WO2024021713A1 - 一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用 - Google Patents

一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用 Download PDF

Info

Publication number
WO2024021713A1
WO2024021713A1 PCT/CN2023/090591 CN2023090591W WO2024021713A1 WO 2024021713 A1 WO2024021713 A1 WO 2024021713A1 CN 2023090591 W CN2023090591 W CN 2023090591W WO 2024021713 A1 WO2024021713 A1 WO 2024021713A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic induction
asphalt
diabase
asphalt mixture
healing
Prior art date
Application number
PCT/CN2023/090591
Other languages
English (en)
French (fr)
Inventor
胡迟春
叶向前
陈兴睿
王嘉琪
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2024021713A1 publication Critical patent/WO2024021713A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of road materials and aims to improve the electromagnetic induction-induced healing performance of asphalt concrete.
  • ultra-thin wearing layer technology is widely used in pavement maintenance because it can effectively improve the service performance of the pavement, save costs, and reduce the consumption of resources and energy.
  • the tensile stress at the bottom of the ultra-thin wearing layer and the shearing force between layers increase, which can easily lead to cracking, peeling and other pavement diseases of the wearing layer, shortening the service life of the pavement.
  • asphalt pavement has a certain self-healing ability during the intermittent period of vehicle load.
  • the mechanism is that asphalt, as a viscoelastic material, has certain fluidity. When tiny cracks occur in the asphalt concrete, the asphalt flows through Cracks are filled to achieve healing, but the self-healing efficiency of asphalt concrete at room temperature is very low.
  • Temperature is a key factor affecting the self-healing ability of asphalt concrete. At high temperatures, the viscosity of asphalt will decrease and the fluidity will increase.
  • the induced heating technology based on electromagnetic induction can heat the asphalt instead of the aggregate, making the asphalt pavement faster. Heating increases the self-healing ability of asphalt pavement. It has the characteristics of high heating efficiency, low energy consumption, and can be reused many times. It can achieve uniform heating of ultra-thin wearing layers and has broad application prospects.
  • traditional asphalt mixtures have basically no ability to receive electromagnetic induction, and the high-viscosity asphalt used in the ultra-thin wearing layer has poorer fluidity at high temperatures than ordinary matrix asphalt, which hinders electromagnetic induction to a certain extent.
  • Application of induced heating technology in ultra-thin wearing layer is a key factor affecting the self-healing ability of asphalt concrete. At high temperatures, the viscosity of asphalt will decrease and the fluidity will increase.
  • the induced heating technology based on electromagnetic induction can heat the asphalt instead of the aggregate,
  • the purpose of the present invention is to provide an electromagnetic induction-enhanced nano-modified asphalt mixture with high self-healing performance, which solves the problems of low electromagnetic induction efficiency and poor self-healing performance of the existing ultra-thin wearing layer asphalt mixture.
  • an electromagnetic induction enhanced nano-modified asphalt mixture and its preparation method and application consisting of the following volume fraction of raw materials: 64.5% to 69.1% diabase coarse aggregate. , 19.6% to 24.8% diabase fine aggregate, 2.4% to 3.0% limestone mineral powder, 0.1% to 0.4% nanometer silica, 3.2% to 3.8% steel wool and 5.6% to 6.4% Highly viscous asphalt.
  • the crushing value of the diabase coarse aggregate is ⁇ 20%
  • the Los Angeles abrasion loss is ⁇ 20%
  • the apparent relative density is ⁇ 2.6 (g/cm 3 )
  • the water absorption is ⁇ 1%
  • the needle flake content is ⁇ 10 %
  • the apparent relative density of diabase fine aggregate is ⁇ 2.5 (g/cm 3 )
  • the sand equivalent is ⁇ 70%
  • the limestone mineral powder has no agglomerates in appearance, and the apparent relative density is ⁇ 2.5 (g/cm 3 );
  • high Penetration of sticky asphalt 25°C, 100g, 5s) ⁇ 4mm, softening point TR&B ⁇ 85°C, ductility (5°C, 5cm/min) ⁇ 25cm, dynamic viscosity at 60°C ⁇ 200000 Pa ⁇ s, rotational viscosity at 135°C ⁇ 3Pa ⁇ s
  • the length of steel wool is within 3.2mm, and the diameter range is 0.0127 ⁇ 0.038
  • an electromagnetic induction-enhanced nano-modified high self-healing performance asphalt mixture and its preparation method and application includes the following steps:
  • This invention combines the characteristics of the ultra-thin wearing layer of asphalt pavement and the electromagnetic induction heating self-healing technology. Based on the coupling gain effect between the electromagnetic induction enhanced filler (steel wool) and the self-healing accelerator (nanospheric silica), On the premise of ensuring the road performance of the ultra-thin wearing layer, the healing effect of the asphalt mixture in the electromagnetic field is effectively enhanced.
  • steel wool and nano-silica are mixed into the asphalt mixture according to a certain proportion, mixed and paved to form an ultra-thin wearing layer, and electromagnetic induction is used at an appropriate time after being put into use.
  • Heating equipment should be used to heat the wearing layer so that the cracks in the ultra-thin wearing layer can heal quickly in a short time, thereby shortening the maintenance time and extending the service life of the pavement.
  • the present invention also provides an ultra-thin wearing layer self-healing method based on the above-mentioned asphalt mixture.
  • the ultra-thin wearing layer made of the above-mentioned electromagnetic induction-enhanced nano-modified high-self-healing performance asphalt mixture is damaged, the ultra-thin wearing layer is repaired through electricity.
  • Magnetic induction induction heating technology achieves efficient healing of cracks in the ultra-thin wearing layer, thereby achieving the purpose of improving the performance of asphalt pavement and extending the life of the pavement.
  • Steel wool can be better and evenly distributed in the asphalt mixture, enhance the crack resistance of the asphalt mixture, and effectively improve the electromagnetic induction efficiency of the asphalt mixture. It converts electromagnetic energy into thermal energy so that the mixture can be heated under electromagnetic induction induced heating conditions. The temperature is quickly raised to 90-110°C. Under the influence of the good dispersion and strong fluidity of nano-silica, the fluidity of the asphalt binder is enhanced, further improving the self-healing ability of the asphalt mixture. First, it can be applied to ultra-thin wearing layers and use induced heating to self-heal to quickly heal cracks in ultra-thin wearing layers. Second, it can solve the problem of snow and ice on the road surface in cold winter, and can efficiently melt ice and snow.
  • Figure 1 shows the design gradation curve of asphalt mixture
  • Figure 2 is a schematic flow chart of measuring the electromagnetic induction-induced healing ability of asphalt mixtures provided by an embodiment of the present invention
  • Figure 3 is a thermal constant comparison diagram provided by the embodiment of the present invention.
  • an electromagnetic induction-enhanced nano-modified asphalt mixture with high self-healing performance is composed of raw materials with the following volume fractions: 64.5% to 69.1% diabase coarse aggregate, 19.6% to 24.8% diabase Rock fine aggregate, 2.4% to 3.0% limestone mineral powder, 0.1% to 0.4% nano-silica, 3.2% to 3.8% steel wool and 5.6% to 6.4% high-viscosity asphalt.
  • the diabase coarse aggregate crushing value is ⁇ 20%
  • Los Angeles abrasion loss is ⁇ 20%
  • apparent relative density is ⁇ 2.6 (g/cm 3 )
  • water absorption is ⁇ 1%
  • needle flake content is ⁇ 10%
  • the apparent relative density of greenstone fine aggregate is ⁇ 2.5 (g/cm 3 ) and the sand equivalent is ⁇ 70%
  • the appearance of limestone mineral powder has no agglomeration and the apparent relative density is ⁇ 2.5 (g/cm 3 ).
  • the high-viscosity asphalt has penetration (25°C, 100g, 5s) ⁇ 4mm, softening point TR&B ⁇ 85°C, ductility (5°C, 5cm/min) ⁇ 25cm, dynamic viscosity at 60°C ⁇ 200000 Pa ⁇ s, 135°C Rotational viscosity ⁇ 3Pa ⁇ s.
  • the length of steel wool is within 3.2mm, and the diameter range is 0.0127 ⁇ 0.0381mm.
  • Silica is spherical with a diameter of 300 nanometers, purity ⁇ 99.8%, typical specific surface area 14.2m 2 /g, and typical magnetic material concentration 0.5ppm.
  • an electromagnetic induction-enhanced nano-modified asphalt mixture with high self-healing performance is composed of raw materials with the following volume fractions: 68% diabase coarse aggregate and 20% diabase fine Aggregate, 2.6% limestone mineral powder, 0.2% nanosilica, 3.4% steel wool and 5.8% high-viscosity asphalt.
  • diabase coarse aggregate crushing value ⁇ 20%, Los Angeles abrasion loss ⁇ 20%, apparent relative density ⁇ 2.6 (g/cm 3 ), water absorption ⁇ 1%, needle flake content ⁇ 10%; diabase
  • the apparent relative density of fine rock aggregate is ⁇ 2.5 (g/cm 3 ), and the sand equivalent is ⁇ 70%; the limestone mineral powder has no agglomerates in appearance, and the apparent relative density is ⁇ 2.5 (g/cm 3 ); high-viscosity asphalt needle penetration Strength (25°C, 100g, 5s) ⁇ 4mm, softening point TR&B ⁇ 85°C, ductility (5°C, 5cm/min) ⁇ 25cm, dynamic viscosity at 60°C ⁇ 200000Pa ⁇ s, rotational viscosity at 135°C ⁇ 3Pa ⁇ s;
  • the length of steel wool is within 3.2mm, and the diameter ranges from 0.0127 to 0.0381mm; the silica is spher
  • a method for preparing electromagnetic induction-enhanced nano-modified asphalt mixture with high self-healing performance including the following steps:
  • An application of electromagnetic induction enhanced nano-modified high self-healing performance asphalt mixture wherein the preparation method of electromagnetic induction enhanced nano-modified high self-healing performance asphalt mixture includes the following steps:
  • the electromagnetic induction enhanced nano-modified asphalt mixture prepared above was compacted 100 times by a rotary compactor to form a cylindrical specimen with a height of 150mm and a diameter of 150mm. The specimen was then cut with a double-sided saw to obtain Use a 50mm round hole drill bit to core a cylindrical slice with two flat sides and a height of 20mm to obtain a thermal constant specimen with a diameter of 50mm and a thickness of 20mm. Before the test, the specimen was kept at 18°C for 2 hours, and the thermal constant was tested at a test power of 0.2W. As shown in Figure 3, the results show that compared with ordinary asphalt concrete, the thermal conductivity and thermal diffusivity of high self-healing asphalt concrete are significantly improved. The electromagnetic induction-enhanced nano-modified high self-healing asphalt mixture has stronger thermal conductivity and thermal diffusion capabilities. .
  • the ordinary asphalt mixture in this comparative example is composed of the following volume fraction materials: 68% diabase rough aggregate Material, 23.2% diabase fine aggregate, 2.8% limestone mineral powder, 6% high-viscosity asphalt;
  • the electromagnetic induction enhanced nano-modified high self-healing asphalt mixture prepared in Examples 1 and 2 and the ordinary asphalt mixture prepared in Comparative Example 1 were made into semicircular specimens with a radius of 75mm and a thickness of 57mm.
  • the semicircle was bent Cut incisions with depths of 15mm, 25mm, and 32mm and width of 1mm at the bottom of the specimens, as shown in Figure 2.
  • a "fracture-healing fracture" test was performed on the specimens to evaluate the healing effect of the material. Put the semicircular specimen into an incubator at 25°C for 24 hours, conduct a semicircular bending and fracture test at an ambient temperature of 25°C, and then heat the broken specimen through an electromagnetic induction coil for 40 seconds, and then place it in a sand bath. Cured for 24 hours, then placed in an incubator at 25°C for 24 hours, and then subjected to a semicircular bending and fracture test.
  • the self-healing index is expressed by the strength ratio of the second fracture to the first fracture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用。由如下体积分数的原料构成:64.5%~69.1%的辉绿岩粗集料、19.6%~24.8%的辉绿岩细集料、2.4%~3.0%的石灰岩矿粉、0.1%~0.4%的纳米二氧化硅、3.2%~3.8%的钢棉和5.6%~6.4%的高粘沥青。本申请结合了沥青路面超薄磨耗层和电磁感应加热自愈合技术的特点,基于电磁感应增强填料与自愈合促进剂之间的耦合增益作用,在保证超薄磨耗层路用性能的前提下,有效增强沥青混合料在电磁场中的愈合效果。本发明可以使超薄磨耗层的裂缝能够在短时间内快速愈合,从而达到缩短养护时间并延长路面使用寿命的效果。

Description

一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用 技术领域
本发明属于道路材料领域,目的在于提升沥青混凝土的电磁感应诱导愈合性能。
技术背景
随着养护技术的不断发展,超薄磨耗层技术因其能够有效改善路面的服役性能、节约造价、减少对资源和能源的消耗等优点而被广泛应用于路面养护。但由于结构层厚度的减少,超薄磨耗层层底拉应力和层间剪切力增大,易导致磨耗层的开裂、脱皮等路面病害,缩短路面的使用寿命。实际上,在车辆荷载作用的间歇期沥青路面具有一定的自愈合能力,其机理是沥青作为一种黏弹性材料,具有一定的流动性,当沥青混凝土中产生微小的裂缝时,沥青通过流动将裂缝填充进而实现愈合,但常温下沥青混凝土的自愈合效率很低。
温度是影响沥青混凝土自愈合能力的关键因素,在高温状态下沥青的粘度会降低,流动性增强,而基于电磁感应的诱导加热技术能够实现对沥青而非集料的加热,使沥青路面快速升温,增强沥青路面的自愈合能力,具有加热效率高、能耗低、可多次重复使用的特点,能够实现对超薄磨耗层的均匀加热,具备广阔的应用前景。但传统沥青混合料对电磁感应基本无接收能力,并且超薄磨耗层中采用的高粘沥青在高温下的流动性比普通基质沥青差,一定程度上阻碍了电磁感应 诱导加热技术在超薄磨耗层中的应用。
发明内容
本发明的目的在于提供一种电磁感应增强型纳米改性高自愈合性能沥青混合料,解决了现有超薄磨耗层沥青混合料电磁感应效率低、自愈合性能差的问题。
为达到上述目的,本发明的技术方案如下:一种电磁感应增强型纳米改性沥青混合料及其制备方法和应用,由如下体积分数的原料构成:64.5%~69.1%的辉绿岩粗集料、19.6%~24.8%的辉绿岩细集料、2.4%~3.0%的石灰岩矿粉、0.1%~0.4%的纳米二氧化硅、3.2%~3.8%的钢棉和5.6%~6.4%的高粘沥青。
进一步的,所述辉绿岩粗集料压碎值≤20%、洛杉矶磨耗损失≤20%、表观相对密度≥2.6(g/cm3)、吸水率≤1%、针片状含量≤10%;辉绿岩细集料表观相对密度≥2.5(g/cm3)、砂当量≥70%;石灰岩矿粉外观无团粒结块,表观相对密度≥2.5(g/cm3);高粘沥青针入度(25℃,100g,5s)≥4mm,软化点TR&B≥85℃,延度(5℃,5cm/min)≥25cm,60℃动力粘度≥200000Pa·s,135℃旋转粘度≤3Pa·s;钢棉的长度在3.2mm以内,直径范围在0.0127~0.0381mm;二氧化硅为直径300纳米的球形,纯度≥99.8%,比表面积典型值14.2m2/g,磁性材料浓度典型值0.5ppm。
本发明的另一种技术方案,一种电磁感应增强型纳米改性高自愈合性能沥青混合料及制备方法和应用,包括如下步骤:
S1、按照如下体积分数的原料备料:64.5%~69.1%的辉绿岩粗集料、19.6%~24.8%的辉绿岩细集料、2.4%~3.0%的石灰岩矿粉、0.1%~0.4%的纳米二氧化硅、3.2%~3.8%的钢棉和5.6%~6.4%的高粘沥青。
S2、将S1的矿粉和钢棉倒入拌和装置并拌和均匀,使钢棉在矿粉内分布均匀,并按质量等分为两份混合物;
S3、将S1的辉绿岩粗集料和辉绿岩细集料在185℃~195℃温度条件下加热4小时,沥青在170℃~180℃条件下加热2小时;
S4、将S3中加热后的粗细集料一次性倒入拌和装置内,同时向拌和装置中加入一份S2中拌合均匀的钢棉和矿粉混合物,并在180℃~190℃拌合均匀;然后向拌锅中加入S3的沥青并拌合均匀,最后加入另一份S2中拌合均匀的钢棉和矿粉混合物并在180℃~190℃温度下拌合均匀;
S5、将S4的拌和装置中的混合料在145℃~160℃下浇筑成型并养护,即可得到电磁感应增强型纳米改性高自愈合性能沥青混合料。
本发明结合了沥青路面超薄磨耗层和电磁感应加热自愈合技术的特点,基于电磁感应增强填料(钢棉)与自愈合促进剂(纳米球形二氧化硅)之间的耦合增益作用,在保证超薄磨耗层路用性能的前提下,有效增强沥青混合料在电磁场中的愈合效果。在制备沥青混合料的过程中,将钢棉和纳米二氧化硅分别按照一定的比例掺入沥青混合料中,拌和并摊铺成型超薄磨耗层,并在投入使用后择机采用电磁感 应加热设备对磨耗层加热,使超薄磨耗层的裂缝能够在短时间内快速愈合,从而达到缩短养护时间并延长路面使用寿命的效果。
本发明还提供了基于上述沥青混合料的超薄磨耗层自愈合方法,当采用上述的电磁感应增强型纳米改性高自愈合性能沥青混合料制成的超薄磨耗层发生损伤时,通过电磁感应诱导加热技术实现超薄磨耗层裂缝的高效愈合,进而达到提升沥青路面使用性能和延长路面寿命的目的。
本发明采用的以上技术方案,与现有技术相比,作为举例而非限定,具有以下的有益效果:
钢棉能更好地均匀分布在沥青混合料中,增强沥青混合料抗裂性能的同时能够有效地提升沥青混合料的电磁感应效率,将电磁能转换为热能使混合料在电磁感应诱导加热条件下快速升温至90~110℃,在纳米二氧化硅分散性好、流动性强的增益作用下,沥青胶结料的流动性增强,进一步改善了沥青混合料的自愈合能力。第一,能够应用于超薄磨耗层,利用诱导加热自修复快速愈合超薄磨耗层裂缝。第二,能够解决路面在寒冷冬季积雪结冰问题,可高效化冰融雪。
附图说明
图1为沥青混合料设计级配曲线;
图2本发明实施例提供的沥青混合料电磁感应诱导愈合能力测定流程示意图;
图3本发明实施例提供的热常数对比图。
具体实施方式
为了更好地理解本发明,下面通过具体实施方式对本发明作进一步详细的说明。实施例只对本发明具有示例性的作用,而不具有任何限制性的作用,本领域的技术人员在本发明的基础上做出的任何非实质性的修改,都应属于本发明的保护范围。
下面通过具体实施方式对本发明作进一步详细的说明:
本实施例中,一种电磁感应增强型纳米改性高自愈合性能沥青混合料,由如下体积分数的原料构成:64.5%~69.1%的辉绿岩粗集料、19.6%~24.8%的辉绿岩细集料、2.4%~3.0%的石灰岩矿粉、0.1%~0.4%的纳米二氧化硅、3.2%~3.8%的钢棉和5.6%~6.4%的高粘沥青。
所述辉绿岩粗集料压碎值≤20%、洛杉矶磨耗损失≤20%、表观相对密度≥2.6(g/cm3)、吸水率≤1%、针片状含量≤10%;辉绿岩细集料表观相对密度≥2.5(g/cm3)、砂当量≥70%;石灰岩矿粉外观无团粒结块,表观相对密度≥2.5(g/cm3)。
所述高粘沥青针入度(25℃,100g,5s)≥4mm,软化点TR&B≥85℃,延度(5℃,5cm/min)≥25cm,60℃动力粘度≥200000Pa·s,135℃旋转粘度≤3Pa·s。
钢棉的长度在3.2mm以内,直径范围在0.0127~0.0381mm。
二氧化硅为直径300纳米的球形,纯度≥99.8%,比表面积典型值14.2m2/g,磁性材料浓度典型值0.5ppm。
实施例1
如图1和图3所示:一种电磁感应增强型纳米改性高自愈合性能沥青混合料,由如下体积分数的原料构成,68%的辉绿岩粗集料、20%的辉绿岩细集料、2.6%的石灰岩矿粉、0.2%的纳米二氧化硅、3.4%的钢棉和5.8%的高粘沥青。上述辉绿岩粗集料压碎值≤20%、洛杉矶磨耗损失≤20%、表观相对密度≥2.6(g/cm3)、吸水率≤1%、针片状含量≤10%;辉绿岩细集料表观相对密度≥2.5(g/cm3)、砂当量≥70%;石灰岩矿粉外观无团粒结块,表观相对密度≥2.5(g/cm3);高粘沥青针入度(25℃,100g,5s)≥4mm,软化点TR&B≥85℃,延度(5℃,5cm/min)≥25cm,60℃动力粘度≥200000Pa·s,135℃旋转粘度≤3Pa·s;钢棉的长度在3.2mm以内,直径范围在0.0127~0.0381mm;二氧化硅为直径300纳米的球形,纯度≥99.8%,比表面积典型值14.2m2/g,磁性材料浓度典型值0.5ppm。
实施例2
一种电磁感应增强型纳米改性高自愈合性能沥青混合料的制备方法,包括如下步骤:
S1、按照如下体积分数的原料备料:68%的辉绿岩粗集料、20%的辉绿岩细集料、2.6%的石灰岩矿粉、0.2%的纳米二氧化硅、3.4%的钢棉和5.8%的高粘沥青;
S2、将S1的矿粉和钢棉倒入拌和装置并拌和均匀,使钢棉在矿粉内分布均匀,并按质量等分为两份混合物;
S3、将S1的辉绿岩粗集料和辉绿岩细集料在185℃温度条件下 加热4小时,沥青在180℃条件下加热2小时;
S4、将S3中加热后的粗细集料一次性倒入拌和装置内,同时向拌和装置中加入一份S2中拌合均匀的钢棉和矿粉混合物,并在185℃拌合均匀;然后向拌锅中加入S3的沥青并拌合均匀,最后加入另一份S2中拌合均匀的钢棉和矿粉混合物并在185℃温度下拌合均匀;
S5、将S4的拌和装置中的混合料在150℃下浇筑成型并养护,即可得到电磁感应增强型纳米改性高自愈合性能沥青混合料。
实施例3
一种电磁感应增强型纳米改性高自愈合性能沥青混合料的应用,其中电磁感应增强型纳米改性高自愈合性能沥青混合料的制备方法包括如下步骤:
S1、按照如下体积分数的原料备料:68%的辉绿岩粗集料、20%的辉绿岩细集料、2.6%的石灰岩矿粉、0.2%的纳米二氧化硅、3.4%的钢棉和5.8%的高粘沥青;上述辉绿岩粗集料压碎值≤20%、洛杉矶磨耗损失≤20%、表观相对密度≥2.6(g/cm3)、吸水率≤1%、针片状含量≤10%;辉绿岩细集料表观相对密度≥2.5(g/cm3)、砂当量≥70%;石灰岩矿粉外观无团粒结块,表观相对密度≥2.5(g/cm3);高粘沥青针入度(25℃,100g,5s)≥4mm,软化点TR&B≥85℃,延度(5℃,5cm/min)≥25cm,60℃动力粘度≥200000Pa·s,135℃旋转粘度≤3Pa·s;钢棉的长度在3.2mm以内,直径范围在0.0127~0.0381mm;二氧化硅为直径300纳米的球形,纯度≥99.8%,比表面积典型值14.2m2/g,磁性材料浓度典型值0.5ppm。
S2、将S1的矿粉和钢棉倒入拌和装置并拌和均匀,使钢棉在矿粉内分布均匀,并按质量等分为两份混合物;
S3、将S1的辉绿岩粗集料和辉绿岩细集料在185℃温度条件下加热4小时,沥青在180℃条件下加热2小时;
S4、将S3中加热后的粗细集料一次性倒入拌和装置内,同时向拌和装置中加入一份S2中拌合均匀的钢棉和矿粉混合物,并在185℃拌合均匀;然后向拌锅中加入S3的沥青并拌合均匀,最后加入另一份S2中拌合均匀的钢棉和矿粉混合物并在185℃温度下拌合均匀;
S5、将S4的拌和装置中的混合料在150℃下浇筑成型并养护,即可得到电磁感应增强型纳米改性高自愈合性能沥青混合料。
将上述制得的电磁感应增强型纳米改性沥青混合料通过旋转压实仪压实100次,成型高为150mm、直径150mm的圆柱体试件,然后使用双面锯对试件进行切割,得到两面平整、高为20mm的圆柱体切片,采用50mm的圆孔钻头,对圆柱体切片进行取芯,得到直径50mm、厚度20mm的热常数试件。试验前先将试件放在18℃的条件下保温2h,在测试功率为0.2W的条件下进行热常数测试。如图3所示,结果表明,高自愈合沥青混凝土相比普通沥青混凝土,热导率和热扩散率均有明显提升,电磁感应增强型纳米改性高自愈合沥青混合料热传导和热扩散能力更强。
对比例1
本对比例与实施例1的区别仅在于:原材料组成不一样,本对比例普通沥青混合料由如下体积分数的材料构成:68%的辉绿岩粗集 料、23.2%的辉绿岩细集料、2.8%的石灰岩矿粉、6%的高粘沥青;
将实施例1和2中制得的电磁感应增强型纳米改性高自愈合沥青混合料和对比例1中制得的普通沥青混合料制成半径75mm、厚度57mm的半圆形试样,半圆弯曲试样底部分别切割深15mm、25mm、32mm,宽1mm的切口,如附图2所示,对试件进行“断裂-愈合断裂”试验以评估材料的愈合效果。将半圆试件放入25℃的保温箱中放置24小时,在环境温度为25℃的条件下进行半圆弯曲断裂试验,然后将断裂后的试件通过电磁感应线圈加热40s,然后在沙浴中养护24小时,再放入25℃的保温箱放置24h,再进行半圆弯曲断裂试验。自愈合指标由第二轮断裂与第一轮断裂的强度比表示。
结果表明:对比例1的沥青混合料在电磁感应条件下无法加热诱导愈合,而实施例1的电磁感应增强型纳米改性高自愈合沥青混合料在电磁感应加热诱导愈合后半圆试件的愈合率在85%以上,愈合效果明显,这也说明了电磁感应增强型纳米改性高自愈合沥青混合料能够快速地对路面轻微裂缝进行修复。
应当理解,以上借助优化实施例对本发明的技术方案进行的详细说明是示意性的而非限制性的,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,对各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,都应当视为属于本发明提交的权利要求书确定的专利保护范围。

Claims (10)

  1. 一种电磁感应增强型纳米改性高自愈合性能沥青混合料,其特征在于:由如下体积分数的原料构成:64.5%~69.1%的辉绿岩粗集料、19.6%~24.8%的辉绿岩细集料、2.4%~3.0%的石灰岩矿粉、0.1%~0.4%的纳米二氧化硅、3.2%~3.8%的钢棉和5.6%~6.4%的高粘沥青。
  2. 根据权利要求1所述的一种电磁感应增强型纳米改性高自愈合性能沥青混合料,其特征在于:
    所述辉绿岩粗集料压碎值≤20%、洛杉矶磨耗损失≤20%、表观相对密度≥2.6g/cm3、吸水率≤1%、针片状含量≤10%;辉绿岩细集料表观相对密度≥2.5g/cm3、砂当量≥70%;石灰岩矿粉外观无团粒结块,表观相对密度≥2.5g/cm3
  3. 根据权利要求1所述的一种电磁感应增强型纳米改性高自愈合性能沥青混合料,其特征在于:
    所述高粘沥青针入度25℃,100g,5s≥4mm,软化点TR&B≥85℃,延度5℃,5cm/min≥25cm,60℃动力粘度≥200000Pa·s,135℃旋转粘度≤3Pa·s。
  4. 根据权利要求1所述的一种电磁感应增强型纳米改性高自愈合性能沥青混合料,其特征在于:
    钢棉的长度在3.2mm以内,直径范围在0.0127~0.0381mm。
  5. 根据权利要求1所述的一种电磁感应增强型纳米改性高自愈合性能沥青混合料,其特征在于:
    二氧化硅为直径300纳米的球形,纯度≥99.8%,比表面积典型 值14.2m2/g,磁性材料浓度典型值0.5ppm。
  6. 权利要求1~5任一项所述一种电磁感应增强型纳米改性高自愈合性能沥青混合料的制备方法,其特征在于:包括如下步骤:
    S1、按照如下体积分数的原料备料:64.5%~69.1%的辉绿岩粗集料、19.6%~24.8%的辉绿岩细集料、2.4%~3.0%的石灰岩矿粉、0.1%~0.4%的纳米二氧化硅、3.2%~3.8%的钢棉和5.6%~6.4%的高粘沥青;
    S2、将S1的矿粉和钢棉倒入拌和装置并拌和均匀,使钢棉在矿粉内分布均匀,并按质量等分为两份混合物;
    S3、将S1的辉绿岩粗集料和辉绿岩细集料加热;将沥青加热;
    S4、将S3中加热后的粗细集料一次性倒入拌和装置内,同时向拌和装置中加入一份S2中拌合均匀的钢棉和矿粉混合物,并在180℃~190℃拌合均匀;然后向拌锅中加入S3的沥青并拌合均匀,最后加入另一份S2中拌合均匀的钢棉和矿粉混合物并在180℃~190℃温度下拌合均匀;
    S5、将S4的拌和装置中的混合料浇筑成型并养护,得到电磁感应增强型纳米改性高自愈合性能沥青混合料。
  7. 根据权利要求6所述方法,其特征在于,S3中,所述辉绿岩粗集料和辉绿岩细集料的加热为:在185℃~195℃温度条件下加热4小时。
  8. 根据权利要6所述方法,其特征在于,S3中,所述沥青的加热为:在170℃~180℃条件下加热2小时。
  9. 根据权利要求6所述方法,其特征在于,S5中,所述浇筑成型的温度为145℃~160℃。
  10. 权利要求1-5任一项所述电磁感应增强型纳米改性高自愈合性能沥青混合料的应用,其特征在于,在经过复合掺配制成的电磁感应增强型纳米改性高自愈合性能沥青混合料利用于快速、高效地修复超薄磨耗层裂缝,进而有效延长路面的使用寿命。
PCT/CN2023/090591 2022-07-29 2023-04-25 一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用 WO2024021713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210913375.1A CN115353328A (zh) 2022-07-29 2022-07-29 一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用
CN202210913375.1 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024021713A1 true WO2024021713A1 (zh) 2024-02-01

Family

ID=84031411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090591 WO2024021713A1 (zh) 2022-07-29 2023-04-25 一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN115353328A (zh)
WO (1) WO2024021713A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353328A (zh) * 2022-07-29 2022-11-18 华南理工大学 一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077780A (ja) * 2008-09-29 2010-04-08 Npo Hiroshima Junkangata Shakai Suishin Kiko 道路舗装用アスファルト混合物
CN107140884A (zh) * 2017-05-05 2017-09-08 武汉理工大学 一种快速自修复稀浆封层材料以及沥青路面修复方法
CN108947335A (zh) * 2018-08-27 2018-12-07 华南理工大学 一种超粘降噪沥青混合料及超粘降噪沥青混合料精罩面
CN112811854A (zh) * 2021-01-13 2021-05-18 武汉理工大学 一种阻燃温拌感应加热自愈合沥青混凝土及其制备方法
CN113072325A (zh) * 2021-03-24 2021-07-06 山东高速集团有限公司 一种微波高敏感型沥青混合料及其制备方法和应用
CN115353328A (zh) * 2022-07-29 2022-11-18 华南理工大学 一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402312B (zh) * 2014-10-23 2017-03-08 武汉理工大学 能够非接触快速修复的sbs改性沥青混凝土及其制备方法
CN105419355B (zh) * 2015-11-11 2018-04-17 长安大学 一种微细废橡胶粉‑纳米材料复合改性沥青及其制备方法
RU2665541C1 (ru) * 2017-11-15 2018-08-30 Открытое акционерное общество "Асфальтобетонный завод N 1" Радиопоглощающий асфальтобетонный дорожный ремонтный состав, способ его изготовления и нанесения
CN109231890A (zh) * 2018-09-08 2019-01-18 平湖市中建沥青混凝土工程有限公司 一种沥青玛蹄脂碎石混合料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077780A (ja) * 2008-09-29 2010-04-08 Npo Hiroshima Junkangata Shakai Suishin Kiko 道路舗装用アスファルト混合物
CN107140884A (zh) * 2017-05-05 2017-09-08 武汉理工大学 一种快速自修复稀浆封层材料以及沥青路面修复方法
CN108947335A (zh) * 2018-08-27 2018-12-07 华南理工大学 一种超粘降噪沥青混合料及超粘降噪沥青混合料精罩面
CN112811854A (zh) * 2021-01-13 2021-05-18 武汉理工大学 一种阻燃温拌感应加热自愈合沥青混凝土及其制备方法
CN113072325A (zh) * 2021-03-24 2021-07-06 山东高速集团有限公司 一种微波高敏感型沥青混合料及其制备方法和应用
CN115353328A (zh) * 2022-07-29 2022-11-18 华南理工大学 一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMIN GANJEI MOHAMAD; ESMAIL AFLAKI: "Application of nano silica to improve self-healing of asphalt mixes", JOURNAL OF CENTRAL SOUTH UNIVERSITY, CENTRAL SOUTH UNIVERSITY, CHANGSHA, vol. 24, no. 5, 9 June 2017 (2017-06-09), Changsha, pages 1019 - 1026, XP036254329, ISSN: 2095-2899, DOI: 10.1007/s11771-017-3504-y *

Also Published As

Publication number Publication date
CN115353328A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
WO2024021713A1 (zh) 一种电磁感应增强型纳米改性高自愈合性能沥青混合料及其制备方法与应用
CN110453562B (zh) 基于纳米碳纤维提高冷拌沥青混合料自愈合的方法
CN101913800A (zh) 用于桥面铺装的超薄磨耗层沥青混凝土材料及其制备方法
CN106396561B (zh) 一种具有融雪功能的微表处混合料及其制备方法
CN111499268B (zh) 一种提高微波吸收效率的沥青混合料及其制备方法
CN109053092A (zh) 高强度高韧性高导热高抗渗大体积混凝土及其制备方法
CN105541182A (zh) 一种超粘纤维树脂沥青磨耗层混合料及其制备方法
Lei et al. Performance of asphalt mortar with recycled concrete powder under different filler-to-asphalt weight ratios
CN111196702A (zh) 一种聚丙烯纤维改性水泥稳定碎石及其制备方法
CN110128070B (zh) 级配碎石灌入式半柔性复合路面混合料及路面施工方法
CN104743965A (zh) 一种可快速升温的沥青混合料的制备方法
CN106630769A (zh) 一种可用于重交通道路中面层的改性乳化沥青冷拌冷铺混合料及其制备方法
CN114075053B (zh) 沥青路面预防性养护超薄罩面混合料及制备方法和添加剂
CN112553994A (zh) 一种剑麻纤维水泥基复合材料上覆沥青层复合式路面道路
Wang et al. Road use and electrothermal performance of graphene-conductive asphalt-recycled pervious concrete under severe cold environment
CN109437676A (zh) Sbr高模量复合改性沥青混合料及其制备方法和路面结构
CN103496888A (zh) 一种具有路面降温功能的改性沥青混凝土
CN110272230B (zh) 一种高性能稀浆封层沥青混合料及其制备方法
Chen et al. Adhesion of Nano-ZnO Modified Asphalt and Its Influence on Moisture-Sensitive Properties of Mixtures
CN115043613B (zh) 一种纤维筋-地聚合物乳化沥青路面坑槽修补材料及其制备方法
CN110436827A (zh) 利用沥青路面面层铣刨料再生制备预制人行步道砖的方法
WO2023245764A1 (zh) 冷拌树脂、混合料及制备方法、超薄层路面及铺装方法
CN113831069B (zh) 一种可常温施工的路面自密实快速修补材料及其制备方法与施工工艺
CN116444203B (zh) 一种用于路面降温隔热的钢渣基超薄磨耗层材料及其制备方法和应用
Liu et al. Influence of the composite interface on the mechanical properties of semi-flexible pavement materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844928

Country of ref document: EP

Kind code of ref document: A1