WO2024055307A1 - 微电网系统及其控制方法、设备、存储介质和程序产品 - Google Patents

微电网系统及其控制方法、设备、存储介质和程序产品 Download PDF

Info

Publication number
WO2024055307A1
WO2024055307A1 PCT/CN2022/119411 CN2022119411W WO2024055307A1 WO 2024055307 A1 WO2024055307 A1 WO 2024055307A1 CN 2022119411 W CN2022119411 W CN 2022119411W WO 2024055307 A1 WO2024055307 A1 WO 2024055307A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power generation
energy
generation system
load
Prior art date
Application number
PCT/CN2022/119411
Other languages
English (en)
French (fr)
Inventor
沙广林
段青
盛万兴
吴云召
张姚
刘璐
马春艳
赵彩虹
王昊晴
蔺海丽
高健
Original Assignee
中国电力科学研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司, 国家电网有限公司 filed Critical 中国电力科学研究院有限公司
Priority to PCT/CN2022/119411 priority Critical patent/WO2024055307A1/zh
Publication of WO2024055307A1 publication Critical patent/WO2024055307A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present disclosure relates to but is not limited to the field of power electronics technology, and in particular, to a microgrid system and its control method, equipment, storage media and program products.
  • Microgrid refers to a small power generation and distribution system composed of distributed power sources, energy storage devices, energy conversion devices, related loads, and monitoring and protection devices.
  • microgrid systems including distributed photovoltaic converters, energy storage converters, diesel generators and other elements are widely used at home and abroad.
  • currently dispersed and independent control strategies and communication forms give them overall coordinated control.
  • the respective control of photovoltaic converters, energy storage converters, and diesel generators results in network instability, poor information collection and communication, and inability to access new elements, among other problems.
  • Embodiments of the present disclosure provide a microgrid system and its control method, equipment, storage media and program products.
  • an embodiment of the present disclosure provides a microgrid system, comprising: an energy router, a distributed energy power supply system and a power load group; wherein the energy router comprises an AC bus, a power interface group, a load switch group, a communication system and an energy management system; the distributed energy power supply system is electrically connected to the AC bus through the power interface group, and the power load group is electrically connected to the AC bus through the load switch group, the communication system is configured to communicate between the energy router and the distributed energy power supply system and the power load group according to the current operating status of the microgrid system and a preset energy management strategy, and the energy management system is configured to control the connection mode of the distributed energy power supply system according to the current operating status of the microgrid system and a preset energy management strategy, so that the microgrid system enters a target power supply mode.
  • the distributed energy power supply system includes at least one of the following: a wind power generation system, a photovoltaic power generation system, a diesel power generation system, and a battery energy storage system; wherein each of the energy power supply systems uses plug-and-play
  • the interface is connected to the power supply interface group, and the energy management system is communicated with each of the distributed energy power supply systems.
  • the target power supply mode includes one of the following: independent power supply mode, cascade power supply mode, emergency power supply mode, and mains power access mode; wherein, the independent power supply mode includes photovoltaic independent power supply mode, energy storage One of independent power supply mode and diesel generator independent power supply mode.
  • the cascade power supply mode includes one of wind and solar complementary power supply mode, photovoltaic + energy storage cascade power supply mode, photovoltaic + diesel generator + energy storage cascade power supply mode. .
  • the electrical load group includes distributed first-level loads, second-level loads and third-level loads; wherein the first-level load has the highest priority and the third-level load has the lowest priority;
  • the load switch group includes three levels of interfaces corresponding to the primary load, the secondary load, and the third level load respectively; wherein, the three levels of interfaces are configured according to actual needs and priorities.
  • the first-level load, the second-level load, and the third-level load are flexibly connected to the AC bus in sequence.
  • embodiments of the present disclosure provide a control method for a microgrid system, which is applied to the energy management system in the microgrid system described in the first aspect, including:
  • the microgrid system In response to receiving the power generation instruction, obtain the current operating status of the microgrid system; wherein the microgrid system includes an energy router, a distributed energy power supply system connected to the energy router in an AC busbar manner, and a power load group ; According to the current operating conditions of the microgrid system and the preset energy management strategy, control the connection mode of the distributed energy power supply system so that the microgrid system enters the target power supply mode.
  • the distributed energy power supply system includes at least one of the following: wind power generation system, photovoltaic power generation system, diesel power generation system and battery energy storage system; according to the microgrid system
  • the current operating conditions and preset energy management strategies are used to control the connection mode of the distributed energy power supply system so that the microgrid system enters the target power supply mode, including: when the microgrid system is adjacent to wind power generation facilities and the local When the lighting resources are sufficient, the wind power generation system and the photovoltaic power generation system are controlled to communicate and interconnect, so that the microgrid system enters the wind and solar complementary power supply mode; when the local lighting resources are limited and the photovoltaic power generation system When the output power is insufficient to meet the power demand of the load, control the photovoltaic power generation system and the energy storage power generation system to communicate with each other so that the microgrid system enters the photovoltaic + energy storage cascade power supply mode; When local lighting resources are limited and the output power of the photovoltaic power generation system and the energy storage power generation system
  • the energy storage power generation system includes an energy storage battery
  • the photovoltaic power generation system includes an integrated photovoltaic and storage machine.
  • the control of all The connection method of the distributed energy power supply system to enable the microgrid system to enter the target power supply mode also includes: an emergency situation in which the photovoltaic power generation system, the energy storage power generation system and the diesel power generation system cannot work.
  • the energy storage battery in the energy storage power generation system is controlled to connect to the electrical load group, so that the microgrid system enters the emergency power supply mode for short-term power supply; there is a market around the microgrid system.
  • the energy storage power generation system and the photovoltaic power generation system are controlled to be connected to the mains power, so that the microgrid system enters the mains power access mode for the energy storage battery and the Optical storage integrated machine for charging.
  • the method further includes: in the wind-solar complementary power supply mode, using an integrated light-storage machine in the photovoltaic power generation system to conduct the DC output of the wind power generation system and the photovoltaic power generation system. Return flow and control are finally converted into AC output through the inverter to realize power supply to the electrical load group; in the photovoltaic + energy storage cascade power supply mode, the photovoltaic power generation system is controlled through the energy storage power generation system The AC output of the power generation system is connected to the electrical load group for power supply by the energy storage power generation system; in the photovoltaic + diesel generator + energy storage cascade power supply mode, the photovoltaic power generation system is controlled by the energy storage power generation system. The AC output of the power generation system and the diesel power generation system is connected to the power load group by the energy storage power generation system for power supply.
  • the electrical load group is connected to the AC bus of the energy router through the load switch group of the energy router.
  • the electrical load group includes distributed primary loads, secondary loads and tertiary loads. level loads; wherein, the level one load has the highest priority, and the level three load has the lowest priority; the method also includes: in the photovoltaic + diesel generator + energy storage cascade power supply mode, in the When the maximum output power of the microgrid system cannot meet the power consumption of the electrical load group, the load switch group is used to disconnect the connections with the third-level load and the second-level load in order of priority.
  • the load switch group includes three levels of interfaces corresponding to the first-level load, the second-level load, and the third-level load respectively.
  • the method further includes: detecting the The state of charge of the energy storage battery of the energy storage power generation system; when the state of charge indicates that the output power of the energy storage power generation system is less than the first percentage, disconnect the load switch group and the A level interface corresponding to the third-level load; when the state of charge indicates that the output power of the energy storage power generation system is less than the second percentage, disconnect the load switch group corresponding to the third-level load.
  • a level interface, and a level interface corresponding to the second load; the second percentage is less than the first percentage.
  • embodiments of the present disclosure provide an electronic device, including: one or more processors; a storage device configured to store one or more programs; when the one or more programs are processed by the one or more The processor executes, so that the one or more processors implement the control method described in the second aspect above.
  • an embodiment of the present disclosure provides a computer-readable medium, comprising a non-volatile program code executable by a processor, wherein the program code enables the processor to execute the control method described in the second aspect.
  • inventions of the present disclosure provide a computer program product.
  • the computer program product includes a computer program or instructions.
  • the electronic device causes the electronic device to execute the above-mentioned first step.
  • the control methods described in the second aspect are described in the fifth aspect.
  • a microgrid system with an energy router as the core in response to conventional power distribution, distributed energy consumption issues and mobile power supply needs, is implemented based on the existing independent power generation technology of wind, solar, diesel and storage. , and has a flexible operating mode to improve power supply quality, reliability and stability, and can be adapted to the power supply needs of a variety of special scenarios.
  • the microgrid system with energy router as the core is mobile and can be quickly networked, reducing the traditional microgrid system's decentralized networking form, additional communication devices and Plug and play access issues for new elements.
  • Figure 1 is a system block diagram of a microgrid system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic architectural diagram of a microgrid system with an energy router as the core provided by an embodiment of the present disclosure
  • Figure 3 is an optional power supply schematic diagram of the microgrid system provided by an embodiment of the present disclosure.
  • Figure 4 is an optional power supply schematic diagram of the microgrid system provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of the control method of the microgrid system provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a hardware entity of a computer device provided by an embodiment of the present application.
  • “at least one (item)” refers to one or more
  • “plurality” refers to two or more
  • “at least two (items)” refers to two or three and three or more
  • "and/or” is used to describe the relationship between associated objects, indicating that there can be three relationships.
  • “A and/or B” can mean: only A exists, only B exists, and A exists at the same time. and B, where A and B can be singular or plural.
  • the character "/" can indicate that the related objects are an "OR” relationship, which refers to any combination of these items, including any combination of single items (items) or plural items (items).
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c” ”, where a, b, c can be single or multiple.
  • Microgrid system refers to a small power generation system composed of distributed power sources, energy conversion devices, loads, monitoring and protection devices, etc. It is an autonomous system that can achieve self-control and management.
  • Energy router is a kind of power equipment that integrates information technology and power electronic conversion technology to achieve efficient utilization and transmission of distributed energy. It can provide flexible and diverse electrical interfaces to facilitate the access of various distributed power sources, energy storage and various loads, and provide the system with energy flow control, reactive power compensation, voltage conversion and other auxiliary services. It is the basis for supporting the Energy Internet. Core equipment. Energy routers are widely used devices in future smart grids, and their structure and functions are closely related to the location where they are installed. Energy routers play different roles at various levels of the power system, much like router devices in computer networks.
  • energy routers serve as interface devices for various types of distributed power sources (or terminal microgrids containing power sources) to connect to the backbone smart grid.
  • the energy is input into the large grid according to the control of the real-time dispatch system.
  • energy routers are responsible for executing instructions from the dispatch system and distributing excess energy from areas with abundant electric energy to areas that need electric energy.
  • energy routers are responsible for transmitting and distributing energy. They need to detect the power consumption of each user area in real time and send relevant information to the superior dispatching system to achieve optimal power configuration.
  • energy routers play the role of sensors. Energy routers placed in the power grid are like a series of nerve endings, sensing the dynamics of the power grid at all times and sending data to the dispatching system through a dedicated communication network for analysis and decision-making.
  • the energy router serves as an interface device for local power equipment or household microgrids to connect to the smart grid, which can realize intelligent energy management and plug-and-play energy acquisition.
  • the energy router can be used as a device to collect energy supply and demand information in the power grid.
  • the user-side energy router can function as a smart two-way meter to detect user energy usage.
  • energy routers are the source for power companies to obtain electricity consumption information. Through the data provided by energy routers, service providers can optimize resource allocation, formulate reasonable power system construction and operation plans, and improve service quality.
  • FIG. 1 is a system block diagram of a microgrid system provided by an embodiment of the present disclosure.
  • the microgrid system 10 includes an energy router 11, a distributed energy power supply system 12 and a power load group 13; wherein, The energy router 11 includes an AC bus 112, a power supply interface group 111, a load switch group 113, an energy management system 114 and a communication system 115; the distributed energy power supply system 12 is electrically connected to the AC bus 112 through the power supply interface group 111 , the electrical load group 13 is electrically connected to the AC bus 112 through the load switch group 113, and the energy management system 114 is configured to operate according to the current operating conditions of the microgrid system 10 and the preset energy management strategy.
  • the communication system 115 is configured to operate according to the current operating conditions of the microgrid system and the preset energy management Strategies to communicate between energy routers, distributed energy power supply systems, and power load groups.
  • the energy router 11 integrates communication and energy management systems, and has information monitoring, control and dispatching functions for multi-form energy collaboration and AC and DC networking.
  • the disclosed embodiment uses the energy router 11 as the core equipment, has plug-and-play access capabilities for diesel power generation, photovoltaic power generation, hydrogen fuel power generation, and energy storage power generation, and provides AC and DC matching ports for multi-form energy coordination.
  • the microgrid system with energy router as the core has flexible operation modes (such as black start, island detection, V/F power setting, etc. seamless switching) and multi-scenario applicability (such as park/campus microgrid system, building/building microgrid system, etc.) Grid system and mobile microgrid system, etc.).
  • a microgrid system with an energy router as the core is implemented based on the existing independent power generation technology of wind, solar, diesel and storage. At the same time, it has a flexible operating mode to improve power supply quality, reliability and stability, and can be adapted to the power supply needs of a variety of special scenarios.
  • the microgrid system with energy router as the core is mobile and can be quickly networked, reducing the traditional microgrid system's decentralized networking form, additional communication devices and Plug and play access issues for new elements.
  • the distributed energy power supply system 12 includes at least one of the following: a wind power generation system, a photovoltaic power generation system, a diesel power generation system, and a battery energy storage system; wherein each of the energy power supply systems uses plug-and-play
  • the energy management system 114 is connected to the power supply interface group 111 through an interface, and the energy management system 114 is connected to each distributed energy power supply system through communication.
  • the diesel power generation system consists of a diesel engine, generator, inverter and main control module;
  • the energy storage system consists of energy storage battery, BMS (Battery Management System, battery management system), energy storage bidirectional converter, energy management
  • the battery management system includes a temperature management system and a battery management unit, which are used for data processing, monitoring and control of the battery system within the entire system, and at the same time communicate with the background monitoring system to achieve comprehensive battery information management and online SOC (security management system/state of charge) diagnosis, battery pack balancing and protection, battery pack thermal management and other functions;
  • the photovoltaic power generation system consists of photovoltaic inverters, photovoltaic modules, photovoltaic panel expansion and withdrawal mechanisms, etc.;
  • the wind power generation system is composed of local fixed It is composed of wind power generation equipment and supporting facilities.
  • the wind power generation system is a fixed power station, and the photovoltaic power generation system, diesel power generation system and battery energy storage system are mobile power stations. They are connected to the energy management system 114 through power lines and communication lines respectively, so that multiple sets of wind power generation systems can be realized Parallel operation, multiple sets of photovoltaic power generation systems running in parallel, multiple sets of diesel power generation systems running in parallel, multiple sets of battery energy storage systems running in parallel, multiple sets of wind power generation systems and battery energy storage systems running in parallel, multiple sets of diesel power generation systems and battery energy storage The system operates in parallel, multiple sets of photovoltaic power generation systems and battery energy storage systems operate in parallel, and multiple sets of diesel power generation systems, photovoltaic power generation systems and battery energy storage systems operate in parallel.
  • the target power supply mode includes one of the following: independent power supply mode, cascade power supply mode, emergency power supply mode, and mains power access mode; wherein, the independent power supply mode includes photovoltaic independent power supply mode, energy storage One of independent power supply mode and diesel generator independent power supply mode.
  • the cascade power supply mode includes one of wind and solar complementary power supply mode, photovoltaic + energy storage cascade power supply mode, photovoltaic + diesel generator + energy storage cascade power supply mode. .
  • the microgrid system 10 when there are no wind power generation facilities nearby and the local lighting resources are sufficient, enters the photovoltaic independent power supply mode: first, the photovoltaic components in the photovoltaic power generation system receive sunlight and generate Direct current is then converted into alternating current through a photovoltaic storage machine and a photovoltaic inverter.
  • the control unit directly controls the operating status, start-stop and power of the entire photovoltaic power generation system, and makes MPPT (Maximum Power Point Tracking, Maximum Power Point Tracking) maximum power output based on real-time data to realize power supply to the electrical load group.
  • MPPT Maximum Power Point Tracking, Maximum Power Point Tracking
  • the microgrid system 10 when the photovoltaic power generation system fails to work, the microgrid system 10 provided by the embodiment of the present disclosure enters the energy storage independent power supply mode: first, the energy storage battery in the energy storage power generation system enters the discharge mode and outputs direct current. , and then the DC power is converted into AC power through the energy storage bidirectional converter to supply power to the electrical load group.
  • the microgrid system 10 when the photovoltaic power generation system cannot work and the energy storage power generation system has insufficient power, the microgrid system 10 provided by the embodiment of the present disclosure enters the diesel generator independent power supply mode: first, the diesel engine runs, and the diesel in the engine compartment It burns inside, drives the DC generator to operate, and generates DC output, and then the DC power passes through the DC (Direct Current, DC voltage)/AC (Alternating Current, AC voltage) conversion module and is converted into AC output.
  • DC Direct Current, DC voltage
  • AC Alterternating Current, AC voltage
  • the microgrid system 10 when wind power generation facilities are nearby and local lighting resources are sufficient, enters the wind-solar complementary power supply mode: at this time, the wind power generation system is connected to the photovoltaic power generation system, and the photovoltaic power generation system
  • the control unit uses the integrated photovoltaic and storage machine to recirculate and control the DC output of the wind power generation system and photovoltaic power generation system, and finally converts it into AC output through the inverter to supply power to the electrical load group.
  • the microgrid system 10 when light resources are limited and the photovoltaic power generation system is insufficient to meet the load's power demand, the microgrid system 10 provided by the embodiment of the present disclosure enters the photovoltaic + energy storage cascade power supply mode.
  • the photovoltaic power generation system is connected to the energy storage power generation system.
  • the energy storage power generation system controls the AC output of the photovoltaic power generation system, and the energy storage power generation system is connected to the load for power supply.
  • the photovoltaic power generation system communicates with the energy storage power generation system in real time, receives control instructions from the energy storage power generation system, adjusts power output according to the needs of the energy storage power generation system, and performs protection logic actions based on real-time data.
  • the microgrid system 10 when light resources are limited and neither the photovoltaic power generation system nor the energy storage power generation system can meet the power demand of the load, the microgrid system 10 provided by the embodiment of the present disclosure enters the photovoltaic + diesel generation + energy storage cascade Power supply mode: The photovoltaic power generation system and the diesel power generation system are connected to the energy storage power generation system at the same time. At this time, the energy storage power generation system controls the AC output of the photovoltaic power generation system and the diesel power generation system, and the energy storage power generation system is connected to the load for power supply. Photovoltaic power generation systems and diesel power generation systems need to communicate with the energy storage system, receive control instructions from the energy storage system, and adjust power output according to the instructions from the energy storage system.
  • the microgrid system 10 in an emergency when the photovoltaic power generation system, the energy storage power generation system, and the diesel power generation system cannot operate normally, enters the emergency power supply mode: in this power supply mode , the energy storage battery in the photovoltaic power generation system can realize the emergency load function and independently provide short-term power supply for emergency loads.
  • both the energy storage power generation system and the photovoltaic power generation system are connected to the mains power, and the mains power is used to generate electricity for the batteries and photovoltaic power generation in the energy storage power generation system.
  • the optical storage integrated machine in the system is charged.
  • the electrical load group 13 includes distributed first-level loads, second-level loads and third-level loads; wherein the first-level load has the highest priority and the third-level load has the lowest priority.
  • the load switch group includes three levels of interfaces corresponding to the first-level load, the second-level load, and the third-level load respectively; wherein, the three-level interfaces are configured according to actual needs and In order of priority, the first-level load, the second-level load, and the third-level load are flexibly connected to the AC bus.
  • the third-level load is removed and the second-level load and the first-level load are retained; in If the load power consumption of the electrical load group is still greater than the total output power of the above three systems, continue to remove the secondary load and retain the primary load.
  • the SOC status of the energy storage battery in the energy storage power generation system is simultaneously detected.
  • the SOC value is less than 50%
  • the third-level load is removed; when the SOC value is less than 30%, the third-level load is removed.
  • the secondary load On the basis of continuing to cut off the secondary load, that is, giving priority to ensuring the electricity demand of the primary load.
  • the distributed loads are set into first-level loads (sensitive loads), second-level loads (general loads), and third-level loads (non-important loads) according to actual needs or importance.
  • the load switch group is divided into three levels according to the power supply priority.
  • the corresponding three different levels of interfaces can flexibly access regional distributed loads such as equipment loads, workloads, and life loads according to needs and levels, realizing "any access and hierarchical distribution" of distributed loads, and controlling Under the scheduling of modules, the power supply capacity of regional energy is fully and reasonably utilized.
  • FIG. 2 is a schematic architectural diagram of a microgrid system with an energy router as the core provided by an embodiment of the present disclosure.
  • the diesel power generation system 21, the energy storage power generation system 22, and the photovoltaic power generation system 23 are interconnected in DC, and are respectively It is electrically connected to the energy management system 114 (the control system in the energy router).
  • the AC power output by each power generation system supplies power to primary loads 131, secondary loads 132, tertiary loads 133 and other electrical loads through the AC bus 212.
  • the AC bus 212 is a three-phase four-wire method, which refers to a wiring method consisting of three live wires and one neutral wire.
  • the wind power generation system 24 and the mains power supply 25 are fixed power stations, which are respectively connected to the energy router through the AC bus 212 and connected to the energy management system.
  • the diesel power generation system 21 at least includes an oil storage tank 211 of a motor vehicle and a diesel generator 212.
  • the diesel in the oil storage tank 211 is burned in the engine compartment of the motor vehicle, driving the diesel generator 212 to operate, generating direct current and then converting it into The AC power is output to the AC bus 212;
  • the energy storage power generation system 22 at least includes an energy storage battery 221 and an energy storage bidirectional converter 222.
  • the energy storage battery 221 enters the discharge mode and outputs DC power via The energy storage bidirectional converter 222 converts AC power and outputs it to the AC bus 212;
  • the photovoltaic power generation system 23 at least includes photovoltaic modules 231 and photovoltaic converters 232.
  • the photovoltaic modules 231 receive sunlight to generate DC power.
  • the DC power is converted into AC power through the integrated photovoltaic storage machine and the photovoltaic converter and output to the AC bus 212.
  • the microgrid system with the energy router as the core can solve the problem of traditional microgrid system decentralized networking form, additional communication devices and plug-in of new elements through multi-form energy port topology integration and deep integration design of primary and secondary systems.
  • Instant access issues At the same time, solar and wind energy can be used to generate complementary power, combined with diesel power generation and energy storage battery systems to achieve stable power supply, effectively solving the power needs of frequently migrating herdsmen, field engineering construction, field exploration and inspections, border camps, communication base stations, military combat exercises, etc. The power supply problem of the scene.
  • FIG 3 is an optional power supply schematic diagram of the microgrid system provided by the embodiment of the present disclosure.
  • the 400V AC bus including three live wires A, B, and C and N neutral line
  • the energy storage bidirectional converter 32 AC/DC
  • the switch groups ⁇ KM5, KM6, KM7 ⁇ are respectively connected to the primary load 34, the secondary load 35, and the third-level load/parallel interface 36.
  • the energy storage bidirectional converter 32 is connected to 102kWh through the K2, K3, and K4 interfaces respectively.
  • the photovoltaic power generation system 38 is composed of 12kW photovoltaic modules and photovoltaic inverters, etc., and has two output interfaces. One is to directly connect the photovoltaic modules to the energy management system, that is, to connect to the energy router through DC access; the other is to output 400V AC power through the photovoltaic inverter, which is used when the photovoltaic power generation system 38 works independently with load;
  • the energy storage power generation system is composed of 102kWh energy storage batteries 37 such as lithium battery packs and their management systems, 50kW energy storage bidirectional converters, measurement and control protection and energy management systems, distribution systems, fire protection and security systems and temperature control systems;
  • the diesel power generation system is composed of 80kW diesel generator sets and starting batteries, etc. When the power supply capacity of the photovoltaic power generation system and the energy storage power generation system is insufficient, it serves as a backup power supply to meet the load power supply needs.
  • FIG 4 is an optional power supply schematic diagram of the microgrid system provided by the embodiment of the present disclosure.
  • the 400V AC bus including three live wires A, B, and C and N neutral line
  • the energy storage bidirectional converter 42 AC/DC
  • the switch groups ⁇ KM5, KM6, KM7 ⁇ are respectively connected to the primary load 44, the secondary load 45, and the third-level load/parallel interface 46.
  • the energy storage bidirectional converter 42 is connected through the K2 ⁇ K3 and K4 ⁇ K5 interfaces respectively.
  • a 133kWh energy storage battery 37 and two parallel photovoltaic power generation systems 48 are installed.
  • the photovoltaic power generation system 48 is composed of 15kW photovoltaic modules and photovoltaic inverters. It has two output interfaces. One is directly connected to the energy management system by the photovoltaic modules, that is, connected to the energy router through DC access; the other is connected through The photovoltaic inverter outputs 400V AC power, which is used when the photovoltaic power generation system 48 works independently with load;
  • the energy storage power generation system consists of a 133kWh energy storage battery 47 such as a lithium battery pack and its management system, a 100kW energy storage bidirectional converter, measurement and control protection and It consists of energy management system, power distribution system, fire and security system and temperature control system;
  • the diesel power generation system is composed of 120kW diesel generator set and starting battery. When the power supply capacity of the photovoltaic power generation system and energy storage power generation system is insufficient, it can be used as a backup power supply to meet the demand. Load power supply needs.
  • FIG. 5 is a schematic flowchart of a control method for a microgrid system provided by an embodiment of the present disclosure. As shown in Figure 5, the method includes the following steps S510 to S520:
  • Step S510 in response to receiving the power generation instruction, obtain the current operating status of the microgrid system; wherein the microgrid system includes an energy router, a distributed energy power supply system connected to the energy router in an AC bus manner, and a user. electrical load group;
  • the energy management system in the energy router obtains the rated power and load operation status of each interface connected to the distributed energy power supply system.
  • the distributed energy power supply system includes wind power generation system, photovoltaic power generation system, diesel power generation system, energy storage power generation system, etc., and the energy management system and the distributed energy power supply system are connected to the AC bus power supply through the power supply interface group. Connection, the electrical load group is electrically connected to the AC bus through the load switch group, and the energy management system is connected to each system in the distributed energy power supply system;
  • Step S520 Control the connection mode of the distributed energy power supply system according to the current operating conditions of the microgrid system and the preset energy management strategy, so that the microgrid system enters the target power supply mode.
  • the distributed energy power supply system includes at least one of the following: a wind power generation system, a photovoltaic power generation system, a diesel power generation system, and a battery energy storage system; the step S520 further includes the following steps S521 to S523:
  • Step S521 When the microgrid system is close to a wind power generation facility and the local lighting resources are sufficient, control the wind power generation system and the photovoltaic power generation system to communicate and interconnect, so that the microgrid system enters the wind-solar complementary system. Power supply mode;
  • the DC output of the wind power generation system and the photovoltaic power generation system is recirculated and controlled through the light-storage integrated machine in the photovoltaic power generation system, and finally transformed by the inverter. It is an AC output to supply power to the electrical load group.
  • Step S522 When local lighting resources are limited and the output power of the photovoltaic power generation system is insufficient to meet the load's power demand, control the photovoltaic power generation system and the energy storage power generation system to communicate and interconnect, so that the micro The power grid system enters the photovoltaic + energy storage cascade power supply mode;
  • the AC output of the photovoltaic power generation system is controlled by the energy storage power generation system, and the energy storage power generation system is connected to the electrical load group for power supply. .
  • Step S523 When the local lighting resources are limited and the output power of the photovoltaic power generation system and the energy storage power generation system cannot meet the load power demand, control the photovoltaic power generation system and the diesel power generation system to operate simultaneously with the The energy storage power generation system performs AC interconnection, so that the microgrid system enters the photovoltaic + diesel generator + energy storage cascade power supply mode.
  • the AC output of the photovoltaic power generation system and the diesel power generation system is controlled through the energy storage power generation system, and the energy storage power generation system is connected to the Use electrical load groups to provide power.
  • the energy storage power generation system includes a first energy storage battery
  • the photovoltaic power generation system includes a photovoltaic storage integrated machine and a second energy storage battery.
  • Step S520 also includes the following steps S524 and S525:
  • Step S524 In an emergency situation where the photovoltaic power generation system, the energy storage power generation system and the diesel power generation system cannot work, control the second energy storage battery in the photovoltaic power generation system to connect to the electrical load. group, so that the microgrid system enters the emergency power supply mode for short-term power supply;
  • Step S525 When there is commercial power around the microgrid system, control both the energy storage power generation system and the photovoltaic power generation system to access the commercial power, so that the microgrid system enters the access point.
  • the mains mode charges the first energy storage battery and the integrated optical storage machine.
  • the disclosed embodiment is based on the provided microgrid system with an energy router as the core.
  • solar energy and wind energy to generate complementary power
  • cascade power supply mode to generate complementary power
  • emergency power supply mode Connected to the mains power mode
  • it can provide stable power supply to the electrical loads in the plateau area, effectively solving the problems of frequently migrating herdsmen, field engineering construction, field exploration and inspection, border defense camps, communication base stations, military combat exercises and other power consumption scenarios in the plateau area. Power supply problem.
  • the electrical load group is connected to the AC bus of the energy router through the load switch group of the energy router.
  • the electrical load group includes distributed primary loads, secondary loads and tertiary loads. level loads; wherein, the level one load has the highest priority, and the level three load has the lowest priority; the method also includes the following step 530: in the photovoltaic + diesel generator + energy storage cascade power supply mode, When the maximum output power of the microgrid system cannot meet the power consumption of the electrical load group, the load switch group is used to disconnect the third-level load and the second-level load in order of priority. Connection.
  • the first-level load is a sensitive load, such as equipment load; the second-level load is a general load, such as a working load; the third-level load is a non-important load, such as a life load; the three loads are the first-level load in order of priority. >Level 2 load>Level 3 load, so that regional distributed loads can be flexibly connected to the energy security system according to needs and levels.
  • the third-level load is removed and the second-level load and the first-level load are retained; If the load power consumption of the group is still greater than the total output power of the above three systems, continue to remove the secondary load and retain the primary load.
  • the load switch group includes three levels of interfaces corresponding to the first-level load, the second-level load, and the third-level load respectively, and the method further includes:
  • Step 531 detect the state of charge of the energy storage battery of the energy storage power generation system
  • Step 532 When the state of charge indicates that the output power of the energy storage power generation system is less than the first percentage, disconnect the level interface corresponding to the third-level load in the load switch group;
  • Step 533 When the state of charge indicates that the output power of the energy storage power generation system is less than the second percentage, disconnect the level interface corresponding to the third-level load in the load switch group, and connect the The level interface corresponding to the second load.
  • the second percentage is smaller than the first percentage, for example, the first percentage is 50% and the second percentage is 30%.
  • the SOC status of the energy storage battery in the energy storage power generation system is detected in real time.
  • the SOC value is less than 50%
  • the third-level load is removed; when the SOC value is less than 30%, the third-level load is removed.
  • the secondary load that is, give priority to ensuring the power demand of the primary load.
  • the distributed loads are set into first-level loads, second-level loads, and third-level loads according to actual needs or importance.
  • the load switch group is divided into three different levels of interfaces according to the power supply priority, so that the load switch group can be divided into three different levels of interfaces according to the demand and importance.
  • Flexible access to regional distributed loads such as equipment loads, workloads, and life loads at different levels realizes "any access and hierarchical distribution" of distributed loads, and under the scheduling of the control module, regional energy resources are fully and reasonably utilized. power supply capability.
  • the above dynamic scheduling method is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence or that contribute to related technologies.
  • the software products are stored in a storage medium and include a number of instructions to enable a A computer device (which may be a personal computer, a server, a network device, etc.) executes all or part of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read Only Memory, ROM), magnetic disk or optical disk and other media that can store program code.
  • U disk mobile hard disk
  • read-only memory Read Only Memory
  • ROM Read Only Memory
  • magnetic disk or optical disk and other media that can store program code.
  • An embodiment of the present application provides a computer device, including a memory and a processor.
  • the memory stores a computer program that can be run on the processor.
  • the processor executes the program, some or all of the steps in the above method are implemented.
  • Embodiments of the present application provide a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, some or all of the steps in the above method are implemented.
  • the computer-readable storage medium may be transient or non-transitory.
  • Embodiments of the present application provide a computer program, which includes computer readable code.
  • the processor in the computer device executes a part for implementing the above method or All steps.
  • Embodiments of the present application provide a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium that stores a computer program. When the computer program is read and executed by a computer, part or all of the above methods are implemented. All steps.
  • the computer program product can be implemented specifically through hardware, software or a combination thereof.
  • the computer program product is embodied as a computer storage medium.
  • the computer program product is embodied as a software product, such as a software development kit (Software Development Kit, SDK) and so on.
  • Figure 6 is a schematic diagram of a hardware entity of a computer device provided by an embodiment of the present application.
  • the hardware entity of the computer device 600 includes: a processor 601, a communication interface 602 and a memory 603, where :
  • Processor 601 generally controls the overall operation of computer device 600 .
  • Communication interface 602 can enable the computer device to communicate with other terminals or servers through a network.
  • the memory 603 is configured to store instructions and applications executable by the processor 601, and can also cache data to be processed or processed by the processor 601 and each module in the computer device 600 (for example, image data, audio data, voice communication data and Video communication data), which can be implemented through flash memory (FLASH) or random access memory (Random Access Memory, RAM). Data can be transmitted between the processor 601, the communication interface 602 and the memory 603 through the bus 604.
  • data can be transmitted between the processor 601, the communication interface 602 and the memory 603 through the bus 604.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the coupling, direct coupling, or communication connection between the components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be electrical, mechanical, or other forms. of.
  • the units described above as separate components may or may not be physically separated; the components shown as units may or may not be physical units; they may be located in one place or distributed to multiple network units; Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • all functional units in the embodiments of the present application can be integrated into one processing unit, or each unit can be separately used as a unit, or two or more units can be integrated into one unit; the above-mentioned integration
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the execution includes: The steps of the above method embodiment; and the aforementioned storage media include: mobile storage devices, read-only memory (Read Only Memory, ROM), magnetic disks or optical disks and other various media that can store program codes.
  • the integrated units mentioned above in this application are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to related technologies.
  • the computer software product is stored in a storage medium and includes a number of instructions to enable a computer.
  • a computer device (which may be a personal computer, a server, a network device, etc.) executes all or part of the methods described in various embodiments of this application.
  • the aforementioned storage media include: mobile storage devices, ROMs, magnetic disks or optical disks and other media that can store program codes.
  • Embodiments of the present disclosure provide a microgrid system and its control method, electronic equipment, storage media and program products.
  • the microgrid system includes: an energy router, a distributed energy power supply system and a power load group; wherein, The energy router includes an AC bus, a power supply interface group, a load switch group, a communication system and an energy management system; the communication system is configured to perform energy router and distribution according to the current operating conditions of the microgrid system and the preset energy management strategy.
  • the distributed energy power supply system is electrically connected to the AC bus through the power supply interface group, and the electric load group is connected to the AC bus through the load switch group.
  • the energy management system is configured to control the connection mode of the distributed energy power supply system according to the current operating conditions of the microgrid system and the preset energy management strategy, so that the microgrid system enters the target power supply model. Therefore, in view of the conventional power distribution and consumption, distributed energy consumption issues and mobile power supply needs, based on the existing independent power generation technology of wind, solar, diesel and storage, a microgrid system with an energy router as the core is realized, and it also has a flexible operation mode. , improve the quality, reliability and stability of power supply, and can be suitable for the power supply needs of a variety of special scenarios.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开实施例提供了一种微电网系统及其控制方法、电子设备、存储介质和程序产品,其中所述微电网系统包括:能量路由器、分布式能源供电系统和用电负载群;其中,所述能量路由器包括交流母线、供电接口组、负载开关组、通信系统和能量管理系统;所述分布式能源供电系统通过所述供电接口组与所述交流母线电连接,所述用电负载群通过所述负载开关组与所述交流母线电连接,所述通信系统配置为根据所述微电网系统的当前运行情况和预设的能量管理策略,进行能量路由器与分布式能源供电系统、用电负载群的通信,所述能量管理系统配置为根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式。

Description

微电网系统及其控制方法、设备、存储介质和程序产品 技术领域
本公开涉及但不限于电力电子技术领域,尤其涉及一种微电网系统及其控制方法、设备、存储介质和程序产品。
背景技术
微电网是指由分布式电源、储能装置、能量转换装置、相关负荷和监控、保护装置汇集而成的小型发配电系统。相关技术中,包含分布式光伏变流器、储能变流器、柴发等元素的微电网系统在国内外广泛应用,但目前分散且各自独立的控制策略与通信形式,给其整体协调控制带来很大困难。例如,现有微电网系统中光伏变流器、储能变流器以及柴发等各自控制造成组网不稳定,信息采集与通信不畅,新元素无法接入等问题层出不穷。
发明内容
本公开实施例提供一种微电网系统及其控制方法、设备、存储介质和程序产品。
第一方面,本公开实施例提供了一种微电网系统,包括:能量路由器、分布式能源供电系统和用电负载群;其中,所述能量路由器包括交流母线、供电接口组、负载开关组、通信系统和能量管理系统;所述分布式能源供电系统通过所述供电接口组与所述交流母线电连接,所述用电负载群通过所述负载开关组与所述交流母线电连接,所述通信系统配置为根据所述微电网系统的当前运行情况和预设的能量管理策略,进行能量路由器与分布式能源供电系统、用电负载群之间的通信,所述能量管理系统配置为根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式。
在一些实施方式中,所述分布式能源供电系统包括以下至少一种:风力发电系统、光伏发电系统、柴油发电系统和电池储能系统;其中,每一所述能源供电系统通过即插即用接口与所述供电接口组连接,所述能量管理系统与每一所述分布式能源供电系统分别通信连接。
在一些实施方式中,所述目标供电模式包括以下之一:独立供电模式、级联供电模式、紧急供电模式、接入市电模式;其中,所述独立供电模式包括光伏独立供电模式、储能独立供电模式、柴发独立供电模式中的一种,所述级联供电模式包括风光互补供电模式、光伏+储能级联供电模式、光伏+柴发+储能级联供电模式中的一种。
在一些实施方式中,所述用电负载群包括分布式的一级负荷、二级负荷和三级负荷;其 中,所述一级负荷的优先级最高,所述三级负荷的优先级最低;所述负载开关组包括分别与所述一级负荷、所述二级负荷、所述三级负荷分别一一对应的三种等级接口;其中,所述三种等级接口配置为按照实际需求和优先级顺序,灵活接入所述一级负荷、所述二级负荷、所述三级负荷到所述交流母线。
第二方面,本公开实施例提供一种微电网系统的控制方法,应用于上述第一方面所述微电网系统中的能量管理系统,包括:
响应于接收到发电指令,获取所述微电网系统的当前运行情况;其中,所述微电网系统包括能量路由器、与所述能量路由器以交流母线方式连接的分布式能源供电系统和用电负载群;根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式。
在一些实施方式中,所述分布式的能源供电系统分布式能源供电系统包括以下至少一种:风力发电系统、光伏发电系统、柴油发电系统和电池储能系统;所述根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式,包括:在所述微电网系统临近风力发电设施且当地光照资源充足的情况下,控制所述风力发电系统与所述光伏发电系统进行交流互联,以使所述微电网系统进入所述风光互补供电模式;在当地光照资源有限且所述光伏发电系统的输出功率不足以满足负载用电需求的情况下,控制所述光伏发电系统与所述储能发电系统进行交流互联,以使所述微电网系统进入所述光伏+储能级联供电模式;在当地光照资源有限且所述光伏发电系统结合所述储能发电系统的输出功率均无法满足负载用电需求的情况下,控制所述光伏发电系统和所述柴油发电系统同时与所述储能发电系统进行交流互联,以使所述微电网系统进入所述光伏+柴发+储能级联供电模式。
在一些实施方式中,所述储能发电系统包括储能电池,所述光伏发电系统包括光储一体机,所述根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式,还包括:在所述光伏发电系统、所述储能发电系统和所述柴发发电系统均不能工作的紧急情况下,控制所述储能发电系统中的储能电池连接所述用电负载群,以使所述微电网系统进入所述紧急供电模式进行短时间供电;在所述微电网系统周围存在市电的情况下,控制所述储能发电系统和所述光伏发电系统均接入所述市电,以使所述微电网系统进入所述接入市电模式为所述储能电池和所述光储一体机进行充电。
在一些实施方式中,所述方法还包括:在所述风光互补供电模式下,通过所述光伏发电系统中的光储一体机,对所述风力发电系统和所述光伏发电系统的直流输出进行回流和控 制,最终经过逆变器转变为交流输出,以实现对所述用电负载群进行供电;在所述光伏+储能级联供电模式下,通过所述储能发电系统控制所述光伏发电系统的交流输出,并由所述储能发电系统接入所述用电负载群进行供电;在所述光伏+柴发+储能级联供电模式下,通过储能发电系统控制所述光伏发电系统和所述柴油发电系统的交流输出,由所述储能发电系统接入所述用电负载群进行供电。
在一些实施方式中,所述用电负载群通过所述能量路由器的负载开关组连接到所述能量路由器的交流母线,所述用电负载群包括分布式的一级负荷、二级负荷和三级负荷;其中,所述一级负荷的优先级最高,所述三级负荷的优先级最低;所述方法还包括:在所述光伏+柴发+储能级联供电模式中,在所述微电网系统的最大输出功率不能满足所述用电负载群的消耗功率的情况下,利用所述负载开关组按照优先级顺序依次断开与所述三级负荷、所述二级负荷的连接。
在一些实施方式中,所述负载开关组包括分别与所述一级负荷、所述二级负荷、所述三级负荷分别一一对应的三种等级接口,所述方法还包括:检测所述储能发电系统的储能电池的荷电状态;在所述荷电状态表明所述储能发电系统的输出功率小于第一百分比的情况下,断开所述负载开关组中与所述三级负荷对应的等级接口;在所述荷电状态表明所述储能发电系统的输出功率小于第二百分比的情况下,断开所述负载开关组中与所述三级负荷对应的等级接口,以及与所述第二负荷对应的等级接口;所述第二百分比小于所述第一百分比。
第三方面,本公开实施例提供一种电子设备,包括:一个或多个处理器;存储装置,配置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述第二方面所述的控制方法。
第四方面,本公开实施例提供一种计算机可读介质,包括具有处理器可执行的非易失的程序代码,所述程序代码使所述处理器执行上述第二方面所述的控制方法。
第五方面,本公开实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序或指令,在所述计算机程序或指令在电子设备上运行的情况下,使得所述电子设备执行上述第二方面所述的控制方法。
在本公开实施例中,针对常规配用电、分布式能源消纳问题和移动式供电需求,在已有的风光柴储独立发电技术的基础上,实现了以能量路由器为核心的微电网系统,同时具有灵活运行模式,提升供电质量、可靠性和稳定性,能够适用于多种特殊场景的供电需求。通过多形式能源端口拓扑集成与一二次系统深度融合设计,以能量路由器为核心的微电网系统可移动且能够快速组网,减少了传统微电网系统分散组网形式、额外加装通信装置以及新元素的即插即用接入问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开的技术方案。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图进行说明。此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1为本公开实施例提供的一种微电网系统的系统框图;
图2为本公开实施例提供的以能量路由器为核心的微电网系统的架构示意图;
图3为本公开实施例提供的微电网系统的可选的供电示意图;
图4为本公开实施例提供的微电网系统的可选的供电示意图;
图5为本公开实施例提供的微电网系统的控制方法的流程示意图;
图6为本申请实施例提供的计算机设备的一种硬件实体示意图。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可能还包括没有列出的步骤或单元,或可能还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
应当理解,在本公开中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”可表示前后关联对象是一种“或”的关系,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。字符“/”还可表示数学运算中 的除号,例如,a/b=a除以b;6/3=2。“以下至少一项(个)”或其类似表达。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请的目的,不是旨在限制本申请。
在对本申请实施例进行进一步详细说明之前,先对本申请实施例中涉及的名词和术语进行说明,本申请实施例中涉及的名词和术语适用于如下的解释。
微电网系统是指由分布式电源、能量转换装置、负荷、监控和保护装置等汇集而成的小型发电系统,是一种能够实现自我控制和管理的自治系统。
能量路由器是一种集成融合了信息技术与电力电子变换技术、实现分布式能量的高效利用和传输的电力装备。它能提供灵活多样的电气接口,方便各类分布式电源、储能及各种负荷接入,并为系统提供能流控制、无功补偿、电压变换等多种辅助服务,是支撑能源互联网的核心装备。能量路由器作为广泛存在于未来智能电网中的设备,其结构和发挥的功能与其安装的位置密切相关。能量路由器在电力系统的各个层面上均发挥着不同的作用,这一点与计算机网络中的路由器设备很相似。
在发电层面,能量路由器充当各种类型分布式电源(或包含电源的终端微网)接入骨干智能电网的接口设备。当局部电能过剩时,能量按照实时调度系统的控制输入大电网,当局部电能不足时,通过能量路由器从大电网吸收能量。在配电潮流调控层面,能量路由器作为电力潮流动态优化控制设备,负责执行调度系统的指令,将电能充裕区域的富余能量配送到需要电能的区域。在配电负荷接入层面,能量路由器承担传递和配送能量的任务,其需要实时检测各个用户区域消耗功率情况并将相关信息发送给上级调度系统,实现电力优化配置。在运行控制层面上能量路由器则起到传感器的作用,安放在电网中的能量路由器如同一系列神经末梢,时刻感知电网的动态,并通过专用通信网络将数据发送到调度系统供分析决策之用。在用户层面,能量路由器则作为局部用电设备或家庭微电网接入智能电网的接口设备,可以实现智能化能量管理和即插即用式能量获取。在市场层面,能量路由器可以作为搜集电网内能量供需信息的装置,同时用户端能量路由器可以起到智能双向电表的作用,检测用户能量使用情况。在电力服务层面,能量路由器是电力公司获取用用电信息的来源,通过能量路由器提供的数据,服务商可以优化资源配置,制定合理的电力系统建设、运行规划,提高服务质量。
图1为本公开实施例提供的一种微电网系统的系统框图,如图1所示,微电网系统10包括能量路由器11、分布式能源供电系统12和用电负载群13;其中,所述能量路由器11包括交流母线112、供电接口组111、负载开关组113、能量管理系统114和通信系统115; 所述分布式能源供电系统12通过所述供电接口组111与所述交流母线112电连接,所述用电负载群13通过所述负载开关组113与所述交流母线112电连接,所述能量管理系统114配置为根据所述微电网系统10的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统12的连接方式,以使所述微电网系统10进入目标供电模式;所述通信系统115配置为根据所述微电网系统的当前运行情况和预设的能量管理策略,进行能量路由器与分布式能源供电系统、用电负载群之间的通信,。
所述能量路由器11集成通信与能量管理系统,具备多形式能源协同与交直流组网的信息监测、控制与调度功能。本公开实施例以能量路由器11为核心装备,具备柴油发电、光伏发电、氢燃料发电、储能发电的即插即用接入能力,提供多形式能源协同的交直流配用端口。以能量路由器为核心的微电网系统具有灵活运行模式(例如黑启动、孤岛检测、V/F功率设定等无缝切换)与多场景适用性(例如园区/校园微电网系统、建筑/楼宇微电网系统以及移动式微电网系统等形式)。
本公开实施例中,针对常规配用电、分布式能源消纳问题和移动式供电需求,在已有的风光柴储独立发电技术的基础上,实现了以能量路由器为核心的微电网系统,同时具有灵活运行模式,提升供电质量、可靠性和稳定性,能够适用于多种特殊场景的供电需求。通过多形式能源端口拓扑集成与一二次系统深度融合设计,以能量路由器为核心的微电网系统可移动且能够快速组网,减少了传统微电网系统分散组网形式、额外加装通信装置以及新元素的即插即用接入问题。
在一些实施方式中,所述分布式能源供电系统12包括以下至少一种:风力发电系统、光伏发电系统、柴油发电系统和电池储能系统;其中,每一所述能源供电系统通过即插即用接口与所述供电接口组111连接,所述能量管理系统114与每一所述分布式能源供电系统分别通信连接。
其中,柴油发电系统由柴油发动机、发电机、逆变器和主控模块等组成;储能系统由储能电池、BMS(Battery Management System,电池管理系统)、储能双向变流器、能量管理单元等组成,其中电池管理系统包括温度管理系统和电池管理单元,用于整个系统内电池系统的数据处理、监测控制,同时和后台监控系统实现通信,实现全面的电池信息管理、在线SOC(安全管理系统/荷电状态)诊断、电池组均衡和保护、电池组热管理等功能;光伏发电系统由光伏逆变器、光伏组件、光伏板展开撤收机构等组成;风力发电系统由当地的固定式风力发电装置及配套设施来组建。
所述风力发电系统为固定式电站,所述光伏发电系统、柴油发电系统和电池储能系统为移动式电站,分别通过电力线、通讯线与能量管理系统114相连接,可以实现多套风力发电 系统并联运行,多套光伏发电系统并联运行,多套柴油发电系统并联运行,多套电池储能系统并联运行,多套风力发电系统与电池储能系统并联运行,多套柴油发电系统与电池储能系统并联运行,多套光伏发电系统与电池储能系统并联运行,多套柴油发电系统、光伏发电系统与电池储能系统并联运行功能。
在一些实施方式中,所述目标供电模式包括以下之一:独立供电模式、级联供电模式、紧急供电模式、接入市电模式;其中,所述独立供电模式包括光伏独立供电模式、储能独立供电模式、柴发独立供电模式中的一种,所述级联供电模式包括风光互补供电模式、光伏+储能级联供电模式、光伏+柴发+储能级联供电模式中的一种。这样,通过利用太阳能、风能互补发电,同时联合柴油发电、储能电池系统,实现稳定供电,有效解决了频繁迁徙的牧民、野外工程施工、野外勘探考察、边防营地、通信基站、军队作战演习等用电场景的供电问题。
在一些实施方式中,在附近没有风力发电设施且当地光照资源充足的情况下,本公开实施例提供的微电网系统10进入光伏独立供电模式:首先光伏发电系统中的光伏组件接收太阳光,产生直流电,然后直流电经由光储一体机和光伏逆变器,转换为交流电。控制单元直接控制整个光伏发电系统的运行状态、启停以及功率,根据实时数据做出MPPT(Maximum Power Point Tracking,最大功率点跟踪)最大功率输出,实现对用电负载群进行供电。
在一些实施方式中,在光伏发电系统无法工作的情况下,本公开实施例提供的微电网系统10进入储能独立供电模式:首先,储能发电系统中的储能电池进入放电模式,输出直流电,然后直流电经由储能双向变流器转换为交流电,对用电负载群进行供电。
在一些实施方式中,在光伏发电系统无法工作,且储能发电系统电量不足的情况下,本公开实施例提供的微电网系统10进入柴发独立供电模式:首先柴油发动机运行,柴油在发动机舱内进行燃烧,带动直流发电机进行运转,产生直流电输出,然后直流电再经过DC(Direct Current,直流电压)/AC(Alternating Current,交流电压)变换模块,转变为交流输出。
在一些实施方式中,在临近风力发电设施且当地光照资源充足的情况下,本公开实施例提供的微电网系统10进入风光互补供电模式:此时风力发电系统接入光伏发电系统,光伏发电系统的控制单元利用光储一体机,对风力发电系统和光伏发电系统的直流输出进行回流和控制,最终经过逆变器转变为交流输出,对用电负载群进行供电。
在一些实施方式中,在光照资源有限且光伏发电系统不足以满足负载用电需求的情况下,本公开实施例提供的微电网系统10进入光伏+储能级联供电模式。光伏发电系统连入储能发电系统,此时由储能发电系统控制光伏发电系统的交流输出,由储能发电系统接入负载进行供电。光伏发电系统与储能发电系统进行实时通讯,接收储能发电系统的控制指令,根 据储能发电系统需求调节功率输出,同时根据实时数据进行保护逻辑动作。
在一些实施方式中,在光照资源有限且光伏发电系统结合储能发电系统均无法满足负载用电需求的情况下,本公开实施例提供的微电网系统10进入光伏+柴发+储能级联供电模式:光伏发电系统和柴油发电系统同时连入储能发电系统,此时由储能发电系统控制光伏发电系统和柴油发电系统的交流输出,由储能发电系统接入负载进行供电。光伏发电系统和柴油发电系统需要与储能系统进行通讯,接收储能系统的控制指令,根据储能系统的指令调节功率输出。
在一些实施方式中,在光伏发电系统、储能发电系统和柴发发电系统均不能正常工作的紧急情况下,本公开实施例提供的微电网系统10进入紧急联供电模式:在该供电模式下,光伏发电系统中的储能电池,可以实现紧急带载功能,独立为紧急负荷进行短时间供电。
在一些实施方式中,在微电网系统10的运行环境中有市电的情况下,储能发电系统和光伏发电系统均接入市电,由市电给储能发电系统中的电池和光伏发电系统中的光储一体机进行充电。
在一些实施方式中,所述用电负载群13包括分布式的一级负荷、二级负荷和三级负荷;其中,所述一级负荷的优先级最高,所述三级负荷的优先级最低;所述负载开关组包括分别与所述一级负荷、所述二级负荷、所述三级负荷分别一一对应的三种等级接口;其中,所述三种等级接口配置为按照实际需求和优先级顺序,灵活接入所述一级负荷、所述二级负荷、所述三级负荷到所述交流母线。
在一些实施方式中,在光伏发电系统、柴油发电系统、储能发电系统同时按照最大功率输出,仍不能满足负荷消耗功率的情况下,切除三级负荷且保留二级负荷和一级负荷;在用电负载群的负荷消耗功率依然大于上述三个系统的总输出功率的情况下,继续切除二级负荷并保留一级负荷。
在一些实施方式中,同时检测储能发电系统中储能电池的SOC状态,在SOC值小于50%的情况下,切除三级负荷;在SOC值小于30%的情况下,在切除三级负荷的基础上继续切除二级负荷,即优先保证一级负荷的用电需求。
这样,将分布式负载按照实际需求或重要程度设为一级负荷(敏感负荷)、二级负荷(一般负荷)、三级负荷(非重要负荷),同时将负载开关组按照供电优先级分为对应的三种不同等级接口,从而可按照需求和级别灵活接入设备负荷、工作负荷、生活负荷等区域分布式负载,实现了分布式负载的“随遇接入,分级分配”,并且在控制模块的调度下,充分合理地利用了区域能源的供电能力。
图2为本公开实施例提供的以能量路由器为核心的微电网系统的架构示意图,如图2所 示,柴油发电系统21、储能发电系统22、光伏发电系统23之间直流互联,且分别与能量管理系统114(能量路由器中的控制系统)电连接,每一发电系统输出的交流电均通过交流母线212给一级负荷131、二级负荷132、三级负荷133等用电负载进行供电,其中交流母线212为三相四线方式,即指由三根火线和一根零线组成的接线方式。同时风力发电系统24和市电25为固定式电站,分别通过交流母线212接入能量路由器,与能量管理系统相连接。
其中,柴油发电系统21至少包括机动车辆的储油罐211和柴油发电机212,储油罐211中的柴油在机动车辆的发动机舱内燃烧,带动柴油发电机212进行运转,产生直流电再转变为交流电输出到交流母线212上;储能发电系统22至少包括储能电池221和储能双向变流器222,进入储能独立供电模式的情况下,储能电池221进入放电模式,输出直流电,经由储能双向变流器222转换为交流电并输出到交流母线212上;光伏发电系统23至少包括光伏组件231和光伏变流器232,在光照资源充足的情况下,光伏组件231接收太阳光产生直流电,直流电经由光储一体机和光伏变流器转换为交流电并输出到交流母线212上。
这样,以能量路由器为核心的微电网系统,通过多形式能源端口拓扑集成与一二次系统深度融合设计,可解决传统微电网系统分散组网形式、额外加装通信装置以及新元素的即插即用接入问题。同时可以利用太阳能、风能互补发电,联合柴油发电、储能电池系统,实现稳定供电,有效解决了频繁迁徙的牧民、野外工程施工、野外勘探考察、边防营地、通信基站、军队作战演习等用电场景的供电问题。
图3为本公开实施例提供的微电网系统的可选的供电示意图,如图3所示,以微电网系统的输出功率为30KW为例,400V的交流母线(包括A、B、C三根火线和N零线)上通过供电接口组{K1、KM1、KM2}分别接入市电31、输出功率为50KW的储能双向变流器32(AC/DC)、80KW柴油发电机组33,通过负载开关组{KM5、KM6、KM7}分别接入一级负荷34、二级负荷35、三级负荷/并机接口36,同时储能双向变流器32通过K2、K3、K4接口分别接入102kWh的储能电池37以及并行的两个光伏发电系统38。
其中,光伏发电系统38由12kW光伏组件和光伏逆变器等组成,具备两路输出接口,一路由光伏组件直接接入到能量管理系统,即通过直流接入方式接入能量路由器;另一路通过光伏逆变器输出400V交流电,在光伏发电系统38独立带载工作时使用;储能发电系统由102kWh储能电池37例如锂电池组及其管理系统、50kW储能双向变流器、测控保护及能量管理系统、配电系统、消防安防系统及温控系统组成;柴油发电系统由80kW柴油发电机组及启动电池等组成,在光伏发电系统和储能发电系统的供电能力不足时,作为备用电源满足负荷供电需求。
图4为本公开实施例提供的微电网系统的可选的供电示意图,如图4所示,以微电网系 统的输出功率为75KW为例,400V的交流母线(包括A、B、C三根火线和N零线)上通过供电接口组{K1、KM1、KM2}分别接入市电41、输出功率为100KW的储能双向变流器42(AC/DC)、120KW柴油发电机组43,通过负载开关组{KM5、KM6、KM7}分别接入一级负荷44、二级负荷45、三级负荷/并机接口46,同时储能双向变流器42通过K2\K3、K4\K5接口分别接入133kWh的储能电池37以及并行的两个光伏发电系统48。
其中,光伏发电系统48由15kW光伏组件和光伏逆变器等组成,具备两路输出接口,一路由光伏组件直接接入到能量管理系统,即通过直流接入方式接入能量路由器;另一路通过光伏逆变器输出400V交流电,在光伏发电系统48独立带载工作时使用;储能发电系统由133kWh储能电池47例如锂电池组及其管理系统、100kW储能双向变流器、测控保护及能量管理系统、配电系统、消防安防系统及温控系统组成;柴油发电系统由120kW柴油发电机组及启动电池等组成,在光伏发电系统和储能发电系统的供电能力不足时,作为备用电源满足负荷供电需求。
图5为本公开实施例提供的微电网系统的控制方法的流程示意图,如图5所示,所述方法包括以下步骤S510至步骤S520:
步骤S510,响应于接收到发电指令,获取所述微电网系统的当前运行情况;其中,所述微电网系统包括能量路由器、与所述能量路由器以交流母线方式连接的分布式能源供电系统和用电负载群;
这里,接收到用户输入的发电指令,能量路由器中的能量管理系统获取连接分布式能源供电系统的各个接口的额定功率以及负载运行情况。可以理解的是,分布式能源供电系统包括风力发电系统、光伏发电系统、柴油发电系统、储能发电系统等,能量管理系统与分布式能源供电系统通过所述供电接口组与所述交流母线电连接,所述用电负载群通过所述负载开关组与所述交流母线电连接,能量管理系统与分布式能源供电系统中每一系统连接;
步骤S520,根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式。
在一些实施方式中,所述分布式能源供电系统包括以下至少一种:风力发电系统、光伏发电系统、柴油发电系统和电池储能系统;所述步骤S520进一步包括以下步骤S521至步骤S523:
步骤S521,在所述微电网系统临近风力发电设施且当地光照资源充足的情况下,控制所述风力发电系统与所述光伏发电系统进行交流互联,以使所述微电网系统进入所述风光互补供电模式;
这里,在所述风光互补供电模式下,通过所述光伏发电系统中的光储一体机,对所述风 力发电系统和所述光伏发电系统的直流输出进行回流和控制,最终经过逆变器转变为交流输出,以实现对所述用电负载群进行供电。
步骤S522,在当地光照资源有限且所述光伏发电系统的输出功率不足以满足负载用电需求的情况下,控制所述光伏发电系统与所述储能发电系统进行交流互联,以使所述微电网系统进入所述光伏+储能级联供电模式;
这里,在所述光伏+储能级联供电模式下,通过所述储能发电系统控制所述光伏发电系统的交流输出,并由所述储能发电系统接入所述用电负载群进行供电。
步骤S523,在当地光照资源有限且所述光伏发电系统结合所述储能发电系统的输出功率均无法满足负载用电需求的情况下,控制所述光伏发电系统和所述柴油发电系统同时与所述储能发电系统进行交流互联,以使所述微电网系统进入所述光伏+柴发+储能级联供电模式。
这里,在所述光伏+柴发+储能级联供电模式下,通过储能发电系统控制所述光伏发电系统和所述柴油发电系统的交流输出,由所述储能发电系统接入所述用电负载群进行供电。
在一些实施方式中,所述储能发电系统包括第一储能电池,所述光伏发电系统包括光储一体机和第二储能电池,所述步骤S520还包括以下步骤S524和步骤S525:
步骤S524,在所述光伏发电系统、所述储能发电系统和所述柴发发电系统均不能工作的紧急情况下,控制所述光伏发电系统中的第二储能电池连接所述用电负载群,以使所述微电网系统进入所述紧急供电模式进行短时间供电;
步骤S525,在所述微电网系统周围存在市电的情况下,控制所述储能发电系统和所述光伏发电系统均接入所述市电,以使所述微电网系统进入所述接入市电模式为所述第一储能电池和所述光储一体机进行充电。
本公开实施例基于提供的以能量路由器为核心的微电网系统,通过利用太阳能、风能互补发电,同时联合柴油发电、储能电池系统,可实现独立供电模式、级联供电模式、紧急供电模式和接入市电模式,能为高原地区的用电负载进行稳定供电,有效解决了高原地区频繁迁徙的牧民、野外工程施工、野外勘探考察、边防营地、通信基站、军队作战演习等用电场景的供电问题。
在一些实施方式中,所述用电负载群通过所述能量路由器的负载开关组连接到所述能量路由器的交流母线,所述用电负载群包括分布式的一级负荷、二级负荷和三级负荷;其中,所述一级负荷的优先级最高,所述三级负荷的优先级最低;所述方法还包括以下步骤530:在所述光伏+柴发+储能级联供电模式中,在所述微电网系统的最大输出功率不能满足所述用电负载群的消耗功率的情况下,利用所述负载开关组按照优先级顺序依次断开与所述三级负 荷、所述二级负荷的连接。
所述一级负荷为敏感负荷,例如设备负荷;二级负荷为一般负荷,例如工作负荷;三级负荷为非重要负荷,例如生活负荷;三种负荷按照级别的优先级顺序依次为一级负荷>二级负荷>三级负荷,从而可以实现区域分布式负载按照需求和级别灵活接入能源保障系统。
示例地,在光伏发电系统、柴油发电系统、储能发电系统同时按照最大功率输出,仍不能满足负荷消耗功率的情况下,切除三级负荷且保留二级负荷和一级负荷;在用电负载群的负荷消耗功率依然大于上述三个系统的总输出功率的情况下,继续切除二级负荷并保留一级负荷。
在一些实施方式中,所述负载开关组包括分别与所述一级负荷、所述二级负荷、所述三级负荷分别一一对应的三种等级接口,所述方法还包括:
步骤531,检测所述储能发电系统的储能电池的荷电状态;
步骤532,在所述荷电状态表明所述储能发电系统的输出功率小于第一百分比的情况下,断开所述负载开关组中与所述三级负荷对应的等级接口;
步骤533,在所述荷电状态表明所述储能发电系统的输出功率小于第二百分比的情况下,断开所述负载开关组中与所述三级负荷对应的等级接口,以及与所述第二负荷对应的等级接口。
这里,所述第二百分比小于所述第一百分比,例如第一百分比为50%第二百分比为30%。
示例地,实时检测储能发电系统中储能电池的SOC状态,在SOC值小于50%的情况下,切除三级负荷;在SOC值小于30%的情况下,在切除三级负荷的基础上继续切除二级负荷,即优先保证一级负荷的用电需求。
这样,将分布式负载按照实际需求或重要程度设为一级负荷、二级负荷、三级负荷,同时将负载开关组按照供电优先级分为对应的三种不同等级接口,从而可按照需求和级别灵活接入设备负荷、工作负荷、生活负荷等区域分布式负载,实现了分布式负载的“随遇接入,分级分配”,并且在控制模块的调度下,充分合理地利用了区域能源的供电能力。
需要说明的是,本申请实施例中,如果以软件功能模块的形式实现上述的动态调度方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬 件、软件或固件,或者硬件、软件、固件三者之间的任意结合。
本申请实施例提供一种计算机设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述方法中的部分或全部步骤。
本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法中的部分或全部步骤。所述计算机可读存储介质可以是瞬时性的,也可以是非瞬时性的。
本申请实施例提供一种计算机程序,包括计算机可读代码,在所述计算机可读代码在计算机设备中运行的情况下,所述计算机设备中的处理器执行用于实现上述方法中的部分或全部步骤。
本申请实施例提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序被计算机读取并执行时,实现上述方法中的部分或全部步骤。该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一些实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一些实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。
这里需要指出的是:上文对各个实施例的描述倾向于强调各个实施例之间的不同之处,其相同或相似之处可以互相参考。以上设备、存储介质、计算机程序及计算机程序产品实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请设备、存储介质、计算机程序及计算机程序产品实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
需要说明的是,图6为本申请实施例提供的计算机设备的一种硬件实体示意图,如图6所示,该计算机设备600的硬件实体包括:处理器601、通信接口602和存储器603,其中:
处理器601通常控制计算机设备600的总体操作。
通信接口602可以使计算机设备通过网络与其他终端或服务器通信。
存储器603配置为存储由处理器601可执行的指令和应用,还可以缓存待处理器601以及计算机设备600中各模块待处理或已经处理的数据(例如,图像数据、音频数据、语音通信数据和视频通信数据),可以通过闪存(FLASH)或随机访问存储器(Random Access Memory,RAM)实现。处理器601、通信接口602和存储器603之间可以通过总线604进行数据传输。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结 构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各步骤/过程的序号的大小并不意味着执行顺序的先后,各步骤/过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。
工业实用性
本公开实施例提供了一种微电网系统及其控制方法、电子设备、存储介质和程序产品,所述微电网系统包括:能量路由器、分布式能源供电系统和用电负载群;其中,所述能量路由器包括交流母线、供电接口组、负载开关组、通信系统和能量管理系统;所述通信系统配置为根据所述微电网系统的当前运行情况和预设的能量管理策略,进行能量路由器与分布式能源供电系统、用电负载群的通信,所述分布式能源供电系统通过所述供电接口组与所述交流母线电连接,所述用电负载群通过所述负载开关组与所述交流母线电连接,所述能量管理系统配置为根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式。从而针对常规配用电、分布式能源消纳问题和移动式供电需求,在已有的风光柴储独立发电技术的基础上,实现了以能量路由器为核心的微电网系统,同时具有灵活运行模式,提升供电质量、可靠性和稳定性,能够适用于多种特殊场景的供电需求。

Claims (13)

  1. 一种微电网系统,包括:能量路由器、分布式能源供电系统和用电负载群;其中,所述能量路由器包括交流母线、供电接口组、负载开关组、通信系统和能量管理系统;
    所述分布式能源供电系统通过所述供电接口组与所述交流母线电连接,所述用电负载群通过所述负载开关组与所述交流母线电连接,所述通信系统配置为根据所述微电网系统的当前运行情况和预设的能量管理策略,进行能量路由器与分布式能源供电系统、用电负载群的通信,所述能量管理系统配置为根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式。
  2. 根据权利要求1所述的微电网系统,所述分布式能源供电系统包括以下至少一种:风力发电系统、光伏发电系统、柴油发电系统和电池储能系统;其中,每一所述能源供电系统通过即插即用接口与所述供电接口组连接,所述能量管理系统与每一所述分布式能源供电系统分别通信连接。
  3. 根据权利要求2所述的微电网系统,所述目标供电模式包括以下之一:独立供电模式、级联供电模式、紧急供电模式、接入市电模式;
    其中,所述独立供电模式包括光伏独立供电模式、储能独立供电模式、柴发独立供电模式中的一种,所述级联供电模式包括风光互补供电模式、光伏+储能级联供电模式、光伏+柴发+储能级联供电模式中的一种。
  4. 根据权利要求1至3任一项所述的微电网系统,所述用电负载群包括分布式的一级负荷、二级负荷和三级负荷;其中,所述一级负荷的优先级最高,所述三级负荷的优先级最低;
    所述负载开关组包括分别与所述一级负荷、所述二级负荷、所述三级负荷分别一一对应的三种等级接口;其中,所述三种等级接口配置为按照实际需求和优先级顺序,灵活接入所述一级负荷、所述二级负荷、所述三级负荷到所述交流母线。
  5. 一种微电网系统的控制方法,应用于权利要求1至4任一项所述微电网系统中的能量管理系统,包括:
    响应于接收到发电指令,获取所述微电网系统的当前运行情况;其中,所述微电网系统包括能量路由器、与所述能量路由器以交流母线方式连接的分布式能源供电系统和用电负载群;
    根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式。
  6. 根据权利要求5所述的控制方法,所述分布式能源供电系统包括以下至少一种:风 力发电系统、光伏发电系统、柴油发电系统和电池储能系统;
    所述根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式,包括:
    在所述微电网系统临近风力发电设施且当地光照资源充足的情况下,控制所述风力发电系统与所述光伏发电系统进行交流互联,以使所述微电网系统进入所述风光互补供电模式;
    在当地光照资源有限且所述光伏发电系统的输出功率不足以满足负载用电需求的情况下,控制所述光伏发电系统与所述储能发电系统进行交流互联,以使所述微电网系统进入所述光伏+储能级联供电模式;
    在当地光照资源有限且所述光伏发电系统结合所述储能发电系统的输出功率均无法满足负载用电需求的情况下,控制所述光伏发电系统和所述柴油发电系统同时与所述储能发电系统进行交流互联,以使所述微电网系统进入所述光伏+柴发+储能级联供电模式。
  7. 根据权利要求5所述的控制方法,所述储能发电系统包括第一储能电池,所述光伏发电系统包括光储一体机和第二储能电池,所述根据所述微电网系统的当前运行情况和预设的能量管理策略,控制所述分布式能源供电系统的连接方式,以使所述微电网系统进入目标供电模式,还包括:
    在所述光伏发电系统、所述储能发电系统和所述柴发发电系统均不能工作的紧急情况下,控制所述光伏发电系统中的第二储能电池连接所述用电负载群,以使所述微电网系统进入所述紧急供电模式进行短时间供电;
    在所述微电网系统周围存在市电的情况下,控制所述储能发电系统和所述光伏发电系统均接入所述市电,以使所述微电网系统进入所述接入市电模式为所述第一储能电池和所述光储一体机进行充电。
  8. 根据权利要求6所述的控制方法,所述方法还包括:
    在所述风光互补供电模式下,通过所述光伏发电系统中的光储一体机,对所述风力发电系统和所述光伏发电系统的直流输出进行回流和控制,最终经过逆变器转变为交流输出,以实现对所述用电负载群进行供电;
    在所述光伏+储能级联供电模式下,通过所述储能发电系统控制所述光伏发电系统的交流输出,并由所述储能发电系统接入所述用电负载群进行供电;
    在所述光伏+柴发+储能级联供电模式下,通过储能发电系统控制所述光伏发电系统和所述柴油发电系统的交流输出,由所述储能发电系统接入所述用电负载群进行供电。
  9. 根据权利要求6至8任一项所述的控制方法,所述用电负载群通过所述能量路由器的负载开关组连接到所述能量路由器的交流母线,所述用电负载群包括分布式的一级负荷、 二级负荷和三级负荷;其中,所述一级负荷的优先级最高,所述三级负荷的优先级最低;所述方法还包括:
    在所述光伏+柴发+储能级联供电模式中,在所述微电网系统的最大输出功率不能满足所述用电负载群的消耗功率的情况下,利用所述负载开关组按照优先级顺序依次断开与所述三级负荷、所述二级负荷的连接。
  10. 根据权利要求9所述的控制方法,所述负载开关组包括分别与所述一级负荷、所述二级负荷、所述三级负荷分别一一对应的三种等级接口,所述方法还包括:
    检测所述储能发电系统的储能电池的荷电状态;
    在所述荷电状态表明所述储能发电系统的输出功率小于第一百分比的情况下,断开所述负载开关组中与所述三级负荷对应的等级接口;
    在所述荷电状态表明所述储能发电系统的输出功率小于第二百分比的情况下,断开所述负载开关组中与所述三级负荷对应的等级接口,以及与所述第二负荷对应的等级接口;所述第二百分比小于所述第一百分比。
  11. 一种电子设备,包括:
    一个或多个处理器;
    存储器,配置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求5至10任一项所述的控制方法。
  12. 一种计算机可读介质,包括具有处理器可执行的非易失的程序代码,所述程序代码使所述处理器执行所述权利要求5至10任一项所述方法。
  13. 一种计算机程序产品,所述计算机程序产品包括计算机程序或指令,在所述计算机程序或指令在电子设备上运行的情况下,使得所述电子设备执行权利要求5至10中任一项所述的方法。
PCT/CN2022/119411 2022-09-16 2022-09-16 微电网系统及其控制方法、设备、存储介质和程序产品 WO2024055307A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119411 WO2024055307A1 (zh) 2022-09-16 2022-09-16 微电网系统及其控制方法、设备、存储介质和程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119411 WO2024055307A1 (zh) 2022-09-16 2022-09-16 微电网系统及其控制方法、设备、存储介质和程序产品

Publications (1)

Publication Number Publication Date
WO2024055307A1 true WO2024055307A1 (zh) 2024-03-21

Family

ID=90274046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119411 WO2024055307A1 (zh) 2022-09-16 2022-09-16 微电网系统及其控制方法、设备、存储介质和程序产品

Country Status (1)

Country Link
WO (1) WO2024055307A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118232414A (zh) * 2024-05-23 2024-06-21 永联科技(常熟)有限公司 复合微电网控制方法、装置、计算机存储介质和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090189456A1 (en) * 2008-01-28 2009-07-30 Glenn Richard Skutt System and Method for Coordinated Control and Utilization of Local Storage and Generation, with a Power Grid
CN102315645A (zh) * 2011-09-09 2012-01-11 中国科学院电工研究所 用于分布式发电的能量路由器
CN105932779A (zh) * 2016-06-20 2016-09-07 国网上海市电力公司 一种基于能量路由器的微电网
CN113328464A (zh) * 2021-07-19 2021-08-31 江西清华泰豪三波电机有限公司 基于交流母线的多能源微电网供电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090189456A1 (en) * 2008-01-28 2009-07-30 Glenn Richard Skutt System and Method for Coordinated Control and Utilization of Local Storage and Generation, with a Power Grid
CN102315645A (zh) * 2011-09-09 2012-01-11 中国科学院电工研究所 用于分布式发电的能量路由器
CN105932779A (zh) * 2016-06-20 2016-09-07 国网上海市电力公司 一种基于能量路由器的微电网
CN113328464A (zh) * 2021-07-19 2021-08-31 江西清华泰豪三波电机有限公司 基于交流母线的多能源微电网供电系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118232414A (zh) * 2024-05-23 2024-06-21 永联科技(常熟)有限公司 复合微电网控制方法、装置、计算机存储介质和电子设备
CN118232414B (zh) * 2024-05-23 2024-09-20 永联科技(常熟)有限公司 复合微电网控制方法、装置、计算机存储介质和电子设备

Similar Documents

Publication Publication Date Title
CN103618372B (zh) 一种光伏直流微电网系统
Jia et al. Architecture design for new AC-DC hybrid micro-grid
CN109066799B (zh) 一种适用于含光储的微电网黑启动系统及方法
CN103606943A (zh) 一种微网镍氢电池储能系统
CN103595071A (zh) 一种微网能源系统
JP7299201B2 (ja) 電力システム
CN104238466A (zh) 基于物联云的智能用电用能系统平台
CN102810909A (zh) 一种可实现分布式电源与负载匹配的能量管理方法
Kumar et al. A comprehensive review of DC microgrid in market segments and control technique
CN111463807A (zh) 一种分布式直流耦合制氢系统及其控制方法
CN102684183A (zh) 基于直流局域网的分布式发电系统及控制方法
CN110535190A (zh) 一种户用微网能量路由器能量管理单元的本地控制方法
CN104333036A (zh) 一种多源协调控制系统
WO2024055307A1 (zh) 微电网系统及其控制方法、设备、存储介质和程序产品
Ma et al. An overview of energy routers
CN115441486A (zh) 一种光储充放换电系统及系统匹配方法
CN201821130U (zh) 一种太阳能光伏发电控制器
CN105305493A (zh) 一种用于互联运行的光储独立微电网拓扑
CN103378604A (zh) 智能微电网
CN202633939U (zh) 基于直流局域网的分布式发电系统
Liu et al. A home energy router and energy management strategy for AC/DC hybrid sources and consumers
Zhang et al. Research on typical power supply mode of DC distribution and consumption system
CN111711214A (zh) 一种微电网调度监测系统
CN203466579U (zh) 一种并网不上网的直流微网系统
CN115021262A (zh) 一种新型风光储新能源一体化电源系统及其运行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958497

Country of ref document: EP

Kind code of ref document: A1