WO2024021978A1 - 一种WiFi通信方法、装置及系统 - Google Patents

一种WiFi通信方法、装置及系统 Download PDF

Info

Publication number
WO2024021978A1
WO2024021978A1 PCT/CN2023/103377 CN2023103377W WO2024021978A1 WO 2024021978 A1 WO2024021978 A1 WO 2024021978A1 CN 2023103377 W CN2023103377 W CN 2023103377W WO 2024021978 A1 WO2024021978 A1 WO 2024021978A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
scheduling
frame
access device
downlink data
Prior art date
Application number
PCT/CN2023/103377
Other languages
English (en)
French (fr)
Inventor
阮卫
刘伟强
陈聪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024021978A1 publication Critical patent/WO2024021978A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance

Definitions

  • the present application relates to the field of communication technology, and in particular to a WiFi communication method, device and system.
  • WiFi Wireless Fidelity
  • WiFi Wireless Fidelity
  • the 802.11 working group has divided two frequency bands, 2G and 5G, as wireless channels, and each frequency band is divided into several channels.
  • the 802.11 working group also divided the working frequency band of each channel.
  • the minimum spacing of the working frequency bands of channels in the WiFi system is 20MHz.
  • the wireless channel has only one conflict domain characteristic, so a random access mechanism needs to be set up to avoid conflicts caused by multiple nodes accessing the network at the same time.
  • the random access mechanism is Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • the CSMA/CA mechanism is as follows: when the device monitors that a channel is empty, it waits for an inter-frame interval; it monitors the channel again, and if the channel is still empty, it starts a random backoff process; after the random backoff process, if it is still listening When the channel is empty, data begins to be sent.
  • the above-mentioned CSMA/CA mechanism has the problem that delay and delay jitter are difficult to guarantee.
  • This application provides a WiFi communication method and device, which solves the problem in the prior art that the delay and delay jitter of WiFi communication are difficult to guarantee.
  • a WiFi communication method includes: the access device sends a scheduling signal to the site device.
  • the scheduling signal is used to schedule the scheduling frequency band, or the scheduling frequency band and the competition frequency band.
  • the competition frequency band is an existing The frequency band for WiFi communication.
  • the scheduling frequency band is different from the competition frequency band.
  • the scheduling frequency band may not be the existing frequency band for WiFi communication.
  • the competition frequency band may be the existing frequency band allocated for WiFi communication in the 5G frequency band or the 2G frequency band.
  • the bandwidth of the competing frequency band may be an integer multiple of 20MHz
  • the scheduled frequency band may be an existing frequency band in the 5G frequency band or 2G frequency band that is not allocated to WiFi communication.
  • the bandwidth of the scheduled frequency band may not be an integral multiple of 20MHz; the access device Communication is performed with the site equipment on the frequency band scheduled by the scheduling signal.
  • the access device can schedule the scheduling frequency band, or the scheduling frequency band and the competition frequency band, to conduct WiFi communication with the site equipment through the scheduling frequency band and/or the competition frequency band, avoiding the existing technology
  • the mid-access device and the site device can only communicate using the competing frequency band based on the CSMA/CA mechanism, thereby reducing the delay and delay jitter of WiFi communication and reducing communication interference.
  • the scheduling frequency band and the competition frequency band are used for WiFi communication at the same time, the communication bandwidth can also be increased and the transmission rate can be improved.
  • the access device communicates with the site device on the frequency band scheduled by the scheduling signal, including: the access device The device sends the first downlink data frame to the site device on the scheduled frequency band. If the scheduling signal is used to schedule the scheduling frequency band and the competition frequency band, the method further includes: the access device sends a first downlink data frame to the site device on the scheduling frequency band, and sends a first downlink data frame to the site device on the competition frequency band. Send the second downlink data frame.
  • the access device can use the scheduling frequency band, or the scheduling frequency band and the competition frequency band to send downlink data to the site device, which can reduce the downlink transmission delay and delay jitter, and can also increase The communication bandwidth of downlink data increases the transmission rate.
  • a frame header and a frame tail of the first downlink data frame are respectively aligned with a frame header and frame tail of the second downlink data frame.
  • the first downlink data frame includes preamble information, and the preamble information is used to indicate whether the second downlink data frame includes downlink data of the site device.
  • the access device that only supports the single-input single-output communication mode can send the first downlink data frame and the second downlink data frame simultaneously on the scheduling frequency band and the competition frequency band, thereby increasing the The communication bandwidth of the access device increases the transmission rate, thereby reducing the downlink transmission delay and delay jitter.
  • the first downlink data frame and the second downlink data frame are independent of each other. In the above possible implementation, it can be ensured that the modulation and demodulation processes of the first downlink data frame and the second downlink data frame do not affect each other, thereby improving the frequency of any frequency. The stability of downlink data transmission on the segment.
  • the scheduling signal is used to schedule the scheduling frequency band and the competition frequency band
  • the access device communicates with the site device on the frequency band scheduled by the scheduling signal, including :
  • the access device sends the third downlink data frame to the site device on the scheduling frequency band and the competition frequency band.
  • the access device can use the scheduling frequency band and the competition frequency band to send downlink data to the site device at the same time, thereby increasing the communication bandwidth of the downlink data, increasing the transmission rate, and thereby reducing the downlink transmission delay. and delay jitter.
  • the method further includes: the access device sending a first beacon frame on the scheduling frequency band, the first beacon frame being used to indicate basic service information of the access device , the first beacon frame carries the scheduling signal; the access device provides access services to the site device based on the basic service information on the scheduling frequency band.
  • the access device may send the first beacon frame on the scheduling frequency band, so that the site device accesses the access device on the scheduling frequency band, thereby improving the access success rate and reducing the access failure rate. Enter power consumption.
  • the method further includes: the access device sending a second beacon frame on the competition frequency band, the second beacon frame being used to indicate basic service information of the access device and the scheduling frequency band, the second beacon frame carries the scheduling signal; the access device provides access services for the site device based on the basic service information on the scheduling frequency band.
  • the access device may send a second beacon frame on the contention frequency band, and the second beacon frame is used to indicate the scheduling frequency band, so that the site device can access the access on the scheduling frequency band. equipment, thereby improving the access success rate and reducing access power consumption.
  • the method further includes: the access device sending uplink scheduling information to the site device on the scheduling frequency band, and the uplink scheduling information is used to schedule uplink data; the access device Receive uplink data frames from the site equipment on the scheduled frequency band.
  • the access device can use the scheduling frequency band to send uplink scheduling information, so that the site device sends uplink data to the access device on the scheduling frequency band, thereby increasing the communication bandwidth of the uplink data and improving transmission rate, thereby reducing the downlink transmission delay and delay jitter.
  • the uplink scheduling information is carried in a trigger frame; or, the uplink scheduling information is carried in a beacon frame corresponding to the scheduling frequency band.
  • the uplink scheduling information is carried in a trigger frame; or, the uplink scheduling information is carried in a beacon frame corresponding to the scheduling frequency band.
  • the uplink scheduling information is sent based on the uplink request of the site device.
  • the uplink request is carried in the trigger response zero data message TB NDP frame, or the uplink request is carried in the trigger response zero data message TB NDP frame.
  • the station device blocks the acknowledgment in the BA frame.
  • the method further includes: the access device receiving at least one third beacon frame from other access devices, the at least one third beacon frame being used to indicate at least one Scheduling frequency band; the access device determines an available scheduling frequency band other than the at least one scheduling frequency band as the scheduling frequency band.
  • the access device and other access devices can use different scheduling frequency bands in a frequency division multiplexing manner, thereby avoiding interference between multiple access devices and further reducing the efficiency of WiFi communication. Delay and delay jitter.
  • the access device determines the scheduling frequency band, including: the access device receives at least one third beacon frame from other access devices, and the at least one third beacon frame Used to indicate at least one time slot of the scheduling frequency band; the access device determines to use available time slots in the scheduling frequency band except the at least one time slot.
  • the access device and other access devices can use different time slots in the same scheduling frequency band in a time division multiplexing manner, thereby avoiding interference between multiple access devices and further reducing WiFi Communication delay and delay jitter.
  • a WiFi communication method includes: the site device receives a scheduling signal from the access device.
  • the scheduling signal is used to schedule the scheduling frequency band, or the scheduling frequency band and the competition frequency band.
  • the competition frequency band is an existing The frequency band for WiFi communication.
  • the scheduling frequency band is different from the competition frequency band.
  • the scheduling frequency band may not be the existing WiFi communication frequency band.
  • the competition frequency band may be the 5G frequency band or the existing frequency band allocated for WiFi communication in the 2G frequency band.
  • the bandwidth of the competitive frequency band can be an integer multiple of 20MHz
  • the scheduling frequency band can be an existing frequency band in the 5G frequency band or 2G frequency band that is not allocated to WiFi communication, the bandwidth of the scheduling frequency band may not be an integer multiple of 20MHz; the site equipment Communication is performed with the access device on the frequency band scheduled by the scheduling signal.
  • the access device can schedule the scheduling frequency band, or the scheduling frequency band and the competition frequency band, to conduct WiFi communication with the site equipment through the scheduling frequency band and/or the competition frequency band, avoiding the existing technology
  • the mid-access device and the site device can only communicate using the competing frequency band based on the CSMA/CA mechanism, thereby reducing the delay and delay jitter of WiFi communication and reducing communication interference.
  • the communication bandwidth can also be increased and the transmission speed can be improved. Rate.
  • the scheduling signal is used to schedule the scheduling frequency band and the competition frequency band
  • the site device communicates with the access device on the frequency band scheduled by the scheduling signal, including: The site device receives a first downlink data frame from the access device on the scheduling frequency band, and receives a second downlink data frame from the site device on the competition frequency band.
  • the access device can use the scheduling frequency band and the competition frequency band to send downlink data to the site device respectively, thereby increasing the communication bandwidth of the downlink data, increasing the transmission rate, and thereby reducing the downlink transmission delay and Delay jitter.
  • the frame header and frame tail of the first downlink data frame are respectively aligned with the frame header and frame tail of the second downlink data frame.
  • the first downlink data frame includes preamble information, and the preamble information is used to indicate whether the second downlink data frame includes downlink data of the site device.
  • the access device that only supports the single-input single-output communication mode can send the first downlink data frame and the second downlink data frame simultaneously on the scheduling frequency band and the competition frequency band, thereby increasing the The communication bandwidth of the access device increases the transmission rate, thereby reducing the downlink transmission delay and delay jitter.
  • the first downlink data frame and the second downlink data frame are independent of each other.
  • the above possible implementation manner can ensure that the modulation and demodulation processes of the first downlink data frame and the second downlink data frame do not affect each other, thereby improving the stability of downlink data transmission on any frequency band.
  • the scheduling signal is used to schedule the scheduling frequency band and the competition frequency band
  • the site device communicates with the access device on the frequency band scheduled by the scheduling signal, including: The site device receives the third downlink data frame from the access device on the scheduling frequency band and the competition frequency band.
  • the access device can use the scheduling frequency band and the competition frequency band to send downlink data to the site device at the same time, thereby increasing the communication bandwidth of the downlink data, increasing the transmission rate, and thereby reducing the downlink transmission delay. and delay jitter.
  • the method further includes: the site device receiving a first beacon frame from the access device on the scheduling frequency band, the first beacon frame being used to indicate the access The basic service information of the device, the first beacon frame carries the scheduling signal; the site device accesses the access device based on the basic service information on the scheduling frequency band.
  • the access device sends the first beacon frame on the scheduling frequency band, and the site device can access the access device on the scheduling frequency band, thereby improving the access success rate and reducing the access failure rate. power consumption.
  • the method further includes: the site device receiving a second beacon frame from the access device on the competing frequency band, the second beacon frame being used to indicate the access The basic service information of the device and the scheduling frequency band, the second beacon frame carries the scheduling signal; the site device accesses the access device based on the basic service information on the scheduling frequency band.
  • the access device sends a second beacon frame on the contention frequency band, and the second beacon frame is used to indicate the scheduling frequency band, and the site device can access the access device on the scheduling frequency band. , thereby improving the access success rate and reducing access power consumption.
  • the method further includes: the site device receiving uplink scheduling information from the access device on the scheduling frequency band, and the uplink scheduling information is used to schedule uplink data; the site device Send an uplink data frame to the access device on the scheduling frequency band according to the uplink scheduling information.
  • the access device can use the scheduling frequency band to send uplink scheduling information, so that the site device sends uplink data to the access device on the scheduling frequency band, thereby increasing the communication bandwidth of the uplink data and improving transmission rate, thereby reducing the downlink transmission delay and delay jitter.
  • the uplink scheduling information is carried in a trigger frame; or, the uplink scheduling information is carried in a beacon frame corresponding to the scheduling frequency band.
  • the uplink scheduling information is carried in a trigger frame; or, the uplink scheduling information is carried in a beacon frame corresponding to the scheduling frequency band.
  • the uplink scheduling information is sent based on the uplink request of the site device.
  • the uplink request is carried in the trigger response zero data message TB NDP frame, or the uplink request is carried in the trigger response zero data message TB NDP frame.
  • the station device blocks the acknowledgment in the BA frame.
  • a WiFi communication device in a third aspect, includes: a sending unit, configured to send a scheduling signal to a site device.
  • the scheduling signal is used to schedule the scheduling frequency band, or the scheduling frequency band and the competition frequency band.
  • the competition frequency band is The frequency band of the existing WiFi communication, the scheduling frequency band is different from the competition frequency band, the scheduling frequency band may not be the frequency band of the existing WiFi communication; the processing unit is used to conduct communication with the site equipment on the frequency band scheduled by the scheduling signal communication.
  • the scheduling signal is used to schedule the scheduling frequency band and the competition frequency band
  • the sending unit is also used to: send the first downlink data frame to the site device on the scheduling frequency band. , sending the second downlink data frame to the site equipment on the competing frequency band.
  • the frame header and frame tail of the first downlink data frame are respectively aligned with the frame header and frame tail of the second downlink data frame.
  • the first downlink data frame includes preamble information, and the preamble information is used to indicate whether the second downlink data frame includes downlink data of the site device.
  • the first downlink data frame and the second downlink data frame are independent of each other.
  • the scheduling signal is used to schedule the scheduling frequency band and the competition frequency band
  • the sending unit is also used to: send a third party signal to the site device on the scheduling frequency band and the competition frequency band. Downstream data frame.
  • the sending unit is further configured to: send a first beacon frame on the scheduling frequency band, where the first beacon frame is used to indicate basic service information of the access device, and the first beacon frame is used to indicate basic service information of the access device.
  • the scheduling signal is carried in a beacon frame; the processing unit is also used to: provide access services for the site equipment based on the basic service information on the scheduling frequency band.
  • the sending unit is further configured to: send a second beacon frame on the competing frequency band, where the second beacon frame is used to indicate the basic service information of the access device and the Scheduling frequency band, the second beacon frame carries the scheduling signal; the processing unit is also used to: provide access services for the site equipment based on the basic service information on the scheduling frequency band.
  • the device further includes a receiving unit; the sending unit is also configured to send uplink scheduling information to the site equipment on the scheduling frequency band, and the uplink scheduling information is used to schedule uplink data ;
  • the receiving unit is used to receive uplink data frames from the site equipment on the scheduling frequency band.
  • the uplink scheduling information is carried in a trigger frame; or, the uplink scheduling information is carried in a beacon frame corresponding to the scheduling frequency band.
  • the uplink scheduling information is sent based on the uplink request of the site device.
  • the uplink request is carried in the trigger response zero data message TB NDP frame, or the uplink request is carried in the trigger response zero data message TB NDP frame.
  • the station device blocks the acknowledgment in the BA frame.
  • the device further includes: a receiving unit; the receiving unit is also configured to receive at least one third beacon frame from other access devices, the at least one third beacon frame The frame is used to indicate at least one scheduling frequency band; the processing unit is also used to determine an available scheduling frequency band other than the at least one scheduling frequency band as the scheduling frequency band.
  • the device further includes: a receiving unit; the receiving unit is also configured to receive at least one third beacon frame from other access devices, the at least one third beacon frame The frame is used to indicate at least one second time slot of the scheduling frequency band; the processing unit is also used to determine to use available time slots in the scheduling frequency band other than the at least one time slot.
  • a WiFi communication device in a fourth aspect, includes: a receiving unit, configured to receive a scheduling signal from an access device.
  • the scheduling signal is used to schedule the scheduling frequency band, or the scheduling frequency band and the competition frequency band.
  • the competition frequency band It is an existing WiFi communication frequency band.
  • the scheduling frequency band is different from the competition frequency band.
  • the scheduling frequency band may not be the existing WiFi communication frequency band; the processing unit is used to communicate with the access device on the frequency band scheduled by the scheduling signal. communicate between.
  • the scheduling signal is used to schedule the scheduling frequency band and the competition frequency band
  • the receiving unit is also used to: receive the first downlink signal from the access device on the scheduling frequency band. data frame, and receive the second downlink data frame from the site equipment on the competing frequency band.
  • the frame header and frame tail of the first downlink data frame are respectively aligned with the frame header and frame tail of the second downlink data frame.
  • the first downlink data frame includes preamble information, and the preamble information is used to indicate whether the second downlink data frame includes downlink data of the site device.
  • the first downlink data frame and the second downlink data frame are independent of each other.
  • the scheduling signal is used to schedule the scheduling frequency band and the competition frequency band
  • the receiving unit is also used to: receive signals from the access device on the scheduling frequency band and the competition frequency band.
  • the third downlink data frame is used to schedule the scheduling frequency band and the competition frequency band.
  • the device further includes: a processing unit; and a receiving unit, further configured to receive a first beacon frame from the access device on the scheduling frequency band, the first beacon The frame is used to indicate basic service information of the access device, and the first beacon frame carries the scheduling signal; the processing unit is used to access the access device based on the basic service information on the scheduling frequency band.
  • the device further includes: a processing unit; and a receiving unit, further configured to receive a second beacon frame from the access device on the competing frequency band, the second beacon The frame is used to indicate the basic service information of the access device and the scheduling frequency band, and the second beacon frame carries the scheduling signal; the processing unit is also used to access the access device based on the basic service information on the scheduling frequency band. equipment.
  • the device further includes: a sending unit; and a receiving unit, further configured to receive uplink scheduling information from the access device on the scheduling frequency band, where the uplink scheduling information is used to Scheduling uplink data; this sending unit is used to The uplink scheduling information sends an uplink data frame to the access device on the scheduling frequency band.
  • the uplink scheduling information is carried in a trigger frame; or, the uplink scheduling information is carried in a beacon frame corresponding to the scheduling frequency band.
  • the uplink scheduling information is sent based on the uplink request of the site device.
  • the uplink request is carried in the trigger response zero data message TB NDP frame, or the uplink request is carried in the trigger response zero data message TB NDP frame.
  • the station device blocks the acknowledgment in the BA frame.
  • a WiFi communication device in a fifth aspect, includes: a memory, a processor, a system bus and a communication interface. Codes and data are stored in the memory.
  • the processor is connected to the memory through the system bus. The processor runs The code in the memory causes the device to execute the WiFi communication method provided by the first aspect or any possible implementation of the first aspect.
  • a WiFi communication device in a sixth aspect, includes: a memory, a processor, a system bus and a communication interface. Codes and data are stored in the memory.
  • the processor is connected to the memory through the system bus. The processor runs The code in the memory causes the device to execute the WiFi communication method provided by the second aspect or any possible implementation of the second aspect.
  • a WiFi communication system in another aspect of the present application, includes: an access device and a site device; wherein the access device is the third aspect or any possible implementation of the third aspect, Or the WiFi communication device provided in the fifth aspect, the site equipment is the fourth aspect or any possible implementation of the fourth aspect, or the WiFi communication device provided in the sixth aspect.
  • a computer-readable storage medium is provided.
  • Computer-executable instructions are stored in the computer-readable storage medium.
  • the processor of the device executes the computer-executable instructions
  • the device executes the first aspect or the third aspect.
  • any possible implementation method provides a WiFi communication method.
  • a computer-readable storage medium is provided.
  • Computer-executable instructions are stored in the computer-readable storage medium.
  • the processor of the device executes the computer-executed instructions
  • the device executes the above second aspect or the third aspect.
  • the WiFi communication method provided by any possible implementation method in the two aspects.
  • a computer program product includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; at least one processor of the device can execute the instructions from the computer-readable storage medium.
  • the computer-executed instructions are read, and the processor executes the computer-executed instructions to cause the device to perform the WiFi communication method provided by the first aspect or any possible implementation of the first aspect.
  • a computer program product includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; a processor of the device can read from the computer-readable storage medium.
  • the computer executes instructions, and the processor executes the computer executed instructions to cause the device to execute the WiFi communication method provided by the second aspect or any possible implementation of the second aspect.
  • any WiFi communication device, WiFi communication system, computer storage medium or computer program product provided above is used to execute the corresponding method provided above. Therefore, the beneficial effects it can achieve can be referred to the above. The beneficial effects of the corresponding methods provided in this article will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a WiFi communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a WiFi device provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a WiFi communication method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of an access device sending a scheduling signal according to an embodiment of the present application
  • FIG. 5 is a schematic flow chart of another WiFi communication method provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a data frame on a scheduling frequency band and a competition frequency band provided by an embodiment of the present application;
  • FIG. 7 is a schematic flow chart of another WiFi communication method provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a time division multiplexing scheduling frequency band provided by an embodiment of the present application.
  • FIG. 9 is a schematic flow chart of another WiFi communication method provided by an embodiment of the present application.
  • Figure 10 is a communication schematic diagram of an access device provided by an embodiment of the present application.
  • Figure 11 is a communication schematic diagram of a site device provided by an embodiment of the present application.
  • Figure 12 is a communication schematic diagram of another site device provided by an embodiment of the present application.
  • Figure 13 is a communication schematic diagram of yet another site device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of an access device provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of another access device provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a site device provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of another site device provided by an embodiment of the present application.
  • At least one refers to one or more, and “plurality” refers to two or more.
  • And/or describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b or c can mean: a, b, c, a and b, a and c, b and c, a, b and c, where a, b and c can It can be single or multiple.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • words such as “first” and “second” do not limit the number and execution order.
  • WiFi wireless fidelity
  • WiFi also known as “wireless hotspot” is a wireless LAN technology based on the IEEE 802.11 standard developed by the WiFi Alliance. Since its release, WiFi technology has developed and popularized six generations of WiFi systems (801.11, 802.11b, 802.11a/g, 802.11n, 802.11ac, 802.11ax). Each generation of 802.11 WiFi systems has greatly improved its speed.
  • a channel also known as a channel or channel, is a channel for signal transmission in a communication system. It is composed of the transmission medium through which the signal is transmitted from the transmitter to the receiver.
  • the wireless channel refers to the radio channel that uses radiated radio waves as the transmission method, that is, the channel for wireless data transmission.
  • the 802.11 working group has divided two frequency bands, 2G and 5G, as wireless channels, and each frequency band is divided into several channels.
  • the 802.11 working group also divided the working frequency band of each channel.
  • the minimum spacing of the working frequency bands of channels in the WiFi communication system is 20MHz.
  • communication can only be carried out using the channel allocated to WiFi.
  • the channel bandwidth is usually an integer multiple of 20MHz.
  • the channel bandwidth can be 20MHz, 40MHz, 80MHz, 160MHz or 320MHz, etc.
  • Channels that are not allocated to WiFi cannot be used in WiFi communication systems.
  • the channel bandwidth can be 5MHz and 10MHz channels.
  • the wireless channel has only one conflict domain characteristic, so a random access mechanism needs to be set up to avoid conflict problems caused by multiple nodes accessing the network at the same time.
  • the random access mechanism is carrier sense multiple access with collision avoidance (CSMA/CA).
  • CSMA/CA carrier sense multiple access with collision avoidance
  • the CSMA/CA mechanism is as follows: when the device monitors that a channel is empty, it waits for an inter-frame interval; it monitors the channel again, and if the channel is still empty, it starts a random backoff process; after the random backoff process, if it is still listening When the channel is empty, data begins to be sent.
  • the above-mentioned CSMA/CA mechanism has the problem that delay and delay jitter are difficult to guarantee.
  • embodiments of the present application provide a WiFi communication method.
  • the AP can perform scheduling on the scheduling frequency band (that is, the frequency band not allocated to WiFi communication) based on the scheduling mechanism, thereby performing communication between the scheduling frequency band and the STA.
  • WiFi communication for example, transmits uplink data and/or downlink data through the scheduled frequency band to reduce the delay and delay jitter during WiFi communication between the AP and STA.
  • This method can be applied to a WiFi communication system, which can also be called a wireless LAN system.
  • the WiFi communication system will be illustrated below by taking Figure 1 as an example.
  • FIG 1 is a schematic structural diagram of a WiFi communication system provided by an embodiment of the present application.
  • the WiFi communication system includes one or more access points (access points, APs) and one or more stations (stations, STAs). Among them, one STA can access one or more APs, one or more STAs can also access one AP, and multiple APs can also communicate with each other.
  • the WiFi communication system includes AP1 and AP2, STA11 and STA12 are connected to AP1, STA21 and STA22 are connected to AP2, and AP1 and AP2 can communicate with each other as an example.
  • the above-mentioned AP refers to the wireless access point, which can also be called wireless AP. It is the access point of a wireless network and the core of the wireless network.
  • the main functions of the AP are in the following aspects: management of mobile sites in the community, including mobile site connection, authentication, etc.; completing the transfer of data frames from the wired network to the basic service set (basic service set, etc.) BSS) bridging process to realize address filtering and address learning functions; complete switching management of mobile sites between different BSSs; simple network management functions, etc.
  • the AP can be used as a wireless network extension, connecting with other APs to expand the coverage of the wireless network.
  • Wireless AP is mainly used In broadband homes, buildings and parks, the distance coverage can range from tens to hundreds of meters.
  • the device corresponding to the access point may be called an access device, and the access device may be a communication server, router, switch, network bridge, computer, etc.
  • the above-mentioned STA can also be called a mobile site.
  • the STA usually carries a wireless network interface card (such as a wireless network card), and can be connected to the AP device through the wireless network interface card.
  • the device corresponding to the STA can be called a site device.
  • the site device can be a mobile phone, a tablet computer, an ultra-mobile personal computer (UMPC), a netbook, or a wearable device (such as a smart bracelet and smart watches, etc.) as well as equipment such as vehicle-mounted equipment.
  • UMPC ultra-mobile personal computer
  • a wearable device such as a smart bracelet and smart watches, etc.
  • FIG. 2 is a schematic structural diagram of a WiFi device provided by an embodiment of the present application.
  • the WiFi device can be an access device or a site device.
  • the WiFi device taking the access device or the site device as a mobile phone as an example, the WiFi device The structure of the device is explained.
  • the mobile phone includes: a radio frequency (RF) circuit 210, a memory 220, an input unit 230, a display unit 240, a sensor component 250, an audio circuit 260, a processor 270, a power supply 280 and other components.
  • RF radio frequency
  • the RF circuit 210 can be used to send and receive information or receive and send signals during calls.
  • the RF circuit 210 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, an LNA (low noise amplifier), a duplexer, etc.
  • the antenna may include multiple receiving antennas and multiple transmitting antennas.
  • the RF circuit 210 can also communicate with the network and other devices through wireless communication, such as communicating with the AP through a WiFi network.
  • the memory 220 can be used to store software programs and modules.
  • the processor 270 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 220 .
  • the memory 220 may mainly include a stored program area and a stored data area, where the stored program area may store an operating system, at least one application required for a function, etc.; the stored data area may store data created according to the use of the mobile phone (such as audio). data, image data, phone book, etc.), etc.
  • the memory 220 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the input unit 230 may be used to receive input numeric or character information and generate key signal input related to user settings and function control of the mobile phone.
  • the input unit 230 may include a touch screen 231 and other input devices 232.
  • the touch screen 231 also known as a touch panel, can collect the user's touch operations on or near it (such as the user's operations on or near the touch screen 231 using a finger, stylus, or any suitable object or accessory), and Drive the corresponding connection device according to the preset program.
  • Other input devices 232 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control keys, power switch keys, etc.), trackball, mouse, joystick, etc.
  • the display unit 240 may be used to display information input by or provided to the user as well as various menus of the mobile phone.
  • the display unit 240 may include a display panel 241.
  • the display panel 241 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • the touch screen 231 can cover the display panel 241. When the touch screen 231 detects a touch operation on or near it, it is sent to the processor 270 to determine the type of the touch event. Then the processor 270 performs the operation on the display panel according to the type of the touch event. Corresponding visual output is provided on 241.
  • the touch screen 231 and the display panel 241 are used as two independent components to realize the input and input functions of the mobile phone, in some embodiments, the touch screen 231 and the display panel 241 can be integrated to realize the input of the mobile phone. and output functions.
  • Sensor assembly 250 includes one or more sensors that provide various aspects of status assessment for the handset.
  • the sensor component 250 may include a temperature sensor, an acceleration sensor, a gyroscope sensor, a magnetic sensor or a pressure sensor.
  • the sensor component 250 may detect temperature changes of the mobile phone, acceleration/deceleration, orientation, open/close status of the mobile phone, Or the relative positioning of components, etc.
  • sensor assembly 250 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the audio circuit 260, speaker 261, and microphone 262 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 260 can transmit the electrical signal converted from the received audio data to the speaker 261, and the speaker 261 converts it into a sound signal for output; on the other hand, the microphone 262 converts the collected sound signal into an electrical signal, and the audio circuit 260 After receiving, it is converted into audio data, and then the audio data is output to the RF circuit 210 for sending to, for example, another mobile phone, or the audio data is output to the memory 220 for further processing.
  • the processor 270 is the control center of the mobile phone, using various interfaces and lines to connect various parts of the entire mobile phone, by running or executing software programs and/or modules stored in the memory 220, and calling data stored in the memory 220, Performs various functions of the phone and processes data to provide overall monitoring of the phone.
  • the processor 270 may include one or more processing units.
  • the processor 270 can integrate an application processor and a modem processor, where the application processor mainly processes operating systems, user interfaces, application programs, etc., and the modem processor mainly processes wireless communications. It is understandable that the above-mentioned modem processor may not be integrated everywhere in processor 270.
  • the mobile phone also includes a power supply 280 (such as a battery) that supplies power to various components.
  • a power supply 280 (such as a battery) that supplies power to various components.
  • the power supply can be logically connected to the processor 270 through a power management system, thereby realizing functions such as managing charging, discharging, and power consumption management through the power management system. .
  • the mobile phone may also include a connectivity chip 290, and a WiFi chip may be integrated into the chip 290.
  • the chip 290 can also integrate one of a Bluetooth module, a near field communication (NFC) module, a global navigation satellite system (GNSS) module or a frequency modulation (frequency modulation, FM) module.
  • NFC near field communication
  • GNSS global navigation satellite system
  • FM frequency modulation
  • the structure of the mobile phone shown in FIG. 2 does not limit the mobile phone, and may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • FIG. 3 is a schematic flowchart of a WiFi communication method provided by an embodiment of the present application.
  • the method can be applied to a WiFi communication system.
  • the method includes the following steps.
  • the access device sends a scheduling signal to the site device.
  • the scheduling signal is used to schedule the scheduling frequency band, or the scheduling information and the competition frequency band.
  • the competition frequency band is an existing WiFi communication frequency band.
  • the scheduling frequency band is different from the competition frequency band.
  • the scheduling frequency band may not be an existing WiFi communication frequency band.
  • the competition frequency band may be a 5G frequency band or an existing 2G frequency band.
  • Some frequency bands are allocated to WiFi communication.
  • the scheduled frequency band can be the 5G frequency band or the existing frequency band in the 2G frequency band that is not allocated to WiFi communication.
  • this competitive frequency band can also be understood as a frequency band based on the CSMA/CA mechanism and using the existing WiFi protocol threshold backoff. Compared with the existing WiFi frequency band, the competitive frequency band can also be understood as the existing frequency band allocated for WiFi communication. This scheduled frequency band can also be understood as a frequency band that uses energy detection threshold backoff.
  • the bandwidth of the competition frequency band can be an integer multiple of 20MHz.
  • the bandwidth of the competition frequency band can be 20MHz, 40MHz, 80MHz or 160MHz.
  • the competitive frequency band may be 5170-5190 MHz, that is, the competitive frequency band may be the frequency band of channel 36 (with a bandwidth of 20 MHz) in the 5G frequency band.
  • the bandwidth of the scheduling frequency band may be an integer multiple of other than 20 MHz.
  • the bandwidth of the scheduling frequency band may be 5 MHz or 10 MHz.
  • the scheduling frequency band may be 5152.5-5157.5 MHz, that is, the scheduling frequency band may be the frequency band of channel 31 in the 5G frequency band.
  • the bandwidth of the scheduled frequency band may be smaller than the bandwidth of the competitive frequency band.
  • the WiFi communication frequency bands currently used by several countries or regions in the world will be described below.
  • the currently used wireless frequency bands can include the following frequency bands: 5180-5350MHz, 5725-5850MHz; among them, the WiFi communication frequency band in the 5180-5350MHz frequency band is 5180-5330MHz, and the WiFi communication frequency band in the 5725-5850MHz frequency band The frequency band is 5745-5835MHz.
  • the currently used wireless frequency bands can include the following frequency bands: 5150-5350MHz, 5470-5725MHz, 5945-6425MHz; among them, the existing WiFi communication frequency band in the 5150-5350MHz frequency band is 5180-5350MHz, and in the 5470-5725MHz frequency band The WiFi communication frequency band in the 5500-5710MHz frequency band is 5945-6415MHz.
  • the currently used wireless frequency bands can include the following frequency bands: 5150-5350MHz, 5470-5725MHz, 5725-5850MHz and 5925-7125MHz; among them, the WiFi communication frequency band in the 5150-5350MHz frequency band is 5180-5330MHz, and the WiFi communication frequency band in the 5470-5470-5350MHz frequency band is 5180-5330MHz.
  • the WiFi communication frequency band in the 5725MHz frequency band is 5500-5710MHz
  • the WiFi communication frequency band in the 5470-5725MHz frequency band is 5745-5835MHz
  • the WiFi communication frequency band in the 5925-7125MHz frequency band is 5945-7115MHz.
  • the competitive frequency band in the embodiment of the present application may be the working frequency band corresponding to the different channels allocated by the 802.11 working group in the WiFi communication frequency band listed above, which may also be called the frequency band of existing WiFi communication.
  • the access device may also determine the scheduling frequency band.
  • the access device's determination of the scheduling frequency band may refer to determining an available scheduling frequency band, and the available scheduling frequency band may also refer to a scheduling frequency band in an idle state.
  • the access device can use the energy detection threshold for backoff to determine the scheduled frequency band. For example, the access device can detect the air interface energy of the scheduled frequency band. If the energy is less than the detection threshold (for example, the detection threshold is -62dBm), the access device after the random backoff process, the detected energy is still less than the detection threshold. threshold, it can be determined that the scheduled frequency band is in an idle state. If the energy detected by any detection process is greater than or equal to the detection threshold, the access device can determine that the scheduled frequency band is in a busy state. The busy state can also be called unavailable. .
  • the access device may also determine the competition frequency band.
  • the access device can also use the above energy detection threshold to back off to determine the competing frequency band; or the access device can detect the competing frequency band according to the CSMA/CA mechanism and back off using the WiFi protocol threshold during detection.
  • the WiFi protocol threshold is -82dBm.
  • the access device can send a scheduling signal on the scheduling frequency band, and the scheduling signal can be used to schedule the scheduling frequency band; or if The access device determines that the scheduling frequency band is in an idle state and the competition frequency band is in an idle state.
  • the access device can send a scheduling signal on the scheduling frequency band and/or the competition frequency band.
  • the scheduling signal can be used to schedule the scheduling frequency band and the competition frequency band.
  • the access device may also send a scheduling signal for scheduling the competition frequency band on the competition frequency band.
  • the scheduling frequency band and the competition frequency band may be continuous or discontinuous.
  • the scheduling frequency band can be 5165-5170MHz in the 5G frequency band
  • the competition frequency band can be 5170-5190MHz in the 5G frequency band.
  • the scheduling frequency band and the competition frequency band are continuous.
  • the scheduling frequency band may be 5152.5-5157.5MHz in the 5G frequency band
  • the competition frequency band may be 5170-5190MHz in the 5G frequency band.
  • the scheduling frequency band and the competition frequency band are discontinuous.
  • S302 The site equipment receives the scheduling signal.
  • the site device When the site device receives the scheduling signal, the site device can determine the scheduling of the access device according to the scheduling signal.
  • the relevant description of the scheduling signal is consistent with the description in S301 above. For details, please refer to the relevant description of S301, which will not be described again in this embodiment of the present application.
  • the access device communicates with the site device on the frequency band scheduled by the scheduling signal.
  • WiFi communication is performed between the access device and the site device according to the scheduling of the access device. For example, if the scheduling signal is used to schedule the scheduling frequency band, the site equipment and the access device can conduct WiFi communication on the scheduling frequency band; if the scheduling signal is used to schedule the scheduling frequency band and the competition band, the site equipment and The access device can perform WiFi communication on the scheduled frequency band and the competitive frequency band.
  • the access device can schedule the scheduling frequency band and/or the competition frequency band to perform WiFi communication with the site device through the scheduling frequency band and/or the competition frequency band, thus avoiding the problems in the prior art.
  • the access device and the site device can only communicate using the competing frequency band based on the CSMA/CA mechanism, thereby reducing the delay and delay jitter of WiFi communication and reducing communication interference.
  • the communication bandwidth can also be increased and the transmission rate can be increased; the delay of WiFi communication using the scheduling frequency band is small, and it can also meet the transmission of most real-time business data Requirements include, for example, real-time video data transmission.
  • the access device can send downlink data to the site device on the scheduling frequency band, so that the site device can receive the downlink data on the scheduling frequency band.
  • the scheduling signal is used to schedule the competition frequency band
  • the access device can send downlink data to the site device on the competition frequency band, so that the site device can receive the downlink data on the competition frequency band.
  • the scheduling signal is used to schedule the scheduling frequency band and the competition frequency band
  • the access device sends downlink data to the site equipment on the scheduling frequency band and the competition frequency band, so that the site equipment can operate on the scheduling frequency band and the competition frequency band. Receive downlink data.
  • the scheduling frequency band is 5 MHz and the competition frequency band is 20 MHz
  • the scheduling signal sent by the access device AP to STA1 is used to schedule the scheduling frequency band and the competition frequency band
  • the scheduling signal sent by the access device AP to STA2 is The scheduling signal sent is used to schedule the scheduling frequency band
  • the scheduling signal sent to STA3 is used to schedule the competition frequency band.
  • the access device AP can send downlink data to STA1 on the scheduling frequency band and the competition frequency band.
  • Send downlink data to STA2 and send downlink data to STA3 on the competing frequency band.
  • the access device AP sends downlink data to STA1, STA2, and STA3 respectively in different time slots of the scheduling frequency band and/or the competition frequency band as an example for illustration.
  • the access device When the access device sends downlink data to the site device on the scheduling frequency band and the competition frequency band, the access device can send downlink data frames on the scheduling frequency band and the competition frequency band respectively, or can also send downlink data frames on the scheduling frequency band and the competition frequency band. Downlink data frames are jointly sent on the competing frequency band.
  • the access device can send downlink data frames on the scheduling frequency band and the competition frequency band respectively.
  • the method may further include: S304a-S305a.
  • S304a The access device sends a first downlink data frame to the site device on the scheduling frequency band, and sends a second downlink data frame to the site device on the competition frequency band.
  • the first downlink data frame may include a first media access control, protocol data unit (MPDU), that is, the first downlink data frame may include the first MPDU, and the second downlink data frame may Includes the second MPDU.
  • MPDU protocol data unit
  • the scheduling frequency band is 5MHz and the competition frequency band is 20MHz
  • the bandwidth of the first MPDU is 5MHz
  • the bandwidth of the second MPDU is 5MHz. The bandwidth is 20MHz.
  • the first downlink data frame and the second downlink data frame may be independent of each other, which may also be referred to as the first MPDU and the second MPDU being independent of each other.
  • the first downlink data frame and the second downlink data frame are independent of each other, which means: the modulation and demodulation of the first downlink data frame and the second downlink data frame are independent, and the modulation and demodulation processes of the two can be independent. proceed without affecting each other.
  • the frame header and frame tail of the first downlink data frame are respectively aligned with the frame header and frame tail of the second downlink data frame, which may also be called the frame header and frame tail of the first MPDU respectively. Aligned with the frame header and frame end of the second MPDU. For example, as shown in (a) of Figure 6, if the access device AP only supports single-input single-output communication mode, the access device AP can simultaneously send the first MPDU on the scheduling frequency band and the competition frequency band. and the second MPDU, the frame header and frame tail of the first MPDU are respectively aligned with the frame header and frame tail of the second MPDU.
  • the frame header and frame tail of the first downlink data frame may not be aligned with the frame header and frame tail of the second downlink data frame, which may also be called the frame header and frame tail of the first MPDU.
  • the tail is not aligned with the frame header and frame tail of the second MPDU respectively.
  • the access device AP may not send the first MPDU on the scheduling frequency band and the competition frequency band at the same time.
  • the second MPDU that is, the frame header and frame tail of the first MPDU are not aligned with the frame header and frame tail of the second MPDU respectively.
  • the frame header of the first MPDU is later than the frame header of the second MPDU.
  • the first downlink data frame may include preamble information, and the preamble information is used to indicate Whether the second downlink data frame includes downlink data of the site equipment.
  • the preamble information includes a synchronization sequence and a signal field SIG.
  • the synchronization sequence may include a short training sequence LSTF and a long time sequence LLTF.
  • the signal field SIG may have 1 bit indicating whether the second downlink data frame Includes downlink data for the site's equipment.
  • S305a The site equipment receives the first downlink data frame on the scheduling frequency band and the second downlink data frame on the competition frequency band.
  • the site device can detect synchronization signals on the scheduling frequency band and the competition frequency band respectively, and receive the first downlink data frame from the access device on the scheduling frequency band according to the detected synchronization signals.
  • the second downlink data frame from the access device is received on the competing frequency band.
  • the site device can parse the first downlink data frame, for example, parse the signal field SIG of the first downlink data frame. If the signal field If the SIG is correct, parse the payload of the first downlink data frame and obtain the first downlink data of the site device.
  • the site device can directly parse the second downlink data frame.
  • the site device may determine whether to parse the second downlink data frame based on the preamble information in the first downlink data frame.
  • the site device can parse the second downlink data frame, for example, parse the signal field SIG of the second downlink data frame, if If the signal field SIG is correct, then the payload of the second downlink data frame is parsed to obtain the second downlink data of the site equipment; if the preamble information is used to indicate that the second downlink data frame does not include the downlink data of the site equipment, the The site device may not parse the second downlink data frame.
  • the site device can send a block acknowledgment (BA) frame to the access device on the scheduling frequency band to notify the access device of the second downlink data frame.
  • BA block acknowledgment
  • the downstream data frame is received successfully.
  • the site device may send BA frames to the access device on the scheduling frequency band and the competition frequency band respectively to notify the access device of the second downlink data frame.
  • the first downlink data frame and the second downlink data frame are received successfully.
  • the method may also include: the access device sends a first beacon frame on the scheduling frequency band, and the first beacon frame is used to indicate the basic service of the access device information; when the site device receives the first beacon frame on the scheduling frequency band, the site device can access the access device on the scheduling frequency band according to the basic service information, that is, the access device is in the scheduling frequency band Provide access services to the site equipment.
  • the above scheduling signal may be carried in the first beacon frame.
  • the first beacon frame also includes one or more of the period of the first beacon frame, the channel indication of the scheduling frequency band, the available time slot information of the scheduling frequency band, and quasi-static scheduling information.
  • the period of the first beacon frame may refer to the period in which the access device sends beacon frames on the scheduled frequency band.
  • the channel indication is used to indicate the channel corresponding to the scheduling frequency band.
  • the scheduling frequency band is 5152.5-5157.5 MHz, that is, the channel indication can be used to indicate that the scheduling frequency band is channel 31.
  • the available time slot information is used to indicate the available time slots of the scheduling frequency band, specifically the available time slots corresponding to the access device in the scheduling frequency band.
  • the quasi-static scheduling information may be used to indicate scheduling-related information. For specific descriptions, reference may be made to descriptions in the prior art, and the embodiments of the present application will not be repeated here.
  • the method may also include: the access device sends a second beacon frame on the competition frequency band, and the second beacon frame
  • the beacon frame is used to indicate the basic service information of the access device and the scheduled frequency band; when the site device receives the second beacon frame on the competing frequency band, the site device can perform the basic service information on the scheduled frequency band according to the Accessing the access device means that the access device provides access services for the site device on the scheduled frequency band.
  • the above scheduling signal may be carried in the second beacon frame.
  • the first beacon frame and the second beacon frame may also be sent and ended at the same time, that is, the first beacon frame and the second beacon frame Frame alignment.
  • the second beacon frame also includes the period of the second beacon frame, and may also include one or more of the channel indication of the scheduling frequency band, available time slot information of the scheduling frequency band, and quasi-static scheduling information. indivual.
  • the period of the second beacon frame may refer to the period in which the access device sends beacon frames on the competing frequency band.
  • the channel indication, the available time slot information and the quasi-static scheduling information are similar to the relevant contents in the above-mentioned first beacon frame, and will not be described again in this embodiment of the present application.
  • the access device can jointly send downlink data frames on the scheduling frequency band and the competition frequency band.
  • the method may further include: S304b-S305b.
  • S304b The access device sends the third downlink data frame to the site device on the scheduling frequency band and the competition frequency band.
  • the third downlink data frame may include a third MPDU.
  • the scheduling frequency band is 5 MHz and the competition frequency band is 20 MHz
  • the bandwidth of the third MPDU sent by the access device on the scheduling frequency band and the competition frequency band is 25 MHz.
  • S305b The site equipment receives the third downlink data frame on the scheduling frequency band and the competition frequency band.
  • the site device can detect the synchronization signal on the scheduling frequency band and the competition frequency band, and receive the third downlink data frame from the access device on the scheduling frequency band and the competition frequency band based on the detected synchronization signal,
  • the third downlink data frame is parsed, for example, the signal field SIG of the third downlink data frame is parsed. If the signal field SIG is correct, the payload of the third downlink data frame is parsed to obtain the third downlink data of the site equipment.
  • the site device may send a feedback response BA to the access device on the scheduling frequency band and the competition frequency band to notify the access device of the third downlink data frame. Frame received successfully.
  • the method may also include: the access device jointly sends a beacon frame on the scheduling frequency band and the competition frequency band, and the jointly sent beacon frame can be used to indicate the access The basic service information of the device and the scheduling frequency band; when the site device receives the beacon frame on the scheduling frequency band and the competition frequency band, the site device can use the beacon frame on the scheduling frequency band and the competition frequency band according to The basic service information is accessed by the access device.
  • the above scheduling signal may be carried in a jointly transmitted beacon frame.
  • the jointly sent beacon frame also includes the period of the beacon frame, and may also include one or more of the channel indication of the scheduling frequency band, the available time slot information of the scheduling frequency band, and quasi-static scheduling information. indivual.
  • the period of the beacon frame may refer to the period of the beacon frame jointly sent on the scheduling frequency band and the competition frequency band.
  • the channel indication, the available time slot information and the quasi-static scheduling information are similar to the relevant contents in the above-mentioned first beacon frame, and will not be described again in this embodiment of the present application.
  • the scheduling frequency band or the available time slots of the scheduling frequency band in either of the above two situations may be determined by the access device based on the beacon frames received by other access devices.
  • the incoming device and other access devices can use different scheduling frequency bands in a frequency division multiplexing manner, or use the same scheduling frequency band in different time slots in a time division multiplexing manner.
  • the method may further include: the access device receives at least one third beacon frame from other access devices, the At least one third beacon frame is used to indicate at least one scheduling frequency band; the access device determines an available scheduling frequency band other than the at least one scheduling frequency band as the scheduling frequency band.
  • the available scheduling frequency bands include the frequency band 5152.5-5157.5MHz corresponding to channel 31 and the frequency band 5157.5-5162.5MHz of channel 32, then: when AP1 receives the beacon frame, and when the beacon frame indicates that the scheduled frequency band is 5152.5-5157.5MHz, AP1 can choose to use the scheduled frequency band 5157.5-5162.5MHz.
  • the method may also include: the access device receives signals from other access devices. At least one third beacon frame of the incoming device, the at least one third beacon frame is used to indicate at least one second time slot of the scheduled frequency band; the access device divides the at least one second time slot of the scheduled frequency band into An available time slot outside the scheduled frequency band is determined as the first time slot of the scheduling frequency band.
  • the scheduling frequency band is the frequency band 5152.5-5157.5MHz corresponding to channel 31, then: when AP1 receives the beacon frame of AP2, and When the beacon frame is used to indicate the second time slot of the scheduled frequency band 5152.5-5157.5 MHz, AP1 may use an available time slot in the scheduled frequency band 5152.5-5157.5 MHz except the second time slot as the first time slot.
  • the first time slot corresponding to AP1 and the second time slot corresponding to AP2 both include multiple time slots are taken as an example for explanation.
  • the access device and other access devices can use different scheduling frequency bands in a frequency division multiplexing manner, or can use different time slots in the same scheduling frequency band in a time division multiplexing manner, so that It avoids interference between multiple access devices and further reduces the delay and delay jitter of WiFi communication.
  • the method may also include the following steps.
  • the method may also include S306-S307.
  • the access device sends uplink scheduling information to the site device on the scheduling frequency band, and the uplink scheduling information is used to schedule uplink data.
  • the uplink scheduling information is carried in a trigger frame, or the uplink scheduling information is sent in the form of a trigger frame.
  • the trigger frame may be one of downlink data frames, for example, the The first downlink data frame sent by the incoming device above may be a trigger frame. In this way, when the site device receives the trigger frame, the site device can send uplink data to the access device on the scheduled frequency band.
  • the uplink scheduling information is carried in a beacon frame corresponding to the scheduling frequency band (i.e., the above-mentioned first beacon frame), that is, the access device sends the first beacon frame on the scheduling frequency band.
  • the uplink scheduling information may be carried in the first beacon frame. In this way, when the site device receives the first beacon frame and accesses the access device, the site device can send uplink data to the access device on the scheduled frequency band.
  • the uplink scheduling information may be sent based on an uplink request from the site device, and the uplink request may be carried in a trigger-based null data packet (TB NDP) frame. , or the uplink request is carried in the BA frame of the site device.
  • TB NDP trigger-based null data packet
  • the TB NDP frame may be sent by the site device based on the first beacon frame of the access device.
  • the first beacon frame may be provided with information indicating the time slot in which the site device sends the TB NDP frame, If the site device needs to send uplink data, the site device can feed back the TB NDP frame to the access device in the corresponding time slot. In this way, when the access device receives the TB NDP frame, it can send a trigger frame to the site device, so that the site device sends uplink data to the access device on the scheduled frequency band when receiving the trigger frame. .
  • the BA frame may be sent by the site device based on the downlink data frame of the access device.
  • the site device receives the downlink data frame (for example, the second downlink data frame) sent by the access device in the competition frequency band.
  • a BA frame may be sent to the access device, and the BA frame carries the uplink request, so as to request the access device to send uplink data through the uplink request.
  • the access device receives the BA frame and determines that the site device needs to send uplink data based on the uplink request in the BA frame, the access device can send a trigger frame to the site device on the scheduled frequency band. Uplink scheduling information.
  • the site device When receiving the uplink scheduling information, the site device sends the first uplink data frame to the access device on the scheduling frequency band.
  • the uplink scheduling information can be used to indicate the time slot in which the site device sends uplink data on the scheduling frequency band, so that when receiving the uplink scheduling information, the site device can The first uplink data frame is sent to the access device on the indicated time slot of the scheduled frequency band.
  • the first uplink data frame may be a trigger-based (TB) frame, that is, the site device may send uplink data to the access device in the form of a TB frame on the scheduled frequency band.
  • TB trigger-based
  • the site device can also send a message to the competing frequency band on the competing frequency band.
  • the access device sends the second uplink data frame.
  • the first uplink data frame and the second uplink data frame may be independent of each other.
  • the frame header and frame tail of the first uplink data frame are respectively aligned with the frame header and frame tail of the second uplink data frame.
  • the frame header and frame tail of the first uplink data frame may be misaligned with the frame header and frame tail of the second uplink data frame respectively.
  • the access device when the site device sends the first uplink data frame in the scheduling frequency band, the access device can receive the first uplink data frame in the scheduling frequency band. After receiving the first uplink data frame on the scheduling frequency band, the access device may also parse the first uplink data frame to obtain the first uplink data of the site device.
  • the access device can also receive data from the competing frequency band on the competing frequency band.
  • the access device also The second uplink data frame can be parsed to obtain the second uplink data of the site device.
  • the site equipment can access the access device through the scheduling frequency band. , and only receives the first downlink data frame from the access device on the scheduling frequency band, and sends the first uplink data frame to the access device on the scheduling frequency band.
  • the site device can send an uplink request through a TB NDP frame or a BA frame, or send uplink data to the access device through a TB frame.
  • the access device and the site device perform WiFi communication on the scheduling frequency band and the competition frequency band are illustrated below.
  • the access device and the site are used
  • the communication of each device in the device on the scheduling frequency band and the competition frequency band is independent of each other, and the uplink data and downlink data on the same frequency band are transmitted on different time slots for illustration.
  • Figure 10 shows a possible situation in which the access device performs WiFi communication on the scheduling frequency band and the competition frequency band respectively.
  • the access device may send a beacon frame on the scheduling frequency band, and then receive uplink data from the site device on the scheduling frequency band and send downlink data to the site device.
  • the access device may send a beacon frame on the contention frequency band, and then receive uplink data from the site device on the contention frequency band and send downlink data to the site device.
  • the state in which the access device sends downlink data is called the sending state (represented as TX)
  • the state in which the access device receives uplink data is called the receiving state (represented as RX)
  • the access device is represented as AP.
  • Figure 11 shows a possible situation in which the site equipment performs WiFi communication on the scheduling frequency band and the competition frequency band.
  • the site equipment supports WiFi communication on the scheduling frequency band and the competition frequency band at the same time.
  • the site device may send uplink data to the access device and downlink data to the access device on the scheduling frequency band.
  • the site device may send uplink data to the access device and downlink data to the access device on the contention frequency band.
  • the state in which the access device sends uplink data is called the transmitting state (represented as TX)
  • the state in which the station device receives downlink data is called the receiving state (represented as RX)
  • the station device is represented as STA.
  • Figure 12 shows a possible situation in which the site equipment performs WiFi communication on the scheduled frequency band and the competition frequency band.
  • the site equipment may not support WiFi communication on the scheduling frequency band and the competition frequency band at the same time.
  • the site device works in the scheduling frequency band
  • the site device can send uplink data to the access device on the scheduling frequency band, and send uplink data to the access device on the scheduling frequency band.
  • the access device sends downlink data.
  • the site device works in the competition frequency band
  • the site equipment can send uplink data to the access device on the competition frequency band, and Send downlink data to the access device.
  • the state in which the access device sends uplink data is called the sending state (expressed as TX)
  • the state in which the station device receives downlink data is called the receiving state (expressed as RX)
  • the station device is expressed as the STA.
  • Figure 13 shows a possible situation in which the site equipment performs WiFi communication on the scheduling frequency band and the competition frequency band. Among them, the site equipment only supports WiFi communication on this scheduling frequency band. Specifically, after receiving the beacon frame from the access device on the scheduling frequency band, the site device may send uplink data to the access device and downlink data to the access device on the scheduling frequency band.
  • the state in which the access device sends uplink data is called the sending state (expressed as TX)
  • the state in which the station device receives downlink data is called the receiving state (expressed as RX)
  • the station device is expressed as the STA.
  • the transmission delay requirement can be higher through the scheduling frequency band.
  • Business data for example, real-time video data, or real-time call data, etc.
  • business data with low latency requirements for example, web browsing, video downloading, etc.
  • the above-mentioned scheduling signal can also be used to schedule multiple scheduling frequency bands, and the access device and the site device can also communicate on the multiple scheduling frequency bands, for example, transmit uplink data or downlink data on the multiple scheduling frequency bands.
  • the scheduling signal is also used to schedule a scheduling frequency band and multiple competition frequency bands
  • the access device can also communicate with the site device on the one scheduling frequency band and the multiple competition frequency bands, such as , transmit at least one of uplink data or downlink data on the one scheduling frequency band and the multiple competition frequency bands; or, the scheduling signal is also used to schedule multiple scheduling frequency bands and multiple competition frequency bands;
  • the access device can also Communicate with the site equipment on the multiple scheduling frequency bands and the multiple competition frequency bands, for example, transmit at least one of uplink data or downlink data on the multiple scheduling frequency bands and the multiple competition frequency bands.
  • the site equipment may respectively Access the access device to operate in the multiple frequency bands Multiple connections are correspondingly established, so that the access device and the site device can communicate using the multiple connections.
  • the access device and the site device can also switch the connection from one of the multiple frequency bands to another frequency band.
  • the multiple frequency bands include a first frequency band F1 and a second frequency band F2.
  • the corresponding connection established on F1 is CONT1
  • the corresponding connection established on F2 is CONT2.
  • the access device and the site device can use CONT1 Switch to the F2 and switch CONT2 to the F1.
  • the multiple connections may refer to multiple connections on the physical layer.
  • the multiple connections may be controlled by a media access control layer (media access control, MAC) controller.
  • the MAC controller may control the multiple connections.
  • the data corresponding to each connection is allocated to the corresponding frequency band for transmission according to the switching of the corresponding connection.
  • the above connections may also be called physical links or physical links.
  • the process of switching a connection to another frequency band between the access device and the site device may include: the access device sending a fourth beacon frame to the site device, the fourth beacon frame carrying The identification of the connection that needs to be switched, the destination frequency band of the switch and the switching time, so that when the site device receives the fourth beacon frame, the access device and the site device can switch the connection that needs to be switched at the switching time.
  • the fourth beacon frame may also be used to instruct at least one of the multiple site devices to switch to the designated frequency band, Site devices other than the at least one site device may randomly switch to other frequency bands.
  • the fourth beacon frame may also be used to indicate the designated frequency band and the other frequency bands.
  • the access device and the site device can communicate according to the transmitted service type, the busy or idle status of the channel, and the device Switch based on one or more factors such as power consumption.
  • WiFi communication can be carried out between the access device and the site device through the scheduled frequency band, or the scheduled frequency band and the competition frequency band.
  • the WiFi communication can include the transmission of uplink data and downlink data, thereby avoiding
  • the access device and the site equipment can only use competing frequency bands for WiFi communication, thereby increasing the frequency band of WiFi communication, increasing the transmission rate, reducing the delay and delay jitter of WiFi communication, and reducing the communication cost. interference, while also being able to meet the transmission requirements of most real-time business data.
  • the site device when the site device only supports the scheduling frequency band, the site device can also access the access device based on the scheduling frequency band, and use the scheduling frequency band to perform WiFi communication with the access device, thereby enabling the existing technology to Devices that do not support WiFi can perform WiFi communication, and the bandwidth of the scheduled frequency band is usually smaller than the competitive frequency band. Using this scheduled frequency band for WiFi communication can also reduce power consumption during communication.
  • each network element such as access equipment and site equipment.
  • each network element such as access equipment and site equipment.
  • it includes hardware structures and/or software modules corresponding to each function.
  • Persons skilled in the art should easily realize that, with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein, the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the access device and the site device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods. The following is an example of dividing each functional module into corresponding functions:
  • FIG. 14 shows a possible structural diagram of the WiFi communication device involved in the above embodiment.
  • the WiFi communication device may be an access device, and the device includes: a processing unit 401, a sending unit 402, and a receiving unit 403.
  • the processing unit 401 is used to support the device to perform the steps of determining the scheduling frequency band and/or the competition frequency band in the above method embodiment
  • the sending unit 402 is used to support the device to perform S301, S303, S304a (or S304b) in the above method embodiment. ) or one or more steps in S306
  • the receiving unit 403 is configured to support the device to perform the steps of receiving uplink data in the above method embodiment. All relevant content of each step involved in the above method embodiments can be quoted from the functional description of the corresponding functional module, and will not be described again here.
  • the processing unit 401 in this application can be the processor of the device
  • the sending unit 402 can be the transmitter of the device
  • the receiving unit 403 can be the receiver of the device
  • the transmitter can usually be
  • the receivers are integrated together as transceivers, and the specific transceivers can also be called communication interfaces.
  • FIG. 15 is a schematic diagram of a possible logical structure of the WiFi communication device involved in the above embodiment provided by the embodiment of the present application.
  • the WiFi communication device may be an access device, and the device includes: a processor 412 and a communication interface 413.
  • Processor 412 For controlling and managing the actions of the device, for example, the processor 412 is used to support the device to perform the steps of determining the scheduling frequency band and/or the competition frequency band in the above method embodiment, and/or other processes for the technology described herein.
  • the device may also include a memory 411 and a bus 414.
  • the processor 412, the communication interface 413 and the memory 411 are connected to each other through the bus 414; the communication interface 413 is used to support the device to communicate; the memory 411 is used to store the program code of the device and data.
  • the processor 412 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 414 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • FIG. 16 shows a possible structural diagram of the WiFi communication device involved in the above embodiment.
  • the WiFi communication device may be a site device, and the device includes: a receiving unit 501, a processing unit 502, and a sending unit 503.
  • the receiving unit 501 is used to support the device to perform one or more of steps S302, S303, S305a (or S305b) or receive uplink scheduling information in the above method embodiment;
  • the processing unit 502 is used to support the device to perform the above steps.
  • one or more of the steps of determining the scheduling frequency band and/or contention frequency band, accessing the access device, etc.; the sending unit 503 is used to support the device to perform S307 in the above method embodiment, and/or send other Steps to upload data. All relevant content of each step involved in the above method embodiments can be quoted from the functional description of the corresponding functional module, and will not be described again here.
  • the processing unit 502 in this application can be the processor of the device
  • the receiving unit 501 can be the receiver of the device
  • the sending unit 503 can be the transmitter of the device.
  • the transmitter can usually be
  • the receivers are integrated together as transceivers, and the specific transceivers can also be called communication interfaces.
  • FIG. 17 is a schematic diagram of a possible logical structure of the WiFi communication device involved in the above embodiment provided by the embodiment of the present application.
  • the WiFi communication can be a site device, and the device includes: a processor 512 and a communication interface 513 .
  • the processor 512 is used to control and manage the actions of the device.
  • the processor 512 is used to support the device in performing the steps of determining the scheduling frequency band and/or the competition frequency band, and accessing the access device in the above method embodiment, and/or Other processes for the techniques described in this article.
  • the device also includes a memory 511 and a bus 514.
  • the processor 512, the communication interface 513 and the memory 511 are connected to each other through the bus 514; the communication interface 513 is used to support the device to communicate; the memory 511 is used to store the program code of the device and data.
  • the processor 512 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 514 may be a Peripheral Component Interconnect Standard (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, or the like.
  • PCI Peripheral Component Interconnect Standard
  • EISA Extended Industry Standard Architecture
  • a readable storage medium is also provided.
  • Computer execution instructions are stored in the readable storage medium.
  • a device which can be a microcontroller, a chip, etc.
  • a processor executes the above method embodiment, The steps of accessing the device in the method embodiment are provided.
  • the aforementioned readable storage media may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
  • a readable storage medium is also provided.
  • Computer execution instructions are stored in the readable storage medium.
  • a device which can be a microcontroller, a chip, etc.
  • a processor executes the above method embodiment, The steps of the site equipment in the method embodiment are provided.
  • the aforementioned readable storage media may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
  • a computer program product in another embodiment of the present application, includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; at least one processor of the device can obtain data from a computer-readable storage medium. Reading the storage medium reads the computer-executed instructions, and at least one processor executes the computer-executed instructions to enable the device to access the device in the WiFi communication method provided by the above method embodiment.
  • a computer program product includes computer execution instructions, The computer-executable instructions are stored in a computer-readable storage medium; at least one processor of the device can read the computer-executable instructions from the computer-readable storage medium, and the at least one processor executes the computer-executed instructions so that the device implements the above method provided Steps for site equipment in WiFi communication method.
  • a WiFi communication system in another embodiment, is also provided.
  • the communication system includes an access device and a site device; wherein the access device can be the WiFi communication device provided in Figure 14 or Figure 15, and Used to perform the steps of accessing the device in the above method embodiment; the site device may be the WiFi communication device provided in Figure 16 or Figure 17, and used to perform the steps of the site device in the above method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种WiFi通信方法、装置及系统,涉及通信技术领域,用于降低WiFi通信的时延和时延抖动。该方法包括:接入设备向站点设备发送调度信号,该调度信号用于调度调度频段、或者该调度频段和该竞争频段,该竞争频段是现有的WiFi通信的频段,该调度频段与该竞争频段不同,该调度频段可以不是现有的WiFi通信的频段;该接入设备与该站点设备之间在该调度信号所调度的频段上进行通信,比如,在该调度频段、或者调度频段和该竞争频段上传输上行数据或下行数据。

Description

一种WiFi通信方法、装置及系统
本申请要求于2022年07月29日提交国家知识产权局、申请号为202210910957.4、申请名称为“一种WiFi通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种WiFi通信方法、装置及系统。
背景技术
无线保真(Wireless Fidelity,WiFi)技术从发布至今,已经发展普及了6代WiFi系统(801.11,802.11b,802.11a/g,802.11n,802.11ac,802.11ax),每一代802.11的WiFi系统都在大幅度的提升其速率。802.11工作组划分了2G、5G两个频段作为无线信道,每个频段又划分为若干信道。此外,802.11工作组还划分了每个信道的工作频段,WiFi系统中信道的工作频段的最小间隔为20MHz。
在WiFi系统中,无线信道只有一个冲突域的特性,所以需要设置一种随机接入机制,以避免多个节点同时访问网络所带来的冲突问题。该随机接入机制为载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance,CSMA/CA)。CSMA/CA机制如下:当设备监听到一个信道为空时,等待一个帧间间隔;再次监听该信道,若该信道还为空则开始一个随机后退过程;在该随机后退过程之后,若仍监听到该信道为空,则开始发送数据。在上述过程中,如果任何时候出现信道忙的情况,则终止上面的过程,并重新等待信道为空,之后再重复上面的过程(即从等待一个帧间间隔开始)。因此,上述CSMA/CA机制存在时延和时延抖动难以保证的问题。
发明内容
本申请提供一种WiFi通信方法及装置,解决了现有技术中WiFi通信的时延和时延抖动难以保证的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种WiFi通信方法,该方法包括:接入设备向站点设备发送调度信号,该调度信号用于调度调度频段、或者该调度频段和该竞争频段,该竞争频段是现有的WiFi通信的频段,该调度频段与该竞争频段不同,该调度频段可以不是现有的WiFi通信的频段,比如,该竞争频段可以是5G频段或2G频段中现有的分配给WiFi通信的频段,该竞争频段的带宽可以为20MHz的整数倍,该调度频段可以是5G频段或2G频段中现有的未分配给WiFi通信的频段,该调度频段的带宽可以不是20MHz的整数倍;该接入设备在该调度信号调度的频段上与该站点设备之间进行通信。
上述技术方案中,该接入设备可以调度该调度频段、或该调度频段和该竞争频段,以通过该调度频段和/或该竞争频段与该站点设备之间进行WiFi通信,避免了现有技术中接入设备与该站点设备仅能够基于CSMA/CA机制使用竞争频段进行通信,进而降低了WiFi通信的时延和时延抖动,减小了通信干扰。此外,在同时使用该调度频段和该竞争频段进行WiFi通信时,还能够增大通信带宽,提高传输速率。
在第一方面的一种可能的实现方式中,若该调度信号用于调度该调度频段,该接入设备在该调度信号调度的频段上与该站点设备之间进行通信,包括:该接入设备在该调度频段上向该站点设备发送第一下行数据帧。若该调度信号用于调度该调度频段和该竞争频段,该方法还包括:该接入设备在该调度频段上向该站点设备发送第一下行数据帧,在该竞争频段上向该站点设备发送第二下行数据帧。上述可能的实现方式中,该接入设备可以使用该调度频段,或者该调度频段和该竞争频段向该站点设备发送下行数据,可以降低下行传输的时延和时延抖动,同时还可以增大下行数据的通信带宽,提高传输速率。
在第一方面的一种可能的实现方式中,第一下行数据帧的帧头和帧尾分别与第二下行数据帧的帧头和帧尾对齐。可选的,第一下行数据帧包括前导信息,该前导信息用于指示第二下行数据帧中是否包括该站点设备的下行数据。上述可能的实现方式中,能够使得仅支持单输入单输出通信模式的接入设备,在该调度频段和该竞争频段上同时发送第一下行数据帧和第二下行数据帧,从而增大该接入设备的通信带宽,提高传输速率,进而降低下行传输的时延和时延抖动。
在第一方面的一种可能的实现方式中,第一下行数据帧和第二下行数据帧相互独立。上述可能的实现方式中,能够保证第一下行数据帧和第二下行数据帧的调制和解调的过程互不影响,从而提高任一频 段上的下行数据传输的稳定性。
在第一方面的一种可能的实现方式中,该调度信号用于调度该调度频段和该竞争频段,该接入设备在该调度信号所调度的频段上与该站点设备之间进行通信,包括:该接入设备在该调度频段和该竞争频段上向该站点设备发送第三下行数据帧。上述可能的实现方式中,该接入设备可以同时使用通过该调度频段和该竞争频段向该站点设备发送下行数据,从而增大下行数据的通信带宽,提高传输速率,进而降低下行传输的时延和时延抖动。
在第一方面的一种可能的实现方式中,该方法还包括:该接入设备在该调度频段上发送第一信标帧,第一信标帧用于指示该接入设备的基本服务信息,第一信标帧中携带该调度信号;该接入设备在该调度频段上根据该基本服务信息为该站点设备提供接入服务。上述可能的实现方式中,该接入设备可以在该调度频段上发送第一信标帧,以使站点设备在该调度频段上接入该接入设备,从而提高接入的成功率,降低接入功耗。
在第一方面的一种可能的实现方式中,该方法还包括:该接入设备在该竞争频段上发送第二信标帧,第二信标帧用于指示该接入设备的基本服务信息和该调度频段,第二信标帧中携带该调度信号;该接入设备在该调度频段上根据该基本服务信息为该站点设备提供接入服务。上述可能的实现方式中,该接入设备可以在该竞争频段上发送第二信标帧,第二信标帧用于指示该调度频段,以使站点设备在该调度频段上接入该接入设备,从而提高接入的成功率,降低接入功耗。
在第一方面的一种可能的实现方式中,该方法还包括:该接入设备在该调度频段上向该站点设备发送上行调度信息,该上行调度信息用于调度上行数据;该接入设备在该调度频段上接收来自该站点设备的上行数据帧。上述可能的实现方式中,该接入设备可以使用该调度频段发送上行调度信息,以使该站点设备在该调度频段上向该接入设备发送上行数据,从而增大上行数据的通信带宽,提高传输速率,进而降低下行传输的时延和时延抖动。
在第一方面的一种可能的实现方式中,该上行调度信息承载在触发帧;或者,该上行调度信息承载在该调度频段对应的信标帧中。上述可能的实现方式中,提供了几种简单、有效的上行调度信息的承载方式。
在第一方面的一种可能的实现方式中,该上行调度信息是基于该站点设备的上行请求发送的,该上行请求承载在触发响应零数据报文TB NDP帧中,或者该上行请求承载在该站点设备的块确认BA帧中。上述可能的实现方式中,提供了几种简单、有效的该站点设备的上行请求的承载方式。
在第一方面的一种可能的实现方式中,该方法还包括:该接入设备接收来自其它接入设备的至少一个第三信标帧,该至少一个第三信标帧用于指示至少一个调度频段;该接入设备将除该至少一个调度频段之外的一个可用调度频段确定为该调度频段。上述可能的实现方式中,该接入设备和其它接入设备之间可以按照频分复用的方式使用不同的调度频段,从而避免了多个接入设备之间的干扰,进一步降低WiFi通信的时延和时延抖动。
在第一方面的一种可能的实现方式中,该接入设备确定调度频段,包括:该接入设备接收来自其它接入设备的至少一个第三信标帧,该至少一个第三信标帧用于指示该调度频段的至少一个时隙;该接入设备确定使用该调度频段中除该至少一个时隙之外的可用时隙。上述可能的实现方式中,该接入设备和其它接入设备之间可以按照时分复用的方式使用同一调度频段的不同时隙,从而避免了多个接入设备之间的干扰,进一步降低WiFi通信的时延和时延抖动。
第二方面,提供一种WiFi通信方法,该方法包括:站点设备接收来自接入设备的调度信号,该调度信号用于调度调度频段、或该调度频段和该竞争频段,该竞争频段是现有的WiFi通信的频段,该调度频段与该竞争频段不同,该调度频段可以不是现有的WiFi通信的频段,比如,该竞争频段可以是5G频段或2G频段中现有的分配给WiFi通信的频段,该竞争频段的带宽可以为20MHz的整数倍,该调度频段可以是5G频段或2G频段中现有的未分配给WiFi通信的频段,该调度频段的带宽可以不是20MHz的整数倍;该站点设备在该调度信号调度的频段上与该接入设备之间进行通信。
上述技术方案中,该接入设备可以调度该调度频段、或该调度频段和该竞争频段,以通过该调度频段和/或该竞争频段与该站点设备之间进行WiFi通信,避免了现有技术中接入设备与该站点设备仅能够基于CSMA/CA机制使用竞争频段进行通信,进而降低了WiFi通信的时延和时延抖动,减小了通信干扰。此外,在同时使用该调度频段和该竞争频段进行WiFi通信时,还能够增大通信带宽,提高传输速 率。
在第二方面的一种可能的实现方式中,该调度信号用于调度该调度频段和该竞争频段,该站点设备在该调度信号调度的频段上与该接入设备之间进行通信,包括:该站点设备在该调度频段上接收来自该接入设备的第一下行数据帧,在该竞争频段上接收来自该站点设备的第二下行数据帧。上述可能的实现方式中,该接入设备可以使用该调度频段和该竞争频段分别向该站点设备发送下行数据,从而增大下行数据的通信带宽,提高传输速率,进而降低下行传输的时延和时延抖动。
在第二方面的一种可能的实现方式中,第一下行数据帧的帧头和帧尾分别与第二下行数据帧的帧头和帧尾对齐。可选的,第一下行数据帧包括前导信息,该前导信息用于指示第二下行数据帧中是否包括该站点设备的下行数据。上述可能的实现方式中,能够使得仅支持单输入单输出通信模式的接入设备,在该调度频段和该竞争频段上同时发送第一下行数据帧和第二下行数据帧,从而增大该接入设备的通信带宽,提高传输速率,进而降低下行传输的时延和时延抖动。
在第二方面的一种可能的实现方式中,第一下行数据帧和第二下行数据帧相互独立。上述可能的实现方式中,能够保证第一下行数据帧和第二下行数据帧的调制和解调的过程互不影响,从而提高任一频段上的下行数据传输的稳定性。
在第二方面的一种可能的实现方式中,该调度信号用于调度该调度频段和该竞争频段,该站点设备在该调度信号调度的频段上与该接入设备之间进行通信,包括:该站点设备在该调度频段和该竞争频段上接收来自该接入设备的第三下行数据帧。上述可能的实现方式中,该接入设备可以同时使用通过该调度频段和该竞争频段向该站点设备发送下行数据,从而增大下行数据的通信带宽,提高传输速率,进而降低下行传输的时延和时延抖动。
在第二方面的一种可能的实现方式中,该方法还包括:该站点设备在该调度频段上接收来自该接入设备的第一信标帧,第一信标帧用于指示该接入设备的基本服务信息,第一信标帧中携带该调度信号;该站点设备在该调度频段上根据该基本服务信息接入该接入设备。上述可能的实现方式中,该接入设备在该调度频段上发送第一信标帧,该站点设备可以在该调度频段上接入该接入设备,从而提高接入的成功率,降低接入功耗。
在第二方面的一种可能的实现方式中,该方法还包括:该站点设备在该竞争频段上接收来自该接入设备的第二信标帧,第二信标帧用于指示该接入设备的基本服务信息和该调度频段,第二信标帧中携带该调度信号;该站点设备在该调度频段上根据该基本服务信息接入该接入设备。上述可能的实现方式中,该接入设备在该竞争频段上发送第二信标帧,第二信标帧用于指示该调度频段,该站点设备可以在该调度频段上接入该接入设备,从而提高接入的成功率,降低接入功耗。
在第二方面的一种可能的实现方式中,该方法还包括:该站点设备在该调度频段上接收来自该接入设备的上行调度信息,该上行调度信息用于调度上行数据;该站点设备根据该上行调度信息在该调度频段上向该接入设备发送上行数据帧。上述可能的实现方式中,该接入设备可以使用该调度频段发送上行调度信息,以使该站点设备在该调度频段上向该接入设备发送上行数据,从而增大上行数据的通信带宽,提高传输速率,进而降低下行传输的时延和时延抖动。
在第二方面的一种可能的实现方式中,该上行调度信息承载在触发帧;或者,该上行调度信息承载在该调度频段对应的信标帧中。上述可能的实现方式中,提供了几种简单、有效的上行调度信息的承载方式。
在第二方面的一种可能的实现方式中,该上行调度信息是基于该站点设备的上行请求发送的,该上行请求承载在触发响应零数据报文TB NDP帧中,或者该上行请求承载在该站点设备的块确认BA帧中。上述可能的实现方式中,提供了几种简单、有效的该站点设备的上行请求的承载方式。
第三方面,提供一种WiFi通信装置,该装置包括:发送单元,用于向站点设备发送调度信号,该调度信号用于调度该调度频段、或该调度频段和该竞争频段,该竞争频段是现有的WiFi通信的频段,该调度频段与该竞争频段不同,该调度频段可以不是现有的WiFi通信的频段;处理单元,用于在该调度信号调度的频段上与该站点设备之间进行通信。
在第三方面的一种可能的实现方式中,该调度信号用于调度该调度频段和该竞争频段,该发送单元还用于:在该调度频段上向该站点设备发送第一下行数据帧,在该竞争频段上向该站点设备发送第二下行数据帧。
在第三方面的一种可能的实现方式中,第一下行数据帧的帧头和帧尾分别与第二下行数据帧的帧头和帧尾对齐。可选的,第一下行数据帧包括前导信息,该前导信息用于指示第二下行数据帧中是否包括该站点设备的下行数据。
在第三方面的一种可能的实现方式中,第一下行数据帧和第二下行数据帧相互独立。
在第三方面的一种可能的实现方式中,该调度信号用于调度该调度频段和该竞争频段,该发送单元还用于:在该调度频段和该竞争频段上向该站点设备发送第三下行数据帧。
在第三方面的一种可能的实现方式中,该发送单元还用于:在该调度频段上发送第一信标帧,第一信标帧用于指示该接入设备的基本服务信息,第一信标帧中携带该调度信号;该处理单元还用于:在该调度频段上根据该基本服务信息为该站点设备提供接入服务。
在第三方面的一种可能的实现方式中,该发送单元还用于:在该竞争频段上发送第二信标帧,第二信标帧用于指示该接入设备的基本服务信息和该调度频段,第二信标帧中携带该调度信号;该处理单元还用于:在该调度频段上根据该基本服务信息为该站点设备提供接入服务。
在第三方面的一种可能的实现方式中,该装置还包括接收单元;该发送单元,还用于在该调度频段上向该站点设备发送上行调度信息,该上行调度信息用于调度上行数据;该接收单元,用于在该调度频段上接收来自该站点设备的上行数据帧。
在第三方面的一种可能的实现方式中,该上行调度信息承载在触发帧;或者,该上行调度信息承载在该调度频段对应的信标帧中。
在第三方面的一种可能的实现方式中,该上行调度信息是基于该站点设备的上行请求发送的,该上行请求承载在触发响应零数据报文TB NDP帧中,或者该上行请求承载在该站点设备的块确认BA帧中。
在第三方面的一种可能的实现方式中,该装置还包括:接收单元;该接收单元,还用于接收来自其它接入设备的至少一个第三信标帧,该至少一个第三信标帧用于指示至少一个调度频段;该处理单元,还用于将除该至少一个调度频段之外的一个可用调度频段确定为该调度频段。
在第三方面的一种可能的实现方式中,该装置还包括:接收单元;该接收单元,还用于接收来自其它接入设备的至少一个第三信标帧,该至少一个第三信标帧用于指示该调度频段的至少一个第二时隙;该处理单元,还用于确定使用该调度频段中除该至少一个时隙之外的可用时隙。
第四方面,提供一种WiFi通信装置,该装置包括:接收单元,用于接收来自接入设备的调度信号,该调度信号用于调度该调度频段、或者该调度频段和竞争频段,该竞争频段是现有的WiFi通信的频段,该调度频段与该竞争频段不同,该调度频段可以不是现有的WiFi通信的频段;处理单元,用于在该调度信号调度的频段上与该接入设备之间进行通信。
在第四方面的一种可能的实现方式中,该调度信号用于调度该调度频段和该竞争频段,该接收单元还用于:在该调度频段上接收来自该接入设备的第一下行数据帧,在该竞争频段上接收来自该站点设备的第二下行数据帧。
在第四方面的一种可能的实现方式中,第一下行数据帧的帧头和帧尾分别与第二下行数据帧的帧头和帧尾对齐。可选的,第一下行数据帧包括前导信息,该前导信息用于指示第二下行数据帧中是否包括该站点设备的下行数据。
在第四方面的一种可能的实现方式中,第一下行数据帧和第二下行数据帧相互独立。
在第四方面的一种可能的实现方式中,该调度信号用于调度该调度频段和该竞争频段,该接收单元还用于:在该调度频段和该竞争频段上接收来自该接入设备的第三下行数据帧。
在第四方面的一种可能的实现方式中,该装置还包括:处理单元;该接收单元,还用于在该调度频段上接收来自该接入设备的第一信标帧,第一信标帧用于指示该接入设备的基本服务信息,第一信标帧中携带该调度信号;该处理单元,用于在该调度频段上根据该基本服务信息接入该接入设备。
在第四方面的一种可能的实现方式中,该装置还包括:处理单元;该接收单元,还用于在该竞争频段上接收来自该接入设备的第二信标帧,第二信标帧用于指示该接入设备的基本服务信息和该调度频段,第二信标帧中携带该调度信号;该处理单元,还用于在该调度频段上根据该基本服务信息接入该接入设备。
在第四方面的一种可能的实现方式中,该装置还包括:发送单元;该接收单元,还用于在该调度频段上接收来自该接入设备的上行调度信息,该上行调度信息用于调度上行数据;该发送单元,用于根据 该上行调度信息在该调度频段上向该接入设备发送上行数据帧。
在第四方面的一种可能的实现方式中,该上行调度信息承载在触发帧;或者,该上行调度信息承载在该调度频段对应的信标帧中。
在第四方面的一种可能的实现方式中,该上行调度信息是基于该站点设备的上行请求发送的,该上行请求承载在触发响应零数据报文TB NDP帧中,或者该上行请求承载在该站点设备的块确认BA帧中。
第五方面,提供一种WiFi通信装置,该装置包括:存储器、处理器、系统总线和通信接口,该存储器中存储代码和数据,该处理器与该存储器通过该系统总线连接,该处理器运行存储器中的代码使得该装置执行如第一方面或第一方面任一种可能的实现方式所提供的WiFi通信方法。
第六方面,提供一种WiFi通信装置,该装置包括:存储器、处理器、系统总线和通信接口,该存储器中存储代码和数据,该处理器与该存储器通过该系统总线连接,该处理器运行存储器中的代码使得该装置执行第二方面或第二方面任一种可能的实现方式所提供的WiFi通信方法。
在本申请的又一方面,提供一种WiFi通信系统,该WiFi通信系统包括:接入设备和站点设备;其中,该接入设备为第三方面或第三方面任一种可能的实现方式、或者第五方面所提供的WiFi通信装置,该站点设备为第四方面或第四方面任一种可能的实现方式、或者第六方面所提供的WiFi通信装置。
在本申请的又一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当设备的处理器执行该计算机执行指令时,该设备执行上述第一方面或第一方面任一种可能的实现方式所提供的WiFi通信方法。
在本申请的又一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当设备的处理器执行该计算机执行指令时,该设备执行上述第二方面或第二方面任一种可能的实现方式所提供的WiFi通信方法。
在本申请的又一方面,提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,处理器执行该计算机执行指令使得设备执行第一方面或第一方面任一种可能的实现方式所提供的WiFi通信方法。
在本申请的又一方面,提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的处理器可以从计算机可读存储介质读取该计算机执行指令,处理器执行该计算机执行指令使得设备执行第二方面或第二方面任一种可能的实现方式所提供的WiFi通信方法。
可以理解地,上述提供的任一种WiFi通信装置、WiFi通信系统、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种WiFi通信系统的结构示意图;
图2为本申请实施例提供的一种WiFi设备的结构示意图;
图3为本申请实施例提供的一种WiFi通信方法的流程示意图;
图4为本申请实施例提供的一种接入设备发送调度信号的示意图;
图5为本申请实施例提供的另一种WiFi通信方法的流程示意图;
图6为本申请实施例提供的一种调度频段和竞争频段上的数据帧的示意图;
图7为本申请实施例提供的又一种WiFi通信方法的流程示意图;
图8为本申请实施例提供的一种分时复用调度频段的示意图;
图9为本申请实施例提供的另一种WiFi通信方法的流程示意图;
图10为本申请实施例提供的一种接入设备的通信示意图;
图11为本申请实施例提供的一种站点设备的通信示意图;
图12为本申请实施例提供的另一种站点设备的通信示意图;
图13为本申请实施例提供的又一种站点设备的通信示意图;
图14为本申请实施例提供的一种接入设备的结构示意图;
图15为本申请实施例提供的另一种接入设备的结构示意图;
图16为本申请实施例提供的一种站点设备的结构示意图;
图17为本申请实施例提供的另一种站点设备的结构示意图。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,a、b和c,其中a、b和c可以是单个,也可以是多个。字符“/”一般表示前后关联对象是一种“或”的关系。另外,在本申请的实施例中,“第一”、“第二”等字样并不对数量和执行次序进行限定。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面在介绍本申请的技术方案之前,首先对本申请所涉及的无线保真(wireless fidelity,WiFi)技术的相关内容进行介绍说明。
WiFi又称作“无线热点”,是创建于WiFi联盟制定的IEEE 802.11标准的一种无线局域网技术。WiFi技术从发布至今,已经发展普及了6代WiFi系统(801.11,802.11b,802.11a/g,802.11n,802.11ac,802.11ax),每一代802.11的WiFi系统都在大幅度的提升其速率。
信道(channel),又被称为通道或频道,是信号在通信系统中传输的通道,由信号从发射端传输到接收端所经过的传输媒质所构成。而无线信道是指以辐射无线电波为传输方式的无线电信道,即无线数据传输的通道。802.11工作组划分了2G、5G两个频段作为无线信道,每个频段又划分为若干信道。
此外,802.11工作组还划分了每个信道的工作频段,WiFi通信系统中信道的工作频段的最小间隔为20MHz。在WiFi通信系统中,只能使用分配给WiFi的信道进行通信,该信道带宽通常为20MHz的整数倍,比如,该信道带宽可以为20MHz、40MHz、80MHz、160MHz或者320MHz等。对于未分配给WiFi的信道则无法在WiFi通信系统中使用,比如,信道带宽可以为5MHz和10MHz的信道。
在WiFi通信系统中,无线信道只有一个冲突域的特性,所以需要设置一种随机接入机制,以避免多个节点同时访问网络所带来的冲突问题。该随机接入机制为载波侦听多路访问/冲突避免(carrier sense multiple access with collision avoidance,CSMA/CA)。CSMA/CA机制如下:当设备监听到一个信道为空时,等待一个帧间间隔;再次监听该信道,若该信道还为空则开始一个随机后退过程;在该随机后退过程之后,若仍监听到该信道为空,则开始发送数据。在上述过程中,如果任何时候出现信道忙的情况,则终止上面的过程,并重新等待信道为空,之后再重复上面的过程(即从等待一个帧间间隔开始)。因此,上述CSMA/CA机制存在时延和时延抖动难以保证的问题。
基于此,本申请实施例提供一种WiFi通信方法,该方法中的AP可以基于调度机制,在调度频段(即未分配给WiFi通信的频段)上进行调度,从而基于调度频段与STA之间进行WiFi通信,比如,通过该调度频段传输上行数据和/或下行数据,以降低AP与STA之间进行WiFi通信时的时延和时延抖动。该方法可以应用于WiFi通信系统中,该WiFi通信系统也可以称为无线局域网系统,下面以图1为例对该WiFi通信系统进行举例说明。
图1为本申请实施例提供的一种WiFi通信系统的结构示意图,该WiFi通信系统包括一个或者多个接入点(access point,AP)、以及一个或者多个站点(station,STA)。其中,一个STA可以接入一个或者多个AP,一个或者多个STA也可以接入一个AP,多个AP之间也可以进行通信。图1中以该WiFi通信系统包括AP1和AP2,STA11和STA12接入AP1,STA21和STA22接入AP2,AP1和AP2之间可以进行通信为例进行说明。
上述AP是指无线接入点,也可以称为无线AP,它是一个无线网络的接入点,也是无线网络的核心。在无线网络中,AP的主要功能表现在以下几个方面:对小区内移动站点的管理,包括移动站点的连接、认证等的处理;完成数据帧从有线网络到基本服务集(basic service set,BSS)的桥接过程,实现地址过滤以及地址的学习功能;完成移动站点在不同BSS间的切换管理;简单的网络管理功能等。另外,AP可以作为无线网络扩展使用,与其他AP连接以扩大无线网络的覆盖范围。无线AP主要用 于宽带家庭、大楼内部以及园区内部,其距离覆盖可以为几十米至上百米。可选的,接入点对应的设备可以称为接入设备,该接入设备可以为通信服务器、路由器、交换机、网桥、计算机等。
上述STA也可以称为移动站点,STA通常携带有无线网络接口卡(比如无线网卡),通过该无线网络接口卡可以连接到AP的设备。可选的,STA对应的设备可以称为站点设备,该站点设备可以为手机、平板电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、可穿戴设备(比如,智能手环和智能手表等)以及车载设备等设备。
图2为本申请实施例提供的一种WiFi设备的结构示意图,该WiFi设备可以为接入设备,也可以为站点设备,下面以该接入设备或该站点设备为手机为例,对该WiFi设备的结构进行说明。该手机包括:射频(radio frequency,RF)电路210、存储器220、输入单元230、显示单元240、传感器组件250、音频电路260、处理器270、以及电源280等部件。
RF电路210可用于收发信息或通话过程中信号的接收和发送。通常,RF电路210包括但不限于天线、放大器、收发信机、耦合器、LNA(low noise amplifier,低噪声放大器)、双工器等。可选的,所述天线可以包括多个接收天线和多个发射天线。此外,RF电路210还可以通过无线通信与网络和其他设备通信,比如通过WiFi网络与AP通信。
存储器220可用于存储软件程序以及模块,处理器270通过运行存储在存储器220的软件程序以及模块,从而执行该手机的各种功能应用以及数据处理。存储器220可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据该手机的使用所创建的数据(比如音频数据、图像数据、电话本等)等。此外,存储器220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元230可用于接收输入的数字或字符信息,以及产生与该手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元230可包括触摸屏231以及其他输入设备232。触摸屏231,也称为触控面板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触摸屏231上或在触摸屏231附近的操作),并根据预先设定的程式驱动相应的连接装置。其他输入设备232可包括但不限于物理键盘、功能键(比如音量控制按键、电源开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元240可用于显示由用户输入的信息或提供给用户的信息以及该手机的各种菜单。显示单元240可包括显示面板241,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等形式来配置显示面板241。进一步地,触摸屏231可覆盖显示面板241,当触摸屏231检测到在其上或附近的触摸操作后,传送给处理器270以确定触摸事件的类型,随后处理器270根据触摸事件的类型在显示面板241上提供相应的视觉输出。虽然在图中,触摸屏231与显示面板241是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触摸屏231与显示面板241集成而实现该手机的输入和输出功能。
传感器组件250包括一个或多个传感器,用于为该手机提供各个方面的状态评估。其中,传感器组件250可以包括温度传感器、加速度传感器,陀螺仪传感器,磁传感器或压力传感器,通过传感器组件250可以检测到该手机的温度变化、该手机的加速/减速、方位、打开/关闭状态,或者组件的相对定位等。此外,传感器组件250还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。
音频电路260、扬声器261、麦克风262可提供用户与该手机之间的音频接口。音频电路260可将接收到的音频数据转换后的电信号,传输到扬声器261,由扬声器261转换为声音信号输出;另一方面,麦克风262将收集的声音信号转换为电信号,由音频电路260接收后转换为音频数据,再将音频数据输出至RF电路210以发送给比如另一手机,或者将音频数据输出至存储器220以便进一步处理。
处理器270是该手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器220内的软件程序和/或模块,以及调用存储在存储器220内的数据,执行该手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器270可包括一个或多个处理单元。比如,处理器270可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处 理器270中。
该手机还包括给各个部件供电的电源280(比如电池),可选的,电源可以通过电源管理系统与处理器270逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
进一步地,该手机还可以包括连接(connectivity)芯片290,该芯片290中可以集成WiFi芯片。此外,该芯片290中还可以集成蓝牙模块、近距离无线通信(near field communication,NFC)模块、全球卫星导航系统(global navigation satellite system,GNSS)模块或调频(frequency modulation,FM)模块中的一种或多种,本申请在此不再赘述。
本领域技术人员可以理解,图2中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图3为本申请实施例提供的一种WiFi通信方法的流程示意图,该方法可应用于WiFi通信系统中,该方法包括以下几个步骤。
S301:接入设备向站点设备发送调度信号,该调度信号用于调度该调度频段、或该调度信息和该竞争频段。
其中,该竞争频段是现有的WiFi通信的频段,该调度频段与该竞争频段不同,该调度频段可以不是现有的WiFi通信的频段,比如,该竞争频段可以是5G频段或2G频段中现有的分配给WiFi通信的频段,该调度频段可以是5G频段或2G频段中现有的未分配给WiFi通信的频段。
另外,该竞争频段也可以理解为基于CSMA/CA机制,利用现有的WiFi协议门限退避的频段。相对于现有的WiFi频段,该竞争频段也可以理解为是现有的分配给WiFi通信的频段。该调度频段也可以理解为利用能量检测门限退避的频段。
可选的,该竞争频段的带宽可以为20MHz的整数倍,比如,该竞争频段的带宽可以为20MHz、40MHz、80MHz或者160MHz等。示例性的,以该竞争频段为5G频段的无线信道频段为例,该竞争频段可以为5170-5190MHz,即该竞争频段可以为5G频段中信道36(带宽为20MHz)的频段。该调度频段的带宽可以为非20MHz的整数倍,比如,该调度频段的带宽可以为5MHz或者10MHz。示例性的,以该调度频段为5G频段的无线信道频段为例,该调度频段可以为5152.5-5157.5MHz,即该调度频段可以为5G频段中信道31的频段。可选的,该调度频段的带宽可以小于该竞争频段的带宽。
示例性的,下面对世界上的几个国家或地区当前所使用的WiFi通信频段进行举例说明。比如,在中国地区,当前使用的无线频段可以包括以下频段:5180-5350MHz,5725-5850MHz;其中,在5180-5350MHz频段中的WiFi通信频段为5180-5330MHz,在5725-5850MHz频段中的WiFi通信频段为5745-5835MHz。在欧洲地区,当前使用的无线频段可以包括以下频段:5150-5350MHz,5470-5725MHz,5945-6425MHz;其中,在5150-5350MHz频段中现有的WiFi通信频段为5180-5350MHz,在5470-5725MHz频段中的WiFi通信频段为5500-5710MHz,在5945-6425MHz频段中的WiFi通信频段为5945-6415MHz。在美国地区,当前使用的无线频段可以包括以下频段:5150-5350MHz、5470-5725MHz、5725-5850MHz和5925-7125MHz;其中,在5150-5350MHz频段中的WiFi通信频段为5180-5330MHz,在5470-5725MHz频段中的WiFi通信频段为5500-5710MHz,在5470-5725MHz频段中的WiFi通信频段为5745-5835MHz,在5925-7125MHz频段中的WiFi通信频段为5945-7115MHz。本申请实施例中的竞争频段可以是上述列举的WiFi通信频段中802.11工作组划分的不同信道对应的工作频段,也称可为现有的WiFi通信的频段。
在一种可能的实施例中,该接入设备向站点设备发送调度信号之前,还可以先确定该调度频段。该接入设备确定调度频段可以是指确定可用的调度频段,该可用的调度频段也可以是指处于空闲状态的调度频段。可选的,该接入设备可以采用能量检测门限进行退避,以确定该调度频段。比如,该接入设备可以检测该调度频段的空口能量,若该能量小于检测门限(比如,该检测门限为-62dBm),该接入设备在随机后退过程后,检测到的能量仍小于该检测门限,则可以确定该调度频段处于空闲状态,若任一检测过程检测到的能量大于或等于该检测门限,该接入设备可以确定该调度频段处于忙碌状态,该忙碌状态也可以称为不可用。
在另一种可能的实施例中,该接入设备在确定该调度频段的过程中,也可以确定该竞争频段。可选的,该接入设备也可以采用上述能量检测门限进行退避,以确定该竞争频段;或者,该接入设备可以按照CSMA/CA机制检测该竞争频段,检测时采用的WiFi协议门限进行退避,比如,该WiFi协议门限 为-82dBm。
示例性的,若该接入设备确定调度频段处于空闲状态、该竞争频段处于忙碌状态,该接入设备可以在该调度频段上发送调度信号,该调度信号可用于调度该调度频段;或者,若该接入设备确定调度频段处于空闲状态、该竞争频段处于空闲状态,该接入设备可以在该调度频段和/或竞争频段上发送调度信号,该调度信号可用于调度该调度频段和该竞争频段。在实际应用中,若该接入设备确定该调度频段处于忙碌状态、该竞争频段处于空闲状态,该接入设备还可以在该竞争频段上发送用于调度竞争频段的调度信号。
可选的,该调度频段和该竞争频段可以连续,也可以不连续。比如,该调度频段可以为5G频段中的5165-5170MHz,该竞争频段可以为5G频段中的5170-5190MHz,此时该调度频段和该竞争频段是连续的。再比如,该调度频段可以为5G频段中的5152.5-5157.5MHz,该竞争频段可以为5G频段中的5170-5190MHz,此时该调度频段和该竞争频段是不连续的。
S302:该站点设备接收该调度信号。
当该站点设备接收到该调度信号时,该站点设备可以根据该调度信号确定该接入设备的调度。其中,关于该调度信号的相关描述与上述S301中的描述一致,具体参见S301的相关描述,本申请实施例在此不再赘述。
S303:该接入设备与该站点设备在该调度信号调度的频段上进行通信。
在该站点设备接收到该调度信号之后,该接入设备与该站点设备之间根据该接入设备的调度进行WiFi通信。比如,若该调度信号用于调度该调度频段,该站点设备与该接入设备可以在该调度频段上进行WiFi通信;若该调度信号用于调度该调度频段和该竞争频段,该站点设备与该接入设备可以在该调度频段和该竞争频段上进行WiFi通信。
在本申请实施例中,该接入设备可以调度该调度频段和/或该竞争频段,以通过该调度频段和/或该竞争频段与该站点设备之间进行WiFi通信,避免了现有技术中接入设备与该站点设备仅能够基于CSMA/CA机制使用竞争频段进行通信,进而降低了WiFi通信的时延和时延抖动,减小了通信干扰。此外,在同时使用该调度频段和该竞争频段进行WiFi通信时,还能够增大通信带宽,提高传输速率;使用该调度频段进行WiFi通信的时延小,还能够满足大多数实时业务数据的传输要求,比如,实时视频数据传输。
进一步的,若该调度信号用于调度该调度频段,该接入设备可以在该调度频段上向该站点设备发送下行数据,从而该站点设备可以在该调度频段上接收该下行数据。若该调度信号用于调度该竞争频段,该接入设备可以在该竞争频段上向该站点设备发送下行数据,从而该站点设备可以在该竞争频段上接收该下行数据。若该调度信号用于调度该调度频段和该竞争频段,该接入设备在该调度频段和该竞争频段上向该站点设备发送下行数据,从而该站点设备可以在该调度频段和该竞争频段上接收下行数据。
示例性的,如图4所示,以该调度频段为5MHz、该竞争频段为20MHz为例,假设该接入设备AP向STA1发送的调度信号用于调度该调度频段和该竞争频段,向STA2发送的调度信号用于调度该调度频段,向STA3发送的调度信号用于调度该竞争频段,则该接入设备AP可以在该调度频段和该竞争频段上向STA1发送下行数据,在该调度频段上向STA2发送下行数据,在该竞争频段上向STA3发送下行数据。图4中以该接入设备AP在该调度频段和/或该竞争频段的不同时隙上分别向STA1、STA2和STA3发送下行数据为例进行说明。
当该接入设备在该调度频段和该竞争频段上向该站点设备发送下行数据时,该接入设备可以在该调度频段和该竞争频段上分别发送下行数据帧,也可以在该调度频段和该竞争频段上联合发送下行数据帧。下面分别对这两种情况进行详细介绍。
第一种情况、该接入设备可以在该调度频段和该竞争频段上分别发送下行数据帧。示例性的,如图5所示,在S302之后,该方法还可以包括:S304a-S305a。
S304a:该接入设备在该调度频段上向该站点设备发送第一下行数据帧,在该竞争频段上向该站点设备发送第二下行数据帧。
其中,第一下行数据帧可以包括第一媒体接入控制协议数据单元(media access control,protocol data unit,MPDU),即第一下行数据帧可以包括第一MPDU,第二下行数据帧可以包括第二MPDU。示例性的,以该调度频段为5MHz、该竞争频段为20MHz为例,第一MPDU的带宽为5MHz,第二MPDU 的带宽为20MHz。
可选的,第一下行数据帧和第二下行数据帧可以是相互独立的,也可以称为第一MPDU和第二MPDU是相互独立的。第一下行数据帧和第二下行数据帧相互独立可以是指:第一下行数据帧和第二下行数据帧的调制和解调是独立的,二者的调制和解调的过程可以独立进行,互不影响。
在一种可能的实施例中,第一下行数据帧的帧头和帧尾分别与第二下行数据帧的帧头和帧尾对齐,也可以称为第一MPDU的帧头和帧尾分别与第二MPDU的帧头和帧尾对齐。示例性的,如图6中的(a)所示,若该接入设备AP仅支持单输入单输出通信模式,该接入设备AP可以在该调度频段和该竞争频段上同时发送第一MPDU和第二MPDU,第一MPDU的帧头和帧尾分别与第二MPDU的帧头和帧尾对齐。
在另一种可能的实施例中,第一下行数据帧的帧头和帧尾可以与第二下行数据帧的帧头和帧尾不对齐,也可以称为第一MPDU的帧头和帧尾分别与第二MPDU的帧头和帧尾不对齐。示例性的,如图6中的(b)所示,若该接入设备AP支持多输入多输出通信模式,该接入设备AP可以在该调度频段和该竞争频段上不同时发送第一MPDU和第二MPDU,即第一MPDU的帧头和帧尾分别与第二MPDU的帧头和帧尾是不对齐的,比如,第一MPDU的帧头晚于第二MPDU的帧头。
进一步的,当第一下行数据帧的帧头和帧尾分别与第二下行数据帧的帧头和帧尾对齐时,第一下行数据帧中可以包括前导信息,该前导信息用于指示该第二下行数据帧中是否包括该站点设备的下行数据。示例性的,该前导信息包括同步序列和信号字段SIG,该同步序列可以包括短训练序列LSTF和长时间序列LLTF,该信号字段SIG中可以有1比特(bit)指示第二下行数据帧中是否包括该站点设备的下行数据。
S305a:该站点设备在该调度频段上接收第一下行数据帧,在该竞争频段上接收第二下行数据帧。
具体的,该站点设备可以在该调度频段和该竞争频段上分别检测同步信号,并根据检测到的同步信号,分别在该调度频段上接收来自该接入设备的第一下行数据帧,在该竞争频段上接收来自该接入设备的第二下行数据帧。
可选的,当该站点设备接收到第一下行数据帧时,该站点设备可以对第一下行数据帧进行解析,比如,解析第一下行数据帧的信号字段SIG,若该信号字段SIG正确,则解析第一下行数据帧的载荷,得到该站点设备的第一下行数据。当该站点设备在该竞争频段上接收到第二下行数据帧时,该站点设备可以直接解析第二下行数据帧。或者,在第一下行数据帧与第二下行数据帧对齐时,该站点设备可以根据第一下行数据帧中的前导信息,确定是否对该第二下行数据帧进行解析。若该前导信息用于指示该第二下行数据帧中包括该站点设备的下行数据,该站点设备可以对该第二下行数据帧进行解析,比如,解析第二下行数据帧的信号字段SIG,若该信号字段SIG正确,则解析第二下行数据帧的载荷,得到该站点设备的第二下行数据;若该前导信息用于指示该第二下行数据帧中不包括该站点设备的下行数据,该站点设备可以不对该第二下行数据帧进行解析。
可选的,当该站点设备成功解析第一下行数据帧时,该站点设备可以在该调度频段上向该接入设备发送块确认(block acknowledge,BA)帧,以通知该接入设备第一下行数据帧接收成功。当该站点设备成功解析第一下行数据帧和第二下行数据帧时,该站点设备可以在该调度频段和该竞争频段上分别向该接入设备发送BA帧,以通知该接入设备第一下行数据帧和第二下行数据帧接收成功。
在一种可能的实施例中,在S304a之前,该方法还可以包括:该接入设备在该调度频段上发送第一信标帧,第一信标帧用于指示该接入设备的基本服务信息;当该站点设备在该调度频段上接收到第一信标帧时,该站点设备可以在该调度频段上根据该基本服务信息接入该接入设备,即该接入设备在该调度频段上为该站点设备提供接入服务。可选的,上述调度信号可以承载在该第一信标帧中。
可选的,第一信标帧中还包括第一信标帧的周期、该调度频段的信道指示、该调度频段的可用时隙信息、以及准静态调度信息等中的一个或者多个。其中,第一信标帧的周期可以是指该调度频段上该接入设备发送信标帧的周期。该信道指示用于指示该调度频段对应的信道,比如,该调度频段为5152.5-5157.5MHz,即该信道指示可用于指示该调度频段为信道31。该可用时隙信息用于指示该调度频段的可用时隙,具体可以为该接入设备对应在该调度频段的可用时隙。该准静态调度信息可用于指示调度相关的信息,具体描述可以参考现有技术中的描述,本申请实施例在此不再赘述。
相应的,在S304a之前,该方法还可以包括:该接入设备在该竞争频段上发送第二信标帧,第二信 标帧用于指示该接入设备的基本服务信息和该调度频段;当该站点设备在该竞争频段上接收到第二信标帧时,该站点设备可以在该调度频段上根据该基本服务信息接入该接入设备,即该接入设备在该调度频段上为该站点设备提供接入服务。可选的,上述调度信号可以承载在该第二信标帧中。
可选的,若第一下行数据帧与第二下行数据帧对齐,第一信标帧和第二信标帧也可以是同时发送和结束的,即第一信标帧和第二信标帧对齐。
可选的,第二信标帧中还包括第二信标帧的周期,还可以包括该调度频段的信道指示、该调度频段的可用时隙信息、以及准静态调度信息等中的一个或者多个。其中,第二信标帧的周期可以是指该竞争频段上该接入设备发送信标帧的周期。该信道指示、该可用时隙信息和该准静态调度信息与上述第一信标帧中的相关内容类似,本申请实施例在此不再赘述。
第二种情况、该接入设备可以在该调度频段和该竞争频段上联合发送下行数据帧。示例性的,如图7所示,在S302之后,该方法还可以包括:S304b-S305b。
S304b:该接入设备在该调度频段和该竞争频段上向该站点设备发送第三下行数据帧。
其中,第三下行数据帧可以包括第三MPDU。示例性的,以该调度频段为5MHz、该竞争频段为20MHz为例,该接入设备在该调度频段和该竞争频段上发送的第三MPDU的带宽为25MHz。
S305b:该站点设备在该调度频段和该竞争频段上接收第三下行数据帧。
具体的,该站点设备可以在该调度频段和该竞争频段上检测同步信号,并根据检测到的同步信号,在该调度频段和该竞争频段上接收来自该接入设备的第三下行数据帧,并对第三下行数据帧进行解析,比如,解析第三下行数据帧的信号字段SIG,若该信号字段SIG正确,则解析第三下行数据帧的载荷,得到该站点设备的第三下行数据。
可选的,当该站点设备成功解析第三下行数据帧时,该站点设备可以在该调度频段和该竞争频段上向该接入设备发送反馈响应BA,以通知该接入设备第三下行数据帧接收成功。
在一种可能的实施例中,在S304b之前,该方法还可以包括:该接入设备在该调度频段和该竞争频段上联合发送信标帧,联合发送的信标帧可用于指示该接入设备的基本服务信息和该调度频段;当该站点设备在该调度频段和该竞争频段上接收到该信标帧时,该站点设备可以根据该信标帧在该调度频段和该竞争频段上根据该基本服务信息接入该接入设备。可选的,上述调度信号可以承载在联合发送的信标帧中。
可选的,联合发送的信标帧中还包括该信标帧的周期,还可以包括该调度频段的信道指示、该调度频段的可用时隙信息、以及准静态调度信息等中的一个或者多个。其中,该信标帧的周期可以是指该调度频段和该竞争频段上联合发送的信标帧的周期。该信道指示、该可用时隙信息和该准静态调度信息与上述第一信标帧中的相关内容类似,本申请实施例在此不再赘述。
进一步的,上述两种情况中的任意一种情况下的该调度频段或者该调度频段的可用时隙,可以是该接入设备根据接收到的其它接入设备的信标帧确定的,该接入设备和其它接入设备可以按照频分复用的方式使用不同的调度频段,或者按照时分复用的方式在不同时隙使用同一调度频段。
当该接入设备和其它接入设备按照频分复用的方式使用不同的调度频段时,该方法还可以包括:该接入设备接收来自其它接入设备的至少一个第三信标帧,该至少一个第三信标帧用于指示至少一个调度频段;该接入设备将除该至少一个调度频段之外的一个可用调度频段确定为该调度频段。示例性的,以两个接入设备且分别表示为AP1和AP2,可用的调度频段包括信道31对应的频段5152.5-5157.5MHz和信道32的频段5157.5-5162.5MHz,则:当AP1接收到AP2的信标帧,且该信标帧用于指示的调度频段为5152.5-5157.5MHz时,AP1可以选择使用调度频段5157.5-5162.5MHz。
当该接入设备和其它接入设备按照时分复用的方式使用同一调度频段时,若该接入设备对应调度频段的第一时隙,该方法还可以包括:该接入设备接收来自其它接入设备的至少一个第三信标帧,该至少一个第三信标帧用于指示该调度频段的至少一个第二时隙;该接入设备将该调度频段中除该至少一个第二时隙之外的一个可用时隙,确定为该调度频段的第一时隙。示例性的,如图8所示,以两个接入设备且分别表示为AP1和AP2,该调度频段为信道31对应的频段5152.5-5157.5MHz则:当AP1接收到AP2的信标帧,且该信标帧用于指示调度频段5152.5-5157.5MHz的第二时隙时,AP1可以将该调度频段5152.5-5157.5MHz中除该第二时隙之外的一个可用时隙作为第一时隙。图8中以AP1对应的第一时隙和AP2对应的第二时隙均包括多个时隙为例进行说明。
在本申请实施例中,该接入设备和其它接入设备之间可以按照频分复用的方式使用不同的调度频段,也可以按照时分复用的方式使用同一调度频段的不同时隙,从而避免了多个接入设备之间的干扰,进一步降低WiFi通信的时延和时延抖动。
进一步的,结合上文所提供的任一种可能的方法实施例,该方法还可以包括以下步骤。示例性的,结合图5所提供的方法,如图9所示,该方法还可以包括S306-S307。
S306:该接入设备在该调度频段上向该站点设备发送上行调度信息,该上行调度信息用于调度上行数据。
在一种可能的实施例中,该上行调度信息承载在触发帧中,或者称为该上行调度信息以触发帧的形式发送,该触发帧可以是下行数据帧中的一种,比如,该接入设备在上文中发送的第一下行数据帧可以为触发帧。这样,当该站点设备接收到该触发帧时,该站点设备可以在该调度频段上向该接入设备发送上行数据。
在另一种可能的实施例中,该上行调度信息承载在该调度频段对应的信标帧(即上述第一信标帧)中,即接入设备在该调度频段上发送第一信标帧时,可以在第一信标帧中携带该上行调度信息。这样,当该站点设备接收到第一信标帧并接入该接入设备时,该站点设备可以在该调度频段上向该接入设备发送上行数据。
在又一种可能的实施例中,该上行调度信息可以是基于该站点设备的上行请求发送的,该上行请求可以承载在触发响应零数据报文(trigger-based null data packet,TB NDP)帧中,或者该上行请求承载在该站点设备的BA帧中。
其中,该TB NDP帧可以是该站点设备基于该接入设备的第一信标帧发送的,比如,第一信标帧中可以设置有用于指示站点设备发送TB NDP帧的时隙的信息,若该站点设备需要发送上行数据,则该站点设备可以在对应的时隙上向该接入设备反馈该TB NDP帧。这样,当该接入设备接收到该TB NDP帧时,可以向该站点设备发送触发帧,以使该站点设备在接收到该触发帧时,在该调度频段上向该接入设备发送上行数据。
另外,该BA帧可以是该站点设备基于该接入设备的下行数据帧发送的,该站点设备在接收到该接入设备在该竞争频段发送的下行数据帧(比如,第二下行数据帧)时,可以向该接入设备发送一个BA帧,该BA帧中携带该上行请求,以通过该上行请求向该接入设备请求需要发送上行数据。当该接入设备接收到该BA帧,并根据该BA帧中的上行请求确定该站点设备需要发送上行数据时,该接入设备可以在该调度频段上以触发帧的形式向该站点设备发送上行调度信息。
S307:当接收到该上行调度信息时,该站点设备在该调度频段上向该接入设备发送第一上行数据帧。
在一种可能的实施例中,该上行调度信息可用于指示该站点设备在该调度频段上发送上行数据的时隙,从而该站点设备在接收到该上行调度信息时,可以在该上行调度信息所指示的该调度频段的时隙上向该接入设备发送第一上行数据帧。可选的,第一上行数据帧可以为触发响应(trigger-based,TB)帧,即该站点设备可以通过TB帧的形式在该调度频段上向该接入设备发送上行数据。
可选的,该站点设备在发送第一上行数据帧的过程中,若按照CSMA/CA机制检测该竞争频段,且确定该竞争频段处于空闲状态时,该站点设备还可以在该竞争频段上向该接入设备发送第二上行数据帧。
可选的,第一上行数据帧和第二上行数据帧可以是相互独立的。在一种示例中,若该站点设备仅支持单输入单输出通信模式,第一上行数据帧的帧头和帧尾分别与第二上行数据帧的帧头和帧尾对齐。在另一种示例中,若该站点设备支持多输入多输出通信模式,第一上行数据帧的帧头和帧尾分别与第二上行数据帧的帧头和帧尾可以是不对齐的。
可以理解的是,上述该站点设备发送第一上行数据帧和第二上行数据帧的相关描述,与上文中该接入设备发送第一下行数据帧和第二下行数据帧的相关描述类似,本申请实施例在此不再赘述。
相应的,当该站点设备在该调度频段发送第一上行数据帧时,该接入设备可以在该调度频段上接收第一上行数据帧。该接入设备在该调度频段上接收到第一上行数据帧之后,还可以解析该第一上行数据帧,以得到该站点设备的第一上行数据。
可选的,若该站点设备在发送第一上行数据帧的过程中,还在该竞争频段上向该接入设备发送第二上行数据帧,该接入设备还可以在该竞争频段上接收来自该站点设备的第二上行数据帧。该接入设备还 可以解析该第二上行数据帧,以得到该站点设备的第二上行数据。
进一步的,若该站点设备仅支持该调度频段,比如,该站点设备为物联网(internet of things,IoT)设备,仅支持的带宽为5MHz,该站点设备可以通过调度频段接入该接入设备,并仅在该调度频段上接收来自该接入设备的第一下行数据帧,在该调度频段上向该接入设备发送第一上行数据帧。可选的,该站点设备可以通过TB NDP帧或者BA帧发送上行请求,或者通过TB帧向该接入设备发送上行数据。
为便于理解,下面对该接入设备和该站点设备分别在该调度频段和该竞争频段上进行WiFi通信的几种可能的情况进行举例说明,下述举例中以该接入设备和该站点设备中的每个设备在该调度频段和该竞争频段上的通信是相互独立,且同一频段上的上行数据和下行数据在不同的时隙上传输为例进行说明。
图10示出了该接入设备分别在该调度频段和该竞争频段上进行WiFi通信的一种可能的情况。其中,该接入设备可以在该调度频段上发送信标帧,之后在该调度频段上接收来自站点设备的上行数据、以及向站点设备发送下行数据。类似的,该接入设备可以在该竞争频段上发送信标帧,之后在该竞争频段上接收来自站点设备的上行数据、以及向站点设备发送下行数据。图10中将该接入设备发送下行数据的状态称为发送状态(表示为TX),将该接入设备接收上行数据的状态称为接收状态(表示为RX),将该接入设备表示为AP。
图11示出了该站点设备在该调度频段和该竞争频段上进行WiFi通信的一种可能的示情况。其中,该站点设备支持同时在该调度频段和该竞争频段上进行WiFi通信。具体的,该站点设备在该调度频段上接收到来自接入设备的信标帧之后,可以在该调度频段上向该接入设备的上行数据、以及向该接入设备发送下行数据。类似的,该站点设备在该竞争频段上接收到来自接入设备的信标帧之后,可以在该竞争频段上向该接入设备的上行数据、以及向该接入设备发送下行数据。图11中将该接入设备发送上行数据的状态称为发送状态(表示为TX),将该站点设备接收下行数据的状态称为接收状态(表示为RX),将该站点设备表示为STA。
图12示出了该站点设备在该调度频段和该竞争频段上进行WiFi通信的一种可能的示情况。其中,该站点设备可以不支持同时在该调度频段和该竞争频段上进行WiFi通信。具体的,若该站点设备工作在调度频段,则该站点设备在该调度频段上接收到来自接入设备的信标帧之后,可以在该调度频段上向该接入设备的上行数据、以及向该接入设备发送下行数据。类似的,若该站点设备工作在该竞争频段,则该站点设备在该竞争频段上接收到来自接入设备的信标帧之后,可以在该竞争频段上向该接入设备的上行数据、以及向该接入设备发送下行数据。图12中将该接入设备发送上行数据的状态称为发送状态(表示为TX),将该站点设备接收下行数据的状态称为接收状态(表示为RX),将该站点设备表示为STA。
图13示出了该站点设备在该调度频段和该竞争频段上进行WiFi通信的一种可能的示情况。其中,该站点设备仅支持在该调度频段上进行WiFi通信。具体的,该站点设备在该调度频段上接收到来自接入设备的信标帧之后,可以在该调度频段上向该接入设备的上行数据、以及向该接入设备发送下行数据。图13中将该接入设备发送上行数据的状态称为发送状态(表示为TX),将该站点设备接收下行数据的状态称为接收状态(表示为RX),将该站点设备表示为STA。
进一步的,当上述调度信号用于调度该调度频段和该竞争频段时,该接入设备与该站点设备在该调度频段和该竞争频段进行通信时,可以通过该调度频段传输时延要求较高的业务数据(比如,实时视频数据、或者实时通话数据等),通过该竞争频段传输时延要求不太高的业务数据(比如,网页浏览、视频下载等)。
进一步的,上述调度信号还可用于调度多个调度频段,该接入设备与该站点设备还可以在该多个调度频段上进行通信,比如,在该多个调度频段上传输上行数据或下行数据中的至少一种;或者,该调度信号还用于调度一个调度频段和多个竞争频段,该接入设备还可以与该站点设备在该一个调度频段和该多个竞争频段上进行通信,比如,在该一个调度频段和该多个竞争频段上传输上行数据或下行数据中的至少一种;或者,该调度信号还用于调度多个调度频段和多个竞争频段;该接入设备还可以与该站点设备在该多个调度频段和该多个竞争频段上进行通信,比如,在该多个调度频段和该多个竞争频段上传输上行数据或下行数据中的至少一种。
在一种可能的实现实施例中,当该调度信号用于调度多个频段(该多个频段可以包括至少一个调度频段和至少一个竞争频段)时,该站点设备可以在该多个频段上分别接入该接入设备,以在该多个频段 上对应建立多个连接,从而该接入设备与该站点设备之间可以使用该多个连接进行通信。可选的,对于该多个连接中的任一连接,该接入设备与该站点设备还可以将该连接从该多个频段中的一个频段切换至另一频段。示例性的,该多个频段包括第一频段F1和第二频段F2,该F1上对应建立的连接为CONT1,该F2上对应建立的连接为CONT2,该接入设备和该站点设备可以将CONT1切换至该F2上,将CONT2切换至该F1上。
可选的,该多个连接可以是指物理层上的多个连接,该多个连接可以由一个媒体访问控制层(media access control,MAC)控制器来控制,该MAC控制器可以将该多个连接对应的数据按照对应连接的切换分配至相应的频段进行传输。上述连接也可以称为物理链接或物理链路。示例性的,该接入设备与该站点设备之间将一个连接切换至另一频段的过程可以包括:该接入设备向该站点设备发送第四信标帧,第四信标帧中携带有需要切换的连接的标识,切换的目的频段和切换时刻,这样当该站点设备接收到第四信标帧时,该接入设备与该站点设备之间可以在该切换时刻将需要切换的连接切换至该目的频段,进一步的,当多个站点设备共用一个连接与该接入设备通信时,第四信标帧中还可用于指示该多个站点设备中的至少一个站点设备切换至指定频段,除该至少一个站点设备之间的站点设备可随机切换至其它频段。第四信标帧还可用于指示该指定频段和该其它频段。
可选的,当该接入设备与该站点设备通过多个频段对应的多个连接进行通信时,该接入设备与该站点设备可以根据传输的业务类型、信道的忙碌或空闲状态、以及设备功耗等因素中的一个或者多个进行切换。
在本申请实施例中,该接入设备与该站点设备之间可以通过该调度频段、或者该调度频段和该竞争频段进行WiFi通信,该WiFi通信可以包括上行数据和下行数据的传输,从而避免了现有技术中接入设备与该站点设备仅能够使用竞争频段进行WiFi通信,进而增加了WiFi通信的频段、提高了传输速率,降低了WiFi通信的时延和时延抖动,减小了通信干扰,同时还能够满足大多数实时业务数据的传输要求。此外,当该站点设备仅支持该调度频段时,该站点设备还可以基于该调度频段接入该接入设备,并利用该调度频段与该接入设备进行WiFi通信,从而能够使得现有技术中不支持的WiFi的设备可以进行WiFi通信,且该调度频段的带宽通常小于竞争频段,使用该调度频段进行WiFi通信,还能够减小通信时的功耗。
上述主要从各个设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如接入设备和站点设备。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对接入设备和站点设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图14示出了上述实施例中所涉及的WiFi通信装置的一种可能的结构示意图。该WiFi通信装置可以为接入设备,该装置包括:处理单元401、发送单元402和接收单元403。其中,处理单元401用于支持该装置执行上述方法实施例中确定调度频段和/或竞争频段的步骤;发送单元402用于支持该装置执行上述方法实施例中的S301、S303、S304a(或S304b)或者S306中的一个或者多个步骤;接收单元403用于支持该装置执行上述方法实施例中接收上行数据的步骤。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,本申请中的处理单元401可以为该装置的处理器,发送单元402可以为该装置的发送器,接收单元403可以为该装置的接收器,发送器通常可以和接收器集成在一起用作收发器,具体的收发器还可以称为通信接口。
图15所示,为本申请的实施例提供的上述实施例中所涉及的WiFi通信装置的一种可能的逻辑结构示意图。该WiFi通信装置可以为接入设备,该装置包括:处理器412和通信接口413。处理器412 用于对该装置动作进行控制管理,例如,处理器412用于支持该装置执行上述方法实施例中确定调度频段和/或竞争频段的步骤,和/或用于本文所描述的技术的其他过程。此外,该装置还可以包括存储器411和总线414,处理器412、通信接口413以及存储器411通过总线414相互连接;通信接口413用于支持该装置进行通信;存储器411用于存储该装置的程序代码和数据。
其中,处理器412可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线414可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用集成的单元的情况下,图16示出了上述实施例中所涉及的WiFi通信装置的一种可能的结构示意图。该WiFi通信装置可以为站点设备,该装置包括:接收单元501、处理单元502和发送单元503。其中,接收单元501用于支持该装置执行上述方法实施例中的S302、S303、S305a(或S305b)或者接收上行调度信息等步骤中的一个或者多个;处理单元502用于支持该装置执行上述方法实施例中确定调度频段和/或竞争频段、接入该接入设备等步骤中的一个或多个;发送单元503用于支持该装置执行上述方法实施例中的S307、和/或发送其它上行数据的步骤。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,本申请中的处理单元502可以为该装置的处理器,接收单元501可以为该装置的接收器,发送单元503可以为该装置的发送器,发送器通常可以和接收器集成在一起用作收发器,具体的收发器还可以称为通信接口。
图17所示,为本申请的实施例提供的上述实施例中所涉及的WiFi通信装置的一种可能的逻辑结构示意图。该WiFi通信可以为站点设备,该装置包括:处理器512和通信接口513。处理器512用于对该装置动作进行控制管理,例如,处理器512用于支持该装置执行上述方法实施例中确定调度频段和/或竞争频段、接入该接入设备的步骤,和/或用于本文所描述的技术的其他过程。此外,该装置还包括存储器511和总线514,处理器512、通信接口513以及存储器511通过总线514相互连接;通信接口513用于支持该装置进行通信;存储器511用于存储该装置的程序代码和数据。
其中,处理器512可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线514可以是外设部件互连标准(PCI)总线或扩展工业标准结构(EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行上述方法实施例所提供的方法实施例中接入设备的步骤。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行上述方法实施例所提供的方法实施例中站点设备的步骤。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备上述方法实施例所提供的WiFi通信方法中接入设备的步骤。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令, 该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备上述方法实施所提供的WiFi通信方法中站点设备的步骤。
在本申请的另一实施例中,还提供一种WiFi通信系统,该通信系统包括接入设备和站点设备;其中,该接入设备可以为图14或图15所提供的WiFi通信装置,且用于执行上述方法实施例中接入设备的步骤;该站点设备可以为图16或图17所提供的WiFi通信装置,且用于执行上述方法实施例中站点设备的步骤。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种WiFi通信方法,其特征在于,所述方法包括:
    接入设备向站点设备发送调度信号,所述调度信号用于调度调度频段、或所述调度频段和竞争频段,所述竞争频段是现有的WiFi通信的频段,所述调度频段与所述竞争频段不同;
    所述接入设备在所述调度信号调度的频段上与所述站点设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述调度信号用于调度所述调度频段和所述竞争频段,所述接入设备在所述调度信号调度的频段上与所述站点设备进行通信,包括:
    所述接入设备在所述调度频段上向所述站点设备发送第一下行数据帧,在所述竞争频段上向所述站点设备发送第二下行数据帧。
  3. 根据权利要求2所述的方法,其特征在于,所述第一下行数据帧的帧头和帧尾分别与所述第二下行数据帧的帧头和帧尾对齐。
  4. 根据权利要求3所述的方法,其特征在于,所述第一下行数据帧包括前导信息,所述前导信息用于指示所述第二下行数据帧中是否包括所述站点设备的下行数据。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述第一下行数据帧和所述第二下行数据帧相互独立。
  6. 根据权利要求1所述的方法,其特征在于,所述调度信号用于调度所述调度频段和所述竞争频段,所述接入设备在所述调度信号调度的频段上与所述站点设备进行通信,包括:
    所述接入设备在所述调度频段和所述竞争频段上向所述站点设备发送第三下行数据帧。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述接入设备在所述调度频段上发送第一信标帧,所述第一信标帧用于指示所述接入设备的基本服务信息,所述第一信标帧携带所述调度信号;
    所述接入设备在所述调度频段上根据所述基本服务信息为所述站点设备提供接入服务。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述接入设备在所述竞争频段上发送第二信标帧,所述第二信标帧用于指示所述接入设备的基本服务信息和所述调度频段,所述第二信标帧携带所述调度信号;
    所述接入设备在所述调度频段上根据所述基本服务信息为所述站点设备提供接入服务。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述接入设备在所述调度频段上向所述站点设备发送上行调度信息,所述上行调度信息用于调度上行数据;
    所述接入设备在所述调度频段上接收来自所述站点设备的上行数据帧。
  10. 根据权利要求9所述的方法,其特征在于,所述上行调度信息承载在触发帧;或者,所述上行调度信息承载在所述调度频段对应的信标帧中;或者,所述上行调度信息是基于所述站点设备的上行请求发送的,所述上行请求承载在触发响应零数据报文TB NDP帧中,或者所述上行请求承载在所述站点设备的块确认BA帧中。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述接入设备接收来自其它接入设备的至少一个第三信标帧,所述至少一个第三信标帧用于指示至少一个调度频段,或者用于指示所述调度频段的至少一个时隙;
    当所述至少一个第三信标帧用于指示所述至少一个调度频段时,所述接入设备确定所述至少一个调度频段之外的一个可用调度频段为所述调度频段;
    当所述至少一个第三信标帧用于指示所述调度频段的至少一个第二时隙时,所述接入设备确定使用所述调度频段中除所述至少一个时隙之外的可用时隙。
  12. 一种WiFi通信方法,其特征在于,所述方法包括:
    站点设备接收来自接入设备的调度信号,所述调度信号用于调度调度频段、或所述调度频段和所述竞争频段,所述竞争频段是现有的WiFi通信的频段,所述调度频段与所述竞争频段不同;
    所述站点设备在所述调度信号调度的频段上与所述接入设备进行通信。
  13. 根据权利要求12所述的方法,其特征在于,所述调度信号用于调度所述调度频段和所述竞争频段,所述站点设备在所述调度信号调度的频段上与所述接入设备进行通信,包括:
    所述站点设备在所述调度频段上接收来自所述接入设备的第一下行数据帧,在所述竞争频段上接收来自所述站点设备的第二下行数据帧。
  14. 根据权利要求13所述的方法,其特征在于,所述第一下行数据帧的帧头和帧尾分别与所述第二下行数据帧的帧头和帧尾对齐。
  15. 根据权利要求14所述的方法,其特征在于,所述第一下行数据帧包括前导信息,所述前导信息用于指示所述第二下行数据帧中是否包括所述站点设备的下行数据。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,所述第一下行数据帧和所述第二下行数据帧相互独立。
  17. 根据权利要求12所述的方法,其特征在于,所述调度信号用于调度所述调度频段和所述竞争频段,所述站点设备在所述调度信号调度的频段上与所述接入设备进行通信,包括:
    所述站点设备在所述调度频段和所述竞争频段上接收来自所述接入设备的第三下行数据帧。
  18. 根据权利要求12-17任一项所述的方法,其特征在于,所述方法还包括:
    所述站点设备在所述调度频段上接收来自所述接入设备的第一信标帧,所述第一信标帧用于指示所述接入设备的基本服务信息,所述第一信标帧携带所述调度信号;
    所述站点设备在所述调度频段上根据所述基本服务信息接入所述接入设备。
  19. 根据权利要求12-18任一项所述的方法,其特征在于,所述方法还包括:
    所述站点设备在所述竞争频段上接收来自所述接入设备的第二信标帧,所述第二信标帧用于指示所述接入设备的基本服务信息和所述调度频段,所述第二信标帧携带所述调度信号;
    所述站点设备在所述调度频段上根据所述基本服务信息接入所述接入设备。
  20. 根据权利要求12-19任一项所述的方法,其特征在于,所述方法还包括:
    所述站点设备在所述调度频段上接收来自所述接入设备的上行调度信息,所述上行调度信息用于调度上行数据;
    所述站点设备根据所述上行调度信息在所述调度频段上向所述接入设备发送上行数据帧。
  21. 根据权利要求20所述的方法,其特征在于,所述上行调度信息承载在触发帧;或者,所述上行调度信息承载在所述调度频段对应的信标帧中;或者,所述上行调度信息是基于所述站点设备的上行请求发送的,所述上行请求承载在触发响应零数据报文TB NDP帧中,或者所述上行请求承载在所述站点设备的块确认BA帧中。
  22. 一种WiFi通信装置,其特征在于,所述装置包括:
    发送单元,用于向站点设备发送调度信号,所述调度信号用于调度调度频段、或者所述调度频段和所述竞争频段,所述竞争频段是现有的WiFi通信的频段,所述调度频段与所述竞争频段不同;
    处理单元,用于在所述调度信号调度的频段上与所述站点设备进行通信。
  23. 根据权利要求22所述的装置,其特征在于,所述调度信号用于调度所述调度频段和所述竞争频段,所述发送单元还用于:
    在所述调度频段上向所述站点设备发送第一下行数据帧,在所述竞争频段上向所述站点设备发送第二下行数据帧。
  24. 根据权利要求23所述的装置,其特征在于,所述第一下行数据帧的帧头和帧尾分别与所述第二下行数据帧的帧头和帧尾对齐。
  25. 根据权利要求24所述的装置,其特征在于,所述第一下行数据帧包括前导信息,所述前导信息用于指示所述第二下行数据帧中是否包括所述站点设备的下行数据。
  26. 根据权利要求23-25任一项所述的装置,其特征在于,所述第一下行数据帧和所述第二下行数据帧相互独立。
  27. 根据权利要求22所述的装置,其特征在于,所述调度信号用于调度所述调度频段和所述竞争频段,所述发送单元还用于:
    在所述调度频段和所述竞争频段上向所述站点设备发送第三下行数据帧。
  28. 根据权利要求23-27任一项所述的装置,其特征在于,
    所述发送单元,还用于在所述调度频段上发送第一信标帧,所述第一信标帧用于指示所述装置的基本服务信息,所述第一信标帧携带所述调度信号;
    所述处理单元,还用于在所述调度频段上根据所述基本服务信息为所述站点设备提供接入服务。
  29. 根据权利要求23-28任一项所述的装置,其特征在于,
    所述发送单元,还用于在所述竞争频段上发送第二信标帧,所述第二信标帧用于指示所述装置的基本服务信息和所述调度频段,所述第二信标帧携带所述调度信号;
    所述处理单元,还用于在所述调度频段上根据所述基本服务信息为所述站点设备提供接入服务。
  30. 根据权利要求23-29任一项所述的装置,其特征在于,所述装置还包括接收单元;
    所述发送单元,还用于在所述调度频段上向所述站点设备发送上行调度信息,所述上行调度信息用于调度上行数据;
    所述接收单元,用于在所述调度频段上接收来自所述站点设备的上行数据帧。
  31. 根据权利要求30所述的装置,其特征在于,所述上行调度信息承载在触发帧;或者,所述上行调度信息承载在所述调度频段对应的信标帧中;或者,所述上行调度信息是基于所述站点设备的上行请求发送的,所述上行请求承载在触发响应零数据报文TB NDP帧中,或者所述上行请求承载在所述站点设备的块确认BA帧中。
  32. 根据权利要求23-31任一项所述的装置,其特征在于,所述装置还包括接收单元;
    所述接收单元,还用于接收来自其它接入设备的至少一个第三信标帧,所述至少一个第三信标帧用于指示至少一个调度频段,或用于指示所述调度频段的至少一个时隙;
    所述处理单元,还用于当所述至少一个第三信标帧用于指示至少一个调度频段时,确定所述至少一个调度频段之外的一个可用调度频段为所述调度频段;
    所述处理单元,还用于当所述至少一个第三信标帧用于指示所述调度频段的至少一个时隙时,确定使用所述调度频段中除所述至少一个时隙之外的可用时隙。
  33. 一种WiFi通信装置,其特征在于,所述装置包括:
    接收单元,用于接收来自接入设备的调度信号,所述调度信号用于调度调度频段、或者所述调度频段和所述竞争频段,所述竞争频段是现有的WiFi通信的频段,所述竞争频段与所述调度频段不同;
    处理单元,用于在所述调度信号调度的频段上与所述接入设备进行通信。
  34. 根据权利要求33所述的装置,其特征在于,所述调度信号用于调度所述调度频段和所述竞争频段,所述接收单元还用于:
    在所述调度频段上接收来自所述接入设备的第一下行数据帧,在所述竞争频段上接收来自所述装置的第二下行数据帧。
  35. 根据权利要求34所述的装置,其特征在于,所述第一下行数据帧的帧头和帧尾分别与所述第二下行数据帧的帧头和帧尾对齐。
  36. 根据权利要求35所述的装置,其特征在于,所述第一下行数据帧包括前导信息,所述前导信息用于指示所述第二下行数据帧中是否包括所述站点设备的下行数据。
  37. 根据权利要求34-36任一项所述的装置,其特征在于,所述第一下行数据帧和所述第二下行数据帧相互独立。
  38. 根据权利要求33所述的装置,其特征在于,所述调度信号用于调度所述调度频段和所述竞争频段,所述接收单元还用于:
    在所述调度频段和所述竞争频段上接收来自所述接入设备的第三下行数据帧。
  39. 根据权利要求33-38任一项所述的装置,其特征在于,
    所述接收单元,还用于在所述调度频段上接收来自所述接入设备的第一信标帧,所述第一信标帧用于指示所述接入设备的基本服务信息,所述第一信标帧携带所述调度信号;
    所述处理单元,还用于在所述调度频段上根据所述基本服务信息接入所述接入设备。
  40. 根据权利要求33-39任一项所述的装置,其特征在于,
    所述接收单元,还用于在所述竞争频段上接收来自所述接入设备的第二信标帧,所述第二信标帧用于指示所述接入设备的基本服务信息和所述调度频段,所述第二信标帧携带所述调度信号;
    所述处理单元,还用于在所述调度频段上根据所述基本服务信息接入所述接入设备。
  41. 根据权利要求33-40任一项所述的装置,其特征在于,所述装置还包括:发送单元;
    所述接收单元,还用于在所述调度频段上接收来自所述接入设备的上行调度信息,所述上行调度信息用于调度上行数据;
    所述发送单元,用于根据所述上行调度信息在所述调度频段上向所述接入设备发送上行数据帧。
  42. 根据权利要求41所述的装置,其特征在于,所述上行调度信息承载在触发帧;或者,所述上行调度信息承载在所述调度频段对应的信标帧中;或者,所述上行调度信息是基于所述站点设备的上行请求发送的,所述上行请求承载在触发响应零数据报文TB NDP帧中,或者所述上行请求承载在所述站点设备的块确认BA帧中。
  43. 一种WiFi通信装置,其特征在于,所述装置包括:存储器、处理器、系统总线和通信接口,所述存储器中存储代码和数据,所述处理器与所述存储器通过所述系统总线连接,所述处理器运行存储器中的代码使得所述装置执行如权利要求1-11任一项所述的WiFi通信方法。
  44. 一种WiFi通信装置,其特征在于,所述装置包括:存储器、处理器、系统总线和通信接口,所述存储器中存储代码和数据,所述处理器与所述存储器通过所述系统总线连接,所述处理器运行存储器中的代码使得所述装置执行如权利要求12-21任一项所述的WiFi通信方法。
  45. 一种WiFi通信系统,其特征在于,所述WiFi通信系统包括:接入设备和站点设备;其中,所述接入设备为如权利要求22-32中的任一项、或者权利要求43所述的WiFi通信装置,所述站点设备为如权利要求33-42中的任一项、或者权利要求44所述的WiFi通信装置。
PCT/CN2023/103377 2022-07-29 2023-06-28 一种WiFi通信方法、装置及系统 WO2024021978A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210910957.4 2022-07-29
CN202210910957.4A CN117528821A (zh) 2022-07-29 2022-07-29 一种WiFi通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2024021978A1 true WO2024021978A1 (zh) 2024-02-01

Family

ID=89705229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103377 WO2024021978A1 (zh) 2022-07-29 2023-06-28 一种WiFi通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN117528821A (zh)
WO (1) WO2024021978A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037520A (zh) * 2011-03-25 2013-04-10 北京新岸线无线技术有限公司 一种资源调度方法和设备
US20160302232A1 (en) * 2015-04-13 2016-10-13 Chittabrata Ghosh User station (sta) and access point (ap) and method for random access contention using cascaded trigger frames
CN106304369A (zh) * 2015-05-15 2017-01-04 上海贝尔股份有限公司 基于接入优先级的资源竞争的方法及装置
WO2017080378A1 (zh) * 2015-11-10 2017-05-18 深圳市金立通信设备有限公司 一种授权频谱辅助接入方法,网络设备及终端设备
CN111918406A (zh) * 2019-05-09 2020-11-10 中兴通讯股份有限公司 一种无线接入方法和装置
CN112189329A (zh) * 2019-08-23 2021-01-05 北京小米移动软件有限公司 下行数据缓存指示方法及装置和下行数据获取方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037520A (zh) * 2011-03-25 2013-04-10 北京新岸线无线技术有限公司 一种资源调度方法和设备
US20160302232A1 (en) * 2015-04-13 2016-10-13 Chittabrata Ghosh User station (sta) and access point (ap) and method for random access contention using cascaded trigger frames
CN106304369A (zh) * 2015-05-15 2017-01-04 上海贝尔股份有限公司 基于接入优先级的资源竞争的方法及装置
WO2017080378A1 (zh) * 2015-11-10 2017-05-18 深圳市金立通信设备有限公司 一种授权频谱辅助接入方法,网络设备及终端设备
CN111918406A (zh) * 2019-05-09 2020-11-10 中兴通讯股份有限公司 一种无线接入方法和装置
CN112189329A (zh) * 2019-08-23 2021-01-05 北京小米移动软件有限公司 下行数据缓存指示方法及装置和下行数据获取方法及装置

Also Published As

Publication number Publication date
CN117528821A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US9635614B2 (en) Power management method for station in wireless LAN system and station that supports same
TWI462606B (zh) 用於多頻帶無線通訊及頻寬管理的方法和裝置
US9282511B2 (en) Method for managing power save mode in wireless LAN system, and device for supporting same
TWI410157B (zh) 無線通訊方法及無線電子裝置
WO2022042268A1 (zh) 多链路通信的链路指示方法及相关装置
US20060292987A1 (en) Method of wireless local area network and Bluetooth network coexistence in a collocated device
US9198115B2 (en) Method and apparatus for scanning and device detection in a communication system
EP2673898B1 (en) Systems and methods for providing categorized channel reservation
CN113676298B (zh) 多链路通信方法及相关装置
CN102783245B (zh) 通信设备和通信控制方法
US20140254565A1 (en) Systems and methods for multiple concurrent wlan operational modes
WO2021180177A1 (zh) 一种应用于多链路通信中的功率节省方法和装置
US9357489B2 (en) Method for power save mode operation in wireless local area network and apparatus for the same
US20080026696A1 (en) Method and system for transmitting voice data by using wireless LAN and bluetooth
WO2023122380A1 (en) Low latency solutions for restricted target wake time (r-twt) during multi-link operation (mlo)
US11184890B2 (en) Low-latency Wi-Fi MAC-layer protocol
WO2024021978A1 (zh) 一种WiFi通信方法、装置及系统
WO2023236821A1 (zh) 多链路通信方法及装置
WO2023011421A1 (zh) 通信方法及装置
WO2022237896A1 (zh) 传输处理方法、装置、通信设备及可读存储介质
TWI832377B (zh) 通信方法及相關裝置
WO2023222072A1 (zh) 信道接入方法和相关装置
EP4274295A1 (en) Sidelink discontinuous reception configuration method and apparatus, device, and readable storage medium
WO2023179315A1 (zh) 一种通信方法及装置
US20230239923A1 (en) Resource transmission method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845191

Country of ref document: EP

Kind code of ref document: A1