WO2024022097A1 - 多联机空调器及其控制方法、控制器和存储介质 - Google Patents

多联机空调器及其控制方法、控制器和存储介质 Download PDF

Info

Publication number
WO2024022097A1
WO2024022097A1 PCT/CN2023/106564 CN2023106564W WO2024022097A1 WO 2024022097 A1 WO2024022097 A1 WO 2024022097A1 CN 2023106564 W CN2023106564 W CN 2023106564W WO 2024022097 A1 WO2024022097 A1 WO 2024022097A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
preset
temperature
unit
indoor unit
Prior art date
Application number
PCT/CN2023/106564
Other languages
English (en)
French (fr)
Inventor
彭真
陶骙
尚亚浩
Original Assignee
佛山市顺德区美的电子科技有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的电子科技有限公司, 广东美的制冷设备有限公司 filed Critical 佛山市顺德区美的电子科技有限公司
Publication of WO2024022097A1 publication Critical patent/WO2024022097A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/40Damper positions, e.g. open or closed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioners, and in particular to a multi-line air conditioner and its control method, controller and storage medium.
  • a multi-split air conditioner will include one outdoor unit and multiple indoor units, and in design, the heat exchange capacity of the outdoor heat exchanger and the displacement of the compressor will be much greater than the demand for one indoor unit; therefore, when the quantity When fewer indoor units are turned on, even after reducing the compressor frequency and electronic expansion valve opening, the energy provided by the outdoor units will still be greater than the demand of the indoor units. Therefore, the outlet air temperature of the indoor units will be low, and condensation will occur. Exposure and other issues.
  • This application aims to at least partially solve one of the technical problems existing in the prior art. To this end, this application proposes a multi-split air conditioner and its control method, controller and storage medium, which can reduce the occurrence of condensation in indoor units when a small number of indoor units are turned on.
  • inventions of the present application provide a control method for a multi-split air conditioner.
  • the multi-split air conditioner includes an outdoor unit and a plurality of indoor units.
  • the control method includes: in cooling mode, obtaining a target indoor unit.
  • the control method of a multi-split air conditioner according to an embodiment of the present application has at least the following beneficial effects:
  • the embodiment of the present application will control the rotation speed of the outdoor unit fan according to the evaporator reference temperature, and adjust the rotation speed of the outdoor unit fan by , can reduce the heat exchange of the outdoor unit, thereby reducing the cooling capacity of the indoor unit, thereby reducing condensation in the indoor unit.
  • controlling the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature includes one of the following:
  • the indoor environmental parameters meet the preset environmental parameters, and the rotation speed of the fan of the outdoor unit is controlled according to the evaporator reference temperature.
  • determining key indoor units from the target indoor units includes at least one of the following:
  • the target indoor unit is one of the indoor units, the target indoor unit is used as the key indoor unit;
  • the target indoor unit is a plurality of indoor units, obtain the indoor environmental humidity corresponding to each indoor unit in the target indoor unit, and select the indoor unit with the largest indoor environmental humidity as the key indoor unit.
  • the obtaining the indoor environment parameters corresponding to the key indoor units includes: obtaining the indoor environment parameters corresponding to the key indoor units. indoor ambient temperature and indoor ambient humidity;
  • the indoor environment parameters meet the preset environmental parameters, including one of the following:
  • the indoor ambient temperature is greater than the preset temperature and the indoor ambient humidity is greater than the preset humidity
  • the indoor ambient temperature is within a target temperature range and the indoor ambient humidity is greater than a preset humidity, wherein the target temperature range includes outdoor ambient temperature;
  • the indoor ambient temperature is greater than the preset temperature and is within a target temperature interval, and the indoor ambient humidity is greater than the preset humidity, wherein the target temperature interval includes the outdoor ambient temperature.
  • the control method before obtaining the internal unit capacity and evaporator reference temperature of the target indoor unit, includes: for each indoor unit, obtaining the indoor environment corresponding to the indoor unit. temperature and the indoor set temperature, and calculate the temperature deviation between the indoor ambient temperature and the indoor set temperature; use all the indoor units with the temperature deviation greater than the preset deviation as target indoor units.
  • the step of determining the preset capacity includes: obtaining the outdoor unit capacity of the outdoor unit; and determining the preset capacity based on the outdoor unit capacity.
  • controlling the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature includes at least one of the following:
  • the rotation speed of the fan of the outdoor unit is maintained, wherein the first preset reference temperature is higher than the second preset reference temperature. the second preset reference temperature;
  • increasing the rotational speed of the fan of the outdoor unit includes: increasing the rotational speed of the fan of the outdoor unit based on the rotational speed adjustment step after each preset time interval;
  • reducing the rotation speed of the fan of the outdoor unit includes: reducing the rotation speed of the fan of the outdoor unit based on the rotation speed adjustment step after every preset time interval.
  • embodiments of the present application also provide a controller, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, and the processor runs the The computer program executes the control method of the multi-split air conditioner described in the first aspect.
  • embodiments of the present application also provide a multi-connected air conditioner, including the controller described in the second aspect.
  • embodiments of the present application further provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to perform the control of the multi-connected air conditioner as described in the first aspect. method.
  • Figure 1 is a schematic diagram of a system architecture platform for executing a control method for a multi-split air conditioner provided by an embodiment of the present application;
  • Figure 2 is a schematic structural diagram of a multi-split air conditioner provided by an embodiment of the present application
  • Figure 3 is a flow chart of a control method for a multi-split air conditioner provided by an embodiment of the present application
  • Figure 4 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 5 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 6 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 7 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 8 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 9 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 10 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 11 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 12 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 13 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 14 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 15 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 16 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 17 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 18 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Figure 19 is an overall flow chart of a control method for a multi-split air conditioner provided by an embodiment of the present application.
  • a multi-unit air conditioner will include one outdoor unit and multiple indoor units.
  • the ratio of outdoor unit capacity to indoor unit capacity can range from 0.3 to 1.9. Therefore, the heat exchange capacity of the outdoor heat exchanger is designed to be
  • the displacement of the compressor will be much larger than the demand of an indoor unit.
  • the energy provided by the outdoor unit will still be greater than that of the indoor unit. demand, thus causing the air outlet temperature of the indoor unit to be low, leading to problems such as condensation.
  • embodiments of the present application provide a multi-split air conditioner and its control method, controller and computer-readable storage medium, which can adjust the rotation speed of the outdoor unit fan while turning on a small number of indoor units. Reduce the heat exchange rate of the outdoor unit, thereby reducing the cooling capacity of the indoor unit, thereby reducing condensation in the indoor unit.
  • FIG. 1 is a schematic diagram of a system architecture platform for executing a control method for a multi-connected air conditioner provided by an embodiment of the present application.
  • the system architecture platform 100 of the embodiment of the present application includes one or more processors 110 and memories 120.
  • processors 110 and memories 120 are taken as an example.
  • the processor 110 and the memory 120 may be connected through a bus or other means.
  • the connection through a bus is taken as an example.
  • the memory 120 can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the memory 120 may include high-speed random access memory and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 120 may optionally include a memory 120 located remotely relative to the processor 110 , and these remote memories may be connected to the system architecture platform 100 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the device structure shown in Figure 1 does not constitute a limitation on the system architecture platform 100, and may include more or less components than shown, or combine certain components, or arrange different components. .
  • the processor 110 can be used to call the control program of the multi-line air conditioner stored in the memory 120 , thereby implementing the control method of the multi-line air conditioner.
  • Figure 2 is a schematic structural diagram of a multi-split air conditioner provided by an embodiment of the present application.
  • the multi-unit air conditioner includes but is not limited to one outdoor unit 210 and multiple indoor units 220.
  • Each indoor unit 220 is configured with its own internal unit capacity, and the outdoor unit 210 is also configured with its own capacity. External machine capacity.
  • the indoor unit 220 may also be provided with a temperature sensor for detecting the evaporation temperature of the evaporator; in addition, the indoor unit 220 in the embodiment of the present application may also be provided with a temperature sensor for detecting the indoor air temperature and a temperature sensor for detecting the indoor air temperature.
  • Humidity sensor that detects indoor air humidity.
  • thermocouple temperature sensor can be a thermocouple temperature sensor or a thermal sensor.
  • the sensitive resistance temperature sensor may also be a resistance temperature sensor, an IC temperature sensor, or other types of temperature sensors.
  • the embodiments of the present application do not limit the specific type of the temperature sensor.
  • the type of the above-mentioned humidity sensor may be a capacitive humidity sensor or a resistive humidity sensor.
  • the capacitive humidity sensor has a more linear response than the resistive humidity sensor, and may also be other types of humidity sensors.
  • the embodiments of the present application do not limit the specific type of the humidity sensor.
  • the multi-split air conditioner may include the processor and memory shown in FIG. 1 , where the processor can communicate with the indoor unit 220 and the outdoor unit 210 to realize the multi-split air conditioner. control method.
  • Figure 3 is a flow chart of a control method for a multi-split air conditioner provided by an embodiment of the present application.
  • the multi-split air conditioner in the embodiment of the present application includes, but is not limited to, an outdoor unit and multiple indoor units, and the control method includes, but is not limited to, step S100 and step S200.
  • Step S100 In the cooling mode, obtain the internal unit capacity and evaporator reference temperature of the target indoor unit, where the target indoor unit is one or more of multiple indoor units.
  • the embodiments of the present application are only targeted at performing multiple tasks in the cooling mode. Control method of online air conditioner.
  • the dehumidification mode is also a cooling mode, and the difference lies in the specific restrictions on the operating parameters of the air conditioner. Therefore, the control method of the multi-split air conditioner in the embodiment of the present application is also applicable to the dehumidification mode.
  • the target indoor unit it refers to the indoor unit with capacity demand.
  • the capacity requirement refers to the difference between the set temperature of the indoor unit and the indoor ambient temperature, which requires the outdoor unit to work to provide a load so that the indoor unit can meet user needs or functional requirements.
  • the indoor unit capacity of the target indoor unit refers to the sum of the indoor unit capacities of all indoor units that have capacity requirements. Among them, the capacity of the indoor unit matches the model of the indoor unit.
  • the current indoor unit capacity of each indoor unit may be fixed or adjustable.
  • the evaporator reference temperature of the target indoor unit when the target indoor unit is an indoor unit, the evaporator reference temperature corresponds to the temperature of the evaporator of the indoor unit.
  • the evaporator reference temperature can correspond to the average value of the evaporator temperatures of multiple indoor units, or the median value of the evaporator temperatures of multiple indoor units, or it can be other values. Reference value, the embodiment of the present application does not specifically limit the type of the evaporator reference temperature.
  • a temperature sensor can be added at the evaporator position of the indoor unit, and the evaporator temperature of the indoor unit can be collected through the temperature sensor.
  • the type of the temperature sensor it can be a thermocouple temperature sensor, a thermistor temperature sensor, a resistance temperature sensor, an IC temperature sensor, or other types of temperature sensors. The embodiments of the present application do not limit the specific type of temperature sensor.
  • Step S200 When the capacity of the indoor unit is less than or equal to the preset capacity, control the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature.
  • the above-mentioned preset capacity may be artificially preset.
  • the specific numerical value may be set according to the capacity of the external machine or the capacity of the internal machine.
  • the embodiments of the present application do not specifically limit the setting method of the specific numerical value of the preset capacity.
  • the comparison between the indoor unit capacity and the preset capacity can be determined by the number of target indoor units. For example, if the indoor unit capacity of each indoor unit is the same, and the preset capacity is the total indoor unit capacity of the two indoor units, then when the number of target indoor units is one or two, it can be considered that the target indoor unit The indoor unit capacity of the unit is less than or equal to the preset capacity; when the number of target indoor units is more than three, it can be considered that the internal unit capacity of the target indoor unit is greater than the preset capacity.
  • the method of controlling the speed of the fan of the outdoor unit based on the evaporator reference temperature may include but is not limited to the following methods: When the evaporator reference temperature is too high, it may indicate that the cooling effect of the indoor unit is poor. In this case When the evaporator reference temperature is too low, it means that there may be condensation in the indoor unit or the cooling effect of the indoor unit is too strong. At this time, the speed of the outdoor fan can be appropriately reduced.
  • control of the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature in the above step S200 may include but is not limited to the three implementations shown in FIGS. 4 to 6 .
  • Figure 4 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • controlling the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature in the above step S200 it may include but is not limited to step S311, step S312 and step S313.
  • Step S311 Determine the key indoor units from the target indoor units
  • Step S312 Obtain the air supply wind speed and indoor environment parameters corresponding to the key indoor units
  • Step S313 When the supply air speed is less than the preset wind speed and the indoor environmental parameters meet the preset environmental parameters, the rotation speed of the fan of the outdoor unit is controlled according to the evaporator reference temperature.
  • the embodiments of this application need to first determine the key indoor units that are prone to condensation from the target indoor units, and then obtain their corresponding indoor environment parameters and supply air speed. If the indoor environment parameters meet the preset environmental parameters and the supply air speed is lower than The preset wind speed indicates that the demand of the key indoor unit is low and condensation is prone to occur, so the embodiment of the present application will control the rotation speed of the outdoor unit fan based on the evaporator reference temperature.
  • the wind speed value may be preset, and the embodiments of the present application do not specifically limit the value of the preset wind speed.
  • the air supply mode of the key indoor unit is a windless air supply mode, a soft air supply mode or an anti-direct blowing air supply mode, then its air supply speed can be considered to be lower than the preset Wind speed.
  • the above-mentioned indoor environment parameters may include but are not limited to indoor air temperature or indoor air humidity.
  • the above-mentioned preset environmental parameters may include, but are not limited to, preset indoor air temperature or preset indoor air humidity.
  • the specific values of the preset environmental parameters may be preset.
  • the embodiments of the present application are for preset The numerical values of environmental parameters are not specifically limited.
  • Figure 5 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • controlling the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature in the above step S200 it may include but is not limited to step S321, step S322 and step S323.
  • Step S321 Determine the key indoor units from the target indoor units
  • Step S322 Obtain the air supply wind speed corresponding to the key indoor unit
  • Step S323 When the supply air speed is less than the preset wind speed, the speed of the fan of the outdoor unit is controlled according to the evaporator reference temperature.
  • the embodiments of this application need to first determine the key indoor units that are prone to condensation from the target indoor units, and then obtain their corresponding air supply wind speed. If the air supply wind speed is lower than the preset wind speed, it indicates that the demand for the key indoor unit is relatively high. If the temperature is low and condensation is likely to occur, the embodiment of the present application will control the rotation speed of the outdoor fan based on the evaporator reference temperature.
  • the wind speed value may be preset, and the embodiments of the present application do not specifically limit the value of the preset wind speed.
  • the air supply mode of the key indoor unit is a windless air supply mode, a soft air supply mode or an anti-direct blowing air supply mode, then its air supply speed can be considered to be lower than the preset Wind speed.
  • FIG. 6 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application.
  • Regarding controlling the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature in the above step S200 it may include but is not limited to step S331, step S332 and step S333.
  • Step S331 Determine the key indoor units from the target indoor units
  • Step S332 Obtain indoor environment parameters corresponding to key indoor units
  • Step S333 When the indoor environmental parameters meet the preset environmental parameters, the rotation speed of the fan of the outdoor unit is controlled according to the evaporator reference temperature.
  • the embodiments of this application need to first determine the key indoor units that are prone to condensation from the target indoor units, and then obtain their corresponding indoor environment parameters. If the indoor environment parameters meet the preset environmental parameters, it indicates that the demand for the key indoor units is relatively high. If the temperature is low and condensation is likely to occur, the embodiment of the present application will control the rotation speed of the outdoor fan based on the evaporator reference temperature.
  • the above-mentioned indoor environment parameters may include but are not limited to indoor air temperature or indoor air humidity.
  • the above-mentioned preset environmental parameters may include, but are not limited to, preset indoor air temperature or preset indoor air humidity.
  • the specific values of the preset environmental parameters may be preset, and the embodiments of the present application do not specifically limit the values of the preset environmental parameters.
  • determination of key indoor units from the target indoor units in the above steps S311, S321 and S331 may include but is not limited to the two implementations shown in Figures 7 to 8.
  • FIG. 7 is a flow chart of a control method for a multi-split air conditioner provided by another embodiment of the present application.
  • Step S410 When the target indoor unit is an indoor unit, use the target indoor unit as a key indoor unit.
  • the embodiment of the present application will use this indoor unit as the above-mentioned key indoor unit.
  • FIG. 8 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application.
  • Step S421 When the target indoor unit is multiple indoor units, obtain the indoor environmental humidity corresponding to each indoor unit in the target indoor unit;
  • Step S422 Select the indoor unit with the highest indoor environmental humidity as the key indoor unit.
  • the embodiment of the present application when the target indoor unit includes multiple indoor units, the embodiment of the present application will select the indoor unit with the highest indoor environment humidity as the above-mentioned key indoor unit. In this regard, if the embodiment of the present application can prevent the indoor unit with the highest indoor environment humidity from generating condensation, then it can naturally prevent other indoor units in the target indoor unit from generating condensation.
  • the indoor unit in the embodiment of the present application may be provided with a humidity sensor for detecting indoor air humidity.
  • the type of the above-mentioned humidity sensor may be a capacitive humidity sensor or a resistive humidity sensor.
  • the capacitive humidity sensor has a more linear response than the resistive humidity sensor, and may also be other types of humidity sensors.
  • the embodiments of the present application do not limit the specific type of the humidity sensor.
  • the methods for obtaining the indoor environment parameters in the above-mentioned Figures 4 and 6 and the judgment logic between the indoor environment parameters and the preset environment parameters may include but are not limited to those in Figures 9 to 11 Three implementation situations.
  • FIG. 9 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application.
  • the acquisition methods of the indoor environment parameters in the above-mentioned Figures 4 and 6 and the judgment logic between the indoor environment parameters and the preset environment parameters may include but are not limited to steps S511 and S512.
  • Step S511 Obtain the indoor ambient temperature and indoor ambient humidity corresponding to the key indoor unit
  • Step S512 When the indoor ambient temperature is greater than the preset temperature and the indoor ambient humidity is greater than the preset humidity, it is determined that the indoor environmental parameters meet the preset environmental parameters.
  • embodiments of the present application can collect the indoor ambient humidity and indoor ambient temperature of the environment where the key indoor unit is located. If the indoor ambient humidity is higher than the preset humidity and the indoor ambient temperature If it is higher than the preset temperature, it can indicate that the condensation temperature of the indoor air is high, which means that the key indoor unit is prone to condensation.
  • the embodiment of the present application will control the fan of the outdoor unit based on the evaporator reference temperature. The rotation speed increases the evaporator temperature of the key indoor unit to avoid condensation in the key indoor unit and achieves a cooling effect.
  • the indoor ambient humidity is lower than the preset humidity or the indoor ambient temperature is lower than the preset temperature, it can indicate that the condensation temperature of the indoor air is low, which means that the key indoor unit is not prone to condensation.
  • embodiments of the present application do not need to control the rotation speed of the fan of the outdoor unit.
  • the specific value of the above-mentioned preset temperature may be set in advance, and the embodiments of the present application do not specifically limit the value of the preset temperature.
  • the specific value of the above-mentioned preset humidity may be set in advance, and the embodiments of the present application do not specifically limit the value of the preset humidity.
  • FIG. 10 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application.
  • the acquisition methods of the indoor environment parameters in the above-mentioned Figures 4 and 6 and the judgment logic between the indoor environment parameters and the preset environment parameters it may include but is not limited to step S521, step S522 and step S523.
  • Step S521 Obtain the indoor ambient temperature and indoor ambient humidity corresponding to the key indoor unit
  • Step S522 Obtain the outdoor ambient temperature, and determine the target temperature interval according to the outdoor ambient temperature, where the target temperature interval includes the outdoor ambient temperature;
  • Step S523 When the indoor ambient temperature is within the target temperature range and the indoor ambient humidity is greater than the preset humidity, it is determined that the indoor environmental parameters meet the preset environmental parameters.
  • embodiments of the present application can collect the indoor ambient humidity and indoor ambient temperature of the environment where the key indoor unit is located. If the indoor ambient humidity is higher than the preset humidity and If the indoor ambient temperature is within the target temperature range, it can indicate that the condensation temperature of the indoor air is relatively high, which indicates that the key indoor unit is prone to condensation. In this regard, the embodiment of the present application will control the outdoor unit based on the evaporator reference temperature. The speed of the fan increases the evaporator temperature of the key indoor unit to avoid condensation on the key indoor unit and achieves a cooling effect.
  • the indoor ambient humidity is lower than the preset humidity and the indoor ambient temperature is lower than the target temperature range, it can indicate that the condensation temperature of the indoor air is low, which means that the key indoor unit is not prone to condensation.
  • embodiments of the present application do not need to control the rotation speed of the fan of the outdoor unit.
  • the above-mentioned target temperature range is determined based on the outdoor ambient temperature.
  • the outdoor ambient temperature +X may be used as the upper limit of the target temperature interval
  • the outdoor ambient temperature -X may be used as the lower limit of the target temperature interval
  • FIG. 11 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application.
  • the acquisition methods of the indoor environment parameters in the above-mentioned Figures 4 and 6 and the judgment logic between the indoor environment parameters and the preset environment parameters it may include but is not limited to step S531, step S532 and step S533.
  • Step S531 Obtain the indoor ambient temperature and indoor ambient humidity corresponding to the key indoor unit
  • Step S532 Obtain the outdoor ambient temperature, and determine the target temperature interval according to the outdoor ambient temperature, where the target temperature interval includes the outdoor ambient temperature;
  • Step S533 When the indoor environmental temperature is greater than the preset temperature and is within the target temperature range, and the indoor environmental humidity is greater than the preset humidity, it is determined that the indoor environmental parameters meet the preset environmental parameters.
  • embodiments of the present application can collect the indoor ambient humidity and indoor ambient temperature of the environment where the key indoor unit is located. If the indoor ambient humidity is higher than the preset humidity, If the indoor ambient temperature is within the target temperature range and the indoor ambient temperature is higher than the preset temperature, it can indicate that the condensation temperature of the indoor air is high, which indicates that the key indoor unit is prone to condensation.
  • the embodiment of the present application is The speed of the fan of the outdoor unit will be controlled based on the evaporator reference temperature, and the evaporator temperature of the key indoor unit will be raised to avoid condensation on the key indoor unit and provide a cooling effect.
  • the above-mentioned target temperature range is determined based on the outdoor ambient temperature.
  • the outdoor ambient temperature +X may be used as the upper limit of the target temperature interval
  • the outdoor ambient temperature -X may be used as the lower limit of the target temperature interval
  • the specific value of the above-mentioned preset temperature may be set in advance, and the embodiments of the present application do not specifically limit the value of the preset temperature.
  • the specific value of the above-mentioned preset humidity may be set in advance, and the embodiments of the present application do not specifically limit the value of the preset humidity.
  • Figure 12 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application.
  • the control method may also include but is not limited to step S610 and step S620.
  • Step S610 For each indoor unit, obtain the indoor ambient temperature and indoor set temperature corresponding to the indoor unit, and calculate the temperature deviation between the indoor ambient temperature and the indoor set temperature;
  • Step S620 Use all indoor units whose temperature deviation is greater than the preset deviation as target indoor units.
  • the indoor set temperature and indoor ambient temperature corresponding to each indoor unit can be obtained, and then the indoor ambient temperature is subtracted from the indoor set temperature. temperature to obtain the temperature deviation. If the temperature deviation is higher than the preset deviation, it indicates that the indoor temperature is too high. At this time, the indoor unit needs the outdoor unit to provide load so that the indoor unit can meet user needs or functional requirements. Therefore, this indoor unit is an indoor unit with capacity requirements.
  • the indoor unit Indoor units are not indoor units with capacity requirements.
  • FIG. 13 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application.
  • the above-mentioned method for determining the preset capacity may include, but is not limited to, step S710 and step S720.
  • Step S710 Obtain the outdoor unit capacity of the outdoor unit
  • Step S720 Determine the preset capacity according to the capacity of the external machine.
  • the preset capacity may be set based on the outdoor unit capacity. For example, the preset capacity may be set to 25% of the outdoor unit capacity, or may be set to 25% of the outdoor unit capacity. 20%.
  • the embodiments of the present application do not specifically limit the numerical value of the above ratio.
  • control of the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature in step S200 may include, but is not limited to, the three implementation situations shown in FIGS. 14 to 16 .
  • FIG. 14 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application.
  • the control of the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature in the above step S200 it may include but is not limited to step S811 and step S812.
  • Step S811 when the evaporator reference temperature is less than or equal to the first preset reference temperature and greater than or equal to the second preset reference temperature;
  • Step S812 Maintain the rotation speed of the fan of the outdoor unit.
  • the magnitude relationship between the above-mentioned first preset reference temperature and the second preset reference temperature is specifically: the first preset reference temperature is higher than the second preset reference temperature.
  • the evaporator reference temperature is between the first preset reference temperature and the second preset reference temperature, it can be shown that the current evaporator reference temperature will not cause condensation in the indoor unit and has a certain cooling effect.
  • this The applied embodiment can control the rotation speed of the outdoor unit fan to remain constant.
  • the specific value of the above-mentioned first preset reference temperature may be preset, and the embodiments of the present application do not specifically limit the value of the first preset reference temperature.
  • the specific value of the above-mentioned second preset reference temperature may be set in advance. The embodiments of the present application do not specifically limit the value of the second preset reference temperature.
  • the above-mentioned second preset reference temperature may correspond to the dew point temperature, and the dew point temperature may be calculated based on the indoor air temperature and indoor air humidity.
  • Figure 15 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application.
  • control of the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature in the above step S200 it may include but is not limited to step S821 and step S822.
  • Step S821 when the evaporator reference temperature is greater than the first preset reference temperature
  • Step S822 Increase the rotation speed of the fan of the outdoor unit.
  • the embodiments of the present application need to add Maximize the speed of the outdoor unit fan to improve the cooling effect of the indoor unit.
  • first preset reference temperature may be preset, and the embodiments of the present application do not specifically limit the value of the first preset reference temperature.
  • FIG. 16 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application.
  • Step S831 when the evaporator reference temperature is less than the second preset reference temperature
  • Step S832 Reduce the rotation speed of the fan of the outdoor unit.
  • embodiments of the present application require Reduce the speed of the outdoor unit fan to prevent condensation.
  • the specific value of the above-mentioned second preset reference temperature may be set in advance.
  • the embodiments of the present application do not specifically limit the value of the second preset reference temperature.
  • the above-mentioned second preset reference temperature may correspond to the dew point temperature, and the dew point temperature may be calculated based on the indoor air temperature and indoor air humidity.
  • FIG. 17 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application. Regarding increasing the rotation speed of the fan of the outdoor unit in the above step S822, it may include but is not limited to step S910.
  • Step S910 After each preset time interval, increase the rotation speed of the fan of the outdoor unit based on the rotation speed adjustment step.
  • embodiments of the present application can adjust the rotation speed of the outdoor fan after each preset period of time. Increase the speed adjustment step by a certain amount.
  • the specific value of the above-mentioned preset time may be set in advance, and the embodiments of the present application do not specifically limit the value of the preset time.
  • the specific numerical value of the above-mentioned rotational speed adjustment step may be preset, and the embodiments of the present application do not specifically limit the numerical value of the rotational speed adjustment step.
  • FIG. 18 is a flow chart of a control method for a multi-connected air conditioner provided by another embodiment of the present application. Regarding increasing the rotation speed of the fan of the outdoor unit in the above step S822, it may include but is not limited to step S920.
  • Step S920 After each preset time interval, reduce the rotation speed of the fan of the outdoor unit based on the rotation speed adjustment step.
  • embodiments of the present application may adjust the rotation speed of the outdoor fan after each preset period of time. Reduce the speed adjustment step by a certain amount.
  • the specific value of the above-mentioned preset time may be set in advance, and the embodiments of the present application do not specifically limit the value of the preset time.
  • the specific numerical value of the above-mentioned rotational speed adjustment step may be preset, and the embodiments of the present application do not specifically limit the numerical value of the rotational speed adjustment step.
  • the preset time corresponding to increasing the rotational speed of the outdoor unit fan may be consistent with the preset time corresponding to decreasing the rotational speed of the outdoor unit fan, or may be the same as the preset time corresponding to decreasing the rotational speed of the outdoor unit fan.
  • the preset time is inconsistent.
  • the corresponding speed adjustment step when increasing the speed of the outdoor fan may be consistent with the speed adjustment step when reducing the speed of the outdoor fan, or may be the same as the step when reducing the speed of the outdoor fan.
  • the corresponding speed adjustment steps are inconsistent.
  • Figure 19 is an overall flow chart of a control method for a multi-connected air conditioner provided by an embodiment of the present application.
  • the overall process includes but is not limited to steps S1001 to S1012.
  • Step S1001 Turn on the cooling mode
  • Step S1002 Determine whether the total indoor unit capacity of the indoor units with capacity requirements is less than or equal to 25% of the outdoor unit capacity. When the total indoor unit capacity of the target indoor unit ⁇ 25% of the outdoor unit capacity, execute step S1003, otherwise return to execution. Step S1002;
  • Step S1003 Determine whether the key indoor unit is in the windless mode. When it is on, execute step S1004; otherwise, return to step S1002;
  • Step S1004 Determine whether the indoor temperature T1 is greater than or equal to the outdoor temperature T2-X and less than or equal to the outdoor temperature T2+X. If yes, execute step S1005; otherwise, return to step S1002, where X is a positive number;
  • Step S1005 Determine whether the indoor temperature T1 is greater than or equal to 25°C and lasts for more than 5 minutes. If yes, execute step S1006; otherwise, return to step S1002;
  • Step S1006 Determine whether the indoor humidity H is greater than or equal to 75% and lasts for more than 5 minutes. If yes, execute step S1007; otherwise, return to step S1002;
  • Step S1007 Calculate the average evaporator temperature T3 of the target indoor unit
  • Step S1008 Determine whether the evaporator average temperature T3 is greater than the first preset evaporator average temperature Y. If yes, execute step S1009; otherwise, execute step S1010;
  • Step S1009 Every preset time interval Tm, increase the outdoor unit fan by 20 revolutions until the maximum allowed speed;
  • Step S1010 determine whether the evaporator average temperature T3 is less than the second preset evaporator average temperature Z, if so, execute step S1011, otherwise execute step S1012;
  • Step S1011 Every preset time interval Tm, reduce the outdoor unit fan by 20 revolutions until the minimum allowed speed.
  • Step S1012 Maintain the current rotation speed of the outdoor unit fan.
  • one embodiment of the present application provides a controller, which includes: a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the processor and memory may be connected via a bus or other means.
  • controller in this embodiment may include the processor and memory in the embodiment shown in Figure 1. Both belong to the same application concept, so they have the same implementation principles and beneficial effects. No further details will be given.
  • the non-transient software programs and instructions required to implement the control method of the multi-split air conditioner of the above embodiment are stored in the memory, and when executed by the processor, the control method of the multi-split air conditioner of the above embodiment is executed.
  • the embodiment of the present application will control the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature. By adjusting the rotation speed of the outdoor unit fan, the heat exchange amount of the outdoor unit can be reduced, thereby Reduce the cooling capacity of the indoor unit, thereby reducing the occurrence of condensation in the indoor unit.
  • controller of the embodiment of the present application can execute the control method of the multi-connected air conditioner of the above embodiment
  • specific implementation and technical effects of the controller of the embodiment of the present application can be referred to any of the above.
  • one embodiment of the present application provides a multi-line air conditioner, which includes but is not limited to the controller of the above embodiment.
  • the embodiment of the present application will control the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature. By adjusting the rotation speed of the outdoor unit fan, the heat exchange amount of the outdoor unit can be reduced, thereby Reduce the cooling capacity of the indoor unit, thereby reducing the occurrence of condensation in the indoor unit.
  • the multi-split air conditioner of the embodiment of the present application includes the controller of the above embodiment, and the above implementation
  • the controller of the embodiment can execute the control method of the multi-line air conditioner of any of the above embodiments. Therefore, the specific implementation and technical effects of the multi-line air conditioner of the embodiment of the present application can be referred to the multi-line air conditioner of any of the above embodiments. Specific implementation methods and technical effects of the control method of online air conditioners.
  • one embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the above control method. Exemplarily, the above-described method steps in Figures 3 to 19 are performed.
  • the embodiment of the present application will control the rotation speed of the fan of the outdoor unit according to the evaporator reference temperature. By adjusting the rotation speed of the outdoor unit fan, the heat exchange amount of the outdoor unit can be reduced, thereby Reduce the cooling capacity of the indoor unit, thereby reducing the occurrence of condensation in the indoor unit.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically includes computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种多联机空调器及其控制方法、控制器和存储介质,其中多联机空调器的控制方法包括如下步骤:在制冷模式下,获取目标室内机的内机容量和蒸发器参考温度,其中目标室内机为多个室内机(220)的一个或多个(S100);以及当内机容量少于或等于预设容量,根据蒸发器参考温度控制室外机(210)的风机的转速(S200)。

Description

多联机空调器及其控制方法、控制器和存储介质
相关申请的交叉引用
本申请要求于2022年07月28日提交的申请号为202210897250.4、名称为“多联机空调器及其控制方法、控制器和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调器技术领域,特别涉及一种多联机空调器及其控制方法、控制器和存储介质。
背景技术
目前,多联机空调器会包括一台室外机和多台室内机,并且在设计上室外换热器的换热能力和压缩机的排量都会远大于一台室内机的需求;因此,当数量较少的室内机开启时,尽管在降低压缩机频率以及电子膨胀阀开度之后,室外机所提供的能量仍然会大于室内机的需求,因此会导致室内机的出风温度低,进而出现凝露等问题。
发明内容
本申请旨在至少部分解决现有技术中存在的技术问题之一。为此,本申请提出一种多联机空调器及其控制方法、控制器和存储介质,能够在开启少量室内机时,降低室内机发生凝露的情况。
第一方面,本申请的实施例提供了一种多联机空调器的控制方法,所述多联机空调器包括室外机和多个室内机,所述控制方法包括:在制冷模式下,获取目标室内机的内机容量和蒸发器参考温度,其中,所述目标室内机为多个所述室内机的一个或多个;当所述内机容量少于或等于预设容量,根据所述蒸发器参考温度控制所述室外机的风机的转速。
根据本申请的实施例的多联机空调器的控制方法,至少具有如下有益效果:对于多联机空调器,当有能力需求的目标室内机的总内机容量少于或等于预设容量时,室外机所提供的能量仍然会大于目标室内机的需求,因此,为了减少室内机的凝露情况,本申请的实施例会根据蒸发器参考温度控制室外机的风机的转速,通过室外机风机的转速调节,可以降低室外机的换热量,从而降低室内机的制冷量,进而能够减少室内机发生凝露的情况。
根据本申请的一些实施例,所述根据所述蒸发器参考温度控制所述室外机的风机的转速,包括如下之一:
从所述目标室内机中确定关键室内机,并获取与所述关键室内机对应的送风风速和室内环境参数,当所述送风风速小于预设风速并且所述室内环境参数满足预设环境参数,根据所述蒸发器参考温度控制所述室外机的风机的转速;
从所述目标室内机中确定关键室内机,并获取与所述关键室内机对应的送风风速,当所述送风风速小于预设风速,根据所述蒸发器参考温度控制所述室外机的风机的转速;
从所述目标室内机中确定关键室内机,并获取与所述关键室内机对应的室内环境参数,当 所述室内环境参数满足预设环境参数,根据所述蒸发器参考温度控制所述室外机的风机的转速。
根据本申请的一些实施例,所述从所述目标室内机中确定关键室内机,包括如下至少之一:
当所述目标室内机为一个所述室内机,将所述目标室内机作为所述关键室内机;
当所述目标室内机为多个所述室内机,获取所述目标室内机中各个所述室内机所对应的室内环境湿度,并选择所述室内环境湿度最大的所述室内机作为所述关键室内机。
根据本申请的一些实施例,在获取与所述关键室内机对应的室内环境参数的情况下,所述获取与所述关键室内机对应的室内环境参数,包括:获取与所述关键室内机对应的室内环境温度和室内环境湿度;
所述室内环境参数满足预设环境参数,包括如下之一:
所述室内环境温度大于预设温度并且所述室内环境湿度大于预设湿度;
所述室内环境温度位于目标温度区间并且所述室内环境湿度大于预设湿度,其中,所述目标温度区间包括室外环境温度;
所述室内环境温度大于预设温度以及位于目标温度区间并且所述室内环境湿度大于预设湿度,其中,所述目标温度区间包括室外环境温度。
根据本申请的一些实施例,在所述获取目标室内机的内机容量和蒸发器参考温度之前,所述控制方法包括:对于每个所述室内机,获取与所述室内机对应的室内环境温度和室内设定温度,并计算出所述室内环境温度和所述室内设定温度之间的温度偏差;将所述温度偏差大于预设偏差的所有所述室内机作为目标室内机。
根据本申请的一些实施例,所述预设容量的确定步骤,包括:获取所述室外机的外机容量;根据所述外机容量确定预设容量。
根据本申请的一些实施例,所述根据所述蒸发器参考温度控制所述室外机的风机的转速,包括如下至少之一:
当所述蒸发器参考温度小于或等于第一预设参考温度并且大于或等于第二预设参考温度,保持所述室外机的风机的转速,其中,所述第一预设参考温度高于所述第二预设参考温度;
当所述蒸发器参考温度大于所述第一预设参考温度,提高所述室外机的风机的转速;
当所述蒸发器参考温度小于所述第二预设参考温度,降低所述室外机的风机的转速。
根据本申请的一些实施例,包括如下之一:
在提高所述室外机的风机的转速的情况下,所述提高所述室外机的风机的转速,包括:每间隔预设时间后,基于转速调节步长提高所述室外机的风机的转速;
在降低所述室外机的风机的转速的情况下,所述降低所述室外机的风机的转速,包括:每间隔预设时间后,基于转速调节步长降低所述室外机的风机的转速。
第二方面,本申请的实施例还提供了一种控制器,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行如上述第一方面所述的多联机空调器的控制方法。
第三方面,本申请的实施例还提供了一种多联机空调器,包括如上述第二方面所述的控制器。
第四方面,本申请的实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上述第一方面所述的多联机空调器的控制方法。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的用于执行多联机空调器的控制方法的系统架构平台示意图;
图2是本申请一个实施例提供的多联机空调器的结构示意图;
图3是本申请一个实施例提供的多联机空调器的控制方法的流程图;
图4是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图5是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图6是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图7是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图8是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图9是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图10是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图11是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图12是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图13是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图14是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图15是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图16是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图17是本申请另一个实施例提供的多联机空调器的控制方法的流程图;
图18是本申请另一个实施例提供的多联机空调器的控制方法的流程图;以及
图19是本申请一个实施例提供的多联机空调器的控制方法的整体流程图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只 是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
在一些情形下,多联机空调器会包括一台室外机和多台室内机,室外机容量与室内机容量的比例范围可以从0.3到1.9,因此在设计上室外换热器的换热能力和压缩机的排量都会远大于一台室内机的需求。对此,当数量较少的室内机开启无风感、柔风感、防直吹功能时,尽管在降低压缩机频率以及电子膨胀阀开度之后,室外机所提供的能量仍然会大于室内机的需求,因此会导致室内机的出风温度低,进而出现凝露等问题。
基于上述情况,本申请的实施例提供了一种多联机空调器及其控制方法、控制器和计算机可读存储介质,能够在开启少量室内机的情况下,通过调节室外机风机的转速,以降低室外机的换热量,从而降低室内机的制冷量,进而能够减少室内机发生凝露的情况。
下面结合附图,对本申请的实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的用于执行多联机空调器的控制方法的系统架构平台的示意图。
本申请的实施例的系统架构平台100包括一个或多个处理器110和存储器120,图1中以一个处理器110及一个存储器120为例。
处理器110和存储器120可以通过总线或者其他方式连接,图1中以通过总线连接为例。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器120可选包括相对于处理器110远程设置的存储器120,这些远程存储器可以通过网络连接至该系统架构平台100。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员可以理解,图1中示出的装置结构并不构成对系统架构平台100的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在图1所示的系统架构平台100中,处理器110可以用于调用存储器120中储存的多联机空调器的控制程序,从而实现多联机空调器的控制方法。
基于上述系统架构平台100的硬件结构,提出本申请的多联机空调器的各个实施例。
如图2所示,图2是本申请一个实施例提供的多联机空调器的结构示意图。
在一些实施例中,多联机空调器包括但不限于一个室外机210和多个室内机220,其中,每个室内机220对应设置有各自的内机容量,室外机210也对应设置有自身的外机容量。
在一些实施例中,室内机220还可以设置有用于检测蒸发器蒸发温度的温度传感器;另外,本申请的实施例中的室内机220还可以设置有用于检测室内空气温度的温度传感器和用于检测室内空气湿度的湿度传感器。
可以理解的是,关于上述的温度传感器的类型,可以是热电偶式温度传感器,也可以是热 敏电阻式温度传感器,也可以是电阻温度传感器,也可以是IC温度传感器,也可以是其他类型的温度传感器,本申请的实施例对温度传感器的具体类型不作限定。
另外,可以理解的是,关于上述的湿度传感器的类型,可以是电容式湿度传感器,也可以是电阻式湿度传感器。其中,电容式湿度传感器具有比电阻式湿度传感器更线性的响应,也可以是其他类型的湿度传感器,本申请的实施例对湿度传感器的具体类型不作限定。
需要说明的是,本申请的实施例的多联机空调器可以包括有图1中所示的处理器和存储器,其中,处理器可以与室内机220和室外机210通信,从而实现多联机空调器的控制方法。
基于上述系统架构平台100和多联机空调器的硬件结构,提出本申请的多联机空调器的控制方法的各个实施例。
如图3所示,图3是本申请一个实施例提供的多联机空调器的控制方法的流程图。本申请的实施例的多联机空调器包括但不限于室外机和多个室内机,该控制方法包括但不限于有步骤S100和步骤S200。
步骤S100、在制冷模式下,获取目标室内机的内机容量和蒸发器参考温度,其中,目标室内机为多个室内机的一个或多个。
在一些实施例中,由于要解决的问题是室内机发生凝露的问题,而室内机发生凝露的情况会出现在制冷模式下,因此,本申请的实施例只针对在制冷模式下执行多联机空调器的控制方法。
可以理解的是,关于除湿模式,其也属于制冷模式,其区别在于空调器的运行参数有所特定限制,因此,本申请的实施例的多联机空调器的控制方法也同样适用于除湿模式。
另外,关于目标室内机,是指有能力需求的室内机。其中,能力需求是指室内机设定温度与室内环境温度存在差值,需要室外机工作提供负荷,使得室内满足用户需求或者功能需求。
另外,关于目标室内机的内机容量,是指所有的有能力需求的室内机的内机容量的总和。其中,内机容量与室内机的机型对应匹配的。该每台室内机的当前内机容量可以是固定的,也可以是可调节的。
另外,关于目标室内机的蒸发器参考温度,当目标室内机为一台室内机时,该蒸发器参考温度即对应为该台室内机的蒸发器的温度。当目标室内机为多台室内机时,该蒸发器参考温度可以对应为多台室内机的蒸发器温度的平均值,或者是多台室内机的蒸发器温度的中位值,也可以是其他参考值,本申请的实施例对蒸发器参考温度的类型不作具体限定。
另外,关于目标室内机的蒸发器温度的获取方式,可以在室内机的蒸发器位置处增设温度传感器,并通过该温度传感器来采集室内机的蒸发器温度。其中,关于该温度传感器的类型,可以是热电偶式温度传感器,也可以是热敏电阻式温度传感器,也可以是电阻温度传感器,也可以是IC温度传感器,也可以是其他类型的温度传感器,本申请的实施例对温度传感器的具体类型不作限定。
步骤S200、当内机容量少于或等于预设容量,根据蒸发器参考温度控制室外机的风机的转速。
在一些实施例中,关于上述的预设容量,可以是人为预先设定的。其中,关于预设容量的 具体数值,可以是根据外机容量而设定,也可以是根据内机容量而设定,本申请的实施例对预设容量的具体数值的设定方式不作具体限定。
另外,关于内机容量和预设容量的对比,可以通过目标室内机的数量来确定。例如,若每台室内机的内机容量一致,并且预设容量是两台室内机的总的内机容量,那么,当目标室内机的数量为一台或者两台时,则可以认为目标室内机的内机容量小于或等于预设容量;当目标室内机的数量为三台以上时,则可以认为目标室内机的内机容量大于预设容量。
另外,关于根据蒸发器参考温度来对室外机的风机的转速进行控制的方式,可以包括但不限于如下方式:当蒸发器参考温度过高时,则可能表示室内机的制冷效果较差,此时可以适当增大室外机风机的转速;当蒸发器参考温度过低时,则表示室内机可能会存在凝露情况或者室内机的制冷效果过强,此时可以适当降低室外机风机的转速。
根据上述步骤S100和步骤S200,对于多联机空调器,当有能力需求的目标室内机的总内机容量少于或等于预设容量时,室外机所提供的能量仍然会大于目标室内机的需求,因此,为了减少室内机的凝露情况,本申请的实施例会根据蒸发器参考温度控制室外机的风机的转速,通过室外机风机的转速调节,可以降低室外机的换热量,从而降低室内机的制冷量,进而能够减少室内机发生凝露的情况。
另外,需要说明的是,关于上述步骤S200中的根据蒸发器参考温度控制室外机的风机的转速,可以包括但不限于有图4至图6中的三种实施情况。
如图4所示,图4是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述步骤S200中的根据蒸发器参考温度控制室外机的风机的转速,可以包括但不限于有步骤S311、步骤S312和步骤S313。
步骤S311、从目标室内机中确定关键室内机;
步骤S312、获取与关键室内机对应的送风风速和室内环境参数;
步骤S313、当送风风速小于预设风速并且室内环境参数满足预设环境参数,根据蒸发器参考温度控制室外机的风机的转速。
在一些实施例中,如果能够避免目标室内机中容易产生凝露的室内机产生凝露,那么自然就可以使得目标室内机中其他的不容易产生凝露的室内机产生凝露,对此,本申请的实施例需要首先从目标室内机中确定容易产生凝露的关键室内机,然后获取其对应的室内环境参数以及送风风速,如果室内环境参数满足预设环境参数并且送风风速低于预设风速,则表明该关键室内机的需求较低并且容易发生凝露,那么本申请的实施例就会基于蒸发器参考温度对室外机风机的转速进行控制。
需要说明的是,关于上述的预设风速,其风速数值可以是预先设定的,本申请的实施例对预设风速的数值不作具体限定。另外,对于本申请的实施例,如果关键室内机的送风模式为无风感送风模式、柔风感送风模式或者防直吹送风模式,那么可以认为其送风风速低于预设风速。
另外,需要说明的是,关于上述的室内环境参数,可以包括但不限于室内空气温度或者室内空气湿度。对应地,关于上述的预设环境参数,可以包括但不限于预设室内空气温度或者预设室内空气湿度。其中,预设环境参数的具体数值可以是预先设定的,本申请的实施例对预设 环境参数的数值不作具体限定。
如图5所示,图5是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述步骤S200中的根据蒸发器参考温度控制室外机的风机的转速,可以包括但不限于有步骤S321、步骤S322和步骤S323。
步骤S321、从目标室内机中确定关键室内机;
步骤S322、获取与关键室内机对应的送风风速;
步骤S323、当送风风速小于预设风速,根据蒸发器参考温度控制室外机的风机的转速。
在一些实施例中,如果能够避免目标室内机中容易产生凝露的室内机产生凝露,那么自然就可以使得目标室内机中其他的不容易产生凝露的室内机产生凝露,对此,本申请的实施例需要首先从目标室内机中确定容易产生凝露的关键室内机,然后获取其对应的送风风速,如果送风风速低于预设风速,则表明该关键室内机的需求较低并且容易发生凝露,那么本申请的实施例就会基于蒸发器参考温度对室外机风机的转速进行控制。
需要说明的是,关于上述的预设风速,其风速数值可以是预先设定的,本申请的实施例对预设风速的数值不作具体限定。另外,对于本申请的实施例,如果关键室内机的送风模式为无风感送风模式、柔风感送风模式或者防直吹送风模式,那么可以认为其送风风速低于预设风速。
如图6所示,图6是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述步骤S200中的根据蒸发器参考温度控制室外机的风机的转速,可以包括但不限于有步骤S331、步骤S332和步骤S333。
步骤S331、从目标室内机中确定关键室内机;
步骤S332、获取与关键室内机对应的室内环境参数;
步骤S333、当室内环境参数满足预设环境参数,根据蒸发器参考温度控制室外机的风机的转速。
在一些实施例中,如果能够避免目标室内机中容易产生凝露的室内机产生凝露,那么自然就可以使得目标室内机中其他的不容易产生凝露的室内机产生凝露,对此,本申请的实施例需要首先从目标室内机中确定容易产生凝露的关键室内机,然后获取其对应的室内环境参数,如果室内环境参数满足预设环境参数,则表明该关键室内机的需求较低并且容易发生凝露,那么本申请的实施例就会基于蒸发器参考温度对室外机风机的转速进行控制。
另外,需要说明的是,关于上述的室内环境参数,可以包括但不限于室内空气温度或者室内空气湿度。对应地,关于上述的预设环境参数,可以包括但不限于预设室内空气温度或者预设室内空气湿度。其中,预设环境参数的具体数值可以是预先设定的,本申请的实施例对预设环境参数的数值不作具体限定。
另外,需要说明的是,关于上述步骤S311、步骤S321和步骤S331中的从目标室内机中确定关键室内机,可以包括但不限于有图7至图8中的两种实施情况。
如图7所示,图7是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述步骤S311、步骤S321和步骤S331中的从目标室内机中确定关键室内机,可以包括但不限于有步骤S410。
步骤S410、当目标室内机为一个室内机,将目标室内机作为关键室内机。
具体地,在目标室内机只包括一台室内机的情况下,本申请的实施例则会将该台室内机作为上述的关键室内机。
如图8所示,图8是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述步骤S311、步骤S321和步骤S331中的从目标室内机中确定关键室内机,可以包括但不限于有步骤S421和步骤S422。
步骤S421、当目标室内机为多个室内机,获取目标室内机中各个室内机所对应的室内环境湿度;
步骤S422、选择室内环境湿度最大的室内机作为关键室内机。
在一些实施例中,在目标室内机包括多台室内机的情况下,本申请的实施例则会选择室内环境湿度最大的室内机作为上述的关键室内机。对此,如果本申请的实施例能够避免室内环境湿度最大的室内机产生凝露,那么自然就可以使得目标室内机中其他的室内机避免产生凝露。
需要说明的是,本申请的实施例中的室内机可以设置有湿度传感器,用于检测室内空气湿度。
另外,可以理解的是,关于上述的湿度传感器的类型,可以是电容式湿度传感器,也可以是电阻式湿度传感器。其中,电容式湿度传感器具有比电阻式湿度传感器更线性的响应,也可以是其他类型的湿度传感器,本申请的实施例对湿度传感器的具体类型不作限定。
另外,需要说明的是,关于上述图4和图6中的室内环境参数的获取方式以及室内环境参数和预设环境参数之间的判断逻辑,可以包括但不限于有图9至图11中的三种实施情况。
如图9所示,图9是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述图4和图6中的室内环境参数的获取方式以及室内环境参数和预设环境参数之间的判断逻辑,可以包括但不限于有步骤S511和步骤S512。
步骤S511、获取与关键室内机对应的室内环境温度和室内环境湿度;
步骤S512、当室内环境温度大于预设温度并且室内环境湿度大于预设湿度,确定室内环境参数满足预设环境参数。
具体地,为了确定关键室内机当前是否容易发生凝露情况,本申请的实施例可以采集关键室内机所在环境的室内环境湿度以及室内环境温度,如果室内环境湿度高于预设湿度并且室内环境温度高于预设温度,则可以表明室内空气的凝露温度较高,那么表明关键室内机很容易发生凝露情况,对此,本申请的实施例就会根据蒸发器参考温度控制室外机的风机的转速,提高关键室内机的蒸发器温度以避免关键室内机发生凝露并且兼备制冷效果。
另外,需要说明的是,如果室内环境湿度低于预设湿度或者室内环境温度低于预设温度,则可以表明室内空气的凝露温度较低,那么表明关键室内机不容易发生凝露情况,对此,本申请的实施例可以无需控制室外机的风机的转速。
另外,可以理解的是,关于上述的预设温度的具体数值可以是预先设定的,本申请的实施例对预设温度的数值不作具体限定。另外,关于上述的预设湿度的具体数值可以是预先设定的,本申请的实施例对预设湿度的数值不作具体限定。
如图10所示,图10是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述图4和图6中的室内环境参数的获取方式以及室内环境参数和预设环境参数之间的判断逻辑,可以包括但不限于有步骤S521、步骤S522和步骤S523。
步骤S521、获取与关键室内机对应的室内环境温度和室内环境湿度;
步骤S522、获取室外环境温度,并根据室外环境温度确定目标温度区间,其中,目标温度区间包括室外环境温度;
步骤S523、当室内环境温度位于目标温度区间并且室内环境湿度大于预设湿度,确定室内环境参数满足预设环境参数。
在一些实施例中,为了确定关键室内机当前是否容易发生凝露情况,本申请的实施例可以采集关键室内机所在环境的室内环境湿度以及室内环境温度,如果室内环境湿度高于预设湿度并且室内环境温度位于目标温度区间,则可以表明室内空气的凝露温度较高,那么表明关键室内机很容易发生凝露情况,对此,本申请的实施例就会根据蒸发器参考温度控制室外机的风机的转速,提高关键室内机的蒸发器温度以避免关键室内机发生凝露并且兼备制冷效果。
另外,需要说明的是,如果室内环境湿度低于预设湿度并且室内环境温度低于目标温度区间,则可以表明室内空气的凝露温度较低,那么表明关键室内机不容易发生凝露情况,对此,本申请的实施例可以无需控制室外机的风机的转速。
另外,需要说明的是,关于上述的目标温度区间,是根据室外环境温度而确定的。例如,可以将室外环境温度+X作为目标温度区间的区间上限值,将室外环境温度-X作为目标温度区间的区间下限值,其中,X为正数。
另外,可以理解的是,关于上述的预设湿度的具体数值可以是预先设定的,本申请的实施例对预设湿度的数值不作具体限定。
如图11所示,图11是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述图4和图6中的室内环境参数的获取方式以及室内环境参数和预设环境参数之间的判断逻辑,可以包括但不限于有步骤S531、步骤S532和步骤S533。
步骤S531、获取与关键室内机对应的室内环境温度和室内环境湿度;
步骤S532、获取室外环境温度,并根据室外环境温度确定目标温度区间,其中,目标温度区间包括室外环境温度;
步骤S533、当室内环境温度大于预设温度以及位于目标温度区间,并且室内环境湿度大于预设湿度,确定室内环境参数满足预设环境参数。
在一些实施例中,为了确定关键室内机当前是否容易发生凝露情况,本申请的实施例可以采集关键室内机所在环境的室内环境湿度以及室内环境温度,如果室内环境湿度高于预设湿度、室内环境温度位于目标温度区间并且室内环境温度高于预设温度,则可以表明室内空气的凝露温度较高,那么表明关键室内机很容易发生凝露情况,对此,本申请的实施例就会根据蒸发器参考温度控制室外机的风机的转速,提高关键室内机的蒸发器温度以避免关键室内机发生凝露并且兼备制冷效果。
另外,需要说明的是,如果室内环境湿度低于预设湿度、室内环境温度低于目标温度区间 并且室内环境温度低于预设温度,则可以表明室内空气的凝露温度较低,那么表明关键室内机不容易发生凝露情况,对此,本申请的实施例可以无需控制室外机的风机的转速。
另外,需要说明的是,关于上述的目标温度区间,是根据室外环境温度而确定的。例如,可以将室外环境温度+X作为目标温度区间的区间上限值,将室外环境温度-X作为目标温度区间的区间下限值,其中,X为正数。
另外,可以理解的是,关于上述的预设温度的具体数值可以是预先设定的,本申请的实施例对预设温度的数值不作具体限定。另外,关于上述的预设湿度的具体数值可以是预先设定的,本申请的实施例对预设湿度的数值不作具体限定。
另外,如图12所示,图12是本申请另一个实施例提供的多联机空调器的控制方法的流程图。在上述步骤S100的获取目标室内机的内机容量和蒸发器参考温度之前,该控制方法还可以包括但不限于有步骤S610和步骤S620。
步骤S610、对于每个室内机,获取与室内机对应的室内环境温度和室内设定温度,并计算出室内环境温度和室内设定温度之间的温度偏差;
步骤S620、将温度偏差大于预设偏差的所有室内机作为目标室内机。
具体地,关于目标室内机的确定方式,即有能力需求的室内机的确定方式,可以获取每个室内机多对应的室内设定温度和室内环境温度,再将室内环境温度减去室内设定温度,以得到温度偏差,如果该温度偏差高于预设偏差,则表明室内温度过高,此时该室内机需要室外机工作提供负荷,使得室内满足用户需求或者功能需求。因此,该室内机则属于有能力需求的室内机。
可以理解的是,如果该温度偏差低于或等于预设偏差,则表明室内温度合适,此时室内环境已经满足用户需求或者功能需求,因此该室内机无需室外机工作提供负荷,对此,该室内机则不属于有能力需求的室内机。
另外,可以理解的是,关于上述的预设偏差的具体数值可以是预先设定的,本申请的实施例对预设偏差的数值不作具体限定。
另外,如图13所示,图13是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述的预设容量的确定方法,可以包括但不限于有步骤S710和步骤S720。
步骤S710、获取室外机的外机容量;
步骤S720、根据外机容量确定预设容量。
在一些实施例中,关于预设容量,可以是基于室外机的外机容量而设定的,例如,预设容量可以设定为外机容量的25%,或者可以设定为外机容量的20%,本申请的实施例对上述比例的数值不作具体限定。
另外,需要说明的是,关于上述步骤S200中的根据蒸发器参考温度控制室外机的风机的转速,可以包括但不限于有图14至图16中的三种实施情况。
如图14所示,图14是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述步骤S200中的根据蒸发器参考温度控制室外机的风机的转速,可以包括但不限于有步骤S811和步骤S812。
步骤S811、当蒸发器参考温度小于或等于第一预设参考温度并且大于或等于第二预设参考温度;
步骤S812、保持室外机的风机的转速。
在一些实施例中,对于上述第一预设参考温度和第二预设参考温度之间的大小关系,具体为:第一预设参考温度高于第二预设参考温度。当蒸发器参考温度位于第一预设参考温度和第二预设参考温度之间,则可以表明当前的蒸发器参考温度不会使得室内机发生凝露并且具备一定的制冷效果,对此,本申请的实施例可以控制室外机风机的转速保持不变。
另外,可以理解的是,关于上述的第一预设参考温度的具体数值可以是预先设定的,本申请的实施例对第一预设参考温度的数值不作具体限定。另外,关于上述的第二预设参考温度的具体数值可以是预先设定的,本申请的实施例对第二预设参考温度的数值不作具体限定。
其中,在一实施例中,关于上述的第二预设参考温度,可以对应为露点温度,该露点温度可以基于室内空气温度和室内空气湿度计算得到。
如图15所示,图15是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述步骤S200中的根据蒸发器参考温度控制室外机的风机的转速,可以包括但不限于有步骤S821和步骤S822。
步骤S821、当蒸发器参考温度大于第一预设参考温度;
步骤S822、提高室外机的风机的转速。
在一些实施例中,当蒸发器参考温度高于第一预设参考温度,则可以表明当前的蒸发器参考温度较高,可能难以满足用户的制冷需求,对此,本申请的实施例需要增大控制室外机风机的转速,以提高室内机的制冷效果。
另外,可以理解的是,关于上述的第一预设参考温度的具体数值可以是预先设定的,本申请的实施例对第一预设参考温度的数值不作具体限定。
如图16所示,图16是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述步骤S200中的根据蒸发器参考温度控制室外机的风机的转速,可以包括但不限于有步骤S831和步骤S832。
步骤S831、当蒸发器参考温度小于第二预设参考温度;
步骤S832、降低室外机的风机的转速。
在一些实施例中,当蒸发器参考温度低于第二预设参考温度,则可以表明当前的蒸发器参考温度较低,可能会使得室内机发生凝露,对此,本申请的实施例需要减小室外机风机的转速,以防止凝露的产生。
另外,关于上述的第二预设参考温度的具体数值可以是预先设定的,本申请的实施例对第二预设参考温度的数值不作具体限定。其中,在一实施例中,关于上述的第二预设参考温度,可以对应为露点温度,该露点温度可以基于室内空气温度和室内空气湿度计算得到。
另外,如图17所示,图17是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述步骤S822中的提高室外机的风机的转速,可以包括但不限于有步骤S910。
步骤S910、每间隔预设时间后,基于转速调节步长提高室外机的风机的转速。
在一些实施例中,在增大室外机风机的转速的期间,为了避免调节过快以及避免调节过大,本申请的实施例可以在每经过一段的预设时间之后,对室外机风机的转速提高一定的转速调节步长。
另外,可以理解的是,关于上述的预设时间的具体数值可以是预先设定的,本申请的实施例对预设时间的数值不作具体限定。另外,关于上述的转速调节步长的具体数值可以是预先设定的,本申请的实施例对转速调节步长的数值不作具体限定。
另外,如图18所示,图18是本申请另一个实施例提供的多联机空调器的控制方法的流程图。关于上述步骤S822中的提高室外机的风机的转速,可以包括但不限于有步骤S920。
步骤S920、每间隔预设时间后,基于转速调节步长降低室外机的风机的转速。
在一些实施例中,在减小室外机风机的转速的期间,为了避免调节过快以及避免调节过大,本申请的实施例可以在每经过一段的预设时间之后,对室外机风机的转速降低一定的转速调节步长。
另外,可以理解的是,关于上述的预设时间的具体数值可以是预先设定的,本申请的实施例对预设时间的数值不作具体限定。另外,关于上述的转速调节步长的具体数值可以是预先设定的,本申请的实施例对转速调节步长的数值不作具体限定。
另外,关于在提高室外机风机的转速时所对应的预设时间,可以与在降低室外机风机的转速时所对应的预设时间一致,也可以与在降低室外机风机的转速时所对应的预设时间不一致。
另外,关于在提高室外机风机的转速时所对应的转速调节步长,可以与在降低室外机风机的转速时所对应的转速调节步长一致,也可以与在降低室外机风机的转速时所对应的转速调节步长不一致。
基于上述各个实施例的多联机空调器的控制方法,下面分别提出本申请的多联机空调器的控制方法的整体实施例。
如图19所示,图19是本申请一个实施例提供的多联机空调器的控制方法的整体流程图。该整体流程包括但不限于有步骤S1001至步骤S1012。
步骤S1001、开启制冷模式;
步骤S1002、判断有能力需求的室内机的总内机容量是否小于或等于25%的外机容量,当目标室内机的总内机容量≤25%外机容量,则执行步骤S1003,否则返回执行步骤S1002;
步骤S1003、判断关键室内机是否开启无风感模式,当开启时执行步骤S1004,否则返回执行步骤S1002;
步骤S1004、判断室内温度T1是否大于等于室外温度T2-X并且小于等于室外温度T2+X,当是则执行步骤S1005,否则返回执行步骤S1002,其中,X为正数;
步骤S1005、判断室内温度T1是否大于等于25℃并且持续5分钟以上,当是则执行步骤S1006,否则返回执行步骤S1002;
步骤S1006、判断室内湿度H是否大于等于75%并且持续5分钟以上,当是则执行步骤S1007,否则返回执行步骤S1002;
步骤S1007、计算目标室内机的蒸发器平均温度T3;
步骤S1008、判断蒸发器平均温度T3是否大于第一预设蒸发器平均温度Y,当是则执行步骤S1009,否则执行步骤S1010;
步骤S1009、每间隔预设时间Tm,对室外机风机增加20转,直至允许最大转速;
步骤S1010、判断蒸发器平均温度T3是否小于第二预设蒸发器平均温度Z,当是则执行步骤S1011,否则执行步骤S1012;
步骤S1011、每间隔预设时间Tm,对室外机风机降低20转,直至允许最小转速。
步骤S1012、保持室外机风机的当前转速。
根据本申请的实施例的技术方案,压缩机启动后制冷无风感的模式下,当室内的湿度较大,且单开一台室内机的能力需求远小于全开所有室内机的能力需求时,降低室外机风机转速可以有效地降低室外侧的换热量,从而降低制冷的效果,防止在原本不需要的情况下产生较大的制冷量而导致室内机产生凝露影响用户体验。
基于上述的多联机空调器的控制方法,下面分别提出本申请的控制器、多联机空调器和计算机可读存储介质的各个实施例。
另外,本申请的一个实施例提供了一种控制器,该控制器包括:处理器、存储器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
需要说明的是,本实施例中的控制器,可以包括如图1所示实施例中的处理器和存储器,两者属于相同的申请构思,因此两者具有相同的实现原理以及有益效果,此处不再详述。
实现上述实施例的多联机空调器的控制方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例的多联机空调器的控制方法。
根据本申请的实施例的技术方案,对于多联机空调器,当有能力需求的目标室内机的总内机容量少于或等于预设容量时,室外机所提供的能量仍然会大于目标室内机的需求,因此,为了减少室内机的凝露情况,本申请的实施例会根据蒸发器参考温度控制室外机的风机的转速,通过室外机风机的转速调节,可以降低室外机的换热量,从而降低室内机的制冷量,进而能够减少室内机发生凝露的情况。
值得注意的是,由于本申请的实施例的控制器能够执行上述实施例的多联机空调器的控制方法,因此,本申请的实施例的控制器的具体实施方式和技术效果,可以参照上述任一实施例的多联机空调器的控制方法的具体实施方式和技术效果。
另外,本申请的一个实施例提供了一种多联机空调器,该多联机空调器包括但不限于上述实施例的控制器。
根据本申请的实施例的技术方案,对于多联机空调器,当有能力需求的目标室内机的总内机容量少于或等于预设容量时,室外机所提供的能量仍然会大于目标室内机的需求,因此,为了减少室内机的凝露情况,本申请的实施例会根据蒸发器参考温度控制室外机的风机的转速,通过室外机风机的转速调节,可以降低室外机的换热量,从而降低室内机的制冷量,进而能够减少室内机发生凝露的情况。
值得注意的是,由于本申请的实施例的多联机空调器包括上述实施例的控制器,而上述实 施例的控制器能够执行上述任一实施例的多联机空调器的控制方法,因此,本申请的实施例的多联机空调器的具体实施方式和技术效果,可以参照上述任一实施例的多联机空调器的控制方法的具体实施方式和技术效果。
此外,本申请的一个实施例还提供了一种计算机的可读存储介质,该计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于执行上述的控制方法。示例性地,执行以上描述的图3至图19中的方法步骤。
根据本申请的实施例的技术方案,对于多联机空调器,当有能力需求的目标室内机的总内机容量少于或等于预设容量时,室外机所提供的能量仍然会大于目标室内机的需求,因此,为了减少室内机的凝露情况,本申请的实施例会根据蒸发器参考温度控制室外机的风机的转速,通过室外机风机的转速调节,可以降低室外机的换热量,从而降低室内机的制冷量,进而能够减少室内机发生凝露的情况。
值得注意的是,由于本申请的实施例的计算机可读存储介质能够实现上述实施例的多联机空调器的控制方法,因此,本申请的实施例的计算机可读存储介质的具体实施方式和技术效果,可以参照上述任一实施例的多联机空调器的控制方法具体实施方式和技术效果。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种多联机空调器的控制方法,其中,所述多联机空调器包括室外机和多个室内机,所述控制方法包括:
    在制冷模式下,获取目标室内机的内机容量和蒸发器参考温度,其中,所述目标室内机为多个所述室内机的一个或多个;以及
    当所述内机容量少于或等于预设容量,根据所述蒸发器参考温度控制所述室外机的风机的转速。
  2. 根据权利要求1所述的控制方法,其中,所述根据所述蒸发器参考温度控制所述室外机的风机的转速,包括如下之一:
    从所述目标室内机中确定关键室内机,并获取与所述关键室内机对应的送风风速和室内环境参数,当所述送风风速小于预设风速并且所述室内环境参数满足预设环境参数,根据所述蒸发器参考温度控制所述室外机的风机的转速;
    从所述目标室内机中确定关键室内机,并获取与所述关键室内机对应的送风风速,当所述送风风速小于预设风速,根据所述蒸发器参考温度控制所述室外机的风机的转速;
    从所述目标室内机中确定关键室内机,并获取与所述关键室内机对应的室内环境参数,当所述室内环境参数满足预设环境参数,根据所述蒸发器参考温度控制所述室外机的风机的转速。
  3. 根据权利要求2所述的控制方法,其中,所述从所述目标室内机中确定关键室内机,包括如下至少之一:
    当所述目标室内机为一个所述室内机,将所述目标室内机作为所述关键室内机;
    当所述目标室内机为多个所述室内机,获取所述目标室内机中各个所述室内机所对应的室内环境湿度,并选择所述室内环境湿度最大的所述室内机作为所述关键室内机。
  4. 根据权利要求2所述的控制方法,其中,在获取与所述关键室内机对应的室内环境参数的情况下,所述获取与所述关键室内机对应的室内环境参数,包括:获取与所述关键室内机对应的室内环境温度和室内环境湿度;以及
    所述室内环境参数满足预设环境参数,包括如下之一:
    所述室内环境温度大于预设温度并且所述室内环境湿度大于预设湿度;
    所述室内环境温度位于目标温度区间并且所述室内环境湿度大于预设湿度,其中,所述目标温度区间包括室外环境温度;
    所述室内环境温度大于预设温度以及位于目标温度区间并且所述室内环境湿度大于预设湿度,其中,所述目标温度区间包括室外环境温度。
  5. 根据权利要求1所述的控制方法其中,在所述获取目标室内机的内机容量和蒸发器参考温度之前,所述控制方法还包括:
    对于每个所述室内机,获取与所述室内机对应的室内环境温度和室内设定温度,并计算出所述室内环境温度和所述室内设定温度之间的温度偏差;以及
    将所述温度偏差大于预设偏差的所有所述室内机作为目标室内机。
  6. 根据权利要求1所述的控制方法,其中,所述预设容量的确定步骤,包括:
    获取所述室外机的外机容量;以及
    根据所述外机容量确定预设容量。
  7. 根据权利要求1所述的控制方法,其中,所述根据所述蒸发器参考温度控制所述室外机的风机的转速,包括如下至少之一:
    当所述蒸发器参考温度小于或等于第一预设参考温度并且大于或等于第二预设参考温度,保持所述室外机的风机的转速,其中,所述第一预设参考温度高于所述第二预设参考温度;
    当所述蒸发器参考温度大于所述第一预设参考温度,提高所述室外机的风机的转速;
    当所述蒸发器参考温度小于所述第二预设参考温度,降低所述室外机的风机的转速。
  8. 根据权利要求7所述的控制方法,还包括如下之一:
    在提高所述室外机的风机的转速的情况下,所述提高所述室外机的风机的转速,包括:每间隔预设时间后,基于转速调节步长提高所述室外机的风机的转速;
    在降低所述室外机的风机的转速的情况下,所述降低所述室外机的风机的转速,包括:每间隔预设时间后,基于转速调节步长降低所述室外机的风机的转速。
  9. 一种控制器,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中所述处理器运行所述计算机程序时执行如权利要求1至8中任意一项所述的多联机空调器的控制方法。
  10. 一种多联机空调器,包括如权利要求9所述的控制器。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,其中所述计算机可执行指令用于执行如权利要求1至8中任意一项所述的多联机空调器的控制方法。
PCT/CN2023/106564 2022-07-28 2023-07-10 多联机空调器及其控制方法、控制器和存储介质 WO2024022097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210897250.4 2022-07-28
CN202210897250.4A CN117515878A (zh) 2022-07-28 2022-07-28 多联机空调器及其控制方法、控制器和存储介质

Publications (1)

Publication Number Publication Date
WO2024022097A1 true WO2024022097A1 (zh) 2024-02-01

Family

ID=89705297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106564 WO2024022097A1 (zh) 2022-07-28 2023-07-10 多联机空调器及其控制方法、控制器和存储介质

Country Status (2)

Country Link
CN (1) CN117515878A (zh)
WO (1) WO2024022097A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048677A (ko) * 1999-11-29 2001-06-15 윤종용 공기조화기의 저온제어 운전방법
KR20060035242A (ko) * 2004-10-22 2006-04-26 위니아만도 주식회사 저온 냉방 운전 영역에서의 실외기 팬모터 제어 방법
JP2010216761A (ja) * 2009-03-18 2010-09-30 Mitsubishi Heavy Ind Ltd マルチ形空気調和機
CN103185384A (zh) * 2011-12-29 2013-07-03 珠海格力电器股份有限公司 空调器及用于空调器的湿度控制方法和装置
CN105987485A (zh) * 2016-07-05 2016-10-05 美的集团武汉制冷设备有限公司 空调器及其控制方法、系统
CN107421061A (zh) * 2017-07-06 2017-12-01 青岛海尔空调器有限总公司 空调器的防凝露控制方法及装置
CN110686351A (zh) * 2019-09-26 2020-01-14 珠海格力电器股份有限公司 多联机系统及其控制方法、装置、设备和存储介质
CN111486561A (zh) * 2020-04-21 2020-08-04 海信(山东)空调有限公司 一种空调及其控制方法和装置
CN112611075A (zh) * 2020-11-26 2021-04-06 珠海格力电器股份有限公司 一种定频空调、控制器、防凝露控制方法及存储介质
CN113294897A (zh) * 2021-06-25 2021-08-24 美的集团股份有限公司 空调器的转速控制方法、空调器和存储介质
CN113375223A (zh) * 2021-06-29 2021-09-10 宁波奥克斯电气股份有限公司 一种外风机转速控制方法、装置及多联机空调器
CN113483446A (zh) * 2021-06-29 2021-10-08 宁波奥克斯电气股份有限公司 一种多联空调制冷运行方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010048677A (ko) * 1999-11-29 2001-06-15 윤종용 공기조화기의 저온제어 운전방법
KR20060035242A (ko) * 2004-10-22 2006-04-26 위니아만도 주식회사 저온 냉방 운전 영역에서의 실외기 팬모터 제어 방법
JP2010216761A (ja) * 2009-03-18 2010-09-30 Mitsubishi Heavy Ind Ltd マルチ形空気調和機
CN103185384A (zh) * 2011-12-29 2013-07-03 珠海格力电器股份有限公司 空调器及用于空调器的湿度控制方法和装置
CN105987485A (zh) * 2016-07-05 2016-10-05 美的集团武汉制冷设备有限公司 空调器及其控制方法、系统
CN107421061A (zh) * 2017-07-06 2017-12-01 青岛海尔空调器有限总公司 空调器的防凝露控制方法及装置
CN110686351A (zh) * 2019-09-26 2020-01-14 珠海格力电器股份有限公司 多联机系统及其控制方法、装置、设备和存储介质
CN111486561A (zh) * 2020-04-21 2020-08-04 海信(山东)空调有限公司 一种空调及其控制方法和装置
CN112611075A (zh) * 2020-11-26 2021-04-06 珠海格力电器股份有限公司 一种定频空调、控制器、防凝露控制方法及存储介质
CN113294897A (zh) * 2021-06-25 2021-08-24 美的集团股份有限公司 空调器的转速控制方法、空调器和存储介质
CN113375223A (zh) * 2021-06-29 2021-09-10 宁波奥克斯电气股份有限公司 一种外风机转速控制方法、装置及多联机空调器
CN113483446A (zh) * 2021-06-29 2021-10-08 宁波奥克斯电气股份有限公司 一种多联空调制冷运行方法

Also Published As

Publication number Publication date
CN117515878A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN107166637B (zh) 空调的温度补偿控制方法、装置和系统
JP2020505576A (ja) 外気調和機およびその制御方法ならびに装置
CN112665117B (zh) 多联机化霜方法、装置、多联机空调系统及可读存储介质
US10823446B2 (en) System of adjusting load of air conditioning and method of adjusting the same
CN111486565A (zh) 一种空调及其控制方法和装置
WO2024000962A1 (zh) 空调器的控制方法、控制器、空调器及存储介质
CN114754461B (zh) 空调器的控制方法、控制器、空调器及存储介质
JP5528390B2 (ja) 空調装置、空調方法及びプログラム
CN113934152A (zh) 一种设备控制方法和装置、电子设备和存储介质
JPWO2020121370A1 (ja) 空調機、制御装置、空調システム、空調制御方法及びプログラム
WO2024022097A1 (zh) 多联机空调器及其控制方法、控制器和存储介质
CN114353252A (zh) 空调器控制方法、装置、空调器以及存储介质
JP6979606B2 (ja) 空気調和機の制御装置、空気調和機の制御方法、およびプログラム
CN112113319B (zh) 空调负荷调整系统及空调负荷调整方法
CN115574445A (zh) 空调冷媒流量控制方法、装置、空调系统及存储介质
CN111902023A (zh) 一种机柜风量控制系统及控制方法
CN108195041B (zh) 空调器及其控制方法、装置
CN114963467B (zh) 空调器制热控制方法、装置、电子设备及存储介质
WO2023035624A1 (zh) 用于空调器的控制方法及空调器
CN115013938A (zh) 空调控制方法、装置、设备及存储介质
CN113733850B (zh) 车辆空调自动控制方法、装置、设备及存储介质
US20220113053A1 (en) Control device for air conditioning apparatus, air conditioning system, control method for air conditioning apparatus, and program
CN114576824B (zh) 空调器的控制方法、运行控制装置及空调器
CN110307616B (zh) 一种温控设备及其控制方法和装置
TWI645137B (zh) 空調水泵控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845310

Country of ref document: EP

Kind code of ref document: A1