WO2024022100A1 - 数据传输方法、装置、控制设备、暖通设备及存储介质 - Google Patents

数据传输方法、装置、控制设备、暖通设备及存储介质 Download PDF

Info

Publication number
WO2024022100A1
WO2024022100A1 PCT/CN2023/106688 CN2023106688W WO2024022100A1 WO 2024022100 A1 WO2024022100 A1 WO 2024022100A1 CN 2023106688 W CN2023106688 W CN 2023106688W WO 2024022100 A1 WO2024022100 A1 WO 2024022100A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
operating data
frequency
hvac equipment
operating
Prior art date
Application number
PCT/CN2023/106688
Other languages
English (en)
French (fr)
Inventor
吴孔祥
王命仁
王萌
李彬
罗启崟
朱辉
Original Assignee
广东美的暖通设备有限公司
合肥美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 合肥美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2024022100A1 publication Critical patent/WO2024022100A1/zh

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/80Homes; Buildings
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/10Information sensed or collected by the things relating to the environment, e.g. temperature; relating to location
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/20Information sensed or collected by the things relating to the thing itself
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/10Detection; Monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information

Definitions

  • the present disclosure belongs to the technical field of intelligent equipment, and in particular relates to a data transmission method, device, control equipment, HVAC equipment and storage medium.
  • IoT cards such as 4G/5G IoT cards, to operate and control data transmission based on mobile networks.
  • Some embodiments of the present disclosure provide a data transmission method, device, control equipment, HVAC equipment and storage medium, which can improve the effectiveness of data transmission.
  • some embodiments of the present disclosure provide a data transmission method.
  • the method is used to control equipment.
  • the control equipment is used to control HVAC equipment.
  • the method includes:
  • the type of the operating data of the HVAC equipment is jointly determined by M division dimensions.
  • the above operation data is divided into X m types Type, the operating data of the above HVAC equipment include Each type of operating data corresponds to different reporting rules.
  • some embodiments of the present disclosure provide a data transmission device.
  • the above-mentioned data transmission device is applied to control equipment.
  • the above-mentioned control equipment is used to control HVAC equipment.
  • the above-mentioned device includes:
  • the processing module is configured to determine the type of operating data to be reported for the HVAC equipment; wherein the type of the operating data of the HVAC equipment is jointly determined by M division dimensions, and under the mth division dimension, the above operation data is Draw Divided into X m types, the operating data of the above-mentioned HVAC equipment includes Each type of operating data corresponds to different reporting rules. M and
  • the transceiver module is configured to determine corresponding reporting rules according to the type of the above-mentioned operating data to be reported, and to report the above-mentioned operating data to be reported to the server according to the above-mentioned reporting rules.
  • some embodiments of the disclosure provide a computer storage medium.
  • the computer storage medium stores a plurality of instructions.
  • the instructions are suitable for being loaded by a processor and executing the method provided by the first aspect of some embodiments of the disclosure. A step of.
  • some embodiments of the present disclosure provide a control device, including: a processor and a memory; wherein the memory stores a computer program, and the computer program is adapted to be loaded by the processor and execute some implementations involved in the present disclosure. Example of the steps of the method provided in the first aspect.
  • some embodiments of the present disclosure provide a heating and ventilation equipment, including the control device provided in the fourth aspect of some embodiments related to the present disclosure.
  • Some embodiments involved in the present disclosure obtain multiple data types by jointly dividing the operating data of HVAC equipment in multiple dimensions, and set different reporting rules for different data types. For example, for more important and more frequently changing operating data, use a higher reporting frequency to report data, and for less important and less frequently changing operating data, use a lower reporting frequency to report data. Compared with dividing the data in a single dimension and then reporting the data using different reporting rules, some embodiments involved in the present disclosure can ensure the quality of HVAC equipment operation data upload to a greater extent and improve the effectiveness and ease of use of the data. , while saving data traffic and avoiding unnecessary waste of traffic resources.
  • Figure 1 is a schematic structural diagram of a data transmission system provided by some embodiments of the present disclosure
  • Figure 2 is a schematic diagram of a data transmission scenario provided by some embodiments of the present disclosure.
  • Figure 3 is a schematic flowchart of a data transmission method provided by some embodiments of the present disclosure.
  • Figure 4 is a corresponding relationship diagram between results of data division types in various dimensions and reporting rules provided by some embodiments of the present disclosure
  • Figure 5 is a corresponding relationship diagram between the results of data division types in various dimensions and the reporting rules provided by some embodiments of the present disclosure
  • Figure 6 is a schematic flowchart of another data transmission method provided by some embodiments of the present disclosure.
  • Figure 7 is a schematic structural diagram of a data transmission device provided by some embodiments of the present disclosure.
  • Figure 8 is a schematic structural diagram of a control device provided by some embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an HVAC equipment provided by some embodiments of the present disclosure.
  • FIG. 1 schematically shows a schematic structural diagram of a data transmission system provided by some embodiments of the present disclosure.
  • the data transmission system 100 may include: HVAC equipment 110 and a server 120 . in:
  • the HVAC equipment 110 is an intelligent product and can upload its operation data to the server 120. After receiving the operation data of the HVAC equipment 110, the server 120 can analyze the operation data to obtain control data, and send the control data to the HVAC equipment 110.
  • the ventilation equipment 110 is used to control the operation of the HVAC equipment 110 and optimize the local control logic of the HVAC equipment 110 .
  • the HVAC equipment 110 may include a control device 111 for controlling the HVAC equipment 110 .
  • the control device 111 may be a device independent of the HVAC device 110, or may be a control device integrated in the HVAC device 110, which is not limited in some embodiments provided by the present disclosure.
  • data can be transmitted between the HVAC equipment 110 and the server 120 through a network. That is to say, the data transmission system 100 may also include a networking module.
  • the networking module 130 can be integrated in the HVAC equipment 110 .
  • the networking module 130 may be an IoT card, such as a 4G/5G IoT card.
  • the networking module 130 may also be a routing device independent of the HVAC device 110 .
  • the HVAC equipment 110 can be connected to the server 120 through a routing device network.
  • the HVAC equipment 110 includes an outdoor unit and one or more indoor units
  • the operating data includes at least one of the following: sensor detection data of the outdoor unit, sensor detection data of the indoor unit, HVAC
  • the computing data of the equipment, the peripheral data of the HVAC equipment, the status parameters of the HVAC equipment, the engineering setting parameters of the HVAC equipment, and the control data can be used to remotely intervene in the switch or temperature setting of the HVAC equipment.
  • HVAC equipment some embodiments provided by the present disclosure may also be applied to HVAC equipment such as dehumidifiers and humidifiers, as well as other smart devices.
  • some embodiments provided by the present disclosure may be applied to smart home devices, such as smart speakers.
  • the operating data include running time, volume, playback content, etc.
  • the control data may be based on the operating rules of the smart speakers within a period of time. , that is, the data obtained by analyzing the user's usage habits. For example, if the user is used to turning on the speaker at 7 o'clock in the morning and playing music at a higher volume, the control data can be the volume setting data associated with the time period.
  • the operating data include cooling temperature, refrigerator temperature and humidity, etc.
  • the control data may include, for example, smart temperature settings, humidity settings, etc. of the smart refrigerator.
  • the outdoor unit and the indoor unit may include temperature sensors, pressure sensors, and the like.
  • the sensor detection data of the outdoor unit is the outdoor ambient temperature, high pressure in the outdoor unit, etc.
  • the sensor detection data of the indoor unit is the indoor ambient temperature, high pressure in the indoor unit, etc.
  • the calculation data of the HVAC equipment may include the calculation data of the Microcontroller Unit (MCU).
  • the calculation data obtained through the MCU calculation of the HVAC equipment such as the exhaust superheat, the real-time capability of the indoor unit, etc.
  • the peripheral data of the HVAC equipment may include data transmitted by the external components of the HVAC equipment through the networking module via the HVAC equipment bus, such as the power consumption of the HVAC equipment, humidity sensor data connected to the indoor unit or outdoor unit, etc.
  • the status parameters of the HVAC equipment may include the operating status parameters of the HVAC equipment itself, such as operating mode, windshield, etc.
  • the engineering setting parameters of HVAC equipment can include the set static pressure of the indoor unit, the opening temperature of the electric heating auxiliary, the priority operation mode of the outdoor unit, etc.
  • Figure 2 exemplarily shows a schematic diagram of a data transmission scenario provided by some embodiments of the present disclosure. As shown in Figure 2, the data transmission system provided by some embodiments of the present disclosure can be used for data transmission of HVAC equipment.
  • the HVAC equipment 110 in FIG. 1 includes an indoor unit 112 and an outdoor unit 113. It should be noted that it is not limited to one indoor unit shown in Figure 2. In specific implementation, the HVAC equipment 110 may also include a larger number of indoor units, which is not limited in some embodiments provided by the present disclosure.
  • the control device of the HVAC equipment 110 is not shown in FIG. 2 . The control device may be integrated in the outdoor unit 113 or the indoor unit 112 , or may be provided independently of the indoor unit 112 and the outdoor unit 113 .
  • the HVAC equipment 110 can establish a data connection with the server 120 through a networking module (shown in Figure 1 but not shown in Figure 2).
  • the HVAC equipment 110 can report its operation data to the server 120 , and the server 120 can also send control data to the HVAC equipment 110 for controlling the operation of the HVAC equipment 110 .
  • control data for controlling the operation of the HVAC equipment 110 .
  • HVAC equipment can report all operating data to the server at a uniformly set frequency.
  • the HVAC equipment itself contains multiple types of operating data. Using a unified reporting frequency will cause unnecessary waste of traffic.
  • Some embodiments provided by the present disclosure propose a data transmission method to address the above problems, which can dynamically adjust the frequency of operating data reporting according to the type of operating data of HVAC equipment. On the one hand, it can improve the effectiveness and ease of use of data transmission. On the other hand, it can save traffic costs.
  • FIG. 3 schematically shows a flowchart of a data transmission method provided by some embodiments of the present disclosure. As shown in Figure 3, this method can include the following steps:
  • S301 Determine the type of operating data to be reported for the HVAC equipment.
  • the operation data of HVAC equipment is jointly determined by M division dimensions. Under the m-th division dimension, the operation data is divided into X m types.
  • the operation data of HVAC equipment includes Each type of operating data corresponds to different reporting rules. M and
  • the operating data of the HVAC equipment is jointly determined by two division dimensions. These two division dimensions include the first dimension and the second dimension, and the operating data under the first dimension is divided into 2 (X 1 ) types. In the second dimension, the operating data is divided into 3 (X 2 ) types. Then the operating data of HVAC equipment can include That is 6 types.
  • M is 3, that is, the operating data of the HVAC equipment is jointly determined by 3 division dimensions.
  • These 2 division dimensions include the first dimension, the second dimension and the third dimension, and the operating data is in the first dimension. is divided into 5 (X 1 ) types, the operating data in the second dimension is divided into 2 (X 2 ) types, and the operating data in the third dimension is divided into 4 (X 3 ) types, then the heating and ventilation equipment Operational data may include That is 40 types.
  • some embodiments provided by the present disclosure do not limit the number of dimensions for running data division.
  • the number of types divided under each dimension is not limited.
  • the data type of the operating data to be reported can be determined by the central processing unit (CPU) of the HVAC equipment. For example, if sensor A sends detected data (operating data to be reported) to the CPU, the CPU can determine that the data is sensor detection data and determine the specific type of the sensor detection data under M division dimensions.
  • CPU central processing unit
  • the two dimensions are respectively the frequency of changes in the operating data and the sensitivity of the operating data.
  • the sensitivity of operating data is used to characterize the importance of operating data to the operation of HVAC equipment.
  • the operating data is divided into high and low dimensions according to the frequency of changes in the operating data. are high-frequency data and low-frequency data, and the sensor detection data is high-frequency data.
  • the sensitivity dimension of operating data operating data is divided into sensitive data and non-sensitive data, and sensor data is sensitive data. Then under the combined effect of these two dimensions, the aforementioned sensor detection data is high-frequency and sensitive data. .
  • S302 Determine corresponding reporting rules according to the type of operating data to be reported, and report the operating data to be reported to the server according to the reporting rules.
  • appropriate reporting rules are set for each operating data, and then the operating data is reported to the server using appropriate reporting rules.
  • the more dimensions the operating data is divided into the more types are divided under each division dimension, and the more types of operating data are finally obtained.
  • the attributes of the operating data are comprehensively considered from multiple dimensions, and refined settings are set for the operating data. Report rules to improve the effectiveness and ease of use of data transmission as much as possible, and save traffic costs as much as possible.
  • the reporting rules of the operating data to be reported are determined by the networking module.
  • the CPU of the HVAC equipment can add a type identifier to the data and transmit the operating data to be reported with the type identifier to the networking module.
  • the networking module can determine the type of the operation data to be reported based on the type identifier, and determine the reporting rules corresponding to the type.
  • the correspondence between each data type and the reporting rule may be stored in the MCU of the networking module.
  • the corresponding relationship may be stored in the MCU in the form of a table.
  • the operating data to be reported can be transmitted to the networking module in the form of a string.
  • the type identifier of the data is also expressed in the form of a string and can be added to specific digits of the data string. For example, the last 4 digits of the string can be used for
  • the type of data that can be represented by 0000 is type 1
  • the type of data that can be represented by 0001 is type 2
  • the type of data that can be represented by 0110 is type 6, etc.
  • the number of digits in the string used to represent the data type can be determined by the total number of data types, can be set by the manufacturer when the HVAC equipment leaves the factory, or can be determined by the user according to needs in subsequent use.
  • the reporting rules of the operating data to be reported are determined by the CPU of the HVAC equipment, and the operating data to be reported and the corresponding reporting rules are transmitted to the networking module, and then the networking module reports the operating data to be reported according to the corresponding reporting rules.
  • the operating data is reported to the server.
  • the CPU of the HVAC equipment can directly search the correspondence between each data type and the reporting rules from the memory of the HVAC equipment to determine the reporting rules corresponding to the type.
  • the corresponding relationship may be stored in the CPU of the HVAC equipment in the form of a table.
  • the HVAC equipment may be an air conditioner, or may be other HVAC equipment, such as but not limited to a heater, a wall-mounted boiler, an electric heater, etc. That is to say, the data transmission method provided by some embodiments of the present disclosure can be used not only in air-conditioning equipment, but also in other HVAC equipment, and the embodiments provided by the present disclosure are not limited to this.
  • Some embodiments provided by the present disclosure obtain multiple data types by jointly dividing the operating data of HVAC equipment in multiple dimensions, and set different reporting rules for different data types. For example, for more important and more frequently changing operating data, use a higher reporting frequency to report data, and for less important and less frequently changing operating data, use a lower reporting frequency to report data. Compared with dividing the data in a single dimension and then using different reporting rules to report the data, some embodiments provided by the present disclosure can ensure the quality of HVAC equipment operation data upload to a greater extent and improve the effectiveness and ease of use of the data. , while saving data traffic and avoiding unnecessary waste of traffic resources.
  • the M division dimensions in some embodiments provided by the present disclosure include: the frequency of changes in operating data and the sensitivity of operating data.
  • operating data can be divided into high-frequency data and low-frequency data according to the frequency of data changes.
  • Frequency of change means that data often changes spontaneously (as the device runs) or randomly (as the user sets it). How often changes occur.
  • High-frequency data refers to data that changes more frequently
  • low-frequency data refers to data that changes less frequently.
  • the classification rules of operating data are as follows:
  • Sensor detection data of indoor units, sensor detection data of outdoor units, calculation data of HVAC equipment, peripheral data of HVAC equipment, and status parameters of HVAC equipment can be divided into high-frequency data.
  • the engineering setting parameters of HVAC equipment can be divided into low-frequency data.
  • reporting at frequency A For example, for the reporting rules of high-frequency data, it is usually set to report at a higher frequency, such as reporting at frequency A.
  • A may be, but is not limited to, reporting once every 30 seconds to every 30 minutes. In a preferred embodiment, Reported every 1 minute.
  • frequency B can be reported.
  • B can be, but is not limited to, every 1 hour to every 7 days. In the preferred embodiment, it is reported every 24 hours. once.
  • operating data Under the sensitivity dimension of operating data, operating data can be divided into sensitive data and non-sensitive data according to the importance of the data.
  • the sensitivity of operating data is used to characterize the importance of operating data to the operation of HVAC equipment.
  • the degree of importance is the result of human judgment based on certain engineering experience, importance of impact on equipment operation, other behaviors and other dimensions.
  • the classification rules of operating data are as follows:
  • the status parameters of HVAC equipment and the engineering setting parameters of HVAC equipment can be classified as sensitive data.
  • the sensor detection data of the indoor unit, the sensor detection data of the outdoor unit, the calculation data of the HVAC equipment, and the peripheral data of the HVAC equipment can be classified as non-sensitive data.
  • reporting For example, for the reporting rules of sensitive data, you can usually set reporting as the data changes, that is, as soon as the data changes, the data will be reported immediately.
  • reporting For non-sensitive data reporting rules, you can usually set a certain frequency for reporting.
  • the reporting rules for each data type can also be set in combination with the reporting rules corresponding to the aforementioned two dimensions.
  • FIG. 4 is a corresponding relationship diagram between results of data division types in various dimensions and reporting rules provided by some embodiments of the present disclosure.
  • Figure 4 takes the two dimensions of operating data change frequency and operating data sensitivity as an example to divide operating data, and the reporting rules corresponding to each data type are explained.
  • dimension 1 in the figure is the high and low dimensions of the change frequency of operating data. Under dimension 1, operating data is divided into high-frequency data and low-frequency data.
  • Dimension 2 in Figure 4 is the sensitivity dimension of operating data. Under dimension 2, operating data is divided into sensitive data and non-sensitive data. Then under these two dimensions, operating data is divided into high-frequency and sensitive data, high-frequency and non-sensitive data, low-frequency and sensitive data, and low-frequency and non-sensitive data.
  • the corresponding reporting rules for high-frequency and sensitive data are: report according to the first time interval, and if changes in operating data are detected during two consecutive reporting periods, report immediately (that is, the first time interval reported, and changes reported). For example, but not limited to, the first time interval is 1 minute.
  • the detection data of sensor A is high-frequency and sensitive data, and is reported once at 13:02, and will be reported again at 13:03. If the detection data of sensor A changes between 13:02 and 13:03, it will also be reported once.
  • the corresponding reporting rule for high-frequency and non-sensitive data is: report according to the second time interval.
  • the second time interval is 1 minute.
  • the size of the second time interval and the first time interval may be equal or unequal.
  • the corresponding reporting rules for low-frequency and sensitive data are: if a change in operating data is detected, report it immediately, that is, change reporting.
  • the corresponding reporting rule for low-frequency and non-sensitive data is: report according to the third time interval.
  • the third time interval is 24 hours.
  • the third time interval is greater than the first time interval and greater than the second time interval.
  • the CPU of the HVAC equipment can obtain each operation data and send each operation data to the networking module according to a preset time interval.
  • the CPU of the HVAC equipment will communicate data with the networking module according to the preset communication protocol (such as data format, meaning of each string, etc.).
  • the networking module can analyze the operating data to determine the type of data (for example, the outdoor temperature detected by the temperature sensor) and the content of the data (for example, the outdoor temperature is 32°C).
  • the MCU of the networking module can determine that the currently received operating data (such as the detection data of the temperature sensor) is a data type (such as high-frequency and sensitive data), and then the MCU of the networking module can further search for the data type and reporting rules.
  • the MCU of the networking module can determine the time when the currently received operating data was last reported, and the content of the last report. If the currently received operating data has not changed compared with the last reported content, it will not be reported temporarily; if it changes, the operating data will be reported immediately.
  • some embodiments provided by the present disclosure can also divide the operating data more finely, and divide the operating data into various types of operating data.
  • Set appropriate reporting rules For example, in the high and low dimensions of the frequency of operating data changes, in addition to dividing the operating data into high-frequency data and low-frequency data according to the frequency of data changes, the operating data can also be divided into medium-frequency data.
  • High-frequency data refers to data whose changing frequency is between high-frequency data and low-frequency data.
  • the classification rules of operating data are as follows:
  • Sensor detection data of indoor units, sensor detection data of outdoor units, and calculation data of HVAC equipment can be divided into high-frequency data.
  • the peripheral data of HVAC equipment and the status parameters of HVAC equipment can be divided into intermediate frequency data.
  • the engineering setting parameters of HVAC equipment can be divided into low-frequency data.
  • operating data in addition to being divided into high-frequency and sensitive data, high-frequency and non-sensitive data, low-frequency and sensitive data, and low-frequency and non-sensitive data, operating data can also be divided into medium-frequency and sensitive data, Medium frequency and non-sensitive data.
  • Figure 5 exemplarily shows the correspondence diagram between each data type and reporting rules after adding intermediate frequency data.
  • the corresponding reporting rules for medium-frequency and sensitive data are: report according to the fourth time interval, and if changes in operating data are detected during two consecutive reporting periods, report immediately (that is, report at the fourth time interval , and changes are reported).
  • the fourth time interval is greater than the first time interval. For example, but not limited to, the fourth time interval is 1 hour.
  • the corresponding reporting rules for medium-frequency and non-sensitive data are: reporting according to the fifth time interval.
  • the fifth time interval is greater than the second time interval and less than the third time interval.
  • the fifth time interval is 1 hour.
  • the fifth time interval and the fourth time interval may be equal in size or may not be equal in size.
  • some embodiments provided by the present disclosure can also divide the operating data more finely, and divide the operating data into various types of operating data.
  • Set appropriate reporting rules For example, in addition to the M division dimensions mentioned in the previous embodiment including: the frequency of changes in the operating data and the sensitivity of the operating data, the dimension of whether the operating data is stable may also be included. It should be noted that whether the operating data is stable can be understood as an extension of the dimension of the sensitivity of the operating data, which is used to indicate whether the value of the operating data is within a safe range.
  • the sensor detection data of the outdoor unit and the sensor detection data of the indoor unit were originally classified as sensitive data under the sensitivity dimension of the operating data.
  • the sensor detection data can be further classified into the sensitive data under the dimension of whether the operating data is stable. Divided into stable data and unstable data. For example, for a The detection result of a sensor, such as the pressure value detected by the pressure sensor, if it exceeds the preset alarm threshold, the pressure value detected by the pressure sensor at this time is unstable data. If the pressure value detected by the pressure sensor does not exceed the preset alarm threshold, Set the alarm threshold, then the pressure value detected by the pressure sensor at this time is stable data.
  • the reporting rules for stable data and unstable data can usually be set to report at a certain frequency (time interval). Specifically, the reporting frequency of stable data may be less than the reporting frequency of unstable data.
  • the reporting rules of each data type can also be combined with the aforementioned three dimensions to correspond respectively. reporting rule settings.
  • operating data can be divided into high-frequency stable and sensitive data, high-frequency stable and non-sensitive data, low-frequency stable and sensitive data, low-frequency stable and non-sensitive data, high-frequency stable and non-sensitive data, and high-frequency stable and non-sensitive data.
  • Frequency unstable and sensitive data high frequency unstable and non-sensitive data, low frequency unstable and sensitive data and low frequency unstable and non-sensitive data.
  • High-frequency, stable and sensitive data reported at the sixth time interval, and if changes in operating data are detected during two consecutive reporting periods, the data will be reported immediately.
  • the sixth time interval is 10 minutes.
  • High-frequency stable and non-sensitive data reported according to the seventh time interval.
  • the seventh time interval is 10 minutes.
  • the seventh time interval and the sixth time interval may be equal in size or may not be equal in size.
  • Low-frequency stable and sensitive data reported according to the eighth time interval, and if changes in operating data are detected during two consecutive reporting periods, the data will be reported immediately.
  • the eighth time interval is greater than the sixth time interval. For example, but not limited to, the eighth time interval is 20 minutes.
  • Low-frequency stable and non-sensitive data reported according to the ninth time interval.
  • the ninth time interval is greater than the sixth time interval and greater than the seventh time interval.
  • the ninth time interval is 48 hours.
  • High-frequency unstable and sensitive data reported at the tenth time interval, and if any changes in operating data are detected during two consecutive reporting periods, the data will be reported immediately.
  • the tenth time interval is smaller than the sixth time interval. For example, but not limited to, the tenth time interval is 5 minutes.
  • High-frequency unstable and non-sensitive data reported according to the eleventh time interval.
  • the eleventh time interval is 5 minutes.
  • there is no necessary connection between the eleventh time interval and the tenth time interval there is no necessary connection between the eleventh time interval and the tenth time interval.
  • the sizes of the eleventh time interval and the tenth time interval may be equal or unequal.
  • the eleventh time interval is smaller than the seventh time interval.
  • Low-frequency unstable and sensitive data reported according to the twelfth time interval, and if any change in operating data is detected during two consecutive reporting periods, it will be reported immediately.
  • the twelfth time interval is greater than the eleventh time interval, and the twelfth time interval is less than the eighth time interval.
  • the twelfth time interval is 10 minutes.
  • Low-frequency unstable and non-sensitive data reported according to the thirteenth time interval.
  • the thirteenth time interval is greater than the tenth time interval and greater than the eleventh time interval.
  • the thirteenth time interval is smaller than the ninth time interval.
  • the thirteenth time interval is 24 hours.
  • the division of operating data types can be manually defined by the user and input into the HVAC equipment, and the reporting rules corresponding to each data type can be manually defined by the user.
  • the data transmission method provided by some embodiments of the present disclosure also includes: receiving an external input first setting instruction for setting M division dimensions, and receiving an external input for setting the lower division dimensions of each division.
  • the type contains the second setting instruction of the operating data;
  • operating data corresponding to each type of operating data is determined, and reporting rules corresponding to each type of operating data are received.
  • the user can set the dividing dimensions of the running data based on the user interface of the server 120, and each running The results of the division of data in each dimension.
  • the operating data of the HVAC equipment sensor detection data of the outdoor unit, sensor detection data of the indoor unit, calculation data of the HVAC equipment, peripheral data of the HVAC equipment, status parameters of the HVAC equipment, and HVAC equipment project setting parameters.
  • the user can set two division dimensions of the operating data based on the user interface of the server 120: the frequency of operating data changes and the sensitivity of the operating data (first setting instruction). Then, based on the classification of the frequency of changes in the operating data, the operating data can be divided into high-frequency data and low-frequency data.
  • the user can use the user interface of the server 120 to combine the sensor detection data of the indoor unit, the sensor detection data of the outdoor unit, and HVAC data.
  • the computing data of the equipment, the peripheral data of the HVAC equipment, and the status parameters of the HVAC equipment are set to high-frequency data, and the engineering setting parameters of the HVAC equipment are set to low-frequency data (second setting instruction).
  • operating data can be divided into sensitive data and non-sensitive data.
  • the user can set the status parameters of the HVAC equipment and the engineering setting parameters of the HVAC equipment as sensitive data based on the user interface of the server 120.
  • the sensor detection data of the indoor unit, the sensor detection data of the outdoor unit, the calculation data of the HVAC equipment, and the peripheral data of the HVAC equipment are set as non-sensitive data (the second setting instruction).
  • the HVAC equipment can determine the division results in each dimension, and combine the division results in each dimension to determine the data type that is comprehensively determined by each dimension, such as the frequency of changes in the operating data and the sensitivity of the operating data.
  • the data types are divided as follows:
  • High-frequency and non-sensitive data sensor detection data of indoor units, sensor detection data of outdoor units, calculation data of HVAC equipment, and peripheral data of HVAC equipment;
  • the final data type can be displayed to the user through the user interface of the server 120 (for example, displayed in the form of a list or table).
  • the user can display the data based on the user interface of the server 120
  • the list or table containing each data type sets the reporting rules corresponding to each data type.
  • the user can also set based on a mobile terminal (such as a mobile phone, tablet, etc.) connected to the HVAC equipment 110. Some embodiments provided by the present disclosure are not limited to this.
  • Some embodiments provided by this disclosure allow users to customize the dimensions of data classification and the classification types of operating data in each dimension. At the same time, users can also customize the reporting rules corresponding to each data type, which can not only meet the needs of different users, but also Improve the effectiveness and ease of use of data, while saving data traffic and avoiding unnecessary waste of traffic resources.
  • the division in order to improve the intelligence of running data division, reduce user operations, and improve the efficiency and accuracy of running data division, under the division of high and low frequency of running data change, for high-frequency data and low-frequency data
  • the division can be completed by self-learning of the HVAC equipment.
  • Figure 6 schematically shows a flow chart of another data transmission method provided by some embodiments of the present disclosure.
  • the data transmission method may include the following steps:
  • the CPU of the HVAC equipment can obtain each operating data and send each operating data to the networking module according to a preset time interval.
  • the frequency of changes in the operating data can be monitored by the CPU of the HVAC equipment. If the CPU monitors that the frequency of changes in certain operating data (for example, data detected by a temperature sensor of an outdoor unit) is greater than the first preset threshold, the CPU may determine that the operating data is high-frequency data.
  • the frequency of running data changes can be monitored by the MCU of the networking module. If the MCU determines that the change rate of certain operating data is greater than the first preset threshold based on the data sent by the CPU, the MCU may determine that the operating data is low-frequency data.
  • the first preset threshold is, for example but not limited to, 1 time/30 minutes. That is to say, if the frequency of monitoring the changes in the operating data is greater than once/30 minutes, such as 2 times/30 minutes, then the operating data is determined to be high-frequency data.
  • the frequency of changes in a certain operating data may vary, for example, it changes very slowly in a period of time and changes rapidly in another period of time.
  • the frequency of changes may change as the operating data changes. Adjust the type of data in a timely manner according to the frequency, which can ensure the accuracy of data classification and ensure the effectiveness of reporting operational data according to the reporting rules of this type.
  • the second preset threshold may be equal to the first preset threshold, for example but not limited to 1 time/30 minute. That is to say, if the frequency of monitoring the changes in the operating data is less than or equal to 1 time/30 minutes, such as 1 time/60 minutes, 1 time/2 hours, then the operating data is determined to be low-frequency data.
  • the second preset threshold can be smaller than the first preset threshold. At this time, if the frequency of operating data changes is less than Or equal to the first preset threshold and greater than the second preset threshold, then the operating data is determined to be intermediate frequency data.
  • S603 Determine the type of operating data to be reported for the HVAC equipment.
  • the above self-learning of the HVAC equipment can determine the division results under the division dimensions of high and low operating data change frequency. Combined with the division results under other dimensions input externally by the user, the HVAC equipment can determine the operation to be reported.
  • the type of data please refer to the relevant description in S301 and will not be described again here.
  • S604 Determine corresponding reporting rules according to the type of operating data to be reported, and report the operating data to be reported to the server according to the reporting rules.
  • S604 is consistent with S302 and will not be described again here.
  • the division of high-frequency data and low-frequency data can be completed by self-learning of HVAC equipment. On the one hand, it improves the intelligence of operating data division and reduces the user's fatigue. Operation, improve the efficiency and accuracy of running data division, on the other hand, it can improve the effectiveness and ease of use of data, while saving data traffic and avoiding unnecessary waste of traffic resources.
  • the data transmission device provided by some embodiments of the present disclosure will be introduced in detail below with reference to FIG. 7 . It should be noted that the data transmission device in Figure 7 is applied to the control device shown in Figure 1 and is used to execute the method shown in the embodiments shown in Figures 3 to 6 related to the present disclosure. For convenience of explanation, only the For parts related to some embodiments provided in this disclosure, if specific technical details are not disclosed, please refer to the embodiments shown in Figures 3-6 of this disclosure.
  • FIG. 7 provides a schematic structural diagram of a data transmission device according to some embodiments of the present disclosure.
  • the data transmission device 700 of some embodiments provided by the present disclosure may include: a processing module 710 and a transceiver module 720. in:
  • the processing module 710 is configured to determine the type of operating data to be reported for the HVAC equipment; where the type of operating data for the HVAC equipment is jointly determined by M division dimensions, and under the mth division dimension, the operation data is divided into X m types, the operating data of HVAC equipment include Each type of operating data corresponds to different reporting rules. M and
  • the transceiver module 720 is configured to determine corresponding reporting rules according to the type of operating data to be reported, and to report the operating data to be reported to the server according to the reporting rules.
  • the M division dimensions include: the frequency of changes in the operating data and the sensitivity of the operating data; where the sensitivity of the operating data is used to characterize the importance of the operating data to the operation of the HVAC equipment;
  • operating data is divided into high-frequency data and low-frequency data
  • operating data is divided into sensitive data and non-sensitive data
  • the operating data of HVAC equipment includes: high-frequency and sensitive data, high-frequency and non-sensitive data, low-frequency and sensitive data, and low-frequency and non-sensitive data.
  • the reporting rules corresponding to high-frequency and sensitive data are: report according to the first time interval, and if a change in operating data is detected during two consecutive reporting periods, report immediately;
  • the corresponding reporting rules for high-frequency and non-sensitive data are: reporting according to the second time interval;
  • the corresponding reporting rules for low-frequency and sensitive data are: if a change in operating data is detected, report it immediately;
  • the corresponding reporting rules for low-frequency and non-sensitive data are: reporting according to the third time interval;
  • the third time interval is greater than the first time interval and greater than the second time interval.
  • the operating data is also divided into intermediate frequency data
  • the operating data of HVAC equipment also includes: medium frequency and sensitive data, medium frequency and non-sensitive data;
  • the corresponding reporting rules for medium-frequency and sensitive data are: report according to the fourth time interval, and if changes in operating data are detected during two consecutive reporting periods, report immediately;
  • the corresponding reporting rules for medium-frequency and non-sensitive data are: reporting according to the fifth time interval;
  • the fourth time interval is greater than the first time interval
  • the fifth time interval is greater than the second time interval and less than the third time interval
  • processing module 710 is also configured to:
  • the operating data is determined to be high-frequency data
  • the operating data is determined to be low-frequency data
  • the first preset threshold is greater than the second preset threshold.
  • the transceiver module 720 is also configured to receive an external input first setting instruction for setting the M division dimensions, and to receive an external input for setting the operating data included in the type under each division dimension.
  • the processing module 710 is also configured to determine the operating data corresponding to each type of operating data in response to the first setting instruction and the second setting instruction;
  • the transceiver module 720 is also configured to receive reporting rules corresponding to each type of operating data.
  • the HVAC equipment includes an outdoor unit and one or more indoor units;
  • the operating data includes at least one of the following: sensor detection data of the outdoor unit, sensor detection data of the indoor unit, calculation data of the HVAC equipment, peripheral data of the HVAC equipment, status parameters of the HVAC equipment, and engineering settings of the HVAC equipment. parameter.
  • each module in the above data transmission device is only for illustration. In other embodiments, the data transmission device can be divided into different modules as needed to complete all or part of the functions of the above data transmission device.
  • the implementation of each module in the data transmission device provided in some embodiments of the present disclosure may be in the form of a computer program.
  • the computer program can be run on a terminal or on a server.
  • the program modules formed by the computer program can be stored in the memory of the terminal or server.
  • FIG. 8 shows a schematic structural diagram of a control device provided by some embodiments of the present disclosure.
  • control device 800 may include: at least one processor 801 , a memory 802 and at least one communication bus 803 .
  • the communication bus 803 can be used to realize connection and communication of each of the above components.
  • the processor 801 may include one or more processing cores.
  • the processor 801 uses various interfaces and lines to connect various parts of the entire control device 800, and executes by running or executing instructions, programs, code sets or instruction sets stored in the memory 802, and calling data stored in the memory 802. Control various functions of the device 800 and process data.
  • the processor 801 can be implemented in at least one hardware form among DSP, FPGA, and PLA.
  • the processor 801 may integrate one or a combination of CPU, GPU, modem, etc.
  • the CPU mainly handles the operating system, user interface, and applications; the GPU is responsible for rendering and drawing the content that needs to be displayed on the display; and the modem is used to handle wireless communications. It can be understood that the above-mentioned modem may not be integrated into the processor 801 and may be implemented by a separate chip.
  • the memory 802 may include RAM or ROM.
  • the memory 802 includes non-transitory computer-readable media.
  • Memory 802 may be used to store instructions, programs, codes, sets of codes, or sets of instructions.
  • the memory 802 may include a program storage area and a data storage area, where the program storage area may store instructions for implementing an operating system, instructions for at least one function (such as a touch function, a sound playback function, an image playback function, etc.), Instructions, etc., used to implement each of the above method embodiments; the storage data area can store data, etc. involved in each of the above method embodiments.
  • the memory 802 may optionally be at least one storage device located remotely from the processor 801 .
  • the memory 802, which is a computer storage medium may include an operating system, a network communication module, a user interface module and an application program.
  • the processor 801 can be used to call the application program stored in the memory 802, and specifically perform the following operations:
  • the type of operating data to be reported for the HVAC equipment is jointly determined by M division dimensions. Under the m-th division dimension, the operation data is divided into X m types.
  • the operating data of communication equipment includes Each type of operating data corresponds to different reporting rules. M and
  • the M division dimensions include: the frequency of changes in the operating data and the sensitivity of the operating data; where the sensitivity of the operating data is used to characterize the importance of the operating data to the operation of the HVAC equipment;
  • operating data is divided into high-frequency data and low-frequency data
  • operating data is divided into sensitive data and non-sensitive data
  • the operating data of HVAC equipment includes: high-frequency and sensitive data, high-frequency and non-sensitive data, low-frequency and sensitive data, and low-frequency and non-sensitive data.
  • the reporting rules corresponding to high-frequency and sensitive data are: report according to the first time interval, and if a change in operating data is detected during two consecutive reporting periods, report immediately;
  • the corresponding reporting rules for high-frequency and non-sensitive data are: reporting according to the second time interval;
  • the corresponding reporting rules for low-frequency and sensitive data are: if a change in operating data is detected, report it immediately;
  • the corresponding reporting rules for low-frequency and non-sensitive data are: reporting according to the third time interval;
  • the third time interval is greater than the first time interval and greater than the second time interval.
  • the operating data is also divided into intermediate frequency data
  • the operating data of HVAC equipment also includes: medium frequency and sensitive data, medium frequency and non-sensitive data;
  • the corresponding reporting rules for medium-frequency and sensitive data are: report according to the fourth time interval, and if changes in operating data are detected during two consecutive reporting periods, report immediately;
  • the corresponding reporting rules for medium-frequency and non-sensitive data are: reporting according to the fifth time interval;
  • the fourth time interval is greater than the first time interval
  • the fifth time interval is greater than the second time interval and less than the third time interval
  • the processor 801 before determining the type of operating data to be reported of the HVAC equipment, the processor 801 is also configured to execute:
  • the operating data is determined to be high-frequency data
  • the operating data is determined to be low-frequency data
  • the first preset threshold is greater than the second preset threshold.
  • the processor 801 before determining the corresponding reporting rule according to the type of operating data to be reported, the processor 801 is also configured to execute:
  • operating data corresponding to each type of operating data is determined, and reporting rules corresponding to each type of operating data are received.
  • the HVAC equipment includes an outdoor unit and one or more indoor units;
  • the operating data includes at least one of the following: sensor detection data of the outdoor unit, sensor detection data of the indoor unit, calculation data of the HVAC equipment, peripheral data of the HVAC equipment, status parameters of the HVAC equipment, and engineering settings of the HVAC equipment. parameter.
  • FIG. 9 schematically shows an HVAC equipment provided by some embodiments of the present disclosure.
  • the HVAC device 900 may include the control device 800 shown in FIG. 8 .
  • Some embodiments of the present disclosure also provide a computer-readable storage medium that stores instructions, which when run on a computer or processor, cause the computer or processor to execute the above-mentioned Figures 3 to 6 One or more steps in the illustrated embodiment. If each component module of the above-mentioned HVAC equipment is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in the computer-readable storage medium.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from a website, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) Transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated therein.
  • the usable media may be magnetic media (for example, floppy disks, hard disks, tapes), optical media (for example, Digital Versatile Disc (DVD)), or semiconductor media (for example, Solid State Disk (Solid State Disk, SSD)) etc.
  • the program can be stored in a computer-readable storage medium.
  • the aforementioned storage media include: ROM, RAM, magnetic disks, optical disks and other media that can store program codes. If there is no conflict, the technical features in this embodiment and implementation plan can be combined arbitrarily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Toxicology (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Medical Informatics (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种数据传输方法、装置、控制设备、暖通设备及存储介质。其中,该方法应用于控制设备,控制设备用于控制暖通设备,该方法包括:确定暖通设备的待上报的运行数据的类型;其中,暖通设备的运行数据的类型由M个划分维度共同确定,在第m个所述划分维度下,运行数据被划分为X m种类型,暖通设备的运行数据包括(aa)种类型,每种类型的运行数据对应不同的上报规则,M和X m均为大于或等于2的正整数,m取值为1至M中的任意一个正整数;根据待上报的运行数据的类型确定对应的上报规则,并按照上报规则上报所述待上报的运行数据至服务器。

Description

数据传输方法、装置、控制设备、暖通设备及存储介质
相关申请
本公开要求于2022年07月25日申请的申请号为202210877810.X,名称为“数据传输方法、装置、控制设备、空调设备及存储介质”的中国专利申请的优先权,在此以引用形式将其全文并入。
技术领域
本公开属于智能设备技术领域,尤其的涉及一种数据传输方法、装置、控制设备、暖通设备及存储介质。
背景技术
随着产品智能化的升级,现有的空调系统无论是冷水机组或者多联机组都会搭载联网设备,将运行数据上传运转用于实时的监控或者本地控制优化。目前常用的方式是采用物联网卡,如4G/5G物联网卡,基于移动网络进行运行以及控制数据的传输。
发明内容
本公开一些实施例提供了一种数据传输方法、装置、控制设备、暖通设备及存储介质,可以提高数据传输地有效性。
第一方面,本公开一些实施例提供了一种数据传输方法,该方法用于控制设备,控制设备用于控制暖通设备,该方法包括:
确定暖通设备的待上报的运行数据的类型;其中,上述暖通设备的运行数据的类型由M个划分维度共同确定,在第m个上述划分维度下,上述运行数据被划分为Xm种类型,上述暖通设备的运行数据包括种类型,每种类型的运行数据对应不同的上报规则,M和Xm均为大于或等于2的正整数,m依次取值为1至M中的正整数;
根据上述待上报的运行数据的类型确定对应的上报规则,并按照上述上报规则上报上述待上报的运行数据至服务器。
第二方面,本公开一些实施例提供了一种数据传输装置,上述数据传输装置应用于控制设备,上述控制设备用于控制暖通设备,上述装置包括:
处理模块,设置为确定暖通设备的待上报的运行数据的类型;其中,上述暖通设备的运行数据的类型由M个划分维度共同确定,在第m个上述划分维度下,上述运行数据被划 分为Xm种类型,上述暖通设备的运行数据包括种类型,每种类型的运行数据对应不同的上报规则,M和Xm均为大于或等于2的正整数,m取值为1至M中的任意一个正整数;
收发模块,设置为根据上述待上报的运行数据的类型确定对应的上报规则,并按照上述上报规则上报上述待上报的运行数据至服务器。
第三方面,本公开一些实施例提供了一种计算机存储介质,上述计算机存储介质存储有多条指令,上述指令适于由处理器加载并执行本公开涉及的一些实施例第一方面提供的方法的步骤。
第四方面,本公开一些实施例提供了一种控制设备,包括:处理器和存储器;其中,上述存储器存储有计算机程序,上述计算机程序适于由上述处理器加载并执行本公开涉及的一些实施例第一方面提供的方法的步骤。
第五方面,本公开一些实施例提供了一种暖通设备,包括本公开涉及的一些实施例第四方面提供的控制设备。
本公开涉及的一些实施例通过对暖通设备的运行数据进行多个维度共同划分得到多个数据类型,并针对不同的数据类型设定不同的上报规则。例如,对于更重要且更频繁变化的运行数据采用更高的上报频率上报数据,对于不那么重要且不那么频繁变化的运行数据采用更低的上报频率上报数据。相比于以单个维度划分数据再采用不用的上报规则来上报数据而言,本公开涉及的一些实施例可以更大程度保证暖通设备运行数据上传的质量,提高数据的有效性和易用性,同时节省数据流量,避免不必要的流量资源浪费。
附图说明
为了更清楚地说明本公开提供的一些实施例中的技术方案,下面将对实施例中所需使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开提供的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一些实施例提供的一种数据传输系统的结构示意图;
图2为本公开一些实施例提供的一种数据传输的场景示意图;
图3为本公开一些实施例提供的一种数据传输方法的流程示意图;
图4为本公开一些实施例提供的一种各个维度下数据划分类型的结果与上报规则的对应关系图;
图5为本公开一些实施例提供的另外一种各个维度下数据划分类型的结果与上报规则的对应关系图;
图6为本公开一些实施例提供的另外一种数据传输方法的流程示意图;
图7为本公开一些实施例提供的一种数据传输装置的结构示意图;
图8为本公开一些实施例提供的一种控制设备的结构示意图;
图9为本公开一些实施例提供的一种暖通设备的结构示意图。
具体实施方式
下面将结合本公开提供的一些实施例中的附图,对本公开提供的一些实施例中的技术方案进行清楚、完整地描述。
本公开提供的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
图1示例性示出了本公开一些实施例提供的一种数据传输系统的结构示意图。如图1所示,数据传输系统100可以包括:暖通设备110及服务器120。其中:
暖通设备110为智能化产品,可以将其运行数据上传至服务器120,服务器120在接收到暖通设备110的运行数据之后,可以对运行数据进行分析得到控制数据,并将控制数据发送给暖通设备110,从而控制暖通设备110的运行,优化暖通设备110的本地控制逻辑。暖通设备110可包括控制设备111,控制设备111用于控制暖通设备110。控制设备111可以是一个独立于暖通设备110的设备,也可以是集成在暖通设备110中的一个控制器件,本公开提供的一些实施例对此不作限定。
具体地,暖通设备110和服务器120之间可以通过网络进行数据传输。也就是说,数据传输系统100还可以包括联网模块。
可选地,如图1所示,联网模块130可以集成在暖通设备110中。具体地,联网模块130可以是物联网卡,例如4G/5G物联网卡。
可选地,联网模块130还可以是独立于暖通设备110的路由设备。暖通设备110可以通过路由设备联网连接服务器120。
本公开提供的一些实施例中,暖通设备110包括一个室外机及一个或多个室内机,则运行数据包括以下至少一项:室外机的传感器检测数据、室内机的传感器检测数据、暖通设备的运算数据、暖通设备的外设数据、暖通设备的状态参数、暖通设备的工程设置参数,控制数据可以用于远程干预暖通设备的开关或温度设定。不限于暖通设备,本公开提供的一些实施例还可以适用于除湿机、加湿器等暖通设备以及其他的智能设备。
示例性地,本公开提供的一些实施例可适用于智能家居设备,如智能音箱,则运行数据为运行时间、音量、播放内容等,控制数据例如可以是根据智能音箱在一段时间内的运行规律,即用户的使用习惯分析得出的数据,例如用户习惯在早上7点开启音箱用较大的音量播放音乐,则控制数据可以是与时间段关联的音量的设定数据。
示例性地,本公开提供的一些实施例可适用于智能冰箱,运行数据为制冷温度、冷藏室温度及湿度等,控制数据例如可以是智能冰箱的智能温度的设定、湿度设定等。
以下对暖通设备的运行数据进行说明。
示例性地,室外机和室内机可包括温度传感器、压力传感器等。室外机的传感器检测数据即为室外环境温度、室外机内的高压压力等。室内机的传感器检测数据即为室内环境温度、室内机内的高压压力等。
暖通设备的运算数据可包括微控制单元(Microcontroller Unit,MCU)运算数据,经由暖通设备自带的MCU运算得到的计算数据,如排气过热度、室内机的实时能力等。
暖通设备的外设数据可包括暖通设备外接部件经由暖通设备总线通过联网模块传输的数据,如暖通设备的用电量、与室内机或室外机连接的湿度传感器数据等。
暖通设备的状态参数可包括暖通设备自身的运行状态参数,如运行模式、风档等。
暖通设备的工程设置参数可包括室内机的设置静压、电热辅开启温度、室外机的优先运行模式等。图2示例性示出了本公开一些实施例提供的一种数据传输的场景示意图。如图2所示,本公开提供的一些实施例提供的数据传输系统可用于暖通设备的数据传输。即 图1中的暖通设备110包括室内机112和室外机113。需要说明的是,不限于图2中示出的一个室内机,在具体实现中,暖通设备110还可以包括更多数量的室内机,本公开提供的一些实施例对此不作限定。需要说明是的,暖通设备110的控制设备在图2中未示出,控制设备可集成在室外机113或室内机112内,也可独立于室内机112和室外机113设置。
暖通设备110可以通过联网模块(图1中已示出,图2中未示出)与服务器120建立数据连接。其中,暖通设备110可以将其运行数据上报至服务器120,服务器120也可以将控制数据发送至暖通设备110,用于控制暖通设备110的运行。其中,暖通设备110的运行数据以及相关的控制数据也参考图1实施例中的相关介绍,此处不再赘述。
在相关技术中,暖通设备可以按照统一设定的频率上报所有的运行数据至服务器,而暖通设备自身含有多种类型的运行数据,采用统一的上报频率会造成流量不必要的浪费。
本公开提供的一些实施例针对上述问题提出了一种数据传输方法,可以根据暖通设备的运行数据的类型动态调整运行数据上报的频率,一方面可以提高数据传输的有效性和易用性,另一方面可以节约流量费用。
图3示例性示出了本公开一些实施例提供的一种数据传输方法的流程示意图。如图3所示,该方法可以包括以下几个步骤:
S301:确定暖通设备的待上报的运行数据的类型。
其中,暖通设备的运行数据由M个划分维度共同确定,在第m个划分维度下,运行数据被划分为Xm种类型,暖通设备的运行数据包括种类型,每种类型的运行数据对应不同的上报规则,M和Xm均为大于或等于2的正整数,m依次取值为1至M中的正整数。
示例性地,若M为2,即暖通设备的运行数据由2个划分维度共同确定,这2个划分维度包括第一维度和第二维度,且在第一维度下运行数据被划分为2(X1)种类型,在第二维度下运行数据被划分为3(X2)种类型,则暖通设备的运行数据可包括即6种类型。
示例性地,若M为3,即暖通设备的运行数据由3个划分维度共同确定,这2个划分维度包括第一维度、第二维度和第三维度,且在第一维度下运行数据被划分为5(X1)种类型,在第二维度运行数据被划分为2(X2)种类型,在第三维度运行数据被划分为4(X3)种类型,则暖通设备的运行数据可包括即40种类型。
不限于前述实施例中列举的划分维度的数量,以及前述实施例中列举的每个划分维度下划分的类型的数量,本公开提供的一些实施例对于运行数据划分的维度数量不作限定,对于每个维度下划分的类型数量也不作限定。
具体地,待上报的运行数据的数据类型可由暖通设备的中央处理器(central processing unit,CPU)确定。示例性地,若传感器A将检测到的数据(待上报的运行数据)发送给CPU,CPU可以确定该数据为传感器检测数据,并确定传感器检测数据在M个划分维度下的具体类型。
示例性地,若暖通设备的运行数据的类型由2个维度共同划分确定,这两个维度分别为运行数据变化频率的高低及运行数据的敏感程度。其中,运行数据的敏感程度用于表征运行数据对暖通设备运行的重要性。在运行数据变化的频率高低维度下,运行数据被划分 为高频数据和低频数据,且传感器检测数据为高频数据。在运行数据的敏感程度维度下,运行数据被划分为敏感数据和非敏感数据,且传感器数据为敏感数据,那么在这2个维度的共同作用下,前述传感器检测数据为高频且敏感的数据。
S302:根据待上报的运行数据的类型确定对应的上报规则,并按照上报规则上报待上报的运行数据至服务器。
具体地,结合运行数据在多个划分维度下的属性,为各个运行数据设定合适的上报规则,再以合适的上报规则上报运行数据至服务器。
可以知道,运行数据划分的维度越多,每个划分维度下划分的类型越多,最终得到的运行数据类型越多,从多个维度综合考量运行数据的属性,针对运行数据设定精细化的上报规则,尽可能地提高数据传输的有效性和易用性,尽可能地节约流量费用。
可选地,待上报的运行数据的上报规则由联网模块确定。暖通设备的CPU在确定待上报运行数据的具体类型之后,可为该数据添加类型标识,并将携带类型标识的待上报运行数据传送给联网模块。联网模块接收到携带类型标识的待上报运行数据后,可根据类型标识确定该待上报运行数据的类型,并确定该类型对应的上报规则。在本公开提供的一些实施例中,各个数据类型与上报规则的对应关系可存储在联网模块的MCU中。示例性地,该对应关系可以表格的形式存储在MCU中,本公开提供的一些实施例对该对应关系的存储形式不作限定。
示例性地,待上报运行数据可以字符串的形式传输给联网模块,数据的类型标识也以字符串的形式表示,可添加在数据字符串的特定几位,例如末位4位字符串可用于表征数据的类型,0000可表征数据的类型为类型1,0001可表征数据的类型为类型2,0110可表征数据的类型为类型6等。可以知道,用于表征数据类型的字符串的位数可由数据类型的总数量确定,可在暖通设备出厂时由厂商设置,也可由用户在后续的使用中根据需要确定,本公开提供的一些实施例对于用于表征数据类型的字符串的位数不作限定,对于用于表征数据类型的字符串的位数的设定方式也不作限定。
可选地,待上报的运行数据的上报规则由暖通设备的CPU确定,并将待上报的运行数据以及对应的上报规则一起传送给联网模块,再由联网模块按照对应的上报规则将待上报的运行数据上报给服务器。暖通设备的CPU在确定待上报运行数据的具体类型之后,可直接从暖通设备的存储器中查找各个数据类型与上报规则的对应关系,以确定该类型对应的上报规则。示例性地,该对应关系可以表格的形式存储在暖通设备的CPU中,本公开提供的一些实施例对该对应关系的存储形式不作限定。
需要说明的是,本公开提供的一些实施例中,暖通设备具体可以是空调设备,还可以是其他暖通设备,例如但不限于为暖风机、壁挂炉、电暖器等。也即是说,本公开一些实施例提供的数据传输方法除了可以用于空调设备中,还可以用于其他暖通设备中,本公开提供的实施例对此不作限定。
本公开提供的一些实施例通过对暖通设备的运行数据进行多个维度共同划分得到多个数据类型,并针对不同的数据类型设定不同的上报规则。例如,对于更重要且更频繁变化的运行数据采用更高的上报频率上报数据,对于不那么重要且不那么频繁变化的运行数据采用更低的上报频率上报数据。相比于以单个维度划分数据再采用不用的上报规则来上报数据而言,本公开提供的一些实施例可以更大程度保证暖通设备运行数据上传的质量,提高数据的有效性和易用性,同时节省数据流量,避免不必要的流量资源浪费。
示例性地,本公开提供的一些实施例中的M个划分维度包括:运行数据变化频率的高低及运行数据的敏感程度。
在运行数据变化的频率高低维度下,依照数据变化的频率可将运行数据被划分为高频数据和低频数据。变化频率是指数据经常会自发(随设备运行)或他发(随用户设置)而 发生变化的频率。高频数据是指会变化的比较频繁的数据,低频数据是指变化的比较少的数据。
以暖通设备的运行数据为例,在行数据变化频率的高低维度下,运行数据的分类规则如下:
室内机的传感器检测数据、室外机的传感器检测数据、暖通设备的运算数据、暖通设备的外设数据、暖通设备的状态参数可被划分为高频数据。
暖通设备的工程设置参数可被划分为低频数据。
示例性地,对于高频数据的上报规则,通常可设置按照较高的频率上报,例如按照频率A上报,A可以但不限于为每30秒至每30分钟上报一次,在优选的实施例中为每1分钟上报一次。
对于低频数据的上报规则,通常可设置按照较低的频率上报,例如按照频率B上报,B可以但不限于为每1小时至每7天上报一次,在优选的实施例中为每24小时上报一次。
在运行数据的敏感程度维度下,依照数据的重要程度可将运行数据被划分为敏感数据和非敏感数据。运行数据的敏感程度用于表征运行数据对暖通设备运行的重要性。重要程度为按照一定的工程经验、对设备运行影响的重要程度、他发行为等维度进行人为判断的结果。
以暖通设备的运行数据为例,在行数据变化频率的高低维度下,运行数据的分类规则如下:
暖通设备的状态参数及暖通设备的工程设置参数可被划分为敏感数据。
室内机的传感器检测数据、室外机的传感器检测数据、暖通设备的运算数据、暖通设备的外设数据可被划分为非敏感数据。
示例性地,对于敏感数据的上报规则,通常可设置随数据变化上报,即只要数据发生变化则即刻上报。对于非敏感数据的上报规则,通常可设置按照一定的频率上报。
在本公开提供的一些实施例中,结合了运行数据变化频率的高低及运行数据的敏感程度这两个维度之后,各个数据类型的上报规则也可结合前述两个维度分别对应的上报规则设定。
示例性地,图4为本公开一些实施例提供的一种各个维度下数据划分类型的结果与上报规则的对应关系图。图4中以运行数据变化频率的高低及运行数据的敏感程度这两个维度对运行数据进行划分为例,各个数据类型对应的上报规则进行说明。如图4所示,图中的维度1为运行数据变化频率的高低维度,在维度1下运行数据被划分为高频数据和低频数据。图4中的维度2为运行数据的敏感程度维度,在维度2下运行数据被划分为敏感数据和非敏感数据。那么在这两个维度下,运行数据被划分为高频且敏感的数据、高频且非敏感的数据、低频且敏感的数据及低频且非敏感的数据。
如图4所示,高频且敏感的数据对应的上报规则为:按照第一时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报(也即第一时间间隔上报,且变化上报)。例如但不限于,第一时间间隔为1分钟。
示例性地,假设传感器A的检测数据属于高频且敏感的数据,且在13:02进行了一次上报,且在13:03会再次上报。若在13:02与13:03之间,传感器A的检测数据发生了变化,也会上报一次。
高频且非敏感的数据对应的上报规则为:按照第二时间间隔上报。例如但不限于,第二时间间隔为1分钟。本公开提供的一些实施例中,第二时间间隔与第一时间间隔之间不存在必然的联系。第二时间间隔与第一时间间隔的大小可以相等,也可以不相等。
低频且敏感的数据对应的上报规则为:若检测到运行数据发生变化,即刻上报,也即变化上报。
低频且非敏感的数据对应的上报规则为:按照第三时间间隔上报。例如但不限于,第三时间间隔为24小时。其中,第三时间间隔大于第一时间间隔,且大于第二时间间隔。
需要说明的是,运行数据是否发生变化,可以由暖通设备的CPU确定,也可以由联网模块的MCU确定,本公开提供的一些实施例对此不作限定。
在一种具体的实施例中,暖通设备的CPU可以获取到各个运行数据,并按照预设的时间间隔将各个运行数据发送给联网模块。暖通设备的CPU会按照预先设定的通讯协议与联网模块之间进行数据通信(例如数据格式、每个字符串的含义等)。联网模块在接收到运行数据后,可对该运行数据进行解析确定数据的类型(例如是温度传感器检测的室外温度)以及数据的内容(例如室外温度为32℃)。进而,联网模块的MCU可确定当前接收到的运行数据(例如是温度传感器的检测数据)为数据类型(例如高频且敏感的数据),那么联网模块的MCU可进一步查找数据类型与上报规则的对应关系,确定该类型对应的上报规则(例如每隔1分钟上报,且变化上报)。然后联网模块的MCU可以确定当前接收到的运行数据上一次上报的时间,以及上一次上报的内容。若当前接收到的运行数据与上一次上报的内容相比没有发生变化,则暂不上报;若发生变化,则即刻上报该运行数据。
示例性地,为了尽可能地提高数据传输的有效性和易用性,尽可能地节约流量费用,本公开提供的一些实施例还可以更加精细地对运行数据进行划分,为各个类型的运行数据设置合适的上报规则,例如在运行数据变化的频率高低维度下,依照数据变化的频率除了可将运行数据被划分为高频数据和低频数据之外,还可以将运行数据划分为中频数据。高频数据是指会变化的频率介于高频数据和低频数据之间的数据。
以暖通设备的运行数据为例,在行数据变化频率的高低维度下,运行数据的分类规则如下:
室内机的传感器检测数据、室外机的传感器检测数据、暖通设备的运算数据可被划分为高频数据。
暖通设备的外设数据、暖通设备的状态参数可被划分为中频数据。
暖通设备的工程设置参数可被划分为低频数据。
基于此,运行数据除了被划分为高频且敏感的数据、高频且非敏感的数据、低频且敏感的数据及低频且非敏感的数据之外,还可被划分为中频且敏感的数据、中频且非敏感的数据。
续接图4,图5示例性示出了增加了中频数据后各个数据类型与上报规则的对应关系图。如图5所示,中频且敏感的数据对应的上报规则为:按照第四时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报(也即第四时间间隔上报,且变化上报)。其中,第四时间间隔大于第一时间间隔。例如但不限于,第四时间间隔为1小时。
中频且非敏感的数据对应的上报规则为:按照第五时间间隔上报。其中,第五时间间隔大于第二时间间隔,且小于第三时间间隔。例如但不限于,第五时间间隔为1小时。本公开提供的一些实施例中,第五时间间隔与第四时间间隔之间不存在必然的联系。第五时间间隔与第四时间间隔的大小可以相等,也可以不相等。
示例性地,为了尽可能地提高数据传输的有效性和易用性,尽可能地节约流量费用,本公开提供的一些实施例还可以更加精细地对运行数据进行划分,为各个类型的运行数据设置合适的上报规则,例如除了前述实施例中提到的M个划分维度包括:运行数据变化频率的高低及运行数据的敏感程度之外,还可以包括运行数据是否稳定这个维度。需要说明的是,运行数据是否稳定可以理解为运行数据的敏感程度这个维度的延伸,用于表明运行数据的数值是否处于安全范围内。例如,室外机的传感器检测数据及室内机的传感器检测数据原本在运行数据的敏感程度维度下被划分为敏感数据,那么在本公开提供的一些实施例中可进一步在运行数据是否稳定的维度下划分为稳定数据和不稳定数据。例如,对于某 一传感器的检测结果,如压力传感器检测到的压力值,若超过了预设报警阈值,则此时压力传感器检测到的压力值即为不稳定数据,若压力传感器检测到的压力值未超过预设报警阈值,则此时压力传感器检测到的压力值即为稳定数据。对于稳定数据和不稳定数据的上报规则,通常可设置为按照一定的频率(时间间隔)上报。具体地,稳定数据的上报频率可小于不稳定数据的上报频率。
在本公开提供的一些实施例中,结合了运行数据变化频率的高低、运行数据的敏感程度及运行数据是否稳定这三个维度之后,各个数据类型的上报规则也可结合前述三个维度分别对应的上报规则设定。
示例性地,在这三个维度下,运行数据可被划分为高频稳定且敏感的数据、高频稳定且非敏感的数据、低频稳定且敏感的数据、低频稳定且非敏感的数据、高频不稳定且敏感的数据、高频不稳定且非敏感的数据、低频不稳定且敏感的数据及低频不稳定且非敏感的数据。
以上在三个维度下被划分的各个类型的运行数据对应的上报规则示例性地如下:
高频稳定且敏感的数据:按照第六时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报。例如但不限于,第六时间间隔为10分钟。
高频稳定且非敏感的数据:按照第七时间间隔上报。例如但不限于,第七时间间隔为10分钟。本公开提供的一些实施例中,第七时间间隔与第六时间间隔之间不存在必然的联系。第七时间间隔与第六时间间隔的大小可以相等,也可以不相等。
低频稳定且敏感的数据:按照第八时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报。第八时间间隔大于第六时间间隔。例如但不限于,第八时间间隔为20分钟。
低频稳定且非敏感的数据:按照第九时间间隔上报。其中,第九时间间隔大于第六时间间隔,且大于第七时间间隔。例如但不限于,第九时间间隔为48小时。
高频不稳定且敏感的数据:按照第十时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报。第十时间间隔小于第六时间间隔。例如但不限于,第十时间间隔为5分钟。
高频不稳定且非敏感的数据:按照第十一时间间隔上报。例如但不限于,第十一时间间隔为5分钟。本公开提供的一些实施例中,第十一时间间隔与第十时间间隔之间不存在必然的联系。第十一时间间隔与第十时间间隔的大小可以相等,也可以不相等。第十一时间间隔小于第七时间间隔。
低频不稳定且敏感的数据:按照第十二时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报。第十二时间间隔大于第十一时间间隔,且第十二时间间隔小于第八时间间隔。例如但不限于,第十二时间间隔为10分钟。
低频不稳定且非敏感的数据:按照第十三时间间隔上报。其中,第十三时间间隔大于第十时间间隔,且大于第十一时间间隔。第十三时间间隔小于第九时间间隔。例如但不限于,第十三时间间隔为24小时。
示例性地,运行数据类型的划分可由用户人为定义输入至暖通设备中,并由用户人为定义各个数据类型对应的上报规则。
具体地,在上述S301之前,本公开一些实施例提供的数据传输方法还包括:接收外部输入的用于设置M个划分维度的第一设置指令,并接收外部输入的用于设置各个划分维度下的类型包含的运行数据的第二设置指令;
响应于第一设置指令及第二设置指令,确定每种运行数据的类型对应的运行数据,并接收每种类型的运行数据各自对应的上报规则。
具体地,用户可基于服务器120的用户接口设置运行数据的划分维度,以及每种运行 数据分别在各个维度下的划分结果。
示例性地,暖通设备的运行数据:室外机的传感器检测数据、室内机的传感器检测数据、暖通设备的运算数据、暖通设备的外设数据、暖通设备的状态参数及暖通设备的工程设置参数。用户可基于服务器120的用户接口设置运行数据的划分维度包括2个:运行数据变化频率的高低及运行数据的敏感程度(第一设置指令)。那么在运行数据变化频率的高低的划分下,运行数据可被分为高频数据和低频数据,用户可基于服务器120的用户接口将室内机的传感器检测数据、室外机的传感器检测数据、暖通设备的运算数据、暖通设备的外设数据、暖通设备的状态参数设置为高频数据,并将暖通设备的工程设置参数设置为低频数据(第二设置指令)。
在运行数据的敏感程度维度下,运行数据可被分为敏感数据和非敏感数据,用户可基于服务器120的用户接口将暖通设备的状态参数及暖通设备的工程设置参数设置为敏感数据,并将室内机的传感器检测数据、室外机的传感器检测数据、暖通设备的运算数据、暖通设备的外设数据设置为非敏感数据(第二设置指令)。
由此,暖通设备可确定各个维度下的划分结果,并结合各个维度下的划分结果,确定由各个维度综合决定的数据类型,如在运行数据变化频率的高低及运行数据的敏感程度综合决定的数据类型的划分如下:
高频且敏感的数据:暖通设备的状态参数;
高频且非敏感的数据:室内机的传感器检测数据、室外机的传感器检测数据、暖通设备的运算数据、暖通设备的外设数据;
低频且敏感的数据:暖通设备的工程设置参数设置;
低频且非敏感的数据:无。
在暖通设备确定由各个维度综合决定的数据类型之后,可通过服务器120的用户界面向用户展示最终的数据类型(例如以列表或表格的形式展示),用户可基于服务器120的用户界面中显示的包含各个数据类型的列表或表格设置各个数据类型各自对应的上报规则。
不限于上述列举的通过服务器120设置,在具体实现中,用户还可以基于与暖通设备110连接的移动终端(如手机、平板等)设置,本公开提供的一些实施例对此不作限定。
本公开提供的一些实施例可以通过用户自定义数据分类的维度以及各个维度下运行数据的划分类型,同时用户还可以自定义各个数据类型对应的上报规则,既能满足不同用户的需求,又能提高数据的有效性和易用性,同时节省数据流量,避免不必要的流量资源浪费。
在一些可能的实施例中,为了提高运行数据划分的智能性,减少用户的操作,提高运行数据划分的效率以及准确性,运行数据变化频率的高低的划分下,对于高频数据和低频数据的划分可由暖通设备自学习完成。
图6示例性示出了本公开一些实施例提供的另外一种数据传输方法的流程示意图。如图6所示,数据传输方法可包括以下几个步骤:
S601:若监听到运行数据变化的频率大于第一预设阈值,则确定运行数据为高频数据。
具体地,暖通设备的CPU可以获取到各个运行数据,并按照预设的时间间隔将各个运行数据发送给联网模块。可选地,运行数据变化的频率可由暖通设备的CPU监听。若CPU监听到某运行数据(例如室外机的温度传感器检测到的数据)变化的频率大于第一预设阈值,则CPU可确定该运行数据为高频数据。可选地,运行数据变化的频率可由联网模块的MCU监听。若MCU根据CPU发送的数据确定某运行数据的变化率大于第一预设阈值,则MCU可确定该运行数据为低频数据。其中,第一预设阈值例如但不限于为1次/30分钟。也就是说,若监听到运行数据变化的频率大于1次/30分钟,例如2次/30分钟,则确定运行数据为高频数据。
可以理解,某运行数据的变化的频率可能是变化的,例如在一段时间内变化的很慢,在另外一段时间内变化的很快,本公开提供的一些实施例中可以随着该运行数据变化的频率及时调整该数据的类型,这样可以保证数据分类的准确性,从而保证按照该类型的上报规则上报运行数据的有效性。在另外一些可能的实施例中,为了减小设备的运行负担,避免频繁计算数据的分类以及频繁切换某特定运行数据的上报规则,也可以在统计出某运行数据在一段时间内(例如1小时)的平均变化频率后再确定该运行数据的类型,本公开提供的一些实施例对此不作限定。
S602:若监听到运行数据变化的频率小于或等于第二预设阈值,则确定运行数据为低频数据。
具体地,若在运行数据变化频率的高低的划分维度下仅将数据划分为高频数据和低频数据,则第二预设阈值可以等于第一预设阈值,例如但不限于为1次/30分钟。也就是说,若监听到运行数据变化的频率小于或等于1次/30分钟,例如1次/60分钟、1次/2小时,则确定运行数据为低频数据。
若在运行数据变化频率的高低的划分维度下将数据划分为高频数据、中频数据和低频数据,则第二预设阈值可以小于第一预设阈值,此时,若运行数据变化的频率小于或等于第一预设阈值,且大于第二预设阈值,则确定该运行数据为中频数据。
S603:确定暖通设备的待上报的运行数据的类型。
具体地,以上通过暖通设备的自学习可以确定在运行数据变化频率的高低的划分维度下的划分结果,再结合用户外部输入的其他维度下的划分结果,暖通设备可确定待上报的运行数据的类型。确定的具体过程可参考S301中的相关描述,此处不再赘述。
S604:根据待上报的运行数据的类型确定对应的上报规则,并按照上报规则上报待上报的运行数据至服务器。
具体地,S604与S302一致,此处不再赘述。
本公开提供的一些实施例中,在运行数据变化频率的高低的划分下,对于高频数据和低频数据的划分可由暖通设备自学习完成,一方面提高运行数据划分的智能性,减少用户的操作,提高运行数据划分的效率以及准确性,另一方面又能提高数据的有效性和易用性,同时节省数据流量,避免不必要的流量资源浪费。
下面将结合图7,对本公开一些实施例提供的数据传输装置进行详细介绍。需要说明的是,图7中的数据传输装置应用于图1示出的控制设备,用于执行本公开涉及的图3-图6所示实施例的方法,为了便于说明,仅示出了与本公开提供的一些实施例相关的部分,具体技术细节未揭示的,请参照本公开涉及的图3-图6所示的实施例。
请参见图7,为本公开一些实施例提供了一种数据传输装置的结构示意图。
如图7所示,本公开提供的一些实施例的数据传输装置700可以包括:处理模块710及收发模块720。其中:
处理模块710,设置为确定暖通设备的待上报的运行数据的类型;其中,暖通设备的运行数据的类型由M个划分维度共同确定,在第m个划分维度下,运行数据被划分为Xm种类型,暖通设备的运行数据包括种类型,每种类型的运行数据对应不同的上报规则,M和Xm均为大于或等于2的正整数,m取值为1至M中的任意一个正整数;
收发模块720,设置为根据待上报的运行数据的类型确定对应的上报规则,并按照上报规则上报待上报的运行数据至服务器。
在一些可能的实施例中,所述M个划分维度包括:运行数据变化频率的高低及运行数据的敏感程度;其中,运行数据的敏感程度用于表征运行数据对暖通设备运行的重要性;
在运行数据变化的频率高低维度下,运行数据被划分为高频数据和低频数据;
在运行数据的敏感程度维度下,运行数据被划分为敏感数据和非敏感数据;
暖通设备的运行数据包括:高频且敏感的数据、高频且非敏感的数据、低频且敏感的数据及低频且非敏感的数据。
在一些可能的实施例中,高频且敏感的数据对应的上报规则为:按照第一时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报;
高频且非敏感的数据对应的上报规则为:按照第二时间间隔上报;
低频且敏感的数据对应的上报规则为:若检测到运行数据发生变化,即刻上报;
低频且非敏感的数据对应的上报规则为:按照第三时间间隔上报;
其中,第三时间间隔大于所述第一时间间隔,且大于第二时间间隔。
在一些可能的实施例中,在运行数据变化的频率高低维度下,运行数据还被划分为中频数据;
暖通设备的运行数据还包括:中频且敏感的数据、中频且非敏感的数据;
中频且敏感的数据对应的上报规则为:按照第四时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报;
中频且非敏感的数据对应的上报规则为:按照第五时间间隔上报;
其中,第四时间间隔大于第一时间间隔,第五时间间隔大于第二时间间隔,且小于第三时间间隔。
在一些可能的实施例中,处理模块710,还设置为:
若监听到运行数据变化的频率大于第一预设阈值,则确定运行数据为高频数据;
若监听到运行数据变化的频率小于或等于第二预设阈值,则确定运行数据为低频数据;
其中,第一预设阈值大于第二预设阈值。
在一些可能的实施例中,收发模块720,还设置为接收外部输入的用于设置M个划分维度的第一设置指令,并接收外部输入的用于设置各个划分维度下的类型包含的运行数据的第二设置指令;
处理模块710,还设置为响应于第一设置指令及第二设置指令,确定每种运行数据的类型对应的运行数据;
收发模块720还设置为:接收每种类型的运行数据各自对应的上报规则。
在一些可能的实施例中,暖通设备包括一个室外机及一个或多个室内机;
运行数据包括以下至少一项:室外机的传感器检测数据、室内机的传感器检测数据、暖通设备的运算数据、暖通设备的外设数据、暖通设备的状态参数、暖通设备的工程设置参数。
上述数据传输装置中各模块的划分仅用于举例说明,在其他实施例中,可将数据传输装置按照需要划分为不同的模块,以完成上述数据传输装置的全部或部分功能。本公开一些实施例中提供的数据传输装置中的各个模块的实现可为计算机程序的形式。该计算机程序可在终端或服务器上运行。该计算机程序构成的程序模块可存储在终端或服务器的存储器上。该计算机程序被处理器执行时,实现本公开提供的一些实施例中所描述的数据传输装置的全部或部分步骤。
请参阅图8,图8示出了本公开一些实施例提供的一种控制设备的结构示意图。
如图8所示,该控制设备800可以包括:至少一个处理器801、存储器802以及至少一个通信总线803。
其中,通信总线803可用于实现上述各个组件的连接通信。
其中,处理器801可以包括一个或者多个处理核心。处理器801利用各种接口和线路连接整个控制设备800内的各个部分,通过运行或执行存储在存储器802内的指令、程序、代码集或指令集,以及调用存储在存储器802内的数据,执行控制设备800的各种功能和处理数据。可选的,处理器801可以采用DSP、FPGA、PLA中的至少一种硬件形式来实现。处理器801可集成CPU、GPU和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示屏所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器801中,单独通过一块芯片进行实现。
其中,存储器802可以包括RAM,也可以包括ROM。可选的,该存储器802包括非瞬时性计算机可读介质。存储器802可用于存储指令、程序、代码、代码集或指令集。存储器802可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等;存储数据区可存储上面各个方法实施例中涉及到的数据等。存储器802可选的还可以是至少一个位于远离前述处理器801的存储装置。作为一种计算机存储介质的存储器802中可以包括操作系统、网络通信模块、用户接口模块以及应用程序。
具体地,处理器801可以用于调用存储器802中存储的应用程序,并具体执行以下操作:
确定暖通设备的待上报的运行数据的类型;其中,暖通设备的运行数据的类型由M个划分维度共同确定,在第m个划分维度下,运行数据被划分为Xm种类型,暖通设备的运行数据包括种类型,每种类型的运行数据对应不同的上报规则,M和Xm均为大于或等于2的正整数,m依次取值为1至M中的正整数;
根据待上报的运行数据的类型确定对应的上报规则,并按照上报规则上报待上报的运行数据至服务器。
在一些可能的实施例中,M个划分维度包括:运行数据变化频率的高低及运行数据的敏感程度;其中,运行数据的敏感程度用于表征运行数据对暖通设备运行的重要性;
在运行数据变化的频率高低维度下,运行数据被划分为高频数据和低频数据;
在运行数据的敏感程度维度下,运行数据被划分为敏感数据和非敏感数据;
暖通设备的运行数据包括:高频且敏感的数据、高频且非敏感的数据、低频且敏感的数据及低频且非敏感的数据。
在一些可能的实施例中,高频且敏感的数据对应的上报规则为:按照第一时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报;
高频且非敏感的数据对应的上报规则为:按照第二时间间隔上报;
低频且敏感的数据对应的上报规则为:若检测到运行数据发生变化,即刻上报;
低频且非敏感的数据对应的上报规则为:按照第三时间间隔上报;
其中,第三时间间隔大于第一时间间隔,且大于第二时间间隔。
在一些可能的实施例中,在运行数据变化的频率高低维度下,运行数据还被划分为中频数据;
暖通设备的运行数据还包括:中频且敏感的数据、中频且非敏感的数据;
中频且敏感的数据对应的上报规则为:按照第四时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报;
中频且非敏感的数据对应的上报规则为:按照第五时间间隔上报;
其中,第四时间间隔大于第一时间间隔,第五时间间隔大于第二时间间隔,且小于第三时间间隔。
在一些可能的实施例中,处理器801在确定暖通设备的待上报的运行数据的类型之前,还用于执行:
若监听到运行数据变化的频率大于第一预设阈值,则确定运行数据为高频数据;
若监听到运行数据变化的频率小于或等于第二预设阈值,则确定运行数据为低频数据;
其中,第一预设阈值大于第二预设阈值。
在一些可能的实施例中,处理器801在根据待上报的运行数据的类型确定对应的上报规则之前,还用于执行:
接收外部输入的用于设置M个划分维度的第一设置指令,并接收外部输入的用于设置各个划分维度下的类型包含的运行数据的第二设置指令;
响应于第一设置指令及第二设置指令,确定每种运行数据的类型对应的运行数据,并接收每种类型的运行数据各自对应的上报规则。
在一些可能的实施例中,暖通设备包括一个室外机及一个或多个室内机;
运行数据包括以下至少一项:室外机的传感器检测数据、室内机的传感器检测数据、暖通设备的运算数据、暖通设备的外设数据、暖通设备的状态参数、暖通设备的工程设置参数。
图9示例性示出了本公开一些实施例提供的一种暖通设备。如图9所示,暖通设备900可包括图8示出的控制设备800。
本公开一些实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述图3至图6所示实施例中的一个或多个步骤。上述暖通设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本公开提供的一些实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字多功能光盘(Digital Versatile Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可存储程序代码的介质。在不冲突的情况下,本实施例和实施方案中的技术特征可以任意组合。
以上所述的实施例仅仅是本公开提供的优选实施例方式进行描述,并非对本公开的范围进行限定,在不脱离本公开的设计精神的前提下,本领域普通技术人员对本公开的技术 方案作出的各种变形及改进,均应落入本公开的权利要求书确定的保护范围内。

Claims (11)

  1. 一种数据传输方法,所述方法应用于控制设备,所述控制设备用于控制暖通设备,所述方法包括:
    确定所述暖通设备的待上报的运行数据的类型;其中,所述暖通设备的运行数据的类型由M个划分维度共同确定,在第m个所述划分维度下,所述运行数据被划分为Xm种类型,所述暖通设备的运行数据包括种类型,每种类型的运行数据对应不同的上报规则,M和Xm均为大于或等于2的正整数,m依次取值为1至M中的正整数;
    根据所述待上报的运行数据的类型确定对应的上报规则,并按照所述上报规则上报所述待上报的运行数据至服务器。
  2. 如权利要求1所述的方法,其中,所述M个划分维度包括:运行数据变化频率的高低及运行数据的敏感程度;其中,所述运行数据的敏感程度用于表征所述运行数据对所述暖通设备运行的重要性;
    在所述运行数据变化的频率高低维度下,所述运行数据被划分为高频数据和低频数据;
    在所述运行数据的敏感程度维度下,所述运行数据被划分为敏感数据和非敏感数据;
    所述暖通设备的运行数据包括:高频且敏感的数据、高频且非敏感的数据、低频且敏感的数据及低频且非敏感的数据。
  3. 如权利要求2所述的方法,其中,所述高频且敏感的数据对应的上报规则为:按照第一时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报;
    所述高频且非敏感的数据对应的上报规则为:按照第二时间间隔上报;
    所述低频且敏感的数据对应的上报规则为:若检测到运行数据发生变化,即刻上报;
    所述低频且非敏感的数据对应的上报规则为:按照第三时间间隔上报;
    其中,所述第三时间间隔大于所述第一时间间隔,且大于所述第二时间间隔。
  4. 如权利要求3所述的方法,其中,在所述运行数据变化的频率高低维度下,所述运行数据还被划分为中频数据;
    所述暖通设备的运行数据还包括:中频且敏感的数据、中频且非敏感的数据;
    所述中频且敏感的数据对应的上报规则为:按照第四时间间隔上报,且在相邻两次上报期间若检测到运行数据发生变化,即刻上报;
    所述中频且非敏感的数据对应的上报规则为:按照第五时间间隔上报;
    其中,所述第四时间间隔大于所述第一时间间隔,所述第五时间间隔大于所述第二时间间隔,且小于所述第三时间间隔。
  5. 如权利要求2-4任一项所述的方法,其中,所述确定暖通设备的待上报的运行数据的类型之前,所述方法还包括:
    若监听到运行数据变化的频率大于第一预设阈值,则确定所述运行数据为所述高频数据;
    若监听到运行数据变化的频率小于或等于第二预设阈值,则确定所述运行数据为所述低频数据;
    其中,所述第一预设阈值大于所述第二预设阈值。
  6. 如权利要求1所述的方法,其中,所述根据所述待上报的运行数据的类型确定对应的上报规则之前,所述方法还包括:
    接收外部输入的用于设置M个划分维度的第一设置指令,并接收外部输入的用于设置各个划分维度下的类型包含的运行数据的第二设置指令;
    响应于所述第一设置指令及所述第二设置指令,确定每种运行数据的类型对应的运行数据,并接收每种类型的运行数据各自对应的上报规则。
  7. 如权利要求1所述的方法,其中,所述暖通设备包括一个室外机及一个或多个室内机;
    所述运行数据包括以下至少一项:所述室外机的传感器检测数据、所述室内机的传感器检测数据、所述暖通设备的运算数据、所述暖通设备的外设数据、所述暖通设备的状态参数、所述暖通设备的工程设置参数。
  8. 一种数据传输装置,所述数据传输装置应用于控制设备,所述控制设备用于控制暖通设备,所述装置包括:
    处理模块,设置为确定所述暖通设备的待上报的运行数据的类型;其中,所述暖通设备的运行数据的类型由M个划分维度共同确定,在第m个所述划分维度下,所述运行数据被划分为Xm种类型,所述暖通设备的运行数据包括种类型,每种类型的运行数据对应不同的上报规则,M和Xm均为大于或等于2的正整数,m取值为1至M中的任意一个正整数;
    收发模块,设置为根据所述待上报的运行数据的类型确定对应的上报规则,并按照所述上报规则上报所述待上报的运行数据至服务器。
  9. 一种计算机存储介质,所述计算机存储介质存储有多条指令,所述指令适于由处理器加载并执行如权利要求1至7任意一项所述方法的步骤。
  10. 一种控制设备,包括:处理器和存储器;其中,所述存储器存储有计算机程序,所述计算机程序适于由所述处理器加载并执行如权利要求1至7任意一项所述方法的步骤。
  11. 一种暖通设备,包括如权利要求10所述的控制设备。
PCT/CN2023/106688 2022-07-25 2023-07-11 数据传输方法、装置、控制设备、暖通设备及存储介质 WO2024022100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210877810.X 2022-07-25
CN202210877810.XA CN117499421A (zh) 2022-07-25 2022-07-25 数据传输方法、装置、控制设备、空调设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024022100A1 true WO2024022100A1 (zh) 2024-02-01

Family

ID=89669556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106688 WO2024022100A1 (zh) 2022-07-25 2023-07-11 数据传输方法、装置、控制设备、暖通设备及存储介质

Country Status (2)

Country Link
CN (1) CN117499421A (zh)
WO (1) WO2024022100A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119149474A (zh) * 2024-11-18 2024-12-17 北京东方融创信息技术有限公司 一种基于多操作系统的通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121276A (ja) * 2003-10-15 2005-05-12 Toshiba Kyaria Kk 空調機データ提供システムおよび空調機データ提供方法
CN108093439A (zh) * 2017-10-30 2018-05-29 努比亚技术有限公司 用户行为数据上报控制方法、终端及计算机可读存储介质
CN113091228A (zh) * 2021-04-26 2021-07-09 广东美的暖通设备有限公司 一种空调机组数据的上传频率控制方法、装置及空调系统
CN114157523A (zh) * 2021-11-24 2022-03-08 珠海格力电器股份有限公司 数据上报方法、装置、智能家居设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121276A (ja) * 2003-10-15 2005-05-12 Toshiba Kyaria Kk 空調機データ提供システムおよび空調機データ提供方法
CN108093439A (zh) * 2017-10-30 2018-05-29 努比亚技术有限公司 用户行为数据上报控制方法、终端及计算机可读存储介质
CN113091228A (zh) * 2021-04-26 2021-07-09 广东美的暖通设备有限公司 一种空调机组数据的上传频率控制方法、装置及空调系统
CN114157523A (zh) * 2021-11-24 2022-03-08 珠海格力电器股份有限公司 数据上报方法、装置、智能家居设备及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119149474A (zh) * 2024-11-18 2024-12-17 北京东方融创信息技术有限公司 一种基于多操作系统的通信方法

Also Published As

Publication number Publication date
CN117499421A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
KR100638029B1 (ko) 네트워크의 디바이스
US11314308B2 (en) Control method for mobile terminal and controlled device, apparatus and system
CN106487928B (zh) 消息推送方法及装置
CN104936312B (zh) 具有数据预处理及设备管理功能的物联网智能节点的工作方法
CN113341743A (zh) 智能家居设备控制方法、装置、电子设备及存储介质
WO2022233123A1 (zh) 用于空调控制的方法、装置和空调
WO2024022100A1 (zh) 数据传输方法、装置、控制设备、暖通设备及存储介质
CN112202654B (zh) 控制指令处理方法、装置、设备及存储介质
CN112037785B (zh) 智能设备的控制方法、装置、电子设备及存储介质
WO2016197824A1 (zh) 一种语音指令处理方法、装置及智能网关
CN114007235A (zh) 场景规则写入方法、装置、存储介质、处理器及电子设备
WO2016192579A1 (zh) 一种信息处理方法、云服务平台及信息处理系统
CN111491284A (zh) 蓝牙ble时延优化方法、设备和存储介质
CN113986349A (zh) 数据处理方法、装置、计算机可读存储介质和计算机设备
CN107682535B (zh) 基于智能手机平台远程控制计算机的方法
US20200169919A1 (en) Data reduction in a system
WO2022242265A1 (zh) 用于控制空调显示温度的方法、装置和空调
CN104808601A (zh) 智能家庭控制服务器
CN112770358B (zh) 基于业务数据的多速率模式数据发送控制方法及装置
WO2024066473A1 (zh) 空调器内部通信控制方法、空调器及计算机可读存储介质
CN115200178B (zh) 一种楼宇终端设备控制方法和装置、电子设备及存储介质
CN114679899B (zh) 机房空调自适应节能控制方法及装置、介质及设备
CN115755737A (zh) 单晶炉系统控制方法、装置、计算机设备和存储介质
CN112416618A (zh) 应用层数据的传输方法及装置、存储介质、电子装置
CN114396700B (zh) 空调器的控制方法、装置、电子设备及储存介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845313

Country of ref document: EP

Kind code of ref document: A1