WO2024021232A1 - 废旧锂离子电池水下破碎回收电解液的方法 - Google Patents

废旧锂离子电池水下破碎回收电解液的方法 Download PDF

Info

Publication number
WO2024021232A1
WO2024021232A1 PCT/CN2022/117481 CN2022117481W WO2024021232A1 WO 2024021232 A1 WO2024021232 A1 WO 2024021232A1 CN 2022117481 W CN2022117481 W CN 2022117481W WO 2024021232 A1 WO2024021232 A1 WO 2024021232A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium chloride
crusher
crushing
solution
electrolyte
Prior art date
Application number
PCT/CN2022/117481
Other languages
English (en)
French (fr)
Inventor
余海军
王涛
李爱霞
谢英豪
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024021232A1 publication Critical patent/WO2024021232A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of lithium-ion battery recycling, and specifically relates to a method for underwater crushing of waste lithium-ion batteries to recover electrolyte.
  • Lithium-ion batteries have the advantages of high energy density, no memory effect and excellent electrical performance, and have been widely used in electronic products, new energy vehicles, energy storage and other fields.
  • the service life of lithium-ion batteries is generally 3 to 8 years.
  • lithium-ion batteries are gradually entering a period of large-scale retirement, and the issue of recycling and disposal of lithium-ion batteries is imminent.
  • China's waste lithium-ion battery recycling methods mainly include processes such as dismantling, crushing, sorting, and element extraction to achieve the recovery and reuse of valuable resources such as nickel, cobalt, manganese, and lithium.
  • the used lithium-ion batteries must first be safely crushed or safely discharged when charged.
  • the traditional salt water discharge process will produce chlorine, hydrogen, oxygen and other gases, which is not environmentally friendly and has certain safety issues; while physical discharge has low discharge efficiency and safety issues during the discharge process. Whether it is chemical discharge or physical discharge, they all face various problems. Therefore, in order to improve the processing efficiency of batteries, charged crushing is to meet the current rigid demand for large-scale processing of used batteries.
  • Cooling or isolation cannot completely achieve safe crushing; although underwater crushing can achieve safe crushing, the electrolyte leaks into the water, and the electrolyte has different properties for water, some are insoluble in water, and some are soluble in water, making it difficult to effectively separate. It also produces a large amount of organic wastewater that pollutes the environment and is difficult to treat.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a method for underwater crushing of waste lithium-ion batteries to recover electrolyte.
  • a method for underwater crushing of waste lithium-ion batteries to recover electrolyte which includes the following steps:
  • step S2 After the crushing of step S1 is completed, the obtained solid-liquid mixture is subjected to solid-liquid separation to obtain a filtrate;
  • step S1 the concentration of the calcium chloride solution is 0.1-1 mol/L, and the volume ratio of the calcium chloride solution and the organic solvent is (1-1.5):1.
  • the organic solvent is at least one of methanol, ethanol or acetone.
  • the organic solvent is a water-soluble organic solvent.
  • step S1 the added amount of the used lithium ion battery is 10-20% of the volume of the calcium chloride mixed solution.
  • step S1 the temperature inside the crusher is controlled by the following method: using a circulation pump to send the calcium chloride mixed solution from the upper part of the crusher into the condenser, and then through the crusher The lower part is returned to the crusher.
  • step S3 the temperature of the distillation is 50-85°C.
  • step S3 the volume content of the organic solvent in the distilled liquid is less than 5%.
  • step S3 the standing time is 0.5-1 h.
  • step S4 the volume ratio of the carbon tetrachloride and the lower water phase is (0.5-2):1.
  • step S4 the organic phase enters the distillation process for refining.
  • step S5 the separated calcium chloride solution is used for the preparation of the calcium chloride mixed solution described in step S1.
  • the present invention uses a calcium chloride mixed solution to crush used lithium-ion batteries underwater.
  • the calcium chloride solution has a good refrigeration effect and can absorb more heat, ensuring that the temperature inside the crusher will not rise sharply and avoid
  • the broken electrolyte of used lithium-ion batteries was dissolved, and the electrolyte salt lithium hexafluorophosphate reacted with calcium chloride to generate lithium salt, calcium phosphate, and calcium fluoride, and the electrolyte Due to their different water solubility, solvents such as carbonated lipids can be completely dissolved under the mixing of organic solvents and water, which is beneficial to the subsequent recovery of electrolyte.
  • Ethyl ester, etc. will precipitate, and then use the characteristic that the density of the calcium chloride solution is greater than the density of the electrolyte to separate the filtrate into layers, thereby separating the water-insoluble electrolyte; and then through extraction with carbon tetrachloride, the soluble in The water electrolyte is extracted into a carbon tetrachloride solution, and then sent to the distillation process for refining; the remaining raffinate contains a large amount of calcium chloride and lithium chloride, and the calcium and lithium are separated through a nanofiltration membrane to obtain lithium Salt, and the calcium chloride solution can be mixed with organic solvents and recirculated.
  • the present invention takes advantage of the different water solubility characteristics of the electrolyte solvent to separate the water-insoluble electrolyte and the water-soluble electrolyte for separate treatment, thereby reducing the pressure of subsequent unified distillation, and the distillation temperature is lower, reducing It prevents the hydrolysis of esters and improves the yield of electrolyte.
  • Figure 1 is a process flow diagram of Embodiment 1 of the present invention.
  • a method for underwater crushing of used lithium-ion batteries to recover electrolyte Refer to Figure 1. The specific process is:
  • Step 1 Mix 1 mol/L calcium chloride solution and methanol at a volume ratio of 1.5:1 to obtain a calcium chloride mixed solution;
  • Step 2 Add the calcium chloride mixed solution into the crusher.
  • the crusher is equipped with a holding box.
  • the holding box is equipped with crushing rollers running in opposite directions. The added amount of calcium chloride mixed solution must cover the crushing rollers and must not overflow containment tank;
  • Step 3 Start the crusher and circulation pump, and put the used lithium-ion batteries into the crusher.
  • the amount of used lithium-ion batteries added is 20% of the volume of the calcium chloride mixed solution in the container.
  • the used lithium-ion batteries are crushed by the crusher. After the roller is broken, it enters the bottom of the crusher.
  • the circulation pump sends the calcium chloride mixed solution from the upper part of the crusher to the condenser and then returns from the lower part of the crusher.
  • the temperature inside the crusher is always controlled to be below 40°C. During this process , no gas escapes;
  • Step 4 After the crushing in step 3 is completed, the solid-liquid mixture is obtained, and is discharged from the bottom of the crusher for pressure filtration. The obtained solid residue enters the pyrolysis system, and the filtrate enters the distillation process;
  • Step 5 Stir and distill the filtrate at 70°C until the methanol volume content is less than 5%, and separate methanol;
  • Step 6 Stop stirring and let it stand for 0.5h.
  • the filtrate is divided into two layers. After separation, the upper electrolyte and the lower aqueous phase are obtained;
  • Step 7 Use carbon tetrachloride to extract the lower aqueous phase according to the volume ratio of 1:1, let it stand, and separate to obtain the organic phase and raffinate.
  • the organic phase enters the distillation process;
  • Step 8 After extracting lithium and separating the raffinate obtained in step 7 through a nanofiltration membrane, a lithium salt solution and a calcium chloride solution are obtained.
  • the calcium chloride solution is mixed with the methanol obtained in step 5 and then the calcium chloride mixed solution is prepared again.
  • the total recovery rate of the electrolyte in this example reaches 91.2%.
  • a method for underwater crushing of waste lithium-ion batteries to recover electrolyte is:
  • Step 1 Mix 0.5 mol/L calcium chloride solution and ethanol at a volume ratio of 1.3:1 to obtain a calcium chloride mixed solution;
  • Step 2 Add the calcium chloride mixed solution into the crusher.
  • the crusher is equipped with a holding box.
  • the holding box is equipped with crushing rollers running in opposite directions. The added amount of calcium chloride mixed solution must cover the crushing rollers and must not overflow containment tank;
  • Step 3 Start the crusher and circulation pump, and put the used lithium-ion batteries into the crusher.
  • the amount of used lithium-ion batteries added is 15% of the volume of the calcium chloride mixed solution in the container.
  • the used lithium-ion batteries are crushed by the crusher. After the roller is broken, it enters the bottom of the crusher.
  • the circulation pump sends the calcium chloride mixed solution from the upper part of the crusher to the condenser and then returns from the lower part of the crusher.
  • the temperature inside the crusher is always controlled to be below 40°C. During this process , no gas escapes;
  • Step 4 After the crushing in step 3 is completed, the solid-liquid mixture is obtained, and is discharged from the bottom of the crusher for pressure filtration. The obtained solid residue enters the pyrolysis system, and the filtrate enters the distillation process;
  • Step 5 Stir and distill the filtrate at 80°C until the ethanol volume content is less than 5%, and separate ethanol;
  • Step 6 Stop stirring and let it stand for 0.8h.
  • the filtrate is divided into two layers. After separation, the upper electrolyte and the lower aqueous phase are obtained;
  • Step 7 Use carbon tetrachloride to extract the lower aqueous phase according to the volume ratio of 1:1, let it stand, and separate to obtain the organic phase and raffinate.
  • the organic phase enters the distillation process;
  • Step 8 After extracting lithium and separating the raffinate obtained in step 7 through a nanofiltration membrane, a lithium salt solution and a calcium chloride solution are obtained.
  • the calcium chloride solution is mixed with the organic solvent obtained in step 5 to prepare a new calcium chloride mixed solution. .
  • the total recovery rate of the electrolyte in this example reaches 90.4%.
  • a method for underwater crushing of waste lithium-ion batteries to recover electrolyte is:
  • Step 1 Mix 0.1 mol/L calcium chloride solution and acetone at a volume ratio of 1:1 to obtain a calcium chloride mixed solution;
  • Step 2 Add the calcium chloride mixed solution into the crusher.
  • the crusher is equipped with a holding box.
  • the holding box is equipped with crushing rollers running in opposite directions. The added amount of calcium chloride mixed solution must cover the crushing rollers and must not overflow containment tank;
  • Step 3 Start the crusher and circulation pump, and put the used lithium-ion batteries into the crusher.
  • the amount of used lithium-ion batteries added is 10% of the volume of the calcium chloride mixed solution in the container.
  • the used lithium-ion batteries are crushed by the crusher. After the roller is broken, it enters the bottom of the crusher.
  • the circulation pump sends the calcium chloride mixed solution from the upper part of the crusher to the condenser and then returns from the lower part of the crusher.
  • the temperature inside the crusher is always controlled to be below 40°C. During this process , no gas escapes;
  • Step 4 After the crushing in step 3 is completed, the solid-liquid mixture is obtained, and is discharged from the bottom of the crusher for pressure filtration. The obtained solid residue enters the pyrolysis system, and the filtrate enters the distillation process;
  • Step 5 Stir and distill the filtrate at 60°C until the acetone volume content is less than 5%, and separate acetone;
  • Step 6 Stop stirring and let it stand for 1 hour.
  • the filtrate is divided into two layers. After separation, the upper electrolyte and the lower aqueous phase are obtained;
  • Step 7 Use carbon tetrachloride to extract the lower aqueous phase according to the volume ratio of 1:1, let it stand, and separate to obtain the organic phase and raffinate.
  • the organic phase enters the distillation process;
  • Step 8 After lithium extraction and separation of the raffinate obtained in step 7 through a nanofiltration membrane, a lithium salt solution and a calcium chloride solution are obtained.
  • the calcium chloride solution is mixed with the organic solvent obtained in step 5 to prepare a new calcium chloride mixed solution. .
  • the total recovery rate of the electrolyte in this example reaches 89.3%.
  • a method for underwater crushing of waste lithium-ion batteries to recover electrolyte The difference from Example 1 is that the liquid used for crushing is water.
  • the specific process is:
  • Step 1 Add water to the crusher.
  • the crusher is equipped with a holding box.
  • the holding box is equipped with crushing rollers running in opposite directions. The amount of water added must cover the crushing rollers and must not overflow the holding box;
  • Step 2 Start the crusher and circulation pump, and put the used lithium-ion batteries into the crusher.
  • the amount of used lithium-ion batteries added is 20% of the volume of water in the container.
  • the used lithium-ion batteries are crushed by the crushing roller of the crusher. , enters the bottom of the crusher, the circulation pump sends water from the upper part of the crusher to the condenser, and then returns from the lower part of the crusher, and always controls the temperature in the crusher to be below 40°C. Gas escapes during this process, which is pentafluoride. phosphorus;
  • Step 3 After the crushing in Step 2 is completed, the solid-liquid mixture is obtained, and is discharged from the bottom of the crusher for pressure filtration. The obtained solid residue enters the pyrolysis system, and the filtrate enters the distillation process;
  • Step 4 Leave the filtrate to stand without stratification, and send it directly to the distillation process.
  • the liquid used for crushing in this comparative example is water.
  • phosphorus pentafluoride with a pungent odor will overflow.
  • the The filtrate cannot be separated into layers, and the filtrate cannot be graded. It can only be distilled uniformly, which increases the pressure of the distillation.
  • the total recovery rate of the electrolyte in this comparative example is only 70.6%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种废旧锂离子电池水下破碎回收电解液的方法,将氯化钙混合溶液和废旧锂离子电池加入到破碎机中进行液下破碎,将破碎后滤液进行蒸馏,蒸馏后液分层得到电解液和水相,用四氯化碳对水相进行萃取,萃余液经纳滤膜分离,得到锂盐溶液和氯化钙溶液。本发明利用氯化钙混合溶液能保证温度不会急剧升高,降低安全隐患,且电解液能够完全溶解,再利用电解液水溶性不同的特点,分离出不溶于水和可溶于水的电解液分别处理,减轻后续精馏的压力。

Description

废旧锂离子电池水下破碎回收电解液的方法 技术领域
本发明属于锂离子电池回收技术领域,具体涉及一种废旧锂离子电池水下破碎回收电解液的方法。
背景技术
锂离子电池具备能量密度高、无记忆效应且电性能优异等优点,已广泛应用于电子产品、新能源汽车、储能等领域。锂离子电池使用寿命一般为3~8年,目前锂离子电池正逐步进入规模化退役期,锂离子电池回收处理问题迫在眉睫。
目前中国废旧锂离子电池回收方法主要是拆解、破碎、分选和元素提炼等工艺流程,实现镍、钴、锰、锂等有价资源的回收再利用。在这些工序中,首先要对废旧锂离子电池进行带电安全破碎或安全放电。而传统的盐水放电工艺,会产生氯气或者氢气、氧气等气体,既不环保,也存在一定的安全性问题;而物理放电,则存在放电效率低,还有放电过程中的安全性问题。无论是化学放电还是物理放电,都面临各种各样的问题,因此,为了提高电池的处理效率,带电破碎是满足当前大批量处理废旧电池的刚性需求。
然而,带电安全破碎目前还处于研究阶段,目前的工艺中带电破碎中,电池受挤压、剪切等物理过程,导致电池中正负极片短路,电池中残余的电量会急速释放,导致破碎过程中发生放热、起火、爆炸等现象,影响了破碎过程的安全性。
若直接破碎,电池内的电解液流出,不仅污染环境,接触到皮肤后,还可能对皮肤造成伤害,在放电不完全的情况下,直接破碎更是容易起火、爆炸,安全风险较大。现有技术,已公开的液氮冷冻破碎虽然可以降低破碎过程的危险系数,但是负极嵌锂的存在使破碎后的物料依然存在燃爆风险;注入惰性气体虽然隔绝空气但是不能将发热的电池料降温或隔离,不能完全实现安全破碎;水下破碎虽然能实现安全破碎但电解液泄露到水中,且电解液对于水的性质不同,有的不溶于水,有的溶于水,难以有效分离,且产生大量有机废水污染环境,处理困难。
因此,亟需一种能够在水下破碎的同时回收处理电解液的方法,实现安全破碎以及资源的高效利用。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种废旧锂离子电池水下破碎回收电解液的方法。
根据本发明的一个方面,提出了一种废旧锂离子电池水下破碎回收电解液的方法,包括以下步骤:
S1:将氯化钙混合溶液和废旧锂离子电池加入到破碎机中进行液下破碎,期间控制所述破碎机内的温度在40℃以下;其中所述氯化钙混合溶液为氯化钙溶液与有机溶剂的混合溶液;
S2:步骤S1破碎完成后,将得到的固液混合物进行固液分离,得到滤液;
S3:将所述滤液进行蒸馏以分离出所述有机溶剂,得到蒸馏后液,所述蒸馏后液静置分层,得到上层电解液和下层水相;
S4:用四氯化碳对所述下层水相进行萃取,分离得到有机相和萃余液;
S5:所述萃余液经纳滤膜提锂分离后,得到锂盐溶液和氯化钙溶液。
在本发明的一些实施方式中,步骤S1中,所述氯化钙溶液的浓度为0.1-1mol/L,所述氯化钙溶液和有机溶剂的体积比为(1-1.5):1。
在本发明的一些实施方式中,步骤S1中,所述有机溶剂为甲醇、乙醇或丙酮中的至少一种。所述有机溶剂为水溶性有机溶剂。
在本发明的一些实施方式中,步骤S1中,所述废旧锂离子电池的加入量为所述氯化钙混合溶液体积的10-20%。
在本发明的一些实施方式中,步骤S1中,所述破碎机内的温度通过以下方法控制:利用循环泵从所述破碎机的上部将氯化钙混合溶液送入冷凝器,再由破碎机的下部返回至破碎机内。
在本发明的一些实施方式中,步骤S3中,所述蒸馏的温度为50-85℃。
在本发明的一些实施方式中,步骤S3中,所述蒸馏后液中所述有机溶剂的体积含量低于5%。
在本发明的一些实施方式中,步骤S3中,所述静置的时间为0.5-1h。
在本发明的一些实施方式中,步骤S4中,所述四氯化碳和下层水相的体积比为(0.5-2):1。
在本发明的一些实施方式中,步骤S4中,所述有机相进入精馏工序提炼。
在本发明的一些实施方式中,步骤S5中,分离得到的氯化钙溶液用于步骤S1所述氯化钙混合溶液的配制。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明利用氯化钙混合溶液对废旧锂离子电池进行液下破碎,一方面,氯化钙溶液的制冷效果好,能够吸收更多热量,保证破碎机内温度不会急剧升高,避免了安全隐患;另一方面,针对废旧锂离子电池破碎后的电解液进行了溶解,其中的电解质盐六氟磷锂与氯化钙反应,生成锂盐和磷酸钙、氟化钙,而电解液溶剂碳酸脂类等由于水溶性的不同,在有机溶剂和水的混合作用下,能够完全溶解,利于后续电解液的回收。
2、破碎结束后进行固液分离,对其中的有价物质和元素进行回收,通过蒸馏,将其中低沸点的有机溶剂提出,而不溶于水的电解液(如:碳酸二乙酯、碳酸甲乙酯等)则会析出,再利用氯化钙溶液密度大于电解液密度的特点,使滤液分层,从而分离出不溶于水的电解液;再经过四氯化碳的萃取,将可溶于水的电解液萃取至四氯化碳溶液中,后续送往精馏工序提炼;而留下的萃余液包含大量的氯化钙和氯化锂,经纳滤膜将钙锂分离,得到锂盐,而氯化钙溶液可与有机溶剂配液后重新循环使用。
3、本发明利用电解液溶剂水溶性不同的特点,分离出不溶于水的电解液和可溶于水的电解液分别处理,减轻了后续统一精馏的压力,且蒸馏的温度较低,减少了酯类的水解,提高了电解液的收率。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种废旧锂离子电池水下破碎回收电解液的方法,参照图1,具体过程为:
步骤1,将1mol/L的氯化钙溶液与甲醇按照体积比1.5:1混合,得到氯化钙混合溶液;
步骤2,将氯化钙混合溶液加入到破碎机中,破碎机设有容纳箱,容纳箱内设有相向运转的破碎滚轴,氯化钙混合溶液加入量需漫过破碎滚轴,并不得溢出容纳箱;
步骤3,启动破碎机、循环泵,并向破碎机中投入废旧锂离子电池,废旧锂离子电池加入量为容纳箱中氯化钙混合溶液体积的20%,废旧锂离子电池经破碎机的破碎滚轴破碎后,进入破碎机底部,循环泵由破碎机上部将氯化钙混合溶液送入冷凝器后,由破碎机下部返回,并始终控制破碎机内的温度为40℃以下,该过程中,无气体逸出;
步骤4,步骤3破碎完成后,得到固液混合物,并由破碎机底部出料进行压滤,得到的固体渣进入热解系统,滤液进入蒸馏工序;
步骤5,将滤液在70℃下进行搅拌蒸馏,直至甲醇体积含量低于5%,分离出甲醇;
步骤6,停止搅拌,静置0.5h,滤液分为两层,分离后,得到上层电解液和下层水相;
步骤7,按照体积比1:1,使用四氯化碳对下层水相进行萃取,静置,分离得到有机相和萃余液,有机相进入精馏工序;
步骤8,将步骤7得到的萃余液经纳滤膜提锂分离后,得到锂盐溶液和氯化钙溶液,氯化钙溶液与步骤5得到的甲醇混合后重新配制氯化钙混合溶液。本实施例电解液的总 回收率达到91.2%。
实施例2
一种废旧锂离子电池水下破碎回收电解液的方法,具体过程为:
步骤1,将0.5mol/L的氯化钙溶液与乙醇按照体积比1.3:1混合,得到氯化钙混合溶液;
步骤2,将氯化钙混合溶液加入到破碎机中,破碎机设有容纳箱,容纳箱内设有相向运转的破碎滚轴,氯化钙混合溶液加入量需漫过破碎滚轴,并不得溢出容纳箱;
步骤3,启动破碎机、循环泵,并向破碎机中投入废旧锂离子电池,废旧锂离子电池加入量为容纳箱中氯化钙混合溶液体积的15%,废旧锂离子电池经破碎机的破碎滚轴破碎后,进入破碎机底部,循环泵由破碎机上部将氯化钙混合溶液送入冷凝器后,由破碎机下部返回,并始终控制破碎机内的温度为40℃以下,该过程中,无气体逸出;
步骤4,步骤3破碎完成后,得到固液混合物,并由破碎机底部出料进行压滤,得到的固体渣进入热解系统,滤液进入蒸馏工序;
步骤5,将滤液在80℃下进行搅拌蒸馏,直至乙醇体积含量低于5%,分离出乙醇;
步骤6,停止搅拌,静置0.8h,滤液分为两层,分离后,得到上层电解液和下层水相;
步骤7,按照体积比1:1,使用四氯化碳对下层水相进行萃取,静置,分离得到有机相和萃余液,有机相进入精馏工序;
步骤8,将步骤7得到的萃余液经纳滤膜提锂分离后,得到锂盐溶液和氯化钙溶液,氯化钙溶液与步骤5得到的有机溶剂混合后重新配制氯化钙混合溶液。本实施例电解液的总回收率达到90.4%。
实施例3
一种废旧锂离子电池水下破碎回收电解液的方法,具体过程为:
步骤1,将0.1mol/L的氯化钙溶液与丙酮按照体积比1:1混合,得到氯化钙混合溶液;
步骤2,将氯化钙混合溶液加入到破碎机中,破碎机设有容纳箱,容纳箱内设有相向运转的破碎滚轴,氯化钙混合溶液加入量需漫过破碎滚轴,并不得溢出容纳箱;
步骤3,启动破碎机、循环泵,并向破碎机中投入废旧锂离子电池,废旧锂离子电池加入量为容纳箱中氯化钙混合溶液体积的10%,废旧锂离子电池经破碎机的破碎滚轴破碎后,进入破碎机底部,循环泵由破碎机上部将氯化钙混合溶液送入冷凝器后,由破碎机下部返回,并始终控制破碎机内的温度为40℃以下,该过程中,无气体逸出;
步骤4,步骤3破碎完成后,得到固液混合物,并由破碎机底部出料进行压滤,得到的固体渣进入热解系统,滤液进入蒸馏工序;
步骤5,将滤液在60℃下进行搅拌蒸馏,直至丙酮体积含量低于5%,分离出丙酮;
步骤6,停止搅拌,静置1h,滤液分为两层,分离后,得到上层电解液和下层水相;
步骤7,按照体积比1:1,使用四氯化碳对下层水相进行萃取,静置,分离得到有机相和萃余液,有机相进入精馏工序;
步骤8,将步骤7得到的萃余液经纳滤膜提锂分离后,得到锂盐溶液和氯化钙溶液,氯化钙溶液与步骤5得到的有机溶剂混合后重新配制氯化钙混合溶液。本实施例电解液的总回收率达到89.3%。
对比例1
一种废旧锂离子电池水下破碎回收电解液的方法,与实施例1的区别在于,破碎所用液体为水,具体过程为:
步骤1,将水加入到破碎机中,破碎机设有容纳箱,容纳箱内设有相向运转的破碎滚轴,水的加入量需漫过破碎滚轴,并不得溢出容纳箱;
步骤2,启动破碎机、循环泵,并向破碎机中投入废旧锂离子电池,废旧锂离子电池加入量为容纳箱中水体积的20%,废旧锂离子电池经破碎机的破碎滚轴破碎后,进入破碎机底部,循环泵由破碎机上部将水送入冷凝器后,由破碎机下部返回,并始终控制破碎机内的温度为40℃以下,此过程有气体逸出,为五氟化磷;
步骤3,步骤2破碎完成后,得到固液混合物,并由破碎机底部出料进行压滤,得 到的固体渣进入热解系统,滤液进入蒸馏工序;
步骤4,将滤液静置,无分层现象,直接送入精馏工序。
本对比例破碎所用液体为水,破碎过程会溢出具有刺激性恶臭味的五氟化磷,并且由于水和电解液经过了破碎阶段的强力混合,加上碳酸酯与水的密度接近,使得滤液无法分层,无法对滤液进行分级处理,只能统一精馏,增加了精馏的压力。本对比例电解液的总回收率仅70.6%,造成电解液损失的主要原因是:(1)破碎时水对一些水不溶性的电解液溶解不够,少量电解液仍残留在固体渣中;(2)滤液直接进入精馏工序,精馏过程易造成电解液的水解。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种废旧锂离子电池水下破碎回收电解液的方法,其特征在于,包括以下步骤:
    S1:将氯化钙混合溶液和废旧锂离子电池加入到破碎机中进行液下破碎,期间控制所述破碎机内的温度在40℃以下;其中所述氯化钙混合溶液为氯化钙溶液与有机溶剂的混合溶液;
    S2:步骤S1破碎完成后,将得到的固液混合物进行固液分离,得到滤液;
    S3:将所述滤液进行蒸馏以分离出所述有机溶剂,得到蒸馏后液,所述蒸馏后液静置分层,得到上层电解液和下层水相;
    S4:用四氯化碳对所述下层水相进行萃取,分离得到有机相和萃余液;
    S5:所述萃余液经纳滤膜提锂分离后,得到锂盐溶液和氯化钙溶液。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述氯化钙溶液的浓度为0.1-1mol/L,所述氯化钙溶液和有机溶剂的体积比为(1-1.5):1。
  3. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述有机溶剂为甲醇、乙醇或丙酮中的至少一种。
  4. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述废旧锂离子电池的加入量为所述氯化钙混合溶液体积的10-20%。
  5. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述破碎机内的温度通过以下方法控制:利用循环泵从所述破碎机的上部将氯化钙混合溶液送入冷凝器,再由破碎机的下部返回至破碎机内。
  6. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述蒸馏的温度为50-85℃。
  7. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述蒸馏后液中所述有机溶剂的体积含量低于5%。
  8. 根据权利要求1所述的方法,其特征在于,步骤S4中,所述四氯化碳和下层水相的体积比为(0.5-2):1。
  9. 根据权利要求1所述的方法,其特征在于,步骤S4中,所述有机相进入精馏工 序提炼。
  10. 根据权利要求1所述的方法,其特征在于,步骤S5中,分离得到的氯化钙溶液用于步骤S1所述氯化钙混合溶液的配制。
PCT/CN2022/117481 2022-07-28 2022-09-07 废旧锂离子电池水下破碎回收电解液的方法 WO2024021232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210898701.6 2022-07-28
CN202210898701.6A CN115332659A (zh) 2022-07-28 2022-07-28 废旧锂离子电池水下破碎回收电解液的方法

Publications (1)

Publication Number Publication Date
WO2024021232A1 true WO2024021232A1 (zh) 2024-02-01

Family

ID=83920579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117481 WO2024021232A1 (zh) 2022-07-28 2022-09-07 废旧锂离子电池水下破碎回收电解液的方法

Country Status (2)

Country Link
CN (1) CN115332659A (zh)
WO (1) WO2024021232A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116544546B (zh) * 2023-07-06 2023-12-05 深圳市杰成镍钴新能源科技有限公司 一种回收废旧锂电池材料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106823816A (zh) * 2016-12-19 2017-06-13 天齐锂业股份有限公司 废旧锂电池正极材料中锂的电化学回收方法
CN110289457A (zh) * 2019-06-24 2019-09-27 中国科学院过程工程研究所 一种绿色废旧锂离子电池电解液回收系统及方法
CN110945711A (zh) * 2017-05-30 2020-03-31 锂电池循环有限公司 从电池回收材料的处理方法、设备及系统
CN111924816A (zh) * 2020-07-02 2020-11-13 曲靖市华祥科技有限公司 一种废旧锂离子电池电解液的回收方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106823816A (zh) * 2016-12-19 2017-06-13 天齐锂业股份有限公司 废旧锂电池正极材料中锂的电化学回收方法
CN110945711A (zh) * 2017-05-30 2020-03-31 锂电池循环有限公司 从电池回收材料的处理方法、设备及系统
CN110289457A (zh) * 2019-06-24 2019-09-27 中国科学院过程工程研究所 一种绿色废旧锂离子电池电解液回收系统及方法
CN111924816A (zh) * 2020-07-02 2020-11-13 曲靖市华祥科技有限公司 一种废旧锂离子电池电解液的回收方法

Also Published As

Publication number Publication date
CN115332659A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN109536713B (zh) 一种利用离子液体分离废旧锂离子电池正极活性物质与铝箔的方法
CN108281729A (zh) 一种废旧锂离子电池电解液回收工艺
CN103825064A (zh) 一种废旧动力磷酸铁锂电池环保回收示范工艺方法
CN107275700A (zh) 一种基于湿式破碎的废旧锂离子电池回收处理方法
CN106654437B (zh) 从含锂电池中回收锂的方法
CN108285977A (zh) 一种废旧锂离子电池正极材料回收的方法
CN104903475B (zh) 从旧原电池的含有磷酸铁锂的级分中湿法冶金回收锂的方法
CN111003736B (zh) 锂离子电池电解液综合处理方法
CN110620277A (zh) 一种从废弃锂离子电池正极材料中分离回收有价金属的方法
CN106252777A (zh) 一种锂离子电池电解液的回收方法
CN112510280B (zh) 一种基于动力电池箔片中特征元散列的物理方法
WO2024021232A1 (zh) 废旧锂离子电池水下破碎回收电解液的方法
CN109167118A (zh) 磷酸铁锂电池电极材料的综合利用方法
CN112742843A (zh) 一种浮选加固相烧结回收再利用废旧锰酸锂电池的方法
WO2024055518A1 (zh) 一种从锂离子电池电解液中回收锂的方法
WO2023098167A1 (zh) 废旧钴酸锂电池的回收方法
CN106803596A (zh) 一种回收废旧燃料电池中铂的方法
CN109777957A (zh) 一种适用于废弃锂电池材料浸取分离的溶剂组合物及浸取分离方法
CN115295911A (zh) 一种三元正极废浆料综合回收的方法
CN102005625A (zh) 一种废旧锂电池处理的工艺方法
CN104577248A (zh) 一种锂电池正极材料回收方法
CN114914568A (zh) 一种超临界二氧化碳体系下的锂电池预处理装置及方法
CN111416169A (zh) 一种废旧动力锂电池带电破碎及电解液回收的装置
CN109360996A (zh) 一种废旧锂离子电池电解液资源化回收的方法
CN111416168A (zh) 一种废旧动力锂电池电解液回收再生的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952673

Country of ref document: EP

Kind code of ref document: A1