WO2024066473A1 - 空调器内部通信控制方法、空调器及计算机可读存储介质 - Google Patents

空调器内部通信控制方法、空调器及计算机可读存储介质 Download PDF

Info

Publication number
WO2024066473A1
WO2024066473A1 PCT/CN2023/099496 CN2023099496W WO2024066473A1 WO 2024066473 A1 WO2024066473 A1 WO 2024066473A1 CN 2023099496 W CN2023099496 W CN 2023099496W WO 2024066473 A1 WO2024066473 A1 WO 2024066473A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
interference value
current interference
communication control
determined
Prior art date
Application number
PCT/CN2023/099496
Other languages
English (en)
French (fr)
Inventor
霍伟明
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2024066473A1 publication Critical patent/WO2024066473A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content

Definitions

  • the present application relates to the technical field of air conditioning, and in particular to an internal communication control method of an air conditioner, an air conditioner and a computer-readable storage medium.
  • the wire controller in the air conditioning system often refers to the controller that controls the start and stop, mode, temperature, wind speed and other adjustments of the central air conditioning switch. Its characteristic is that it is connected to the indoor unit of the air conditioner through a wired way.
  • the interactive signals between the two are often subject to electromagnetic interference from the environment where the air conditioner is located. For example, when the compressor and the motor are running, they will cause different degrees of electromagnetic interference to the process of the wire controller controlling and adjusting the indoor unit, thereby affecting the wire controller receiving signals from the indoor unit and sending signals to the indoor unit, which can easily lead to abnormal control of the indoor unit by the wire controller, thereby reducing the user experience of the air conditioner.
  • the main purpose of the present application is to provide an air conditioner internal communication control method, an air conditioner and a computer-readable storage medium, aiming to solve the technical problem that electromagnetic interference in the environment where the air conditioner is located can easily lead to abnormal control of the indoor unit by the wire controller.
  • the present application provides an air conditioner internal communication control method, the air conditioner internal communication control method comprising the following steps:
  • the determined target communication frequency is used as the data communication frequency between the air conditioner and the wire controller.
  • the step of determining the current interference value of the air conditioner comprises:
  • the current interference value of the air conditioner is obtained by calculation or table lookup.
  • the step of determining the target communication frequency corresponding to the current interference value according to the determined current interference value includes:
  • a target communication frequency corresponding to the target interference level is determined.
  • the step of determining the current interference value of the air conditioner comprises:
  • the current interference value of the air conditioner is determined at intervals of a preset duration; or,
  • the current interference value of the air conditioner is determined.
  • the step before the step of determining the target communication frequency corresponding to the current interference value according to the determined current interference value, the step further includes:
  • the step of determining the target communication frequency corresponding to the current interference value according to the determined current interference value is performed.
  • the method before the step of determining the target communication frequency corresponding to the current interference value according to the determined current interference value, the method further includes:
  • the step of determining the target communication frequency corresponding to the current interference value according to the determined current interference value is executed.
  • the air conditioner internal communication control method further includes:
  • a communication integrity verification mechanism corresponding to the current interference value is determined.
  • the method further includes:
  • the target communication frequency is used as the communication frequency between other air conditioner indoor units connected to the same air conditioner outdoor unit and the wire controller.
  • the present application also provides an air conditioner internal communication control device, the air conditioner internal communication control device comprising:
  • An interference identification module used to determine the current interference value of the air conditioner during the operation of the air conditioner
  • the communication adjustment module is used to determine the target communication frequency corresponding to the current interference value according to the determined current interference value; and use the determined target communication frequency as the data communication frequency between the air conditioner and the wire controller.
  • the present application also provides an air conditioner, including a processor, a memory, and an air conditioner internal communication control program stored in the memory and executable by the processor, wherein when the air conditioner internal communication control program is executed by the processor, the steps of the air conditioner internal communication control method as described above are implemented.
  • the present application also provides a computer-readable storage medium, on which an air conditioner internal communication control program is stored, wherein when the air conditioner internal communication control program is executed by a processor, the steps of the air conditioner internal communication control method as described above are implemented.
  • the air conditioner internal communication control method in the technical solution of the present application comprises the following steps: during the operation of the air conditioner, determining the current interference value of the air conditioner; according to the determined current interference value, determining the target communication frequency corresponding to the current interference value; and using the determined target communication frequency as the data communication frequency between the air conditioner and the wire controller.
  • the present application solves the technical problem that the wire controller easily causes abnormal control of the indoor unit due to electromagnetic interference in the environment where the air conditioner is located.
  • the present application mainly determines the current interference value of the environment in which the air conditioner is located during the operation of the air conditioner, and determines the target communication frequency between the air conditioner and the wire controller according to the current interference value, so that the air conditioner can dynamically adjust the data communication frequency between the air conditioner and the wire controller in different electromagnetic interference environments to resist electromagnetic interference, and prevent the abnormal control of the air conditioner by the wire controller or the central control panel caused by electromagnetic interference. That is, it ensures that various input and output operating signals of the wire controller or the central control panel are not interfered with, so that the air conditioner can operate normally and as expected under the control of the wire controller or the central control panel, thereby ensuring the comfort of the indoor environment and improving the user experience. At the same time, it also avoids damage to the air conditioner caused by abnormal control of the air conditioner by the wire controller or the central control panel.
  • FIG1 is a schematic diagram of the structure of the hardware operating environment of the air conditioner involved in the embodiment of the present application.
  • FIG2 is a flow chart of a first embodiment of the internal communication control method of an air conditioner of the present application
  • FIG3 is a detailed flow chart of step S10 of the first embodiment of the air conditioner internal communication control method of the present application.
  • FIG4 is a detailed flow chart of step S20 of the first embodiment of the air conditioner internal communication control method of the present application.
  • FIG5 is a flow chart of a second embodiment of the air conditioner internal communication control method of the present application.
  • FIG6 is an overall application flow chart of an embodiment of an internal communication control method of an air conditioner of the present application.
  • FIG. 7 is a schematic diagram of a multi-terminal connection relationship of an air conditioner involved in the air conditioner internal communication control method of the present application.
  • FIG. 8 is a schematic diagram of the framework structure of the internal communication control device of the air conditioner of the present application.
  • This application mainly determines the electromagnetic interference status of the environment where the air conditioner is located accurately, and then in order to prevent the electromagnetic interference from affecting the wire controller or the central control panel in the future, the target communication frequency (communication density) between the corresponding air conditioner (indoor unit or outdoor unit) and the wire controller is determined according to different interference values, and finally the current communication frequency is updated to the determined target communication frequency, so that the air conditioner and the wire controller can exchange data based on the target communication frequency. Since different communication frequencies have different degrees of communication (communication) integrity verification mechanisms, this application can have a more powerful and complete integrity verification mechanism when the air conditioner encounters strong electromagnetic interference, so that the wire controller or the central control panel can control the air conditioner more stably and accurately.
  • the core of this application is to dynamically adjust the communication density and the integrity verification mechanism of the communication according to the prediction of air conditioning interference and the user interaction experience, so that the function can be guaranteed when the interference is large and the interactive experience can be guaranteed when the interference is small, so as to avoid the abnormal control of the indoor unit by the wire controller, resulting in the indoor environment not meeting customer expectations or even causing damage to the air conditioner.
  • An embodiment of the present application provides an air conditioner.
  • FIG. 1 is a schematic diagram of the structure of the hardware operating environment of the air conditioner involved in the embodiment of the present application.
  • the air conditioner may include: a processor 1001, such as a CPU, a network interface 1004, a user interface 1003, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display (Display), an input unit such as a control panel, and the user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a WIFI interface).
  • the memory 1005 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • the memory 1005 as a computer storage medium may include an air conditioner internal communication control program.
  • FIG. 1 does not constitute a limitation on the device, and may include more or fewer components than shown, or a combination of certain components, or a different arrangement of components.
  • the memory 1005 as a computer-readable storage medium in FIG. 1 may include an operating system, a user interface module, a network communication module, and an air conditioner internal communication control program.
  • the network communication module is mainly used to connect to the server and perform data communication with the server; and the processor 1001 can call the air conditioner internal communication control program stored in the memory 1005 and execute the steps in the following embodiments.
  • An embodiment of the present application provides an internal communication control method for an air conditioner.
  • FIG. 2 is a flow chart of a first embodiment of the air conditioner internal communication control method of the present application; in the first embodiment of the present application, the air conditioner internal communication control method includes the following steps:
  • Step S10 during the operation of the air conditioner, determining the current interference value of the air conditioner
  • the air conditioner internal communication control method in this implementation is applied to a wire controller or a central control panel, wherein the wire controller refers to a control terminal that has the ability to control the air conditioner at home, and is characterized by being connected to the air conditioner internal unit by wire.
  • the wired connection method can be a two-core non-polarity, 485, and other air conditioner control terminal.
  • Another feature of the wire controller is that the wire controller is equipped with an operating system, a touch screen, a voice recognition module, and other features, wherein the touch screen includes but is not limited to an LCD (Liquid Crystal Display) display and an OLED (Organic Light-Emitting Diode) display.
  • the central control panel refers to a control terminal that has the ability to control the wire controller and also has the ability to manage, control, and display the status of home smart devices. It also has the wire controller type wired method to connect to the air conditioner. It is also equipped with an operating system, and also includes features such as a touch screen and a voice recognition module.
  • the central control panel has all the functions of a wired controller, it can also be regarded as a wired controller.
  • wired controller is used to refer to the wired controller and central control panel in the general sense mentioned above.
  • the wire controller in the air conditioner As for the specific connection relationship of the wire controller in the air conditioner, it is mainly connected to the indoor unit of the air conditioner for communication.
  • FIG7 is a schematic diagram of the multi-terminal connection relationship of the air conditioner involved in the internal communication control method of the air conditioner of the present application.
  • the outdoor unit of the air conditioner is connected to the indoor unit of the air conditioner for communication
  • the wire controller is connected to the indoor unit of the air conditioner for communication.
  • the wire controller can also be set to communicate with the outdoor unit so that the user can directly monitor or control the operation of the outdoor unit indoors, which is not limited here.
  • the causes of the electromagnetic interference are various, such as the interference generated by various motors including various fans in the air conditioner during operation, the electromagnetic interference generated by the operation of the compressor, and the electromagnetic interference generated by the operation of other equipment in the air conditioner.
  • the interference caused by the operation of the air conditioner itself to the wire controller it also includes the electromagnetic interference generated by the operation of other adjacent or similar air conditioners. For example, if the air conditioner set 2 in Figure 7 is set adjacent to the set 1, then electromagnetic interference will be generated between them.
  • the wire controller's reception of various operating data signals from the air conditioner's indoor unit (it can also be the air conditioner's outdoor unit, only the air conditioner's indoor unit is used for explanation here) and various control signals output to the air conditioner's indoor unit.
  • the wire controller's control of the air conditioner's indoor unit is interfered, resulting in abnormal control of the air conditioner by the wire controller.
  • How to determine the current interference value of the air conditioner can be determined by looking up a table or calculating according to various operating parameters of the air conditioner.
  • the operating parameters here include but are not limited to: set temperature, set wind speed, operation mode (cooling, heating, fresh air, defrosting, energy saving, etc.), indoor fan gear or speed, outdoor fan gear or speed, air outlet temperature, indoor temperature, indoor humidity, outdoor heat exchanger temperature, indoor heat exchanger temperature, compressor temperature, compressor frequency, etc.
  • step S10 includes:
  • Step S11 obtaining current preset operating parameters during the operation of the air conditioner
  • Step S12 according to the acquired preset operating parameters, calculate or look up the table to obtain the current interference value of the air conditioner.
  • the preset operating parameters may be the above-mentioned operating condition parameters, and the preset operating parameters may be divided into two categories: user-set parameters and air conditioner self-adjusting parameters.
  • the user-set parameters may include operating parameters such as set temperature, set wind speed, and operating mode
  • the air conditioner self-adjusting parameters may include operating parameters such as indoor fan gear or speed, outdoor fan gear or speed, outlet temperature, indoor temperature, indoor humidity, outdoor heat exchanger temperature, indoor heat exchanger temperature, compressor temperature, and compressor frequency.
  • the difference between the user-set parameters and the air conditioner self-adjusting parameters lies in whether the operating parameters are parameters set by the user or operating condition parameters required for the air conditioner to perform adaptive adjustment.
  • the current interference value of the air conditioner can be calculated by using one or more parameters of these preset operating parameters.
  • the preset operating parameters can be input into the preset interference calculation function to accurately obtain the current interference value.
  • the current interference value can also be obtained by looking up the table by determining the mapping relationship between one or more preset operating parameters and the current interference value. It should be noted that both the function required for calculation and the table required for query are determined on the basis of a large number of experiments.
  • the corresponding target mapping table can be determined according to the parameter type of the preset operating parameters (user-set parameters and air conditioner self-adjustment parameters), and then the current interference value of the air conditioner can be determined by looking up the table according to different target mapping tables, so as to specifically distinguish different types of operating parameters and determine different current interference values, so as to make different treatments according to whether there is a user operating the wire controller to set each user-set parameter, so as to meet the communication frequency control in different scenarios and reduce unnecessary troubles to users.
  • the step S12 calculating and obtaining the current interference value of the air conditioner according to the acquired preset operating parameters, includes:
  • Step a detecting an input signal input into the wire controller corresponding to the preset operating parameter, and determining an actual signal amplitude of the input signal and a predicted signal amplitude corresponding to the preset operating parameter;
  • Step b calculating the difference between the actual signal amplitude and the predicted signal amplitude to determine the current interference value of the air conditioner.
  • the input signal input into the wire controller varies with the various operating parameters of the air conditioner, and the operating parameters here include not only the number of operating parameters, but also the specific working condition values of the operating parameters.
  • Detecting the input signal into the wire controller corresponding to the preset operating parameters is to detect the signal actually input into the wire controller, determine the actual signal amplitude of the input signal, and also need to determine the predicted signal amplitude corresponding to the preset operating parameters.
  • the predicted signal amplitude corresponding to the preset operating parameters refers to the signal amplitude of the input signal corresponding to the preset operating parameters in an environment without electromagnetic interference, which can also be considered as the theoretical signal amplitude of the theoretical input signal.
  • the actual signal amplitude is greater than the predicted signal amplitude.
  • the difference between the actual signal amplitude and the predicted signal amplitude is obtained by subtracting the predicted signal amplitude. This difference can be used as the current interference value of the air conditioner to more accurately and reliably reflect the impact of electromagnetic interference on the wire controller.
  • the larger the difference the larger the actual signal amplitude is compared to the predicted signal amplitude, which essentially reflects the greater the degree of electromagnetic interference.
  • the step S10 includes:
  • Step c during the operation of the air conditioner, determining the current interference value of the air conditioner at intervals of a preset time; or,
  • Step d during the operation of the air conditioner, when a parameter setting operation is received or the working state of the air conditioner changes, the current interference value of the air conditioner is determined.
  • the current interference value of the air conditioner can be obtained and determined by the air conditioner in real time, or the current interference value of the air conditioner can be determined at preset intervals, so that the electromagnetic interference status of the environment where the air conditioner is located can be grasped in a timely manner.
  • the preset time can be set according to actual needs, such as 1 minute, 2 minutes, etc., and there is no limitation here.
  • the current interference value of the air conditioner can be obtained and determined, or when the working state of the air conditioner changes, the current interference value of the air conditioner can be obtained and determined.
  • the working state of the air conditioner changes when the change amount of any preset operating parameter is greater than the corresponding preset change threshold, and it can be considered that the working state has changed.
  • the cooling temperature is 27°C at the beginning and then changes to 22°C.
  • the preset change threshold is 4°C, then it is considered that the working state has changed.
  • the change in the working state of the air conditioner can also be understood as a change in the operating mode, such as the conversion of the fresh air mode to the cooling mode.
  • the electromagnetic interference of the air conditioner usually changes when various working conditions change through the parameter setting operation or the working state of the air conditioner, it is only when the working condition changes that the current interference value of the air conditioner is determined to save energy, and the current interference value is determined in time when the working condition changes so as to make corresponding communication frequency processing.
  • Step S20 determining a target communication frequency corresponding to the current interference value according to the determined current interference value
  • the target communication frequency can be directly determined according to the corresponding relationship between the interference value and the communication frequency, or the target interference level corresponding to the current interference value can be determined first, and then the target communication frequency corresponding to the current interference value can be determined according to the target interference level.
  • the communication frequency refers to the number of communications per second between the wire controller and the indoor unit of the air conditioner.
  • step S20 includes:
  • Step S21 determining a target interference level where the current interference value is located according to a preset interference level
  • Step S22 determining a target communication frequency corresponding to the target interference level.
  • the target interference level corresponding to the current interference value can be determined. For example, if the current interference value is 40, then the target interference level is P2.
  • Different interference levels also correspond to different communication frequencies.
  • the interference value can be proportional to the interference level, and the interference level is inversely proportional to the communication frequency. That is to say, the larger the current interference value and the higher the interference level, the smaller the corresponding target communication frequency between the wire controller and the air conditioner room.
  • the communication frequency between the wire controller and the air conditioner room is reduced, thereby ensuring that the wire controller has enough time to perform enhanced communication integrity verification to ensure that the actual operating conditions of the air conditioner can be obtained according to the input and output signals and the air conditioner can be accurately controlled to operate as expected.
  • one purpose is to save air-conditioning system resources, and the other is to prevent the instability of the communication frequency caused by slight changes in the interference value from causing unnecessary trouble to the user and affecting the user's use of the air conditioner.
  • the method before step S20, the method further includes:
  • Step e determining whether the determined current interference value has changed from the interference value determined last time
  • Step f if a change occurs, execute the step of determining the target communication frequency corresponding to the current interference value based on the determined current interference value.
  • the target communication frequency Before determining the target communication frequency, it is possible to first determine whether the current interference value has changed from the interference value determined last time. Only when the current interference value changes will the target communication frequency be further determined and the wire controller and the air conditioner room will perform data exchange transmission according to the target communication frequency, so as to avoid the air conditioning system constantly updating the same target communication frequency according to the original interference value, thereby increasing the load of the air conditioning system. More importantly, if the current interference value has not changed, it is only necessary to communicate according to the original target communication frequency, and there is no need to proceed to the next step. However, if the current interference value changes, it is necessary to proceed to the next steps S20 and S30, so that the new target communication frequency can be re-determined to achieve dynamic adjustment of the communication frequency.
  • Step S30 using the determined target communication frequency as the data communication frequency between the air conditioner and the wire controller.
  • the original data communication frequency between the air conditioner and the wire controller is updated to the target communication frequency and stored in the internal memory of the wire controller. Thereafter, unless the current interference value changes, data interactive communication can be performed according to the current target communication frequency.
  • the present application mainly determines the current interference value of the environment in which the air conditioner is located during the operation of the air conditioner, and determines the target communication frequency between the air conditioner and the wire controller according to the current interference value, so that the air conditioner can dynamically adjust the communication frequency between the air conditioner and the wire controller in different electromagnetic interference environments to resist electromagnetic interference, and prevent abnormal control of the air conditioner by the wire controller or the central control panel caused by electromagnetic interference. That is, it ensures that various input and output operating signals of the wire controller or the central control panel are not interfered with, so that the air conditioner can operate normally and as expected under the control of the wire controller or the central control panel, thereby ensuring the comfort of the indoor environment and improving the user experience. At the same time, it also avoids damage to the air conditioner caused by abnormal control of the air conditioner by the wire controller or the central control panel.
  • Figure 5 is a flow chart of the second embodiment of the air conditioner internal communication control method of the present application. Further, based on the above-mentioned embodiments of the air conditioner internal communication control method of the present application, a second embodiment of the air conditioner internal communication control method of the present application is proposed. Before step S20, the method further includes:
  • Step S100 when a parameter setting operation is detected, determining whether the determined current interference value is greater than a preset threshold
  • Step S200 If the value is greater than a preset threshold, a prompt message indicating that communication control is required is generated;
  • Step S300 when receiving confirmation to perform communication control, executing the step of determining the target communication frequency corresponding to the current interference value according to the determined current interference value.
  • a parameter setting operation that is, when the user is using the wire controller to operate, it is necessary to determine whether the current interference value is greater than or equal to a preset threshold value, wherein the preset threshold value can be set according to actual needs, such as the maximum interference value corresponding to the highest interference level in the preset interference level.
  • a prompt message for communication control can be generated and the wire controller can be used to remind the user through a display or voice prompt that the air conditioner needs to control the communication between the wire controller and the indoor unit of the air conditioner due to electromagnetic interference (the communication frequency is reduced), and the user is left to choose whether to agree, so as to prevent the user from reducing the communication frequency without knowing it and causing a bad experience for the user.
  • the steps of determining the target communication frequency in the above embodiments can be executed to ensure that the wire controller can control the air conditioner normally. If the user does not agree to communication control, the current communication frequency can also be adjusted without adjustment.
  • the air conditioner internal communication control method further includes:
  • Step g determining a communication integrity verification mechanism corresponding to the current interference value according to the determined current interference value.
  • the communication integrity verification mechanism is positively correlated with the current interference value, that is, the larger the current interference value, the greater the electromagnetic interference, and the stronger the communication integrity verification mechanism will be, thereby ensuring that the wire controller does not lose the input data signal and avoids the influence of electromagnetic interference signals, thereby ensuring the communication quality.
  • the communication frequency is reduced in the presence of electromagnetic interference, the communication integrity verification mechanism is added at the same time, so the communication quality can be guaranteed to a greater extent.
  • step S20 the method further includes:
  • the target communication frequency is used as the communication frequency between other air conditioner indoor units connected to the same air conditioner outdoor unit and the wire controller.
  • each air conditioner indoor unit has a corresponding wire controller, so only one wire controller is needed to determine the target communication frequency, and send the determined target communication frequency to the air conditioner outdoor unit, and then send it to other wire controllers connected to the same air conditioner outdoor unit through the air conditioner outdoor unit, and use it as the communication frequency between other air conditioner indoor units and the wire controller. This greatly saves the computing resources of the air conditioner and improves the efficiency of dynamic updating of the target communication frequency.
  • each outdoor unit can be connected to multiple indoor units. There will also be mutual interference between the multiple sets of units.
  • the air conditioner internal communication control method further includes:
  • the communication frequency adjustment signal is sent to other air conditioners through the cloud or the local area network, so that the other air conditioners execute each step from step S10 to step S30.
  • Kit 2 can be notified through the cloud or local area network to make corresponding communication adjustments.
  • the adjustment steps are consistent with the above embodiments and will not be repeated here.
  • the wired controller detects whether the user is operating or about to operate the operation panel
  • the corresponding communication density (communication frequency) M is adjusted to M3;
  • the corresponding communication density (communication frequency) M is adjusted to M2;
  • the corresponding communication density (communication frequency) M is adjusted to M1;
  • P>P3 the user is prompted to enter the protection mode of communication density adjustment and wait for the user's confirmation or rejection instruction.
  • the present application also provides an air conditioner internal communication control device. Please refer to FIG. 8 .
  • the air conditioner internal communication control device includes:
  • the interference identification module A10 is used to determine the current interference value of the air conditioner during the operation of the air conditioner;
  • the communication adjustment module A20 is used to determine the target communication frequency corresponding to the current interference value according to the determined current interference value; and use the determined target communication frequency as the data communication frequency between the air conditioner and the wire controller.
  • the interference identification module A10 is further used for:
  • the current interference value of the air conditioner is obtained by calculation or table lookup.
  • the communication adjustment module A20 is further used for:
  • a target communication frequency corresponding to the target interference level is determined.
  • the interference identification module A10 is further used for:
  • the current interference value of the air conditioner is determined at intervals of a preset duration; or,
  • the current interference value of the air conditioner is determined.
  • the interference identification module A10 is further used for:
  • the step of determining the target communication frequency corresponding to the current interference value according to the determined current interference value is performed.
  • the interference identification module A10 is further used for:
  • the step of determining the target communication frequency corresponding to the current interference value according to the determined current interference value is executed.
  • the communication adjustment module A20 is further used for:
  • a communication integrity verification mechanism corresponding to the current interference value is determined.
  • the communication adjustment module A20 is further used for:
  • the target communication frequency is used as the communication frequency between other air conditioner indoor units connected to the same air conditioner outdoor unit and the wire controller.
  • the specific implementation of the air conditioner internal communication control device of the present application is basically the same as the various embodiments of the air conditioner internal communication control method described above, and will not be repeated here.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium of the present application stores an air conditioner internal communication control program, wherein when the air conditioner internal communication control program is executed by a processor, the steps of the air conditioner internal communication control method as described above are implemented.
  • the method implemented when the air conditioner internal communication control program is executed can refer to the various embodiments of the air conditioner internal communication control method of the present application, and will not be repeated here.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to operate in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • any reference signs placed between brackets shall not be construed as limiting the claims.
  • the word “comprising” does not exclude the presence of components or steps not listed in the claims.
  • the word “a” or “an” preceding a component does not exclude the presence of a plurality of such components.
  • the present application may be implemented by means of hardware comprising several different components and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, and third etc. does not indicate any order. These words may be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开了一种空调器内部通信控制方法、空调器及计算机可读存储介质,所述方法包括步骤:空调器运行过程中,确定所述空调器的当前干扰值;根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率;将确定的目标通信频率作为所述空调器与线控器之间的数据通信频率。

Description

空调器内部通信控制方法、空调器及计算机可读存储介质
本申请要求于2022年9月30日申请的、申请号为202211216285.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空气调节技术领域,尤其涉及一种空调器内部通信控制方法、空调器及计算机可读存储介质。
背景技术
空调系统中的线控器往往指的是控制中央空调开关启停、模式、温度、风速等调节的控制器,其特点在于通过有线的方式与空调内机进行相连。在线控器与室内机之间进行通信的过程中,两者之间的交互信号常常会受到空调器所在环境的电磁干扰,比如压缩机和电机在运行时会对线控器向室内机进行控制调节的过程造成不同程度的电磁干扰,从而影响线控器接收室内机的信号和发送到室内机的信号,极易导致线控器对室内机控制异常,从而降低了用户对空调器的使用体验。
技术问题
本申请的主要目的在于提供一种空调器内部通信控制方法、空调器及计算机可读存储介质,旨在解决由于空调器所在环境的电磁干扰,容易导致线控器对室内机控制异常的技术问题。
技术解决方案
为实现上述目的,本申请提供一种空调器内部通信控制方法,所述空调器内部通信控制方法包括以下步骤:
空调器运行过程中,确定所述空调器的当前干扰值;
根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率;
将确定的目标通信频率作为所述空调器与线控器之间的数据通信频率。
在一实施例中,所述空调器运行过程中,确定所述空调器的当前干扰值的步骤,包括:
获取空调器运行过程中的当前的预设运行参数;
根据获取的预设运行参数,计算或查表获得所述空调器的当前干扰值。
在一实施例中,所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤,包括:
根据预设的干扰等级,确定所述当前干扰值所在的目标干扰等级;
确定所述目标干扰等级对应的目标通信频率。
在一实施例中,所述空调器运行过程中,确定所述空调器的当前干扰值的步骤,包括:
空调器运行过程中,间隔预设时长确定所述空调器的当前干扰值;或,
空调器运行过程中,接收到参数设定操作或者所述空调器的工作状态发生变化时,确定所述空调器的当前干扰值。
在一实施例中,所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤之前,还包括:
判断确定的当前干扰值与前一次确定的干扰值是否发生变化;
若发生变化,则执行所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤。
在一实施例中,所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤之前,所述方法还包括:
当检测到参数设定操作时,判断确定的当前干扰值是否大于预设阈值;
若大于预设阈值,则产生需要进行通讯控制的提示信息;
在接收到确认进行通讯控制时,执行所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤。
在一实施例中,所述空调器内部通信控制方法还包括:
根据确定的当前干扰值,确定所述当前干扰值对应的通讯完整性校验机制。
在一实施例中,所述根据确定的当前干扰值,确定干扰值对应的目标通信频率的步骤之后,所述方法还包括:
将所述目标通信频率作为与同一空调器外机连接的其他空调器内机与线控器之间的通信频率。
此外,为实现上述目的,本申请还提供一种空调器内部通信控制装置,所述空调器内部通信控制装置包括:
干扰识别模块,用于空调器运行过程中,确定所述空调器的当前干扰值;
通信调节模块,用于根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率;将确定的目标通信频率作为所述空调器与线控器之间的数据通信频率。
此外,为实现上述目的,本申请还提供一种空调器,包括处理器、存储器、以及存储在所述存储器上的可被所述处理器执行的空调器内部通信控制程序,其中,所述空调器内部通信控制程序被所述处理器执行时,实现如上所述的空调器内部通信控制方法的步骤。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有空调器内部通信控制程序,其中,所述空调器内部通信控制程序被处理器执行时,实现如上所述的空调器内部通信控制方法的步骤。
有益效果
本申请技术方案中的空调器内部通信控制方法,通过步骤:空调器运行过程中,确定所述空调器的当前干扰值;根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率;将确定的目标通信频率作为所述空调器与线控器之间的数据通信频率。本申请解决了由于空调器所在环境的电磁干扰,容易导致线控器对室内机控制异常的技术问题。
核心地,本申请主要通过在空调运行的过程中确定空调器所在环境的当前干扰值,根据当前干扰值确定空调器与线控器之间的目标通信频率,从而使得空调器在不同的电磁干扰环境下能够动态地调节空调器与线控器之间数据通信频率以抵抗电磁干扰,防止电磁干扰造成的线控器或者中控面板对空调器控制异常,也就是确保线控器或者中控面板的各种输入和输出工况信号不被干扰,使得空调器在线控器或者中控面板的控制下能够正常运行以及按照预期运行,保障了室内环境的舒适度,提升用户使用体验,同时也避免了线控器或者中控面板对空调器异常控制造成空调器的损坏。
附图说明
图1为本申请实施例方案涉及的空调器的硬件运行环境的结构示意图;
图2为本申请空调器内部通信控制方法第一实施例的流程示意图;
图3为本申请空调器内部通信控制方法第一实施例步骤S10的细化流程图;
图4为本申请空调器内部通信控制方法第一实施例步骤S20的细化流程图;
图5为本申请空调器内部通信控制方法第二实施例的流程示意图;
图6为本申请空调器内部通信控制方法一实施例的整体应用流程图;
图7为本申请空调器内部通信控制方法涉及的空调器多端连接关系示意图;
图8为本申请空调器内部通信控制装置的框架结构示意图。
本申请目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请技术方案总述:
本申请主要通过准确地确定空调器所在环境的电磁干扰状况,进而为了防止电磁干扰接下来对线控器或者中控面板造成影响,根据不同的干扰值确定对应的空调器(室内机或者室外机)与线控器之间目标通信频率(通信密度),最后将当前的通信频率更新为确定好的目标通信频率,使得空调器与线控器之间基于该目标通信频率进行数据交互,由于不同的通信频率会有不同程度的通讯(通信)的完整性校验机制,所以本申请能够在空调器遭遇到较强电磁干扰时具有更加强力完善完备的完整性校验机制,从而使得线控器或者中控面板对空调器的控制更加稳定和准确。本申请核心在于根据对空调干扰的预测、结合用户交互体验的情况下动态调整通讯密度以及通讯的完整性校验机制,从而使干扰大的时候能保证功能、干扰小的时候保证交互体验,避免线控器对室内机控制异常导致室内环境达不到客户预期甚至造成空调器损坏等情况的发生。
本申请实施例提出一种空调器。
如图1所示,图1是本申请实施例方案涉及的空调器的硬件运行环境的结构示意图。
如图1所示,该空调器可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示器(Display)、输入单元比如控制面板,用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可以包括标准的有线接口、无线接口(如WIFI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005还可以是独立于前述处理器1001的存储装置。作为一种计算机存储介质的存储器1005中可以包括空调器内部通信控制程序。
本领域技术人员可以理解,图1中示出的硬件结构并不构成对设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
继续参照图1,图1中作为一种计算机可读存储介质的存储器1005可以包括操作系统、用户接口模块、网络通信模块以及空调器内部通信控制程序。
在图1中,网络通信模块主要用于连接服务器,与服务器进行数据通信;而处理器1001可以调用存储器1005中存储的空调器内部通信控制程序,并执行以下各个实施例中的步骤。
基于上述控制器的硬件结构,提出本申请空调器内部通信控制方法的各个实施例。
本申请实施例提供一种空调器内部通信控制方法。
请参照图2,图2为本申请空调器内部通信控制方法第一实施例的流程示意图;在本申请第一实施例中,所述空调器内部通信控制方法包括以下步骤:
步骤S10,空调器运行过程中,确定所述空调器的当前干扰值;
本实施中的空调器内部通信控制方法应用于线控器或者中控面板,其中线控器是指具备控制家中空调器的能力,其特点在于通过有线的方式与空调内机进行相连,有线连接的方式可以为两芯无极性、485等的空调器控制终端。线控器还有一个特性是线控器上配置有操作系统、还包括触摸屏、语音识别模块等特性,其中的触摸屏包括但不限于LCD(Liquid Crystal Display,液晶显示器)显示器、OLED(Organic Light-Emitting Diode,有机发光二极管)显示器。其中的中控面板指的是具备线控器控制的能力而且同时具备家庭智能设备管理、控制、状态显示的能力的控制终端。其同样具备线控器种有线方式与空调相连。也配置有操作系统、还包括触摸屏、语音识别模块等特性。
由于中控面板具有线控器的全部功能,所以也可以将中控面板作为一种线控器,在下文中为了描述上的便利,统一用线控器指代上述一般意义上的线控器和中控面板。
对于线控器在空调器中的具体连接关系而言,其主要与空调器室内机进行通信连接,对于两者之间的连接关系可以参照图7,图7为本申请空调器内部通信控制方法涉及的空调器多端连接关系示意图,如图7所示,以套机1为例,空调器室外机与空调器室内机之间通信连接,线控器与空调器室内机之间通信连接,此外,若存在中控面板,其也是与空调器室内机之间进行通信连接。此外若根据实际需要,还可以设置线控器与室外机进行通信连接,以便于用户在室内可以直接监控或者控制室外机的运行,在此不做限制。
空调器在制冷、制热、除霜、新风等模式或者功能的运行过程中,需要确定空调器所在环境的电磁干扰,并且将电磁干扰具体数字化为当前干扰值以便于准确地掌握电磁干扰的干扰程度。需要说明的是,这里的电磁干扰产生的原因是多种多样的,例如像空调器中包括各种风机在内的各种电机在运行过程中产生的干扰,压缩机运行产生的电磁干扰以及空调器中其他设备运行产生的电磁干扰,除了空调器自身运行对线控器产生的干扰,还包括其他相邻或相近的空调器运行产生的电磁干扰,比如图7中的空调器套机2如果与套机1相邻设置,那么就会产生相互之间的电磁干扰,除此之外,还包括各种各样的其他外界电磁干扰,在此就不一一举例。
在存在电磁干扰的环境下,会对线控器接收来自空调器内机(也可以是空调器外机,在此仅以空调器内机进行说明)的各种工况数据信号以及输出到空调器内机的各种控制信号造成干扰,也就是线控器控制空调器内机产生干扰,导致了线控器对空调器控制异常。
对于如何确定所述空调器的当前干扰值,可以根据空调器的各种工况参数通过查表或计算来确定。这里的工况参数包括但不限于:设定温度、设定风速、运行模式(制冷、制热、新风、除霜、节能等)、室内风机档位或转速、室外风机档位或转速、出风温度、室内温度、室内湿度、室外换热器温度、室内换热器温度、压缩机温度、压缩机频率等。
请参照图3,在一实施例中,所述步骤S10,包括:
步骤S11,获取空调器运行过程中的当前的预设运行参数;
步骤S12,根据获取的预设运行参数,计算或查表获得所述空调器的当前干扰值。
在一实施例中,预设运行参数可以为上述的各个工况参数,可以将预设运行参数分为两类:用户设定参数和空调自调节参数。用户设定参数可以包括设定温度、设定风速、运行模式等运行参数,空调自调节参数可以包括室内风机档位或转速、室外风机档位或转速、出风温度、室内温度、室内湿度、室外换热器温度、室内换热器温度、压缩机温度、压缩机频率等运行参数。其中,用户设定参数和空调自调节参数的区别在于运行参数是否属于用户自行设定的参数还是空调进行自适应地进行调节所需要的工况参数。
在确定了当前的预设运行参数,可以通过利用这些预设运行参数中一项或者多项参数进行计算得到空调器的当前干扰值,对于计算的方式可以将预设运行参数输入至预设的干扰计算函数中从而精确地得到当前干扰值。也可以通过确定一项或者多项预设运行参数与当前干扰值的映射关系进行查表得到当前干扰值,需要说明的是无论是计算所需的函数还是需要查询的表格等都是在大量试验的基础上确定的。此外,可以先根据预设运行参数的参数类型(用户设定参数和空调自调节参数)确定对应的目标映射表,进而分别根据不同的目标映射表查表确定所述空调器的当前干扰值,以具体区分不同类型的运行参数从而确定不同的当前干扰值,从而针对是否存在用户对线控器进行操作以设定各个用户设定参数的情形作出不同的处理,满足不同场景下的通信频率控制,减少对用户造成不必要的困扰。
在一实施例中,所述步骤S12,根据获取的预设运行参数,计算获得空调器的当前干扰值,包括:
步骤a,检测所述预设运行参数对应的输入所述线控器中的输入信号,并确定所述输入信号的实际信号幅值和所述预设运行参数对应的预测信号幅值;
步骤b,计算所述实际信号幅值和所述预测信号幅值之间的差值以确定所述空调器的当前干扰值。
不同的预设运行参数会产生不同的输入信号,换言之,输入到线控器中的输入信号随着空调器各种运行参数的不同而不同,并且这里的运行参数不仅包括运行参数的数量,还包括运行参数具体工况数值。检测所述预设运行参数对应的输入所述线控器中的输入信号也就是检测实际输入至线控器中的信号,确定该输入信号的实际信号幅值,同时还需要确定预设运行参数对应的预测信号幅值,该预设运行参数对应的预测信号幅值指的是在没有电磁干扰的环境下预设运行参数对应的输入信号的信号幅值,也可以认为是理论输入信号的理论信号幅值。
在存在电磁干扰的环境下,实际信号幅值要大于预测信号幅值,将实际信号幅值减去预测信号幅值得到两者之间差值,将该差值可以作为空调器的当前干扰值更能准确可靠地反映出电磁干扰对线控器的影响程度。差值越大,意味着实际信号幅值相较于预测信号幅值也越大,在实质上也就是反映了电磁干扰的程度也就越大。
在一实施例中,所述步骤S10,包括:
步骤c,空调器运行过程中,间隔预设时长确定所述空调器的当前干扰值;或,
步骤d,空调器运行过程中,接收到参数设定操作或者所述空调器的工作状态发生变化时,确定所述空调器的当前干扰值。
在空调器运行过程中,可以由空调器实时获取和确定所述空调器的当前干扰值,也可以间隔预设时长确定所述空调器的当前干扰值,这样都能够较为及时地掌握空调器所在环境的电磁干扰状况。其中预设时长可以根据实际需要进行设定,比如1分钟、2分钟等,在此不做限制。
在空调器的运行过程中,还可以在线控器接收到用户进行的参数设定操作时,也就是用户在使用线控器对空调器进行控制时,开始获取并确定所述空调器的当前干扰值,或者空调器的工作状态发生变化时开始获取并确定所述空调器的当前干扰值,这里的空调器的工作状态发生变化可以为任何一预设运行参数的变化量大于其对应的预设变化阈值,就可以认为工作状态发生变化,比如制冷温度一开始为27℃,后来变为22℃,预设变化阈值为4℃,那么就认为工作状态发生变化,空调器的工作状态发生变化也可以理解为运行模式的变化,比如新风模式转化为制冷模式。通过参数设定操作或者空调器的工作状态发生变化考虑到通常空调器在各种工况发生变化时其电磁干扰才会发生变化,那么只有在工况发生变化时确定所述空调器的当前干扰值能够节省电能,且在工况发生变化时及时地确定当前干扰值以便作出相应地通信频率处理。
步骤S20,根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率;
根据所述当前干扰值,可以根据干扰值与通信频率的对应的关系直接确定目标通信频率,也可以先确定当前干扰值对应的目标干扰等级,进而根据目标干扰等级确定当前干扰值对应的目标通信频率。其中的通信频率指的是线控器与空调器室内机之间每秒的通讯次数。
请参照图4,在一实施例中,所述步骤S20,包括:
步骤S21,根据预设的干扰等级,确定所述当前干扰值所在的目标干扰等级;
步骤S22,确定所述目标干扰等级对应的目标通信频率。
预设的干扰等级可以为多个,具体可以根据实际需要进行设定,比如设置三个干扰等级P1、P2、P3。对于不同的干扰等级,对应不同的干扰值范围,例如假设P1的干扰值范围为[10,300),P2的干扰值范围为[30,50)。在预设的干扰等级的规则下,可以确定当前干扰值对应的目标干扰等级,比如当前干扰值为40,那么目标干扰等级就为P2。对于不同的干扰等级同时也对应不同的通信频率,干扰值可以和干扰等级呈正比,干扰等级则与通信频率呈反比,也就是说,当前干扰值越大,干扰等级越高,对应的线控器和空调器室内之间的目标通信频率也就越小,从而在电磁干扰越强的时候,降低线控器和空调器室内之间的通信频率,从而确保线控器可以有足够的时间进行增强通讯完整性校验确保根据输入和输出的信号能够获取到空调器实际运行工况并准确地控制空调器按照预期运行。另外,通过先确定干扰等级,进而根据干扰等级确定目标通信频率一是为了节省空调系统资源,二是防止干扰值轻微变化导致通信频率的不稳定对用户造成不必要的困扰,影响用户对空调器的使用。
在一实施例中,所述步骤S20之前,所述方法还包括:
步骤e,判断确定的当前干扰值与前一次确定的干扰值是否发生变化;
步骤f,若发生变化,则执行所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤。
在确定目标通信频率之前,可以先判断当前干扰值与上一次确定干扰值之间是否发生变化,只有在当前干扰值发生变化时才会进一步确定目标通信频率并使得线控器和空调器室内之间按照目标通信频率进行数据的交互传输,避免空调系统不停地按照原来的干扰值更新相同的目标通信频率从而增加空调系统的负荷,更主要的是如果当前干扰值没有发生变化只需要按照原来的目标通信频率进行通信即可,不需要进行下一步。但如果当前干扰值发生变化,就需要进行接下来步骤S20和步骤S30的步骤,从而可以重新确定新的目标通信频率,以实现对通信频率的动态调整。
步骤S30,将确定的目标通信频率作为所述空调器与线控器之间的数据通信频率。
在确定了目标通信频率之后,就将原来的空调器与线控器之间的数据通信频率更新为目标通信频率并存储在线控器的内部存储器中,之后除非当前干扰值发生变化,否则都可以按照当前的目标通信频率进行数据的交互通信。
本申请主要通过在空调运行的过程中确定空调器所在环境的当前干扰值,根据当前干扰值确定空调器与线控器之间的目标通信频率,从而使得空调器在不同的电磁干扰环境下能够动态地调节空调器与线控器之间通信频率以抵抗电磁干扰,防止电磁干扰造成的线控器或者中控面板对空调器控制异常,也就是确保线控器或者中控面板的各种输入和输出工况信号不被干扰,使得空调器在线控器或者中控面板的控制下能够正常运行以及按照预期运行,保障了室内环境的舒适度,提升用户使用体验,同时也避免了线控器或者中控面板对空调器异常控制造成空调器的损坏。
请参照图5,图5为本申请空调器内部通信控制方法第二实施例的流程示意图。进一步地,基于本申请空调器内部通信控制方法的上述各个实施例提出本申请空调器内部通信控制方法的第二实施例,所述步骤S20之前,所述方法还包括:
步骤S100,当检测到参数设定操作时,判断确定的当前干扰值是否大于预设阈值;
步骤S200,若大于预设阈值,则产生需要进行通讯控制的提示信息;
步骤S300,在接收到确认进行通讯控制时,执行所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤。
当检测到参数设定操作时也就是用户在使用线控器进行操作时,需要判断当前干扰值是否大于或等于预设阈值,其中的预设阈值可以根据实际需要设定,比如为预设的干扰等级中等级最高的干扰等级对应的最大干扰值,如果当前干扰值大于或等于预设阈值,那么兼顾考虑到电磁干扰和用户操作的优先性和重要性,那么就可以产生需要进行通讯控制的提示信息并在线控器通过显示器显示或者语音提示的方式提醒用户因存在电磁干扰空调需要对线控器和空调器室内机之间的通信进行控制(通信频率降低),交由用户选择是否同意,防止用户不知情的情况下自行对通信频率降低造成用户的不良体验。在接收到用户通过语音输入或者触摸点击或者按键点击的方式确认进行通讯控制,就可以按照上述各个实施例确定目标通信频率的步骤执行,从而保证线控器能够对空调器进行正常的控制。如果用户不同意进行通讯控制,也可以按照当前的通信频率不做调整。
在一实施例中,所述空调器内部通信控制方法还包括:
步骤g,根据确定的当前干扰值,确定所述当前干扰值对应的通讯完整性校验机制。
在一实施例中,比较好理解的是,通讯完整性校验机制与当前干扰值呈正相关,也就是当前干扰值越大,电磁干扰越大,通讯完整性校验机制就会越强,从而保证线控器不丢失输入的数据信号,也避免电磁干扰信号的影响,确保通信质量,尽管在电磁干扰存在的情况下降低了通信频率,但由于同时增加了通讯完整性校验机制,因此能更大程度上保证通讯质量。
在一实施例中,所述步骤S20之后,所述方法还包括:
将所述目标通信频率作为与同一空调器外机连接的其他空调器内机与线控器之间的通信频率。
可以继续参照图7,可以看到每个空调器室内机都有对应的线控器,那么只需要一个线控器确定目标通信频率,并将确定好的目标通信频率发送给空调器室外机,进而通过空调器室外机发送给与同一空调器室外机连接的其他线控器,并作为其他空调器室内机与线控器之间的通信频率,这样就大大节省了空调器的运算资源,并提高了目标通信频率动态更新效率。
此外,考虑到用户可能具有多个套机,也就是有多个室外机,每个室外机可以连接多个室内机。多个套机之间也会存在相互干扰。
在一实施例中,所述空调器内部通信控制方法还包括:
通过云端或局域网发送通信频率调整信号至其他空调器,以使所述其他空调器执行步骤S10-步骤S30的各个步骤。
如图7所示,套机1干扰的时候同时可以通过云端或局域网通知套机2进行对应的通信调整,调整步骤与以上各个实施例一致,在此不再赘述。
为了进一步理解上述各个实施例的实现过程,可以将上述的各个实施例结合起来作为本申请的技术方案整体,为了更清楚地理解本申请,请参照图6,图6为本申请空调器内部通信控制方法一实施例的整体应用流程图。
在空调参数设定或者工作模式发生变化时,计算或查表确定空调器所在环境的干扰系数(当前干扰值对应的干扰等级)P;
线控器检测用户是否在操作面板上进行操作或者将要操作面板;
若用户没有操作面板,则按照预定设计进行调整:
若干扰系数P>P1,对应通讯密度(通信频率)M调整为M3;
若干扰系数P>P2,对应通讯密度(通信频率)M调整为M2;
若干扰系数P>P3,对应通讯密度(通信频率)M调整为M1;
其中的P3>P2>P1,M3>M2>M1。
若用户操作线控器面板,判断是否P>P3,若P≤P3,则按照上述预定设计进行调整;
若P>P3,则提示用户进入通讯密度调整的保护模式,并等待用户的确认或拒绝的指令。
此外,本申请还提供一种空调器内部通信控制装置,请参照图8,所述空调器内部通信控制装置包括:
干扰识别模块A10,用于空调器运行过程中,确定所述空调器的当前干扰值;
通信调节模块A20,用于根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率;将确定的目标通信频率作为所述空调器与线控器之间的数据通信频率。
在一实施例中,所述干扰识别模块A10,还用于:
获取空调器运行过程中的当前的预设运行参数;
根据获取的预设运行参数,计算或查表获得所述空调器的当前干扰值。
在一实施例中,所述通信调节模块A20,还用于:
根据预设的干扰等级,确定所述当前干扰值所在的目标干扰等级;
确定所述目标干扰等级对应的目标通信频率。
在一实施例中,所述干扰识别模块A10,还用于:
空调器运行过程中,间隔预设时长确定所述空调器的当前干扰值;或,
空调器运行过程中,接收到参数设定操作或者所述空调器的工作状态发生变化时,确定所述空调器的当前干扰值。
在一实施例中,所述干扰识别模块A10,还用于:
判断确定的当前干扰值与前一次确定的干扰值是否发生变化;
若发生变化,则执行所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤。
在一实施例中,所述干扰识别模块A10,还用于:
当检测到参数设定操作时,判断确定的当前干扰值是否大于预设阈值;
若大于预设阈值,则产生需要进行通讯控制的提示信息;
在接收到确认进行通讯控制时,执行所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤。
在一实施例中,所述通信调节模块A20,还用于:
根据确定的当前干扰值,确定所述当前干扰值对应的通讯完整性校验机制。
在一实施例中,所述通信调节模块A20,还用于:
将所述目标通信频率作为与同一空调器外机连接的其他空调器内机与线控器之间的通信频率。
本申请空调器内部通信控制装置具体实施方式与上述空调器内部通信控制方法各实施例基本相同,在此不再赘述。
此外,本申请还提供一种计算机可读存储介质。本申请计算机可读存储介质上存储有空调器内部通信控制程序,其中,空调器内部通信控制程序被处理器执行时,实现如上述的空调器内部通信控制方法的步骤。
其中,空调器内部通信控制程序被执行时所实现的方法可参照本申请空调器内部通信控制方法的各个实施例,此处不再赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应当注意的是,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或步骤。位于部件之前的单词“一”或“一个”不排除存在多个这样的部件。本申请可以借助于包括有若干不同部件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种空调器内部通信控制方法,其中,所述空调器内部通信控制方法包括以下步骤:
    空调器运行过程中,确定所述空调器的当前干扰值;
    根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率;
    将确定的目标通信频率作为所述空调器与线控器之间的数据通信频率。
  2. 如权利要求1所述的空调器内部通信控制方法,其中,所述空调器运行过程中,确定所述空调器的当前干扰值的步骤,包括:
    获取空调器运行过程中的当前的预设运行参数;
    根据获取的预设运行参数,计算或查表获得所述空调器的当前干扰值。
  3. 如权利要求1所述的空调器内部通信控制方法,其中,所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤,包括:
    根据预设的干扰等级,确定所述当前干扰值所在的目标干扰等级;
    确定所述目标干扰等级对应的目标通信频率。
  4. 如权利要求1所述的空调器内部通信控制方法,其中,所述空调器运行过程中,确定所述空调器的当前干扰值的步骤,包括:
    空调器运行过程中,间隔预设时长确定所述空调器的当前干扰值;或,
    空调器运行过程中,接收到参数设定操作或者所述空调器的工作状态发生变化时,确定所述空调器的当前干扰值。
  5. 如权利要求1所述的空调器内部通信控制方法,其中,所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤之前,还包括:
    判断确定的当前干扰值与前一次确定的干扰值是否发生变化;
    响应于发生变化,则执行所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤。
  6. 如权利要求1所述的空调器内部通信控制方法,其中,所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤之前,所述方法还包括:
    当检测到参数设定操作时,判断确定的当前干扰值是否大于预设阈值;
    当确定的当前干扰值大于预设阈值,则产生需要进行通讯控制的提示信息;
    在接收到确认进行通讯控制时,执行所述根据确定的当前干扰值,确定所述当前干扰值对应的目标通信频率的步骤。
  7. 如权利要求1所述的空调器内部通信控制方法,其中,所述空调器内部通信控制方法还包括:
    根据确定的当前干扰值,确定所述当前干扰值对应的通讯完整性校验机制。
  8. 如权利要求1所述的空调器内部通信控制方法,其中,所述根据确定的当前干扰值,确定干扰值对应的目标通信频率的步骤之后,所述方法还包括:
    将所述目标通信频率作为与同一空调器外机连接的其他空调器内机与线控器之间的通信频率。
  9. 一种空调器,其中,所述空调器包括处理器、存储器、以及存储在所述存储器上的可被所述处理器执行的空调器内部通信控制程序,其中,所述空调器内部通信控制程序被所述处理器执行时,实现如权利要求1至8中任一项所述的空调器内部通信控制方法的步骤。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有空调器内部通信控制程序,其中,所述空调器内部通信控制程序被处理器执行时,实现如权利要求1至8中任一项所述的空调器内部通信控制方法的步骤。
PCT/CN2023/099496 2022-09-30 2023-06-09 空调器内部通信控制方法、空调器及计算机可读存储介质 WO2024066473A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211216285.3A CN117847718A (zh) 2022-09-30 2022-09-30 空调器内部通信控制方法、空调器及计算机可读存储介质
CN202211216285.3 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024066473A1 true WO2024066473A1 (zh) 2024-04-04

Family

ID=90475899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099496 WO2024066473A1 (zh) 2022-09-30 2023-06-09 空调器内部通信控制方法、空调器及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117847718A (zh)
WO (1) WO2024066473A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118499914B (zh) * 2024-07-16 2024-09-27 国网浙江省电力有限公司杭州市富阳区供电公司 一种集群空调设备智能监测控制方法、装置、设备和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112303806A (zh) * 2020-10-19 2021-02-02 青岛海信日立空调系统有限公司 一种通讯电路和空调器
CN112393385A (zh) * 2019-08-13 2021-02-23 青岛海尔空调电子有限公司 用于空调器的线控器的数据传输方法
CN112443951A (zh) * 2020-11-30 2021-03-05 佛山市顺德区美的电子科技有限公司 防干扰控制方法与装置、存储介质、空调器、通信电路
CN113483462A (zh) * 2021-04-30 2021-10-08 佛山市顺德区美的电子科技有限公司 空调器及其基于电力线通讯的数据传输方法和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112393385A (zh) * 2019-08-13 2021-02-23 青岛海尔空调电子有限公司 用于空调器的线控器的数据传输方法
CN112303806A (zh) * 2020-10-19 2021-02-02 青岛海信日立空调系统有限公司 一种通讯电路和空调器
CN112443951A (zh) * 2020-11-30 2021-03-05 佛山市顺德区美的电子科技有限公司 防干扰控制方法与装置、存储介质、空调器、通信电路
CN113483462A (zh) * 2021-04-30 2021-10-08 佛山市顺德区美的电子科技有限公司 空调器及其基于电力线通讯的数据传输方法和存储介质

Also Published As

Publication number Publication date
CN117847718A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
EP3242170B1 (en) Prompt information sending method and device
US11821644B2 (en) Control terminal, control method and device for multi-split air conditioner, and storage medium
WO2024066473A1 (zh) 空调器内部通信控制方法、空调器及计算机可读存储介质
WO2020135487A1 (zh) 一种智能家居中动态构建环境调节规则列表的方法及装置
CN109751738A (zh) 用于多联机空调的控制方法、装置、室外机及多联机空调
CN112202654B (zh) 控制指令处理方法、装置、设备及存储介质
CN108800479A (zh) 一拖多空调的控制方法、装置及计算机可读存储介质
CN114440414A (zh) 多联机及其控制方法、计算机存储介质
CN114216242B (zh) 空调控制方法、装置、空调及存储介质
CN112229043A (zh) 一种空调运行方法、装置、电子设备和计算机可读介质
CN107401801A (zh) 空调的运行参数控制方法及空调
CN117847746A (zh) 空调器语音控制方法、空调器及计算机存储介质
CN112710065B (zh) 一拖多空调器的控制方法、一拖多空调器及存储介质
EP3779618B1 (en) Smart apparatus control method, apparatus, computer storage medium, and smart apparatus control apparatus
WO2024066714A1 (zh) 空调器的内存动态降频方法、空调器及存储介质
CN107101342B (zh) 一种空调控制方法、装置及系统
CN107894076B (zh) 多联机空调系统及其节能控制方法、装置及存储介质
WO2023279702A1 (zh) 空调的控制方法
WO2022222449A1 (zh) 空调的控制方法、装置、存储介质及其空调
CN114679899A (zh) 机房空调自适应节能控制方法及装置、介质及设备
WO2023024543A1 (zh) 空调器及其控制方法、计算机可读存储介质
CN115164365A (zh) 空调器的控制方法、装置及空调器
WO2024093368A1 (zh) 空气调节设备的控制方法、设备及可读存储介质
CN114383303A (zh) 除湿控制方法、装置、空调器及存储介质
JP4712575B2 (ja) 空気調和機集中管理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869722

Country of ref document: EP

Kind code of ref document: A1