WO2024021030A1 - 一种控制方法、控制装置和车辆 - Google Patents

一种控制方法、控制装置和车辆 Download PDF

Info

Publication number
WO2024021030A1
WO2024021030A1 PCT/CN2022/109002 CN2022109002W WO2024021030A1 WO 2024021030 A1 WO2024021030 A1 WO 2024021030A1 CN 2022109002 W CN2022109002 W CN 2022109002W WO 2024021030 A1 WO2024021030 A1 WO 2024021030A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
mode
vehicle
control valve
control
Prior art date
Application number
PCT/CN2022/109002
Other languages
English (en)
French (fr)
Inventor
张宇
张永生
刘栋豪
靳彪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/109002 priority Critical patent/WO2024021030A1/zh
Publication of WO2024021030A1 publication Critical patent/WO2024021030A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/80Special adaptations for executing a specific game genre or game mode
    • A63F13/803Driving vehicles or craft, e.g. cars, airplanes, ships, robots or tanks

Definitions

  • the embodiments of the present application relate to the field of smart vehicles, and more specifically, to a control method, a control device and a vehicle.
  • Embodiments of the present application provide a control method, control device and vehicle to protect the power-assisted mechanism and extend the service life of the power-assisted mechanism.
  • the vehicle in this application is a vehicle in a broad sense, which can be a means of transportation (such as commercial vehicles, passenger cars, motorcycles, flying cars, trains, etc.), industrial vehicles (such as forklifts, trailers, tractors, etc.), engineering vehicles Vehicles (such as excavators, bulldozers, cranes, etc.), agricultural equipment (such as lawn mowers, harvesters, etc.), amusement equipment, toy vehicles, etc.
  • the embodiments of this application do not specifically limit the types of vehicles.
  • a control method may include: obtaining indication information, which may be used to indicate a manipulation mode; determining the manipulation mode according to the indication information, and the manipulation mode may include the first mode, or A second mode, wherein when operating through the first mode, the power assist mechanism of the vehicle is controlled in response to first operating information, the first operating information is used to instruct braking or steering of the vehicle, or when operating through the second mode, controlling The vehicle's power assist mechanism does not respond to the first operating message.
  • the manipulation mode includes the first mode or the second mode
  • the power-assisted mechanism of the vehicle may not respond to the first operation information, thereby reducing the actuation time of the power-assisted mechanism. , times, which can not only meet the user's needs, but also increase the service life of the assist mechanism.
  • the vehicle includes a braking system
  • the braking system may include a first boosting device, the first boosting device being used to adjust the brake in the first brake line.
  • Hydraulic pressure is used to control the braking force exerted on the wheels of the vehicle
  • the first operation information is used to indicate braking of the vehicle
  • the power assist mechanism of the vehicle is controlled not to
  • the method includes: controlling the first supercharging device to close or not act when operating in the second mode.
  • the working time and frequency of the first supercharging device can be reduced, which helps to increase the service life of the first supercharging device.
  • the braking system includes a first control valve, and when the first control valve is in a conductive state, the first boosting device and the first brake pipeline connected, or, when the first control valve is in a disconnected state, the first boosting device is disconnected from the first brake pipeline, and when operating through the second mode, the power assist mechanism of the vehicle is controlled. Not responding to the first operation information may include: controlling the first control valve to be in a disconnected state when operating in the second mode.
  • the working time and frequency of the first control valve can be reduced, which helps to increase the service life of the first control valve.
  • the braking system further includes a brake master cylinder, a second control valve, a pedal feel simulation device and a third control valve, wherein the second control valve is in In the conductive state, the brake master cylinder is connected to the first brake pipeline and is used to control the braking force applied to the wheels of the vehicle by adjusting the pressure of the brake fluid in the first brake pipeline.
  • the second brake pipeline of the pedal feeling simulation device is connected to determine the pedal feeling by sensing the pressure of the brake fluid in the second brake pipeline.
  • the second control valve is located at On the brake pipeline between the pressure outlet port of the brake master cylinder and the pressure inlet port of the first brake pipeline, the second brake pipeline includes the pressure outlet port of the brake master cylinder and the pressure inlet port of the second control valve.
  • the third control valve is located on the brake pipeline between the pressure outlet port of the second brake pipeline and the pressure inlet port of the pedal feeling simulation device.
  • the control method may also include: passing through the third brake pipeline.
  • the pedal feeling simulation device can provide pedal feeling to the user. For example, in a scenario where the user controls a game application through the brake pedal of the vehicle, it can provide the user with a better gaming experience.
  • control method may further include: when operating in the second mode, controlling the second control valve to be in a conductive state, and controlling the third control valve to be in an off state. open state.
  • the connection between the pedal feel simulation device and the second brake pipeline can be disconnected, so that the pedal feel simulation device does not respond to the user's input to the brake pedal. operation, thereby protecting the pedal feel simulator and helping to extend the service life of the pedal feel simulator.
  • the vehicle includes a braking system
  • the braking system includes an in-wheel motor
  • the in-wheel motor is used to adjust the braking force applied to the wheels of the vehicle
  • the first The operation information is used to indicate braking of the vehicle
  • controlling the power assist mechanism of the vehicle not to respond to the first operation information when operating in the second mode may include: controlling the vehicle when operating in the second mode.
  • the hub motor is off or inactive.
  • braking systems and vehicles using wheel hub motors can control the wheel hub motor to close or not act, so that the wheel hub motor does not respond to the user's input to a control device such as the brake pedal, thereby improving the performance of the wheel hub motor. service life.
  • the vehicle includes a steering drive device and a transmission member
  • the transmission member is used to convert the obtained power to apply a steering force to the wheels of the vehicle
  • the steering member The driving device is used to provide power to the transmission member
  • the first operation information is used to indicate steering of the vehicle, and when operating through the second mode, the power assist mechanism of the vehicle is controlled not to respond to the first operation information, It may include: controlling the steering drive device to turn off or not act when operating through the second mode.
  • the power assist mechanism of the steering system when operating in the second mode, by controlling the steering drive device to be closed or inactive, the power assist mechanism of the steering system does not need to respond to the user's manipulation, and the service life of the steering drive device can also be extended.
  • the manipulation mode is the second mode
  • the control method may further include: obtaining the first operation information; and determining an expected action according to the first operation information.
  • the power-assist mechanism when operating in the second mode, although the power-assist mechanism may not respond to the user's manipulation of the braking system and the steering system, some devices in the braking system and the steering system may respond based on the user's manipulation. Actuation, therefore, by determining the expected actuation information, the difference in the number of operations of the actuated part and the non-actuated part in the above system can be determined, which is beneficial to determine the remaining working life of each device respectively, and is beneficial to the work of each device. Life management is beneficial to remind users when the working life of each device expires.
  • control method may further include: obtaining vehicle status information and/or surrounding environment information; determining the vehicle status information and /or the surrounding environment information meets the preset conditions.
  • the power-assist mechanism may not respond to the user's manipulation when operating in the second mode, therefore, before determining the manipulation mode as the second mode, by determining the vehicle status information and/or the surrounding environment information, It can be ensured that when the control mode is determined as the second mode, the vehicle is in a safe environment and state, which is conducive to ensuring the safety of the user and the vehicle.
  • the vehicle includes a game application
  • obtaining the indication information may include: obtaining the indication information when it is determined that the game application is in a running state.
  • a control device may include an acquisition unit, which may be used to acquire indication information, and the indication information may be used to indicate a manipulation mode; and the processing unit, which may be used to determine the manipulation mode according to the indication information.
  • the manipulation mode may include a first mode or a second mode, wherein when operating through the first mode, the power-assisted mechanism of the vehicle is controlled to respond to the first operating information, the first operating information is used to indicate braking or steering of the vehicle, Or when operating through the second mode, the power-assisted mechanism controlling the vehicle does not respond to the first operation information.
  • the vehicle includes a braking system
  • the braking system may include a first boosting device, the first boosting device being used to adjust the brake in the first brake line. Hydraulic pressure is used to control the braking force applied to the wheels of the vehicle.
  • the first operation information is used to indicate braking of the vehicle.
  • the processing unit may specifically be used to control the third operation when operating in the second mode. A booster device is turned off or does not operate.
  • the braking system includes a first control valve.
  • the first control valve When the first control valve is in a conductive state, the first boosting device and the first brake pipeline communicate, or when the first control valve is in a disconnected state, the first supercharging device is disconnected from the first brake pipeline, and the processing unit may specifically be used to control when operating in the second mode.
  • the first control valve is in the open state.
  • the braking system further includes a brake master cylinder, a second control valve, a pedal feel simulation device and a third control valve, wherein the second control valve is in In the conductive state, the brake master cylinder is connected to the first brake pipeline and is used to control the braking force applied to the wheels of the vehicle by adjusting the pressure of the brake fluid in the first brake pipeline.
  • the second brake pipeline of the pedal feeling simulation device is connected to determine the pedal feeling by sensing the pressure of the brake fluid in the second brake pipeline.
  • the second control valve is located at On the brake pipeline between the pressure outlet port of the brake master cylinder and the pressure inlet port of the first brake pipeline, the second brake pipeline includes the pressure outlet port of the brake master cylinder and the pressure inlet port of the second control valve.
  • the third control valve is located on the brake pipeline between the pressure outlet port of the second brake pipeline and the pressure inlet port of the pedal feel simulation device.
  • the processing unit can also be used to pass the When operating in the second mode, the second control valve is controlled to be in a disconnected state, and the third control valve is controlled to be in a conductive state.
  • the processing unit may also be configured to control the second control valve to be in a conductive state and control the third control valve when operating in the second mode. is in disconnected state.
  • the vehicle includes a braking system
  • the braking system includes a hub motor
  • the hub motor is used to adjust the braking force applied to the wheels of the vehicle
  • the first The operation information is used to indicate braking of the vehicle
  • the processing unit may be specifically configured to control the wheel hub motor to turn off or not act when operating in the second mode.
  • the vehicle includes a steering drive device and a transmission member
  • the transmission member is used to convert the obtained power to apply a steering force to the wheels of the vehicle
  • the steering member The driving device is used to provide power to the transmission member
  • the first operation information is used to indicate steering of the vehicle.
  • the processing unit can specifically be used to control the steering driving device to turn off or not to operate when working in the second mode. move.
  • the acquisition unit may also be used to obtain the first operation information
  • the processing unit may also be used to determine an expected action based on the first operation information. information.
  • the acquisition unit before determining that the manipulation mode is the second mode, may also be used to acquire vehicle status information and/or surrounding environment information, and the processing unit may also It can be used to determine that the vehicle status information and/or surrounding environment information meet preset conditions.
  • the vehicle includes a game application
  • the processing unit may also be configured to obtain the indication information when it is determined that the game application is in a running state.
  • a braking system in a third aspect, includes a brake boosting mechanism and a control device.
  • the control device is used to obtain indication information.
  • the indication information is used to indicate a manipulation mode; based on the indication information, it is determined that the The operation mode includes a first mode, or a second mode, wherein when working through the first mode, the brake boosting mechanism is controlled to respond to first operation information, the first operation information is used to indicate the vehicle braking; or, when operating through the second mode, controlling the brake boosting mechanism not to respond to the first operation information.
  • the brake boosting mechanism includes a first boosting device, the first boosting device is used to adjust the amount of brake fluid in the first brake pipeline. pressure to control the braking force exerted on the wheels of the vehicle, and the control device is specifically used to: control the first boosting device to close or not act when operating through the second mode.
  • the braking system includes a first control valve, and when the first control valve is in a conductive state, the first boosting device and the first brake The pipelines are connected, or when the first control valve is in a disconnected state, the control device can be specifically used to: control the first control valve to be in a disconnected state when operating in the second mode.
  • the braking system further includes a brake master cylinder, a second control valve, a pedal feel simulation device and a third control valve, wherein the second control valve is in In the conductive state, the brake master cylinder communicates with the first brake pipeline and is used to control the brake force applied to the wheels of the vehicle by adjusting the pressure of the brake fluid in the first brake pipeline.
  • the pedal feeling simulation device is communicated with the second brake pipeline, and is used to determine the pedal feeling by sensing the pressure of the brake fluid in the second brake pipeline.
  • the second control valve is located on the brake pipeline between the pressure outlet port of the brake master cylinder and the pressure inlet port of the first brake pipeline.
  • the second brake pipeline includes the pressure outlet port of the brake master cylinder.
  • the brake pipe between the port and the pressure inlet port of the second control valve, the third control valve is located in the brake pipe between the pressure outlet port of the second brake pipe and the pressure inlet port of the pedal feel simulation device
  • the control device can also be used to: when operating in the second mode, control the second control valve to be in a disconnected state, and control the third control valve to be in a conductive state.
  • control device can also be used to: when operating in the second mode, control the second control valve to be in the conduction state, and control the third control valve to be in the conduction state. disconnected state.
  • the brake assist mechanism includes a hub motor, the hub motor is used to adjust the braking force applied to the wheels of the vehicle, and the first operation information is used to indicate the braking force applied to the wheels of the vehicle.
  • the vehicle brakes and the control device can be specifically used to control the wheel hub motor to turn off or not act when operating in the second mode.
  • control device may also be configured to: determine expected action information based on the first operation information, wherein the expected action information includes, in response to the The first operation information is the number of times the brake booster mechanism is expected to act.
  • control device before determining that the manipulation mode is the second mode, can also be used to: obtain vehicle status information and/or surrounding environment information; determine that the vehicle The status information and/or the surrounding environment information satisfy preset conditions.
  • a steering system in a fourth aspect, includes a steering assist mechanism and a control device.
  • the control device can be used to: obtain indication information, the indication information being used to indicate a manipulation mode; and determine the manipulation based on the indication information.
  • the steering mode includes a first mode, or a second mode, wherein, when working through the first mode, the steering assist mechanism is controlled to respond to first operation information, the first operation information is used to indicate steering of the vehicle. ; Or, when operating through the second mode, the steering assist mechanism is controlled not to respond to the first operation information.
  • the steering system includes a transmission member
  • the steering assist mechanism includes a steering drive device
  • the transmission member is used to convert the obtained power to the wheels of the vehicle.
  • the steering drive device is used to provide power to the transmission member.
  • the control device can specifically be used to control the steering drive device to turn off or not act when operating in the second mode.
  • control device may also be configured to: determine expected action information based on the first operation information, wherein the expected action information includes, in response to the The first operation information is the number of times the brake booster mechanism is expected to act.
  • control device before determining that the manipulation mode is the second mode, may also be used to: obtain vehicle status information and/or surrounding environment information; determine that the vehicle The status information and/or the surrounding environment information satisfy preset conditions.
  • a control device may include: a processing unit and a storage unit, wherein the storage unit is used to store instructions, and the processing unit is used to execute the instructions stored in the storage unit, so that the control device executes the above-mentioned instructions.
  • the above-mentioned control device may be an independent controller in the vehicle, or may be a chip with a control function in the vehicle.
  • the above-mentioned processing unit may be a processor
  • the above-mentioned storage unit may be a memory, wherein the memory may be a storage unit within a chip (for example, a register, a cache, etc.), or may be a storage unit located outside the above-mentioned chip in the vehicle (for example, a read-only memory, random access memory, etc.).
  • the memory in the above control device may be coupled with the processor.
  • the memory is coupled to the processor, which can be understood as the memory is located inside the processor, or the memory is located outside the processor and is therefore independent of the processor.
  • a sixth aspect provides a vehicle, which includes the control device in any one of the possible implementations of the above second aspect or the control device in any one of the above possible implementations of the third aspect, or the control device in any one of the above possible implementations of the third aspect.
  • the braking system in any possible implementation, and/or the steering system in any possible implementation of the fourth aspect.
  • a computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the method in any of the possible implementation modes of the first aspect. .
  • the above computer program code can be stored in whole or in part on the first storage medium, where the first storage medium can be packaged together with the processor, or can be packaged separately from the processor. This is not the case in the embodiments of this application. Specific limitations.
  • a computer-readable medium stores program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute any of the possible implementation methods of the first aspect. method.
  • FIG. 1 is a functional block diagram of a vehicle 100 provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a braking system provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of another braking system provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of another braking system provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of another braking system provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a steering system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another steering system provided by an embodiment of the present application.
  • Figure 8 is an exemplary flow chart of a control method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another control method provided by an embodiment of the present application.
  • FIG 10 is a schematic flowchart of another control method provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • Figure 12 is a schematic block diagram of a controller according to an embodiment of the present application.
  • FIG. 1 is a functional block diagram of a vehicle 100 provided by an embodiment of the present application.
  • Vehicle 100 may include braking systems, steering systems, powertrains, and computing platforms.
  • vehicle 100 may include more or fewer systems, and each subsystem thereof may include one or more components.
  • each subsystem and component of vehicle 100 may be interconnected through wired or wireless means.
  • the braking system may be used to control vehicle 100 deceleration. Braking systems can use friction to slow the wheels, and in some possible implementations, the braking systems can convert the kinetic energy of the wheels into electrical current. Braking systems may also take other forms to slow wheel speeds to control the speed of vehicle 100 .
  • the braking system may be a decoupled-by-wire braking system, and the braking system may include a brake pedal, a brake master cylinder, a pedal simulator, an active boosting unit, and the like. For the sake of brevity, no further details will be given here.
  • the steering system may be used to adjust the forward direction of the vehicle 100 .
  • the steering system may be a steering wheel steering system; for another example, in one embodiment, the steering system may be a wire-controlled decoupled steering system, and the steering system may include a steering wheel and a power assist unit, The power assist unit can assist the driver in adjusting the vehicle's direction of travel.
  • a powertrain may include an engine, an energy source, a drivetrain, and wheels.
  • the engine can be an internal combustion engine, an electric motor, an air compression engine, or a combination of other types of engines.
  • a hybrid engine composed of a gasoline engine and an electric motor, or a hybrid engine composed of an internal combustion engine and an air compression engine. The engine converts the energy source into mechanical energy.
  • the vehicle 100 may include a sensing system and a display device, where the sensing system may include several types of sensors that sense information about the environment around the vehicle 100 .
  • the sensing system 120 may include a positioning system.
  • the positioning system may be a global positioning system (GPS), a Beidou system or other positioning systems, an inertial measurement unit (IMU), a lidar, a millimeter One or more of wave radar, ultrasonic radar and camera device.
  • the computing platform may include one or more processors.
  • a processor is a circuit with signal processing capabilities.
  • a processor may be a circuit with instruction reading and execution capabilities, such as a central processing unit (central processing unit).
  • processing unit CPU
  • microprocessor microprocessor
  • graphics processing unit GPU
  • DSP digital signal processor
  • the processor can achieve certain functions through the logical relationship of the hardware circuit.
  • the logical relationship of the hardware circuit is fixed or can be reconstructed.
  • the processor is an application-specific integrated circuit (ASIC) or programmable logic.
  • the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as a neural network processing unit (NPU), tensor processing unit (TPU), deep learning processing Unit (deep learning processing unit, DPU), etc.
  • the computing platform may also include a memory, which is used to store instructions. Some or all processors in the computing platform may call instructions in the memory and execute the instructions to implement corresponding functions.
  • the computing platform can be used to implement functions such as games, entertainment, music, etc.; for another example, by detecting whether the user uses the game function, the computing platform can determine whether to control the vehicle to be in game mode.
  • the vehicle's braking system, steering system, power system, etc. respond to the user's operations in games and other functions, the vehicle's braking system, steering system, etc. may be degraded.
  • the service life under normal use scenarios may affect the safety of users and vehicles.
  • the vehicle's braking system and steering system can be controlled not to respond to the user's operation, such as turning off the braking system.
  • the active boost function and the power steering function of the steering system can be turned off to avoid affecting the user's entertainment experience and ensure the safety of the user and the vehicle.
  • FIG. 2 is a schematic diagram of a braking system 200 provided by an embodiment of the present application.
  • the braking system 200 may be mounted on a vehicle.
  • the vehicle mounting the braking system 200 may include a brake pedal 215 , a first set of wheels 121 and a second set of wheels 122 .
  • the first set of wheels 121 may include two wheels, and accordingly, the brake wheel cylinders 17 and 18 may provide braking force to the wheels in the first set of wheels 121 respectively.
  • the above-mentioned first set of wheels 121 is different from the second set of wheels 122.
  • the first set of wheels 121 includes a left front wheel and a right front wheel
  • the second set of wheels 122 includes a right rear wheel and a left rear wheel, that is, the braking system 200
  • It can be an H-shaped arrangement.
  • the first set of wheels 121 includes a right front wheel and a left rear wheel
  • the second set of wheels 122 includes a left front wheel and a right rear wheel. That is, the braking system 200 can be an X-shaped arrangement. This application There is no restriction on this.
  • pressure outlet port can be understood as the port through which brake fluid flows out
  • pressure inlet port can be understood as the port through which brake fluid flows in.
  • the above-mentioned “pressure outlet port” and “pressure inlet port” can be used to define the functions of a physical port in different tasks. Function in mode, the above-mentioned “pressure outlet port” and “pressure inlet port” can also correspond to two different physical ports, which are not limited in the embodiments of this application.
  • the brake circuit supply pipelines (171, 172) can communicate with the brake wheel cylinders (17, 18, 19, 20) through the brake pipelines.
  • the pressure outlet ports (1, 2, 3, 4) of the liquid inlet pipeline can be connected to the pressure inlet ports (5, 6, 6, 4) of the brake wheel cylinders (17, 18, 19, 20) respectively. 7, 8) are connected, by increasing the pressure of the brake fluid in the brake circuit supply pipeline 171, the pressure of the brake fluid in the inlet pipeline can be transmitted to the brake wheel cylinder (17, 18), thereby providing
  • the first set of wheels 121 provides braking force
  • the brake circuit supply line 172 may be used to provide braking force to the second set of wheels 122 .
  • a fluid inlet valve (9, 10, 11, 12) can be configured on the brake pipeline corresponding to the braking force of each wheel, so as to independently manage the braking force applied to each wheel. That is, the fluid inlet valve corresponding to the wheel that needs to apply braking force is controlled to be in the on state, and the fluid inlet valve corresponding to other wheels that does not need to apply braking force is controlled to be in the off state.
  • a fluid outlet valve 13, 14, 15, 16
  • the brake fluid in the brake pipeline can flow to the fluid outlet pipeline 110 through the fluid outlet valve, and flow to the fluid storage device 101 through the oil outlet brake pipeline 110 for recycling.
  • an outlet may be provided in the oil return pipeline before the pressure inlet port 5 of the brake wheel cylinder 17, for example, in the brake pipeline between the fluid outlet pipeline 110 and the pressure inlet port 5, an outlet may be provided.
  • Liquid valve 13 the brake pipeline in which the liquid outlet valve is installed can also be called the brake pipeline where the liquid outlet valve is located.
  • the brake fluid in the brake pipeline It can flow to the fluid outlet pipe 110 through the fluid outlet valve 13 and finally to the fluid storage device 101 to avoid pressurizing the brake wheel cylinder 17 through the brake fluid.
  • the fluid outlet valve 13 is in the disconnected state, the brake pipe The brake fluid in the circuit is blocked by the fluid outlet valve 13 and cannot flow to the fluid outlet pipe 110.
  • the functions of the fluid outlet valves 14, 15, and 16 are similar, and for the sake of simplicity, they will not be described again here.
  • the above-mentioned fluid outlet pipe is used to reduce the pressure of the brake fluid in the brake circuit, and the brake fluid can flow to the vehicle through the fluid outlet pipe.
  • the liquid storage device 101 therefore, the above-mentioned liquid outlet pipeline 110 can also be called the "oil return pipeline"; in the braking system, the braking force can be provided for the wheels of the vehicle through the liquid inlet pipeline, and the liquid inlet pipeline can include a section Or multiple sections of brake pipelines.
  • the above-mentioned brake circuit supply pipeline can provide braking force for the wheels. That is to say, the fluid inlet pipeline of the brake system can include the brake circuit supply pipeline. Pipeline.
  • the fluid inlet pipeline may include one or more brake pipelines for providing braking force to the wheels
  • the oil return pipeline may include one or more brake pipelines for the brake fluid to flow to the fluid storage device.
  • the "fluid outlet pipeline”, “oil return pipeline”, and “fluid inlet pipeline” mentioned above are only distinguished based on the function of the brake pipeline in the braking system, and can correspond to different brake pipelines. Can correspond to the same brake line.
  • the brake fluid in the brake circuit supply pipe 171 can flow to the brake wheel cylinder 17 through the oil inlet valve 9, and the brake circuit supply pipe can function as a liquid inlet pipe.
  • the brake fluid in the brake wheel cylinder 17 can flow to the brake circuit supply pipeline 171 through the pressure port 1, and then through the isolation valve 117, the brake master cylinder 210 flows to the fluid storage device 101, that is to say, at this time, the brake pipeline 171 can also function as an oil return pipeline. At this time, the brake pipeline 171 can also become a brake pipeline in the oil return pipeline.
  • the solution of the above-mentioned liquid outlet valve and the solution of the liquid inlet valve can be configured separately and used in the braking system, or they can also be used in conjunction with each other in a braking system.
  • the following is an introduction to the connection method between the liquid outlet valve 13 and the liquid inlet valve 9 provided by the embodiment of the present application, taking the connection method of the liquid outlet valve 13 and the liquid inlet valve 9 corresponding to the brake wheel cylinder 17 as an example with reference to FIG. 2 .
  • connection mode of the fluid outlet valve 14 and the fluid inlet valve 10 corresponding to the brake wheel cylinder 18, the connection mode of the fluid outlet valve 15 and the fluid inlet valve 11 corresponding to the brake wheel cylinder 19, and the corresponding connection mode of the brake wheel cylinder 20 The liquid outlet valve 16 and the liquid inlet valve 12 can be connected in the same manner.
  • the liquid inlet valve 9 is located between the brake circuit supply pipe 171 and the pressure inlet port 5, and the pressure inlet port of the liquid inlet valve 9 is connected to the brake circuit supply pipe 171, and the pressure outlet port of the liquid inlet valve 9 is connected to the liquid outlet.
  • the pressure inlet port of the valve 13 is connected.
  • the pressure outlet port of the liquid inlet valve 9 is also connected to the pressure inlet port 5 of the brake wheel cylinder 17 .
  • the pressure outlet port of the liquid outlet valve 13 is connected to the liquid outlet pipeline 110 .
  • the brake wheel cylinder 17 can be connected to the brake circuit supply pipeline 171 and the fluid outlet pipeline 110 through two independent brake pipelines connected in parallel, and the liquid inlet valve and the liquid outlet valve are respectively arranged in these two lines. on separate brake lines.
  • the embodiments of the present application do not limit this.
  • oil inlet valve and “oil outlet valve” mentioned above, as well as the “isolation valve” mentioned below, are only distinguished based on the function of the control valve in the braking system.
  • the control valve used to control the connection or disconnection of the liquid inlet pipeline can be called an “inlet valve” or a “boost valve”.
  • the control valve used to control the connection or disconnection of the oil return pipeline can be called an “oil outlet valve” or a "pressure reducing valve”.
  • the control valve used to isolate the two-stage braking subsystem may be called an "isolation valve.”
  • the above-mentioned control valve may be a valve commonly used in existing braking systems, such as a solenoid valve, etc., which is not specifically limited in the embodiment of the present application.
  • the brake master cylinder 210 may be used to control the braking force applied to the wheels by regulating the pressure in the brake circuit supply line.
  • the brake master cylinder 210 may be a tandem dual-chamber brake master cylinder.
  • the brake master cylinder 210 may include a first chamber 211 and a second chamber 212.
  • the pressure outlet port 21 of the first chamber 211 may be connected to the pressure inlet port of the brake pressure supply line 171
  • the pressure outlet port 21 of the second chamber 212 may be connected to the pressure inlet port of the brake pressure supply line 171.
  • the pressure outlet port 22 is connected to the pressure inlet port of the brake pressure supply pipeline 172.
  • the brake fluid flowing out from the first chamber 211 of the brake master cylinder 210 can flow to the brake circuit supply pipeline 171, thereby increasing the brake pipeline.
  • the pressure of the brake fluid in the brake master cylinder 210 increases the braking force exerted on the first set of wheels 121, and the brake fluid flowing out from the second chamber 212 of the brake master cylinder 210 can flow to the brake circuit supply pipeline 172, thereby providing the brake fluid for the first set of wheels 121.
  • the second set of wheels 212 provides braking force.
  • the above-mentioned brake master cylinder 210 can also be a single chamber.
  • the brake fluid flowing out from the brake master cylinder 210 can, for example, pass through two sets of parallel fluid inlet pipes to the first set of wheels 121 and 121 respectively.
  • the second set of wheels 122 provides braking force.
  • the embodiment of the present application does not limit the specific form of the brake master cylinder 210.
  • a car equipped with the braking system 200 may also include a brake pedal 215, and the brake master cylinder 210 may be connected to the brake pedal 215 through a connecting mechanism such as a piston rod, so that the movement of the brake pedal can be linked to the brake pedal.
  • the movement of the piston of the master cylinder 210 is coupled. Since the movement of the brake pedal is coupled with the movement of the piston of the brake master cylinder, the stroke of the brake pedal 215 , or the stroke of the piston, can be detected by the brake pedal stroke sensor 219 .
  • a pressure sensor can be installed in the brake line.
  • a pressure sensor 218 can be provided at the pressure outlet port of the brake master cylinder 210.
  • a pressure sensor 154 and a pressure sensor 135 can be provided in the brake pipeline, and more pressure sensors can also be provided in the brake circuit. or fewer pressure sensors, which is not limited in the embodiments of this application.
  • the brake master cylinder 210 may be connected to the fluid reservoir 101 through pressure compensation lines (177, 178).
  • a control valve can be provided in the pressure compensation pipeline.
  • a control valve 216 can be provided in the pressure compensation pipeline 178.
  • one-way valves 217 can be connected in parallel at both ends of the control valve 216.
  • a control valve 213 can be set at the pressure outlet port of the first chamber 211.
  • the control valve 213 can be controlled to be in a disconnected state.
  • the first chamber 211 is disconnected from the brake circuit supply pipeline 171 .
  • a control valve 214 can also be provided at the pressure outlet port of the second chamber 212.
  • the control valve 214 can be controlled to be in a disconnected state.
  • the second chamber 212 and the brake circuit supply The pipelines 172 are disconnected, so the control valves 213 and 214 are also called "isolation valves".
  • the braking system 200 includes an electronically controllable boosting device 130 for providing a braking force applied to the first set of wheels 211 and the second set of wheels 212 .
  • the boosting device 130 may be in communication with the brake circuit supply line (171, 172), thereby increasing the pressure applied to the first brake fluid by increasing the pressure of the brake fluid in the brake circuit supply line (171, 172).
  • the braking force on the set of wheels 211 and the second set of wheels 212; for another example, the boosting device 130 can also pass a brake pipeline connected in parallel with the brake circuit supply pipeline (171, 172), and the brake wheel cylinder ( 17, 18, 19, 20) connected.
  • an isolation valve can be provided at the pressure outlet port of the supercharging device 130 .
  • an isolation valve 134 can be provided at the pressure outlet port of the booster device 130 .
  • the isolation valve 134 can be placed in a conductive state.
  • a pressure sensor 135 may be provided between the isolating valve 134 and the brake circuit supply lines (171, 172).
  • the two groups of inlet pipes can be connected.
  • a control valve is installed between the liquid pipelines to disconnect the two.
  • the supercharging device 130 communicates with the brake circuit supply pipeline 171 and the brake circuit supply pipeline 172 through the brake pipeline where the control valve 134 is located.
  • a control valve (137, 138) is provided between the pressure outlet port and the brake circuit supply pipeline (171, 172). When the control valve 137 is turned on, the brake fluid can flow from the hydraulic cylinder 133 to the brake circuit supply pipeline 171.
  • control valve 138 When the control valve 138 is turned on, the brake fluid in the hydraulic cylinder 133 can flow to the brake circuit supply line 172. Therefore, when the control valve 137 is turned on and When the control valve 138 is turned off, the braking force applied to the first group of wheels 121 can be independently managed. When the control valve 138 is turned on and the control valve 137 is turned off, the braking force applied to the second group of wheels 122 can be independently managed. .
  • the above-mentioned control valve 134, control valve 137, and control valve 138 are also called "isolation valves".
  • the boosting device 130 may include a motor 132 and a hydraulic cylinder 133.
  • the motor 132 may be used to drive the piston in the hydraulic cylinder 133 to perform linear reciprocating motion, and to pump the brake fluid in the hydraulic cylinder 133 into the brake pipeline. , to increase the pressure of the brake fluid in the brake circuit supply lines (171, 172).
  • the working status of the motor 132 can be monitored through the rotor position sensor 139 .
  • the hydraulic cylinder 133 may be a double-acting plunger cylinder (dual apply plunger, DAP).
  • the hydraulic cylinder 133 may also be other forms of hydraulic cylinders, such as single-acting hydraulic cylinders.
  • the embodiment of the present application is suitable for The specific form of the hydraulic cylinder is not limited.
  • the braking system 200 may also include a wire-controlled boosting device 119 that can provide braking force to the wheels through the fluid inlet pipeline.
  • a wire-controlled boosting device 119 that can provide braking force to the wheels through the fluid inlet pipeline.
  • the supercharging device 119 can be connected with the brake circuit supply pipeline 171 , and the brake fluid flowing out from the supercharging device 119 can pass through the isolation valve 117 and the brake circuit.
  • the dynamic circuit supply line 171 flows to the brake wheel cylinders (17, 18) to provide braking force for the first set of wheels 121; similarly, the boosting device 119 can be connected to the brake circuit supply line 172 to provide braking force for the second set of wheels 121.
  • the set of wheels 122 provides braking force; for another example, the boosting device 119 can also pass an independent brake pipeline connected in parallel with the brake circuit supply pipeline (171, 172), and the brake wheel cylinder (17, 18, 19, 20) connected to provide braking force to the wheels.
  • the above-mentioned boosting device 119 includes a motor, which drives the plunger pump 111 to move, and supplies brake fluid into the brake wheel cylinders (17, 18) through the brake circuit supply pipeline 171; similarly, the motor passes By driving the plunger pump 112 to move, the brake fluid can be fed into the brake wheel cylinders (19, 20), thereby providing braking force for the second set of wheels 212.
  • the plunger pumps may be in communication with the liquid storage device 101.
  • the plunger pump 111 can be connected to the fluid storage device 101 through the one-way valve 125 , whereby the brake fluid can flow from the fluid storage device 101 to the plunger pump through the one-way valve 125 111.
  • the brake fluid can flow from the liquid storage device 101 to the plunger pump 112 through the one-way valve 126; for another example, the boosting device 119 can be connected to the liquid storage device 101 through the oil return line, for example, as shown in Figure 2 shows that when the control valve 113 is in the conductive state, the brake fluid flowing out from the plunger pump 111 can flow to the liquid storage device 101 through the control valve 113. When the control valve 114 is in the conductive state, the brake fluid flows out from the plunger pump 112. The brake fluid can flow to the fluid storage device 101 through the control valve 114. That is to say, the control valves 113 and 114 can realize the pressure relief of the brake fluid in the brake circuit. Therefore, the above-mentioned control valves 113 and 114 are also called " pressure relief valve".
  • piston pumps may be in communication with master brake cylinder 210.
  • the plunger pump 111 can be connected to the first chamber 211 of the brake master cylinder 210 through the control valve 115, and the brake fluid in the first chamber 211 of the brake master cylinder 210 can be controlled by The valve 115 flows to the plunger pump 111.
  • the brake fluid can flow to the brake circuit supply line 171 through the isolation valve 117; for another example, the plunger pump 112 can communicate with the brake master cylinder through the control valve 116.
  • the first cavity 212 of 210 is connected.
  • the motors used to drive the plunger pump 111 and the plunger pump 112 can also be the same motor, or they can be two different motors, or the plunger pump 111 and the plunger pump 112 can be used.
  • the plunger pump 112 may be the same plunger pump and is respectively connected with the brake circuit supply lines (171, 172) through parallel brake lines. That is to say, the supercharging device 119 may exist in a variety of possible forms, and the embodiment of the present application does not limit the specific form of the supercharging device 119 .
  • the brake system 200 may also include a pedal feel simulation spring 151 , which may be communicated with the brake master cylinder 210 , so that the brake fluid flowing out of the brake master cylinder 210 may flow to the pedal feel simulation spring 151 .
  • the simulated spring 151 allows the pedal feel simulated spring 151 to determine the displacement of the piston in the brake master cylinder 210 relative to the brake cylinder by sensing the pressure of the brake fluid in the brake pipeline. In this way, the pedal feel simulation spring 151 can send the detected pressure of the brake fluid to the control unit, so that the control unit determines the braking force of the wheel.
  • the pedal feel simulation spring 151 can be connected to the second chamber 212 of the brake master cylinder 210 through the control valve 152 and the brake pipeline 176. In this way, under a predetermined pedal force and the control valve When 152 is turned on, the brake fluid can flow to the pedal feel simulation spring 151 through the brake master cylinder 210. In order to prevent the brake fluid from flowing back, one-way valves 153 can also be connected in parallel at both ends of the control valve 152. The pedal feel simulation spring 151 The spring 151 can also be connected to the fluid outlet pipeline 140, and the brake fluid can flow to the fluid storage device 101 through the oil outlet pipeline 140.
  • multiple devices in the braking system 200 can be controlled by multiple control units.
  • the braking system 200 can be divided into two parts, a first braking module 202 and a second braking module 204, where the ECU 1 can be used to control a control valve (such as a control valve) in the first braking module 202. 216, control valve 213, control valve 214, etc.) and a boosting device (for example, boosting device 119), ECU 2 can be used to control the control valve (for example, isolation valve 117, isolation valve) in the second braking module 204 134, etc.), and a boosting device (such as an electronically controllable boosting device 130).
  • multiple devices in the braking system 200 can also be controlled by more or fewer control units.
  • one ECU controls the devices included in the braking system 200 , etc.
  • the embodiments of the present application are This is not limited.
  • the above describes the braking system 200 in the embodiment of the present application and the vehicle in which the braking system 200 is applied.
  • Several working scenarios and working modes of the braking system 200 are described below. It should be noted that this application does not specifically limit the working scenarios and priorities of the working modes of the braking system 200 .
  • the liquid inlet valves (9, 10, 11, 12) are normally open valves
  • the liquid outlet valves (13, 14, 15, 16) are normally closed valves
  • the isolation valves (213, 214, 117 , 118) are normally open valves
  • the control valves (113, 114, 115, 116, 152, 134, 137, 138) are normally closed valves
  • the control valve 216 is a normally open valve.
  • Scenario 1 In a normal braking scenario, the power assist mechanism of the braking system responds to the braking demand and applies braking force to the wheels.
  • the controller controls the isolation valves 117 and 118 to be in a disconnected state, and the control valves 213, 214, and 152 to be in a conductive state, so that the pedal feeling simulator 151 is connected to the brake pipeline.
  • Other control valves in the brake system can remain in the above default state.
  • the control unit can calculate the braking force required by the driver based on the pedal displacement measured by the pedal stroke sensor 219 , and can feedback the demand to the supercharging device 130 .
  • the boosting device 130 can brake according to the above-mentioned demand, control the motor 132 to compress the brake fluid through the hydraulic cylinder 133, and provide braking force for the brake wheel cylinders (17, 18, 19, 20) through the isolation valve (134, 137, 137). power.
  • the required braking force may also be determined based on the brake fluid pressure measured by the pressure sensor 218 and the pressure sensor 154 and based on the corresponding relationship between the brake fluid pressure and the braking force.
  • the vehicle needs to brake based on information such as environmental conditions, vehicle status, ADAS status, etc., and the required braking force of the vehicle can be determined. That is, the braking system 200 can work in an active braking mode. At this time, the isolation valves (117, 118) can be controlled to be disconnected, the isolation valves (134, 137, 138) can be controlled to be connected, and other control valves in the braking system can be in the above default state.
  • the cylinders (17, 18, 19, 20) provide braking force, so that the vehicle can be actively braked without the driver operating the brake pedal. For the sake of brevity, no further details will be given here.
  • the hydraulic cylinder 133 in the booster device 130 works in reverse.
  • the pressure in the brake wheel cylinders (17, 18, 19, 20) is greater than the pressure in the hydraulic cylinder 133, and the brake fluid passes through the corresponding inlet valves from the brake wheel cylinders (17, 18, 19, 20). (9, 10, 11, 12) and the one-way valve return to the hydraulic cylinder 133 respectively along the brake pipeline.
  • the isolation valves (117, 118) can also be controlled to be in a conducting state, so that the brake fluid passes from the brake wheel cylinders (17, 18, 19, 20) through the isolation valves (117, 118) and the second chamber 212 and the first chamber 211 returns to the liquid storage device 101 .
  • the fluid outlet valve (13, 14, 15, 16) can be further opened to allow the brake fluid in the brake wheel cylinder (17, 18, 19, 20) to flow back into the fluid storage device 101 .
  • the boosting device 130 and the isolation valve (134, 137, 138) can be used to increase the pressure of the brake fluid in the brake wheel cylinder (17, 18, 19, 20) according to the user's manipulation of the brake pedal, Braking of the vehicle can also be achieved based on environmental conditions, etc. Therefore, it can be called an active boosting unit.
  • the boosting device 130 fails or any control valve in the isolation valve (134, 137, 138) fails to operate normally.
  • the control unit that operates and controls the active supercharging unit fails, the required braking force can be fed back to the supercharging device 119 and the braking force can be provided through the supercharging device 119 .
  • the supercharging device 130 can also be controlled to close or not act, the isolation valve 134 can be controlled to be disconnected, or the isolation valves 137 and 138 can be controlled to be disconnected.
  • the isolation valves (213, 214) can be controlled to be disconnected, the control valves (115, 116) can be connected, and other control valves in the braking system can be in the above-mentioned state.
  • the brake fluid in the first chamber 211 and the second chamber 212 of the brake master cylinder 210 enters the brake pipeline and flows to the plunger pump (111, 112 ), so that the supercharging device 119 can provide braking force for the brake wheel cylinders (17, 18, 19, 20) by supercharging the brake fluid; for another example, in the active braking mode, the isolation valve (213 , 214) is in the disconnected state, other control valves in the braking system can be in the above default state, and the plunger pump (111, 112) can replenish brake fluid from the fluid storage device 101 through the one-way valve (125, 126) , under the action of the boosting device 119, the brake hydraulic pressure can be injected into the brake wheel cylinders (17, 18, 19, 20), thereby providing braking force.
  • the plunger pump 111, 112
  • the active boosting unit and the boosting device 119 can apply braking force to the wheels based on the driver's braking force demand, they can be called the boosting mechanism of the braking system.
  • the power-assist mechanism can respond to the user's input to the operating mechanism (such as the brake pedal) to apply braking force to the wheels.
  • Scenario 2 When the vehicle is in a showroom scene, or when the vehicle is in a game, entertainment or other mode, the power assist mechanism of the braking system may not respond to the user's manipulation of the brake pedal.
  • the boosting device 130 can be controlled to be closed or not activated, such as controlling the motor 132 to be closed or not activated, so that the motor 132 cannot drive the hydraulic cylinder 133 and the braking system
  • the control valve in can be in the above default state.
  • the brake fluid cannot flow from the hydraulic cylinder 133 to the brake wheel cylinder (17, 18, 19, 20), so the booster device 130 cannot By pressurizing the brake fluid, the brake wheel cylinders (17, 18, 19, 20) cannot provide braking force, and therefore do not respond to the user's manipulation of the brake pedal.
  • the isolation valves (137, 138) can be controlled, and/or the isolation valve 134 can be in a disconnected state, and other control valves in the braking system can be in a disconnected state.
  • the above default state For example, when the isolation valves (137, 138) are in a disconnected state, the brake fluid flowing out of the hydraulic cylinder 133 is blocked by the isolation valves (137, 138), so that the boosting device 130 cannot achieve the purpose of controlling the brake wheel cylinder (17).
  • the isolation valve 134 can be controlled to be in a disconnected state; for another example, in order to avoid the delay in the braking response caused by turning off the motor, in this scenario, the motor 132 can be Provide a revised braking force demand, and the motor 132 can be actuated according to the revised braking force demand.
  • the revised braking force demand can be smaller than the driver's braking force demand to ensure that the isolation valve (137, 138) and / Or the isolation valve 134 blocks the brake fluid, that is to say, although the motor 132 in the booster device is actuated, the active booster unit as a whole does not supply the brake circuit supply pipeline ( The brake fluid in 171, 172) is pressurized and does not provide braking force to the brake wheel cylinders (17, 18, 19, 20). At this time, the active boosting unit does not respond to the user's manipulation of the brake pedal.
  • the isolation valve (134, 137, 138) can be controlled to be in a disconnected state, and the boosting device 130 can be controlled to be in a closed or inactive state, that is to say, the active boosting unit can be controlled to be in a closed or inactive state, Therefore, the power assist mechanism of the braking system can be made not to respond to the user's manipulation of the brake pedal.
  • braking force is provided through a redundant solution.
  • braking force can be provided through the supercharging device 119.
  • the supercharging device 119 can be controlled. Closed or inactive, the boosting device 119 is unable to boost the brake fluid and therefore does not respond to the user's input on the brake pedal; the control valves (113, 114, 115, 116) can also be controlled to be in a disconnected state. , the control valves (213, 214) are in the conductive state.
  • the isolation valves (117, 118) can be controlled to be in a disconnected state.
  • the control valve 152 is in a conductive state. Therefore, when the user depresses the brake pedal 215, the brake fluid in the brake master cylinder 210 can flow to the pedal feeling simulator 151 through the brake pipeline, thereby providing the user with Pedal feel.
  • the isolation valves (117, 118) can be controlled to be in a conductive state and the control valve 152 to be disconnected. Therefore, when the user depresses the brake pedal 215, the brake fluid in the brake master cylinder 210 can flow to the brake wheel cylinder (17, 18, 19, 20) through the brake pipeline, and accordingly, the brake fluid The wheel cylinder is pressurized.
  • the pedal stroke sensor 219 can measure the pedal displacement. After obtaining the pedal displacement, the braking force required by the driver may not be calculated, or the braking force required by the driver may not be calculated. After the braking force is obtained, the demand may not be fed back to the boosting device (130, 119), so that the boosting device (130, 119) may not respond to the user's input to the brake pedal.
  • the liquid inlet valve can be controlled to be in a disconnected state.
  • the fluid inlet valve (9, 10, 11, 12) can be controlled to be in a disconnected state, thereby blocking the flow of brake fluid to the brake wheel cylinder (17, 18, 19, 20) and avoiding increasing braking force on the wheel.
  • the connection between the active supercharging unit and the supercharging device 19 and the brake wheel cylinder can be disconnected, so that the active supercharging unit and the supercharging device 19 cannot provide braking force for the wheels.
  • FIG. 3 is a schematic diagram of another braking system provided by an embodiment of the present application.
  • the components in Figure 3 that have the same functions as those in Figure 2 use the same numbers.
  • the specific functions can be referred to the above description and will not be described again here.
  • an electronically controllable boosting device 160 may be included, which may replenish brake fluid from the reservoir 101 and may be used to provide brake fluid applied to the first set of wheels 211 and the second set of wheels 212. of braking force.
  • the electronically controllable supercharging device 160 may include a motor 162 and a hydraulic cylinder 163 , and the working status of the motor 162 may be monitored through a rotor position sensor 139 .
  • isolation valves 167 and 168 may be provided at the pressure outlet port of the electronically controllable boosting device 160 .
  • the isolation valve 167 when the isolation valve 167 is in a conductive state and the motor 162 operates in the forward direction, the brake fluid in the front chamber of the hydraulic cylinder 163 can flow from the hydraulic cylinder 163 to the brake circuit supply pipeline 171.
  • the isolation valve 167 can be controlled to be in a disconnected state, and the electronically controllable boosting device 160 is disconnected from the brake circuit supply pipeline 171.
  • the isolation valve 168 can work in a similar manner to the isolation valve 167.
  • the pressure inlet port of the boosting device 160 can be connected to the brake circuit supply pipeline (171, 172).
  • the pressure inlet port of the electronically controllable boosting device 160 can be connected to the brake circuit supply pipeline (171, 172) through the control valve (143, 144).
  • the brake circuit When the brake circuit is turned on and the pressure of the brake fluid in the brake circuit supply pipe 171 is relatively high, the brake fluid flows from the supply pipe 171 to the rear chamber of the hydraulic cylinder 163 .
  • a pressure sensor can be provided on the brake circuit supply line (171, 172) to monitor the brake fluid pressure in the line.
  • the pressure sensor 141 can be used to monitor the pressure of the brake fluid in the brake circuit supply line 171. More or less pressure sensors can also be provided in the brake system. This application The embodiment does not limit this.
  • control valve and the boosting device 160 in the braking system 300 can be controlled by the same ECU.
  • the pressure inlet port of the pedal feel simulation spring 151 may be located in the brake line between the pressure outlet port of the brake master cylinder 210 and the pressure inlet port of the isolation valve (117, 118).
  • the pedal feel simulation spring 151 can simulate the actuation of the brake pedal according to the motion state of the brake master cylinder.
  • the liquid inlet valves (9, 10, 11, 12) are normally open valves
  • the liquid outlet valves (13, 14, 15, 16) are normally closed valves
  • the isolation valves (117, 118) are Normally open valves
  • isolation valves (167, 168) are normally closed valves
  • control valves (143, 144, 152) are normally closed valves
  • control valve 216 is a normally open valve.
  • Scenario 1 In a normal braking scenario, the power assist mechanism of the braking system responds to the braking demand and applies braking force to the wheels.
  • the control unit controls the isolation valves (117, 118) to be in a disconnected state, the isolation valves (167, 168) to be in a conducting state, and the control valve 152 to be in a conducting state, so that the pedal feeling simulator 151 is in contact with the brake
  • the pipelines are connected, and other control valves in the brake system can maintain the above default state.
  • the control unit can calculate the braking force required by the driver based on the pedal displacement measured by the pedal stroke sensor 219, and can feedback the demand to the supercharging device 160.
  • the boosting device 160 can control the forward movement of the motor 162 according to the above-mentioned required braking force.
  • the braking system 300 can also determine the need for braking and determine the required braking force based on information such as environmental conditions, vehicle status, ADAS status, etc., that is, the braking system 300 It is also possible to work in active braking mode. At this time, the control isolation valves (117, 118) are disconnected, the isolation valves (167, 168) are connected, and other control valves in the braking system 300 can be in the above default state. Booster device 160 provides braking force.
  • the brake fluid in the rear chamber of the hydraulic cylinder 163 can flow to the fluid storage device 101 .
  • the control valves (143, 144) are in the conductive state and the piston of the hydraulic cylinder is driven in the reverse direction under the action of the motor 163, the pressure of the brake fluid in the brake circuit supply pipeline (171, 172) can be greater than Due to the pressure of the brake fluid in the rear chamber of the hydraulic cylinder 163, the brake fluid can flow to the rear chamber of the hydraulic cylinder 163 through the brake circuit supply pipes (171, 172).
  • the isolation valves (117, 118) can be controlled to be in a conductive state.
  • the brake fluid can flow from the brake master cylinder 210 to the brake wheel cylinder (17, 18, 19, 20) through the brake pipeline, thereby providing braking force for the wheel.
  • Scenario 2 When the vehicle is in a showroom scene, or when the vehicle is in a game, entertainment or other mode, the power assist mechanism of the braking system may not respond to the user's manipulation of the brake pedal.
  • the boosting device 160 can be controlled to be closed or not activated, such as the motor 162 is controlled to be closed or not activated, and the brake fluid in the hydraulic cylinder 163 may not flow to the brake wheel cylinder (17, 18, 19, 20), Therefore, the supercharging device cannot supercharge the brake wheel cylinders (17, 18, 19, 20).
  • the isolation valves (167, 168) can be controlled to be in a disconnected state.
  • the isolation valves (167, 168) are in a disconnected state, the brake fluid flowing out of the hydraulic cylinder 163 is blocked by the isolation valves (167, 168), so that the booster device 160 cannot achieve the purpose of controlling the brake wheel cylinder (17).
  • the isolation valve (167, 168) can be controlled to be in a disconnected state, and the supercharging device 160 can be controlled to be in a closed or inactive state; for another example, in order to ensure the normal response of the motor 162 , in this scenario, the control unit can provide the motor 162 with a corrected braking force requirement, and the motor 162 can operate according to the corrected braking force requirement, and feed back normal operation instructions, thereby preventing the braking system from being When it is detected that the motor is not actuating, it is considered that there is a fault in the braking system and a false alarm is issued.
  • the isolation valves (167, 168) are controlled to be in a disconnected state, which can prevent the booster device 160 from affecting the brake wheel cylinders (17, 18). , 19, 20)
  • Supercharging that is to say, although the motor 162 in the supercharging device is activated, the supercharging device 160 does not increase the brake fluid in the brake circuit supply pipeline (171, 172). pressure, no braking force is provided to the brake wheel cylinders (17, 18, 19, 20).
  • the power assist mechanism in the brake system does not respond to the user's braking request. Pedal control.
  • the isolation valves (167, 168) can be controlled to be in a disconnected state, the control valve 152 to be in a conductive state, and the brake main valve The brake fluid in the cylinder 210 may flow to the pedal feel simulator 151, thereby providing a pedal feel to the user.
  • the isolation valves (117, 118) can be controlled to be in a conductive state and the control valve 152 to be in a disconnected state. Therefore, when the user depresses the brake pedal, the brake pedal The brake fluid in the dynamic master cylinder 210 can flow to the brake wheel cylinders (17, 18, 19, 20) through the brake pipeline, and accordingly, the brake wheel cylinders are pressurized.
  • the corresponding braking force requirement may not be calculated, or, after the braking force requirement is calculated, the braking force requirement may not be fed back to the supercharging device 160, so that the supercharging
  • the device 160 may not respond to the user's input to the brake pedal.
  • the game application may be controlled based on the user's input to the brake pedal.
  • the device 160 may control the game application based on the user's input to the brake pedal.
  • the brake pedal stroke determines the braking force demand and feeds the braking force demand back to the gaming application without feeding the braking force demand back to the boosting device 160 .
  • the liquid inlet valve can be controlled to be in a disconnected state.
  • the fluid inlet valve (9, 10, 11, 12) can be controlled to be in a disconnected state, thereby blocking the flow of brake fluid to the brake wheel cylinder (17, 18, 19, 20) and avoiding increasing braking force on the wheel. .
  • FIG. 4 is a schematic diagram of another braking system provided by an embodiment of the present application. It should be understood that components in Figure 4 that have the same functions as those in Figures 2 and 3 use the same numbers.
  • the electronically controllable boosting device 160 can be connected to the brake circuit supply pipeline 171 through the isolation valve 167, and can be connected to the brake circuit supply pipeline 172 through the isolation valve 168. connected.
  • the brake fluid in the front chamber of the hydraulic cylinder 163 can flow to the brake circuit supply pipeline 171 through the isolation valve 167.
  • the isolation valve 168 is in the conductive state, The brake fluid in the front chamber of the hydraulic cylinder 163 can flow to the brake circuit supply line 172 through the isolation valve 168 .
  • the motor 162 operates in reverse, the brake fluid in the rear chamber of the hydraulic cylinder 163 can flow to the fluid storage device 101 through the fluid outlet pipe 140 .
  • the liquid inlet valves (9, 10, 11, 12) are normally open valves
  • the liquid outlet valves (13, 14, 15, 16) are normally closed valves
  • the isolation valves (117, 118) are Normally open valves
  • isolation valves (167, 168) are normally closed valves
  • control valve 152 is a normally closed valve
  • control valve 216 is a normally open valve.
  • Scenario 1 In a normal braking scenario, the power assist mechanism of the braking system responds to the braking demand and applies braking force to the wheels.
  • the working mode of the braking system 400 may be similar to that of the braking system 300 .
  • the control unit controls the isolation valves (117, 118) to be in a disconnected state, the isolation valves (167, 168) to be in a conductive state, the control valve 152 to be in a conductive state, and the control valves in the braking system are in a conductive state.
  • Other control valves can remain in the above default state.
  • the supercharging device 160 can control the operation of the motor 162 according to the braking force requirement to provide braking force for the brake wheel cylinder by supercharging the brake fluid in the brake pipeline. For the sake of simplicity, details will not be described here.
  • Scenario 2 When the vehicle is in a showroom scene, or when the vehicle is in a game, entertainment or other mode, the power assist mechanism of the braking system may not respond to the user's manipulation of the brake pedal.
  • the braking system 400 is similar to the braking system 300 and can control the boosting device 160 to be closed or inactive, and/or control the isolation valves (167, 168) to be in a disconnected state.
  • the isolation valves (167, 168) can be controlled to be in a disconnected state and the control valve 152 to be in a conductive state to provide a pedal feel to the user.
  • the isolation valves (117, 118) can be controlled to be in a conductive state and the control valve 152 to be in a disconnected state to protect the pedal feeling simulator 151.
  • FIG. 5 is a schematic diagram of another braking system provided by an embodiment of the present application.
  • the wheel hub motor can be used to provide braking to the wheels, and braking force can be applied to the vehicle according to the user's manipulation of the brake pedal.
  • Scenario 1 In a normal braking scenario, the power assist mechanism of the braking system responds to the braking demand and applies braking force to the wheels.
  • control unit 55 can control the wheel hub motors (51, 52, 53, 54) to activate the wheels (56, 57, 58, 59) Apply braking force.
  • Scenario 2 In the brake-by-wire mode, the user controls the game through the vehicle's brake pedal.
  • the control unit can turn off the wheel hub motor (51, 52, 53, 54), or can control the wheel hub motor (51, 52, 53, 54) The current state is maintained so that it does not respond to the user's manipulation of the brake pedal.
  • the corresponding braking force demand may not be calculated, or after the braking force demand is determined, the braking force demand may not be fed back
  • the hub motors (51, 52, 53, 54) are provided so that the hub motors may not respond to user input to the brake pedal.
  • FIG. 6 is a schematic diagram of a steering system provided by an embodiment of the present application.
  • the steering system 600 may include a transmission device 64 and a steering drive device 63.
  • the steering system 600 may also include an inner wheel 65 and an outer wheel 66.
  • the steering drive device 63 can provide power, and the transmission device 64 can be used to transmit the steering force provided by the steering drive device 63 to the wheels (65, 66).
  • the transmission device 64 can include a series of rods.
  • the steering system can be applied to In a vehicle with a non-independent suspension, under the action of the steering drive device 63 and through the transmission device 64, the overall steering of the inner wheel 65 and the outer wheel 66 can be achieved.
  • the vehicle applying the steering system 600 may also include a steering wheel 61 through which the driver can control the steering system.
  • the steering system 600 may also include a road feel simulation device 62.
  • the road feel simulation device 62 may implement functions such as road feel simulation or angle following of the steering wheel.
  • the steering system 600 may also include a steering angle sensor (not shown in FIG. 6 ).
  • the steering angle sensor may be used to measure the rotation angle of the steering wheel and calculate the steering force required by the driver based on the rotation angle of the steering wheel.
  • Scenario 1 In a normal steering scenario, the power assist mechanism of the steering system can respond to the steering demand and apply steering force to the wheels.
  • the steering force required by the driver can be calculated based on the rotation angle measured by the steering angle sensor, and the steering demand can be fed back to the steering drive device 63.
  • the driving device 63 can apply steering force to the wheels through the transmission device 64 according to the above-mentioned required steering force.
  • Scenario 2 When the vehicle is in a showroom scene, or when the vehicle is in a game, entertainment or other mode, the power assist mechanism of the steering system may not respond to the user's manipulation of the steering wheel.
  • the steering drive device 63 can be controlled to be turned off or inactive.
  • the driving device 63 may include a power steering motor, which may be controlled to be turned off or inactive.
  • the corresponding steering force requirement may not be calculated, or after the steering force requirement is determined, the steering force requirement may not be fed back to the steering drive device 63 , for example, in game mode.
  • the control of the game application can be realized based on the user's manipulation of the steering wheel.
  • the required steering force can be determined and the required steering force can be fed back to the game application without diverting the required steering force. Force feedback is given to the steering drive device 63 .
  • FIG 7 is a schematic diagram of another steering system provided by an embodiment of the present application.
  • the components in Figure 3 that have the same functions as those in Figure 2 use the same numbers. For the sake of simplicity, refer to the above description for specific functions and will not be repeated here.
  • the steering system 700 may include an inboard drive device 67 and an inboard transmission device 69.
  • the steering system may also include an outboard transmission device 70.
  • the inner transmission 69, the outer transmission 70 may comprise a series of rods.
  • the steering system 700 may also include an outboard driving device 68 , which may be used to provide steering force for the outboard wheels 66 .
  • the steering system 700 may be applied to a vehicle using an independent suspension.
  • the steering system 700 may include a connection device 71 that may be used to separate or combine the inboard transmission device 69 and the outboard transmission device 70.
  • a connection device 71 that may be used to separate or combine the inboard transmission device 69 and the outboard transmission device 70.
  • the inboard drive device 67 When the inboard transmission device 69 is separated from the outboard transmission device 70, the inboard drive device 67.
  • the outer driving device 68 can drive the corresponding wheels for steering respectively.
  • the inner driving device 67 fails or does not work
  • the inner transmission device 69 and the outer transmission device 71 are combined through the connecting device 71, so that the outer driving device 68 can be
  • the inner wheel 65 and the outer wheel 66 provide steering force.
  • the inner transmission device 69 can be controlled to be combined with the outer transmission device 71 , so that the inner driving device 67 can provide steering force for the inner wheel 65 and the outer wheel 65 .
  • Wheels 66 provide steering force.
  • the connecting device 71 can be a clutch, and the classification and combination between the inner driving device 67 and the outer driving device 68 can be realized through the disconnection and separation of the clutch;
  • the connecting device 71 can include two connecting pieces ( (not shown in the figure), the two connecting members can be mechanically connected to the inner driving device 67 and the outer driving device 68 respectively.
  • the connecting device 71 can also include a rotating motor (not shown), and the two connecting members can be controlled by the rotating motor.
  • the separation and coupling of the two connecting members can realize the separation or coupling of the inner transmission device 69 and the outer transmission device 70.
  • the embodiment of the present application does not limit the specific form of the connection device 71.
  • Scenario 1 In a normal steering scenario, the power assist mechanism of the steering system can respond to the steering demand and apply steering force to the wheels.
  • the steering force required by the driver can be calculated based on the rotation angle measured by the steering angle sensor, and the steering demand can be fed back to the inner driving device 67 and the outer driving device 68.
  • the driving device (67, 68) can apply steering force to the wheels through the transmission device (69, 70) according to the above-mentioned steering requirements.
  • Scenario 2 When the vehicle is in a showroom scene, or when the vehicle is in a game, entertainment or other mode, the power assist mechanism of the steering system may not respond to the user's manipulation of the steering wheel.
  • the steering drives (67, 68) can be controlled to be switched off or inactive.
  • the driving device (67, 68) may include a power-assist motor, and the power-assist motor may be controlled to be turned off or inactive.
  • the corresponding steering force demand may not be calculated, or after the steering demand is determined, the steering demand may not be fed back to the driving device (67, 68).
  • the “inside” and “outside” mentioned above refer to the steering direction of the vehicle.
  • the outer wheel 66 when the vehicle turns to the right in the traveling direction of the vehicle, the outer wheel 66 may be the left front wheel of the vehicle, and correspondingly, the inner wheel 65 may be the right front wheel of the vehicle.
  • the outer wheel 66 when the vehicle turns to the left in the traveling direction, the outer wheel 66 may be the front right wheel of the vehicle, and correspondingly, the inner wheel 65 may be the front left wheel of the vehicle.
  • the above-mentioned inner wheels and outer wheels may also be rear wheels of the vehicle, which is not limited in the embodiment of the present application.
  • Figure 8 can be The braking system, steering system, and vehicle control device are executed. For example, it can be executed by the controller of the braking system, or it can be executed by the controller of the steering system, or it can also be executed by the control device of the vehicle (for example, the vehicle engine system , domain controller, vehicle chip, etc.).
  • Figure 8 is an exemplary flow chart of a control method provided by an embodiment of the present application.
  • the method 800 included in Figure 8 may include the following steps.
  • the method shown in Figure 8 can be used in conjunction with the braking systems, steering systems and vehicles described above.
  • the indication information may be determined based on the detected user instruction.
  • users can indicate their intentions through voice commands, gesture commands, etc.
  • the detected voice commands include "turn on game mode", “turn on showroom mode”, "switch to regular mode” and other instructions, mode
  • the indication information can be determined from this.
  • the indication information can be determined based on the detected gesture instruction.
  • the indication information can be determined based on the detected operation; for another example, when other processing devices implement the detection of voice instructions, gesture instructions, etc., when the instructions indicating the manipulation mode are detected During operation, instruction information can be sent, and accordingly, the device (for example, chip, vehicle-machine system, etc.) that performs the method can obtain the instruction information and determine the operation mode according to the instruction information.
  • the device for example, chip, vehicle-machine system, etc.
  • the indication information may also be determined according to system configuration.
  • the system configuration may include a default operating mode (such as a first mode or a second mode).
  • the operating mode may be determined as the default operating mode based on the system configuration; for another example, when the vehicle is powered on, the operating mode may be determined as the default operating mode.
  • the system configuration may include operating mode history information. For example, it may include the operating mode the vehicle was in when it was powered off last time. When the vehicle is powered on, the operating mode may be set to the operating mode when the vehicle was powered off last time based on the system configuration. The control mode you are in.
  • the manipulation mode may include a first mode or a second mode.
  • the power-assisted mechanism of the vehicle is controlled to respond to the first operation information.
  • the first operation The information is used to indicate braking or steering of the vehicle, or to control the vehicle's power assist mechanism not to respond to the first operating information when operating through the second mode.
  • the user can control the braking system and the steering system.
  • the first operation information may include the user's input on the brake pedal.
  • the first operation information may include brake pedal stroke information, required braking force information, etc.;
  • the first operation information may include the user's input on the steering wheel.
  • the first operation information may include the rotation angle of the steering wheel, required steering force information, and so on.
  • the power-assisting mechanism may include a device or mechanism for realizing the braking function in the wire-controlled mode.
  • the power-assisting mechanism may also be called a brake power-assisting mechanism.
  • the power-assisting mechanism may include the active supercharging unit, and when the active supercharging unit fails, the power-assisting mechanism may include the supercharging device 119; or for example , taking the braking system 200 shown in Figure 2 as an example, the boosting mechanism responds to the first operation information, for example, the boosting device 130 provides braking force for the brake wheel cylinders (17, 18, 19, 20) according to the required braking force.
  • the control valve in the braking system 200 can be in the state corresponding to the above scenario one.
  • the braking system 200 works through a redundant scheme, and the boosting device 119 provides brake wheel cylinders (17, 18) according to the braking force requirements.
  • the control valve in the braking system 200 can be in the state corresponding to the above scenario one; for another example, taking the braking system 200 shown in Figure 2 and the brake-by-wire mode as an example, the power assist mechanism Not responding to the first operation information, for example, the supercharging device 130 can be controlled to close or not act, and for example, because the supercharging device 130 needs to be connected to the brake wheel cylinder to provide braking force, the isolation valve (137, 138) can be controlled.
  • the isolation valve 134 is in a disconnected state, thereby disconnecting the boosting device 130 from the brake wheel cylinder (17, 18, 19, 20), even if the boosting device 130 is activated according to the braking force demand , because the isolation valve (137, 138) and/or the isolation valve 134 is disconnected, the active boosting unit cannot provide braking force to the brake wheel cylinder, that is to say, the active boosting unit does not respond to the user's braking request.
  • the operation of the pedal for example, can control the inlet valve (9, 10, 11, 12) to be in a disconnected state, thus cutting off the connection between the booster device 130, 119 and the brake wheel cylinder, causing the braking system to behave as if it is not in use.
  • one or more control valves that connect the boosting device 130 to the brake wheel cylinder can also be understood as part of the boosting mechanism; for another example, the braking system 300 Taking the braking system 400 and the braking system 500 as an example, regarding the situation where the power assist mechanism does not respond to the first operation information, reference can be made to the description of the above scenario 2. For the sake of brevity, it will not be described again here.
  • the vehicle includes a braking system
  • the braking system may include a first boosting device, the first boosting device being used to adjust the pressure of the brake fluid in the first brake line to control the pressure applied to the vehicle.
  • the braking force on the wheels, the first operation information is used to indicate braking of the vehicle, and when operating through the second mode, the power assist mechanism of the vehicle is controlled not to respond to the first operation information, including: when operating through the second mode When working in the second mode, the first supercharging device is controlled to be closed or inactive.
  • the boosting mechanism of the braking system may include the first boosting device, and the first brake pipeline may include a brake pipeline connected to a brake wheel cylinder, and the brake wheel cylinder is used to apply braking to the wheel. power.
  • the first boosting device can be the boosting device 130.
  • the braking system 200 adopts a redundant braking solution.
  • the first supercharging device may be a supercharging device 119; for another example, taking the brake system 300 as an example, the first supercharging device may include a supercharging device 160, which may adjust the liquid inlet pipeline (such as a brake circuit supply pipe).
  • the pressure of the brake fluid in the brake pipeline (171, 172), the brake pipeline where the inlet valve (9, 10, 11, 12) is located, etc.) is used to control the braking force exerted on the wheels of the vehicle; for another example, Taking the brake system 300 as an example, the first boosting device may include a boosting device 160, and the first brake pipeline may include a brake pipeline where the liquid inlet valve (9, 10, 11, 12) is located. When the valve is in the conductive state, it may also include a brake circuit supply pipe (171, 172) and other brake pipes connected to the brake wheel cylinder.
  • the braking system includes a first control valve.
  • the first control valve When the first control valve is in a conductive state, the first boosting device communicates with the first brake pipeline, or when the first control valve is in a closed state.
  • the first boosting device When in the open state, the first boosting device is disconnected from the first brake line, and when operating through the second mode, controlling the power-assisted mechanism of the vehicle not to respond to the first operation information may include: When operating through the second mode, the first control valve is controlled to be in a disconnected state.
  • one or more control valves may be included between the first supercharging device and the first brake pipeline.
  • the first supercharging device may adjust the first The pressure of brake fluid in a brake line to control the braking force exerted on the wheels.
  • the first supercharging device is the supercharging device 130, and the wheel corresponding to the brake wheel cylinder 17 is taken as an example.
  • the first control valve may include a control valve 134, a control valve 137, and a control valve 134 and a control valve 137.
  • the control valve 137 is turned on, the boosting device 130 can adjust the pressure of the brake fluid in the brake circuit supply pipeline 171.
  • the first control valve may also include a liquid inlet valve 9.
  • the pressure device 130 can adjust the pressure of the brake fluid in the brake wheel cylinder.
  • the control valve 134 and/or the control valve 137 are in a disconnected state, the pressure increase device 130 and the brake circuit supply pipeline 171 It is also disconnected from the brake pipeline where the liquid inlet valve 9 is located.
  • the boosting device 130 is disconnected from the brake wheel cylinder 17.
  • the boosting device 130 cannot provide braking force for the brake wheel cylinder 17 , which means that the boosting device 130 does not respond to the user's input to the brake pedal. That is to say, the first When there are multiple control valves between a supercharging device and the first brake pipeline, that is, when the first control valve includes multiple control valves, controlling the first control valve to be in a disconnected state may be to control one of the multiple control valves. At least one control valve is in a disconnected state, so that the connection between the first boosting device and the first brake pipeline can be disconnected.
  • the braking system further includes a brake master cylinder, a second control valve, a pedal feel simulation device and a third control valve, wherein when the second control valve is in a conductive state, the brake master cylinder communicates with the first control valve.
  • the brake pipelines are connected and used to control the braking force exerted on the wheels of the vehicle by adjusting the pressure of the brake fluid in the first brake pipeline.
  • the pedal feeling simulates
  • the second brake line of the device is connected to determine the pedal feel by sensing the pressure of the brake fluid in the second brake line.
  • the second control valve is located between the pressure outlet port of the brake master cylinder and the first brake line.
  • the second brake pipeline On the brake pipeline between the pressure inlet port of the dynamic pipeline, the second brake pipeline includes a brake pipeline between the pressure outlet port of the brake master cylinder and the pressure inlet port of the second control valve.
  • the third control valve is located On the brake pipeline between the pressure outlet port of the second brake pipeline and the pressure inlet port of the pedal feel simulation device, the method may further include: when operating in the second mode, controlling the second control valve to be in off state. open state, and control the third control valve to be in a conducting state.
  • the brake master cylinder when the second control valve is turned on, the brake master cylinder may be connected to the first brake line, and when the second control valve is turned off, the brake master cylinder may be disconnected from the first brake line.
  • the second control valve may include a control valve 118, and the second brake pipeline may include a brake pipeline between the brake master cylinder 210 and the control valve 118.
  • the third control valve may include a control valve 152.
  • the pedal feeling simulator 151 may be connected to the second brake line to provide pedal feeling.
  • the pedal feeling simulator 151 When the control valve 153 is disconnected, the pedal feeling simulator 151 may be connected to the second brake line.
  • the pedal feel simulator 151 is disconnected from the second brake pipeline; for another example, taking the brake system 200 as an example, the control valve 118 is disconnected and the control valve 152 is connected. According to the pressure of the brake master cylinder 210, the gap between the outlet port 22 and the control valve 118 The pedal feel simulator 151 can provide the user with a pedal feel based on the pressure of the brake fluid in the brake line.
  • the pedal feeling simulation device can be based on the brake pressure in the brake pipeline between the brake master cylinder and the second control valve. Hydraulic pressure provides users with pedal feel. For example, it can provide users with a better gaming experience in scenarios where users operate gaming applications through the vehicle's brake pedal.
  • the method may further include: when operating in the second mode, controlling the second control valve to be in a conductive state, and controlling the third control valve to be in a disconnected state.
  • the connection between the pedal feel simulation device and the second brake pipeline can be disconnected, so that the pedal feel simulation device does not respond to the user's input to the brake pedal. operation, thereby protecting the pedal feel simulation device and extending the service life of the pedal feel simulation device.
  • the vehicle includes a braking system
  • the braking system includes an in-wheel motor
  • the in-wheel motor is used to adjust the braking force applied to the wheels of the vehicle
  • the first operation information is used to indicate braking of the vehicle
  • the Controlling the power assist mechanism of the vehicle not to respond to the first operation information when operating in the second mode may include: controlling the in-wheel motor to turn off or not act when operating in the second mode.
  • the wheel hub motor may be controlled to be turned off or inactive, so that the braking system may not respond to a user's input to the braking system.
  • braking systems and vehicles using wheel hub motors can control the wheel hub motor to close or not act, so that the wheel hub motor does not respond to the user's input to a control device such as the brake pedal, thereby improving the performance of the wheel hub motor. service life.
  • the power-assisted mechanism may include a device or mechanism used to implement the steering function in the control-by-wire mode.
  • the power-assisted mechanism may also be called a steering power-assisted mechanism.
  • the steering assist mechanism may include a steering drive device 63 .
  • the vehicle includes a steering drive device and a transmission member
  • the transmission member is used to convert the obtained power to apply a steering force to the wheels of the vehicle
  • the steering drive device is used to provide power to the transmission member
  • the The first operation information is used to indicate steering of the vehicle
  • controlling the power assist mechanism of the vehicle not to respond to the first operation information when operating in the second mode may include: when operating in the second mode, The steering drive device is controlled to be closed or inactive.
  • the steering drive device for example, taking the steering system 600 as an example, can be the steering drive device 63, and for example, taking the steering system 700 as an example, it can be an inner drive device 67 or an outer drive device 69;
  • the transmission The mechanism taking the steering system 600 as an example, may include a transmission device 64 , and taking the steering system 700 as an example, it may include an inner transmission device 69 and an outer transmission device 70 .
  • the power assist mechanism of the steering system when operating in the second mode, by controlling the steering drive device to be closed or inactive, the power assist mechanism of the steering system does not need to respond to the user's manipulation, and the service life of the steering drive device can also be improved.
  • the manipulation mode is the second mode
  • the method may further include: obtaining the first operation information; and determining expected action information according to the first operation information, wherein the expected action information includes, in response to Based on the first operation information, the number of times the assist mechanism is expected to act.
  • the expected action information can be understood as, assuming that the working mode is the first mode, in response to the first operation information, the assist mechanism
  • the expected action information of the mechanism (such as action duration, number of actions, etc.).
  • the supercharging device 130 can be in a closed state
  • the supercharging device 119 can be in a closed state
  • the isolation valves (117, 118, 134, 137, 138) can be controlled.
  • the control valve 152 is in the on state. In this situation, when the user operates the brake pedal 215, the braking force required by the user can be determined.
  • the required braking force assuming that the braking system 200 is in the first mode
  • the number of operations required for each device of the braking system 200 such as the boosting device 130, the boosting device 119, the control valves (134, 137, 138), the liquid inlet valve, etc.
  • Action information such as duration.
  • the power-assist mechanism when working in the second mode, although the power-assist mechanism may not respond to the user's manipulation of the braking system and the steering system, other devices in the braking system and the steering system may respond based on the user's manipulation. Actuation, therefore, by determining the expected actuation information, the difference in the number of operations of the actuated part and the non-actuated part in the above system can be determined, which is beneficial to determine the remaining working life of each device respectively, and is beneficial to the work of each device. Life management is beneficial to remind users when the working life of each device expires.
  • the method may further include: obtaining vehicle status information and/or surrounding environment information; and determining that the vehicle status information and/or surrounding environment information satisfy preset conditions.
  • the manipulation mode is determined as the second mode. Since the power-assisted mechanism of the vehicle may no longer respond to the user's manipulation, the safety of the vehicle and the user may be affected. Therefore, Before determining that the manipulation mode is the second mode, the safety of the vehicle can be ensured by determining whether the vehicle status information and/or the surrounding environment information satisfies the preset conditions. For example, when it is determined that the vehicle is in a parking state, it can be considered that the vehicle is in a safe state and the vehicle state meets the preset conditions; for example, when it is determined that the vehicle is in a parking lot or parking space, the vehicle can be considered to be in a safe surrounding environment.
  • the preset conditions are met; for another example, when it is determined that the remaining power of the vehicle is greater than or equal to the preset threshold (for example, 15% power, 20% power, etc.), the remaining power can be considered to meet the preset conditions, and the remaining power can be
  • the maneuvering mode is determined to be the second mode; for another example, if it is determined that the remaining fuel level of the vehicle is greater than or equal to a preset threshold (for example, 15% fuel level, 18% fuel level, etc.), it can be considered to meet the preset conditions; for another example, the vehicle
  • the cruising range is greater than or equal to the preset threshold (for example, the cruising range is 30 kilometers, 50 kilometers, etc.); for another example, in the process of obtaining the indication information until the control mode is determined to be the second mode, it may be necessary
  • a certain processing time is required to determine whether the preset conditions for determining the manipulation mode as the second mode are met.
  • the manipulation mode may be the first mode, and the working state during this process may be called
  • the power-assist mechanism may not respond to the user's manipulation when operating in the second mode, therefore, before determining the manipulation mode as the second mode, by determining the vehicle status information and/or the surrounding environment information, It can be ensured that when the control mode is determined as the second mode, the vehicle is in a safe environment and state, which is conducive to ensuring the safety of the user and the vehicle.
  • obtaining the indication information may include: obtaining the indication information when it is determined that the game application is in a running state.
  • the vehicle may include an interactive device such as a central control screen.
  • the user clicks on the icon of the game application on the central control screen, it may be determined that the game application is in a running state; for another example, some game applications may include a setting interface, such as through The setting interface allows you to select game modes (for example, "easy mode", "difficult mode", etc.). Through the setting interface, you can set the game's control method, picture quality, volume, etc., and display the setting interface of the game application on interactive devices such as the central control screen. When the game application is running, it can also be considered that the game application is not running.
  • the central control screen and other interactive devices display the game interface in the "Simple Mode” , that is, the main program of the game application has been run.
  • the game application can be considered to be in a running state; for another example, when the device running the game application and the device executing the control method 800 are different devices, when determining the game application
  • the device running the game application can send the game application running instruction information.
  • the device executing the method 800 can obtain the game application running instruction information, so that the manipulation mode can be determined as the second mode.
  • the following is a schematic flowchart of another control method provided by the embodiment of the present application with reference to Figure 9. This method can be used in conjunction with the braking system, steering system, and vehicle in Figures 2 to 7.
  • the method 900 can include the following steps. , the method 900 may include the following steps:
  • the first mode can be set as the default manipulation mode in the system configuration.
  • the steering mode is determined as the first mode based on the system configuration.
  • the second mode trigger information may be obtained, and the second mode trigger information may be used to indicate that the manipulation mode is determined to be the second mode.
  • the second mode trigger information can be determined based on the obtained voice instructions, gesture instructions, instructions corresponding to eye tracking, etc., for example, if a voice instruction of "enable game mode" is detected during voice interaction, the second mode trigger information can be determined , etc.; for another example, the second mode trigger information can be determined based on the user's manipulation information of physical or virtual keys and buttons. For example, it is detected that the user triggers "game mode” or "exhibition hall mode" on an interactive device such as a central control screen. Virtual keys, determine second mode trigger information, etc.
  • the vehicle status information and/or the surrounding environment information may be obtained, and it is determined that the vehicle status information and/or the surrounding environment information satisfy the preset conditions. For example, determine whether the vehicle's remaining power, remaining fuel, cruising range, etc. meet the preset threshold, determine whether the status of the parking brake mechanism is enabled; another example, determine whether the vehicle is in a parking space; another example, after passing the second When the mode is working, if the vehicle's remaining power, remaining fuel, etc. do not meet the preset conditions (for example, the vehicle's remaining power is less than or equal to 8%, 10%, etc.), the user can be prompted to switch the control mode. For example, the user can Interactive devices such as the control screen display the prompt message "Your car has insufficient battery power, it is recommended to exit the game mode", or it can also prompt the user through voice and other methods.
  • the preset conditions for example, determine whether the vehicle's remaining power, remaining fuel, cruising range, etc. meet the preset threshold, determine whether the status of the parking brake mechanism is enabled; another
  • the following is a schematic flow chart of another control method provided by the embodiment of the present application with reference to Figure 10. This method can be used in conjunction with the braking system, steering system, and vehicle shown in Figures 2 to 7.
  • the method 1000 can include the following steps. :
  • the steering mode may be set to the first mode.
  • the operation that triggers the second mode can be detected based on voice instructions, gesture instructions, gaze tracking, etc., or the operation that triggers the second mode can be detected based on the user's operations on physical or virtual keys, buttons, etc., or it can be Other processing devices detect the operation of triggering the second mode in the above manner, and send messages to instruct the control device executing the method to trigger the second mode.
  • step S1015 When an operation that triggers the second mode is detected, step S1015 may be skipped. When an operation that triggers the second mode is not detected, step S1005 may be skipped.
  • step S1025 may be skipped, and when the second mode is not activated, step S1015 may be skipped.
  • the boosting device of the braking system can be controlled to be closed, the isolation valve corresponding to the boosting device can be controlled to be in a disconnected state, and the steering drive device of the steering system can be controlled to be closed.
  • the operation indicating exiting the second mode may be detected based on the user's operation on physical or virtual keys, buttons, etc., or based on voice instructions, gesture instructions, or gaze tracking, and may also be understood as an instruction to exit the second mode.
  • the operation mode is switched to the first operation mode. For example, when it is detected that the user clicks "Exit Game Mode" on the central control screen, the second mode can be exited; for another example, when it is detected that the remaining power of the vehicle is less than or equal to a preset threshold (such as 10%, 12% etc.), you can prompt the user to exit the second mode (for example, prompt the user through display, voice, etc. "The battery is low, please exit the current mode and charge as soon as possible"). When the user's affirmative response is detected, the user can exit.
  • This second mode determines the manipulation mode as the first mode.
  • control methods 800, 900, and 1000 can be combined with each other, which is not limited in the embodiments of the present application.
  • Embodiments of the present application also provide a device for implementing any of the above methods.
  • a device is provided that includes units for implementing each step performed by a chip, a vehicle, a vehicle-machine system, etc. in any of the above methods.
  • FIG. 11 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • the device 2000 may include an acquisition unit 2010 and a processing unit 2020 .
  • the acquisition unit 2010 may be used to obtain indication information, and the indication information may be used to indicate the manipulation mode.
  • the processing unit 2020 may be used to determine the manipulation mode according to the indication information, and the manipulation mode may include a first mode or a second mode. , wherein when working through the first mode, the power assist mechanism of the vehicle is controlled in response to the first operation information, the first operation information is used to instruct the braking or steering of the vehicle, or when working through the second mode, the power assist mechanism of the vehicle is controlled The mechanism does not respond to the first operational message.
  • the power assist mechanism reference may be made to the above method 800.
  • the vehicle includes a braking system
  • the braking system may include a first boosting device, the first boosting device being used to adjust the pressure of the brake fluid in the first brake line to control the pressure applied to the vehicle.
  • the braking force on the wheel, the first operation information is used to indicate braking of the vehicle, and the processing unit 2020 can be specifically used to control the first supercharging device to turn off or not act when operating in the second mode.
  • the braking system includes a first control valve.
  • the first control valve When the first control valve is in a conductive state, the first boosting device communicates with the first brake pipeline, or when the first control valve is in a closed state.
  • the processing unit 2020 When in the open state, the first supercharging device is disconnected from the first brake pipeline, and the processing unit 2020 may be specifically configured to control the first control valve to be in the disconnected state when operating in the second mode.
  • the braking system further includes a brake master cylinder, a second control valve, a pedal feel simulation device and a third control valve, wherein when the second control valve is in a conductive state, the brake master cylinder communicates with the first control valve.
  • the brake pipelines are connected and used to control the braking force exerted on the wheels of the vehicle by adjusting the pressure of the brake fluid in the first brake pipeline.
  • the pedal feeling simulates
  • the second brake line of the device is connected to determine the pedal feel by sensing the pressure of the brake fluid in the second brake line.
  • the second control valve is located between the pressure outlet port of the brake master cylinder and the first brake line.
  • the second brake pipeline On the brake pipeline between the pressure inlet ports of the dynamic pipeline, the second brake pipeline includes a brake pipeline between the pressure outlet port of the brake master cylinder and the pressure inlet port of the second control valve.
  • the third control valve is located On the brake pipeline between the pressure outlet port of the second brake pipeline and the pressure inlet port of the pedal feel simulation device, the processing unit 2020 can also be used to control the second control when operating in the second mode. The valve is in a disconnected state, and the third control valve is controlled to be in a conductive state.
  • the processing unit 2020 may also be configured to control the second control valve to be in a conductive state and to control the third control valve to be in a disconnected state when operating in the second mode.
  • the vehicle includes a braking system
  • the braking system includes an in-wheel motor
  • the in-wheel motor is used to adjust the braking force applied to the wheels of the vehicle
  • the first operation information is used to indicate braking of the vehicle
  • the The processing unit 2020 may be specifically configured to control the wheel hub motor to turn off or not act when operating in the second mode.
  • the vehicle includes a steering drive device and a transmission member
  • the transmission member is used to convert the obtained power to apply a steering force to the wheels of the vehicle
  • the steering drive device is used to provide power to the transmission member
  • the The first operation information is used to indicate steering of the vehicle
  • the processing unit 2020 may be specifically configured to control the steering drive device to turn off or not act when operating in the second mode.
  • the obtaining unit 2010 can also be used to obtain the first operation information
  • the processing unit 2020 can also be used to determine expected action information according to the first operation information.
  • the acquisition unit 2010 can also be used to obtain vehicle status information and/or surrounding environment information, and the processing unit 2020 can also be used to determine the vehicle status information and/or surrounding environment information. Or the surrounding environment information meets the preset conditions.
  • the processing unit 2020 may also be configured to obtain the indication information when it is determined that the game application is in a running state.
  • each unit in the above device is only a division of logical functions.
  • the units may be fully or partially integrated into a physical entity, or may be physically separated.
  • the unit in the device can be implemented in the form of a processor calling software; for example, the device includes a processor, the processor is connected to a memory, instructions are stored in the memory, and the processor calls the instructions stored in the memory to implement any of the above methods.
  • the processor is, for example, a general-purpose processor, such as a CPU or a microprocessor
  • the memory is a memory within the device or a memory outside the device.
  • the units in the device can be implemented in the form of hardware circuits, and some or all of the functions of the units can be implemented through the design of the hardware circuits, which can be understood as one or more processors; for example, in one implementation,
  • the hardware circuit is an ASIC, which realizes the functions of some or all of the above units through the design of the logical relationship of the components in the circuit; for another example, in another implementation, the hardware circuit can be implemented through PLD, taking FPGA as an example. It can include a large number of logic gate circuits, and the connection relationships between the logic gate circuits can be configured through configuration files to realize the functions of some or all of the above units. All units of the above device may be fully realized by the processor calling software, or may be fully realized by hardware circuits, or part of the units may be realized by the processor calling software, and the remaining part may be realized by hardware circuits.
  • the processor is a circuit with signal processing capabilities.
  • the processor may be a circuit with instruction reading and execution capabilities, such as a CPU, a microprocessor, a GPU, or DSP, etc.; in another implementation, the processor can realize certain functions through the logical relationship of the hardware circuit. The logical relationship of the hardware circuit is fixed or can be reconstructed.
  • the processor is a hardware circuit implemented by ASIC or PLD. For example, FPGA.
  • the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as NPU, TPU, DPU, etc.
  • each unit in the above device can be one or more processors (or processing circuits) configured to implement the above method, such as: CPU, GPU, NPU, TPU, DPU, microprocessor, DSP, ASIC, FPGA , or a combination of at least two of these processor forms.
  • processors or processing circuits
  • each unit in the above device may be integrated together in whole or in part, or may be implemented independently. In one implementation, these units are integrated together and implemented as a system-on-a-chip (SOC).
  • SOC may include at least one processor for implementing any of the above methods or implementing the functions of each unit of the device.
  • the at least one processor may be of different types, such as a CPU and an FPGA, or a CPU and an artificial intelligence processor. CPU and GPU etc.
  • FIG. 12 is a schematic block diagram of a controller according to an embodiment of the present application.
  • the controller 3000 shown in FIG. 12 may include: a memory 3010, a processor 3020, and a communication interface 3030.
  • the memory 3010, the processor 3020, and the communication interface 3030 are connected through an internal connection path.
  • the memory 3010 is used to store instructions
  • the processor 3020 is used to execute the instructions stored in the memory 3020 to control the communication interface 3030 to receive/send information. For example, receive the instruction information.
  • the memory 3010 can be coupled with the processor 3020 through an interface, or can be integrated with the processor 3020 .
  • the above-mentioned communication interface 3030 includes but is not limited to a transceiver and other transceiver devices, and is used to implement communication between the controller 3000 and other devices or communication networks.
  • the above-mentioned communication interface 3030 may also include an input/output interface.
  • first brake pipeline “second brake pipeline” and other hydraulic pipelines involved in this application can be understood as one or more sections of hydraulic pipelines that implement a certain function.
  • first brake line includes one or more sections of brake line in communication with the brake wheel cylinder.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Regulating Braking Force (AREA)

Abstract

本申请实施例提供了一种控制方法、控制装置和车辆,该控制方法可以包括:获取指示信息,该指示信息可以用于指示操纵模式;根据该指示信息,确定操纵模式,该操纵模式可以包括第一模式,或第二模式,其中,通过第一模式工作时,控制车辆的助力机构响应于第一操作信息,该第一操作信息用于指示车辆的制动或转向,或在通过第二模式工作时,控制车辆的助力机构不响应于第一操作信息。本申请实施例可以应用于智能汽车或电动汽车,有利于减少助力机构的工作时间,可以在满足用户使用需求的同时,提升助力机构的使用寿命。

Description

一种控制方法、控制装置和车辆 技术领域
本申请实施例涉及智能车领域,并且更具体地,涉及一种控制方法、控制装置和车辆。
背景技术
随着车辆智能化的发展,车辆已不仅仅是一个出行工具,还可以承担一定的娱乐功能。随着智能座舱时代的到来,用户可以获得车内和车外的一致体验,在不同使用场景下,应用和服务可以在多个设备间无缝切换,用户可以无需关注哪些设备提供资源,而享受其所提供的服务。例如,用户在进行车载游戏等娱乐,比如通过车辆的方向盘、制动踏板等实现游戏、娱乐功能时,如何平衡用户的体验和整车的系统设计能力,对车辆的电动化提出了新的要求。
发明内容
本申请实施例提供一种控制方法、控制装置和车辆,以保护助力机构,提升助力机构的使用寿命。
本申请中的车辆为广义概念上的车辆,可以是交通工具(如商用车、乘用车、摩托车、飞行车、火车等),工业车辆(如:叉车、挂车、牵引车等),工程车辆(如挖掘机、推土车、吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请实施例对车辆的类型不作具体限定。
第一方面,提供了一种控制方法,该控制方法可以包括:获取指示信息,该指示信息可以用于指示操纵模式;根据该指示信息,确定操纵模式,该操纵模式可以包括第一模式,或第二模式,其中,通过第一模式工作时,控制车辆的助力机构响应于第一操作信息,该第一操作信息用于指示车辆的制动或转向,或在通过第二模式工作时,控制车辆的助力机构不响应于第一操作信息。
本申请实施例中,由于操纵模式包括第一模式或第二模式,在通过第二模式工作时,车辆的助力机构可以不响应于第一操作信息,由此可以减少对于助力机构的作动时间、次数,可以在满足用户使用需求的同时,提升助力机构的使用寿命。
结合第一方面,在第一方面的某些实现方式中,车辆包括制动系统,制动系统可以包括第一增压装置,该第一增压装置用于调节第一制动管路内制动液的压力,以控制施加在该车辆的车轮上的制动力,该第一操作信息用于指示对该车辆制动,该在通过该第二模式工作时,控制该车辆的该助力机构不响应于该第一操作信息,包括:在通过该第二模式工作时,控制该第一增压装置关闭或不作动。
本申请实施例中,通过控制第一增压装置关闭或不作动,可以减少该第一增压装置的工作时间、次数,有助于提升第一增压装置的使用寿命。
结合第一方面,在第一方面的某些实现方式中,该制动系统包括第一控制阀,在该第 一控制阀处于导通状态时,第一增压装置与第一制动管路相通,或,在该第一控制阀处于断开状态时,该第一增压装置与该第一制动管路断开,该在通过该第二模式工作时,控制该车辆的该助力机构不响应于该第一操作信息,可以包括:在通过该第二模式工作时,控制该第一控制阀处于断开状态。
本申请实施例中,通过控制第一控制阀处于断开状态,可以减少该第一控制阀的工作时间、次数,有助于提升该第一控制阀的使用寿命。
结合第一方面,在第一方面的某些实现方式中,该制动系统还包括制动主缸、第二控制阀、踏板感觉模拟装置和第三控制阀,其中,该第二控制阀处于导通状态时,制动主缸与第一制动管路相通,用于通过调节第一制动管路内的制动液的压力,以控制施加在车辆的车轮上的制动力,该第三控制阀处于导通状态时,踏板感觉模拟装置第二制动管路相通,用于通过感知第二制动管路内的制动液的压力,以确定踏板感觉,该第二控制阀位于制动主缸的压力出端口与第一制动管路的压力入端口间的制动管路上,该第二制动管路包括制动主缸压力出端口与第二控制阀的压力入端口间的制动管路,第三控制阀位于该第二制动管路的压力出端口与踏板感觉模拟装置的压力入端口间的制动管路上,该控制方法还可以包括:在通过该第二模式工作时,控制该第二控制阀处于断开状态,且控制该第三控制阀处于导通状态。
本申请实施例中,通过控制第二控制阀处于断开状态、第三控制阀处于导通状态,基于制动主缸与第二控制阀间的制动管路内的制动液的压力,踏板感觉模拟装置可以向用户提供踏板感觉,比如,在用户通过车辆的制动踏板操纵游戏应用的场景下,可以为用户提供更好的游戏体验。
结合第一方面,在第一方面的某些实现方式中,该控制方法还可以包括:在通过该第二模式工作时,控制第二控制阀处于导通状态,且控制第三控制阀处于断开状态。
本申请实施例中,通过控制第三控制阀处于断开状态,可以断开踏板感觉模拟装置与第二制动管路间的连接,可以使得踏板感觉模拟装置不响应于用户对于制动踏板的操纵,从而可以保护踏板感觉模拟装置,有助于提升踏板感觉模拟装置的使用寿命。
结合第一方面,在第一方面的某些实现方式中,该车辆包括制动系统,该制动系统包括轮毂电机,该轮毂电机用于调节施加于该车辆的车轮的制动力,该第一操作信息用于指示对该车辆制动,该在通过该第二模式工作时,控制该车辆的该助力机构不响应于该第一操作信息,可以包括:在通过该第二模式工作时,控制该轮毂电机关闭或不作动。
本申请实施例中,采用轮毂电机的制动系统、车辆,通过控制轮毂电机关闭或不作动,可以使得轮毂电机不响应于用户对于制动踏板等操纵装置的输入,从而可以提升该轮毂电机的使用寿命。
结合第一方面,在第一方面的某些实现方式中,该车辆包括转向驱动装置和传动构件,该传动构件用于对获取的动力进行转化,以向该车辆的车轮施加转向力,该转向驱动装置用于为该传动构件提供动力,该第一操作信息用于指示对该车辆转向,该在通过该第二模式工作时,控制该车辆的该助力机构不响应于该第一操作信息,可以包括:在通过该第二模式工作时,控制该转向驱动装置关闭或不作动。
本申请实施例中,在通过第二模式工作时,通过控制该转向驱动装置关闭或不作动,使得转向系统的助力机构可以不响应于用户的操纵,也可以提升该转向驱动装置的使用寿 命。
结合第一方面,在第一方面的某些实现方式中,该操纵模式为该第二模式,该控制方法还可以包括:获取该第一操作信息;根据该第一操作信息,确定预期作动信息,其中,该预期作动信息包括,为响应于该第一操作信息,该助力机构预期作动的次数。
本申请实施例中,通过第二模式工作时,虽然助力机构可以不响应于用户对于制动系统、转向系统的操纵,但是制动系统、转向系统中的部分装置,可能会基于用户的操纵而作动,由此,通过确定预期作动信息,可以确定上述系统中作动部分与未作动部分的工作次数的差异,有利于分别确定各装置的剩余工作寿命,有利于对各装置的工作寿命进行管理,有利于对在各装置的工作寿命到期时提示用户。
结合第一方面,在第一方面的某些实现方式中,在确定操纵模式为第二模式之前,该控制方法还可以包括:获取车辆状态信息和/或周边环境信息;确定该车辆状态信息和/或周边环境信息满足预设条件。
本申请实施例中,由于通过第二模式工作时,助力机构可以不响应于用户的操纵,由此,在将操纵模式确定为第二模式之前,通过确定车辆状态信息和/或周边环境信息,可以保证将操纵模式确定为第二模式时,车辆处于安全的环境、状态,有利于保证用户与车辆的安全。
结合第一方面,在第一方面的某些实现方式中,该车辆包括游戏应用,该获取该指示信息,可以包括:在确定游戏应用处于运行状态时,获取该指示信息。
第二方面,提供了一种控制装置,该控制装置可以包括,获取单元,可以用于获取指示信息,指示信息可以用于指示操纵模式;该处理单元,可以用于根据指示信息,确定操纵模式,该操纵模式可以包括第一模式或第二模式,其中,通过第一模式工作时,控制车辆的助力机构响应于第一操作信息,该第一操作信息用于指示车辆的制动或转向,或在通过第二模式工作时,控制车辆的助力机构不响应于第一操作信息。
结合第二方面,在第二方面的某些实现方式中,车辆包括制动系统,制动系统可以包括第一增压装置,该第一增压装置用于调节第一制动管路内制动液的压力,以控制施加在该车辆的车轮上的制动力,该第一操作信息用于指示对该车辆制动,处理单元,具体可以用于,在通过第二模式工作时,控制第一增压装置关闭或不作动。
结合第二方面,在第二方面的某些实现方式中,该制动系统包括第一控制阀,在该第一控制阀处于导通状态时,第一增压装置与第一制动管路相通,或,在该第一控制阀处于断开状态时,该第一增压装置与该第一制动管路断开,处理单元,具体可以用于,在通过第二模式工作时,控制第一控制阀处于断开状态。
结合第二方面,在第二方面的某些实现方式中,该制动系统还包括制动主缸、第二控制阀、踏板感觉模拟装置和第三控制阀,其中,该第二控制阀处于导通状态时,制动主缸与第一制动管路相通,用于通过调节第一制动管路内的制动液的压力,以控制施加在车辆的车轮上的制动力,该第三控制阀处于导通状态时,踏板感觉模拟装置第二制动管路相通,用于通过感知第二制动管路内的制动液的压力,以确定踏板感觉,该第二控制阀位于制动主缸的压力出端口与第一制动管路的压力入端口间的制动管路上,该第二制动管路包括制动主缸压力出端口与第二控制阀的压力入端口间的制动管路,第三控制阀位于该第二制动管路的压力出端口与踏板感觉模拟装置的压力入端口间的制动管路上,处理单元,还可以 用于,在通过该第二模式工作时,控制该第二控制阀处于断开状态,且控制该第三控制阀处于导通状态。
结合第二方面,在第二方面的某些实现方式中,该处理单元,还可以用于,在通过该第二模式工作时,控制第二控制阀处于导通状态,且控制第三控制阀处于断开状态。
结合第二方面,在第二方面的某些实现方式中,该车辆包括制动系统,该制动系统包括轮毂电机,该轮毂电机用于调节施加于该车辆的车轮的制动力,该第一操作信息用于指示对该车辆制动,该处理单元,具体可以用于,在通过该第二模式工作时,控制该轮毂电机关闭或不作动。
结合第二方面,在第二方面的某些实现方式中,该车辆包括转向驱动装置和传动构件,该传动构件用于对获取的动力进行转化,以向该车辆的车轮施加转向力,该转向驱动装置用于为该传动构件提供动力,该第一操作信息用于指示对该车辆转向,该处理单元,具体可以用于,在通过该第二模式工作时,控制该转向驱动装置关闭或不作动。
结合第二方面,在第二方面的某些实现方式中,该获取单元,还可以用于获取该第一操作信息,该处理单元,还可以用于根据该第一操作信息,确定预期作动信息。
结合第二方面,在第二方面的某些实现方式中,在确定操纵模式为第二模式之前,该获取单元,还可以用于获取车辆状态信息和/或周边环境信息,该处理单元,还可以用于确定该车辆状态信息和/或周边环境信息满足预设条件。
结合第二方面,在第二方面的某些实现方式中,该车辆包括游戏应用,该处理单元,还可以用于,在确定游戏应用处于运行状态时,获取该指示信息。
第三方面,提供了一种制动系统,该制动系统包括制动助力机构和控制装置,该控制装置用于获取指示信息,该指示信息用于指示操纵模式;根据该指示信息,确定该操纵模式,该操纵模式包括第一模式,或第二模式,其中,在通过该第一模式工作时,控制该制动助力机构响应于第一操作信息,该第一操作信息用于指示对该车辆制动;或,在通过该第二模式工作时,控制该制动助力机构不响应于该第一操作信息。
结合第三方面,在第三方面的某些实现方式中,该制动助力机构包括第一增压装置,该第一增压装置用于通过调节第一制动管路内的制动液的压力,以控制施加在该车辆的车轮上的制动力,该控制装置具体用于:在通过该第二模式工作时,控制该第一增压装置关闭或不作动。
结合第三方面,在第三方面的某些实现方式中,该制动系统包括第一控制阀,在该第一控制阀处于导通状态时,该第一增压装置与该第一制动管路相通,或,在该第一控制阀处于断开状态时,该控制装置具体可以用于:在通过该第二模式工作时,控制该第一控制阀处于断开状态。
结合第三方面,在第三方面的某些实现方式中,该制动系统还包括制动主缸、第二控制阀、踏板感觉模拟装置和第三控制阀,其中,该第二控制阀处于导通状态时,该制动主缸与该第一制动管路相通,用于通过调节该第一制动管路内的制动液的压力,以控制施加在该车辆的车轮上的制动力,该第三控制阀处于导通状态时,该踏板感觉模拟装置与第二制动管路相通,用于通过感知该第二制动管路内的制动液的压力,以确定踏板感觉,该第二控制阀位于该制动主缸的压力出端口与该第一制动管路的压力入端口间的制动管路上,该第二制动管路包括该制动主缸压力出端口与该第二控制阀的压力入端口间的制动管路, 该第三控制阀位于该第二制动管路的压力出端口与该踏板感觉模拟装置的压力入端口间的制动管路上,该控制装置还可以用于:在通过该第二模式工作时,控制该第二控制阀处于断开状态,且控制该第三控制阀处于导通状态。
结合第三方面,在第三方面的某些实现方式中,该控制装置还可以用于:在通过该第二模式工作时,控制第二控制阀处于导通状态,且控制第三控制阀处于断开状态。
结合第三方面,在第三方面的某些实现方式中,该制动助力机构包括轮毂电机,该轮毂电机用于调节施加于该车辆的车轮的制动力,该第一操作信息用于指示对该车辆制动,该控制装置,具体可以用于:在通过第二模式工作时,控制该轮毂电机关闭或不作动。
结合第三方面,在第三方面的某些实现方式中,该控制装置还可以用于:根据该第一操作信息,确定预期作动信息,其中,该预期作动信息包括,为响应于该第一操作信息,该制动助力机构预期作动的次数。
结合第三方面,在第三方面的某些实现方式中,在确定该操纵模式为该第二模式之前,该控制装置还可以用于:获取车辆状态信息和/或周边环境信息;确定该车辆状态信息和/或该周边环境信息满足预设条件。
第四方面,提供了一种转向系统,该转向系统包括转向助力机构和控制装置,该控制装置可以用于:获取指示信息,该指示信息用于指示操纵模式;根据该指示信息,确定该操纵模式,该操纵模式包括第一模式,或第二模式,其中,在通过该第一模式工作时,控制该转向助力机构响应于第一操作信息,该第一操作信息用于指示对该车辆转向;或,在通过该第二模式工作时,控制该转向助力机构不响应于该第一操作信息。
结合第四方面,在第四方面的某些实现方式中,该转向系统包括传动构件,该转向助力机构包括转向驱动装置,该传动构件用于对获取的动力进行转化,以向该车辆的车轮施加转向力,该转向驱动装置用于为该传动构件提供动力,该控制装置,具体可以用于:在通过该第二模式工作时,控制该转向驱动装置关闭或不作动。
结合第四方面,在第四方面的某些实现方式中,该控制装置还可以用于:根据该第一操作信息,确定预期作动信息,其中,该预期作动信息包括,为响应于该第一操作信息,该制动助力机构预期作动的次数。
结合第四方面,在第四方面的某些实现方式中,在确定该操纵模式为该第二模式之前,该控制装置还可以用于:获取车辆状态信息和/或周边环境信息;确定该车辆状态信息和/或该周边环境信息满足预设条件。
第五方面,提供了一种控制装置,该控制装置可以包括:处理单元和存储单元,其中存储单元用于存储指令,处理单元用于执行存储单元所存储的指令,以使得该控制装置执行上述第一方面中任一种可能实现方式中的方法。
可选地,上述控制装置可以是车辆中独立的控制器,也可以是车辆中具有控制功能的芯片。上述处理单元可以是处理器,上述存储单元可以是存储器,其中存储器可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是车辆内位于上述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
需要说明的是,上述控制装置中存储器可以与处理器耦合。存储器与处理器耦合,可以理解为,存储器位于处理器内部,或者存储器位于处理器外部,从而独立于处理器。
第六方面,提供了一种车辆,该车辆包括上述第二方面中任一种可能实现方式中的控 制装置或者上述第三方面中任一种实现方式中的控制装置,或上述第三方面中任一种可能实现方式中的制动系统,和/或,上述第四方面中任一种可能的是实现方式中的转向系统。
第七方面,提供了一种计算机程序产品,上述计算机程序产品包括:计算机程序代码,当上述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第八方面,提供了一种计算机可读介质,上述计算机可读介质存储由程序代码,当上述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法。
附图说明
图1是是本申请实施例提供的车辆100的一个功能框图示意。
图2是本申请实施例提供的一种制动系统的示意图。
图3是本申请实施例提供的另一种制动系统的示意图。
图4是本申请实施例提供的另一种制动系统的示意图。
图5是本申请实施例提供的另一种制动系统的示意图。
图6是本申请实施例提供的一种转向系统的示意图。
图7是本申请实施例提供的另一种转向系统的示意图。
图8是本申请实施例提供的一种控制方法的示例性流程图。
图9是本申请实施例提供的另一种控制方法的流程示意图。
图10是本申请实施例提供的另一种控制方法的流程示意图。
图11是本申请实施例提供的一种控制装置的结构示意图。
图12是本申请实施例的控制器的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例提供的车辆100的一个功能框图示意。车辆100可以包括制动系统、转向系统、动力系统和计算平台。可选地,车辆100可以包括更多或更少的系统,并且其中各子系统都可包括一个或多个部件。另外,车辆100的每个子系统和部件可以通过有线或者无线的方式实现互连。
制动系统可以用于控制车辆100减速。制动系统可使用摩擦力来减慢车轮,一些可能的实现方式中,制动系统可将车轮的动能转换为电流。制动系统也可采取其他形式来减慢车轮转速从而控制车辆100的速度。例如,一个实施例中,该制动系统可以是线控解耦式制动系统,该制动系统可以包括制动踏板、制动主缸、踏板模拟器、主动增压单元等。为了简洁,此处不再赘述。
转向系统可以用于调整车辆100的前进方向。例如,在一个实施例中,该转向系统可以为方向盘转向系统;又例如,在一个实施例中,该转向系统可以是线控解耦式转向系统, 该转向系统可以包括方向盘和助力单元,该助力单元可以协助驾驶员对车辆行进方向进行的调整。
动力系统可以用于为车辆的行驶提供动力。在一个实施例中,动力系统可包括引擎、能量源、传动系统和车轮。引擎可以是内燃机、电动机、空气压缩引擎或其他类型的引擎组合,例如,汽油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎,引擎将能量源转换成机械能量。
一些可能的实现方式中,车辆100可以包括感知系统、显示装置,其中,感知系统可以包括感测关于车辆100周边的环境的信息的若干种传感器。例如,感知系统120可以包括定位系统,定位系统可以是全球定位系统(global positioning system,GPS),也可以是北斗系统或者其他定位系统、惯性测量单元(inertial measurement unit,IMU)、激光雷达、毫米波雷达、超声雷达以及摄像装置中的一种或者多种。
车辆100的部分或所有功能可以由计算平台控制。计算平台可包括一个或多个处理器,处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(central processing unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital signal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specific integrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如现场可编程门阵列(Field Programmable Gate Array,FPGA)。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing unit,NPU)、张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learning processing unit,DPU)等。此外,计算平台还可以包括存储器,存储器用于存储指令,计算平台中的部分或全部处理器可以调用存储器中的指令,执行指令,以实现相应的功能。例如,该计算平台可以用于实现游戏、娱乐、音乐等功能;又例如,通过检测用户是否使用游戏功能,该计算平台可确定是否控制车辆处于游戏模式。
随着智能化的发展,车辆已不仅仅是一个出行工具,比如,在该游戏、娱乐模式的场景下,在用户通过车辆实现游戏功能,比如,用户不借助于手柄、模拟方向盘等外部设备,而通过方向盘、制动踏板等车辆自身的操纵装置,可以实现对于游戏应用的操纵,又比如,车辆处于展厅场景时,用户可能会对方向盘、制动踏板等装置进行操作。在上述场景下,一方面,若基于用户对于上述操纵装置的操作,控制车辆的制动系统、转向系统、动力系统等进行工作,可能会影响用户、车辆的安全,另一方面,由于车辆的某些部件的设计使用寿命有限,在该场景下,若车辆的制动系统、转向系统、动力系统等响应于用户在游戏等功能中的操作,可能会降低车辆的制动系统、转向系统等在正常使用场景下的使用寿命,从而可能影响用户、车辆的安全。根据本申请实施例所提供的方法,在用户通过车辆自身的操纵装置实现对于游戏应用的操纵时,可以控制车辆的制动系统、转向系统不响应于用户的操作,比如,关闭制动系统的主动增压功能、关闭转向系统的助力转向的功能,从而可以避免影响用户的娱乐体验,也可以保证用户、车辆的安全。
示例性地,图2是本申请实施例提供的一种制动系统200的示意图。如图2所示,该制动系统200可以搭载于车辆,比如,搭载该制动系统200的车辆,可以包括,制动踏板215,以及第一组车轮121、第二组车轮122。
第一组车轮121可以包括两个车轮,相应地,制动轮缸17和18可以分别为该第一组车轮121中的车轮提供制动力。上述第一组车轮121与第二组车轮122不同,比如,第一组车轮121包括左前轮和右前轮,且第二组车轮122包括右后轮和左后轮,即制动系统200可以为H型布置,又比如,第一组车轮121包括右前轮和左后轮,第二组车轮122包括左前轮和右后轮,即制动系统200可以为X型布置,本申请对此不做限定。
需要说明的是,下文为了便于描述制动系统中各个制动元件之间的连接关系,会使用“压力出端口”以及“压力入端口”等术语。其中,“压力出端口”可以理解为制动液流出的端口,“压力入端口”可以理解为制动液流入的端口。也就是说,“压力出端口”以及“压力入端口”可以理解为是从功能上限定端口的作用,上述“压力出端口”以及“压力入端口”可以用于限定一个物理端口在不同的工作模式下的作用,上述“压力出端口”以及“压力入端口”还可以对应两个不同的物理端口,本申请实施例对此不做限定。
制动回路供应管路(171、172),可以通过制动管路,与制动轮缸(17、18、19、20)相通。例如,如图2所示,进液管路的压力出端口(1、2、3、4)可以分别和制动轮缸(17、18、19、20)的压力入端口(5、6、7、8)相连,通过增加制动回路供应管路171中制动液的压力,可以将进液管路中的制动液的压力传递到制动轮缸(17、18),从而可以为第一组车轮121提供制动力,类似地,制动回路供应管路172可以用于为第二组车轮122提供制动力。
对于制动系统而言,在一些可能的实现方式中,需要为不同的车轮施加不同的制动力。示例性地,可以在控制每个车轮的制动力对应的制动管路上配置进液阀(9、10、11、12),以便独立管理向每个车轮施加的制动力。即,控制需要施加制动力的车轮对应的进液阀处于导通状态,控制其他不需要施加制动力的车轮对应的进液阀处于断开状态。例如,如图2所示,在制动轮缸17的压力入端口5之前进液管路中,比如,制动回路供应管路171与压力入端口5之间的制动管路中,可以设置有进液阀9,该设置进液阀的制动管路也可以称为进液阀所在的制动管路,当进液阀9处于导通状态时,通过增大该制动管路中的制动液的压力,可以增大施加到制动轮缸17的制动力,从而可以独立管理施加于对应车轮上的制动力,进液阀10、11、12的功能类似,为了简洁,此处不再赘述。
对于制动系统而言,在一些情况下,还需要减小在车轮上的制动力。示例性地,可以在车轮对应的制动管路上配置出液阀(13、14、15、16),以便独立管理施加于该车轮上的制动力。即控制需要减小制动力的车轮对应的出液阀处于导通状态,控制其他不需要减小制动力的车轮对应的出液阀处于断开状态。当出液阀处于导通状态时,制动管路内的制动液可以通过出液阀流向出液管路110,并通过出油管制动管路110流向储液装置101,以便循环利用。例如,如图2所示,在制动轮缸17的压力入端口5之前回油管路中,比如,出液管路110与压力入端口5之间的制动管路中,可以设置有出液阀13,该设置出液阀的制动管路也可以称为出液阀所在的制动管路,当出液阀13处于导通状态时,该制动管路内的制动液,可以通过出液阀13流向出液管路110,最后流向储液装置101,以避免通过制动液向制动轮缸17加压,当出液阀13处于断开状态时,该制动管路中的制动液 被出液阀13阻断,无法流向出液管路110,出液阀14、15、16的功能类似,为了简洁,此处不再赘述。
需要说明的是,在减小施加在车轮上的制动力的过程中,上述出液管路用于减小制动回路中的制动液的压力,制动液可以通过该出液管路流向储液装置101,因此,上述出液管路110也可以称为“回油管路”;在制动系统中,可以通过进液管路为车辆的车轮提供制动力,进液管路可以包括一段或多段制动管路,比如,在制动过程中,上述制动回路供应管路,可以为车轮提供制动力,也就是说,该制动系统的进液管路可以包括该制动回路供应管路。
另外,进液管路可以包括用于车轮提供制动力的一个或多个制动管路,回油管路可以包括用于制动液流向储液装置的一个或多个制动管路。上述涉及的“出液管路”、“回油管路”、“进液管路”,仅仅基于制动管路在制动系统中的功能来区分,可以对应于不同的制动管路,也可以对应于相同的一条制动管路。例如,制动回路供应管路171中的制动液可以通过进油阀9流向制动轮缸17,该制动回路供应管路可以起到进液管路的作用,可以作为进液管路中的制动管路,而在一些可能的实现方式中,制动轮缸17中的制动液可以通过压力端口1流向制动回路供应管路171,进而通过隔离阀117、制动主缸210流向储液装置101,也就是说,此时,制动管路171也可以起到回油管路的作用,此时,制动管路171也可以成为回油管路中的制动管路。
上述出液阀的方案和进液阀的方案可以单独配置在制动系统中使用,也可以与相互配合使用在一个制动系统中。下文结合图2以制动轮缸17对应的出液阀13、进液阀9的连接方式为例,介绍本申请实施例提供的出液阀13、进液阀9之间的连接方式。类似地,制动轮缸18对应的出液阀14、进液阀10的连接方式,制动轮缸19对应的出液阀15、进液阀11的连接方式,制动轮缸20对应的出液阀16、进液阀12的连接方式,可以采用相同的连接方式。
进液阀9位于制动回路供应管路171与压力入端口5之间,且进液阀9的压力入端口与制动回路供应管路171相连,进液阀9的压力出端口与出液阀13的压力入端口相连,同时,进液阀9的压力出端口还与制动轮缸17的压力入端口5相连。出液阀13的压力出端口与出液管路110相连。可选地,为了防止制动液由制动轮缸17向制动回路供应管路的方向流动,即制动液回流,还可以在进液阀9的两端(压力出端口以及压力入端口)并联单向阀109。
需要说明的是,上述进液阀和出液阀的配合方式有很多种,上文仅列中了其中的一种。例如,制动轮缸17可以通过两个并联的独立制动管路,分别与制动回路供应管路171、出液管路110相连,将进液阀和出液阀分别设置在这两个独立的制动管路上。本申请实施例对此不做限定。
另外,上述中涉及的“进油阀”、“出油阀”,以及下文涉及的“隔离阀”仅仅基于控制阀在制动系统中的功能来区分的。用于控制进液管路连通或者断开的控制阀可以称为“进油阀”或者“增压阀”。用于控制回油管路连通或者断开的控制阀可以称为“出油阀”或者“减压阀”。用于隔离两级制动子系统的控制阀可以称为“隔离阀”。其中,上述控制阀可以是现有的制动系统中常用的阀,例如,电磁阀等,本申请实施例对此不作具体限定。
制动主缸210可以用于通过调节制动回路供应管路的压力,以控制施加在车轮上的制动力。示例性地,制动主缸210可以是串联双腔式制动主缸。例如,制动主缸210可以包括第一腔211和第二腔212,比如,第一腔211的压力出端口21可以与制动压力供应管路171的压力入端口相连,第二腔212的压力出端口22与制动压力供应管路172的压力入端口相连,由制动主缸210第一腔211流出的制动液可以流向制动回路供应管路171,从而通过增加制动管路内的制动液的压力,增加施加在第一组车轮121上的制动力,由制动主缸210第二腔212流出的制动液,可以流向制动回路供应管路172,从而为第二组车轮212提供制动力。当然上述制动主缸210还可以是单腔的,此时,从该制动主缸210流出的制动液,比如,可以通过两组并联的进液管路分别为第一组车轮121、第二组车轮122提供制动力。本申请实施例对制动主缸210的具体形式不做限定。
示例性地,搭载该制动系统200的汽车还可以包括制动踏板215,制动主缸210可以通过活塞杆等连接机构,与制动踏板215相连,从而可以将制动踏板的运动与制动主缸210的活塞的运动相耦合。由于制动踏板的运动与制动主缸的活塞的运动相耦合,制动踏板215的行程,或者说,该活塞的行程,可以通过制动踏板行程传感器219进行检测。为了检测制动系统中的制动液的压力,可以在制动管路中设置压力传感器。例如,可以在制动主缸210的压力出端口设置压力传感器218,如图2所示,可以在制动管路中设置压力传感器154、压力传感器135,也可以在制动回路中设置更多或更少的压力传感器,本申请实施例对此不做限定。
示例性地,制动主缸210可以通过压力补偿管路(177、178)与储液装置101相连。可选地,压力补偿管路中可以设置有控制阀。例如,可以在压力补偿管路178中设置控制阀216,为防止制动液回流,还可以在该控制阀216的两端并联单向阀217,在该控制阀216导通时,制动主缸210的第二腔212可以与储液装置101连通,当该控制阀216断开时,制动液可以通过单向阀217从储液装置101流向制动主缸210的第二腔212,而无法从制动主缸210的第二腔212流向储液装置101。
可选地,当第一腔211故障时,为了避免第一腔211间歇性加压等情况的出现,可以在第一腔211的压力出端口设置控制阀213,当第一腔211故障后,可以控制该控制阀213处于断开状态,此时,第一腔211与制动回路供应管路171之间断开。相应地,也可以在第二腔212的压力出端口设置控制阀214,当第二腔212故障后,可以控制该控制阀214处于断开状态,此时,第二腔212与制动回路供应管路172之间断开,因此,上述控制阀213、控制阀214又称“隔离阀”。
示例性地,该制动系统200包括可电子控制的增压装置130,该增压装置130,用于提供施加在第一组车轮211和第二组车轮212上的制动力。例如,该增压装置130可以与制动回路供应管路(171、172)连通,从而通过增加该制动回路供应管路(171、172)内的制动液的压力,增加施加于第一组车轮211和第二组车轮212上的制动力;又例如,该增压装置130也可以通过与制动回路供应管路(171、172)并联的制动管路,和制动轮缸(17、18、19、20)连通。
可选地,在该增压装置130故障时,为避免其间歇性地为制动系统加压的情况出现,可以在该增压装置130的压力出端口设置隔离阀。例如,如图2所示,可以在增压装置130的压力出端口设置隔离阀134,在需要其提供增加制动管路内的制动液的压力时,可 以使隔离阀134处于导通状态。可以在隔离阀134与制动回路供应管路(171、172)间设置压力传感器135。
可选地,在第一组车轮121对应的进液管路,与第二组车轮对应的进液管路可以连通时,为避免两组进液管路间的相互影响,可以在两组进液管路间设置控制阀,以断开二者的关联。例如,如图2所示,增压装置130通过控制阀134所在的制动管路,与制动回路供应管路171与制动回路供应管路172间的连通,可以在增压装置130的压力出端口与制动回路供应管路(171、172)间设置控制阀(137、138),当控制阀137导通时,制动液可以由液压缸133流向制动回路供应管路171,从而可以增加该管路中的制动液的压力,当控制阀138导通时,液压缸133中的制动液可以流向制动回路供应管路172,由此,当控制阀137导通而控制阀138断开时,可以单独管理施加于第一组车轮121上的制动力,当控制阀138导通而控制阀137断开时,可以单独管理施加于第二组车轮122上的制动力。上述控制阀134、控制阀137、控制阀138,又称“隔离阀”。
可选地,该增压装置130可以包括电机132以及液压缸133,电机132可以用于驱动液压缸133中的活塞做直线往复运动,将液压缸133内的制动液压入制动管路中,以增加制动回路供应管路(171、172)内制动液的压力。可以通过转子位置传感器139监测电机132的工作状态。
可选地,该液压缸133可以是双作用柱塞缸(dual apply plunger,DAP),当然,该液压缸133也可以是其他形式的液压缸,比如单作用液压缸等,本申请实施例对液压缸的具体形式不做限定。
可选地,为了提高制动系统的冗余性能,该制动系统200还可以包括可线控的增压装置119,可以通过进液管路为车轮提供制动力。例如,如图2所示,以第一组车轮121为例,增压装置119可以与制动回路供应管路171连通,从增压装置119流出的制动液,可以通过隔离阀117、制动回路供应管路171,流向制动轮缸(17、18),从而为第一组车轮121提供制动力;类似地,增压装置119可以与制动回路供应管路172连通,为第二组车轮122提供制动力;又例如,该增压装置119也可以通过与制动回路供应管路(171、172)并联的独立制动管路,和制动轮缸(17、18、19、20)连通,从而为车轮提供制动力。
可选地,上述增压装置119包括电机,电机通过驱动柱塞泵111运动,通过制动回路供应管路171,将制动液压入制动轮缸(17、18);类似地,电机通过驱动柱塞泵112运动,可以将制动液压入制动轮缸(19、20),从而为第二组车轮212提供制动力。
示例性地,柱塞泵(111、112)可以与储液装置101连通。例如,如图2所示,为防止回流,柱塞泵111可以通过单向阀125与储液装置101连通,由此,制动液可以通过单向阀125由储液装置101流向柱塞泵111,类似地,制动液可以通过单向阀126由储液装置101流向柱塞泵112;又例如,增压装置119可以通过回油管路与储液装置101连通,比如,如图2所示,在控制阀113处于导通状态时,由柱塞泵111流出的制动液,可以通过控制阀113流向储液装置101,在控制阀114处于导通状态时,由柱塞泵112流出的制动液,可以通过控制阀114流向储液装置101,也就是说,控制阀113和114可以实现对于制动回路中制动液的泄压,因此,上述控制阀113和114又称“泄压阀”。
示例性地,柱塞泵(111、112)可以与制动主缸210连通。例如,如图2所示,柱塞 泵111,可以通过控制阀115与制动主缸210的第一腔211相连,制动主缸210的第一腔211中的制动液,可以通过控制阀115流向柱塞泵111,通过对制动液增压,制动液可以通过隔离阀117流向制动回路供应管路171;又例如,柱塞泵112可以通过控制阀116与制动主缸210的第一腔212相连。
上述为提高制动系统的冗余性能,用于驱动柱塞泵111和柱塞泵112的电机也可以是同一个电机,也可以是两个不同的电机,又或者,该柱塞泵111和柱塞泵112可以是同一个柱塞泵,通过并联的制动管路分别与制动回路供应管路(171、172)连通。也就是说,该增压装置119可以存在多种可能的形式,本申请实施例对增压装置119的具体形式不做限定。
可选地,该制动系统200中还可以包括踏板感觉模拟弹簧151,踏板感觉模拟弹簧151可以与制动主缸210连通,这样,该制动主缸210流出的制动液可以流向踏板感觉模拟弹簧151,使得踏板感觉模拟弹簧151通过感知该制动管路中制动液的压力,可以确定制动主缸210中活塞相对于制动缸体的位移。这样,踏板感觉模拟弹簧151可以将检测到的制动液的压力发送至控制单元,以便控制单元确定车轮的制动力。
例如,如图2所示,踏板感觉模拟弹簧151,可以通过控制阀152、制动管路176与制动主缸210的第二腔212连通,这样,在预给定踏板力以及该控制阀152导通的情况下,制动液可以通过制动主缸210流向踏板感觉模拟弹簧151,为防止制动液回流,还可以在该控制阀152两端并联单向阀153,该踏板感觉模拟弹簧151还可以与出液管路140相连,制动液可以通过出油管路140流向储液装置101。
可选地,该制动系统200中的多个装置,比如执行机构(控制阀、增压装置等)、传感器等,可以由多个控制单元控制。例如,该制动系统200可以划分为两部分,第一制动模块202,以及第二制动模块204,其中,ECU1可以用于控制第一制动模块202中的控制阀(比如,控制阀216、控制阀213、控制阀214,等等)和增压装置(比如,增压装置119),ECU2可以用于控制第二制动模块204中的控制阀(比如,隔离阀117、隔离阀134、等等),以及增压装置(比如,可电子控制的增压装置130)。当然,该制动系统200中的多个装置也可以由更多或更少的控制单元进行控制,比如,由一个ECU控制该制动系统200所包括的装置,等等,本申请实施例对此不做限定。
上文介绍了本申请实施例中的制动系统200,以及应用该制动系统200的车辆,以下说明该制动系统200的几种工作场景和工作模式。需要说明的是,本申请对该制动系统200的工作场景、工作模式的优先级不做具体限定。
假设在制动系统200中,进液阀(9、10、11、12)为常开阀,出液阀(13、14、15、16)为常闭阀,隔离阀(213、214、117、118)为常开阀,控制阀(113、114、115、116、152、134、137、138)为常闭阀,控制阀216为常开阀。
场景一,在正常制动场景下,制动系统的助力机构响应于制动需求,对车轮施加制动力。
在线控模式,或者说线控制动模式下,控制器控制隔离阀117、118处于断开状态,控制阀213、214、152处于导通状态,使得踏板感觉模拟器151与制动管路相通,制动系统中的其他控制阀可以保持上述默认状态。
如此,驾驶员踩下制动踏板215通过推杆推动制动主缸210的活塞相对于制动主缸 210发生位移,将第一腔211、第二腔212内的制动液压入制动管路,由于隔离阀(117、118)处于断开状态,制动管路内的制动液被阻塞在该隔离阀(117、118)处,由于控制阀152处于导通状态,制动管路中的制动液会通过该控制阀152流向踏板感觉模拟器151。
下面基于上文介绍的线控制动模式下制动系统中各制动元件的工作状态,介绍制动系统的助力机构对于用户操作的响应。
在增压装置130可以正常作动时,控制单元可以根据踏板行程传感器219所测得的踏板位移,计算驾驶员需求的制动力,并可以将该需求反馈给该增压装置130。
该增压装置130可以按照上述需求制动力,控制电机132通过液压缸133压缩制动液,通过隔离阀(134、137、137)为制动轮缸(17、18、19、20)提供制动力。
需要说明的是,确定制动需求的方式有很多中,本申请实施例对此不做限定。例如,还可以根据压力传感器218、压力传感器154所测得的制动液压力,基于制动液压力和制动力之间的对应关系,确定需求的制动力。
在一些可能的实现方式中,也可以基于环境条件、车辆状态、ADAS状态等信息,确定车辆需要进行制动,并确定车辆的需求制动力,即制动系统200可以采用主动制动模式工作,此时,可以控制隔离阀(117、118)断开,隔离阀(134、137、138)导通,制动系统中的其他控制阀可以处于上述默认状态,通过增压装置130为制动轮缸(17、18、19、20)提供制动力,从而可以在驾驶员不操纵制动踏板的情况下,对车辆进行主动制动。为了简洁,此处不再赘述。
在减压过程中(比如,在驾驶员松开制动踏板时,或基于环境条件等确定需要对制动轮缸减压时,等情形),增压装置130中的液压缸133反向工作,制动轮缸(17、18、19、20)内的压力大于液压缸133内的压力,制动液由制动轮缸(17、18、19、20)分别通过各自对应的进液阀(9、10、11、12)和单向阀沿制动管路分别返回液压缸133。
可选地,还可以控制隔离阀(117、118)处于导通状态,使制动液由制动轮缸(17、18、19、20)通过隔离阀(117、118)、第二腔212和第一腔211返回储液装置101中。
当需要快速减压时,还可以进一步打开出液阀(13、14、15、16),使制动轮缸(17、18、19、20)内的制动液回流至储液装置101中。
由于增压装置130,以及隔离阀(134、137、138)可以用于根据用户对制动踏板的操纵,增加制动轮缸(17、18、19、20)内的制动液的压力,也可以基于环境条件等实现车辆的制动,因此,可以将其称为主动增压单元。
一些可能的实现方式中,作为一种冗余方案,在主动增压单元无法正常作动时,比如,增压装置130故障、隔离阀(134、137、138)中的任一控制阀无法正常工作、控制主动增压单元的控制单元故障时,可以将需求制动力反馈给增压装置119,通过增压装置119提供制动力。同时,还可以控制增压装置130关闭或不作动,控制隔离阀134断开,或控制隔离阀137、138断开。例如,如图2所示制动系统,在线控制动模式下,可以控制隔离阀(213、214)断开,控制阀(115、116)导通,制动系统中的其他控制阀可以处于上述默认状态,由此,驾驶员踩下制动踏板215时,制动主缸210的第一腔211、第二腔212内的制动液压入制动管路,流向柱塞泵(111、112),从而增压装置119可以通过对制动液增压,为制动轮缸(17、18、19、20)提供制动力;又例如,在主动制动模式下,可以控制隔离阀(213、214)处于断开状态,制动系统的中的其他控制阀可以处于上述默认状 态,柱塞泵(111、112)可以通过单向阀(125、126)从储液装置101补充制动液,在增压装置119的作用下,可以将制动液压入制动轮缸(17、18、19、20),从而提供制动力。为了简洁,此处不再赘述。
由于在线控制动模式中,主动增压单元、增压装置119可以基于驾驶员的制动力需求,为车轮施加制动力,因此,可以称为制动系统的助力机构。正常制动场景下,助力机构可以响应于用户对于操纵机构(比如制动踏板)的输入,为车轮施加制动力。
场景二,车辆处于展厅场景,或,车辆处于游戏、娱乐等模式时,制动系统的助力机构可以不响应于用户对于制动踏板的操纵。
示例性地,在主动增压单元可以正常作动的情形下,可以控制该增压装置130关闭或不作动,比如控制电机132关闭或不作动,从而电机132无法驱动液压缸133,制动系统中的控制阀可以处于上述默认状态,在驾驶员踩下制动踏板时,制动液无法从液压缸133流向制动轮缸(17、18、19、20),从而该增压装置130无法对制动液增压,无法为制动轮缸(17、18、19、20)提供制动力,从而可以不响应于用户对于制动踏板的操纵。
示例性地,在主动增压单元可以正常作动的情形下,可以控制隔离阀(137、138),和/或,隔离阀134,处于断开状态,制动系统中的其他控制阀可以处于上述默认状态。例如,隔离阀(137、138)处于断开状态时,液压缸133中流出的制动液被隔离阀(137、138)阻断,从而该增压装置130无法实现对于制动轮缸(17、18、19、20)的增压,类似地,可以控制隔离阀134处于断开状态;又例如,为避免关闭电机所导致的对于制动响应的延迟,在该场景下,可以向电机132提供修正后的制动力需求,电机132可以根据该修正后的制动力需求作动,比如,该修正后的制动力需求可以小于驾驶员的制动力需求,以确保隔离阀(137、138)和/或隔离阀134对于制动液的阻断,也就是说,虽然增压装置中的电机132进行作动,但是从主动增压单元的整体而言,并未对制动回路供应管路(171、172)中的制动液进行增压,未对制动轮缸(17、18、19、20)提供制动力,此时主动增压单元表现为不响应于用户对于制动踏板的操纵;又例如,可以控制隔离阀(134、137、138)处于断开状态,且控制增压装置130处于关闭或不作动状态,也就是说,可以控制主动增压单元处于关闭或不作动状态,从而可以使得该制动系统的助力机构不响应于用户对于制动踏板的操纵。
一些可能的实现方式中,在主动增压单元无法正常作动的情形下,通过冗余方案提供制动力,比如,可以通过增压装置119提供制动力,此时,可以控制该增压装置119关闭或不作动,从而该增压装置119无法对制动液增压,从而可以不响应于用户对于制动踏板的输入;也可以控制控制阀(113、114、115、116)处于断开状态,控制阀(213、214)处于导通状态。
一些可能的实现方式中,对于与制动主缸相通的制动回路,为了向用户提供踏板感觉,以提升用户对于游戏、娱乐模式的体验,可以控制隔离阀(117、118)处于断开状态,控制阀152处于导通状态,由此,用户在踩下制动踏板215时,制动主缸210内的制动液可以通过制动管路流向踏板感觉模拟器151,从而可以为用户提供踏板感觉。
可选地,为保护踏板感觉模拟器,避免该游戏、娱乐等场景下对于踏板感觉模拟器的工作寿命的消耗,可以控制隔离阀(117、118)处于导通状态,控制阀152处于断开状态,由此,用户在踩下制动踏板215时,制动主缸210中的制动液可以通过制动管路流向制动 轮缸(17、18、19、20),相应地,制动轮缸增压。
可选地,在驾驶员踩下制动踏板215时,踏板行程传感器219可以测量踏板位移,在获取该踏板位移后,可以不计算驾驶员所需求的制动力,或者,在计算驾驶员所需的制动力后,可以不将该需求反馈给增压装置(130、119),从而该增压装置(130、119)可以不响应于用户对于制动踏板的输入。
可选地,可以控制进液阀处于断开状态。例如,可以控制进液阀(9、10、11、12)处于断开状态,从而可以阻断制动液流向制动轮缸(17、18、19、20),可以避免对车轮增加制动力,也就是说,可以通过断开主动增压单元、增压装置19与制动轮缸间的连接,从而使得主动增压单元、增压装置19无法为车轮提供制动力。
需要说明的是,制动系统的助力机构不响应于用户对于制动踏板的输入的方式,有很多种,上文仅罗列了其中的部分方式。
示例性地,图3是本申请实施例提供的另一种制动系统的示意图。图3中功能与图2中功能相同的部件,使用相同的编号,为了简洁,具体功能可以参见上述描述,在此不再赘述。
在制动系统300中,可以包括可电子控制的增压装置160,该装置可以从储液装置101中补充制动液,可以用于提供施加在第一组车轮211和第二组车轮212上的制动力。
示例性地,与可电子控制的增压装置130类似,该可电子控制的增压装置160可以包括电机162以及液压缸163,可以通过转子位置传感器139监测该电机162的工作状态。
示例性地,可以在该可电子控制的增压装置160的压力出端口设置隔离阀167和168。例如,该隔离阀167处于导通状态,电机162正向作动时,液压缸163的前腔中的制动液,可以由液压缸163流向制动回路供应管路171,在该增压装置160故障时,可以控制该隔离阀167处于断开状态时,该可电子控制的增压装置160与制动回路供应管路171断开,隔离阀168的工作方式可以与隔离阀167类似。
可选地,该增压装置160的压力入端口,可以与制动回路供应管路(171、172)相连。例如,如图3所示,通过控制阀(143、144),该可电子控制的增压装置160的压力入端口,可以与制动回路供应管路(171、172)相连,在控制阀143导通,且该制动回路供应管路171内的制动液的压力较大时,制动液由该供应管路171流向液压缸163的后腔。
示例性地,可以在该制动回路供应管路(171、172)上设置压力传感器,以监测该管路内的制动液压力。例如,如图3所示,压力传感器141可以用于,监测制动回路供应管路171内的制动液的压力,该制动系统中还可以设置更多或更少的压力传感器,本申请实施例对此不做限定。
可选地,该制动系统300内的控制阀和增压装置160可以通过同一个ECU控制。
可选地,踏板感觉模拟弹簧151的压力入端口,可以位于制动主缸210的压力出端口与隔离阀(117、118)的压力入端口之间的制动管路。例如,如图3所示,在控制阀152处于导通状态时,该踏板感觉模拟弹簧151可以根据制动主缸的运动状态,实现对于制动踏板作动的模拟。
假设在制动系统300中,进液阀(9、10、11、12)为常开阀,出液阀(13、14、15、16)为常闭阀,隔离阀(117、118)为常开阀,隔离阀(167、168)为常闭阀,控制阀(143、144、152)为常闭阀,控制阀216为常开阀。
场景一,在正常制动场景下,制动系统的助力机构响应于制动需求,对车轮施加制动力。
在线控制动模式下,控制单元控制隔离阀(117、118)处于断开状态,隔离阀(167、168)处于导通状态,控制阀152处于导通状态,使得踏板感觉模拟器151与制动管路相通,制动系统中的其他控制阀可以保持上述默认状态。
如此,与制动系统200类似,在驾驶员踩下制动踏板215,将第一腔211、第二腔212内的制动液压入制动管路,由于隔离阀(117、118)处于断开状态,制动管路内的制动液被阻塞在该隔离阀(117、118)处,由于控制阀152处于导通状态,制动管路中的制动液会通过该控制阀152流向踏板感觉模拟器151。
控制单元可以根据踏板行程传感器219所测得的踏板位移,计算驾驶员需求的制动力,并可以将该需求反馈给增压装置160。该增压装置160可以按照上述需求制动力,控制电机162正向作动,通过推动液压缸163内的活塞,压缩液压缸163前腔内的制动液,通过隔离阀(167、168)、制动回路供应管路(171、172)为制动轮缸(17、18、19、20)提供制动力。
在一些可能的实现方式中,与制动系统200类似,制动系统300也可以基于环境条件、车辆状态、ADAS状态等信息,确定需要进行制动,并确定需求制动力,即制动系统300也可以采用主动制动模式工作,此时,控制隔离阀(117、118)断开,隔离阀(167、168)导通,制动系统300中的其他控制阀可以处于上述默认撞他,通过增压装置160提供制动力。
电机163反向作动时,液压缸163后腔内的制动液可以流向储液装置101。在控制阀(143、144)处于导通状态,在电机163的作用下带动液压缸的活塞反向作动时,制动回路供应管路(171、172)内的制动液的压力可以大于液压缸163的后腔内的制动液的压力,制动液可以由制动回路供应管路(171、172)流向液压缸163的后腔。
在增压装置160和/或隔离阀(167、168)故障时,该制动系统300的助力机构可能无法为车辆提供制动力,由此,可以控制隔离阀(117、118)处于导通状态,在用户踩下制动踏板时,制动液可以由制动主缸210通过制动管路流向制动轮缸(17、18、19、20),从而为车轮提供制动力。
场景二,车辆处于展厅场景,或,车辆处于游戏、娱乐等模式时,制动系统的助力机构可以不响应于用户对于制动踏板的操纵。
示例性地,可以控制增压装置160关闭或不作动,比如控制电机162关闭或不作动,该液压缸163中的制动液可以不流向制动轮缸(17、18、19、20),从而该增压装置无法对制动轮缸(17、18、19、20)增压。
示例性地,可以控制隔离阀(167、168)处于断开状态。例如,隔离阀(167、168)处于断开状态时,液压缸163中流出的制动液被隔离阀(167、168)阻断,从而该增压装置160无法实现对制动轮缸(17、18、19、20)增压;又例如,可以控制隔离阀(167、168)处于断开状态,且控制增压装置160处于关闭或不作动状态;又例如,为了确保电机162的正常响应,在该场景下,控制单元可以为电机162提供修正后的制动力需求,电机162可以根据该修正后的制动力需求,进行运转,并反馈正常运转的指令,从而可以避免该制动系统在检测到电机不作动时,认为该制动系统存在故障而进行误报,此时控制隔 离阀(167、168)处于断开状态,可以避免该增压装置160对制动轮缸(17、18、19、20)增压,也就是说,虽然增压装置中的电机162进行作动,但是增压装置160并未对制动回路供应管路(171、172)中的制动液进行增压,未对制动轮缸(17、18、19、20)提供制动力,此时就制动系统300整体而言,该制动系统中的助力机构,表现为未响应于用户对于制动踏板的操纵。
一些可能的实现方式中,为了向用户提供踏板感觉,以提升用户对于游戏、娱乐模式的体验,可以控制隔离阀(167、168)处于断开状态,控制阀152处于导通状态,制动主缸210内的制动液可以流向踏板感觉模拟器151,从而可以为用户提供踏板感觉。
一些可能的实现方式中,为保护踏板感觉模拟器151,可以控制隔离阀(117、118)处于导通状态,控制阀152处于断开状态,由此,用户在踩下制动踏板时,制动主缸210中的制动液可以通过制动管路流向制动轮缸(17、18、19、20),相应地,制动轮缸增压。
可选地,在驾驶员踩下制动踏板时,可以不计算对应的制动力需求,或者,在计算制动力需求之后,可以不将该制动力需求反馈给增压装置160,从而该增压装置160可以不响应于用户对于制动踏板的输入,比如,在游戏模式中,可以基于用户对于制动踏板的输入,实现对于游戏应用的操纵,在驾驶员踩下制动踏板时,可以根据制动踏板行程确定需求制动力,并将需求制动力反馈至游戏应用,而不将该制动力需求反馈给增压装置160。
可选地,可以控制进液阀处于断开状态。例如,可以控制进液阀(9、10、11、12)处于断开状态,从而可以阻断制动液流向制动轮缸(17、18、19、20),可以避免对车轮增加制动力。
示例性地,图4是本申请实施例提供的另一种制动系统的示意图。应理解,图4中功能与图2、图3中功能相同的部件使用相同的编号。
示例性地,在该制动系统400中,该可电子控制的增压装置160,可以通过隔离阀167与制动回路供应管路171相连,可以通过隔离阀168与制动回路供应管路172相连。电机162正向作动,隔离阀167处于导通状态时,液压缸163的前腔内的制动液可以通过隔离阀167流向制动回路供应管路171,隔离阀168处于导通状态时,液压缸163的前腔内的制动液,可以通过隔离阀168流向制动回路供应管路172。电机162反向作动时,液压缸163后腔内的制动液可以通过出液管路140流向储液装置101。
假设在制动系统400中,进液阀(9、10、11、12)为常开阀,出液阀(13、14、15、16)为常闭阀,隔离阀(117、118)为常开阀,隔离阀(167、168)为常闭阀,控制阀152为常闭阀,控制阀216为常开阀。
场景一,在正常制动场景下,制动系统的助力机构响应于制动需求,对车轮施加制动力。
该制动系统400的工作模式可以与制动系统300类似。
示例性地,在线控制动模式下,控制单元控制隔离阀(117、118)处于断开状态,隔离阀(167、168)处于导通状态,控制阀152处于导通状态,制动系统中的其他控制阀可以保持上述默认状态。
如此,在驾驶员踩下制动踏板215,由制动主缸210中流出的制动液被阻塞在该隔离阀(117、118)处,由于控制阀152处于导通状态,制动管路中的制动液可以流向踏板感觉模拟器151。
可以由增压装置160按照制动力需求,控制电机162作动,通过对制动管路内的制动液增压,为制动轮缸提供制动力,为了简洁,此处不再赘述。
场景二,车辆处于展厅场景,或,车辆处于游戏、娱乐等模式时,制动系统的助力机构可以不响应于用户对于制动踏板的操纵。
制动系统400与制动系统300类似,可以控制增压装置160关闭或不作动,和/或,控制隔离阀(167、168)处于断开状态。
可选地,可以控制隔离阀(167、168)处于断开状态,控制阀152处于导通状态,以向用户提供踏板感觉。
可选地,可以控制隔离阀(117、118)处于导通状态,控制阀152处于断开状态,以保护踏板感觉模拟器151。
示例性地,图5是本申请实施例提供的另一种制动系统的示意图。该制动系统500中,可以通过轮毂电机对车轮提供制动,可以根据用户对于制动踏板的操纵,对车辆施加制动力。
场景一,在正常制动场景下,制动系统的助力机构响应于制动需求,对车轮施加制动力。
示例性地,在线控制动模式下,控制单元55,根据驾驶员对于制动踏板的输入,可以控制轮毂电机(51、52、53、54)作动以分别对车轮(56、57、58、59)施加制动力。
场景二,线控制动模式下,用户通过车辆的制动踏板实现对于游戏的操纵。
示例性地,在确定车辆处于游戏模式、娱乐模式等场景下时,控制单元可以关闭该轮毂电机(51、52、53、54),或者,可以控制轮毂电机(51、52、53、54)保持当前所处状态,从而可以不响应于用户对于制动踏板的操纵。
示例性地,在驾驶员踩下制动踏板时,在根据踏板行程传感器测量踏板行程后,可以不计算对应的制动力需求,或者,在确定制动力需求后,可以不将该制动力需求反馈给轮毂电机(51、52、53、54),从而轮毂电机可以不响应于用户对于制动踏板的输入。
图6是本申请实施例提供的一种转向系统的示意图。该转向系统600可以包括传动装置64,转向驱动装置63,转向系统600还可以包括内侧车轮65、外侧车轮66。
转向驱动装置63可以提供动力,传动装置64可以用于向车轮(65、66)传递转向驱动装置63提供的转向力,传动装置64可以包括一系列杆件,比如,该转向系统可以应用于采用非独立悬架的车辆,在转向驱动装置63的作用下,通过传动装置64,可以实现内侧车轮65、外侧车轮66的整体转向。
应用转向系统600的车辆还可以包括转向盘61,通过该转向盘61,驾驶员可以实现对于转向系统的操纵。
转向系统600还可以包括路感模拟装置62,转向系统以线控模式工作时,比如,路感模拟装置62可以实现转向盘的路感模拟或角度跟随等功能。
转向系统600还可以包括转向角度传感器(图6未示出),转向角度传感器可以用于测量转向盘的转动角度,可以基于转向盘的转动角度,计算驾驶员需求的转向力。
场景一,在正常转向的场景下,转向系统的助力机构可以响应于转向需求,对车轮施加转向力。
在线控转向模式下,驾驶员操纵转向盘61,可以基于转向角度传感器所测得的转动 角度,计算驾驶员需求的转向力,并将该转向需求反馈给转向驱动装置63。
该驱动装置63可以按照上述需求的转向力,通过传动装置64为车轮施加转向力。
场景二,车辆处于展厅场景,或,车辆处于游戏、娱乐等模式时,转向系统的助力机构可以不响应于用户对于转向盘的操纵。
示例性地,可以控制转向驱动装置63关闭或不作动。例如,该驱动装置63可以包括转向助力电机,可以控制该转向助力电机关闭或不作动。
示例性地,在驾驶员操纵转向盘61时,可以不计算对应的转向力需求,或者在确定转向力需求后,可以不将该转向力需求反馈给转向驱动装置63,比如,在游戏模式中,可以基于用户对于转向盘的操纵,实现对于游戏应用的操纵,在驾驶员操纵转向盘时,可以由此确定需求转向力,并将该需求转向力反馈给游戏应用,而且不将该需求转向力反馈给转向驱动装置63。
图7是本申请实施例提供的另一种转向系统的示意图。图3中功能与图2中功能相同的部件,使用相同的编号,为了简洁,具体功能参见上述描述,此处不再赘述。
转向系统700可以包括内侧驱动装置67,内侧传动装置69,相应地,该转向系统还可以包括外侧传动装置70。内侧传动装置69、外侧传动装置70可以包括一系列杆件。
可选地,转向系统700还可以包括外侧驱动装置68,外侧驱动装置68可以用于为外侧车轮66提供转向力,比如,该转向系统700可以应用于采用独立悬架的车辆。
可选地,转向系统700可以包括连接装置71,该连接装置71可以用于将内侧传动装置69和外侧传动装置70分离或结合,在内侧传动装置69与外侧传动装置70分离时,内侧驱动装置67、外侧驱动装置68可以分别驱动对应的车轮进行转向,比如,在内侧驱动装置67故障或不工作时,通过连接装置71结合内侧传动装置69与外侧传动装置71,从而外侧驱动装置68可以为内侧车轮65和外侧车轮66提供转向力,又比如,外侧驱动装置68故障或不工作时,可以控制内侧传动装置69与外侧传动装置71结合,从而可以由内侧驱动装置67为内侧车轮65和外侧车轮66提供转向力。例如,该连接装置71可以是离合器,可以通过离合器的断开与分离,实现内侧驱动装置67和外侧驱动装置68之间的分类与结合;又例如,该连接装置71可以包括两个连接件(图示未示出),该两个连接件可以分别与内侧驱动装置67和外侧驱动装置68机械连接,该连接装置71还可以包括旋转电机(图示未示出),可以通过旋转电机控制两个连接件的分离与结合,从而实现内侧传动装置69和外侧传动装置70分离或结合,本申请实施例对连接装置71的具体形式不做限定。
场景一,在正常转向的场景下,转向系统的助力机构可以响应于转向需求,对车轮施加转向力。
在线控转向模式下,驾驶员操纵转向盘61,可以基于转向角度传感器所测得的转动角度,计算驾驶员需求的转向力,并将该转向需求反馈给内侧驱动装置67、外侧驱动装置68,该驱动装置(67、68)可以按照上述转向需求,通过传动装置(69、70)为车轮施加转向力。
场景二,车辆处于展厅场景,或,车辆处于游戏、娱乐等模式时,转向系统的助力机构可以不响应于用户对于转向盘的操纵。
示例性地,可以控制转向驱动装置(67、68)关闭或不作动。例如,该驱动装置(67、 68)可以包括助力电机,可以控制该助力电机关闭或不作动。
示例性地,在驾驶员操纵转向盘61时,可以不计算对应的转向力需求,或者在确定转向需求后,可以不将该转向需求反馈给驱动装置(67、68)。
上述涉及的“内侧”和“外侧”是针对车辆的转向方向而言的。例如,以车轮为例,在车辆向车辆的行驶方向的右侧转向时,上述外侧车轮66可以是车辆的左前轮,相应地,上述内侧车轮65可以是车辆的右前轮。又例如,在车辆向行驶方向的左侧转向时,上述外侧车轮66可以是车辆的右前轮,相应地,上述内侧车轮65可以是车辆的左前轮。当然,上述内侧车轮和外侧车轮还可以是车辆的后轮,本申请实施例对此不作限定。
上文结合图1至图7介绍了本申请实施例的制动系统、转向系统和车辆,下文结合图8至图10介绍本申请实施例提供的控制方法,需要说明的是,图8可以由制动系统、转向系统、车辆的控制装置执行,比如,可以是由制动系统的控制器执行,也可以是由转向系统的控制器执行,还可以是车辆的控制装置(比如,车机系统、域控制器、车载芯片等执行)。
图8是本申请实施例提供的一种控制方法的示例性流程图。图8所包括的方法800可以包括以下步骤。图8所示的方法可与上文介绍的制动系统、转向系统和车辆结合使用。
S810,获取指示信息,该指示信息可以用于指示操纵模式。
示例性地,可以基于检测到的用户指令,确定指示信息。例如,在交互过程中,用户可以通过语音指令、手势指令等方式指示其意图,比如,在检测到语音指令中包括“开启游戏模式”、“开启展厅模式”、“切换常规模式”等指示操纵模式的语音指令时,由此可以确定指示信息,又比如,在检测到切换操纵模式的手势指令时,根据检测到的手势指令,可以确定指示信息,又比如,在检测到用户通过实体或虚拟按键、按钮指示操纵模式的操作时,可以基于所检测到的操作,确定指示信息;又例如,在由其他处理装置实现对于语音指令、手势指令等的检测时,在检测到指示操纵模式的指令、操作时,可以发送指示信息,相应地,执行该方法的装置(比如,芯片、车机系统等)可以获取该指示信息,并根据指示信息确定操纵模式。
示例性地,也可以根据系统配置,确定该指示信息。例如,系统配置可以包括默认的操纵模式(比如,第一模式或第二模式),比如,在车辆上电时,可以基于该系统配置将操纵模式确定为该默认的操纵模式;又例如,在系统配置可以包括操纵模式历史信息,比如,可以包括车辆在上一次下电时所处的操纵模式,在车辆上电时,可以根据系统配置,将操纵模式设定为车辆在上一次下电时所处的操纵模式。
S820,根据该指示信息,确定操纵模式,该操纵模式可以包括第一模式,或第二模式,其中,通过第一模式工作时,控制车辆的助力机构响应于第一操作信息,该第一操作信息用于指示车辆的制动或转向,或在通过第二模式工作时,控制车辆的助力机构不响应于第一操作信息。
示例性地,通过相应的操纵装置(比如制动踏板、转向盘,等),用户可以实现对于制动系统、转向系统的操纵。例如,第一操作信息,可以包括用户针对制动踏板的输入,比如,在驾驶员踩下制动踏板时,该第一操作信息可以包括制动踏板行程信息、需求制动力信息,等等;又例如,该第一操作信息,可以包括用户针对转向盘的输入,比如,在用户转动转向盘时,该第一操作信息可以包括转向盘的转动角度,需求转向力信息,等等。
示例性地,在制动系统中,助力机构可以包括,在线控模式下,用于实现制动功能的装置或机构,此时,助力机构也可以称为制动助力机构。例如,以制动系统200为例,在主动增压单元工作正常时,该助力机构可以包括该主动增压单元,在主动增压单元失效时,该助力机构可以包括增压装置119;又例如,以图2所示制动系统200为例,助力机构响应于第一操作信息,比如,增压装置130根据需求制动力,为制动轮缸(17、18、19、20)提供制动力,制动系统200中的控制阀可以处于上述场景一所对应的状态,又比如,制动系统200通过冗余方案工作,增压装置119根据制动力需求,为制动轮缸(17、18、19、20)提供制动力,制动系统200中的控制阀可以处于上述场景一所对应的状态;又例如,以图2所示的制动系统200,线控制动模式为例,助力机构不响应于第一操作信息,比如,可以控制增压装置130关闭或不作动,又比如,由于增压装置130需要与制动轮缸连通才可以提供制动力,可以控制隔离阀(137、138),和/或隔离阀134处于断开状态,从而断开增压装置130与制动轮缸(17、18、19、20)间的连接,即使增压装置130根据制动力需求进行作动,由于隔离阀(137、138),和/或隔离阀134断开,主动增压单元无法为制动轮缸提供制动力,也就是说,主动增压单元表现为未响应于用户对于制动踏板的操纵,又比如,可以控制进液阀(9、10、11、12)处于断开状态,从而切断增压装置130、119与制动轮缸间的连接,使得制动系统表现为未响应于用户对于制动踏板的操纵,也就是说,使增压装置130与制动轮缸连接的一个或多个控制阀,也可以理解为助力机构的一部分;又例如,以制动系统300、制动系统400、制动系统500为例,关于助力机构不响应于第一操作信息的情形,可以参照上述场景二的描述,为了简洁,此处不再赘述。
可选地,车辆包括制动系统,制动系统可以包括第一增压装置,该第一增压装置用于调节第一制动管路内制动液的压力,以控制施加在该车辆的车轮上的制动力,该第一操作信息用于指示对该车辆制动,该在通过该第二模式工作时,控制该车辆的该助力机构不响应于该第一操作信息,包括:在通过该第二模式工作时,控制该第一增压装置关闭或不作动。
示例性地,制动系统的助力机构可以包括该第一增压装置,该第一制动管路可以包括与制动轮缸连通的制动管路,制动轮缸用于为车轮施加制动力。例如,以制动系统200为例,主动增压单元工作正常时,该第一增压装置可以为增压装置130,主动增压单元失效时,制动系统200采用冗余制动方案,该第一增压装置可以为增压装置119;又例如,以制动系统300为例,该第一增压装置可以包括增压装置160,可以调节进液管路(比如,制动回路供应管路(171、172)、进液阀(9、10、11、12)所在的制动管路等)内的制动液的压力,以控制施加在车辆的车轮上的制动力;又例如,以制动系统300为例,第一增压装置可以包括增压装置160,第一制动管路可以包括进液阀(9、10、11、12)所在的制动管路,在进液阀处于导通状态时,也可以包括制动回路供应管路(171、172)等与制动轮缸连通的制动管路。
可选地,该制动系统包括第一控制阀,在该第一控制阀处于导通状态时,第一增压装置与第一制动管路相通,或,在该第一控制阀处于断开状态时,该第一增压装置与该第一制动管路断开,该在通过该第二模式工作时,控制该车辆的该助力机构不响应于该第一操作信息,可以包括:在通过该第二模式工作时,控制该第一控制阀处于断开状态。
示例性地,该第一增压装置与第一制动管路间可以包括一个或多个控制阀,在该一个 或多个控制阀处于导通状态时,第一增压装置可以通过调节第一制动管路内的制动液的压力,以控制施加在车轮上的制动力。例如,以制动系统200,第一增压装置为增压装置130,制动轮缸17对应的车轮为例,比如,第一控制阀可以包括控制阀134、控制阀137,控制阀134和控制阀137导通时,增压装置130可以调节制动回路供应管路171内的制动液的压力,第一控制阀也可以包括进液阀9,在进液阀9导通时,增压装置130可以调节制动轮缸内的制动液的压力,又比如,在控制阀134,和/或控制阀137,处于断开状态时,增压装置130与制动回路供应管路171断开,也与进液阀9所在的制动管路断开,又比如,在进液阀9断开时,增压装置130与制动轮缸17断开,由此,在用户操纵制动踏板,比如在用户踩下制动踏板时,增压装置130无法为制动轮缸17提供制动力,表现为增压装置130不响应于用户对于制动踏板的输入,也就是说,第一增压装置与第一制动管路间包括多个控制阀时,即第一控制阀包括多个控制阀时,控制第一控制阀处于断开状态,可以是控制该多个控制阀中的至少一个控制阀处于断开状态,从而可以断开第一增压装置与第一制动管路间的连接。
可选地,该制动系统还包括制动主缸、第二控制阀、踏板感觉模拟装置和第三控制阀,其中,该第二控制阀处于导通状态时,制动主缸与第一制动管路相通,用于通过调节第一制动管路内的制动液的压力,以控制施加在车辆的车轮上的制动力,该第三控制阀处于导通状态时,踏板感觉模拟装置第二制动管路相通,用于通过感知第二制动管路内的制动液的压力,以确定踏板感觉,该第二控制阀位于制动主缸的压力出端口与第一制动管路的压力入端口间的制动管路上,该第二制动管路包括制动主缸压力出端口与第二控制阀的压力入端口间的制动管路,第三控制阀位于该第二制动管路的压力出端口与踏板感觉模拟装置的压力入端口间的制动管路上,该方法还可以包括:在通过该第二模式工作时,控制该第二控制阀处于断开状态,且控制该第三控制阀处于导通状态。
示例性地,在第二控制阀导通时,制动主缸可以与第一制动管路相通,在第二控制阀断开时,制动主缸与第一制动管路断开。例如,以制动系统300,制动轮缸20为例,该第二控制阀可以包括控制阀118,第二制动管路可以包括制动主缸210与控制阀118间的制动管路,第三控制阀可以包括控制阀152,控制阀152导通时,踏板感觉模拟器151可以与该第二制动管路连通,从而提供踏板感觉,控制阀153断开时,踏板感觉模拟器151与第二制动管路断开;又例如,以制动系统200为例,控制阀118断开,控制阀152导通,根据制动主缸210的压力出端口22与控制阀118间的制动管路内的制动液的压力,踏板感觉模拟器151可以为用户提供踏板感觉。
本申请实施例中,通过控制第二控制阀处于断开状态、第三控制阀处于导通状态,踏板感觉模拟装置可以基于制动主缸与第二控制阀间的制动管路内的制动液的压力,向用户提供踏板感觉,比如,在用户通过车辆的制动踏板操纵游戏应用的场景下,可以为用户提供更好的游戏体验。
可选地,该方法还可以包括:在通过该第二模式工作时,控制第二控制阀处于导通状态,且控制第三控制阀处于断开状态。
本申请实施例中,通过控制第三控制阀处于断开状态,可以断开踏板感觉模拟装置与第二制动管路间的连接,可以使得踏板感觉模拟装置不响应于用户对于制动踏板的操纵,从而可以保护踏板感觉模拟装置,提升踏板感觉模拟装置的使用寿命。
可选地,该车辆包括制动系统,该制动系统包括轮毂电机,该轮毂电机用于调节施加于该车辆的车轮的制动力,该第一操作信息用于指示对该车辆制动,该在通过该第二模式工作时,控制该车辆的该助力机构不响应于该第一操作信息,可以包括:在通过该第二模式工作时,控制该轮毂电机关闭或不作动。
示例性地,对于采用轮毂电机的制动系统,可以控制该轮毂电机关闭或不作动,从而可以该制动系统可以不响应于用户针对制动系统的输入。
本申请实施例中,采用轮毂电机的制动系统、车辆,通过控制轮毂电机关闭或不作动,可以使得轮毂电机不响应于用户对于制动踏板等操纵装置的输入,从而可以提升该轮毂电机的使用寿命。
示例性地,在转向系统中,助力机构可以包括,在线控模式下,用于实现转向功能的装置或机构,此时,该助力机构也可以称为转向助力机构。例如,在转向系统600中,该转向助力机构可以包括转向驱动装置63。
可选地,该车辆包括转向驱动装置和传动构件,该传动构件用于对获取的动力进行转化,以向该车辆的车轮施加转向力,该转向驱动装置用于为该传动构件提供动力,该第一操作信息用于指示对该车辆转向,该在通过该第二模式工作时,控制该车辆的该助力机构不响应于该第一操作信息,可以包括:在通过该第二模式工作时,控制该转向驱动装置关闭或不作动。
示例性地,该转向驱动装置,比如,以转向系统600为例,可以是该转向驱动装置63,又比如,以转向系统700为例,可以是内侧驱动装置67、外侧驱动装置69;该传动机构,以转向系统600为例,可以包括传动装置64,又比如,以转向系统700为例,可以包括内侧传动装置69、外侧传动装置70。
本申请实施例中,在通过第二模式工作时,通过控制该转向驱动装置关闭或不作动,使得转向系统的助力机构可以不响应于用户的操纵,也可以提升该转向驱动装置的使用寿命。
可选地,该操纵模式为该第二模式,该方法还可以包括:获取该第一操作信息;根据该第一操作信息,确定预期作动信息,其中,该预期作动信息包括,为响应于该第一操作信息,该助力机构预期作动的次数。
示例性地,由于在第二模式下,助力机构不响应于第一操作信息,该预期作动信息可以理解为,假设工作模式为第一模式时,为响应于该第一操作信息,该助力机构预期的作动信息(比如作动时长,作动次数等)。例如,以制动系统200为例,比如,第二模式下,增压装置130可以处于关闭状态,增压装置119可以处于关闭状态,可以控制隔离阀(117、118、134、137、138)处于断开状态、控制阀152处于导通状态,在该情形下,用户操纵制动踏板215时,可以确定用户需求的制动力,根据该需求制动力,假使该制动系统200处于第一模式时,为实现该需求制动力,该制动系统200的各装置,比如增压装置130、增压装置119、控制阀(134、137、138)、进液阀等所需作动的次数、时长等作动信息。
本申请实施例中,通过第二模式工作时,虽然助力机构可以不响应于用户对于制动系统、转向系统的操纵,但是制动系统、转向系统中的其他装置,可能会基于用户的操纵而作动,由此,通过确定预期作动信息,可以确定上述系统中作动部分与未作动部分的工作次数的差异,有利于分别确定各装置的剩余工作寿命,有利于对各装置的工作寿命进行管 理,有利于对在各装置的工作寿命到期时提示用户。
可选地,在确定操纵模式为第二模式之前,该方法还可以包括:获取车辆状态信息和/或周边环境信息;确定该车辆状态信息和/或周边环境信息满足预设条件。
示例性地,若车辆处于不安全的环境、状态时,将操纵模式确定为第二模式,由于车辆的助力机构可以不再响应于用户的操纵,可能会影响车辆、用户的安全,由此,在确定操纵模式为第二模式之前,通过确定车辆状态信息和/或周边环境信息是否满足预设条件,可以保障车辆的安全。例如,在确定车辆处于驻车状态时,可以认为车辆处于安全状态下,可以认为车辆状态满足预设条件;又例如,在确定车辆处于停车场、停车位中,可以认为车辆处于安全的周边环境下,可以认为满足预设条件;又例如,在确定车辆的剩余电量大于或等于预设阈值(比如,15%电量、20%电量,等)时,可以认为剩余电量满足预设条件,可以将操纵模式确定为第二模式;又例如,确定车辆的剩余油量大于或等于预设阈值(比如,15%油量、18%油量,等),可以认为符合预设条件;又例如,车辆的可续航里程大于或等于预设阈值(比如,可续航30千米、50千米等);又例如,在获取到指示信息,直至将操纵模式确定为第二模式的过程中,可能会需要一定的处理时间,以确定是否满足将操纵模式确定为第二模式的预设条件,该过程中操纵模式可以为第一模式,可以将该过程中的工作状态称为待命状态。应理解,以上关于预设条件的描述只是示例,本申请实施例对此不做限定。
本申请实施例中,由于通过第二模式工作时,助力机构可以不响应于用户的操纵,由此,在将操纵模式确定为第二模式之前,通过确定车辆状态信息和/或周边环境信息,可以保证将操纵模式确定为第二模式时,车辆处于安全的环境、状态,有利于保证用户与车辆的安全。
可选地,获取该指示信息,可以包括:在确定游戏应用处于运行状态时,获取该指示信息。
示例性地,可以基于所检测到的用户针对游戏应用的输入,确定游戏应用是否处于运行状态。例如,车辆可以包括中控屏等交互装置,在检测到用户在中控屏点击游戏应用的图标时,可以确定游戏应用处于运行状态;又例如,某些游戏应用可以包括设置界面,比如,通过设置界面可以选择游戏模式(比如,“简单模式”、“困难模式”等),通过设置界面可以设置游戏的操纵方式、画面质量、音量等,在中控屏等交互装置显示游戏应用的设置界面时,也可以认为游戏应用未处于运行状态,在运行游戏应用的主程序时,比如,用户在设置界面选择“简单模式”后,中控屏等交互装置显示该“简单模式”下的游戏界面,即已运行游戏应用的主程序,此时,可以认为游戏应用处于运行状态;又例如,在运行游戏应用的装置,与执行该控制的方法800的装置为不同的装置时,在确定游戏应用处于运行状态时,该运行游戏应用的装置可以发送游戏应用运行指示信息,相应地,执行该方法800的装置可以获取该游戏应用运行指示信息,从而可以将操纵模式确定为第二模式。应理解,以上关于游戏应用的描述只是示例,本申请实施例对此不做限定。
下文结合图9介绍本申请实施例提供的另一种控制方法的流程示意图,该方法可以与上述图2至图7中的制动系统、转向系统、车辆配合使用,该方法900可以包括以下步骤,该方法900可以包括以下步骤:
S905,获取第二模式触发信息。
示例性地,鉴于在正常行驶场景下,往往需要助力机构响应于用户对于制动系统、转向系统的操纵,可以在系统配置中将第一模式设定为默认的操纵模式。例如,在通过车辆上电时,基于该系统配置,将操纵模式确定为第一模式。
示例性地,在检测到用户触发第二模式的操作时,可以获取第二模式触发信息,该第二模式触发信息,可以用于指示将操纵模式确定为第二模式。例如,可以基于所获取的语音指令、手势指令、视线追踪对应的指示等,确定第二模式触发信息,比如,语音交互中检测到“启用游戏模式”的语音指令,可以确定第二模式触发信息,等;又例如,可以基于用户对于实体或虚拟按键、按钮的操纵信息,确定第二模式触发信息,比如,检测到用户在中控屏等交互装置触发“游戏模式”、“展厅模式”的虚拟按键,确定第二模式触发信息,等等。
S910,确定是否满足预设条件。
示例性地,在将操纵模式确定为第二模式之前,可以获取车辆状态信息和/或周边环境信息,确定车辆状态信息和/或周边环境信息满足预设条件。例如,确定车辆的剩余电量、剩余油量、可续航里程等是否满足预设阈值,确定驻车制动机构的状态是否启用;又例如,确定车辆是否处于停车位;又例如,在通过第二模式工作时,若车辆的剩余电量、剩余油量等不满足预设条件(比如,车辆的剩余电量小于或等于8%、10%等)时,可以提示用户切换操纵模式,比如,可以通过中控屏等交互装置显示提示信息“您的爱车电量不足,建议退出游戏模式”,也可以通过语音等方式提示用户。
S915,将操纵模式确定为第二模式。
关于第二模式可以参照上述方法800的描述。
下文结合图10介绍本申请实施例提供的另一种控制方法的流程示意图,该方法可以与图2至图7所示的制动系统、转向系统、车辆配合使用,该方法1000可以包括以下步骤:
S1005,将操纵模式确定为第一模式。
示例性地,在车辆上电时,可以将操纵模式设置为第一模式。
S1010,检测触发第二模式的操作。
示例性地,可以基于语音指令、手势指令、视线追踪等方式检测触发第二模式的操作,也可以基于用户针对实体或虚拟按键、按钮等的操作,检测触发第二模式的操作,也可以是其他处理装置通过上述方式检测到该触发第二模式的操作,通过发送消息,指示执行该方法的控制装置触发第二模式。
在检测到触发第二模式的操作时,可以跳转步骤S1015,在未检测到触发第二模式的操作时,可以跳转步骤S1005。
S1015,进入待命状态。
S1020,确定第二模式是否激活。
示例性地,在第二模式激活时,可以跳转步骤S1025,在第二模式未激活时,可以跳转步骤S1015。
S1025,控制制动系统的助力机构、转向系统的助力机构关闭。
示例性地,可以控制制动系统的增压装置关闭,可以控制增压装置对应的隔离阀处于断开状态,可以控制转向系统的转向驱动装置关闭。
S1030,确定满足退出第二模式的条件时,将操纵模式确定为第一模式。
示例性地,可以基于用户针对实体或虚拟按键、按钮等的操作,也可以基于语音指令、手势指令、视线追踪的方式,检测到指示退出第二模式的操作,也可以将其理解为指示将操纵模式切换为第一操纵模式的操作。例如,在检测到用户在中控屏点击“退出游戏模式”的操作时,可以退出该第二模式;又例如,在检测到车辆的剩余电量小于或等于预设阈值(比如10%、12%等)时,可以提示用户退出该第二模式(比如,通过显示、语音等方式提示用户“电池电量低,请退出当前模式,并尽快充电”),在检测到用户的肯定应答时,可以退出该第二模式,将操纵模式确定为第一模式。
示例性地,上述控制方法800、900、1000可以互相结合,本申请实施例对此不做限定。
本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中芯片、车辆、车机系统等所执行的各步骤的单元。例如,请参考图11,其为本申请实施例提供的一种控制装置的结构示意图,该装置2000可以包括获取单元2010和处理单元2020。
其中,获取单元2010,可以用于获取指示信息,指示信息可以用于指示操纵模式,该处理单元2020,可以用于根据指示信息,确定操纵模式,该操纵模式可以包括第一模式或第二模式,其中,通过第一模式工作时,控制车辆的助力机构响应于第一操作信息,该第一操作信息用于指示车辆的制动或转向,或在通过第二模式工作时,控制车辆的助力机构不响应于第一操作信息。关于助力机构的描述可以参照上述方法800。
可选地,车辆包括制动系统,制动系统可以包括第一增压装置,该第一增压装置用于调节第一制动管路内制动液的压力,以控制施加在该车辆的车轮上的制动力,该第一操作信息用于指示对该车辆制动,处理单元2020,具体可以用于,在通过第二模式工作时,控制第一增压装置关闭或不作动。
可选地,该制动系统包括第一控制阀,在该第一控制阀处于导通状态时,第一增压装置与第一制动管路相通,或,在该第一控制阀处于断开状态时,该第一增压装置与该第一制动管路断开,处理单元2020,具体可以用于,在通过第二模式工作时,控制第一控制阀处于断开状态。
可选地,该制动系统还包括制动主缸、第二控制阀、踏板感觉模拟装置和第三控制阀,其中,该第二控制阀处于导通状态时,制动主缸与第一制动管路相通,用于通过调节第一制动管路内的制动液的压力,以控制施加在车辆的车轮上的制动力,该第三控制阀处于导通状态时,踏板感觉模拟装置第二制动管路相通,用于通过感知第二制动管路内的制动液的压力,以确定踏板感觉,该第二控制阀位于制动主缸的压力出端口与第一制动管路的压力入端口间的制动管路上,该第二制动管路包括制动主缸压力出端口与第二控制阀的压力入端口间的制动管路,第三控制阀位于该第二制动管路的压力出端口与踏板感觉模拟装置的压力入端口间的制动管路上,处理单元2020,还可以用于,在通过该第二模式工作时,控制该第二控制阀处于断开状态,且控制该第三控制阀处于导通状态。
可选地,该处理单元2020,还可以用于,在通过该第二模式工作时,控制第二控制阀处于导通状态,且控制第三控制阀处于断开状态。
可选地,该车辆包括制动系统,该制动系统包括轮毂电机,该轮毂电机用于调节施加 于该车辆的车轮的制动力,该第一操作信息用于指示对该车辆制动,该处理单元2020,具体可以用于,在通过该第二模式工作时,控制该轮毂电机关闭或不作动。
可选地,该车辆包括转向驱动装置和传动构件,该传动构件用于对获取的动力进行转化,以向该车辆的车轮施加转向力,该转向驱动装置用于为该传动构件提供动力,该第一操作信息用于指示对该车辆转向,该处理单元2020,具体可以用于,在通过该第二模式工作时,控制该转向驱动装置关闭或不作动。
可选地,该获取单元2010,还可以用于获取该第一操作信息,该处理单元2020,还可以用于根据该第一操作信息,确定预期作动信息。
可选地,在确定操纵模式为第二模式之前,该获取单元2010,还可以用于获取车辆状态信息和/或周边环境信息,该处理单元2020,还可以用于确定该车辆状态信息和/或周边环境信息满足预设条件。
可选地,该处理单元2020,还可以用于,在确定游戏应用处于运行状态时,获取该指示信息。
应理解,以上装置中各单元的划分仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。此外,装置中的单元可以以处理器调用软件的形式实现;例如装置包括处理器,处理器与存储器连接,存储器中存储有指令,处理器调用存储器中存储的指令,以实现以上任一种方法或实现该装置各单元的功能,其中处理器例如为通用处理器,例如CPU或微处理器,存储器为装置内的存储器或装置外的存储器。或者,装置中的单元可以以硬件电路的形式实现,可以通过对硬件电路的设计实现部分或全部单元的功能,该硬件电路可以理解为一个或多个处理器;例如,在一种实现中,该硬件电路为ASIC,通过对电路内元件逻辑关系的设计,实现以上部分或全部单元的功能;再如,在另一种实现中,该硬件电路为可以通过PLD实现,以FPGA为例,其可以包括大量逻辑门电路,通过配置文件来配置逻辑门电路之间的连接关系,从而实现以上部分或全部单元的功能。以上装置的所有单元可以全部通过处理器调用软件的形式实现,或全部通过硬件电路的形式实现,或部分通过处理器调用软件的形式实现,剩余部分通过硬件电路的形式实现。
在本申请实施例中,处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如CPU、微处理器、GPU、或DSP等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为ASIC或PLD实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如NPU、TPU、DPU等。
可见,以上装置中的各单元可以是被配置成实施以上方法的一个或多个处理器(或处理电路),例如:CPU、GPU、NPU、TPU、DPU、微处理器、DSP、ASIC、FPGA,或这些处理器形式中至少两种的组合。
此外,以上装置中的各单元可以全部或部分可以集成在一起,或者可以独立实现。在一种实现中,这些单元集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。该SOC中可以包括至少一个处理器,用于实现以上任一种方法或实现该装置各单元的功 能,该至少一个处理器的种类可以不同,例如包括CPU和FPGA,CPU和人工智能处理器,CPU和GPU等。
图12是本申请实施例的控制器的示意性框图。图12所示的控制器3000可以包括:存储器3010、处理器3020、以及通信接口3030。其中,存储器3010、处理器3020,通信接口3030通过内部连接通路相连,该存储器3010用于存储指令,该处理器3020用于执行该存储器3020存储的指令,以控制通信接口3030接收/发送信息,例如,接收该指示信息。可选地,存储器3010既可以和处理器3020通过接口耦合,也可以和处理器3020集成在一起。
上述通信接口3030包括但不限于收发器一类的收发装置,用于实现控制器3000与其他设备或通信网络之间的通信。上述通信接口3030还可以包括输入/输出接口(input/output interface)。
另外,本申请在结合附图介绍制动系统时,附图中示意性地示出了每个控制阀可以实现的两种工作状态(断开或导通),并不限定控制阀当前的工作状态如图所示。
需要说明的是,本申请中涉及的“第一制动管路”、“第二制动管路”以及其他液压管路等可以理解为实现某一功能的一段或多段液压管路。例如,第一制动管路包括与制动轮缸连通的一段或多段制动管路。
在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现 有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种控制方法,其特征在于,包括:
    获取指示信息,所述指示信息用于指示操纵模式;
    根据所述指示信息,确定所述操纵模式,所述操纵模式包括第一模式,或第二模式,其中,在通过所述第一模式工作时,控制车辆的助力机构响应于第一操作信息,所述第一操作信息用于指示对所述车辆制动或转向;或,在通过所述第二模式工作时,控制所述车辆的所述助力机构不响应于所述第一操作信息。
  2. 根据权利要求1所述的控制方法,其特征在于,所述车辆包括制动系统,所述制动系统包括第一增压装置,所述第一增压装置用于通过调节第一制动管路内的制动液的压力,以控制施加在所述车辆的车轮上的制动力,所述第一操作信息用于指示对所述车辆制动,所述在通过所述第二模式工作时,控制所述车辆的所述助力机构不响应于所述第一操作信息,包括:
    在通过所述第二模式工作时,控制所述第一增压装置关闭或不作动。
  3. 根据权利要求1或2所述的控制方法,其特征在于,所述制动系统包括第一控制阀,在所述第一控制阀处于导通状态时,所述第一增压装置与所述第一制动管路相通,或,在所述第一控制阀处于断开状态时,所述第一增压装置与所述第一制动管路断开,所述在通过所述第二模式工作时,控制所述车辆的所述助力机构不响应于所述第一操作信息,包括:
    在通过所述第二模式工作时,控制所述第一控制阀处于断开状态。
  4. 根据权利要求1至3中任一项所述的控制方法,其特征在于,所述车辆包括制动系统,所述制动系统还包括制动主缸、第二控制阀、踏板感觉模拟装置和第三控制阀,其中,所述第二控制阀处于导通状态时,所述制动主缸与所述第一制动管路相通,用于通过调节所述第一制动管路内的制动液的压力,以控制施加在所述车辆的车轮上的制动力,所述第三控制阀处于导通状态时,所述踏板感觉模拟装置与第二制动管路相通,用于通过感知所述第二制动管路内的制动液的压力,以确定踏板感觉,所述第二控制阀位于所述制动主缸的压力出端口与所述第一制动管路的压力入端口间的制动管路上,所述第二制动管路包括所述制动主缸压力出端口与所述第二控制阀的压力入端口间的制动管路,所述第三控制阀位于所述第二制动管路的压力出端口与所述踏板感觉模拟装置的压力入端口间的制动管路上,所述控制方法还包括:
    在通过所述第二模式工作时,控制所述第二控制阀处于断开状态,且控制所述第三控制阀处于导通状态;或者,
    在通过所述第二模式工作时,控制所述第二控制阀处于导通状态,且控制所述第三控制阀处于断开状态。
  5. 根据权利要求1至4中任一项所述的控制方法,其特征在于,所述车辆包括制动系统,所述制动系统包括轮毂电机,所述轮毂电机用于调节施加于所述车辆的车轮的制动力,所述第一操作信息用于指示对所述车辆制动,所述在通过所述第二模式工作时,控制所述车辆的所述助力机构不响应于所述第一操作信息,包括:
    在通过所述第二模式工作时,控制所述轮毂电机关闭或不作动。
  6. 根据权利要求1至5中任一项所述的控制方法,其特征在于,所述车辆包括转向驱动装置和传动构件,所述传动构件用于对获取的动力进行转化,以向所述车辆的车轮施加转向力,所述转向驱动装置用于为所述传动构件提供动力,所述第一操作信息用于指示对所述车辆转向,所述在通过所述第二模式工作时,控制所述车辆的所述助力机构不响应于所述第一操作信息,包括:
    在通过所述第二模式工作时,控制所述转向驱动装置关闭或不作动。
  7. 根据权利要求1至6中任一项所述的控制方法,其特征在于,所述操纵模式为所述第二模式,所述控制方法还包括:
    获取所述第一操作信息;
    根据所述第一操作信息,确定预期作动信息,其中,所述预期作动信息包括,为响应于所述第一操作信息,所述助力机构预期作动的次数。
  8. 根据权利要求1至7中任一项所述的控制方法,其特征在于,在确定所述操纵模式为所述第二模式之前,所述控制方法还包括:
    获取车辆状态信息和/或周边环境信息;
    确定所述车辆状态信息和/或所述周边环境信息满足预设条件。
  9. 根据权利要求1至8中任一项所述的控制方法,其特征在于,所述车辆包括游戏应用,所述获取指示信息,包括:
    在确定所述游戏应用处于运行状态时,获取所述指示信息。
  10. 一种控制装置,其特征在于,包括:
    获取单元,用于获取指示信息,所述指示信息用于指示操纵模式;
    处理单元,用于根据所述指示信息,确定所述操纵模式,所述操纵模式包括第一模式,或第二模式,其中,在通过所述第一模式工作时,控制车辆的助力机构响应于第一操作信息,所述第一操作信息用于指示对所述车辆制动或转向;或,在通过所述第二模式工作时,控制所述车辆的所述助力机构不响应于所述第一操作信息。
  11. 根据权利要求10所述的控制装置,其特征在于,所述车辆包括制动系统,所述制动系统包括第一增压装置,所述第一增压装置用于通过调节第一制动管路内制动液的压力,以控制施加在所述车辆的车轮上的制动力,所述第一操作信息用于指示对所述车辆制动,所述处理单元,具体用于:
    在通过所述第二模式工作时,控制所述第一增压装置关闭或不作动。
  12. 根据权利要求10或11所述的控制装置,其特征在于,所述制动系统包括第一控制阀,在所述第一控制阀处于导通状态时,所述第一增压装置与所述第一制动管路相通,或,在所述第一控制阀处于断开状态时,所述第一增压装置与所述第一制动管路断开,所述处理单元,具体用于:
    在通过所述第二模式工作时,控制所述第一控制阀处于断开状态。
  13. 根据权利要求10至12中任一项所述的控制装置,其特征在于,所述车辆包括所述制动系统,所述制动系统还包括制动主缸、第二控制阀、踏板感觉模拟装置和第三控制阀,其中,所述第二控制阀处于导通状态时,所述制动主缸与所述第一制动管路相通,用于通过调节所述第一制动管路内的制动液的压力,以控制施加在所述车辆的车轮上的制动 力,所述第三控制阀处于导通状态时,所述踏板感觉模拟装置与第二制动管路相通,用于通过感知所述第二制动管路内的制动液的压力,以确定踏板感觉,所述第二控制阀位于所述制动主缸的压力出端口与所述第一制动管路的压力入端口间的制动管路上,所述第二制动管路包括所述制动主缸压力出端口与所述第二控制阀的压力入端口间的制动管路,所述第三控制阀位于所述第二制动管路的压力出端口与所述踏板感觉模拟装置的压力入端口间的制动管路上,所述处理单元还用于:
    在通过所述第二模式工作时,控制所述第二控制阀处于断开状态,且控制所述第三控制阀处于导通状态;或者,
    在通过所述第二模式工作时,控制所述第二控制阀处于导通状态,且控制所述第三控制阀处于断开状态。
  14. 根据权利要求10至13中任一项所述的控制装置,其特征在于,所述车辆包括制动系统,所述制动系统包括轮毂电机,所述轮毂电机用于调节施加于所述车辆的车轮的制动力,所述第一操作信息用于指示对所述车辆制动,所述处理单元,具体用于:
    在通过所述第二模式工作时,控制所述轮毂电机关闭或不作动。
  15. 根据权利要求10至14中任一项所述的控制装置,其特征在于,所述车辆包括转向驱动装置和传动构件,所述传动构件用于对获取的动力进行转化,以向所述车辆的车轮施加转向力,所述转向驱动装置用于为所述传动构件提供动力,所述第一操作信息用于指示对所述车辆转向,所述处理单元,具体用于:
    在通过所述第二模式工作时,控制所述转向驱动装置关闭或不作动。
  16. 根据权利要求10至15中任一项所述的控制装置,其特征在于,所述获取单元,还用于:
    获取所述第一操作信息;
    所述处理单元,还用于:
    根据所述第一操作信息,确定预期作动信息,其中,所述预期作动信息包括,为响应于所述第一操作信息,所述助力机构预期作动的次数。
  17. 根据权利要求10至16中任一项所述的控制装置,其特征在于,在确定所述操纵模式为所述第二模式之前,所述获取单元,还用于:
    获取车辆状态信息和/或周边环境信息;
    所述处理单元,还用于:
    确定所述车辆状态信息和/或所述周边环境信息满足预设条件。
  18. 根据权利要求10至17中任一项所述的控制装置,其特征在于,所述车辆包括游戏应用,所述获取单元,具体用于:
    在确定所述游戏应用处于运行状态时,获取所述指示信息。
  19. 一种制动系统,其特征在于,所述制动系统包括制动助力机构和控制装置,
    所述控制装置用于:获取指示信息,所述指示信息用于指示操纵模式;根据所述指示信息,确定所述操纵模式,所述操纵模式包括第一模式,或第二模式,其中,在通过所述第一模式工作时,控制所述制动助力机构响应于第一操作信息,所述第一操作信息用于指示对所述车辆制动;或,在通过所述第二模式工作时,控制所述制动助力机构不响应于所述第一操作信息。
  20. 根据权利要求19所述的制动系统,其特征在于,所述制动助力机构包括第一增压装置,所述第一增压装置用于通过调节第一制动管路内的制动液的压力,以控制施加在所述车辆的车轮上的制动力,所述控制装置具体用于:
    在通过所述第二模式工作时,控制所述第一增压装置关闭或不作动。
  21. 根据权利要求19或20所述的制动系统,其特征在于,所述制动系统包括第一控制阀,在所述第一控制阀处于导通状态时,所述第一增压装置与所述第一制动管路相通,或,在所述第一控制阀处于断开状态时,所述控制装置具体用于:
    在通过所述第二模式工作时,控制所述第一控制阀处于断开状态。
  22. 根据权利要求19至21中任一项所述的制动系统,其特征在于,所述制动系统还包括制动主缸、第二控制阀、踏板感觉模拟装置和第三控制阀,其中,所述第二控制阀处于导通状态时,所述制动主缸与所述第一制动管路相通,用于通过调节所述第一制动管路内的制动液的压力,以控制施加在所述车辆的车轮上的制动力,所述第三控制阀处于导通状态时,所述踏板感觉模拟装置与第二制动管路相通,用于通过感知所述第二制动管路内的制动液的压力,以确定踏板感觉,所述第二控制阀位于所述制动主缸的压力出端口与所述第一制动管路的压力入端口间的制动管路上,所述第二制动管路包括所述制动主缸压力出端口与所述第二控制阀的压力入端口间的制动管路,所述第三控制阀位于所述第二制动管路的压力出端口与所述踏板感觉模拟装置的压力入端口间的制动管路上,所述控制装置还用于:
    在通过所述第二模式工作时,控制所述第二控制阀处于断开状态,且控制所述第三控制阀处于导通状态;或者,
    在通过所述第二模式工作时,控制第二控制阀处于导通状态,且控制第三控制阀处于断开状态。
  23. 根据权利要求19至22中任一项所述的制动系统,其特征在于,所述制动助力机构包括轮毂电机,所述轮毂电机用于调节施加于所述车辆的车轮的制动力,所述第一操作信息用于指示对所述车辆制动,所述控制装置,具体用于:
    在通过所述第二模式工作时,控制所述轮毂电机关闭或不作动。
  24. 根据权利要求19至23中任一项所述的制动系统,其特征在于,所述控制装置还用于:
    根据所述第一操作信息,确定预期作动信息,其中,所述预期作动信息包括,为响应于所述第一操作信息,所述制动助力机构预期作动的次数。
  25. 根据权利要求19至24中任一项所述的制动系统,其特征在于,在确定所述操纵模式为所述第二模式之前,所述控制装置还用于:
    获取车辆状态信息和/或周边环境信息;
    确定所述车辆状态信息和/或所述周边环境信息满足预设条件。
  26. 一种转向系统,其特征在于,所述转向系统包括转向助力机构和控制装置,
    所述控制装置用于:获取指示信息,所述指示信息用于指示操纵模式;根据所述指示信息,确定所述操纵模式,所述操纵模式包括第一模式,或第二模式,其中,在通过所述第一模式工作时,控制所述转向助力机构响应于第一操作信息,所述第一操作信息用于指示对所述车辆转向;或,在通过所述第二模式工作时,控制所述转向助力机构不响应于所 述第一操作信息。
  27. 根据权利要求26所述的转向系统,其特征在于,所述转向系统包括传动构件,所述转向助力机构包括转向驱动装置,所述传动构件用于对获取的动力进行转化,以向所述车辆的车轮施加转向力,所述转向驱动装置用于为所述传动构件提供动力,所述控制装置,具体用于:
    在通过所述第二模式工作时,控制所述转向驱动装置关闭或不作动。
  28. 根据权利要求26或27所述的转向系统,其特征在于,所述控制装置还用于:
    根据所述第一操作信息,确定预期作动信息,其中,所述预期作动信息包括,为响应于所述第一操作信息,所述转向助力机构预期作动的次数。
  29. 根据权利要求26至28中任一项所述的转向系统,其特征在于,在确定所述操纵模式为所述第二模式之前,所述控制装置还用于:
    获取车辆状态信息和/或周边环境信息;
    确定所述车辆状态信息和/或所述周边环境信息满足预设条件。
  30. 一种控制装置,其特征在于,包括处理单元和存储单元,其中,所述存储单元用于存储指令,所述处理单元用于执行所述处理单元存储的所述指令,以使得所述控制装置执行如权利要求1至9中任一项所述的控制方法。
  31. 一种车辆,其特征在于,包括权利要求10至18中任一项所述的控制装置,或者,包括权利要求19至25中任一项所述的制动系统,或者,包括权利要求26至29中任一项所述的转向系统,或者,包括权利要求30所述的控制装置。
  32. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时,以使得实现如权利要求1至9中任一项所述的控制方法。
  33. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,如权利要求1至9中任一项所述的控制方法被执行。
PCT/CN2022/109002 2022-07-29 2022-07-29 一种控制方法、控制装置和车辆 WO2024021030A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109002 WO2024021030A1 (zh) 2022-07-29 2022-07-29 一种控制方法、控制装置和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109002 WO2024021030A1 (zh) 2022-07-29 2022-07-29 一种控制方法、控制装置和车辆

Publications (1)

Publication Number Publication Date
WO2024021030A1 true WO2024021030A1 (zh) 2024-02-01

Family

ID=89705040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109002 WO2024021030A1 (zh) 2022-07-29 2022-07-29 一种控制方法、控制装置和车辆

Country Status (1)

Country Link
WO (1) WO2024021030A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537522B2 (en) * 2005-12-23 2009-05-26 Nissan Design America, Inc. In-vehicle gaming system
CN110368679A (zh) * 2019-08-07 2019-10-25 广州小鹏汽车科技有限公司 车载游戏方法、装置、车辆及机器可读介质
CN112386907A (zh) * 2019-08-13 2021-02-23 比亚迪股份有限公司 基于车辆的游戏数据处理方法及车辆
CN112386904A (zh) * 2019-08-14 2021-02-23 比亚迪股份有限公司 基于车辆的游戏功能键位的数据处理方法和车辆
CN112572380A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 汽车的制动系统、汽车及制动系统的控制方法
CN112572305A (zh) * 2019-09-30 2021-03-30 比亚迪股份有限公司 车辆转向盘的控制方法、设备及介质
CN112689581A (zh) * 2020-06-11 2021-04-20 华为技术有限公司 踏板感觉模拟系统、液压调节单元及控制方法
CN113101672A (zh) * 2021-04-23 2021-07-13 浙江吉利控股集团有限公司 一种汽车智能座舱游戏控制方法及其系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537522B2 (en) * 2005-12-23 2009-05-26 Nissan Design America, Inc. In-vehicle gaming system
CN110368679A (zh) * 2019-08-07 2019-10-25 广州小鹏汽车科技有限公司 车载游戏方法、装置、车辆及机器可读介质
CN112386907A (zh) * 2019-08-13 2021-02-23 比亚迪股份有限公司 基于车辆的游戏数据处理方法及车辆
CN112386904A (zh) * 2019-08-14 2021-02-23 比亚迪股份有限公司 基于车辆的游戏功能键位的数据处理方法和车辆
CN112572380A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 汽车的制动系统、汽车及制动系统的控制方法
CN112572305A (zh) * 2019-09-30 2021-03-30 比亚迪股份有限公司 车辆转向盘的控制方法、设备及介质
CN112689581A (zh) * 2020-06-11 2021-04-20 华为技术有限公司 踏板感觉模拟系统、液压调节单元及控制方法
CN113101672A (zh) * 2021-04-23 2021-07-13 浙江吉利控股集团有限公司 一种汽车智能座舱游戏控制方法及其系统

Similar Documents

Publication Publication Date Title
CN104802777B (zh) 一种踏板感觉主动模拟式电子液压制动系统
CN103950444B (zh) 一种减少主缸出液口的电子液压制动系统
CN104309599A (zh) 一种电子液压制动系统
JP5333364B2 (ja) マスタシリンダ装置
US8874341B2 (en) Electronic brake actuator brake-by-wire system and method
US9002608B2 (en) Electro-hydraulic brake-by-wire system and method
KR20140122671A (ko) 차량용 브레이크 시스템, 및 브레이크 시스템의 작동 방법
EP4029742A1 (en) Automobile brake system, automobile, and control method for brake system
CN103241228A (zh) 带有踏板行程模拟器的制动能量回收系统及其控制方法
EP4253787A1 (en) Hydraulic device, brake device, brake system and brake control method
WO2022000444A1 (zh) 一种踏板感觉调节装置、控制方法
CN103786703A (zh) 一体式制动主缸的电液复合制动系统分层控制架构及方法
JP2018188110A (ja) 車両用ブレーキシステム
WO2024021030A1 (zh) 一种控制方法、控制装置和车辆
CN110356381A (zh) 车辆制动系统
CN104044570B (zh) 车辆的制动系统
EP4101710B1 (en) Brake system, brake method and vehicle
CN201800701U (zh) 基于FlexRay总线的电子制动系统
WO2022116078A1 (zh) 液压调节单元、线控制动系统及控制方法
US20110160971A1 (en) Electro-Hydraulic Brake Brake-By-Wire System and Method
JP2018100019A (ja) 液圧制御装置およびブレーキシステム
US20240174206A1 (en) Brake system, hydraulic apparatus, and vehicle
CN112519739A (zh) 一种分体式电子液压制动系统及方法
US20240174207A1 (en) Hydraulic Apparatus, Brake System, and Vehicle
CN214215755U (zh) 一种制动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952478

Country of ref document: EP

Kind code of ref document: A1