WO2024019130A1 - 蓄電デバイス、および蓄電デバイスの状態検知方法 - Google Patents

蓄電デバイス、および蓄電デバイスの状態検知方法 Download PDF

Info

Publication number
WO2024019130A1
WO2024019130A1 PCT/JP2023/026702 JP2023026702W WO2024019130A1 WO 2024019130 A1 WO2024019130 A1 WO 2024019130A1 JP 2023026702 W JP2023026702 W JP 2023026702W WO 2024019130 A1 WO2024019130 A1 WO 2024019130A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
current collector
storage device
collector plate
conductive portion
Prior art date
Application number
PCT/JP2023/026702
Other languages
English (en)
French (fr)
Inventor
俊哉 五十嵐
利崇 小林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024019130A1 publication Critical patent/WO2024019130A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/14Protection against electric or thermal overload
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a power storage device and a state detection method of a power storage device.
  • Patent Document 1 discloses a power storage element having a first electrode and a second electrode and a first end portion from which the first electrode is drawn out, and a power storage element having a first end portion from which the first electrode is drawn out.
  • an electrolyte impregnated in the element a terminal plate having an element connection part electrically connected to the first electrode at the first end; and an external terminal part connected to the element connection part;
  • a power storage device is described that includes an exterior body that accommodates a power storage element together with an electrolyte, and a sealing member that has an insertion hole into which an external terminal portion is inserted and that seals an opening of the exterior body together with the external terminal portion. ing.
  • the external terminal part is a column or a cylinder having a tapered part on the outer periphery of the tip, and in the direction extending from the bottom of the exterior body to the opening, the edge of the side wall at the opening of the exterior body is aligned with both ends of the tapered part. located between.
  • Patent Document 2 discloses a cylindrical secondary battery in which an electrode plate group formed by winding a positive electrode plate and a negative electrode plate with a separator in between is housed together with an electrolyte in a battery container consisting of a sealing plate and a metal outer can. At least one of the positive electrode plate and the negative electrode plate has a core material exposed part at the end along the longitudinal direction, and at least one of the upper surface and the lower surface of the electrode plate group has a A cylindrical secondary battery is described in which a core exposed portion protrudes, a flat portion is formed by the tip of the protruding portion itself, and a current collector plate is joined to the flat portion.
  • the current collector plate includes a fixed part joined to the flat part and a movable part joined to the bottom of the outer can, and a part of the movable part includes the outer peripheral surface of the current collector plate.
  • One aspect of the present disclosure includes a power storage element, a bottomed cylindrical case that houses the power storage element and has an opening at one end, a sealing member that seals the opening, and a current collector plate,
  • the current collector plate includes a first region that is electrically connected to an external terminal of the sealing member or the case, a second region that is joined to the electricity storage element, and the first region and the second region. and one or more second conductive parts that connect the first region and the second region, the electric resistance of the first conductive part and the second conductive part are
  • the present invention relates to a power storage device in which the electrical resistance of a conductive part is different.
  • Another aspect of the present disclosure includes a power storage element, a bottomed cylindrical case that houses the power storage element and has an opening at one end, a sealing member that seals the opening, and a current collector plate.
  • the current collector plate includes a first region electrically connected to an external terminal of the sealing member or the case, a second region joined to the electricity storage element, and a first region and the second region. and one or more second conductive parts that connect the first region and the second region, and the internal pressure in the case is a predetermined first pressure. If it exceeds, at least a part of the first conductive part of the current collector plate is broken, but the second conductive part is not broken.
  • Yet another aspect of the present disclosure is a power storage device that detects a state of the power storage device by detecting a change in electrical characteristics of the power storage device caused by rupture of the first conductive portion.
  • This invention relates to a state detection method.
  • FIG. 2 is a top view showing the appearance of a current collector plate according to an embodiment of the present disclosure.
  • FIG. 1 is a perspective view showing the appearance of a current collector plate according to an embodiment of the present disclosure.
  • FIGS. 1A and 1B it is a perspective view showing the appearance of the current collecting plate when the case internal pressure exceeds the first pressure and the first conductive part is broken.
  • FIG. 7 is a top view showing another example of the current collector plate according to the embodiment of the present disclosure.
  • FIG. 7 is a perspective view showing another example of the current collector plate according to the embodiment of the present disclosure. In the current collecting plate shown in FIGS.
  • FIG. 1 is a longitudinal cross-sectional view showing the configuration of a power storage device according to an embodiment of the present disclosure.
  • An electricity storage device includes an electricity storage element, a bottomed cylindrical case that houses the electricity storage element and has an opening at one end, a sealing member that seals the opening, and a current collector plate. Equipped with.
  • the current collector plate includes a first region that is electrically connected to an external terminal of the sealing member or the case, and a second region that is joined to the power storage element.
  • the current collector plate further includes one or more first conductive parts that connect the first region and the second region, and one or more second conductive parts that connect the first region and the second region.
  • Each of the first conductive portion and the second conductive portion provides at least two conductive paths through which current flows between the electrical connection position with the external terminal in the first region and the joint position with the power storage element in the second region. Formed independently. In a normal state of the power storage device, current flows in parallel in both the conduction path via the first conduction portion (first conduction path) and the conduction path through the second conduction portion (second conduction path).
  • the central portion of the current collector plate bulges toward the external terminal and undergoes deformation such that it moves away from the power storage element. At this time, the deformation may cause the second region of the current collector plate to be separated from the power storage element. Such debonding may occur even at an internal pressure lower than the valve operating pressure of the electricity storage device.
  • the power storage device is configured such that at least a portion of the first conductive portion breaks when the internal pressure within the case exceeds a predetermined first pressure.
  • the second conductive portion does not break even if the internal pressure exceeds the first pressure. That is, when the internal pressure exceeds the first pressure, the first conduction path between the first region and the second region is cut off, and the second conduction path between the first region and the second region is cut off. A current flows through the second conduction path.
  • the first region of the second conductive portion protrudes toward the external terminal (away from the power storage element) in the axial direction of the case as the first conductive portion breaks. (See FIGS. 2 and 4). As a result, deformation of the second region is suppressed, and separation of the bond from the electricity storage element due to deformation of the current collector plate is suppressed.
  • the electrical resistance of the first conductive part is different from the electrical resistance of the second conductive part.
  • the electrical resistance of the first conductive portion is preferably lower than the electrical resistance of the second conductive portion.
  • the length of the first conductive part may be shorter than the length of the second conductive part.
  • the minimum width of the first conductive part may be formed narrower than the minimum width of the second conductive part.
  • the lengths of the first conductive part and the second conductive part mean the shortest length or average length along the first conductive path and the second conductive path, respectively.
  • the lengths of the first conductive part and the second conductive part are the shortest total length along the curved path, or the average length, respectively. This is the total length.
  • the widths of the first conductive portion and the second conductive portion refer to lengths in the direction perpendicular to the direction along the first conductive path and the direction along the second conductive path, respectively.
  • a plurality of slits may be formed intermittently along the outline of the first region.
  • the slit separates the first region and the second region.
  • a region sandwiched between the ends of the plurality of slits in the length direction connects the first region and the second region with the minimum width, and can form the first conductive portion.
  • a slit is not formed in a part of the contour of the first region, and a portion of the contour of the first region in which a slit is not formed (a portion that does not constitute the minimum width) is continuous with the second conductive portion.
  • the first region includes, for example, the central portion of the current collector plate.
  • the second region is provided at the outer peripheral portion outside the center portion.
  • the first conductive portion and the second conductive portion connect the first region in the center and the second region provided on the outer periphery at different positions in the circumferential direction.
  • the first conductive portion can connect the central portion and the outer peripheral portion so as to form a conductive path connecting the central portion and the outer peripheral portion over a short distance.
  • the second conductive portion forms another conductive path that detours between the first region and the second region, independently of the conductive path that passes through the first conductive portion.
  • the power storage element is, for example, a columnar wound body in which a positive electrode and a negative electrode are wound with a separator in between.
  • the wound body may be housed in the case such that one end surface of the wound body faces the case bottom and the other end surface faces the sealing member on the opening side of the case.
  • the opening of the case is closed with the rolled body housed therein, and is maintained airtight. Note that the method for sealing the opening of the case is not particularly limited, and any known method can be used.
  • the current collector plate including the first conductive part and the second conductive part is joined to one end surface of the wound body, joined to the electrode exposed on the one end surface in the second region, and connected to the sealing member in the first region. It may be electrically connected to the terminal portion.
  • the current collector plate including the first conductive part and the second conductive part is joined to the other end face of the wound body, joined to the electrode exposed on the other end face in the second region, and connected to the bottom of the case in the first region. It may be electrically connected.
  • the electricity storage device may include a pair of current collecting plates, including a current collecting plate joined to one end surface of the wound body and a current collecting plate joined to the other end surface of the wound body.
  • One of the pair of current collector plates may be a current collector plate including the first conductive portion and the second conductive portion, and both of the pair of current collector plates may include the first conductive portion and the second conductive portion.
  • a current collecting plate may be provided.
  • a current collector plate including the first conductive part and the second conductive part, which is joined to one end surface of the wound body and electrically connected to the terminal part of the sealing member will be referred to as the current collector plate.
  • a current collector plate comprising a first conductive part and a second conductive part, the current collector plate being joined to the other end surface of the wound body and electrically connected to the bottom of the case. 2 current collector plate.
  • the current collector plate has two main surfaces. At this time, the first main surface of the current collector plate faces the sealing member or the bottom of the case, and the second main surface of the current collector plate faces the end surface of the wound body. In order to easily form a bond with the electricity storage element, the second region of the current collector plate may be made to protrude toward the second main surface side. The first region of the current collector plate may protrude toward the first main surface.
  • the first region may be electrically connected to the terminal portion of the sealing member, and the second region may be joined to the first electrode of the electricity storage element.
  • the first region may be joined to the terminal portion by welding.
  • the second region may be joined to the first electrode of the power storage element by welding.
  • the first region may be electrically connected to the case, and the second region may be joined to the second electrode of the electricity storage element.
  • the second region may be joined to the second electrode of the power storage element by welding.
  • the current collector plate may be electrically connected to the positive electrode or the negative electrode depending on the configuration of the power storage device. That is, the current collector plate may be a positive electrode current collector plate or a negative electrode current collector plate.
  • the first current collector plate electrically connected to the terminal portion of the sealing member may be electrically connected to the positive electrode
  • the second current collector plate electrically connected to the case may be electrically connected to the negative electrode.
  • the first current collector plate electrically connected to the terminal portion of the sealing member may be electrically connected to the negative electrode
  • the second current collector plate electrically connected to the case may be electrically connected to the positive electrode.
  • the first current collector plate and the second current collector plate may have the same configuration or different configurations.
  • the shape of at least one of the first conductive portion and the second conductive portion may be made different between the first current collector plate and the second current collector plate.
  • the first current collector plate and the second current collector plate have different characteristics such as the threshold of internal pressure at which the first conductive part breaks (first pressure), the resistance value when the first conductive part breaks, and the resonance frequency. You can.
  • the second conducting part deforms as the first conducting part breaks, as described above, and the first area moves toward the external terminal side in the axial direction of the case. Projects out (toward the side away from the electricity storage element).
  • the second conductive part acts as a spring against vibration in the axial direction, and the power storage element is likely to vibrate in the axial direction within the case in response to external force, reducing the vibration resistance of the power storage device. may decrease.
  • the resonance frequency of the power storage device is preferably maintained at, for example, 500 Hz or higher.
  • the spring constant for vibration in the axial direction of the first current collector plate when the first conductive portion is broken is defined as k1 .
  • the spring constant for vibration in the axial direction of the second current collector plate when the first conductive portion is broken is defined as k2 .
  • the spring constant k (k 1 or k 2 ) is given by the following formula.
  • k 192EI/L 3
  • I: Second moment of area ( bh 3 /12)
  • the spring constants k 1 and k 2 can be calculated by numerical simulation taking into account the material (elastic constant) and shape of the current collector plate. Further, the resonance frequency f n of the power storage device can also be calculated by numerical simulation. For example, ANSYS is used as software for numerical simulation.
  • the first current collector plate facing the sealing member is more easily deformed by swelling when the internal pressure of the case increases than the second current collector plate facing the bottom of the case, and the deformation of the current collector plate causes the power storage element to The bond is easy to peel off. Therefore, it is more necessary to suppress the separation of the bond with the electricity storage element in the first current collector plate than in the second current collector plate. Therefore, when the first conductive portion is broken, the first region of the first current collector plate is easily deformed to protrude toward the sealing member side (away from the power storage element) with respect to the second region.
  • the shape of the second conductive portion of the first current collector plate may be designed.
  • the more the second conductive portion is designed to have a shape that allows easier protrusion deformation the smaller the spring constant k 1 and the easier the resonance frequency f n becomes. Therefore, it is preferable to set k 2 >k 1 so that the resonance frequency f n can be maintained high.
  • the current collector plate (the first current collector plate and the second current collector plate) provided with the first conductive part and the second conductive part described above can be used for a positive electrode and a secondary battery, regardless of whether it is a primary battery or a secondary battery. Regardless of the configuration of the negative electrode, it can be employed in any structure of an electricity storage device.
  • the power storage device according to an embodiment of the present disclosure is suitable for being configured as, for example, a non-aqueous electrolyte secondary battery, an alkaline storage battery, or a capacitor, and contributes to increasing the output of the non-aqueous electrolyte battery.
  • Non-aqueous electrolyte batteries include lithium ion secondary batteries, all-solid-state batteries, and the like.
  • a power storage device according to an embodiment of the present disclosure will be specifically described with reference to the drawings, taking as an example a case where it is used in a lithium ion secondary battery, which is an example of a power storage device.
  • FIGS. 1A and 1B are diagrams illustrating an example of the configuration of a current collector plate according to an embodiment of the present disclosure.
  • FIG. 1A is a top view showing the appearance of the current collector plate 14
  • FIG. 1B is a perspective view of the current collector plate 14 viewed from the first main surface side (the surface opposite to the surface where the bond with the electricity storage element is formed).
  • the current collector plate 14 is disposed between the power storage element and the sealing member, and is used to electrically connect one electrode (first electrode) of the power storage element and the terminal portion of the sealing member. It can be done.
  • the current collector plate 14 may be a first current collector plate or a positive electrode current collector plate.
  • the current collector plate 14 has a first main surface S1 and a second main surface S2 opposite to the first main surface S1.
  • the current collector plate 40 is, for example, a metal plate, and can be punched into a predetermined shape and then processed into a shape having unevenness by press molding. In the examples shown in FIGS. 1A and 1B, the current collector plate 14 has a general shape of a disk, but in order to form the first conductive portion and the second conductive portion, through holes or notches are formed in some areas. ing.
  • the first main surface S1 faces the sealing member or the bottom of the case in the manufactured electricity storage device.
  • the second main surface S2 faces the power storage element in the manufactured power storage device.
  • the current collector plate 14 has a first region 14A at its center and a second region 14B at its outer periphery outside the first region 14A.
  • the first region 14A is located at the center of the case or the center of the power storage element, and the second region 14B extends from the center toward the cylindrical portion of the case.
  • the plurality of second regions 14B may extend radially along the radial direction away from the central first region 14A while being spaced apart from each other.
  • the first region 14A is electrically connected to an external terminal of the sealing member or the case on its first main surface S1 side.
  • the second region 14B is joined to the power storage element on the second main surface S2 side. As shown in the example of FIG. 1B, the second region 14B may be made to protrude toward the second main surface S2 in order to facilitate the formation of a bond with the power storage element. Similarly, in order to facilitate electrical connection with external terminals, the first region 14A may be made to protrude toward the first main surface S1.
  • the first conductive portion 15A connects the first region 14A and the second region 14B.
  • the first conductive portion 15A is a region with the minimum width sandwiched between the longitudinal ends of the plurality of slits 16 formed along the contour of the first region 14A. be.
  • the second conductive portion 15B connects the first region 14A and the second region 14B.
  • the first conductive portion 15A forms a first conductive path 18A that connects the first region 14A and the second region 14B
  • the second conductive portion 15B forms a connection between the first region 14A and the second region 14B.
  • a second conduction path 18B is formed to connect the two.
  • the first conduction path 18A and the second conduction path 18B are each shown by an arrow pointing from the second region 14B to the first region 14A.
  • the first conduction path 18A and the second conduction path 18B each form an independent current path, and in a normal usage state in which the first conduction portion 15A is not broken (the internal pressure of the power storage device is the first pressure (below), current flows in parallel to both the first conduction path 18A and the second conduction path 18B.
  • the first conduction path 18A has a short path length between the first region 14A and the second region 14B, and has low electrical resistance.
  • the second conduction path 18B the direction in which the current flows is restricted by the slit 17, and a curved conduction path is formed, so that the conduction path becomes long and the electrical resistance generally becomes high.
  • the electrical resistance of the first conductive portion 15A may be lower than the electrical resistance of the second conductive portion 15B.
  • the difference between the first conductive path 18A and the second conductive path 18B is whether they go through the first conductive part 15A or the second conductive part 15B on the way from the second region 14B to the first region 14A. Yes, and the other routes are generally the same. Therefore, when the electrical resistance of the first conducting section 15A is lower than the electrical resistance of the second conducting section 15B, the electrical resistance of the first conducting path 18A becomes lower than the electrical resistance of the second conducting path 18B.
  • the first conductive portion 15A when the first conductive portion 15A is not broken, current flows in parallel to both the first conductive path 18A and the second conductive path 18B, but when the first conductive portion 15A is broken, the current flows through the first conductive path 18A and the second conductive path 18B in parallel. Current flows only through the second conduction path 18B. Therefore, by comparing the electrical resistance of the current collector plate 14 with the first conductive part 15A unbroken and the current collector plate 14 after the fracture, the electric resistance of the first conductive part 15A and the second conductive part 15B can be determined. You can understand the relationship with electrical resistance.
  • the electrical resistance of the current collecting plate 14 in a state where the first conducting part 15A is not broken is lower than that of the current collecting plate 14 after being broken, the electrical resistance of the first conducting part 15A is lower than that of the second conducting part 15B. can also be said to be low.
  • the current collector plate 14 undergoes deformation such that the side closer to the center protrudes toward the first main surface S1 side than the outer peripheral side and swells.
  • the second region 14B is Due to the deformation of the current collector plate, a part of the bond may peel off.
  • the first conductive portion breaks as the internal pressure increases, so that peeling of the bond between the power storage element and the current collector plate can be suppressed.
  • FIG. 2 shows the current collector plate 14 facing the first main surface (the opposite side to the surface where the bond with the power storage element is formed) when the internal pressure of the case of the power storage device exceeds the first pressure and the first conductive portion 15A is broken.
  • ) is a perspective view as seen from ).
  • the first conductive portion 15A is broken, the second conductive portion 15B is deformed (elastic deformation or plastic deformation), and the first region 14A is concentrated so as to protrude toward the external terminal (away from the power storage element).
  • the electric board is deformed.
  • deformation of the second region 14B is suppressed, separation of the bond between the electricity storage element and the current collector plate in the second region 14B is suppressed.
  • the first pressure may be lower than the valve operating pressure at which the explosion-proof mechanism of the electricity storage device operates.
  • the first pressure may be controlled to a desired pressure by reducing the thickness of a portion of the first conductive portion 15A to form a thin portion.
  • FIGS. 3A and 3B are diagrams illustrating another example of the configuration of a current collector plate according to an embodiment of the present disclosure.
  • FIG. 3A is a top view showing the appearance of the current collector plate 24, and
  • FIG. 3B is a perspective view of the current collector plate 24 viewed from the first main surface side (the surface opposite to the surface where the joint with the electricity storage element is formed).
  • the current collector plate 24 is disposed between the power storage element and the bottom of the case, and can be used to electrically connect the other electrode (second electrode) of the power storage element to the case.
  • the current collector plate 24 may be a second current collector plate or may be a negative electrode current collector plate.
  • the current collector plate 24 corresponds to the current collector plate 14 with a modified configuration of the second conductive portion 15B.
  • the configuration of the current collector plate 24 other than the second conductive portion is the same as that of the current collector plate 14, so the description will be omitted or simplified.
  • a partial configuration of the current collector plate 14 may be applied to the current collector plate 24 as long as there is no technical contradiction.
  • the current collecting plate 24 has a first region 24A in the center thereof, and a second region 24B in the outer peripheral portion outside the first region 24A.
  • the first region 24A is electrically connected to an external terminal of the sealing member or the case on its first main surface S1 side.
  • the second region 24B is joined to the power storage element on the second main surface S2 side.
  • a first conductive portion 25A and a second conductive portion 25B connect the first region 24A and the second region 24B, respectively.
  • the first conductive portion 15A is a region sandwiched between longitudinal ends of a plurality of slits 26 formed along the contour of the first region 14A.
  • the first conductive portion 25A forms a first conductive path 28A that connects the first region 24A and the second region 24B
  • the second conductive portion 25B forms a first conductive path 28A that connects the first region 24A and the second region 24B.
  • a second conduction path 28B is formed to connect the two.
  • the first conduction path 28A and the second conduction path 28B form independent current paths.
  • the first conduction path 28A has a short path length between the first region 24A and the second region 24B and low electrical resistance.
  • the second conduction path 28B has a long path length and generally has a high electrical resistance.
  • FIG. 4 shows the current collector plate 24 on the first main surface side (the opposite side to the surface where the bond with the power storage element is formed) when the internal pressure of the power storage device exceeds the first pressure and the first conductive portion 25A is broken.
  • the first conductive portion 25A breaks, the second conductive portion 25B deforms (elastic deformation or plastic deformation), and the first region 24A converges to protrude toward the external terminal (away from the power storage element). The electric board is deformed.
  • deformation of the second region 24B is suppressed, separation of the bond between the electricity storage element and the current collector plate in the second region 24B is suppressed.
  • the current collecting plate 24 when compared with the current collecting plate 14, the current collecting plate 24 is different in shape of the second conducting portion (more specifically, the slit 17 is not provided).
  • the second conductive portion 25B has greater rigidity when the first conductive portion is broken, and the second conductive portion 25B is less likely to deform. Therefore, the second conductive portion acts as a spring against vibrations in the axial direction, and vibration of the power storage element within the power storage device is suppressed.
  • the spring constant for the axial vibration of the current collector plate 24 when the first conductive portion is broken is larger than the spring constant for the axial vibration of the current collector plate 14 when the first conductive portion is broken.
  • the current collector plate 14 and the current collector plate 24 are combined and used in a power storage device, the current collector plate 14 with a small spring constant is placed on the side facing the sealing member, and the current collector plate 24 with a large spring constant is placed on the bottom of the case. Preferably, they are arranged on opposite sides.
  • FIG. 5 is a longitudinal cross-sectional view showing the configuration of a power storage device (lithium ion secondary battery) 200 in which the above current collector plate 14 and current collector plate 24 are arranged.
  • a power storage device lithium ion secondary battery
  • the power storage device 200 includes a wound element (power storage element) 100 formed into a columnar shape by winding a positive electrode 10 and a negative electrode 20 with a separator 30 in between, a non-aqueous electrolyte (not shown), a wound element 100, and a non-aqueous electrolyte (not shown).
  • the device includes a bottomed metal case 210 that accommodates a non-aqueous electrolyte, a sealing rubber 220 that seals the opening of the case 210, a current collector plate 14, and a terminal 230.
  • the sealing rubber and the terminal 230 constitute a sealing member.
  • the sealing rubber 220 has a through hole in the center, and the terminal 230 is inserted into the through hole.
  • One end of the terminal 230 is electrically connected to the current collector plate (positive electrode current collector plate) 14 .
  • the other end of the terminal 230 is exposed to the outside of the battery 200 and functions as an external terminal of the battery 200 (in the example of FIG. 5, an external positive terminal).
  • the sealing rubber 220 is pressed through the side surface (cylindrical portion) 210a of the case 210, and the open end of the case 210 is caulked to the sealing rubber 220, thereby sealing the inside of the case 210.
  • a curled portion 210b is formed at the open end of the case 210 by caulking.
  • This electricity storage device 200 accommodates a wound element, a current collector plate, and a sealing rubber in a laminated state in a case in this order, and then caulks the opening end of the case to the sealing rubber to close the opening of the case. Since it can be manufactured by sealing, the manufacturing process can be simplified.
  • the opening of the case 210 is sealed using a sealing member in which a terminal 230 is inserted through a sealing rubber 220.
  • a sealing member in which a terminal 230 is inserted through a sealing rubber 220.
  • one end of the terminal 230 and the current collector plate (positive electrode current collector plate) 14 are welded in the first region 14A, and one end of the terminal 230 and the current collector plate (positive electrode current collector plate) 14 are welded. It may be electrically connected.
  • the method for sealing the opening of the case 210 is not limited to the above example, and a sealing plate that functions as an external terminal and a gasket that covers the outer peripheral edge of the sealing plate may be used. In that case, the method of electrical connection between the sealing plate and the current collector plate is not particularly limited, and the first region of the current collector plate may be directly connected to the sealing plate, or it may be done via an internal lead. Good too.
  • the nonaqueous electrolyte has lithium ion conductivity and includes a lithium salt and a nonaqueous solvent that dissolves the lithium salt.
  • the positive electrode 10 is in the form of a long sheet, and includes a positive electrode current collector and a positive electrode active material layer supported on the positive electrode current collector.
  • the positive electrode active material layer is formed on both sides of the positive electrode current collector.
  • a positive electrode current collector exposed portion 11x that does not have a positive electrode active material layer may be formed at one end along the longitudinal direction of the positive electrode current collector.
  • the positive electrode current collector exposed portion 11x is exposed on one end surface of the wound element 100, and the positive electrode is electrically connected to the current collector plate 14 via the positive electrode current collector exposed portion 11x.
  • the positive electrode current collector exposed portion 11x is connected to the current collector plate 14 by, for example, welding.
  • the other longitudinal end of the positive electrode current collector is covered with an insulating layer 13.
  • the negative electrode 20 is in the form of a long sheet, and includes a negative electrode current collector and a negative electrode active material layer supported on the negative electrode current collector.
  • the negative electrode active material layer is formed on both sides of the negative electrode current collector.
  • a negative electrode current collector exposed portion 21x that does not have a negative electrode active material layer is formed at one end along the length of the negative electrode current collector (the end opposite to the positive electrode current collector exposed portion 11x). has been done.
  • the negative electrode current collector exposed portion 21x is exposed on the other end surface of the wound element 100, and the negative electrode is electrically connected to the current collector plate (negative electrode current collector plate) 24 via the negative electrode current collector exposed portion 21x.
  • Ru The negative electrode current collector exposed portion 21x is connected to the current collector plate 24 by, for example, welding.
  • the other longitudinal end of the negative electrode current collector is covered with an insulating layer 23.
  • the current collector plate 24 is welded to a welding member 25 provided on the inner bottom surface of the case 210. Therefore, case 210 functions as
  • sealing rubber By using a rubber material as the sealing member, a stable sealing repulsion force can be obtained, and the sealing performance of the electricity storage device is improved. Further, since the convex portion is made of a rubber material, the convex portion deforms when it comes into contact with the current collector and receives pressure, thereby absorbing member tolerances and assembly tolerances.
  • the sealing rubber having the convex portion is manufactured, for example, by a molding technique such as compression molding.
  • the sealing rubber since rubber materials are easily deformed due to increases in internal pressure, they may lack rigidity from the viewpoint of suppressing swelling.
  • the sealing rubber has a laminated structure having at least two layers: a rubber material layer (for example, a butyl rubber layer) and a fluororesin layer. Good too. In that case, the protrusions are provided in the rubber material layer.
  • the Young's modulus of the rubber material layer may be in the range of 4 MPa to 80 MPa, depending on the environmental temperature.
  • the Young's modulus of the fluororesin may be 0.4 GPa or more in general.
  • the sealing rubber may be composed of a single layer of a rubber material layer containing a rubber material, or may have a multilayer structure of a rubber material layer and a fluororesin layer.
  • a rubber material butyl rubber (isobutylene-isoprene copolymer) (IIR) is preferred.
  • IIR isobutylene-isoprene copolymer
  • Butyl rubber has stable elasticity due to peroxide crosslinking or resin crosslinking, and can stably obtain sealing repulsion force.
  • Butyl rubber has lower gas permeability and higher insulation than other rubber materials, so it is possible to maintain high performance of power storage devices even during long-term storage.
  • PTFE polytetrafluoroethane
  • PVDF polyvinylidene fluoride
  • PFA perfluoroalkoxyalkane
  • ETFE ethylene-tetrafluoroethylene copolymer
  • FEP perfluoroethylene-propene
  • the material constituting the current collector plate is determined depending on the materials constituting the positive electrode and the negative electrode.
  • the material of the current collector plate when used as a negative electrode current collector plate of a lithium ion secondary battery, the material of the current collector plate is, for example, copper, copper alloy, nickel, stainless steel, or the like.
  • the material of the negative electrode current collector plate may be the same as the material of the negative electrode current collector.
  • the material of the current collector plate is, for example, aluminum, aluminum alloy, titanium, stainless steel, or the like.
  • the material of the positive electrode current collector plate may be the same as the material of the positive electrode current collector.
  • the exposed portion of the current collector and the current collector plate may be joined by, for example, laser welding.
  • the laser may be applied radially to a plurality of locations, for example, from the side of the current collector plate opposite to the end face of the wound element (that is, the side facing the sealing rubber).
  • a sheet-shaped metal material is used for the positive electrode current collector.
  • the sheet-shaped metal material may be metal foil, porous metal, etched metal, or the like.
  • As the metal material aluminum, aluminum alloy, nickel, titanium, etc. can be used.
  • the thickness of the positive electrode current collector is, for example, 10 ⁇ m to 100 ⁇ m.
  • the positive electrode active material layer includes, for example, a positive electrode active material, a conductive material, and a binder.
  • the positive electrode active material layer is obtained, for example, by applying a positive electrode composite slurry containing a positive electrode active material, a conductive material, and a binder to both sides of a positive electrode current collector, drying the coating film, and then rolling it.
  • the positive electrode active material is a material that inserts and releases lithium ions. Examples of the positive electrode active material include lithium-containing transition metal oxides, transition metal fluorides, polyanions, fluorinated polyanions, transition metal sulfides, and the like.
  • the positive electrode active material layer may include a positive electrode active material that is reversibly doped with an anion. When anions are adsorbed to the positive electrode active material, an electric double layer is formed and capacity is developed.
  • the positive electrode may be a polarizable electrode, or may be an electrode that has the properties of a polarizable electrode and also contributes to a faradaic reaction to the capacity.
  • the positive electrode active material is, for example, a carbon material, a conductive polymer, or the like.
  • the conductive polymer is preferably a ⁇ -conjugated polymer.
  • the ⁇ -conjugated polymer for example, polypyrrole, polythiophene, polyfuran, polyaniline, polythiophene vinylene, polypyridine, or derivatives thereof can be used. These may be used alone or in combination of two or more.
  • the weight average molecular weight of the conductive polymer is, for example, 1,000 to 100,000.
  • the derivative of a ⁇ -conjugated polymer refers to a polymer having a ⁇ -conjugated polymer as a basic skeleton, such as polypyrrole, polythiophene, polyfuran, polyaniline, polythiophene vinylene, and polypyridine.
  • polythiophene derivatives include poly(3,4-ethylenedioxythiophene) (PEDOT).
  • the carbon material is preferably a porous carbon material, such as activated carbon or the carbon material exemplified as the negative electrode active material (for example, non-graphitizable carbon).
  • activated carbon examples include wood, coconut shell, coal, pitch, and phenolic resin.
  • the activated carbon is preferably activated carbon.
  • a sheet-shaped metal material is used for the negative electrode current collector.
  • the sheet-shaped metal material may be metal foil, porous metal, etched metal, or the like.
  • As the metal material copper, copper alloy, nickel, stainless steel, etc. can be used.
  • the thickness of the negative electrode current collector is, for example, 10 ⁇ m to 100 ⁇ m.
  • the negative electrode active material layer includes, for example, a negative electrode active material, a conductive agent, and a binder.
  • the negative electrode active material layer is obtained, for example, by applying a negative electrode composite slurry containing a negative electrode active material, a conductive material, and a binder to both sides of a negative electrode current collector, drying the coating film, and then rolling it.
  • the negative electrode active material is a material that inserts and releases lithium ions. Examples of the negative electrode active material include carbon materials, metal compounds, alloys, and ceramic materials. Examples of the carbon material include graphite and hard carbon.
  • the separator for example, a microporous membrane made of resin such as polyolefin, woven fabric, nonwoven fabric, etc. can be used.
  • the thickness of the separator is, for example, 10 to 300 ⁇ m, preferably 10 to 40 ⁇ m.
  • Nonaqueous electrolyte has lithium ion conductivity and includes a lithium salt and a nonaqueous solvent that dissolves the lithium salt.
  • a method for detecting the state of an electricity storage device detects the state of the electricity storage device by detecting a change in the electrical characteristics of the electricity storage device caused by a break in the first conductive part in the electricity storage device described above. do. Since the electrical characteristics of the current collector plate change before and after the first conductive portion breaks, the electrical characteristics of the electricity storage device also change. By measuring this change in electrical characteristics, it is possible to know without disassembling the device whether or not the first conductive portion has been ruptured, that is, whether or not an event has occurred that causes an increase in the internal pressure of the case of the power storage device. Can be done.
  • the state detection method of the power storage device may be a method of detecting the state of the power storage device by detecting a change in the internal resistance of the power storage device caused by the rupture of the first conductive portion.
  • the method for detecting the state of the power storage device may be a method of detecting the state of the power storage device by detecting a change in inductance or capacitance of the power storage device caused by rupture of the first conductive portion. Further, the method for detecting the state of the power storage device may detect a change in impedance of the power storage device caused by the breakage of the first conductive portion. In this case, an AC voltage may be applied to the electricity storage device and the impedance may be measured.
  • the second conductive portion is such that when the internal pressure exceeds the first pressure, the first region protrudes toward the external terminal in the axial direction of the case as the first conductive portion is broken.
  • (Technology 7) A plurality of slits are intermittently formed along the contour of the first region,
  • the first region includes a central portion of the current collector plate, 8.
  • the first region is electrically connected to a terminal portion of the sealing member, The power storage device according to any one of Techniques 1 to 8, wherein the second region is joined to the first electrode of the power storage element.
  • the first region is electrically connected to the case;
  • (Technology 12) comprising a pair of the current collector plates, In one first current collecting plate of the pair of current collecting plates, the first region is electrically connected to the terminal portion of the sealing member, and the second region is connected to the first electrode of the electricity storage element. is, In the other second current collecting plate of the pair of current collecting plates, the first region is electrically connected to the case, and the second region is joined to a second electrode of the electricity storage element.
  • the electricity storage device according to any one of Technologies 1 to 11.
  • (Technology 13) The electricity storage device according to technique 12, wherein the first current collector plate and the second current collector plate have a different shape in at least one of the first conductive part and the second conductive part.
  • the spring constant of the second current collector plate with respect to the axial vibration of the case when the first conductive portion is broken is equal to the spring constant of the first current collector plate in the axial direction when the first conductive portion is broken.
  • a power storage element a bottomed cylindrical case that houses the electricity storage element and has an opening at one end; a sealing member that seals the opening; comprising a current collector plate;
  • the current collector plate is a first region electrically connected to an external terminal of the sealing member or the case; a second region joined to the electricity storage element; one or more first conductive parts connecting the first region and the second region; one or more second conductive parts connecting the first region and the second region, When the internal pressure in the case exceeds a predetermined first pressure, at least a portion of the first conductive portion of the current collector plate is broken, and the second conductive portion is not broken.
  • a method for detecting a state of a power storage device comprising: detecting a state of the power storage device by detecting a change in electrical characteristics of the power storage device caused by a break in the first conductive portion.
  • the electricity storage device according to the present disclosure is suitable for, for example, in-vehicle use because it can achieve high output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

蓄電デバイスは、蓄電要素と、蓄電要素を収容し、一端に開口部を有する有底筒状のケースと、開口部を封口する封口部材と、集電板14と、を備え、集電板14は、封口部材または前記ケースが有する外部端子と電気的に接続される第1領域14Aと、蓄電要素と接合される第2領域14Bと、第1領域と第2領域とを繋ぐ一または複数の第1導通部15Aと、第1領域と第2領域とを繋ぐ一または複数の第2導通部15Bと、を備え、第1導通部15Aの電気抵抗と、第2導通部15Bの電気抵抗とが異なる。

Description

蓄電デバイス、および蓄電デバイスの状態検知方法
 本開示は、蓄電デバイス、および蓄電デバイスの状態検知方法に関する。
 車載用途などの需要拡大に伴い、二次電池に代表される蓄電デバイスは、一層の高出力および高容量が要求されている。
 高出力を得るための集電構造として、巻回式電極群の端面から負極集電体または正極集電体の露出部を突出させて集電板と溶接させた、いわゆる端面集電構造が検討されている。
 端面集電構造を有する蓄電デバイスの一例として、例えば、特許文献1には、第1電極と第2電極とを有するとともに、第1電極が引き出された第1端部を有する蓄電素子と、蓄電素子に含浸した電解質と、第1端部において第1電極と電気的に接続された素子接続部および素子接続部と接続された外部端子部を有する端子板と、開口部を有する筒状であり、蓄電素子を電解液とともに収容した外装体と、外部端子部が挿入される挿入孔を有するとともに、外装体の開口部を外部端子部とともに封止した封口部材と、を備える蓄電装置が記載されている。外部端子部は、先端外周にテーパー部を有した柱体または筒体であり、外装体の底面から開口部へ延びる方向において、外装体の開口部における側壁の端辺が、テーパー部の両端部の間に位置する。
 特許文献2には、正極板と負極板とをセパレータを介して捲回してなる極板群を電解液とともに封口板と金属製外装缶からなる電池容器内に収容した円筒型二次電池であって、正極板および負極板の少なくとも一方は、その長手方向に沿う端部に芯材露出部を有し、極板群の上面および下面の少なくとも一方には、正極板および負極板のいずれかの芯材露出部が突出しており、突出部の先端自身によって平坦部が形成されており、平坦部に集電板が接合されている円筒型二次電池が記載されている。集電板は、平坦部と接合される固定部と外装缶の底部と接合される可動部からなり、さらに可動部の一部は、集電板外周面を含む。
再表2013-088724号公報 特開2004-139777号公報
 端面集電構造を有する蓄電デバイスでは、デバイス内の内圧が上昇すると、封口部材およびケースが圧力を受けて膨らむように変形し、封口部材およびケースの変形に伴って集電板も変形する。このとき、集電板の変形に伴って蓄電要素(素子)と集電板との接合箇所が剥離し、集電性が低下する場合がある。
 蓄電デバイスの容量および出力を高めるほど、異常発熱時のガス発生量も多く、内圧が上昇し易くなる。特許文献2に記載の集電板を用いることで、外から振動や衝撃に対して集電板との溶接部の剥離を抑制することができるが、内圧上昇による集電板の変形に対して溶接部の剥離を抑制する目的には効果が不十分である。加えて、特許文献2に記載の集電板では、可動部を設けたことにより通常使用時においても集電板に流れる電流経路が長くなるため、内部抵抗が増加する。
 本開示の一側面は、蓄電要素と、前記蓄電要素を収容し、一端に開口部を有する有底筒状のケースと、前記開口部を封口する封口部材と、集電板と、を備え、前記集電板は、前記封口部材または前記ケースが有する外部端子と電気的に接続される第1領域と、前記蓄電要素と接合される第2領域と、前記第1領域と前記第2領域とを繋ぐ一または複数の第1導通部と、前記第1領域と前記第2領域とを繋ぐ一または複数の第2導通部と、を備え、前記第1導通部の電気抵抗と、前記第2導通部の電気抵抗とが異なる、蓄電デバイスに関する。
 本開示の他の一側面は、蓄電要素と、前記蓄電要素を収容し、一端に開口部を有する有底筒状のケースと、前記開口部を封口する封口部材と、集電板と、を備え、前記集電板は、前記封口部材または前記ケースが有する外部端子と電気的に接続される第1領域と、前記蓄電要素と接合される第2領域と、前記第1領域と前記第2領域とを繋ぐ一または複数の第1導通部と、前記第1領域と前記第2領域とを繋ぐ一または複数の第2導通部と、を備え、前記ケース内の内圧が所定の第1圧力を超えると、前記集電板の前記第1導通部の少なくとも一部が破断し、前記第2導通部は破断しない、蓄電デバイスに関する。
 本開示のさらに別の一側面は、上記蓄電デバイスにおいて、前記第1導通部の破断により生じた前記蓄電デバイスの電気特性の変化を検知することによって、前記蓄電デバイスの状態を検知する、蓄電デバイスの状態検知方法に関する。
 蓄電デバイスの内圧が上昇した場合においても、集電板の変形に伴う蓄電要素と集電板との接合の剥離を抑制できる。また、内圧の上昇に伴う蓄電デバイスの状態変化を簡便な方法で検知できる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の実施形態に係る集電板の外観を示す上面図である。 本開示の実施形態に係る集電板の外観を示す斜視図である。 図1Aおよび図1Bに示す集電板において、ケース内圧が第1圧力を超え、第1導通部が破断したときの集電板の外観を示す斜視図である。 本開示の実施形態に係る集電板の他の例を示す上面図である。 本開示の実施形態に係る集電板の他の例を示す斜視図である。 図3Aおよび図3Bに示す集電板において、ケース内圧が第1圧力を超え、第1導通部が破断したときの集電板の外観を示す斜視図である。 本開示の実施形態に係る蓄電デバイスの構成を示す縦断面図である。
 [蓄電デバイス]
 以下では、本開示に係る蓄電デバイスの実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値、材料等を例示する場合があるが、本開示の効果が得られる限り、他の数値、材料等を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、本開示は、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項の組み合わせを包含する。つまり、技術的な矛盾が生じない限り、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項を組み合わせることができる。
 本開示の一実施形態に係る蓄電デバイスは、蓄電要素と、蓄電要素を収容し、一端に開口部を有する有底筒状のケースと、開口部を封口する封口部材と、集電板と、を備える。集電板は、封口部材またはケースが有する外部端子と電気的に接続される第1領域と、蓄電要素と接合される第2領域と、を備える。
 集電板は、さらに、第1領域と第2領域とを繋ぐ一または複数の第1導通部と、第1領域と第2領域とを繋ぐ一または複数の第2導通部と、を備える。第1導通部および第2導通部のそれぞれにより、第1領域の外部端子との電気的接続位置と、第2領域の蓄電要素との接合位置との間を電流が流れる少なくとも2つの導通経路が独立に形成される。蓄電デバイスの通常の状態では、第1導通部を介した導通経路(第1導通経路)と、第2導通部を介した導通経路(第2導通経路)の双方に並列に電流が流れる。
 異常放電等により、蓄電デバイスの内圧が上昇すると、集電板の中央部が外部端子側に膨らみ、蓄電要素から遠ざかるような変形を受ける。このとき、変形により集電板の第2領域における蓄電要素との接合が剥がれる場合がある。このような接合の剥がれは、蓄電デバイスの弁作動圧よりも小さな内圧でも起こり得る。
 本開示の蓄電デバイスの一実施形態では、蓄電デバイスは、ケース内の内圧が所定の第1圧力を超えると、第1導通部の少なくとも一部が破断するように構成される。一方、第2導通部は、内圧が第1圧力を超えても破断しない。すなわち、内圧が第1圧力を超えると、第1領域と第2領域の間の第1導通部を介した第1導通経路が遮断され、第1領域と第2領域の間の第2導通部を介した第2導通経路に電流が流れる。これによる電気特性の変化(例えば、デバイスの内部抵抗の変化)を検出することで、蓄電デバイスの状態を検知することができる。また、集電板の変形により第2領域における蓄電要素との接合が剥がれるのを抑制できる。
 ケース内圧が第1圧力を超えると、第2導通部は、第1導通部の破断に伴って、第1領域がケースの軸方向において外部端子の側に(蓄電素子から遠ざかる側に)突出するように変形することができる(図2、図4参照)。これにより、第2領域の変形が抑制され、集電板の変形に伴う蓄電要素との接合の剥がれが抑制される。
 第1導通部の電気抵抗は、第2導通部の電気抵抗と異なっていればよい。ケース内圧が第1圧力以下の通常状態でのデバイスの内部抵抗を低減するため、第1導通部の電気抵抗は、第2導通部の電気抵抗よりも低いことが好ましい。
 第1導通部の電気抵抗を第2導通部よりも低くするため、第1導通部の長さを、第2導通部の長さよりも短くしてもよい。一方、ケース内圧の上昇に伴って第1導通部を第2導通部よりも破断し易くするため、第1導通部の最小幅を、第2導通部の最小幅よりも狭く形成してもよい。
 ここで、第1導通部および第2導通部の長さは、それぞれ、第1導通経路および第2導通経路に沿った最短の長さ、または平均的な長さを意味する。第1導通経路および/または第2導通経路が屈曲した経路を形成する場合、第1導通部および第2導通部の長さは、それぞれ、屈曲経路に沿った最短の延べ長さ、または平均的な延べ長さである。第1導通部および第2導通部の幅は、それぞれ、第1導通経路に沿う方向および第2導通経路に沿う方向に垂直な方向の長さを意味する。
 第1導通部および第2導通部を備えた集電板の構成の一例として、第1領域の輪郭に沿って、複数のスリット(開口または貫通穴)が間欠的に形成されてもよい。スリットは、第1領域と第2領域とを隔てている。例えば、複数のスリットの長さ方向における端部間に挟まれた領域が、最小の幅で第1領域と第2領域とを繋いでおり、第1導通部を形成し得る。第1領域の輪郭の一部には、スリットが形成されず、第1領域の輪郭のスリットが形成されない部分(最小幅を構成しない部分)は、第2導通部と連続する。
 第1領域は、例えば、集電板の中央部を含む。この場合、第2領域は、中央部より外側の外周部に設けられる。第1導通部と第2導通部とは、周方向に異なる位置で、中央部の第1領域と外周に設けられた第2領域との間を繋いでいる。第1導通部は、中央部と外周部を短い距離で繋ぐ導通経路を形成するように、中央部と外周部の間を繋ぐことができる。このとき、第2導通部は、第1導通部を経由する導通経路とは独立に、第1領域と第2領域の間を迂回して流れる別の導通経路を形成する。
 蓄電要素は、例えば、正極および負極がセパレータを介して巻回された柱状の巻回体である。巻回体(蓄電要素)は、巻回体の一方の端面がケース底部に対向し、他方の端面がケースの開口側で封口部材と対向するように、ケース内に収容され得る。ケースの開口は、巻回体が収容された状態で閉じられ、気密に維持されている。なお、ケースの開口を封止する封口方法については、特に限定されず、公知の方法を用いることができる。
 上記第1導通部および第2導通部を備える集電板は、巻回体の一方の端面と接合され、一方の端面に露出した電極と第2領域において接合され、第1領域において封口部材の端子部と電気的に接続されてもよい。上記第1導通部および第2導通部を備える集電板は、巻回体の他方の端面と接合され、他方の端面に露出した電極と第2領域において接合され、第1領域においてケース底部と電気的に接続されてもよい。蓄電デバイスは、巻回体の一方の端面と接合される集電板、および、巻回体の他方の端面と接合される集電板からなる一対の集電板を備えてもよい。一対の集電板のうち一方が、上記第1導通部および第2導通部を備える集電板であってもよく、一対の集電板の両方が、上記第1導通部および第2導通部を備える集電板であってもよい。以下において、上記第1導通部および第2導通部を備える集電板であって、巻回体の一方の端面と接合され、封口部材の端子部と電気的に接続される集電板を第1集電板と、上記第1導通部および第2導通部を備える集電板であって、巻回体の他方の端面と接合され、ケース底部と電気的に接続される集電板を第2集電板と、それぞれ称することがある。
 集電板は、2つの主面を有する。このとき、集電板の第1主面が封口部材またはケースの底部と対向し、集電板の第2主面が巻回体の端面と対向する。蓄電要素との接合を容易に形成するため、集電板の第2領域を第2主面側に突出させてもよい。集電板の第1領域を第1主面側に突出させてもよい。
 第1集電板において、第1領域は封口部材の端子部と電気的に接続し、第2領域は、蓄電要素の第1電極と接合されてもよい。この場合、第1領域は、端子部と溶接により接合されてもよい。第2領域は、蓄電要素の第1電極と溶接により接合されてもよい。
 第2集電板において、第1領域は、ケースと電気的に接続し、第2領域は、蓄電要素の第2電極と接合されてもよい。第2領域は、蓄電要素の第2電極と溶接により接合されてもよい。
 第1電極および第2電極のうち一方が正極であり、他方が負極である。集電板は、蓄電デバイスの構成に応じて、正極と電気的に接続してもよいし、負極と電気的に接続してもよい。すなわち、集電板は、正極集電板であってもよいし、負極集電板であってもよい。封口部材の端子部と電気的に接続する第1集電板が正極と電気的に接続し、ケースと電気的に接続する第2集電板が負極と電気的に接続してもよい。封口部材の端子部と電気的に接続する第1集電板が負極と電気的に接続し、ケースと電気的に接続する第2集電板が正極と電気的に接続してもよい。
 蓄電デバイスが第1集電板と第2集電板とを備える場合、第1集電板と第2集電板とは同じ構成であってもよいし、異なる構成であってもよい。第1集電板と第2集電板とで、第1導通部および第2導通部の少なくとも一方の形状を異ならせてもよい。第1集電板と第2集電板とで、第1導通部が破断する内圧の閾値(第1圧力)、第1導通部が破断したときの抵抗値や共振周波数などの特性を異ならせてもよい。
 集電板は、ケース内圧が第1圧力を超えると、前述の通り、第1導通部の破断に伴って第2導通部が変形し、第1領域がケースの軸方向において外部端子の側に(蓄電素子から遠ざかる側に)突出する。このとき、変形後の集電板において、第2導通部が軸方向の振動に対してばねとして働き、外力に対して蓄電素子がケース内で軸方向に振動し易くなり、蓄電デバイスの耐振性が低下する場合がある。蓄電デバイスの耐振性を高く維持する点で、蓄電デバイスの共振周波数は、例えば500Hz以上に維持することが好ましい。
 第1導通部が破断したときの第1集電板の軸方向の振動に対するばね定数をkとする。第1導通部が破断したときの第2集電板の軸方向の振動に対するばね定数をkとする。蓄電素子の質量をMとして、蓄電デバイスの共振周波数fは、下記式で与えられる。
 f=((k+k)/M)1/2/2π
 例えば、第2導通部を両端固定された平板ばねとして設計した場合、ばね定数k(kまたはk)は、下記式で与えられる。
 k=192EI/L
 E:ヤング率
 I:断面2次モーメント(=bh/12)
 L:第2導通部の長さ
 b:第2導通部の幅
 h:第2導通部の厚み
 上記式において、ばね定数kおよびkは、集電板の材質(弾性定数)および形状を考慮した数値シミュレーションにより算出することができる。また、蓄電デバイスの共振周波数fも数値シミュレーションにより算出することができる。数値シミュレーションのソフトウェアとしては、例えばANSYSが用いられる。
 蓄電デバイスでは、ケース底部に対向する第2集電板よりも、封口部材に対向する第1集電板の方が、ケース内圧上昇時に膨らむ変形を受け易く、集電板の変形により蓄電要素との接合が剥がれ易い。よって、第2集電板よりも第1集電板において、蓄電要素との接合の剥がれを抑制する必要性が高い。よって、第1導通部が破断したとき、第1集電板の第1領域が第2領域に対して封口部材の側に(蓄電素子から遠ざかる側に)突出する変形がし易くなるように、第1集電板の第2導通部の形状を設計すればよい。しかしながら、突出変形が容易な形状に第2導通部を設計するほど、ばね定数kが小さく、共振周波数fが小さくなり易い。このため、共振周波数fを高く維持することのできるように、k>kとするとよい。
 上記の第1導通部および第2導通部を備えた集電板(第1集電板および第2集電板)は、一次電池であるか二次電池であるかを問わず、また正極および負極の構成に依らず、任意の蓄電デバイスの構造に採用することができる。本開示の一実施形態に係る蓄電デバイスは、例えば、非水電解質二次電池、アルカリ蓄電池、キャパシタとして構成するのに適し、非水電解質電池の高出力化に寄与する。非水電解質電池には、リチウムイオン二次電池、全固体電池などが含まれる。
 以下に、本開示の一実施形態に係る蓄電デバイスについて、蓄電デバイスの一例であるリチウムイオン二次電池に用いられる場合を例として、図面を参照しながら具体的に説明する。
 図1Aおよび図1Bは、本開示の一実施形態に係る集電板の構成の一例を示す図である。図1Aは集電板14の外観を示す上面図であり、図1Bは集電板14を第1主面側(蓄電要素との接合が形成される面の反対面)から見た斜視図である。集電板14は、好ましい一態様では、蓄電要素と封口部材との間に配置され、蓄電要素の一方の電極(第1電極)と封口部材の端子部とを電気的に接続させるために用いられ得る。集電板14は、第1集電板であってもよく、正極集電板であってもよい。
 集電板14は、第1主面S1と、第1主面S1と反対側の第2主面S2とを有する。集電板40は、例えば金属板であり、所定の形状に打ち抜かれた後、プレス成形によって凹凸を有する形状に加工され得る。図1Aおよび図1Bの例では、集電板14の概略形状は円板であるが、第1導通部および第2導通部を形成するため、一部の領域に貫通穴または切り欠きが形成されている。第1主面S1は、製造後の蓄電デバイスにおいて封口部材またはケースの底部と対向する。第2主面S2は、製造後の蓄電デバイスにおいて蓄電要素と対向する。
 集電板14は、その中央部に第1領域14Aを有し、第1領域14Aより外側の外周部に第2領域14Bを有する。集電板をケース内に配置したとき、例えば、第1領域14Aはケースの中心または蓄電要素の中心に位置し、第2領域14Bは中心からケース筒部に向かうように延びている。複数の第2領域14Bが、互いに離間しながら、中央の第1領域14Aから遠ざかるように径方向に沿って放射状に延びてもよい。
 第1領域14Aは、その第1主面S1の側で、封口部材またはケースが有する外部端子と電気的に接続される。第2領域14Bは、第2主面S2の側で、蓄電要素と接合される。図1Bの例に示すように、蓄電要素との接合形成を容易とするため、第2領域14Bを第2主面S2側に突出させてもよい。同様に、外部端子との電気的接続を容易とするため、第1領域14Aを第1主面S1側に突出させてもよい。
 第1導通部15Aが、第1領域14Aと第2領域14Bとの間を繋いでいる。図1Aおよび図1Bの例では、第1導通部15Aは、第1領域14Aの輪郭に沿うように形成された複数のスリット16の長さ方向における端部間に挟まれた最小幅の領域である。
 第2導通部15Bが、第1導通部15Aと同様、第1領域14Aと第2領域14Bとの間を繋いでいる。第1導通部15Aにより、第1領域14Aと第2領域14Bとの間を繋ぐ第1の導通経路18Aが形成され、第2導通部15Bにより、第1領域14Aと第2領域14Bとの間を繋ぐ第2の導通経路18Bが形成される。図1Aでは、第1の導通経路18Aおよび第2の導通経路18Bを、それぞれ第2領域14Bから第1領域14Aに向かう矢印で示している。
 第1の導通経路18Aと第2の導通経路18Bとは、それぞれ独立な電流経路を形成しており、第1導通部15Aが破断していない通常の使用状態(蓄電デバイスの内圧が第1圧力以下)では、第1の導通経路18Aおよび第2の導通経路18Bの双方に並列に電流が流れる。ただし、第1の導通経路18Aは、第1領域14Aと第2領域14Bとの間の経路長が短く、電気抵抗が低い。一方、第2の導通経路18Bは、スリット17により、電流の流れる方向が規制され、屈曲した導通経路が形成されるため、導通経路が長くなり、一般に電気抵抗が高くなる。
 例えば、第1導通部15Aの電気抵抗は、第2導通部15Bの電気抵抗よりも低くてもよい。第1の導通経路18Aと第2の導通経路18Bとの違いは、第2領域14Bから第1領域14Aに向かう途中で第1導通部15Aを経由するか第2導通部15Bを経由するかであり、他の経路は概ね同じである。よって、第1導通部15Aの電気抵抗が第2導通部15Bの電気抵抗よりも低いと、第1の導通経路18Aの電気抵抗が第2の導通経路18Bの電気抵抗よりも低くなる。さらに、第1導通部15Aが破断していない状態では、第1の導通経路18Aおよび第2の導通経路18Bの双方に並列に電流が流れるが、第1導通部15Aが破断した状態では、第2の導通経路18Bのみに電流が流れる。よって、第1導通部15Aが破断していない状態の集電板14と破断後の集電板14の電気抵抗を比較することで、第1導通部15Aの電気抵抗と第2導通部15Bの電気抵抗との関係を知ることができる。第1導通部15Aが破断していない状態での集電板14の電気抵抗が、破断後の集電板14よりも低い場合、第1導通部15Aの電気抵抗が、第2導通部15Bよりも低いといえる。
 蓄電デバイスの内圧が上昇すると、集電板14は、中央に近い側が、外周側よりも第1主面S1側に突出し、膨らむような変形を受ける。このとき、蓄電要素は、集電板14の外周部分に設けられた第2領域14Bにおいて集電板14と接合されていることから、従来の集電板を用いた蓄電デバイスでは、第2領域の変形に伴って集電板と接合の一部が剥がれる場合があった。しかしながら、本実施形態の集電板を用いた蓄電デバイスでは、内圧上昇に伴って第1導通部が破断することにより、蓄電要素と集電板との接合の剥がれを抑制できる。
 図2に、蓄電デバイスのケース内圧が第1圧力を超え、第1導通部15Aが破断したときの集電板14を第1主面側(蓄電要素との接合が形成される面の反対面)から見た斜視図である。第1導通部15Aの破断に伴って、第2導通部15Bが変形(弾性変形または塑性変形)し、第1領域14Aが外部端子の側に(蓄電要素から遠ざかる側に)突出するように集電板が変形する。このとき、第2領域14Bの変形が抑制されるため、第2領域14Bにおいて蓄電要素と集電板との接合が剥がれることが抑制される。
 第1圧力は、蓄電デバイスの防爆機構が作動する弁作動圧よりも低い圧力であってよい。第1導通部15Aの一部の膜厚を薄くし、薄肉部を形成することによって、第1圧力を所望の圧力に制御してもよい。
 図3Aおよび図3Bは、本開示の一実施形態に係る集電板の構成の他の一例を示す図である。図3Aは集電板24の外観を示す上面図であり、図3Bは集電板24を第1主面側(蓄電要素との接合が形成される面の反対面)から見た斜視図である。集電板24は、好ましい一態様では、蓄電要素とケース底部との間に配置され、蓄電要素の他方の電極(第2電極)とケースとを電気的に接続させるために用いられ得る。集電板24は、第2集電板であってもよく、負極集電板であってもよい。
 集電板24は、集電板14において、第2導通部15Bの構成を変更したものに相当する。第2導通部以外の集電板24の構成については、集電板14と同様であるため、説明を省略または簡略化する。技術的な矛盾が生じない限り、集電板24に集電板14の一部構成を適用してよい。
 集電板24は、集電板14と同様、その中央部に第1領域24Aを有し、第1領域24Aより外側の外周部に第2領域24Bを有する。第1領域24Aは、その第1主面S1の側で、封口部材またはケースが有する外部端子と電気的に接続される。第2領域24Bは、第2主面S2の側で、蓄電要素と接合される。
 第1導通部25Aおよび第2導通部25Bが、それぞれ、第1領域24Aと第2領域24Bとの間を繋いでいる。図3Aおよび図3Bの例では、第1導通部15Aは、第1領域14Aの輪郭に沿うように形成された複数のスリット26の長さ方向の端部に挟まれた領域である。
 第1導通部25Aにより、第1領域24Aと第2領域24Bとの間を繋ぐ第1の導通経路28Aが形成され、第2導通部25Bにより、第1領域24Aと第2領域24Bとの間を繋ぐ第2の導通経路28Bが形成される。第1の導通経路28Aと第2の導通経路28Bとは、それぞれ独立な電流経路を形成している。第1の導通経路28Aは、第1領域24Aと第2領域24Bとの間の経路長が短く電気抵抗が低い。一方、第2の導通経路28Bは、経路長が長く、一般に電気抵抗が高くなる。
 図4は、蓄電デバイスの内圧が第1圧力を超え、第1導通部25Aが破断したときの集電板24を第1主面側(蓄電要素との接合が形成される面の反対面)から見た斜視図である。第1導通部25Aの破断に伴って、第2導通部25Bが変形(弾性変形または塑性変形)し、第1領域24Aが外部端子の側に(蓄電素子から遠ざかる側に)突出するように集電板が変形する。このとき、第2領域24Bの変形が抑制されるため、第2領域24Bにおいて蓄電要素と集電板との接合が剥がれることが抑制される。
 一方、集電板14と比較した場合、集電板24は、第2導通部の形状(より具体的には、スリット17が設けられていないこと)の違いにより、集電板14における第2導通部15Bと比べて、第1導通部が破断したときの第2導通部25Bの剛性が大きく、第2導通部25Bが変形し難い。このため、軸方向の振動に対して、第2導通部がばねとして働き、蓄電デバイス内で蓄電要素が振動することが抑制される。第1導通部が破断したときの集電板24の軸方向の振動に対するばね定数は、第1導通部が破断したときの集電板14の軸方向の振動に対するばね定数よりも大きい。集電板14と集電板24とを組み合わせ、蓄電デバイスに用いる場合、ばね定数の小さな集電板14を封口部材と対向する側に配置し、ばね定数の大きな集電板24をケース底部と対向する側に配置することが好ましい。
 図5は、上記の集電板14および集電板24を配置した蓄電デバイス(リチウムイオン二次電池)200の構成を示す縦断面図である。
 蓄電デバイス200は、正極10と負極20とをセパレータ30を介して巻回して柱状に構成された巻回素子(蓄電要素)100と、非水電解質(図示せず)と、巻回素子100および非水電解質を収容する金属製の有底のケース210と、ケース210の開口を封口する封口ゴム220と、集電板14と、端子230と、を具備する。封口ゴムおよび端子230は、封口部材を構成する。
 封口ゴム220は、中央部に貫通孔を有し、貫通孔に端子230が挿通されている。端子230の一方の端部は、集電板(正極集電板)14と電気的に接続される。端子230の他方の端部は、電池200の外部に露出しており、電池200の外部端子(図5の例では、外部正極端子)として機能する。
 封口ゴム220は、ケース210の側面部(筒部)210aを介して押圧され、ケース210の開口端部を封口ゴム220にかしめることでケース210の内部が密閉されている。かしめにより、ケース210の開口端部にカール部210bが形成されている。
 この蓄電デバイス200は、巻回素子、集電板、封口ゴムをこの順でケース内に積層された状態で収容し、その後、ケースの開口端部を封口ゴムにかしめて、ケースの開口部を封口することにより製造できるため、製造工程を簡略化できる。
 蓄電デバイス200では、封口ゴム220に端子230を挿通させた封口部材を用いて、ケース210の開口が封口される。このとき、端子230の一方の端部と集電板(正極集電板)14と第1領域14Aにおいて溶接し、端子230の一方の端部と集電板(正極集電板)14とを電気的に接続してもよい。ケース210の開口の封口方法としては、上記の例に限られず、外部端子として機能する封口板と、封口板の外周縁部を覆うガスケットとを用いてもよい。その場合、封口板と集電板との電気的接続の方法についても、特に限定されず、集電板の第1領域を封口板と直接接続させてもよいし、内部リードを介して行ってもよい。
 非水電解質は、リチウムイオン伝導性を有し、リチウム塩と、リチウム塩を溶解させる非水溶媒とを含む。
 正極10は、長尺シート状であり、正極集電体およびこれに担持された正極活物質層を具備する。正極活物質層は、正極集電体の両面に形成されている。ただし、正極集電体の長手方向に沿う一方の端部には、正極活物質層を有さない正極集電体露出部11xが形成され得る。正極集電体露出部11xは、巻回素子100の一方の端面に露出し、正極集電体露出部11xを介して、正極は集電板14と電気的に接続される。正極集電体露出部11xは、例えば、溶接により集電板14と接続される。一方、正極集電体の長手方向に沿う他方の端部は、絶縁層13で覆われている。
 負極20は、長尺シート状であり、負極集電体およびこれに担持された負極活物質層を具備する。負極活物質層は、負極集電体の両面に形成されている。ただし、負極集電体の長手方向に沿う一方の端部(正極集電体露出部11xと反対側の端部)には、負極活物質層を有さない負極集電体露出部21xが形成されている。負極集電体露出部21xは、巻回素子100の他方の端面に露出し、負極集電体露出部21xを介して、負極は集電板(負極集電板)24と電気的に接続される。負極集電体露出部21xは、例えば、溶接により集電板24と接続される。一方、負極集電体の長手方向に沿う他方の端部は、絶縁層23で覆われている。集電板24は、ケース210の内底面に設けられた溶接用部材25に溶接されている。よって、ケース210は、外部負極端子として機能する。
(封口ゴム)
 封口部材としてゴム材料を用いることで安定した封止反発力が得られ、蓄電デバイスの密閉性が向上する。また、凸部がゴム材料で構成されていることにより、凸部が集電体と接触して圧を受けたときに変形して、部材公差および組立公差を吸収できる。凸部を有する封口ゴムは、例えば、コンプレッション成型などの成型技術により製造される。
 一方で、ゴム材料は、内部圧力の上昇に対して変形し易いため、膨れ抑制の観点から剛性不足となる場合がある。封口ゴムの剛性を向上させ、高い封止反発力と膨れの抑制とを両立させるため、封口ゴムを、ゴム材料層(例えば、ブチルゴム層)とフッ素樹脂層との少なくとも二層を有する積層構造としてもよい。その場合、凸部は、ゴム材料層に設けられる。
 ゴム材料層のヤング率は、環境温度にも依るが、4MPa~80MPaの範囲であってもよい。これに対し、フッ素樹脂のヤング率は、一般値で0.4GPa以上であってもよい。
 封口ゴムは、ゴム材料を含むゴム材料層の単層で構成されてもよく、ゴム材料層とフッ素樹脂層との多層構造であってもよい。ゴム材料としては、ブチルゴム(イソブチレン-イソプレン共重合体)(IIR)が好ましい。ブチルゴムは、過酸化物架橋または樹脂架橋により、安定した弾性が得られ、封止反発力を安定して得ることができる。ブチルゴムは、他のゴム材料と比べて気体透過性が低く、かつ絶縁性が高いため、長期間の保存においても蓄電デバイスの性能を高く維持できる。
 フッ素樹脂層の材料としては、PTFE(ポリテトラタフルオロエタン)、PVDF(ポリビニリデンフロライド)、PFA(パーフルオロアルコキシアルカン)、ETFE(エチレン-テトラフルオロエチレンコポリマー)、FEP(パーフルオロエチレン-プロペンコポリマー)が好ましい。ブチルゴム層とフッ素樹脂層との多層構造を形成するに際して、ゴム材料層との界面の密着性を良好にするために、フッ素樹脂層のブチルゴム層側の表面をコロナ処理、プラズマ処理、ナトリウム処理、活性ナトリウムを溶かした有機溶剤の塗布等により粗面化して、ブチルゴム層との密着性を高めた状態でコンプレッション成型することが好ましい。
(集電板)
 集電板を構成する材料は、正極および負極を構成する材料に応じて決定される。例えばリチウムイオン二次電池の負極集電板として用いられる場合、集電板の材質は、例えば銅、銅合金、ニッケル、ステンレス鋼などである。負極集電板の材質は、負極集電体の材質と同じでもよい。例えばリチウムイオン二次電池の正極集電板として用いられる場合、集電板の材質は、例えばアルミニウム、アルミニウム合金、チタン、ステンレス鋼などである。正極集電板の材質は、正極集電体の材質と同じでもよい。
 集電体の露出部と集電板は、例えばレーザ溶接により接合し得る。レーザは、例えば集電板の巻回素子の端面との対向面の反対側(すなわち、封口ゴムと対向する側)から、放射状に複数箇所に照射すればよい。
(正極)
 正極集電体には、シート状の金属材料が用いられる。シート状の金属材料は、金属箔、金属多孔体、エッチングメタルなどであればよい。金属材料としては、アルミニウム、アルミニウム合金、ニッケル、チタンなどを用い得る。正極集電体の厚みは、例えば10μm~100μmである。
 正極活物質層は、例えば、正極活物質と導電材と結着材とを含む。正極活物質層は、例えば、正極集電体の両面に正極活物質と導電材と結着材とを含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延することにより得られる。正極活物質は、リチウムイオンを吸蔵および放出する材料である。正極活物質としては、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン、フッ素化ポリアニオン、遷移金属硫化物等が挙げられる。
 蓄電デバイスが、リチウムイオンキャパシタ、電気二重層コンデンサなどのキャパシタである場合、正極活物質層は、アニオンが可逆的にドープされる正極活物質を含んでもよい。正極活物質にアニオンが吸着すると電気二重層が形成され、容量を発現する。正極は、分極性電極であってもよく、分極性電極の性質を有しつつファラデー反応も容量に寄与する電極であってもよい。正極活物質は、例えば、炭素材料、導電性高分子などである。
 導電性高分子としては、π共役系高分子が好ましい。π共役系高分子としては、例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリチオフェンビニレン、ポリピリジンまたはこれらの誘導体を用い得る。これらは単独で用いてもよく、2種以上を組み合わせてもよい。導電性高分子の重量平均分子量は、例えば1000~100000である。なお、π共役系高分子の誘導体とは、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリチオフェンビニレン、ポリピリジン等のπ共役系高分子を基本骨格とする高分子を意味する。例えば、ポリチオフェン誘導体には、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)などが含まれる。
 炭素材料としては、多孔質な炭素材料が好ましく、例えば、活性炭や、負極活物質として例示した炭素材料(例えば難黒鉛化炭素)が好ましい。活性炭の原料としては、例えば、木材、ヤシ殻、石炭、ピッチ、フェノール樹脂などが挙げられる。活性炭は、賦活処理されたものであることが好ましい。
(負極)
 負極集電体には、シート状の金属材料が用いられる。シート状の金属材料は、金属箔、金属多孔体、エッチングメタルなどであればよい。金属材料としては、銅、銅合金、ニッケル、ステンレス鋼などを用い得る。負極集電体の厚みは、例えば10μm~100μmである。
 負極活物質層は、例えば、負極活物質と導電剤と結着剤とを含む。負極活物質層は、例えば、負極集電体の両面に負極活物質と導電材と結着材とを含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延することにより得られる。負極活物質は、リチウムイオンを吸蔵および放出する材料である。負極活物質としては、炭素材料、金属化合物、合金、セラミックス材料などが挙げられる。炭素材料としては、例えば、黒鉛、ハードカーボンなどが挙げられる。
(セパレータ)
 セパレータとしては、例えば、ポリオレフィンなどの樹脂製の微多孔膜、織布、不織布などを用い得る。セパレータの厚みは、例えば10~300μmであり、10~40μmが好ましい。
(非水電解質)
 非水電解質は、リチウムイオン伝導性を有し、リチウム塩と、リチウム塩を溶解させる非水溶媒とを含む。
 [蓄電デバイスの状態検知方法]
 本開示の一実施形態に係る蓄電デバイスの状態検知方法は、上記の蓄電デバイスにおいて、第1導通部の破断により生じた蓄電デバイスの電気特性の変化を検知することによって、蓄電デバイスの状態を検知する。第1導通部が破断する前と後では、集電板の電気特性が変化するため、蓄電デバイスの電気特性も変化する。この電気特性の変化を測定することによって、第1導通部が破断したか否か、すなわち、蓄電デバイスのケース内圧の上昇を引き起こす事象が発生したか否かを、テバイスを分解することなく知ることができる。
 測定対象の電気特性としては、電気抵抗が挙げられる。蓄電デバイスの状態検知方法は、第1導通部の破断により生じた蓄電デバイスの内部抵抗の変化を検知することによって、蓄電デバイスの状態を検知するものであってもよい。
 また、第1導通部が破断した状態では、例えば図1Aに示すように、屈曲した第2導通経路18Bを経由した電流が集電板14に流れるため、これに伴ってインダクタンスまたはキャパシタンスが大きくなり易い。蓄電デバイスの状態検知方法は、第1導通部の破断により生じた蓄電デバイスのインダクタンスまたはキャパシタンスの変化を検知することによって、蓄電デバイスの状態を検知するものであってもよい。また、蓄電デバイスの状態検知方法は、第1導通部の破断により生じた蓄電デバイスのインピーダンスの変化を検知してもよい。この場合、蓄電デバイスに交流電圧を印加し、インピーダンス測定を行えばよい。
 《付記》
 以上の実施形態の記載により、下記の技術が開示される。
 (技術1)
 蓄電要素と、
 前記蓄電要素を収容し、一端に開口部を有する有底筒状のケースと、
 前記開口部を封口する封口部材と、
 集電板と、を備え、
 前記集電板は、
 前記封口部材または前記ケースが有する外部端子と電気的に接続される第1領域と、
 前記蓄電要素と接合される第2領域と、
 前記第1領域と前記第2領域とを繋ぐ一または複数の第1導通部と、
 前記第1領域と前記第2領域とを繋ぐ一または複数の第2導通部と、を備え、
 前記第1導通部の電気抵抗と、前記第2導通部の電気抵抗とが異なる、蓄電デバイス。
 (技術2)
 前記第1導通部の電気抵抗は、前記第2導通部の電気抵抗よりも低い、技術1に記載の蓄電デバイス。
 (技術3)
 前記第1導通部の長さは、前記第2導通部の長さよりも短い、技術1または2に記載の蓄電デバイス。
 (技術4)
 前記第1導通部の最小幅は、前記第2導通部の最小幅よりも狭い、技術1~3のいずれか1つに記載の蓄電デバイス。
 (技術5)
 前記ケース内の内圧が所定の第1圧力を超えると、前記集電板の前記第1導通部の少なくとも一部が破断し、前記第2導通部は破断しない、技術1~4のいずれか1つに記載の蓄電デバイス。
 (技術6)
 前記第2導通部は、前記内圧が前記第1圧力を超えたときに、前記第1導通部の破断に伴って、前記第1領域が前記ケースの軸方向において前記外部端子の側に突出するように変形する、技術5に記載の蓄電デバイス。
 (技術7)
 前記第1領域の輪郭に沿って、複数のスリットが間欠的に形成され、
 前記第1導通部は、前記複数のスリットの長さ方向における端部間に挟まれた最小幅を含む、技術1~6のいずれか1つに記載の蓄電デバイス。
 (技術8)
 前記第1領域は、前記集電板の中央部を含み、
 前記第2領域は、前記中央部より外側の外周部に設けられる、技術1~7のいずれか1つに記載の蓄電デバイス。
 (技術9)
 前記第1領域は、前記封口部材の端子部と電気的に接続し、
 前記第2領域は、前記蓄電要素の第1電極と接合されている、技術1~8のいずれか1つに記載の蓄電デバイス。
 (技術10)
 前記第1領域は、前記端子部と溶接により接合されている、技術9に記載の蓄電デバイス。
 (技術11)
 前記第1領域は、前記ケースと電気的に接続し、
 前記第2領域は、前記蓄電要素の第2電極と接合されている、技術1~10のいずれか1つに記載の蓄電デバイス。
 (技術12)
 一対の前記集電板を備え、
 前記一対の前記集電板のうち一方の第1集電板において、前記第1領域が前記封口部材の端子部と電気的に接続し、前記第2領域が前記蓄電要素の第1電極と接合され、
 前記一対の前記集電板のうち他方の第2集電板において、前記第1領域が前記ケースと電気的に接続し、前記第2領域が前記蓄電要素の第2電極と接合されている、技術1~11のいずれか1つに記載の蓄電デバイス。
 (技術13)
 前記第1集電板と前記第2集電板とで、前記第1導通部および前記第2導通部の少なくとも一方の形状が異なる、技術12に記載の蓄電デバイス。
 (技術14)
 前記第1導通部が破断したときの前記第2集電板の前記ケースの軸方向の振動に対するばね定数が、前記第1導通部が破断したときの前記第1集電板の前記軸方向の振動に対するばね定数よりも大きい、技術12または13に記載の蓄電デバイス。
 (技術15)
 蓄電要素と、
 前記蓄電要素を収容し、一端に開口部を有する有底筒状のケースと、
 前記開口部を封口する封口部材と、
 集電板と、を備え、
 前記集電板は、
 前記封口部材または前記ケースが有する外部端子と電気的に接続される第1領域と、
 前記蓄電要素と接合される第2領域と、
 前記第1領域と前記第2領域とを繋ぐ一または複数の第1導通部と、
 前記第1領域と前記第2領域とを繋ぐ一または複数の第2導通部と、を備え、
 前記ケース内の内圧が所定の第1圧力を超えると、前記集電板の前記第1導通部の少なくとも一部が破断し、前記第2導通部は破断しない、蓄電デバイス。
 (技術16)
 技術1~15のいずれか1つに記載の蓄電デバイスにおいて、
 前記第1導通部の破断により生じた前記蓄電デバイスの電気特性の変化を検知することによって、前記蓄電デバイスの状態を検知する、蓄電デバイスの状態検知方法。
 (技術17)
 前記第1導通部の破断により生じた前記蓄電デバイスの内部抵抗の変化を検知することによって、前記蓄電デバイスの状態を検知する、技術16に記載の蓄電デバイスの状態検知方法。
 本開示に係る蓄電デバイスは、高出力を実現できることから、例えば車載用途として好適である。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 100:巻回素子(蓄電要素)
  10:正極
   11x:正極集電体露出部
   13:絶縁層
  14:集電板(正極集電板)
   14A:第1領域
   14B:第2領域
   15A:第1導通部
   15B:第2導通部
   16、17:スリット
   18A:第1の導通経路
   18B:第2の導通経路
  20:負極
   21x:負極集電体露出部
   23:絶縁層
  24:集電板(負極集電板)
   24A:第1領域
   24B:第2領域
   25A:第1導通部
   25B:第2導通部
   26:スリット
   28A:第1の導通経路
   28B:第2の導通経路
  30:セパレータ
 200:蓄電デバイス
  210:ケース
   210a:側面部
   210b:カール部
  220:封口ゴム
  230:端子

Claims (17)

  1.  蓄電要素と、
     前記蓄電要素を収容し、一端に開口部を有する有底筒状のケースと、
     前記開口部を封口する封口部材と、
     集電板と、を備え、
     前記集電板は、
     前記封口部材または前記ケースが有する外部端子と電気的に接続される第1領域と、
     前記蓄電要素と接合される第2領域と、
     前記第1領域と前記第2領域とを繋ぐ一または複数の第1導通部と、
     前記第1領域と前記第2領域とを繋ぐ一または複数の第2導通部と、を備え、
     前記第1導通部の電気抵抗と、前記第2導通部の電気抵抗とが異なる、蓄電デバイス。
  2.  前記第1導通部の電気抵抗は、前記第2導通部の電気抵抗よりも低い、請求項1に記載の蓄電デバイス。
  3.  前記第1導通部の長さは、前記第2導通部の長さよりも短い、請求項1に記載の蓄電デバイス。
  4.  前記第1導通部の最小幅は、前記第2導通部の最小幅よりも狭い、請求項1に記載の蓄電デバイス。
  5.  前記ケース内の内圧が所定の第1圧力を超えると、前記集電板の前記第1導通部の少なくとも一部が破断し、前記第2導通部は破断しない、請求項1に記載の蓄電デバイス。
  6.  前記第2導通部は、前記内圧が前記第1圧力を超えたときに、前記第1導通部の破断に伴って、前記第1領域が前記ケースの軸方向において前記外部端子の側に突出するように変形する、請求項5に記載の蓄電デバイス。
  7.  前記第1領域の輪郭に沿って、複数のスリットが間欠的に形成され、
     前記第1導通部は、前記複数のスリットの長さ方向における端部間に挟まれた最小幅を含む、請求項1~6のいずれか1項に記載の蓄電デバイス。
  8.  前記第1領域は、前記集電板の中央部を含み、
     前記第2領域は、前記中央部より外側の外周部に設けられる、請求項1~6のいずれか1項に記載の蓄電デバイス。
  9.  前記第1領域は、前記封口部材の端子部と電気的に接続し、
     前記第2領域は、前記蓄電要素の第1電極と接合されている、請求項1~6のいずれか1項に記載の蓄電デバイス。
  10.  前記第1領域は、前記端子部と溶接により接合されている、請求項9に記載の蓄電デバイス。
  11.  前記第1領域は、前記ケースと電気的に接続し、
     前記第2領域は、前記蓄電要素の第2電極と接合されている、請求項1~6のいずれか1項に記載の蓄電デバイス。
  12.  一対の前記集電板を備え、
     前記一対の前記集電板のうち一方の第1集電板において、前記第1領域が前記封口部材の端子部と電気的に接続し、前記第2領域が前記蓄電要素の第1電極と接合され、
     前記一対の前記集電板のうち他方の第2集電板において、前記第1領域が前記ケースと電気的に接続し、前記第2領域が前記蓄電要素の第2電極と接合されている、請求項1~6のいずれか1項に記載の蓄電デバイス。
  13.  前記第1集電板と前記第2集電板とで、前記第1導通部および前記第2導通部の少なくとも一方の形状が異なる、請求項12に記載の蓄電デバイス。
  14.  前記第1導通部が破断したときの前記第2集電板の前記ケースの軸方向の振動に対するばね定数が、前記第1導通部が破断したときの前記第1集電板の前記軸方向の振動に対するばね定数よりも大きい、請求項12に記載の蓄電デバイス。
  15.  蓄電要素と、
     前記蓄電要素を収容し、一端に開口部を有する有底筒状のケースと、
     前記開口部を封口する封口部材と、
     集電板と、を備え、
     前記集電板は、
     前記封口部材または前記ケースが有する外部端子と電気的に接続される第1領域と、
     前記蓄電要素と接合される第2領域と、
     前記第1領域と前記第2領域とを繋ぐ一または複数の第1導通部と、
     前記第1領域と前記第2領域とを繋ぐ一または複数の第2導通部と、を備え、
     前記ケース内の内圧が所定の第1圧力を超えると、前記集電板の前記第1導通部の少なくとも一部が破断し、前記第2導通部は破断しない、蓄電デバイス。
  16.  請求項1~6のいずれか1項に記載の蓄電デバイスにおいて、
     前記第1導通部の破断により生じた前記蓄電デバイスの電気特性の変化を検知することによって、前記蓄電デバイスの状態を検知する、蓄電デバイスの状態検知方法。
  17.  前記第1導通部の破断により生じた前記蓄電デバイスの内部抵抗の変化を検知することによって、前記蓄電デバイスの状態を検知する、請求項16に記載の蓄電デバイスの状態検知方法。
PCT/JP2023/026702 2022-07-22 2023-07-21 蓄電デバイス、および蓄電デバイスの状態検知方法 WO2024019130A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-117424 2022-07-22
JP2022117424 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024019130A1 true WO2024019130A1 (ja) 2024-01-25

Family

ID=89617861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026702 WO2024019130A1 (ja) 2022-07-22 2023-07-21 蓄電デバイス、および蓄電デバイスの状態検知方法

Country Status (1)

Country Link
WO (1) WO2024019130A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258132A (ja) * 2006-03-27 2007-10-04 Matsushita Electric Ind Co Ltd 二次電池
JP2010049973A (ja) * 2008-08-22 2010-03-04 Sanyo Electric Co Ltd 円筒形電池
JP2023094260A (ja) * 2021-12-23 2023-07-05 トヨタ自動車株式会社 蓄電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258132A (ja) * 2006-03-27 2007-10-04 Matsushita Electric Ind Co Ltd 二次電池
JP2010049973A (ja) * 2008-08-22 2010-03-04 Sanyo Electric Co Ltd 円筒形電池
JP2023094260A (ja) * 2021-12-23 2023-07-05 トヨタ自動車株式会社 蓄電デバイス

Similar Documents

Publication Publication Date Title
EP0895297B1 (en) Lithium secondary battery
JP4562693B2 (ja) 電池ケースにセパレータを固定して安定性を向上させた二次電池
JP2019153440A (ja) 二次電池及びそれを用いた組電池
JP6432952B1 (ja) 電気化学セル
JP5918277B2 (ja) ウルトラコンデンサパッケージ構造
JPWO2018155521A1 (ja) 角形二次電池及びその製造方法
US20110151318A1 (en) Secondary battery
JP6444975B2 (ja) エネルギー蓄積装置用の集電グラファイト膜および電極仕切りリング
JP4451654B2 (ja) リチウム二次電池
JP6577998B2 (ja) 角形二次電池
JP2011029425A (ja) 電気二重層コンデンサおよびその製造方法
KR20140146128A (ko) 탄성적인 전기 절연성 링을 포함하는 에너지 저장 어셈블리
US20130027846A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JPH10275751A (ja) 電気二重層コンデンサおよびその製造方法
JP6451985B2 (ja) 非水電解質二次電池
WO2024019130A1 (ja) 蓄電デバイス、および蓄電デバイスの状態検知方法
JP2006236937A (ja) 蓄電装置
JP2019200859A (ja) 密閉型電池
JP4895028B2 (ja) 電気二重層キャパシタ
WO2010131520A1 (ja) 密閉型二次電池
WO2023182305A1 (ja) 蓄電デバイス
KR101310441B1 (ko) 전기화학 커패시터
JPH1050569A (ja) 電気二重層キャパシタおよびその製造方法
JP2002353072A (ja) 巻回型電気二重層キャパシタ
KR20060059685A (ko) 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843053

Country of ref document: EP

Kind code of ref document: A1