用于使所述处理器执行网络侧设备侧的定位方法,或者,所述计算机程序用于使所述处理器执行第二终端侧的定位方法,或者,所述计算机程序用于使所述处理器执行LMF侧的定位方法。
本公开实施例中,第一终端获取PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;所 述第一终端基于所述配置信息,执行定位操作。这样定位采用的周期性的PRS支持一个周期占用的符号数量最大为14,非周期性的PRS支持占用连续的N个时隙,从而可以支持PRS可以占用更多符号,以提高PRS的传输可靠性。另外,支持PRS占用的PRS资源最小PRB小于24个PRB,从而使得小带宽终端也可以接收到PRS,进而提高PRS的传输可靠性。
附图说明
图1是本公开实施可应用的网络构架的结构示意图;
图2是本公开实施例提供的一种定位方法的流程图;
图3是本公开实施例提供的一种信号配置的示意图;
图4是本公开实施例提供的另一种信号配置的示意图;
图5是本公开实施例提供的另一种信号配置的流程图;
图6是本公开实施例提供的另一种信号配置的流程图;
图7是本公开实施例提供的另一种信号配置的流程图;
图8是本公开实施例提供的一种终端的结构图;
图9是本公开实施例提供的一种网络侧设备的结构图;
图10是本公开实施例提供的另一种终端的结构图;
图11是本公开实施例提供的一种LMF的结构图;
图12是本公开实施例提供的另一种终端的结构图;
图13是本公开实施例提供的另一种网络侧设备的结构图;
图14是本公开实施例提供的另一种终端的结构图;
图15是本公开实施例提供的一种LMF的结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关 系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种业务数据传输方法、终端、网络节点和存储介质,以解决终端的传输速率降低的问题。
其中,方法和设备是基于同一申请构思的,由于方法和设备解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是6G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、第五代移动通信技术(5th Generation Mobile Communication Technology,5G)新空口(New Radio,NR)系统、第六代移动通信技术(6th Generation Mobile Communication Technology,6G)系统等。这多种系统中均包括终端设备和网络侧设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5G System,5GS)等。
请参见图1,图1是本公开实施可应用的网络构架的结构示意图,如图1所示,包括多个终端11、网络侧设备12、LMF13,其中:
其中,本公开实施例涉及的终端11,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器 的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、Redcap终端等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络侧设备12,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络侧设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络侧设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络侧设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络侧设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络侧设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络侧设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB)、6G中的基站,也可以是家庭演进 基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络侧设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),集中单元和分布单元也可以地理上分开布置。在一些网络结构中,网络侧设备可以包括发送接收点(Transmitting Receiving Point,TRP)。
其中,图1中以终端11通过网络侧设备12与LMF13进行通信为举例。
本公开实施例中,网络侧与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维MIMO(2Dimension MIMO,2D-MIMO)、三维MIMO(3Dimension MIMO,3D-MIMO)、全维度MIMO(Full Dimension MIMO,FD-MIMO)或超大规模MIMO(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
请参见图2,图2是本公开实施例提供的一种定位方法的流程图,如图2所示,包括以下步骤:
步骤201、第一终端获取PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
步骤202、所述第一终端基于所述配置信息,执行定位操作。
上述第一PRS可以是,本公开实施例中在协议中新定义的PRS,与协议中已定义的PRS为不同的PRS。本公开实施例中,第一PRS也可以称作第一新PRS(New PRS,N-PRS)。
上述配置信息可以是接收网络侧设备发送的配置信息,也可以是接收LMF发送的配置信息,或者,上述配置信息可以是获取预先配置的配置信息,如在预配置资源池中获取上述配置信息。
上述周期性的所述第一PRS的一个周期占用的符号数量最大为14可以是,在一个时隙内,一个周期N-PRS资源支持占用的OFDM符号数量的最大值为14,即包含1个时隙内的所有14个OFDM符号。
上述非周期性的所述第一PRS占用连续的N个时隙可以是,对于一个非周期PRS资源,还可以支持其占用连续N个时隙,即一次触发,可以连续N个时隙传输,其中,N的最大值取决于终端能力(UE capability)。
上述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源可以是,第一PRS占用的PRS资源支持小于24个PRB的资源,例如:第一PRS占用的PRS资源的带宽除了5G NR Rel-16定义的DL PRS的PRB个数之外,还支持小于24个PRB,例如:4/8/12/16/20个PRB等。也就是说,上述第一PRS占用的PRS资源可以是,小于24个PRB的资源,也可以是大于或者等于24个PRB的资源。
本公开实施例中,上述配置信息用于辅助定位,从而上述配置信息也可以称作定位辅助数据信息。
上述基于所述配置信息,执行定位操作可以是,在上述配置信息对应的资源上执行上行、下行、直通链路(Sidelink)和联合定位操作中的至少一项。
本公开实施例中,通过上述步骤可以实现定位采用的周期性的PRS支持一个周期占用的符号数量最大为14,非周期性的PRS支持占用连续的N个时隙,从而可以支持PRS可以占用更多符号,以提高PRS的传输可靠性。另外,支持PRS占用的PRS资源包括小于24个PRB的PRB资源,从而使得小带宽终端也可以接收到PRS,进而提高PRS的传输可靠性。且基于上述PRS的定位可以适用于物联网(Internet of Things,IoT)等应用场景。需要说明的是,本公开实施例中,并不限于应用于IoT应用场景,例如:常规的终端通信、车联网等场景都可以适用。
作为一种可选的实施方式,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项: 周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无交叉(stagger)图样、stagger图样、部分stagger图样。
上述第一PRS的第一间隔子载波个数可以是,在同一个正交频分复用(Orthogonal frequency division multiplex,OFDM)上,第一PRS占用的PRB资源中相邻的两个子载波之间间隔的子载波个数。本公开实施例中,间隔子载波个数也可以称作梳状尺寸(Comb Size)。上述第一间隔子载波个数包括大于12的间隔子载波个数可以理解为,该间隔子载波个数支持大于12,例如:24,也支持小于12,如2、4、6、12等。
上述第一周期信息包括如下至少一项:周期、半持续、非周期可以理解为,第一PRS可以是周期PRS、半持续PRS或者非周期PRS,其中,对周期性PRS支持大于4个时隙的同期,如支持{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240}个时隙的周期,出支持小于或者等于4个时隙的周期,例如:还支持1/2/4个时隙的周期。另外,在周期为1个时隙,且占用1个时隙内14个OFDM符号时实现了连续的PRS。
上述第一图样信息无stagger图样、stagger图样、部分stagger图样中的至少一项可以理解为,第一PRS支持如下三种选项:
无stagger图样,即同一小区所有OFDM符号的RE偏移(RE shift)相同,不同小区不相同;
选项2:stagger图样,其中,该stagger图样可以是协议中已定义的新空口下行定位参考信号(NR DL PRS)和/或者上行定位探测参考信号(UL SRS-Pos)的stagger图样;
选项3:部分Stagger图样,该部分Stagger图样可以是在一个PRS资源所占用的部分符号上的资源单元(Resource element,RE)偏移(RE shift)相同,而在其它符号上的RE Shift不同。
本公开实施例中,PRS图样可以定义了PRS的间隔子载波个数和OFDM符号之间的关系和RE偏移。
针对上述选项1,即无stagger图样,同一小区所有OFDM符号的RE偏 移(RE shift)相同,不同小区不相同。PRS资源在相邻的OFDM符号上的相对RE偏移参见表1,其中,表M为符号个数,N为间隔子载波个数,且N<=M。表1表示了PRS支持的间隔子载波个数N(即梳状尺寸为N)、OFDM符号个数M组合条件下的相对RE偏移。
表1:
下面以间隔子载波个数N=4、OFDM符号个数M=4为例,给出选项1中四个小区的N-PRS图样的示意图,具体如图3所示,如图3所示,每个小区的4个符号中RE偏移是相同的。
对于上述选项2,可以采用协议中已定义的NR DL PRS stagger图样,其中,NR DL PRS资源在相邻的OFDM符号上的相对RE偏移采用预定义表格方式,由DL PRS间隔子载波个数N和OFDM符号个数M组合条件给出,具体参见表2,其中,N<=M,表2表示了DL PRS支持的间隔子载波个数N、OFDM符号个数M组合条件下的相对RE偏移。
表2:
对于上述选项3,即部分Stagger图样,该情况下,可以是在一个N-PRS资源所占用的部分符号上的RE Shift相同,而在其它符号上的RE Shift不同。N-PRS资源在相邻的OFDM符号上的相对RE偏移参见表3,表3中N<=M,表3表示了PRS支持的间隔子载波个数N、OFDM符号个数M组合条件下的相对RE偏移。
表3:
下面以间隔子载波个数N=4、OFDM符号个数M=4的相对RE偏移{0,0,1,1}为例,给出选项3中四个小区的N-PRS图样的示意图,如图4所示,在图4中每个小区前两个符号的RE偏移相同,后两个符号相比第一个符号偏移一个RE。
上述实施方式中,通过上述配置信息中的梳状、周期和图样可以使得第一PRS支持更加灵活的传输。
另外,由于第一PRS可以采用无stagger(non-stagger)图样的目的可以是,从改善当前基于数字锁相环(Phase Locked Loop,PLL)的载波相位测量算法的角度考虑,由于不同OFDM符号在同一个RE上面的PRS,避免了在各个OFDM符号之间估计载波相位测量量时搬移到同一个资源元素(Resource Element,RE)(例如:中心载频RE),从而在保证估计精度的同时减少了接收机计算复杂度。
作为一种可选的实施方式,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
该实施方式中,所述第二PRS为本公开实施例在协议中新定义的PRS,或者,所述第二PRS为协议中已定义的PSR。
在上述第二PRS为新定义的PRS的情况下,该PRS可以称作第二N-PRS。
上述协议中已定义的PSR以是5G NR Rel-16定义的DL PRS和/或者UL  SRS-Pos。
可选的,所述第一PRS包括如下一项:
第一上行PRS、第一下行PRS、第一直通链路Sidelink PRS;
所述第二PRS包括如下一项:
第二上行PRS、第二下行PRS、第二Sidelink PRS。
该实施方式中,第二PRS可以是下行PRS,也可以是上行PRS,例如:第二PRS可以是下行N-PRS或者上行N-PRS。同理,上述第一PRS可以是下行PRS,也可以是上行PRS,例如:第一PRS可以是下行N-PRS或者上行N-PRS。或者,上述第一PRS和第二PRS可以是Sidelink-PRS。
其中,第二PRS的配置信息可以参见第一PRS的配置信息的相应描述,此处不作赘述。
该实施方式中,可以为终端配置第一PRS和第二PRS,从而终端可以第一PRS和第二PRS中的至少一项进行定位操作,有利于提高定位的准确度。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
其中,第二PRS的间隔子载波个数、周期信息和图样信息可以参见第一PRS的相应描述,此处不作赘述。
另外,由于第二PRS(或者第一PRS和第二PRS)可以采用无stagger(non-stagger)图样的目的可以是,从改善当前基于数字锁相环(Phase Locked Loop,PLL)的载波相位测量算法的角度考虑,由于不同OFDM符号在同一个RE上面的PRS,避免了在各个OFDM符号之间估计载波相位测量量时搬移到同一个RE(例如:中心载频RE),从而在保证估计精度的同时减少了接收机计算复杂度。
在一些实施方式中,第一PRS和第二PRS的图样可以不同,例如:第二PRS为stagger图样,第一PRS可以为无stagger图样或者部分Stagger图样。或者,在一些实施方式中,第一PRS和第二PRS的图样可以相同,例如:第二PRS和第一PRS都可以为无stagger图样或者部分Stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
例如:所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小。
例如:在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
例如:当第一PRS是非周期PRS时,第二N-PRS可以是周期PRS或者半持续PRS。如第一PRS配置的时域资源的资源类型为成占用连续N个时隙,即非周期PRS,协助完成突发性载波相位定位(Carrier Phase Positioning,CPP)高精度定位(例如:定位误差在厘米级),而第二N-PRS配置的时域资源的资源类型为周期性时域资源,即开销较低的周期PRS,用来完成粗精度定位(例如:定位误差在米级)。
该实施方式中,由于第一PRS和所述第二PRS之间带宽、周期、资源类型中的至少如下一项可以不同,从而可以支持更加灵活的定位。
作为一种可选的实施方式,所述第一终端基于所述配置信息,执行定位操作,包括如下一项:
所述第一终端对所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF或者第二终端发送所述第一测量信息;其中,所述第一PRS和所述第二PRS中的至少一项为网络侧设备或者第二终端发送的;
所述第一终端向网络侧设备发送所述第一PRS和所述第二PRS中的一项,以及第一终端对网络侧设备发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF或者第二终端发送所述第二测量信 息;
所述第一终端向网络侧设备发送所述第一PRS和所述第二PRS中的至少一项。
在上述第一PRS和所述第二PRS中的至少一项为网络侧设备发送的情况下,可以实现下行定位,例如:第一终端接收并测量来自网络侧设备的第一PRS和第二PRS中的至少一种PRS,获取定位测量量以及定位测量质量。
在上述第一PRS和所述第二PRS中的至少一项为第二终端发送的情况下,可以Sidelink定位,例如:第一终端接收并测量来自第二终端的第一PRS和第二PRS中的至少一种PRS,获取定位测量量以及定位测量质量。
上述第一终端向网络侧设备发送所述第一PRS和所述第二PRS中的一项,以及第一终端对网络侧设备发送的所述第一PRS和所述第二PRS中的另一项进行测量可以实现Uu口上下行联合定位。
上述第一终端向网络侧设备发送所述第一PRS和所述第二PRS中的至少一项可以实现上行定位,例如:第一终端向网络侧设备发送第一PRS和第二PRS中的至少一种PRS,用于网络侧设备获取定位测量量,以及定位测量质量。
其中,上述第一测量信息可以用于上报如下至少一项:
第一定位测量量、第一定位测量质量;
上述第二测量信息可以用于上报如下至少一项:
第二定位测量量、第二定位测量质量。
上述第一定位测量量和第二定位测量量可以包含相位类测量量,如到达相位(Phase of Arrival,POA)、信号到达相位差(Phase Difference of Arrival,PDOA)。或者,可以包含时延类测量量,如到达时间(Time of Arrival,TOA)、异频参考信号时间差(Reference Signal Time Difference,RSTD);或者,可以包含角度类测量量,如到达角度测距(Angle-of-Arrival,AOA)、出发角(Angle of Departure,AoD);或者,可以包含功率类测量量,如参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)等。
上述第一定位测量质量和第二定位测量质量可以是测量量的可靠性、准 确度或方差等测量质量。
另外,本公开实施例中,定位测量量可以是独立获取的,也可以是基于载波相位测量量平滑处理后获取的。
上述实施方式中,支持多种定位方式,以提高定位的灵活性。
可选的,所述第一测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量;
所述第二测量信息以非差分形式或者差分形式上报所述第二定位测量量和所述第二定位测量质量。
该实施方式中,可以实现以非差分形式或者差分形式上报,从而提高上报的灵活性。
在一种实施方式中,所述第一定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
在另一种实施方式中,所述第一定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量。
上述相位测量量、时延测量量、角度测量量和功率测量量可以是,基于所述第一PRS和所述第二PRS采用联合测量的相应算法得到的相应的测量量,由于联合测量,从而可以提高定位测量的精确性。下面给出三种算法示例:示例1:把第一PRS和第二PRS进行频域级联处理构造为新的PRS(新的PRS的信号带宽大于第一PRS和第二PRS的信号带宽),再进行测量,获取更高精度的测量量。示例2:把第一PRS和第二PRS进行时域合并处理构造为新的PRS(例如:基于不同OFDM符号上的PRS信号合并,新的PRS的接收信噪比(Signal-to-noise ratio,SNR)大于第一PRS和第二PRS的接收SNR),再进行测量,获取更高精度的测量量。示例3:基于示例1和示例2的结合,把第一PRS和第二PRS进行频域级联和时域合并处理构造为新的PRS(其中, 频域级联处理使得新的PRS的信号带宽大于第一PRS和第二PRS的信号带宽;时域处理基于不同OFDM符号上的PRS信号合并,新的PRS的接收信噪比SNR大于第一PRS和第二PRS的接收信噪比SNR),再进行测量,获取更高精度的测量量。
在另一种实施方式中,上述第一定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
该实施方式中,可以实现方式第一终端首先基于第一PRS获取第一测量量(如相位测量量),并且基于第二PRS获取第二测量量(如时延/角度/功率测量量),然后基于第一测量量对第二测量量进行平滑处理,获得第三测量量。其中,上述平滑处理可以是基于平滑器函数(例如:Hatch平滑器函数)或者平均值函数进行平滑处理。
在一种实施方式中,所述第二定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量。
或者,所述第二定位测量量包括如下至少一项:
基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
该实施方式中,可以实现第一终端只基于第一PRS或第二PRS获得相位测量量、时延测量量、角度测量量或功率测量量中的至少一项,以节约计算开销。
可选的,所述第一测量信息还用于上报如下至少一项:
所述第一定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识;
所述第二测量信息用于上报如下至少一项:
所述第二定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
该实施方式中,由于在向LMF或者第二终端发送的测量信息还上报上述至少一项,这样可以有利于LMF或者第二终端降低解算终端定位的复杂度。
作为一种可选的实施方式,所述第一终端获取PRS的配置信息,包括如下至少一项:
所述第一终端接收网络侧设备发送的PRS的配置信息;
所述第一终端接收LMF发送的PRS的配置信息。
上述第一终端可以是通过网络侧设备发送的无线资源控制(Radio Resource Control,RRC)信令发送的配置信息,通过LMF发送的NR定位协议(NR positioning protocol A,NRPPa)信令发送的配置信息。
例如:针对NR Uu口下行定位和NR Uu口上下行联合定位方法,第一终端通过LMF的NRPPa信令获取第一PRS和第二PRS的配置信息;又例如:针对NR Uu口上行定位和NR Uu口上下行联合定位方法,第一终端通过网络侧设备的RRC信令获取第一PRS和第二PRS的配置信息;又例如:针对NR Sidelink定位方法,第一终端通过LMF的NRPPa信令、网络侧设备的RRC信令或者预配置资源池,获取第一PRS和第二PRS的配置信息。或者,网络侧设备发送第一PRS的配置信息,LMF发送第二PRS的配置信息。
本公开实施例中,第一终端获取PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;所述第一终端基于所述配置信息,执行定位操作。这样定位采用的周期性的PRS支持一个周期占用的符号数量最大为14,非周期性的PRS支持占用连续的N个时隙,从而可以支持PRS可以占用更多符号,以提高PRS的传输可靠性。另外,支持PRS占用的PRS资源最小PRB小于24个PRB,从而使得小带宽终端也可以接收到PRS,进而提高PRS的传输可靠性。
请参见图5,图5是本公开实施例提供的另一种定位方法的流程图,如图5所示,包括以下步骤:
步骤501、网络侧设备向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
步骤502、所述网络侧设备基于所述配置信息,执行定位操作。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述网络侧设备基于所述配置信息,执行定位操作,包括如下一项:
所述网络侧设备对所述第一终端发送的所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF发送所述第一测量信息;
所述网络侧设备向所述第一终端发送所述第一PRS和所述第二PRS中的一项,以及所述网络侧设备对所述第一终端发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF发送所述第二测量信息;
所述网络侧设备向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项。
可选的,所述第一测量信息用于上报如下至少一项:
第一定位测量量、第一定位测量质量;
或,所述第二测量信息用于上报如下至少一项:
第二定位测量量、第二定位测量质量。
可选的,所述第一测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量;
所述第二测量信息以非差分形式或者差分形式上报所述第二定位测量量和所述第二定位测量质量。
可选的,所述第一定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述第一测量信息还用于上报如下至少一项:
所述第一定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识;
所述第二测量信息用于上报如下至少一项:
所述第二定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
可选的,所述第一PRS包括如下一项:
第一上行PRS、第一下行PRS、第一直通链路Sidelink PRS;
所述第二PRS包括如下一项:
第二上行PRS、第二下行PRS、第二Sidelink PRS。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络侧设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图6,图6是本公开实施例提供的另一种定位方法的流程图,如图6所示,包括以下步骤:
步骤601、第二终端基于定位参考信号PRS的配置信息向第一终端发送PRS,其中,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
步骤606、所述第二终端接收所述第一终端发送的测量信息。
上述测量信息可以包括定位测量量和测量质量,第二终端可以基于该测量信息进行第一UE的位置解算,以得到第一终端的相对定位或者绝对定位。或者,第二终端将测量信息发送给LMF进行解算。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如 下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述第二终端基于PRS的配置信息向第一终端发送PRS,包括如下一项:
所述第二终端向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项;
所述测量信息为所述第一终端对所述第一PRS和所述第二PRS中的至少一项进行测量得到的测量信息。
可选的,所述测量信息用于上报如下至少一项:
定位测量量、定位测量质量。
可选的,所述测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量。
可选的,所述定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述测量信息还用于上报如下至少一项:
所述定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
可选的,所述方法还包括:
所述第二终端基于所述测量信息对所述第一终端的位置进行解算。
需要说明的是,本实施例作为与图2所示的实施例中对应的第二终端的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图7,图7是本公开实施例提供的另一种定位方法的流程图,如图7所示,包括以下步骤:
步骤701、LMF向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用 于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
步骤702、所述LMF获取测量信息,并基于所述测量信息对所述第一终端的位置进行解算。
上述基于所述测量信息对所述第一终端的位置进行解算可以是,解算第一终端的相对定位,或者绝对定位。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续或者非周期的信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续或者周期的信号。
可选的,所述测量信息用于上报如下至少一项:
定位测量量、定位测量质量。
可选的,所述第一测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量。
可选的,所述定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述测量信息还用于上报如下至少一项:
所述定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
需要说明的是,本实施例作为与图2所示的实施例中对应的LMF的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免 重复说明,本实施例不再赘述,且还可以达到相同有益效果。
下面以第一PRS和第二PRS为第一N-PRS和第二N-PRS为例,通过多个实施例对本公开实施例提供的定位方法进行举例说明:
实施例一:
该实施例中,以NR Uu口下行定位或NR Uu口上下行联合定位进行举例说明。该实施例中描述的针对NR Uu口下行定位和NR Uu口上下行联合定位方法,涉及实体为第一终端、网络侧设备和LMF。针对非周期N-PRS资源还可以支持占用连续N个时隙的参数N取决于终端能力(UE capability),取值集合为{1,2,4,8,16},当前取值N=4。具体包括以下步骤:
步骤1、第一终端接收网络(网络侧设备/LMF)配置或者预配置的PRS的配置信息(也可以称作定位辅助数据信息),该信息包含第一N-PRS和第二N-PRS相关的配置信息。
其中,第一N-PRS是新定义的下行N-PRS或者上行N-PRS;第二PRS可以是新定义的下行N-PRS或者上行N-PRS,也可以是5G NR Rel-16定义的DL PRS和/或者UL SRS-Pos。针对本实施例中的定位方法,第一终端的具体处理方法可以如下:
针对NR Uu口下行定位和NR Uu口上下行联合定位方法,第一终端通过LMF的NRPPa信令获取第一N-PRS和第二N-PRS的配置信息;
其中,第一N-PRS和第二N-PRS的配置信息包括如下至少一项:
时域OFDM符号个数:在一个时隙内,一个周期N-PRS资源支持占用的OFDM符号数量的最大值为14,即包含1个slot内的所有14个OFDM符号;并且,对于一个非周期N-PRS资源,还可以支持其占用连续N=4个时隙(一次触发,可以连续4个时隙传输);
频域Comb Size:支持大于12,例如:24;
图样:支持三种选项,选项1:无stagger图样,即同一小区所有OFDM符号的RE shift相同,不同小区不相同;选项2:stagger图样,例如:基于Rel-16的NR DL PRS和/或者UL SRS-Pos的stagger图样;选项3:部分Stagger图样,例如:在一个PRS资源所占用的部分符号上的RE Shift相同,而在其它符号上的RE Shift不同。其中,选项2(stagger图样)可以只适用于第二 N-PRS,选项1(无stagger图样)和选项3(部分Stagger图样)同时适用于第一N-PRS和第二N-PRS;
周期:支持周期N-PRS、半持续N-PRS和非周期N-PRS。针对周期性N-PRS,支持{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240}个时隙(slot),以及1和2个slot的周期;其中,周期为1个slot+1个slot内14个OFDM符号时实现了连续的N-PRS;
带宽:除了5G NR Rel-16定义的DL PRS的PRB个数之外,还支持小于24个PRB,例如:4/8/12/16/20等;
其中,第一N-PRS资源和第二N-PRS资源的一种配置关系可以如下:
带宽不同:第一N-PRS的带宽小于第二N-PRS的带宽;
周期不同:当第一N-PRS和第二N-PRS都是周期N-PRS时,第一N-PRS的周期小于第二N-PRS的周期;当第一N-PRS是周期N-PRS时,第二N-PRS是半持续N-PRS或者非周期N-PRS。
资源类型不同:当第一N-PRS是非周期N-PRS时,第二N-PRS可以是周期N-PRS或者半持续N-PRS。例如:第一N-PRS配置成占用连续N=4个时隙的非周期N-PRS,协助完成突发性CPP高精度定位(例如:定位误差在厘米级),而第二N-PRS是开销较低的周期N-PRS,用来完成粗精度定位(例如:定位误差在米级)。
步骤2、第一终端根据步骤1获取的配置信息,针对本实施例中的定位方法处理如下:
针对NR Uu口下行定位和NR Uu口上下行联合定位方法,第一终端接收并测量来自网络侧设备或者第二终端的第一N-PRS和第二N-PRS,获取定位测量量以及定位测量质量;
其中,定位测量量默认包含相位类测量量POA、PDOA,可选地,还包括以下的一种或者多种测量量;时延类测量量TOA、RSTD;角度类测量量AoA、AoD;功率类测量量RSRP、RSRPP等。其中,上述三类可选测量量可以是独立获取的,也可以是基于载波相位测量量平滑处理后获取的。具体可以包含如下四种方式:
方式1、第一终端只基于第一N-PRS获取相位测量量,基于第二N-PRS 获取时延/角度/功率测量量;
方式2、第一终端只基于第一N-PRS和第二N-PRS联合获取相位测量量,基于第一N-PRS和第二N-PRS获取时延/角度/功率测量量;
方式3、第一终端首先基于第一N-PRS获取第一测量量(相位),并且基于第二N-PRS获取第二测量量(时延/角度/功率);然后基于第一测量量对第二测量量进行平滑处理,获得第三测量量;
方式4、第一终端只基于第一N-PRS或第二N-PRS获得相位测量量,以及时延/角度/功率测量量。
步骤3、第一终端向LMF或者其它终端上报步骤2中获取的定位测量量和测量质量,用于LMF或者第二终端基于上述信息进行第一终端的位置解算。
其中,定位测量量和测量质量可以是非差分形式、差分形式上报,并同时包含步骤2中采用的计算方式和第一N-PRS、第二N-PRS的配置ID等信息。
网络侧设备(基站/TRP)执行如下步骤:
步骤1、针对NR Uu口上行定位和NR Uu口上下行联合定位,网络侧设备通过RRC信令向第一终端发送配置或者预配置的定位辅助数据信息,该信息包含第一N-PRS和第二N-PRS相关的配置信息。
其中,第一N-PRS是新定义的下行N-PRS或者上行N-PRS;第二PRS可以是新定义的下行N-PRS或者上行N-PRS,也可以是5G NR Rel-16定义的DL PRS和/或者UL SRS-Pos。
其中,第一N-PRS和第二N-PRS的配置信息可以包括如下至少一项:
时域OFDM符号个数:在一个时隙内,一个周期N-PRS资源支持占用的OFDM符号数量的最大值为14,即包含1个slot内的所有14个OFDM符号;并且,对于一个非周期N-PRS资源,还可以支持其占用连续N=4个时隙(一次触发,可以连续4个时隙传输);
频域Comb Size:支持大于12,例如:24;
图样:支持三种选项,选项1:无stagger图样,即同一小区所有OFDM符号的RE shift相同,不同小区不相同;选项2:stagger图样,例如:基于Rel-16的NR DL PRS和/或者UL SRS-Pos的stagger图样;选项3:部分Stagger 图样,例如:在一个PRS资源所占用的部分符号上的RE Shift相同,而在其它符号上的RE Shift不同。其中,选项2(stagger图样)只适用于第二N-PRS,选项1(无stagger图样)和选项3(部分Stagger图样)同时适用于第一N-PRS和第二N-PRS;
周期:支持周期N-PRS、半持续N-PRS和非周期N-PRS。针对周期性N-PRS,支持{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240}个slot,以及1和2个slot的周期;其中,周期为1个slot+1个slot内14个OFDM符号时实现了连续的N-PRS;
带宽:除了5G NR Rel-16定义的DL PRS的PRB个数之外,还支持小于24个PRB,例如:4/8/12/16/20等;
其中,第一N-PRS资源和第二N-PRS资源的一种配置关系如下:
带宽不同:第一N-PRS的带宽小于第二N-PRS的带宽;
周期不同:当第一N-PRS和第二N-PRS都是周期N-PRS时,第一N-PRS的周期小于第二N-PRS的周期;当第一N-PRS是周期N-PRS时,第二N-PRS是半持续N-PRS或者非周期N-PRS。
资源类型不同:当第一N-PRS是非周期N-PRS时,第二N-PRS可以是周期N-PRS或者半持续N-PRS。例如:第一N-PRS配置成占用连续N=4个时隙的非周期N-PRS,协助完成突发性CPP高精度定位(例如:定位误差在厘米级),而第二N-PRS是开销较低的周期N-PRS,用来完成粗精度定位(例如:定位误差在米级)。
步骤2、针对NR Uu口下行定位和NR Uu口上下行联合定位,网络侧设备向第一终端发送第一N-PRS和第二N-PRS,用于第一终端获取定位测量量以及定位测量质量。
其中,定位测量量默认包含相位类测量量POA、PDOA,可选地,还包括以下的一种或者多种测量量;时延类测量量TOA、RSTD;角度类测量量AoA、AoD;功率类测量量RSRP、RSRPP。其中,上述三类可选测量量可以是独立获取的,也可以是基于载波相位测量量平滑处理后获取的。具体可以包含如下四种方式:
方式1、网络侧设备只基于第一N-PRS获取相位测量量,基于第二N-PRS 获取时延/角度/功率测量量;
方式2、网络侧设备只基于第一N-PRS和第二N-PRS联合获取相位测量量,基于第一N-PRS和第二N-PRS获取时延/角度/功率测量量;
方式3、网络侧设备首先基于第一N-PRS获取第一测量量(相位),并且基于第二N-PRS获取第二测量量(时延/角度/功率类);然后基于第一测量量对第二测量量进行平滑处理,获得第三测量量;
方式4、网络侧设备只基于第一N-PRS或第二N-PRS获得相位测量量,以及时延/角度/功率测量量。
步骤3、网络侧设备向LMF上报步骤2中获取的定位测量量和测量质量,用于LMF基于上述信息进行第一终端的位置解算。
其中,定位测量量和测量质量可以是非差分形式、差分形式上报,并同时包含步骤2中采用的计算方式和第一N-PRS、第二N-PRS的配置ID等信息。
LMF执行如下步骤:
步骤1、针对NR Uu口下行定位和NR Uu口上下行联合定位,LMF通过NRPPa信令向第一终端通知第一N-PRS和第二N-PRS的配置信息。
其中,第一N-PRS是新定义的下行N-PRS或者上行N-PRS;第二PRS可以是新定义的下行N-PRS或者上行N-PRS,也可以是5G NR Rel-16定义的DL PRS和/或者UL SRS-Pos。
其中,第一N-PRS和第二N-PRS的配置信息如下:
时域OFDM符号个数:在一个时隙内,一个周期N-PRS资源支持占用的OFDM符号数量的最大值为14,即包含1个slot内的所有14个OFDM符号;并且,对于一个非周期N-PRS资源,还可以支持其占用连续N=4个时隙(一次触发,可以连续4个时隙传输);
频域Comb Size:支持大于12,例如:24;
图样:支持三种选项,选项1:无stagger图样,即同一小区所有OFDM符号的RE shift相同,不同小区不相同;选项2:stagger图样,例如:基于Rel-16的NR DL PRS和/或者UL SRS-Pos的stagger图样;选项3:部分Stagger图样,例如:在一个PRS资源所占用的部分符号上的RE Shift相同,而在其 它符号上的RE Shift不同。其中,选项2(stagger图样)只适用于第二N-PRS,选项1(无stagger图样)和选项3(部分Stagger图样)同时适用于第一N-PRS和第二N-PRS;
周期:支持周期N-PRS、半持续N-PRS和非周期N-PRS。针对周期性N-PRS,支持{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240}个slot,以及1和2个slot的周期;其中,周期为1个slot+1个slot内14个OFDM符号时实现了连续的N-PRS;
带宽:除了5G NR Rel-16定义的DL PRS的PRB个数之外,还支持小于24个PRB,例如:4/8/12/16/20等;
其中,第一N-PRS资源和第二N-PRS资源的一种配置关系可以如下:
带宽不同:第一N-PRS的带宽小于第二N-PRS的带宽;
周期不同:当第一N-PRS和第二N-PRS都是周期N-PRS时,第一N-PRS的周期小于第二N-PRS的周期;当第一N-PRS是周期N-PRS时,第二N-PRS是半持续N-PRS或者非周期N-PRS;
资源类型不同:当第一N-PRS是非周期N-PRS时,第二N-PRS可以是周期N-PRS或者半持续N-PRS。例如:第一N-PRS配置成占用连续N=4个时隙的非周期N-PRS,协助完成突发性CPP高精度定位(例如:定位误差在厘米级)。而第二N-PRS是开销较低的周期N-PRS,用来完成粗精度定位(例如:定位误差在米级)。
步骤2、LMF接收第一终端上报的定位测量量和测量质量,并且基于上述信息进行第一终端的位置解算。
其中,定位测量量和测量质量可以是非差分形式、差分形式上报,并同时包含步骤2中采用的计算方式和第一N-PRS、第二N-PRS的配置ID等信息。
实施例二:
该实施例中主要描述NR Uu口上行定位或NR Uu口上下行联合定位。该实施例中描述的针对NR Uu口上行定位或NR Uu口上下行联合定位,涉及实体为第一终端、网络侧设备和LMF。针对非周期N-PRS资源还可以支持占用连续N个时隙的参数N取决于终端能力(UE capability),取值集合为 {1,2,4,8,16},当前取值N=8。具体可以包括如下:
其中,第一终端执行如下步骤:
步骤1、第一终端接收网络(网络侧设备/LMF)配置或者预配置的定位辅助数据信息,该信息包含第一N-PRS和第二N-PRS相关的配置信息。
其中,第一N-PRS是新定义的下行N-PRS或者上行N-PRS;第二PRS可以是新定义的下行N-PRS或者上行N-PRS,也可以是5G NR Rel-16定义的DL PRS和/或者UL SRS-Pos。
针对本实施例中的定位方法,终端的具体处理方法如下:
针对NR Uu口上行定位和NR Uu口上下行联合定位方法,第一终端通过服务网络侧设备的RRC信令获取第一N-PRS和第二N-PRS的配置信息。
其中,第一N-PRS和第二N-PRS的配置信息包括如下至少一项:
时域OFDM符号个数:在一个时隙内,一个周期N-PRS资源支持占用的OFDM符号数量的最大值为14,即包含1个slot内的所有14个OFDM符号;并且,对于一个非周期N-PRS资源,还可以支持其占用连续N=8个时隙(一次触发,可以连续8个时隙传输);
频域Comb Size:支持大于12,例如:24;
图样:支持三种选项,选项1:无stagger图样,即同一小区所有OFDM符号的RE shift相同,不同小区不相同;选项2:stagger图样,例如:基于Rel-16的NR DL PRS和/或者UL SRS-Pos的stagger图样;选项3:部分Stagger图样,例如:在一个PRS资源所占用的部分符号上的RE Shift相同,而在其它符号上的RE Shift不同。其中,选项2(stagger图样)只适用于第二N-PRS,选项1(无stagger图样)和选项3(部分Stagger图样)同时适用于第一N-PRS和第二N-PRS;
周期:支持周期N-PRS、半持续N-PRS和非周期N-PRS。针对周期性N-PRS,支持{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240}个slot,以及1和2个slot的周期;其中,周期为1个slot+1个slot内14个OFDM符号时实现了连续的N-PRS;
带宽:除了5G NR Rel-16定义的DL PRS的PRB个数之外,还支持小于24个PRB,例如:4/8/12/16/20等。
其中,第一N-PRS资源和第二N-PRS资源的一种配置关系如下:
带宽不同:第一N-PRS的带宽小于第二N-PRS的带宽;
周期不同:当第一N-PRS和第二N-PRS都是周期N-PRS时,第一N-PRS的周期小于第二N-PRS的周期;当第一N-PRS是周期N-PRS时,第二N-PRS是半持续N-PRS或者非周期N-PRS。
资源类型不同:当第一N-PRS是非周期N-PRS时,第二N-PRS可以是周期N-PRS或者半持续N-PRS。例如:第一N-PRS配置成占用连续N=8个时隙的非周期N-PRS,协助完成突发性CPP高精度定位(例如:定位误差在厘米级)。而第二N-PRS是开销较低的周期N-PRS,用来完成粗精度定位(例如:定位误差在米级)。
步骤2、第一终端根据步骤1获取的定位辅助数据信息,针对本实施例中的定位方法执行处理,具体可以如下:
针对NR Uu口上行定位和NR Uu口上下行联合定位方法,第一终端向网络侧设备发送第一N-PRS和第二N-PRS,用于网络侧设备获取定位测量量,以及定位测量质量。
其中,定位测量量默认包含相位类测量量POA、PDOA,可选地,还包括以下的一种或者多种测量量;时延类测量量TOA、RSTD;角度类测量量AoA、AoD;功率类测量量RSRP、RSRPP等。其中,上述三类可选测量量可以是独立获取的,也可以是基于载波相位测量量平滑处理后获取的。具体可以包含如下三种方式:
方式1、第一终端只基于第一N-PRS获取相位测量量,基于第二N-PRS获取时延/角度/功率测量量;
方式2、第一终端只基于第一N-PRS和第二N-PRS联合获取相位测量量,基于第一N-PRS和第二N-PRS获取时延/角度/功率测量量;
方式3、第一终端首先基于第一N-PRS获取第一测量量(相位),并且基于第二N-PRS获取第二测量量(时延/角度/功率);然后基于第一测量量对第二测量量进行平滑处理,获得第三测量量;
方式4、第一终端只基于第一N-PRS或第二N-PRS获得相位测量量,以及时延/角度/功率测量量。
步骤3、第一终端向LMF上报步骤2中获取的定位测量量和测量质量,用于LMF基于上述信息进行第一终端的位置解算。
其中,定位测量量和测量质量可以是非差分形式、差分形式上报,并同时包含步骤2中采用的计算方式和第一N-PRS、第二N-PRS的配置ID等信息。
其中,网络侧设备(基站/TRP)执行如下步骤:
步骤1、针对NR Uu口上行定位和NR Uu口上下行联合定位方法,网络侧设备接收第一终端发送的第一N-PRS和第二N-PRS,获取定位测量量,以及定位测量质量。
其中,定位测量量默认包含相位类测量量POA、PDOA,可选地,还包括以下的一种或者多种测量量;时延类测量量TOA、RSTD;角度类测量量AoA、AoD;功率类测量量RSRP、RSRPP。其中,上述三类可选测量量可以是独立获取的,也可以是基于载波相位测量量平滑处理后获取的。具体可以包含如下方式:
方式1、网络侧设备只基于第一N-PRS获取相位测量量,基于第二N-PRS获取时延/角度/功率测量量;
方式2、网络侧设备只基于第一N-PRS和第二N-PRS联合获取相位测量量,基于第一N-PRS和第二N-PRS获取时延/角度/功率测量量;
方式3、网络侧设备首先基于第一N-PRS获取第一测量量(相位),并且基于第二N-PRS获取第二测量量(时延/角度/功率类);然后基于第一测量量对第二测量量进行平滑处理,获得第三测量量;
方式4、网络侧设备只基于第一N-PRS或第二N-PRS获得相位测量量,以及时延/角度/功率测量量。
步骤2、网络侧设备向LMF上报步骤1中获取的定位测量量和测量质量,用于LMF基于上述信息进行第一终端的位置解算。
其中,定位测量量和测量质量可以是非差分形式、差分形式上报,并同时包含步骤2中采用的计算方式和第一N-PRS、第二N-PRS的配置ID等信息。
其中,LMF执行如下步骤:
步骤1、LMF接收第一终端上报的定位测量量和测量质量,并且基于上述信息进行第一终端的位置解算。
其中,定位测量量和测量质量可以是非差分形式、差分形式上报,并同时包含步骤2中采用的计算方式和第一N-PRS、第二N-PRS的配置标识(Identifier,ID)等信息。
实施例三:
该实施例主要描述NR Sidelink定位方法。该实施例中描述的针对NR Sidelink定位方法,涉及实体为第一终端、网络侧设备、LMF和第二终端。针对非周期N-PRS资源还可以支持占用连续N个时隙的参数N取决于终端能力(UE capability),取值集合为{1,2,4,8,16},当前取值N=2。具体包括如下:
其中,第一终端执行如下步骤:
步骤1、第一终端接收网络(网络侧设备/LMF)配置或者预配置的定位辅助数据信息,该信息包含第一N-PRS和第二N-PRS相关的配置信息。
其中,第一N-PRS是新定义的下行N-PRS或者上行N-PRS;第二PRS可以是新定义的下行N-PRS或者上行N-PRS,也可以是5G NR Rel-16定义的DL PRS和/或者UL SRS-Pos。
针对本实施例中的定位方法,第一终端的具体处理方法如下:
针对NR Sidelink定位方法,第一终端通过LMF的NRPPa信令、服务网络侧设备的RRC信令或者预配置资源池,获取第一N-PRS和第二N-PRS的配置信息。
其中,第一N-PRS和第二N-PRS的配置信息包括如下至少一项:
时域OFDM符号个数:在一个时隙内,一个周期N-PRS资源支持占用的OFDM符号数量的最大值为14,即包含1个slot内的所有14个OFDM符号;并且,对于一个非周期N-PRS资源,还可以支持其占用连续N=2个时隙(一次触发,可以连续2个时隙传输);
频域Comb Size:支持大于12,例如:24;
图样:支持三种选项,选项1:无stagger图样,即同一小区所有OFDM符号的RE shift相同,不同小区不相同;选项2:stagger图样,例如:基于 Rel-16的NR DL PRS和/或者UL SRS-Pos的stagger图样;选项3:部分Stagger图样,例如:在一个PRS资源所占用的部分符号上的RE Shift相同,而在其它符号上的RE Shift不同。其中,选项2(stagger图样)只适用于第二N-PRS,选项1(无stagger图样)和选项3(部分Stagger图样)同时适用于第一N-PRS和第二N-PRS;
周期:支持周期N-PRS、半持续N-PRS和非周期N-PRS。针对周期性N-PRS,支持{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240}个slot,以及1和2个slot的周期;其中,周期为1个slot+1个slot内14个OFDM符号时实现了连续的N-PRS;
带宽:除了5G NR Rel-16定义的DL PRS的PRB个数之外,还支持小于24个PRB,例如:4/8/12/16/20等。
其中,第一N-PRS资源和第二N-PRS资源的一种配置关系如下:
带宽不同:第一N-PRS的带宽小于第二N-PRS的带宽;
周期不同:当第一N-PRS和第二N-PRS都是周期N-PRS时,第一N-PRS的周期小于第二N-PRS的周期;当第一N-PRS是周期N-PRS时,第二N-PRS是半持续N-PRS或者非周期N-PRS;
资源类型不同:当第一N-PRS是非周期N-PRS时,第二N-PRS可以是周期N-PRS或者半持续N-PRS。例如:第一N-PRS配置成占用连续N=2个时隙的非周期N-PRS,协助完成突发性CPP高精度定位(例如:定位误差在厘米级)。而第二N-PRS是开销较低的周期N-PRS,用来完成粗精度定位(例如:定位误差在米级)。
步骤2、第一终端根据步骤1获取的定位辅助数据信息,针对本实施例中的定位方法执行处理,具体可以如下:
针对NR Sidelink定位方法,第一终端接收并测量来自第二终端的第一N-PRS和第二N-PRS,获取定位测量量以及定位测量质量。
其中,定位测量量默认包含相位类测量量POA、PDOA,可选地,还包括以下的一种或者多种测量量;时延类测量量TOA、RSTD;角度类测量量AoA、AoD;功率类测量量RSRP、RSRPP等。其中,上述三类可选测量量可以是独立获取的,也可以是基于载波相位测量量平滑处理后获取的。具体 可以包含如下四种方式:
方式1、第一终端只基于第一N-PRS获取相位测量量,基于第二N-PRS获取时延/角度/功率测量量;
方式2、第一终端只基于第一N-PRS和第二N-PRS联合获取相位测量量,基于第一N-PRS和第二N-PRS获取时延/角度/功率测量量;
方式3、第一终端首先基于第一N-PRS获取第一测量量(相位),并且基于第二N-PRS获取第二测量量(时延/角度/功率);然后基于第一测量量对第二测量量进行平滑处理,获得第三测量量;
方式4、第一终端只基于第一N-PRS或第二N-PRS获得相位测量量,以及时延/角度/功率测量量。
步骤3、第一终端向第二终端上报步骤2中获取的定位测量量和测量质量,用于第二终端基于上述信息进行第一终端的位置解算。
其中,定位测量量和测量质量可以是非差分形式、差分形式上报,并同时包含步骤2中采用的计算方式和第一N-PRS、第二N-PRS的配置ID等信息。
其中,第二终端执行如下步骤:
步骤1、针对NR Sidelink定位方法,第二终端向第一终端发送第一N-PRS和第二N-PRS,用于第一终端接收并获取定位测量量以及定位测量质量。
其中,第一N-PRS是新定义的下行N-PRS或者上行N-PRS;第二PRS可以是新定义的下行N-PRS或者上行N-PRS,也可以是5G NR Rel-16定义的DL PRS和/或者UL SRS-Pos。
其中,第一N-PRS和第二N-PRS的配置信息包括如下至少一项:
时域OFDM符号个数:在一个时隙内,一个周期N-PRS资源支持占用的OFDM符号数量的最大值为14,即包含1个slot内的所有14个OFDM符号;并且,对于一个非周期N-PRS资源,还可以支持其占用连续N=2个时隙(一次触发,可以连续2个时隙传输);
频域Comb Size:支持大于12,例如:24;
图样:支持三种选项,选项1:无stagger图样,即同一小区所有OFDM符号的RE shift相同,不同小区不相同;选项2:stagger图样,例如:基于 Rel-16的NR DL PRS和/或者UL SRS-Pos的stagger图样;选项3:部分Stagger图样,例如:在一个PRS资源所占用的部分符号上的RE Shift相同,而在其它符号上的RE Shift不同。其中,选项2(stagger图样)只适用于第二N-PRS,选项1(无stagger图样)和选项3(部分Stagger图样)同时适用于第一N-PRS和第二N-PRS;
周期:支持周期N-PRS、半持续N-PRS和非周期N-PRS。针对周期性N-PRS,支持{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240}个slot,以及1和2个slot的周期;其中,周期为1个slot+1个slot内14个OFDM符号时实现了连续的N-PRS;
带宽:除了5G NR Rel-16定义的DL PRS的PRB个数之外,还支持小于24个PRB,例如:4/8/12/16/20等。
其中,第一N-PRS资源和第二N-PRS资源的一种配置关系如下:
带宽不同:第一N-PRS的带宽小于第二N-PRS的带宽;
周期不同:当第一N-PRS和第二N-PRS都是周期N-PRS时,第一N-PRS的周期小于第二N-PRS的周期;当第一N-PRS是周期N-PRS时,第二N-PRS是半持续N-PRS或者非周期N-PRS;
资源类型不同:当第一N-PRS是非周期N-PRS时,第二N-PRS可以是周期N-PRS或者半持续N-PRS。例如:第一N-PRS配置成占用连续N=2个时隙的非周期N-PRS,协助完成突发性CPP高精度定位(例如:定位误差在厘米级)。而第二N-PRS是开销较低的周期N-PRS,用来完成粗精度定位(例如:定位误差在米级)。
步骤2、第二终端接收第一终端上报的定位测量量和测量质量,并且基于上述信息进行第一终端的位置解算,得到相对定位或者绝对定位。
其中,定位测量量和测量质量可以是非差分形式、差分形式上报,并同时包含步骤2中采用的计算方式和第一N-PRS、第二N-PRS的配置ID等信息。
其中,网络侧设备(基站/TRP)执行如下步骤:
步骤1、针对NR Sidelink定位方法,服务网络侧设备通过RRC信令向第一终端通知第一N-PRS和第二N-PRS的配置信息。
其中,第一N-PRS是新定义的下行N-PRS或者上行N-PRS;第二PRS可以是新定义的下行N-PRS或者上行N-PRS,也可以是5G NR Rel-16定义的DL PRS和/或者UL SRS-Pos。
其中,第一N-PRS和第二N-PRS资源的配置信息包括如下至少一项:
时域OFDM符号个数:在一个时隙内,一个周期N-PRS资源支持占用的OFDM符号数量的最大值为14,即包含1个slot内的所有14个OFDM符号;并且,对于一个非周期N-PRS资源,还可以支持其占用连续N=2个时隙(一次触发,可以连续2个时隙传输);
频域Comb Size:支持大于12,例如:24;
图样:支持三种选项,选项1:无stagger图样,即同一小区所有OFDM符号的RE shift相同,不同小区不相同;选项2:stagger图样,例如:基于Rel-16的NR DL PRS和/或者UL SRS-Pos的stagger图样;选项3:部分Stagger图样,例如:在一个PRS资源所占用的部分符号上的RE Shift相同,而在其它符号上的RE Shift不同。其中,选项2(stagger图样)只适用于第二N-PRS,选项1(无stagger图样)和选项3(部分Stagger图样)同时适用于第一N-PRS和第二N-PRS;
周期:支持周期N-PRS、半持续N-PRS和非周期N-PRS。针对周期性N-PRS,支持{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240}个slot,以及1和2个slot的周期;其中,周期为1个slot+1个slot内14个OFDM符号时实现了连续的N-PRS;
带宽:除了5G NR Rel-16定义的DL PRS的PRB个数之外,还支持小于24个PRB,例如:4/8/12/16/20等;
其中,第一N-PRS资源和第二N-PRS资源的一种配置关系如下:
带宽不同:第一N-PRS的带宽小于第二N-PRS的带宽;
周期不同:当第一N-PRS和第二N-PRS都是周期N-PRS时,第一N-PRS的周期小于第二N-PRS的周期;当第一N-PRS是周期N-PRS时,第二N-PRS是半持续N-PRS或者非周期N-PRS;
资源类型不同:当第一N-PRS是非周期N-PRS时,第二N-PRS可以是周期N-PRS或者半持续N-PRS。例如:第一N-PRS配置成占用连续N=2个 时隙的非周期N-PRS,协助完成突发性CPP高精度定位(例如:定位误差在厘米级)。而第二N-PRS是开销较低的周期N-PRS,用来完成粗精度定位(例如:定位误差在米级)。
其中,LMF执行如下步骤:
步骤1、针对Sidelink定位方法,LMF通过LPP信令向第一终端通知第一N-PRS和第二N-PRS的配置信息。
其中,第一N-PRS是新定义的下行N-PRS或者上行N-PRS;第二PRS可以是新定义的下行N-PRS或者上行N-PRS,也可以是5G NR Rel-16定义的DL PRS和/或者UL SRS-Pos。
请参见图8,图8是本公开实施例提供的一种终端的结构图,该终端为第一终端,如图8所示,包括存储器820、收发机800和处理器810:
存储器820,用于存储计算机程序;收发机800,用于在所述处理器810的控制下收发数据;处理器810,用于读取所述存储器820中的计算机程序并执行以下操作:
获取PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的PRB资源包括小于24个PRB的PRB资源;
基于所述配置信息,执行定位操作。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器810代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机800可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口, 连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器810负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
可选的,处理器810可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述基于所述配置信息,执行定位操作,包括如下一项:
对所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF或者第二终端发送所述第一测量信息;其中,所述第一PRS和所述第二PRS中的至少一项为网络侧设备或者第二终端发送的;
向网络侧设备发送所述第一PRS和所述第二PRS中的一项,以及第一终端对网络侧设备发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF或者第二终端发送所述第二测量信息;
向网络侧设备发送所述第一PRS和所述第二PRS中的至少一项。
可选的,所述第一测量信息用于上报如下至少一项:
第一定位测量量、第一定位测量质量;
或,所述第二测量信息用于上报如下至少一项:
第二定位测量量、第二定位测量质量。
可选的,所述第一测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量;
所述第二测量信息以非差分形式或者差分形式上报所述第二定位测量量和所述第二定位测量质量。
可选的,所述第一定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到 的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述第一测量信息还用于上报如下至少一项:
所述第一定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识;
所述第二测量信息用于上报如下至少一项:
所述第二定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
可选的,所述第一终端获取PRS的配置信息,包括如下至少一项:
所述第一终端接收网络侧设备发送的PRS的配置信息;
所述第一终端接收LMF发送的PRS的配置信息。
可选的,所述第一PRS包括如下一项:
第一上行PRS、第一下行PRS、第一SidelinkPRS;
所述第二PRS包括如下一项:
第二上行PRS、第二下行PRS、第二Sidelink PRS。
在此需要说明的是,本公开实施例提供的上述第一终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图9,图9是本公开实施例提供的一种网络侧设备的结构图,如图9所示,包括存储器920、收发机900和处理器910:
存储器920,用于存储计算机程序;收发机900,用于在所述处理器910的控制下收发数据;处理器910,用于读取所述存储器920中的计算机程序并执行以下操作:
向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB数量包括小于24的PRB数量资源包括小于24个PRB的PRB资源;
基于所述配置信息,执行定位操作。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器910代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机900可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器910负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
可选的,处理器910可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述基于所述配置信息,执行定位操作,包括如下一项:
对所述第一终端发送的所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF发送所述第一测量信息;
向所述第一终端发送所述第一PRS和所述第二PRS中的一项,以及所述网络侧设备对所述第一终端发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF发送所述第二测量信息;
向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项。
可选的,所述第一测量信息用于上报如下至少一项:
第一定位测量量、第一定位测量质量;
或,所述第二测量信息用于上报如下至少一项:
第二定位测量量、第二定位测量质量。
可选的,所述第一测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量;
所述第二测量信息以非差分形式或者差分形式上报所述第二定位测量量和所述第二定位测量质量。
可选的,所述第一定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述第一测量信息还用于上报如下至少一项:
所述第一定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识;
所述第二测量信息用于上报如下至少一项:
所述第二定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
可选的,所述第一PRS包括如下一项:
第一上行PRS、第一下行PRS、第一直通链路Sidelink PRS;
所述第二PRS包括如下一项:
第二上行PRS、第二下行PRS、第二Sidelink PRS。
在此需要说明的是,本公开实施例提供的上述网络侧设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不 再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图10,图10是本公开实施例提供的一种终端的结构图,该终端为第二终端,如图10所示,包括存储器1020、收发机1000和处理器1010:
存储器1020,用于存储计算机程序;收发机1000,用于在所述处理器1010的控制下收发数据;处理器1010,用于读取所述存储器1020中的计算机程序并执行以下操作:
基于定位参考信号PRS的配置信息向第一终端发送PRS,其中,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
接收所述第一终端发送的测量信息。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1010代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1000可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1010负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
可选的,处理器1010可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS 的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述第二终端基于PRS的配置信息向第一终端发送PRS,包括如下一项:
所述第二终端向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项;
所述测量信息为所述第一终端对所述第一PRS和所述第二PRS中的至少一项进行测量得到的测量信息。
可选的,所述测量信息用于上报如下至少一项:
定位测量量、定位测量质量。
可选的,所述测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量。
可选的,所述定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述测量信息还用于上报如下至少一项:
所述定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第 二PRS的配置信息的标识。
可选的,所述处理器1010还用于:
基于所述测量信息对所述第一终端的位置进行解算。
在此需要说明的是,本公开实施例提供的上述第二终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图11,图11是本公开实施例提供的一种LMF的结构图,如图11所示,包括存储器1120、收发机1100和处理器1110:
存储器1120,用于存储计算机程序;收发机1100,用于在所述处理器1110的控制下收发数据;处理器1110,用于读取所述存储器1120中的计算机程序并执行以下操作:
向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB数量包括小于24的PRB数量资源包括小于24个PRB的PRB资源;
获取测量信息,并基于所述测量信息对所述第一终端的位置进行解算。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1110代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1100可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1110负责管理总线架构和通常的处理,存储器1120可以存储处 理器1100在执行操作时所使用的数据。
可选的,处理器1110可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续或者非周期的信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续或者周期的信号。
可选的,所述测量信息用于上报如下至少一项:
定位测量量、定位测量质量。
可选的,所述第一测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量。
可选的,所述定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述测量信息还用于上报如下至少一项:
所述定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
在此需要说明的是,本公开实施例提供的上述LMF,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图12,图12是本公开实施例提供的一种终端的结构图,该终端为第一终端,如图12所示,终端1200,包括:
获取单元1201,用于获取定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
执行单元1202,用于基于所述配置信息,执行定位操作。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二 PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述第一终端基于所述配置信息,执行定位操作,包括如下一项:
所述第一终端对所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF或者第二终端发送所述第一测量信息;其中,所述第一PRS和所述第二PRS中的至少一项为网络侧设备或者第二终端发送的;
所述第一终端向网络侧设备发送所述第一PRS和所述第二PRS中的一项,以及第一终端对网络侧设备发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF或者第二终端发送所述第二测量信息;
所述第一终端向网络侧设备发送所述第一PRS和所述第二PRS中的至少一项。
可选的,所述第一测量信息用于上报如下至少一项:
第一定位测量量、第一定位测量质量;
或,所述第二测量信息用于上报如下至少一项:
第二定位测量量、第二定位测量质量。
可选的,所述第一测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量;
所述第二测量信息以非差分形式或者差分形式上报所述第二定位测量量和所述第二定位测量质量。
可选的,所述第一定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述第一测量信息还用于上报如下至少一项:
所述第一定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识;
所述第二测量信息用于上报如下至少一项:
所述第二定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
可选的,所述第一终端获取PRS的配置信息,包括如下至少一项:
所述第一终端接收网络侧设备发送的PRS的配置信息;
所述第一终端接收LMF发送的PRS的配置信息。
可选的,所述第一PRS包括如下一项:
第一上行PRS、第一下行PRS、第一SidelinkPRS;
所述第二PRS包括如下一项:
第二上行PRS、第二下行PRS、第二Sidelink PRS。
在此需要说明的是,本公开实施例提供的上述第一终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图13,图13是本公开实施例提供的一种网络侧设备的结构图,如图13所示,网络侧设备1300,包括:
发送单元1301,用于向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
执行单元1302,用于基于所述配置信息,执行定位操作。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述网络侧设备基于所述配置信息,执行定位操作,包括如下一项:
所述网络侧设备对所述第一终端发送的所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF发送所述第一测量信息;
所述网络侧设备向所述第一终端发送所述第一PRS和所述第二PRS中的 一项,以及所述网络侧设备对所述第一终端发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF发送所述第二测量信息;
所述网络侧设备向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项。
可选的,所述第一测量信息用于上报如下至少一项:
第一定位测量量、第一定位测量质量;
或,所述第二测量信息用于上报如下至少一项:
第二定位测量量、第二定位测量质量。
可选的,所述第一测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量;
所述第二测量信息以非差分形式或者差分形式上报所述第二定位测量量和所述第二定位测量质量。
可选的,所述第一定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述第一定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到 的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
或者,所述第二定位测量量包括如下至少一项:
基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述第一测量信息还用于上报如下至少一项:
所述第一定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识;
所述第二测量信息用于上报如下至少一项:
所述第二定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
可选的,所述第一PRS包括如下一项:
第一上行PRS、第一下行PRS、第一直通链路Sidelink PRS;
所述第二PRS包括如下一项:
第二上行PRS、第二下行PRS、第二Sidelink PRS。
在此需要说明的是,本公开实施例提供的上述网络侧设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图14,图14是本公开实施例提供的另一种终端的结构图,该终端为第二终端,如图14所示,终端1400,包括:
发送单元1401,用于基于定位参考信号PRS的配置信息向第一终端发送PRS,其中,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
接收单元1402,用于接收所述第一终端发送的测量信息。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
可选的,所述第二终端基于PRS的配置信息向第一终端发送PRS,包括如下一项:
所述第二终端向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项;
所述测量信息为所述第一终端对所述第一PRS和所述第二PRS中的至少一项进行测量得到的测量信息。
可选的,所述测量信息用于上报如下至少一项:
定位测量量、定位测量质量。
可选的,所述测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量。
可选的,所述定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述测量信息还用于上报如下至少一项:
所述定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
可选的,所述终端还包括:
解算单元,用于基于所述测量信息对所述第一终端的位置进行解算。
在此需要说明的是,本公开实施例提供的上述第二终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图15,图15是本公开实施例提供的另一种LMF的结构图,如图15所示,LMF1500,包括:
发送单元1501,用于向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
解算单元1502,用于获取测量信息,并基于所述测量信息对所述第一终端的位置进行解算。
可选的,所述配置信息还包括如下至少一项:
所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
无交叉stagger图样、stagger图样、部分stagger图样。
可选的,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
可选的,所述配置信息还包括如下至少一项:
所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大 于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
无stagger图样、stagger图样、部分stagger图样。
可选的,所述第一PRS和所述第二PRS之间至少如下一项不同:
占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
可选的,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续或者非周期的信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续或者周期的信号。
可选的,所述测量信息用于上报如下至少一项:
定位测量量、定位测量质量。
可选的,所述第一测量信息以非差分形式或者差分形式上报所述第一定位测量量和所述第一定位测量质量。
可选的,所述定位测量量包括如下至少一项:
基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
或者,所述定位测量量包括如下至少一项:
基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一 测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
可选的,所述测量信息还用于上报如下至少一项:
所述定位测量量的计算方式、所述第一PRS的配置信息的标识、所述第二PRS的配置信息的标识。
在此需要说明的是,本公开实施例提供的上述LMF,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行第一终端侧的定位方法,或者,所述计算机程序用于使所述处理器执行网络侧设备侧的定位方法,或者,所述计算机程序用于使所述处理器执行第二终端侧的定位方法,或者,所述计算机程序用于使所述处理器执行LMF侧的定位方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据 存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(Magneto-Optical Disk,MO)等)、光学存储器(例如光盘(Compact Disk,CD)、数字视频光盘(Digital Versatile Disc,DVD)、蓝光光碟(Blu-ray Disc,BD)、高清通用光盘(High-Definition Versatile Disc,HVD)等)、以及半导体存储器(例如只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable read only memory,EEPROM)、非易失性存储器(NAND FLASH)、固态硬盘(Solid State Disk或Solid State Drive,SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (75)

  1. 一种定位方法,包括:
    第一终端获取定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    所述第一终端基于所述配置信息,执行定位操作。
  2. 如权利要求1所述的方法,其中,所述配置信息还包括如下至少一项:
    所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
    所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  3. 如权利要求1所述的方法,其中,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
  4. 如权利要求3所述的方法,其中,所述配置信息还包括如下至少一项:
    所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项: 周期、半持续、非周期;
    所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
    无stagger图样、stagger图样、部分stagger图样。
  5. 如权利要求3所述的方法,其中,所述第一PRS和所述第二PRS之间至少如下一项不同:
    占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
  6. 如权利要求5所述的方法,其中,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
    在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
  7. 如权利要求3至6中任一项所述的方法,其中,所述第一终端基于所述配置信息,执行定位操作,包括如下一项:
    所述第一终端对所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF或者第二终端发送所述第一测量信息;其中,所述第一PRS和所述第二PRS中的至少一项为网络侧设备或者第二终端发送的;
    所述第一终端向网络侧设备发送所述第一PRS和所述第二PRS中的一项,以及第一终端对网络侧设备发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF或者第二终端发送所述第二测量信息;
    所述第一终端向网络侧设备发送所述第一PRS和所述第二PRS中的至少一项。
  8. 如权利要求7所述的方法,其中,所述第一测量信息用于上报如下至少一项:
    第一定位测量量、第一定位测量质量;
    或,所述第二测量信息用于上报如下至少一项:
    第二定位测量量、第二定位测量质量。
  9. 如权利要求8所述的方法,其中,所述第一定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述第一定位测量量包括如下至少一项:
    基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
    或者,所述第一定位测量量包括如下至少一项:
    基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述第二定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
    或者,所述第二定位测量量包括如下至少一项:
    基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
  10. 一种定位方法,包括:
    网络侧设备向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于 表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    所述网络侧设备基于所述配置信息,执行定位操作。
  11. 如权利要求10所述的方法,其中,所述配置信息还包括如下至少一项:
    所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
    所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  12. 如权利要求10所述的方法,其中,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
  13. 如权利要求12所述的方法,其中,所述配置信息还包括如下至少一项:
    所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
    所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  14. 如权利要求12所述的方法,其中,所述第一PRS和所述第二PRS之间至少如下一项不同:
    占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
  15. 如权利要求11所述的方法,其中,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
    在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
  16. 如权利要求12至15中任一项所述的方法,其中,所述网络侧设备基于所述配置信息,执行定位操作,包括如下一项:
    所述网络侧设备对所述第一终端发送的所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF发送所述第一测量信息;
    所述网络侧设备向所述第一终端发送所述第一PRS和所述第二PRS中的一项,以及所述网络侧设备对所述第一终端发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF发送所述第二测量信息;
    所述网络侧设备向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项。
  17. 如权利要求16所述的方法,其中,所述第一测量信息用于上报如下至少一项:
    第一定位测量量、第一定位测量质量;
    或,所述第二测量信息用于上报如下至少一项:
    第二定位测量量、第二定位测量质量。
  18. 如权利要求17所述的方法,其中,所述第一定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述第一定位测量量包括如下至少一项:
    基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
    或者,所述第一定位测量量包括如下至少一项:
    基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述第二定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
    或者,所述第二定位测量量包括如下至少一项:
    基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
  19. 一种定位方法,包括:
    第二终端基于定位参考信号PRS的配置信息向第一终端发送PRS,其中,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    所述第二终端接收所述第一终端发送的测量信息。
  20. 如权利要求19所述的方法,其中,所述配置信息还包括如下至少一项:
    所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大 于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
    所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  21. 如权利要求19所述的方法,其中,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
  22. 如权利要求21所述的方法,其中,所述配置信息还包括如下至少一项:
    所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
    所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  23. 如权利要求21所述的方法,其中,所述第一PRS和所述第二PRS之间至少如下一项不同:
    占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
  24. 如权利要求23所述的方法,其中,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
    在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号, 所述第二PRS为半持续信号或者周期信号。
  25. 如权利要求21至24中任一项所述的方法,其中,所述第二终端基于PRS的配置信息向第一终端发送PRS,包括如下一项:
    所述第二终端向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项;
    所述测量信息为所述第一终端对所述第一PRS和所述第二PRS中的至少一项进行测量得到的测量信息。
  26. 如权利要求25所述的方法,其中,所述测量信息用于上报如下至少一项:
    定位测量量、定位测量质量。
  27. 如权利要求25所述的方法,其中,所述定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述定位测量量包括如下至少一项:
    基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
    或者,所述定位测量量包括如下至少一项:
    基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
  28. 一种定位方法,包括:
    位置管理功能LMF向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性 的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    所述LMF获取测量信息,并基于所述测量信息对所述第一终端的位置进行解算。
  29. 如权利要求28所述的方法,其中,所述配置信息还包括如下至少一项:
    所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
    所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  30. 如权利要求28所述的方法,其中,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
  31. 如权利要求30所述的方法,其中,所述配置信息还包括如下至少一项:
    所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
    所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  32. 如权利要求30所述的方法,其中,所述第一PRS和所述第二PRS之间至少如下一项不同:
    占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
  33. 如权利要求32所述的方法,其中,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
    在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续或者非周期的信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续或者周期的信号。
  34. 如权利要求30至33中任一项所述的方法,其中,所述测量信息用于上报如下至少一项:
    定位测量量、定位测量质量。
  35. 如权利要求34所述的方法,其中,所述定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述定位测量量包括如下至少一项:
    基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
    或者,所述定位测量量包括如下至少一项:
    基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
  36. 一种终端,所述终端为第一终端,包括:存储器、收发机和处理器, 其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    获取定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    基于所述配置信息,执行定位操作。
  37. 如权利要求36所述的终端,其中,所述配置信息还包括如下至少一项:
    所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
    所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  38. 如权利要求36所述的终端,其中,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
  39. 如权利要求38所述的终端,其中,所述配置信息还包括如下至少一项:
    所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二 PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
    所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
    无stagger图样、stagger图样、部分stagger图样。
  40. 如权利要求38所述的终端,其中,所述第一PRS和所述第二PRS之间至少如下一项不同:
    占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
  41. 如权利要求40所述的终端,其中,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
    在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
  42. 如权利要求38至41中任一项所述的终端,其中,所述基于所述配置信息,执行定位操作,包括如下一项:
    对所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF或者第二终端发送所述第一测量信息;其中,所述第一PRS和所述第二PRS中的至少一项为网络侧设备或者第二终端发送的;
    向网络侧设备发送所述第一PRS和所述第二PRS中的一项,以及第一终端对网络侧设备发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF或者第二终端发送所述第二测量信息;
    向网络侧设备发送所述第一PRS和所述第二PRS中的至少一项。
  43. 如权利要求42所述的终端,其中,所述第一测量信息用于上报如下至少一项:
    第一定位测量量、第一定位测量质量;
    或,所述第二测量信息用于上报如下至少一项:
    第二定位测量量、第二定位测量质量。
  44. 如权利要求43所述的终端,其中,所述第一定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述第一定位测量量包括如下至少一项:
    基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
    或者,所述第一定位测量量包括如下至少一项:
    基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述第二定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
    或者,所述第二定位测量量包括如下至少一项:
    基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
  45. 一种网络侧设备,包括:存储器、收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个 周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    基于所述配置信息,执行定位操作。
  46. 如权利要求45所述的网络侧设备,其中,所述配置信息还包括如下至少一项:
    所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
    所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  47. 如权利要求45所述的网络侧设备,其中,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
  48. 如权利要求47所述的网络侧设备,其中,所述配置信息还包括如下至少一项:
    所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
    所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  49. 如权利要求47所述的网络侧设备,其中,所述第一PRS和所述第二 PRS之间至少如下一项不同:
    占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
  50. 如权利要求46所述的网络侧设备,其中,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
    在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
  51. 如权利要求47至50中任一项所述的网络侧设备,其中,所述基于所述配置信息,执行定位操作,包括如下一项:
    对所述第一终端发送的所述第一PRS和所述第二PRS中的至少一项进行测量,得到第一测量信息,并向位置管理功能LMF发送所述第一测量信息;
    向所述第一终端发送所述第一PRS和所述第二PRS中的一项,以及所述网络侧设备对所述第一终端发送的所述第一PRS和所述第二PRS中的另一项进行测量,得到第二测量信息,并向LMF发送所述第二测量信息;
    向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项。
  52. 如权利要求51所述的网络侧设备,其中,所述第一测量信息用于上报如下至少一项:
    第一定位测量量、第一定位测量质量;
    或,所述第二测量信息用于上报如下至少一项:
    第二定位测量量、第二定位测量质量。
  53. 如权利要求52所述的网络侧设备,其中,所述第一定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述第一定位测量量包括如下至少一项:
    基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述 第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
    或者,所述第一定位测量量包括如下至少一项:
    基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述第二定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第一PRS测量得到的时延测量量、基于所述第一PRS测量得到的角度测量量、基于所述第一PRS测量得到的功率测量量;
    或者,所述第二定位测量量包括如下至少一项:
    基于所述第二PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
  54. 一种终端,所述终端为第二终端,包括:存储器、收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    基于定位参考信号PRS的配置信息向第一终端发送PRS,其中,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    接收所述第一终端发送的测量信息。
  55. 如权利要求54所述的终端,其中,所述配置信息还包括如下至少一项:
    所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
    所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  56. 如权利要求54所述的终端,其中,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
  57. 如权利要求56所述的终端,其中,所述配置信息还包括如下至少一项:
    所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
    所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  58. 如权利要求56所述的终端,其中,所述第一PRS和所述第二PRS之间至少如下一项不同:
    占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
  59. 如权利要求58所述的终端,其中,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
    在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述 第二PRS为半持续信号或者非周期信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续信号或者周期信号。
  60. 如权利要求56至59中任一项所述的终端,其中,所述基于PRS的配置信息向第一终端发送PRS,包括如下一项:
    向所述第一终端发送所述第一PRS和所述第二PRS中的至少一项;
    所述测量信息为所述第一终端对所述第一PRS和所述第二PRS中的至少一项进行测量得到的测量信息。
  61. 如权利要求60所述的终端,其中,所述测量信息用于上报如下至少一项:
    定位测量量、定位测量质量。
  62. 如权利要求60所述的终端,其中,所述定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述定位测量量包括如下至少一项:
    基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
    或者,所述定位测量量包括如下至少一项:
    基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
  63. 一种位置管理功能LMF,包括:存储器、收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS, 所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    获取测量信息,并基于所述测量信息对所述第一终端的位置进行解算。
  64. 如权利要求63所述的LMF,其中,所述配置信息还包括如下至少一项:
    所述第一PRS的第一间隔子载波个数,所述第一间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第一PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第一PRS的第一周期信息,所述第一周期信息包括如下至少一项:周期、半持续、非周期;
    所述第一PRS的第一图样信息,所述第一图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  65. 如权利要求63所述的LMF,其中,所述PRS还包括第二PRS,所述配置信息还包括所述第二PRS的第二时域配置和第二带宽配置中的至少一项,且所述第二时域配置包括如下至少一项:周期性的所述第二PRS的一个周期占用的符号数量最大为14、非周期性的所述第二PRS占用连续的N个时隙;且所述第二带宽配置用于表示所述第二PRS占用的PRB资源包括小于24个PRB的PRB资源数量。
  66. 如权利要求65所述的LMF,其中,所述配置信息还包括如下至少一项:
    所述第二PRS的第二间隔子载波个数,所述第二间隔子载波个数包括大于12的间隔子载波个数,所述间隔子载波个数为在同一个符号上所述第二PRS占用的频域上相邻的两个子载波之间间隔的子载波个数;
    所述第二PRS的第二周期信息,所述第二周期信息包括如下至少一项:周期、半持续、非周期;
    所述第二PRS的第二图样信息,所述第二图样信息包括如下至少一项:
    无交叉stagger图样、stagger图样、部分stagger图样。
  67. 如权利要求65所述的LMF,其中,所述第一PRS和所述第二PRS之间至少如下一项不同:
    占用的频域资源的资源大小、周期、占用的时域资源的资源类型。
  68. 如权利要求67所述的LMF,其中,所述第一PRS占用的频域资源的资源大小小于所述第二PRS占用的频域资源的资源大小;和/或
    在所述第一PRS和所述第二PRS为周期信号的情况下,所述第一PRS的周期小于和所述第二PRS的周期;或者,所述第一PRS为周期信号,所述第二PRS为半持续或者非周期的信号;或者,所述第一PRS为非周期信号,所述第二PRS为半持续或者周期的信号。
  69. 如权利要求65至68中任一项所述的LMF,其中,所述测量信息用于上报如下至少一项:
    定位测量量、定位测量质量。
  70. 如权利要求69所述的LMF,其中,所述定位测量量包括如下至少一项:
    基于所述第一PRS测量得到的相位测量量、基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量;
    或者,所述定位测量量包括如下至少一项:
    基于所述第一PRS和所述第二PRS测量得到的相位测量量、基于所述第一PRS和所述第二PRS测量得到的时延测量量、基于所述第一PRS和所述第二PRS测量得到的角度测量量、基于所述第一PRS和所述第二PRS测量得到的功率测量量;
    或者,所述定位测量量包括如下至少一项:
    基于第一测量量对第二测量量进行平滑处理得的第三测量量,所述第一测量量为基于所述第一PRS测量得到的测量量,所述第二测量量包括如下至少一项:基于所述第二PRS测量得到的时延测量量、基于所述第二PRS测量得到的角度测量量、基于所述第二PRS测量得到的功率测量量。
  71. 一种终端,所述终端为第一终端,包括:
    获取单元,用于获取定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    执行单元,用于基于所述配置信息,执行定位操作。
  72. 一种网络侧设备,包括:
    发送单元,用于向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    执行单元,用于基于所述配置信息,执行定位操作。
  73. 一种终端,所述终端为第二终端,包括:
    发送单元,用于基于定位参考信号PRS的配置信息向第一终端发送PRS,其中,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    接收单元,用于接收所述第一终端发送的测量信息。
  74. 一种位置管理功能LMF,包括:
    发送单元,用于向第一终端发送定位参考信号PRS的配置信息,所述PRS包括第一PRS,所述配置信息包括所述第一PRS的第一时域配置和第一带宽配置中的至少一项,且所述第一时域配置包括如下至少一项:周期性的所述 第一PRS的一个周期占用的符号数量最大为14、非周期性的所述第一PRS占用连续的N个时隙,N为大于或者等于1的整数;且所述第一带宽配置用于表示所述第一PRS占用的物理资源块PRB资源包括小于24个PRB的PRB资源;
    解算单元,用于获取测量信息,并基于所述测量信息对所述第一终端的位置进行解算。
  75. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至9任一项所述的定位方法,或者,所述计算机程序用于使所述处理器执行权利要求10至18任一项所述的定位方法,或者,所述计算机程序用于使所述处理器执行权利要求19至27任一项所述的定位方法,或者,所述计算机程序用于使所述处理器执行权利要求28至35任一项所述的定位方法。
PCT/CN2023/107704 2022-07-25 2023-07-17 定位方法、终端、网络侧设备、lmf和存储介质 WO2024022148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210879283.6 2022-07-25
CN202210879283.6A CN117528553A (zh) 2022-07-25 2022-07-25 定位方法、终端、网络侧设备、lmf和存储介质

Publications (1)

Publication Number Publication Date
WO2024022148A1 true WO2024022148A1 (zh) 2024-02-01

Family

ID=89705366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107704 WO2024022148A1 (zh) 2022-07-25 2023-07-17 定位方法、终端、网络侧设备、lmf和存储介质

Country Status (2)

Country Link
CN (1) CN117528553A (zh)
WO (1) WO2024022148A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107465497A (zh) * 2016-06-03 2017-12-12 中兴通讯股份有限公司 定位参考信号的传输方法和装置
WO2020209655A1 (ko) * 2019-04-12 2020-10-15 한양대학교 산학협력단 측위를 위한 참조신호를 송수신하는 방법 및 장치
WO2022143092A1 (zh) * 2020-12-31 2022-07-07 大唐移动通信设备有限公司 定位方法、设备及计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107465497A (zh) * 2016-06-03 2017-12-12 中兴通讯股份有限公司 定位参考信号的传输方法和装置
WO2020209655A1 (ko) * 2019-04-12 2020-10-15 한양대학교 산학협력단 측위를 위한 참조신호를 송수신하는 방법 및 장치
WO2022143092A1 (zh) * 2020-12-31 2022-07-07 大唐移动通信设备有限公司 定位方法、设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN117528553A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US20220321293A1 (en) Signal communication method and device
US20220330198A1 (en) Signal transmission method and apparatus
KR20220005543A (ko) 신호 전송, 신호 측정 보고, 측위 방법 및 장치
US20220416975A1 (en) Signal transmission method and device
WO2020082879A1 (zh) 一种确定参考信号的测量值的方法及装置
US20220407639A1 (en) Information communication method and device
TWI806329B (zh) 資訊上報、接收方法、終端設備及網路設備
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
WO2022161398A1 (zh) 一种相位噪声补偿方法、终端设备及网络设备
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
WO2021098355A1 (zh) Csi测量方法及装置
JP2022500888A (ja) 信号報告の方法、端末装置、及びネットワーク装置
JP2023543067A (ja) アップリンク基準信号関連付け方法および通信装置
US20240031973A1 (en) Positioning method and apparatus, and terminal and device
EP3817269A1 (en) Resource management method and device
WO2022028578A1 (zh) 信号传输方法、终端和网络设备
WO2020156562A1 (zh) 通信方法和装置
CN111954302B (zh) 一种信息获取方法及装置
JP2023513291A (ja) データ伝送方法及び装置
WO2024022148A1 (zh) 定位方法、终端、网络侧设备、lmf和存储介质
WO2022161487A1 (zh) 参考信号图案的确定方法及装置
JP7168290B2 (ja) 参照信号伝送方法および通信装置
WO2023208113A1 (zh) 信息传输方法、载波相位定位方法及装置
WO2024032646A1 (zh) 多频点定位方法、设备、装置及存储介质
WO2024027642A1 (zh) 一种信息传输方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845360

Country of ref document: EP

Kind code of ref document: A1