WO2024019474A1 - 태양광 인버터 기능을 포함한 양방향 인버터 - Google Patents
태양광 인버터 기능을 포함한 양방향 인버터 Download PDFInfo
- Publication number
- WO2024019474A1 WO2024019474A1 PCT/KR2023/010264 KR2023010264W WO2024019474A1 WO 2024019474 A1 WO2024019474 A1 WO 2024019474A1 KR 2023010264 W KR2023010264 W KR 2023010264W WO 2024019474 A1 WO2024019474 A1 WO 2024019474A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- inverter
- direct current
- converter
- output
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000006870 function Effects 0.000 abstract description 26
- 238000009434 installation Methods 0.000 abstract description 3
- 230000002457 bidirectional effect Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 10
- 238000004146 energy storage Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000003750 conditioning effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010977 unit operation Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/20—Optical components
- H02S40/22—Light-reflecting or light-concentrating means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/32—Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/38—Energy storage means, e.g. batteries, structurally associated with PV modules
Definitions
- the present invention relates to a bi-directional inverter including a solar inverter function. More specifically, when installing an existing solar inverter, ESS, and inverter, each inverter must be installed, but the solar inverter, ESS, and UPS functions can be installed in one product. This is about a bi-directional inverter that includes a working solar inverter function.
- Patent Document 1 an energy storage system and a control method thereof, uses generated DC power or DC power stored in a battery without going through DC/AC or AC/DC conversion to a load using DC power. It can be supplied directly, and the stored power of the battery can be used more stably when performing the UPS function in abnormal situations in the system, such as a power outage.
- Patent Document 2 a power storage device, its operating method, and a power storage system are linked to a power generation system to supply power to a load and stably perform the power supply function in abnormal situations in the power system.
- the conventional technology has a problem in that it cannot increase efficiency by reducing the number of power conversions by connecting a solar converter, ESS (Energy Storage System), and inverter around the DC link stage.
- ESS Electronicgy Storage System
- Patent Document 1 Registered Patent Publication No. 10-1084216 Energy storage system and its control method (KR)
- Patent Document 2 Registered Patent Publication No. 10-1156535 Power storage device and its operation method and power storage system (KR)
- the purpose of the present invention is to provide a bi-directional inverter including a solar inverter function that increases efficiency by reducing the number of power conversions by connecting a solar converter, an ESS (Energy Storage System), and an inverter centered on the DC link stage.
- ESS Electronicgy Storage System
- Another purpose of the present invention is to provide a bidirectional inverter including a solar inverter function that simultaneously satisfies solar converter, ESS, and inverter functions to improve efficiency, reduce installation space, and improve power quality.
- a bidirectional inverter including a preferred solar inverter function of the present invention includes a solar panel 21 that converts light energy into electrical energy using the photoelectric effect; a battery (25) that stores electrical energy; A two-way power conversion device (50) that converts the direct current power of the solar panel 21 and the battery 25 into other direct current power, and converts the direct current power into alternating current power supplied to the grid 23 and the load 24. ); And an EMS (Energy Management System) 27 that overall manages the battery 25 and the bidirectional power conversion device 50.
- EMS Electronicgy Management System
- the bidirectional power conversion device 50 includes a DC/DC converter 51 that converts the direct current power of the solar panel 21 into another direct current power; A switch (52) that controls the flow of grid power (41); An AC/DC inverter (53) that converts the alternating current of the system power source (41) into direct current power; a DC/AC inverter (54) that converts direct current power into alternating current power to supply emergency loads (44); and a DC/DC converter 55 that converts the direct current power of the battery 25 into other direct current power.
- a switch that controls the flow of grid power (41)
- An AC/DC inverter (53) that converts the alternating current of the system power source (41) into direct current power
- a DC/AC inverter (54) that converts direct current power into alternating current power to supply emergency loads (44)
- a DC/DC converter 55 that converts the direct current power of the battery 25 into other direct current power.
- the DC/DC converter includes a DC/AC converter and an AC/DC converter, and includes an input capacitor (Ci) that stores a direct current input (Vin); Input switches (A, B, C, D) that output alternating current by switching the power of the input capacitor (Ci); A transformer (63) that converts the alternating current converted by the input switches (A, B, C, D) into alternating current of another level; a thyristor 62 that turns on/off the primary side operation of the transformer 63; Output switches (E, F, G, H) that output direct current power by switching the alternating current on the secondary side of the transformer 63; And an output capacitor (Co) that stores the output of the output switches (E, F, G, H).
- an on/off signal is input to the control terminal of the thyristor 62, and the control unit 5 sends an on signal to the control terminal of the thyristor 62 when an error occurs in the output (Vo) or a load is short-circuited. It is characterized by outputting it to turn off the primary operation of the transformer 63.
- the DC/AC converter includes an input capacitor (Ci) that stores a direct current input (Vin); Input switches (A, B, C, D) that output alternating current by switching the power of the input capacitor (Ci); And a transformer 63 that converts the alternating current converted by the input switches (A, B, C, D) into alternating current of another level.
- the AC/DC converter includes output switches (E, F, G, H) that output direct current power by switching the alternating current on the secondary side of the transformer 63; And an output capacitor (Co) that stores the output of the output switches (E, F, G, H).
- the switch 52 supplies the system power 41, which is commercial power, to the important load 43 in normal times, and supplies power from the battery 25, which includes conversion loss, only during a power outage. .
- the present invention can have the effect of increasing efficiency by reducing the number of power conversions by connecting a solar converter, ESS (Energy Storage System), and inverter centered on the DC link stage.
- ESS Electronicgy Storage System
- the present invention improves efficiency by satisfying the functions of a solar converter, ESS, and inverter at the same time, reduces installation space, and improves power quality by supplying power to loads by distinguishing between general loads, important loads, and emergency loads. You can have it.
- Figure 1 is a block diagram showing the configuration of a conventional bidirectional inverter.
- Figure 2 is a block diagram showing the configuration of a bidirectional inverter including the solar inverter function of the present invention.
- FIG. 3 is a block diagram showing the detailed configuration of a bidirectional inverter including the solar inverter function of the present invention.
- Figure 4 is an example diagram showing the configuration of the DC/DC converter of the bidirectional inverter including the solar inverter function of Figure 3.
- Figures 5 and 6 are examples of operation of a bidirectional inverter including the solar inverter function of Figure 3.
- Figure 7 is an example diagram illustrating the hardware resources, operating system, operation of the core control unit, and system authentication configuration that grants authority to execute the control unit operation to explain the present invention.
- FIG. 1 is a block diagram showing the configuration of a conventional two-way inverter.
- a solar panel 21 a PV PCS (Photovoltaic Power Conditioning System) 22, a Grid 23, a load 24, and a battery.
- ESS PCS Energy Storage System Power Conditioning System
- EMS Energy Management System
- the solar panel 21 converts light energy into electrical energy using the photoelectric effect
- the PV PCS 22 converts the direct current of the solar panel 21 into alternating current that can be supplied to the load 24 and the grid.
- 23 may be a system
- the battery 25 stores electrical energy
- the ESS PCS 26 converts the electrical energy of the battery 25 into alternating current supplied to the load 24, and the EMS 27 Overall manages the status of the battery (25) and ESS PCS (26).
- FIG 2 is a block diagram showing the configuration of a bidirectional inverter including the solar inverter function of the present invention.
- a solar panel 21 a DC/DC converter 31, a hybrid PCS 32, and a grid ( 23), load (24), battery (25), and EMS (27).
- the solar panel 21 converts light energy into electrical energy using the photoelectric effect
- the battery 25 stores the electrical energy
- the DC/DC converter 31 connects the solar panel 21 and the battery 25.
- the hybrid PCS (32) converts the DC power of the DC/DC converter (31) into AC power supplied to the Grid (23) and the load (24)
- the EMS (27) manages the battery (25), DC/DC converter (31), and hybrid PCS (32).
- the two-way inverter of the present invention performs the functions of a solar inverter, ESS (Energy Storage System), and UPS (Uninterruptible Power Supply) at the same time, thereby reducing space and cost compared to installing existing products, and installing solar panels (21) and batteries (25).
- ESS Electronicgy Storage System
- UPS Uninterruptible Power Supply
- FIG 3 is a block diagram showing the detailed configuration of a bidirectional inverter including the solar inverter function of the present invention.
- a solar panel 21, a grid power source 41, a general load 42, and an important load ( 43) includes a two-way power converter (50), a battery (25), and an emergency load (44), and the two-way power converter (50) includes a DC/DC converter (51), a switch (52), and an AC/DC inverter. (53), DC/AC inverter (54), and DC/DC converter (55).
- the solar panel 21 converts light energy into electrical energy using the photoelectric effect
- the grid power 41 inputs power from the power system
- the general load 42 receives the grid power 41.
- the important load 43 is supplied with AC power by the grid power 41 or the solar panel 21 and the battery 25, and the two-way inverter 50 is supplied with the solar panel 21, the grid power 41, Integrates the power of the battery 25, supplies power to the general load 42, the critical load 43, the emergency load 44, and the battery 25, and the battery 25 stores electrical energy and supplies power to the emergency load 44.
- the load 44 receives alternating current power from the bidirectional power converter 50.
- the DC/DC converter 51 converts the direct current power of the solar panel 21 into other direct current power
- the switch 52 controls the flow of the grid power 41
- the /DC inverter 53 converts the alternating current of the grid power 41 into direct current power
- the DC/AC inverter 54 converts the direct current power into alternating current power supplied to the emergency load 44
- the DC/DC converter (55) converts the direct current power of the battery 25 to another direct current power.
- the switch 52 supplies grid power 41, which is commercial power, to the important load 43 in normal times, and supplies battery power 25, including conversion loss, only during power outages to increase overall efficiency.
- This operation of the switch 52 performs an Uninterruptible Power Supply (UPS) function, and the UPS supplies good quality, stable alternating current power to the important load 43 by overcoming power failures that may occur in commercial power sources.
- UPS Uninterruptible Power Supply
- the two-way inverter of the present invention can save space and cost by simultaneously performing the functions of a solar inverter, ESS (Energy Storage System), and UPS (Uninterruptible Power Supply), and provides power to the loads by distinguishing between general loads, important loads, and emergency loads. Power quality can be improved by supplying .
- ESS Electronicgy Storage System
- UPS Uninterruptible Power Supply
- FIG. 4 is an example diagram showing the configuration of a DC/DC converter of a bidirectional inverter including the solar inverter function of FIG. 3.
- an input capacitor (Ci) storing a direct current input (Vin)
- a capacitor (Ci) An input switch (A, B, C, D) that outputs alternating current by switching the power supply, a transformer (63) that converts the alternating current converted by the input switch (A, B, C, D) into another level of alternating current, A thyristor 62 that turns on/off the operation of the primary side of the transformer 63, an output switch (E, F, G, H) that outputs direct current power by switching the alternating current on the secondary side of the transformer 63, and an output switch (E) , F, G, H) and an output capacitor (Co) that stores the output.
- An on/off signal is input to the control terminal of the thyristor 62, and the control unit 5 outputs an on signal to the control terminal of the thyristor 62 when an error occurs in the output (Vo) or a load is short-circuited to operate the transformer ( 63), the primary side operation can be turned off.
- the control unit 5 turns off the input switches (A, B, C, and D) to stop the transmission of direct current input.
- the DC/DC converter includes a DC/AC converter and an AC/DC converter.
- the DC/AC converter outputs alternating current by switching the power of the input capacitor (Ci), which stores the direct current input (Vin), and the capacitor (Ci). It includes an input switch (A, B, C, D) and a transformer 63 that converts the alternating current converted by the input switch (A, B, C, D) into another level of alternating current, and the AC/DC converter is a transformer.
- the AC/DC inverter 53, DC/AC inverter 54, and DC/DC converter 55 can be configured.
- FIGs 5 and 6 are examples of the operation of a bidirectional inverter including the solar inverter function of Figure 3.
- the power of the solar panel 21 is supplied through the DC/DC converter 51 and the AC/DC inverter. (53), to the general load (42) via the switch (52), to the battery (25) via the DC/DC converter (51), and the DC/DC converter (55), to the DC/DC converter (51), and to the battery (25). It is supplied to the emergency load 44, which is equipment 45, through the AC inverter 54.
- the grid power source (41) When using the grid power source (41), the grid power source (41) is connected to the general load (42), via the switch (52), the AC/DC inverter (53), and the DC/DC converter (55) to the battery (25) and the switch (52). ), is supplied to the emergency load (44), which is equipment (45), through the AC/DC inverter (53) and DC/AC inverter (54).
- system power 41 is supplied to the general load 42, and power from the battery 25 is supplied to the general load 42 through the DC/DC converter 55, AC/DC inverter 53, and switch 52. ), and is also supplied to the emergency load 44, which is equipment 45, through the DC/DC converter 55 and DC/AC inverter 54.
- UPS Uninterruptible Power Supply
- FIG. 7 is an exemplary diagram illustrating hardware resources and an operating system, operations of a core control unit, and a system authentication configuration that grants authority to execute control unit operations for explaining the present invention.
- the present invention is a processor (1). ), memory (2), input/output device (3), operating system (4), and control unit (5).
- the processor (1) is a CPU (Central Processing Unit), GPU (Graphic Processing Unit), FPGA (Field Programmable Gate Array), and NPU (Neural Processing Unit), and the operating system (4) and control unit (5) mounted on the memory (2) ) executes the execution code.
- CPU Central Processing Unit
- GPU Graphic Processing Unit
- FPGA Field Programmable Gate Array
- NPU Neurological Processing Unit
- Memory (2) includes permanent mass storage devices such as random access memory (RAM), read only memory (ROM), disk drives, solid state drives (SSD), flash memory, etc. can do.
- RAM random access memory
- ROM read only memory
- SSD solid state drives
- flash memory etc. can do.
- the input/output device 3 is an input device, such as a camera, keyboard, microphone, mouse, etc. including an audio sensor and/or image sensor, and an output device such as a display, speaker, haptic feedback device, etc. May include devices.
- the operating system 4 may include Windows, Linux, IOS, virtual machines, web browsers, and interpreters, and supports tasks, threads, timer execution, scheduling, resource management, graphics, font processing, communication, etc.
- the control unit 5 determines the state based on sensor, key, touch, and mouse input of the input/output device 3 with the support of the operating system 4 and performs operations according to the determined state.
- the control unit 5 performs job scheduling by timers and threads using parallel execution routines.
- the control unit 5 determines the state using the sensor value of the input/output device 3 and performs an algorithm according to the determined state.
- the system authentication configuration includes a terminal 6 including a control unit 5, and an authentication server 7.
- the terminal 6 duplicates the data channel, receives the key value and biometric information of the terminal 6, and requests user authentication through the first data channel to the authentication server 7, and the terminal 6 receives the generated kit value. It is displayed on the display and transmitted to the authentication server (7).
- the terminal 6 inputs the kit value displayed on the display of the terminal 6 and transmits it along with the user information to the authentication server 7 through the second data channel.
- the terminal 6 requests the authentication server 7 to authenticate the system mounted on the terminal 6 using the kit value and user information.
- the kit value of the terminal 6 can be generated from computer-specific information, such as the CPU manufacturing number and the Ethernet chip number.
- the terminal 6 can obtain user information through face recognition using a camera, voice recognition using a microphone, and handwriting recognition using a display, and use it for authentication.
- the authentication server 7 receives the kit value from the terminal 6, receives the kit value and user information from the terminal 6 through a duplicated data channel, compares the kit value and the user information of the terminal 6, and By matching, authentication for use of the system of the terminal 6 is processed.
- the authentication server 7 transmits the authentication result to the terminal 6 to authorize the user's use of the system. Due to the dual data channels of the terminal 6, kit value loss can be minimized.
- the authentication server 7 performs history analysis of user information and compares and determines consistency and changes in user information over time. In history analysis, if user information shows consistency, the user's use is permitted; if it shows changes, the user's use is not permitted. By allowing users to use the system when user information shows consistency, security is strengthened to prevent users with altered user information from accessing the system.
- the terminal 6, which is a means of authenticating the use of the system, does not connect directly to the system, but forms a bypass route through the authentication server 7, so that the network that makes up the Internet network is composed of an internal network and an external network, and the IP address setting process There is an advantage in that the authentication process using the terminal 6 is performed smoothly when this is cumbersome.
- the system is mounted on the terminal 6, the terminal 6 becomes an authentication terminal means, and the authentication server 7 becomes an authentication server means.
- the cloud (12) is a modularization of the container (7) with the support of the operating system (4) that manages the processor (1), memory (2), input/output device (3), and communication unit (6), and the web (8) and DB ( 9), provides the services of the protocol 10 and library 11, and the control unit 5 executes a cloud application using the services of the container 7.
- the cloud 12 integrates control of multiple terminals 6, stores sensor values received from the terminal 6, monitors them over time, processes operation errors of the terminal 6, and sends error messages to other terminals. Notifies the terminal 6, and performs switching control on the terminal 6 that is the control target.
- Neural network learning selects features from time series data collected from input devices such as temperature, altitude, fingerprints, various sensors, images, infrared cameras, and lidar, selects a model through algorithm selection, and repeats through the learning and performance verification process. Model selection is repeated through trial and error. After performance verification is completed, an artificial intelligence model is selected.
- the control unit 5 performs a deep learning algorithm using a neural network to determine sensor values, uses training data to learn the neural network, and verifies the neural network performance with test data.
- Control unit 6: Terminal, 7: Authentication server, 8: Web
- PV PCS Photovoltaic Power Conditioning System
Landscapes
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
본 발명은 태양광 인버터 기능을 포함한 양방향 인버터에 관한 것으로, 보다 상세하게는 기존 태양광 인버터와 ESS, 인버터를 설치시 각각의 인버터를 설치해야 하지만 한 개의 제품에서 태양광 인버터, ESS, UPS 기능을 동작하는 태양광 인버터 기능을 포함한 양방향 인버터에 관한 것이다.
Description
본 발명은 태양광 인버터 기능을 포함한 양방향 인버터에 관한 것으로, 보다 상세하게는 기존 태양광 인버터와 ESS, 인버터를 설치시 각각의 인버터를 설치해야 하지만 한 개의 제품에서 태양광 인버터, ESS, UPS 기능을 동작하는 태양광 인버터 기능을 포함한 양방향 인버터에 관한 것이다.
본 발명에 관련된 종래 기술을 예로 들면, 특허문헌 1 에너지 저장 시스템 및 이의 제어 방법은 DC 전력을 사용하는 부하에 DC/AC 또는 AC/DC 변환을 거치지 않고, 발전된 DC 전력 또는 배터리에 저장된 DC 전력을 직접 공급할 수 있고, 계통에서 이상 상황, 예를 들면 정전 발생시, UPS 기능을 수행할 때 배터리의 저장 전력을 보다 안정적으로 사용할 수 있다.
또한, 특허문헌 2 전력 저장 장치와 그 동작 방법 및 전력 저장 시스템은 발전 시스템과 연계되어 부하에 전력을 공급하고, 전력 계통의 이상 상황에서 전원 공급 기능을 안정적으로 수행한다.
그러나 종래 기술은 DC 링크단을 중심으로 태양광 컨버터, ESS(Energy Storage System), 인버터를 연결하여 전력 변환 횟수를 줄여 효율을 상승시키지 못하는 문제점이 있다.
<선행기술문헌>
(특허문헌 1) 등록특허공보 제10-1084216호 에너지 저장 시스템 및 이의 제어 방법(KR)
(특허문헌 2) 등록특허공보 제10-1156535호 전력 저장 장치와 그 동작 방법 및 전력 저장 시스템(KR)
본 발명은 DC 링크단을 중심으로 태양광 컨버터, ESS(Energy Storage System), 인버터를 연결하여 전력 변환 횟수를 줄여 효율을 상승시키는 태양광 인버터 기능을 포함한 양방향 인버터을 제공하는 것을 목적으로 한다.
또한, 본 발명은 태양광 컨버터, ESS, 인버터 기능을 동시에 만족하여 효율 향상, 설치 공간 축소, 전력 품질을 향상시키는 태양광 인버터 기능을 포함한 양방향 인버터을 제공하는 것을 또 다른 목적으로 한다.
본 발명의 바람직한 태양광 인버터 기능을 포함한 양방향 인버터는, 광전 효과를 이용하여 빛 에너지를 전기 에너지로 변환하는 태양광 패널(21); 전기 에너지를 저장하는 배터리(25); 상기 태양광 패널(21), 상기 배터리(25)의 직류 전원을 다른 직류 전원으로 변환하고, 직류 전원을 Grid(23), 부하(24)로 공급되는 교류 전원으로 변환하는 양방향 전력변환장치(50); 및 상기 배터리(25), 상기 양방향 전력변환장치(50)를 총괄 관리하는 EMS(Energy Management System)(27);를 포함하는 것을 특징으로 한다.
또한, 상기 양방향 전력변환장치(50)는, 상기 태양광 패널(21)의 직류 전원을 다른 직류 전원으로 변환하는 DC/DC 컨버터(51); 계통 전원(41)의 흐름을 제어하는 스위치(52); 상기 계통 전원(41)의 교류를 직류 전원으로 변환하는 AC/DC 인버터(53); 직류 전원을 비상 부하(44)로 공급하는 교류 전원으로 변환하는 DC/AC 인버터(54); 및 상기 배터리(25)의 직류 전원을 다른 직류 전원으로 변환하는 DC/DC 컨버터(55);를 포함하는 것을 특징으로 한다.
또한, 상기 DC/DC 컨버터는, DC/AC 컨버터, AC/DC 컨버터를 포함하고, 직류 입력(Vin)을 저장하는 입력캐패시터(Ci); 상기 입력캐패시터(Ci)의 전원을 스위칭하여 교류를 출력하는 입력스위치(A, B, C, D); 상기 입력스위치(A, B, C, D)에 의해 변환된 교류를 다른 레벨의 교류로 변환하는 변압기(63); 상기 변압기(63)의 1차측 동작을 온/오프하는 사이리스터(62); 상기 변압기(63)의 2차측 교류를 스위칭하여 직류 전원을 출력하는 출력스위치(E, F, G, H); 및 상기 출력스위치(E, F, G, H)의 출력을 저장하는 출력캐패시터(Co);를 포함하는 것을 특징으로 한다.
또한, 상기 사이리스터(62)의 제어 단자에는 온/오프 신호가 입력되며, 제어부(5)는 출력(Vo)에 이상이 발생하거나 부하 단락이 있을 때 상기 사이리스터(62)의 제어 단자에 온 신호를 출력해서 변압기(63)의 1차측 동작을 오프시키는 것을 특징으로 한다.
또한, 상기 DC/AC 컨버터는, 직류 입력(Vin)을 저장하는 입력캐패시터(Ci); 상기 입력캐패시터(Ci)의 전원을 스위칭하여 교류를 출력하는 입력스위치(A, B, C, D); 및 상기 입력스위치(A, B, C, D)에 의해 변환된 교류를 다른 레벨의 교류로 변환하는 변압기(63);를 포함하는 것을 특징으로 한다.
또한, 상기 AC/DC 컨버터는, 상기 변압기(63)의 2차측 교류를 스위칭하여 직류 전원을 출력하는 출력스위치(E, F, G, H); 및 상기 출력스위치(E, F, G, H)의 출력을 저장하는 출력캐패시터(Co);를 포함하는 것을 특징으로 한다.
또한, 상기 스위치(52)는 평상시에는 중요 부하(43)에 상용 전원인 상기 계통 전원(41)을 공급하고, 정전시에만 변환 손실이 포함된 상기 배터리(25) 전력을 공급하는 것을 특징으로 한다.
또한, 정전시 상기 배터리(25)의 전원이 상기 DC/DC 컨버터(55), 상기 DC/AC 인버터(54)를 거쳐 장비(45)인 상기 비상 부하(44)에 공급되는 것을 특징으로 한다.
본 발명은 DC 링크단을 중심으로 태양광 컨버터, ESS(Energy Storage System), 인버터를 연결하여 전력 변환 횟수를 줄임으로써 효율을 상승시키는 효과를 가질 수 있다.
또한, 본 발명은 태양광 컨버터, ESS, 인버터 기능을 동시에 만족함으로써 효율 향상, 설치 공간을 축소하고, 일반 부하, 중요 부하, 비상 부하를 구분하여 부하에 전력을 공급함으로써 전력 품질을 향상시키는 효과를 가질 수 있다.
도 1은 종래 양방향 인버터의 구성을 보인 블록도이다.
도 2는 본 발명 태양광 인버터 기능을 포함한 양방향 인버터의 구성을 보인 블록도이다.
도 3은 본 발명 태양광 인버터 기능을 포함한 양방향 인버터의 상세 구성을 보인 블록도이다.
도 4는 도 3 태양광 인버터 기능을 포함한 양방향 인버터의 DC/DC 컨버터의 구성을 보인 예시도이다.
도 5와 도 6은 도 3 태양광 인버터 기능을 포함한 양방향 인버터의 동작 예이다.
도 7은 본 발명을 설명하기 위한 하드웨어 자원과 운영체제, 코어인 제어부의 동작, 제어부 동작을 실행할 권한을 부여하는 시스템 인증 구성을 설명하는 예시도이다.
이하, 도면을 참조하여 본 발명의 실시 예에 따른 태양광 인버터 기능을 포함한 양방향 인버터에 대하여 상세히 설명하기로 한다. 이하에서 종래 주지된 사항에 대한 설명은 본 발명의 요지를 명확히 하기 위해 생략하거나 간단히 한다. 본 발명의 설명에 포함된 구성은 개별 또는 복합 결합 구성되어 동작한다.
도 1은 종래 양방향 인버터의 구성을 보인 블록도로서, 도 1을 참조하면, 태양광 패널(21), PV PCS(Photovoltaic Power Conditioning System)(22), Grid(23), 부하(24), 배터리(25), ESS PCS(Energy Storage System Power Conditioning System)(26), EMS(Energy Management System)(27)를 포함한다.
태양광 패널(21)은 광전 효과를 이용하여 빛 에너지를 전기 에너지로 변환하고, PV PCS(22)는 태양광 패널(21)의 직류를 부하(24)에 공급할 수 있는 교류로 변환하고, Grid(23)는 계통일 수 있고, 배터리(25)는 전기 에너지를 저장하고, ESS PCS(26)는 배터리(25)의 전기 에너지를 부하(24)로 공급되는 교류로 변환하고, EMS(27)는 배터리(25), ESS PCS(26)의 상태를 총괄 관리한다.
종래 양방향 인버터는 모두 교류 라인에 연결되어 DC(Direct Current) to AC(Alternating Current) 변환에 따른 손실이 발생한다.
도 2는 본 발명 태양광 인버터 기능을 포함한 양방향 인버터의 구성을 보인 블록도로서, 도 2를 참조하면, 태양광 패널(21), DC/DC 컨버터(31), 하이브리드 PCS(32), Grid(23), 부하(24), 배터리(25), EMS(27)를 포함한다.
태양광 패널(21)은 광전 효과를 이용하여 빛 에너지를 전기 에너지로 변환하고, 배터리(25)는 전기 에너지를 저장하고, DC/DC 컨버터(31)는 태양광 패널(21), 배터리(25)의 직류 전원을 다른 직류 전원으로 변환하고, 하이브리드 PCS(32)는 DC/DC 컨버터(31)의 직류 전원을 Grid(23), 부하(24)로 공급되는 교류 전원으로 변환하고, EMS(27)는 배터리(25), DC/DC 컨버터(31), 하이브리드 PCS(32)를 총괄 관리한다.
본 발명 양방향 인버터는 태양광 인버터, ESS(Energy Storage System), UPS(Uninterruptible Power Supply) 기능을 동시에 수행하므로 기존 제품 설치 대비 공간 및 비용을 줄일 수 있고, 태양광 패널(21), 배터리(25)를 직류 라인에 연결하여 기존 대비 변환 손실을 줄일 수 있어 전체 시스템 효율을 향상시킬 수 있다.
도 3은 본 발명 태양광 인버터 기능을 포함한 양방향 인버터의 상세 구성을 보인 블록도로서, 도 3을 참조하면, 태양광 패널(21), 계통 전원(41), 일반 부하(42), 중요 부하(43), 양방향 전력변환장치(50), 배터리(25), 비상 부하(44)를 포함하고, 양방향 전력변환장치(50)는 DC/DC 컨버터(51), 스위치(52), AC/DC 인버터(53), DC/AC 인버터(54), DC/DC 컨버터(55)를 포함한다.
태양광 패널(21)은 광전 효과를 이용하여 빛 에너지를 전기 에너지로 변환하고, 계통 전원(41)은 전력 계통의 전원을 입력하고, 일반 부하(42)는 계통 전원(41)을 공급받고, 중요 부하(43)는 계통 전원(41) 또는 태양광 패널(21), 배터리(25)에 의한 교류 전원을 공급받고, 양방향 인버터(50)는 태양광 패널(21), 계통 전원(41), 배터리(25)의 전원을 통합하고, 일반 부하(42), 중요 부하(43), 비상 부하(44), 배터리(25)에 전원을 공급하고, 배터리(25)는 전기 에너지를 저장하고, 비상 부하(44)는 양방향 전력변환장치(50)로부터 교류 전원을 공급받는다.
양방향 전력변환장치(50)에서 DC/DC 컨버터(51)는 태양광 패널(21)의 직류 전원을 다른 직류 전원으로 변환하고, 스위치(52)는 계통 전원(41)의 흐름을 제어하고, AC/DC 인버터(53)는 계통 전원(41)의 교류를 직류 전원으로 변환하고, DC/AC 인버터(54)는 직류 전원을 비상 부하(44)로 공급하는 교류 전원으로 변환하고, DC/DC 컨버터(55)는 배터리(25)의 직류 전원을 다른 직류 전원으로 변환한다.
스위치(52)는 평상시에는 중요 부하(43)에 상용 전원인 계통 전원(41)을 공급하고, 정전시에만 변환 손실이 포함된 배터리(25) 전력을 공급하여 전체적인 효율을 상승시킨다. 이러한 스위치(52) 동작은 UPS(Uninterruptible Power Supply) 기능을 수행하며, UPS는 상용 전원에서 일어날 수 있는 전원 장애를 극복하여 좋은 품질의 안정된 교류 전력을 중요 부하(43)에 공급한다.
본 발명 양방향 인버터는 태양광 인버터, ESS(Energy Storage System), UPS(Uninterruptible Power Supply) 기능을 동시에 수행함으로써 공간 및 비용을 절감할 수 있고, 일반 부하, 중요 부하, 비상 부하를 구분하여 부하에 전력을 공급함으로써 전력 품질을 향상시킬 수 있다.
도 4는 도 3 태양광 인버터 기능을 포함한 양방향 인버터의 DC/DC 컨버터의 구성을 보인 예시도로서, 도 4를 참조하면, 직류 입력(Vin)을 저장하는 입력캐패시터(Ci), 캐패시터(Ci)의 전원을 스위칭하여 교류를 출력하는 입력스위치(A, B, C, D), 입력스위치(A, B, C, D)에 의해 변환된 교류를 다른 레벨의 교류로 변환하는 변압기(63), 변압기(63)의 1차측 동작을 온/오프하는 사이리스터(62), 변압기(63)의 2차측 교류를 스위칭하여 직류 전원을 출력하는 출력스위치(E, F, G, H), 출력스위치(E, F, G, H)의 출력을 저장하는 출력캐패시터(Co)를 포함한다. 사이리스터(62)의 제어 단자에는 온/오프 신호가 입력되며, 제어부(5)는 출력(Vo)에 이상이 발생하거나 부하 단락이 있을 때 사이리스터(62)의 제어 단자에 온 신호를 출력해서 변압기(63)의 1차측 동작을 오프시킬 수 있다. 이때, 제어부(5)는 입력스위치(A, B, C, D)를 오프시켜 직류 입력의 전달을 정지시킨다.
DC/DC 컨버터는 DC/AC 컨버터, AC/DC 컨버터를 포함하고, DC/AC 컨버터는 직류 입력(Vin)을 저장하는 입력캐패시터(Ci), 캐패시터(Ci)의 전원을 스위칭하여 교류를 출력하는 입력스위치(A, B, C, D), 입력스위치(A, B, C, D)에 의해 변환된 교류를 다른 레벨의 교류로 변환하는 변압기(63)를 포함하고, AC/DC 컨버터는 변압기(63)의 2차측 교류를 스위칭하여 직류 전원을 출력하는 출력스위치(E, F, G, H), 출력스위치(E, F, G, H)의 출력을 저장하는 출력캐패시터(Co)를 포함한다.
도 4의 DC/DC 컨버터 구성을 이용하면, AC/DC 인버터(53), DC/AC 인버터(54), DC/DC 컨버터(55)를 구성할 수 있다.
도 5와 도 6은 도 3 태양광 인버터 기능을 포함한 양방향 인버터의 동작 예로서, 이를 참조하면, 태양광 발전시 태양광 패널(21)의 전원이 DC/DC 컨버터(51), AC/DC 인버터(53), 스위치(52)를 거쳐 일반 부하(42)에, DC/DC 컨버터(51), DC/DC 컨버터(55)를 거쳐 배터리(25)에, DC/DC 컨버터(51), DC/AC 인버터(54)를 거쳐 장비(45)인 비상 부하(44)에 공급된다.
계통 전원(41) 사용시 계통 전원(41)이 일반 부하(42)에, 스위치(52), AC/DC 인버터(53), DC/DC 컨버터(55)를 거쳐 배터리(25)에, 스위치(52), AC/DC 인버터(53), DC/AC 인버터(54)를 거쳐 장비(45)인 비상 부하(44)에 공급된다.
ESS 동작시 계통 전원(41)이 일반 부하(42)에 공급되면서 배터리(25)의 전원이 DC/DC 컨버터(55), AC/DC 인버터(53), 스위치(52)를 거쳐 일반 부하(42)에 공급되고, DC/DC 컨버터(55), DC/AC 인버터(54)를 거쳐 장비(45)인 비상 부하(44)에도 공급된다.
정전시 배터리(25)의 전원이 DC/DC 컨버터(55), DC/AC 인버터(54)를 거쳐 장비(45)인 비상 부하(44)에 공급된다. 이러한 정전시 전원 공급 동작은 UPS(Uninterruptible Power Supply) 기능에 해당하며, UPS는 상용 전원에서 일어날 수 있는 전원 장애를 극복하여 좋은 품질의 안정된 교류 전력을 비상 부하(44)에 공급한다.
도 7은 본 발명을 설명하기 위한 하드웨어 자원과 운영체제, 코어인 제어부의 동작, 제어부 동작을 실행할 권한을 부여하는 시스템 인증 구성을 설명하는 예시도로서, 도 7을 참조하면, 본 발명은 프로세서(1), 메모리(2), 입출력장치(3), 운영체제(4), 제어부(5)를 포함한다.
프로세서(1)는 CPU(Central Processing Units), GPU(Graphic Processing Unit), FPGA(Field Programmable Gate Array), NPU(Neural Processing Unit)로서, 메모리(2)에 탑재된 운영체제(4), 제어부(5)의 실행 코드를 수행한다.
메모리(2)는 RAM(random access memory), ROM(read only memory), 디스크 드라이브, SSD(solid state drive), 플래시 메모리(flash memory) 등과 같은 비소멸성 대용량 저장 장치(permanent mass storage device)를 포함할 수 있다.
입출력장치(3)는 입력 장치로, 오디오 센서 및/또는 이미지 센서를 포함한 카메라, 키보드, 마이크로폰, 마우스 등의 장치를, 그리고 출력 장치로, 디스플레이, 스피커, 햅틱 피드백 디바이스(haptic feedback device) 등과 같은 장치를 포함할 수 있다.
운영체제(4)는 윈도우, 리눅스, IOS, 가상 머신, 웹브라우저, 인터프리터를 포함할 수 있고, 태스크, 쓰레드, 타이머 실행, 스케줄링, 자원 관리, 그래픽, 폰트 처리, 통신 등을 지원한다.
제어부(5)는 운영체제(4)의 지원하에 입출력장치(3)의 센서, 키, 터치, 마우스 입력에 의한 상태를 결정하고, 결정된 상태에 따른 동작을 수행한다. 제어부(5)는 병렬 수행 루틴으로 타이머, 쓰레드에 의한 작업 스케줄링을 수행한다.
제어부(5)는 입출력장치(3)의 센서값을 이용하여 상태를 결정하고, 결정된 상태에 따른 알고리즘을 수행한다.
도 7을 참조하면, 시스템 인증 구성은 제어부(5)를 포함하는 단말기(6), 인증 서버(7)를 포함한다.
단말기(6)는 데이터 채널을 이중화하고, 단말기(6)의 키값, 생체 정보를 입력받아 인증 서버(7)에 제1데이터 채널을 통해 사용자 인증을 요청하고, 단말기(6)는 생성된 킷값을 디스플레이에 표시하고, 인증 서버(7)로 전송한다.
단말기(6)는 단말기(6)의 디스플레이에 표시된 킷값을 입력하고, 사용자 정보와 함께 제2데이터 채널을 통해 인증 서버(7)로 전송한다. 단말기(6)는 킷값과 사용자 정보를 이용하여 단말기(6)에 탑재된 시스템의 인증을 인증 서버(7)에 요청한다. 단말기(6)의 킷값은 컴퓨터 고유의 정보인 CPU 제조번호, 이더넷 칩의 맥주소로부터 생성될 수 있다. 단말기(6)는 카메라를 이용한 얼굴 인식, 마이크를 이용한 음성 인식, 디스플레이를 이용한 필기 인식을 통해 사용자 정보를 획득하고, 인증에 활용할 수 있다.
인증 서버(7)는 단말기(6)로부터 킷값을 수신하고, 단말기(6)로부터 이중화된 데이터 채널을 통해 킷값과 사용자 정보를 수신하여 단말기(6)의 킷값과 사용자 정보를 비교하고, 사용자 정보를 대응시켜 단말기(6)의 시스템 이용에 대한 인증을 처리한다. 인증 서버(7)는 인증 결과를 단말기(6)로 전송하여 시스템에 대한 사용자의 사용을 허가한다. 단말기(6)의 이중화된 데이터 채널로 인해 킷값 손실이 최소화되는 효과를 가질 수 있다.
인증 서버(7)는 사용자 정보의 히스토리 분석을 수행하고, 시간 흐름에 따라 사용자 정보의 일관성, 변화를 비교 판단한다. 히스토리 분석에서 사용자 정보가 일관성을 나타내면 사용자의 사용을 허가하고, 변화를 나타내면 사용자의 사용을 허가하지 않는다. 사용자 정보가 일관성을 나타낼 때 사용자의 시스템 사용을 허가함으로써 사용자 정보가 변조된 사용자가 시스템에 접근하지 못하도록 보안을 강화한다.
시스템의 사용을 인증하는 수단인 단말기(6)는 시스템과 직접 연결하지 않고, 인증 서버(7)를 통한 우회 경로를 형성함으로써 인터넷망을 이루는 네트워크가 내부망과 외부망으로 구성되어 아이피 주소 설정 과정이 번거로울 때 단말기(6)를 이용한 인증 과정이 원활히 수행되는 장점이 있다. 이때, 단말기(6)에는 시스템이 탑재되고, 단말기(6)는 인증 단말 수단이 되고, 인증 서버(7)는 인증 서버 수단이 된다.
클라우드(12)는 프로세서(1), 메모리(2), 입출력장치(3), 통신부(6)를 관리하는 운영체제(4)의 지원 하에 컨테이너(7)의 모듈화로, 웹(8), DB(9), 프로토콜(10), 라이브러리(11)의 서비스를 제공하며, 제어부(5)는 컨테이너(7)의 서비스를 이용한 클라우드 애플리케이션을 실행한다. 컨테이너(7)라고 하는 표준 소프트웨어 패키지는 애플리케이션의 코드를 관련 구성 파일, 라이브러리(11) 및 앱 실행에 필요한 종속성과 함께 번들로 제공한다.
클라우드(12)는 다수의 단말기(6)를 통합 제어하고, 단말기(6)로부터 수신된 센서값을 저장하여 시간 흐름에 따라 모니터링하고, 단말기(6)의 동작 에러를 처리하고, 에러 메시지를 다른 단말기(6)로 알리고, 제어 대상인 단말기(6)를 스위칭 제어한다.
신경망 학습은 온도, 고도, 지문 등 각종 센서, 이미지, 적외선 등 카메라, 라이더와 같은 입력 장치로부터 수집된 시계열 데이터로부터 특징량 선택, 알고리즘 선택을 통해 모델을 선택하고, 학습, 성능 검증 과정에 의한 반복 시행 착오를 거쳐 모델 선택을 반복한다. 성능 검증이 마치면 인공지능 모델이 선택된다.
제어부(5)는 센서값 판단에 신경망을 이용한 딥러닝 알고리즘을 수행하고, 신경망 학습에 훈련 데이터를 이용하고, 시험 데이터로 신경망 성능을 검증한다.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 해당 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
<부호의 설명>
1: 프로세서, 2: 메모리, 3: 입출력장치, 4: 운영체제,
5: 제어부, 6: 단말기, 7: 인증 서버, 8: 웹
9: DB, 11: 라이브러리, 12: 클라우드, 14: 컨테이너,
16: 통신부, 21: 태양광 패널,
22: PV PCS(Photovoltaic Power Conditioning System),
23: Grid, 24: 부하, 25: 배터리,
26: ESS PCS(Energy Storage System Power Conditioning System),
27: EMS(Energy Management System),
31: DC/DC 컨버터, 32: 하이브리드 PCS, 41: 계통 전원,
42: 일반 부하, 43: 중요 부하, 44: 비상 부하
50: 양방향 전력변환장치, 51: DC/DC 컨버터, 52: 스위치
53: AC/DC 인버터, 54: DC/AC 인버터, 55: DC/DC 컨버터
Claims (1)
- 광전 효과를 이용하여 빛 에너지를 전기 에너지로 변환하는 태양광 패널(21);전기 에너지를 저장하는 배터리(25);상기 태양광 패널(21), 상기 배터리(25)의 직류 전원을 다른 직류 전원으로 변환하고, 직류 전원을 Grid(23), 부하(24)로 공급되는 교류 전원으로 변환하는 양방향 전력변환장치(50);상기 배터리(25), 상기 양방향 전력변환장치(50)를 총괄 관리하는 EMS(Energy Management System)(27);시스템 인증하는 단말기(6); 및다수의 상기 단말기(6)를 통합 제어하고, 상기 단말기(6)로부터 수신된 센서값을 저장하여 시간 흐름에 따라 모니터링하고, 상기 단말기(6)의 동작 에러를 처리하고, 에러 메시지를 다른 단말기(6)로 알리고, 제어 대상인 상기 단말기(6)를 스위칭 제어하는 클라우드(12);를 포함하고,상기 단말기(6)는 데이터 채널을 이중화하고, 상기 단말기(6)의 키값, 생체 정보를 입력받아 인증 서버(7)에 제1데이터 채널을 통해 사용자 인증을 요청하고, 생성된 킷값을 디스플레이에 표시하고, 상기 인증 서버(7)로 전송하고, 상기 단말기(6)의 디스플레이에 표시된 킷값을 입력하고, 사용자 정보와 함께 제2데이터 채널을 통해 상기 인증 서버(7)로 전송하고, 킷값과 사용자 정보를 이용하여 상기 단말기(6)에 탑재된 시스템의 인증을 상기 인증 서버(7)에 요청하고,상기 클라우드(12)는 컨테이너(7)의 모듈화로, 웹(8), DB(9), 프로토콜(10), 라이브러리(11)의 서비스를 제공하며, 컨테이너(7)의 서비스를 이용한 클라우드 애플리케이션을 실행하고,상기 양방향 전력변환장치(50)는,상기 태양광 패널(21)의 직류 전원을 다른 직류 전원으로 변환하는 DC/DC 컨버터(51);계통 전원(41)의 흐름을 제어하는 스위치(52);상기 계통 전원(41)의 교류를 직류 전원으로 변환하는 AC/DC 인버터(53);직류 전원을 비상 부하(44)로 공급하는 교류 전원으로 변환하는 DC/AC 인버터(54); 및상기 배터리(25)의 직류 전원을 다른 직류 전원으로 변환하는 DC/DC 컨버터(55);를 포함하고,상기 DC/DC 컨버터는,DC/AC 컨버터, AC/DC 컨버터를 포함하고,직류 입력(Vin)을 저장하는 입력캐패시터(Ci);상기 입력캐패시터(Ci)의 전원을 스위칭하여 교류를 출력하는 입력스위치(A, B, C, D);상기 입력스위치(A, B, C, D)에 의해 변환된 교류를 다른 레벨의 교류로 변환하는 변압기(63);상기 변압기(63)의 1차측 동작을 온/오프하는 사이리스터(62);상기 변압기(63)의 2차측 교류를 스위칭하여 직류 전원을 출력하는 출력스위치(E, F, G, H); 및상기 출력스위치(E, F, G, H)의 출력을 저장하는 출력캐패시터(Co);를 포함하고,상기 사이리스터(62)의 제어 단자에는 온/오프 신호가 입력되며, 제어부(5)는 출력(Vo)에 이상이 발생하거나 부하 단락이 있을 때 상기 사이리스터(62)의 제어 단자에 온 신호를 출력해서 변압기(63)의 1차측 동작을 오프시키고,상기 DC/AC 컨버터는,직류 입력(Vin)을 저장하는 입력캐패시터(Ci);상기 입력캐패시터(Ci)의 전원을 스위칭하여 교류를 출력하는 입력스위치(A, B, C, D); 및상기 입력스위치(A, B, C, D)에 의해 변환된 교류를 다른 레벨의 교류로 변환하는 변압기(63);를 포함하고,상기 AC/DC 컨버터는,상기 변압기(63)의 2차측 교류를 스위칭하여 직류 전원을 출력하는 출력스위치(E, F, G, H); 및상기 출력스위치(E, F, G, H)의 출력을 저장하는 출력캐패시터(Co);를 포함하고,상기 스위치(52)는 평상시에는 중요 부하(43)에 상용 전원인 상기 계통 전원(41)을 공급하고, 정전시에만 변환 손실이 포함된 상기 배터리(25) 전력을 공급하고,정전시 상기 배터리(25)의 전원이 상기 DC/DC 컨버터(55), 상기 DC/AC 인버터(54)를 거쳐 장비(45)인 상기 비상 부하(44)에 공급되는 것을 특징으로 하는, 태양광 인버터 기능을 포함한 양방향 인버터.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220088480A KR102471128B1 (ko) | 2022-07-18 | 2022-07-18 | 태양광 인버터 기능을 포함한 양방향 인버터 |
KR10-2022-0088480 | 2022-07-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024019474A1 true WO2024019474A1 (ko) | 2024-01-25 |
Family
ID=84237363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/010264 WO2024019474A1 (ko) | 2022-07-18 | 2023-07-18 | 태양광 인버터 기능을 포함한 양방향 인버터 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102471128B1 (ko) |
WO (1) | WO2024019474A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102471128B1 (ko) * | 2022-07-18 | 2022-11-25 | 주식회사 이온 | 태양광 인버터 기능을 포함한 양방향 인버터 |
KR102617618B1 (ko) * | 2023-04-03 | 2023-12-27 | 에너지닥터 주식회사 | 산업용 공장의 고효율 설비 교체를 위한 인공지능 기반 의사 결정 서비스 제공 장치, 방법 및 시스템 |
KR102680317B1 (ko) * | 2023-08-08 | 2024-07-01 | 주식회사 이온 | 배터리 내장형 양방향 전기차 충전기의 전력 시장 연계를 통한 수익 창출 장치, 방법 및 시스템 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110072912A (ko) * | 2009-12-23 | 2011-06-29 | 삼성에스디아이 주식회사 | 에너지 저장 시스템 및 이의 제어 방법 |
KR101156535B1 (ko) * | 2010-01-18 | 2012-06-21 | 삼성에스디아이 주식회사 | 전력 저장 장치와 그 동작 방법 및 전력 저장 시스템 |
JP2016201966A (ja) * | 2015-04-14 | 2016-12-01 | 三菱電機株式会社 | 電力変換装置 |
JP2021141725A (ja) * | 2020-03-05 | 2021-09-16 | ニシム電子工業株式会社 | 太陽光発電電力制御装置 |
KR102407241B1 (ko) * | 2022-01-05 | 2022-06-13 | (주)빅팟 | 렌탈 마켓 시스템 |
KR102471128B1 (ko) * | 2022-07-18 | 2022-11-25 | 주식회사 이온 | 태양광 인버터 기능을 포함한 양방향 인버터 |
-
2022
- 2022-07-18 KR KR1020220088480A patent/KR102471128B1/ko active IP Right Grant
-
2023
- 2023-07-18 WO PCT/KR2023/010264 patent/WO2024019474A1/ko unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110072912A (ko) * | 2009-12-23 | 2011-06-29 | 삼성에스디아이 주식회사 | 에너지 저장 시스템 및 이의 제어 방법 |
KR101156535B1 (ko) * | 2010-01-18 | 2012-06-21 | 삼성에스디아이 주식회사 | 전력 저장 장치와 그 동작 방법 및 전력 저장 시스템 |
JP2016201966A (ja) * | 2015-04-14 | 2016-12-01 | 三菱電機株式会社 | 電力変換装置 |
JP2021141725A (ja) * | 2020-03-05 | 2021-09-16 | ニシム電子工業株式会社 | 太陽光発電電力制御装置 |
KR102407241B1 (ko) * | 2022-01-05 | 2022-06-13 | (주)빅팟 | 렌탈 마켓 시스템 |
KR102471128B1 (ko) * | 2022-07-18 | 2022-11-25 | 주식회사 이온 | 태양광 인버터 기능을 포함한 양방향 인버터 |
Also Published As
Publication number | Publication date |
---|---|
KR102471128B1 (ko) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024019474A1 (ko) | 태양광 인버터 기능을 포함한 양방향 인버터 | |
WO2021221242A1 (ko) | 연합 학습 시스템 및 방법 | |
WO2020111561A1 (ko) | 머신러닝 기반 태양광 발전 제어 시스템 및 방법 | |
US11217999B2 (en) | Photovoltaic power generation inverter system | |
WO2012050275A1 (ko) | 배터리팩의 멀티 슬레이브에 대한 순차적 아이디 설정방법 및 시스템 | |
WO2018079994A1 (ko) | 에너지 저장 시스템 통합 관리형 ems 어그리게이터 시스템 | |
CN101053262A (zh) | 用于配线板接插线文件编制和修正的方法和装置 | |
WO2022114624A1 (ko) | 태양광 발전 시스템 | |
WO2019017574A1 (ko) | 마이크로그리드의 제어 및 운영 연구를 위한 유연한 테스트 플랫폼 | |
WO2020122419A1 (ko) | 연료전지 제어 시스템 | |
CN113131518B (zh) | 一种mlpe光伏系统及其mlpe设备检测方法 | |
CN212846495U (zh) | 轨道列车控制逻辑的测试系统 | |
WO2022114438A1 (ko) | 블록체인을 이용한 사물인터넷 기반의 원격 제어 가능한 전자 칠판 시스템 | |
WO2018230831A1 (ko) | 에너지 저장 시스템 | |
WO2023033240A1 (ko) | 효율적 태양광 가로등 관리를 위한 인공지능 iot 엣지컴퓨팅 장치 및 이를 이용한 빅데이터 서비스 플랫폼 시스템 | |
WO2024124886A1 (zh) | 基于分布式安全容器架构工业机器人控制器设计方法 | |
WO2018043862A1 (ko) | 온사이트형 ess 관리 장치 | |
WO2023224205A1 (ko) | 인공 신경망 모델 학습 결과 합성을 통한 공통 모델 생성 방법 | |
CN106254438B (zh) | 一种基于开放式通信的配电网cps主站 | |
WO2024055307A1 (zh) | 微电网系统及其控制方法、设备、存储介质和程序产品 | |
WO2020138608A1 (ko) | 복수의 챗봇을 이용한 질의 응답 방법 및 장치 | |
WO2013089425A1 (ko) | 전력 변환 시스템의 모듈 스위칭 제어 장치 및 방법 | |
CN109753122B (zh) | 一体化列车控制背板 | |
WO2022131587A1 (ko) | 에너지 저장 시스템의 통신 아이디 설정 장치 | |
CN111509869A (zh) | 一种高电位设备激光供能装置及激光调节方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23843320 Country of ref document: EP Kind code of ref document: A1 |