WO2024019129A1 - Knife - Google Patents

Knife Download PDF

Info

Publication number
WO2024019129A1
WO2024019129A1 PCT/JP2023/026687 JP2023026687W WO2024019129A1 WO 2024019129 A1 WO2024019129 A1 WO 2024019129A1 JP 2023026687 W JP2023026687 W JP 2023026687W WO 2024019129 A1 WO2024019129 A1 WO 2024019129A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard particles
cutting edge
metal
edge portion
mass
Prior art date
Application number
PCT/JP2023/026687
Other languages
French (fr)
Japanese (ja)
Inventor
孝典 西原
佳宏 辰巳
裕樹 北村
Original Assignee
京セラ株式会社
大阪富士工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 大阪富士工業株式会社 filed Critical 京セラ株式会社
Publication of WO2024019129A1 publication Critical patent/WO2024019129A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/40Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools shearing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B9/00Blades for hand knives

Definitions

  • the present disclosure relates to cutlery.
  • Patent Document 1 knives made of materials whose main components are metal materials have been used. Among these, in recent years, knives made of stainless steel containing nickel and chromium have been widely used.
  • the wiring board according to the present disclosure and the knife according to the present disclosure include a blade having a base portion and a cutting edge portion connected to the base portion and located along the base portion.
  • the base portion includes a first metal
  • the cutting edge portion includes a second metal and a plurality of hard particles having a higher hardness than the second metal.
  • the hard particles include tungsten carbide.
  • the second metal includes at least nickel, chromium, and iron.
  • the iron content in the matrix region where no hard particles are present is 10% by mass or more, and the mass ratio of the iron content to the tungsten content (Fe/W) is 1 or more.
  • FIG. 1 is a plan view showing a cutter according to an embodiment of the present disclosure.
  • FIG. 2 is a plan perspective view of the cutter shown in FIG. 1.
  • FIG. FIG. 2 is a diagram of the cutter shown in FIG. 1 viewed from the cutting edge side.
  • 4 is an enlarged cross-sectional view for explaining region X in FIG. 3.
  • FIG. 5 is an enlarged sectional view of the cutting edge portion side in FIG. 4.
  • FIG. FIG. 6 is an enlarged sectional view showing a cutting edge portion containing hard particles different from the hard particles shown in FIG. 5.
  • FIG. FIG. 2 is an explanatory diagram for explaining one embodiment of the method for manufacturing the cutlery shown in FIG. 1.
  • FIG. FIG. 2 is an explanatory diagram for explaining one embodiment of the method for manufacturing the cutlery shown in FIG. 1.
  • FIG. FIG. 2 is an explanatory diagram for explaining one embodiment of the method for manufacturing the cutlery shown in FIG. 1.
  • FIG. FIG. 1 is a plan perspective view of the cutter shown
  • FIG. 2 is a cross-sectional view illustrating an example of a laser cladding technique in an embodiment of the method for manufacturing a cutlery shown in FIG. 1.
  • FIG. FIG. 2 is a cross-sectional view illustrating another example of the laser cladding technique in the embodiment of the method for manufacturing a cutlery shown in FIG. 1 .
  • 4 is a cross-sectional view of an embodiment of the method for manufacturing a cutlery shown in FIG. 1, and is an enlarged cross-sectional view of a portion corresponding to region X in FIG. 3.
  • FIGS. 1 to 6 A cutter according to the present disclosure will be explained based on FIGS. 1 to 6.
  • the drawings used in the following explanation are schematic, and the dimensional ratios and the like on the drawings do not necessarily match the actual ones.
  • a cutlery 1 includes a blade 1a and a handle 1b connected to the blade 1a.
  • the blade 1a is set to have a shape and size that match the intended use of the cutlery 1.
  • the cutlery 1 is a kitchen knife
  • examples thereof include a Japanese knife (such as a Deba knife or a Santoku knife), a Western knife (such as a beef knife), or a Chinese knife.
  • the blade 1a is set according to the shape of each knife.
  • the shape of the blade 1a is set according to the purpose other than the kitchen knife.
  • the handle 1b connected to the blade 1a is for a person to hold when using the cutlery 1.
  • the handle 1b is also set to have a shape and size suited to the intended use of the cutlery 1.
  • the blade 1a and handle 1b may be formed integrally or separately.
  • the cutlery 1 is not limited to having the handle 1b, and may be composed only of the blade 1a.
  • the blade 1a and the handle 1b are formed separately, and a part of the blade 1a is inserted into the handle 1b, and is fixed to the handle 1b at the insertion part.
  • the handle 1b is made of, for example, wood, resin, ceramics, or metal material.
  • the metal material include rust-resistant materials such as titanium or stainless steel.
  • the resin include ABS resin (a copolymer of acrylonitrile, butadiene, and styrene), polypropylene resin, and the like.
  • the size of the cutter 1 is not limited and can be set appropriately depending on the purpose.
  • the total length Ht1 in the longitudinal direction (x-axis direction) may be 5 cm or more and 40 cm or less.
  • the total length Ht2 in the longitudinal direction (x-axis direction) of the cutting edge portion 2, which will be described later, may be, for example, 2 cm or more and 35 cm or less.
  • the length Ht3 in the width direction (y-axis direction) in the direction perpendicular to the overall length Ht1 of the blade 1a may be, for example, 10 mm or more and 150 mm or less.
  • the thickness Ht4 (z-axis direction) of the blade 1a at the thickest portion may be, for example, 1 mm or more and 5 mm or less.
  • the length (x-axis direction) of the handle 1b and the thickness (z-axis direction) of the handle 1b may also be set appropriately.
  • the thickness of the handle 1b may be 5 mm or more and 30 mm or less.
  • the blade 1a has a base portion 3 and a cutting edge portion 2 connected to the base portion 3 and located along the base portion 3.
  • the base portion 3 includes a first metal.
  • the first metal is not limited, and examples thereof include steel, synthetic steel, stainless steel, and titanium alloy.
  • the synthetic steel includes, for example, at least one metal selected from the group consisting of chromium (Cr), molybdenum (Mo), vanadium (V), tungsten (W), cobalt (Co), and copper (Cu).
  • Examples include materials.
  • Examples of the stainless steel include chromium-nickel type or chromium type.
  • Examples of the titanium alloy include a titanium alloy called 64 titanium, which contains 6% by mass of aluminum (Al) and 4% by mass of vanadium. When the first metal is stainless steel, the corrosion resistance of the base portion 3 against rust and the like can be improved.
  • the first metal is the main component of the base portion 3.
  • the main component means a component exceeding 70% by mass out of 100% by mass of all components constituting the base portion 3.
  • the base portion 3 includes an exposed portion 31 exposed from the handle 1b and a core 32 inserted into the interior of the handle 1b.
  • the exposed portion 31 has a back portion 3A extending along the longitudinal direction (x-axis direction) and an end portion 3C as shown in FIG.
  • the width of the exposed portion 31 is narrowed near the longitudinal tip of the exposed portion 31, and the end portion 3C and the back portion 3A are connected at the tip of the exposed portion 31.
  • the cutting edge portion 2 is connected to the end portion 3C along the end portion 3C.
  • the end portion 3C of the base portion 3 may be parallel to the thickness direction (z-axis direction) of the base portion 3, or may be inclined with respect to the z-axis direction, as shown in FIG. 4, for example. .
  • the end portion 3C of the base portion 3 may be curved or bent with respect to the z-axis direction.
  • the joint area between the base portion 3 and the cutting edge portion 2 becomes large. Therefore, the bonding strength between the base portion 3 and the cutting edge portion 2 is increased, and the durability of the blade 1 is increased.
  • the core 32 is narrower in the width direction (y-axis direction) than the exposed portion 31, and is inserted inside the handle 1b.
  • the core 32 in the cutter 1 according to one embodiment has at least one hole 32a. By inserting a portion of the handle 1b into the hole 32a, the blade 1a and the handle 1b are firmly fixed.
  • the cutting edge portion 2 includes a second metal 2a and a plurality of hard particles 4.
  • the second metal 2a is a metal containing at least nickel (Ni), chromium (Cr), and iron (Fe). If the second metal 2a is a metal containing at least nickel, chromium, and iron, the cutting edge portion 2 will have improved corrosion resistance and will be less likely to crack.
  • the metal containing at least nickel, chromium, and iron include alloys such as Inconel (registered trademark) and Colmonoy (registered trademark).
  • the second metal 2a included in the cutting edge portion 2 may include a metal having a lower hardness (Vickers hardness) than the first metal included in the base portion 3.
  • the cutter 1 can have the advantages of both the first metal and the second metal 2a. That is, the overall strength of the cutter 1 can be increased by the first metal of the base portion 3.
  • the second metal 2a of the cutting edge part 2 reduces the occurrence of cracking or chipping of the cutting edge part 2 due to stress applied when the cutting tool 1 is used, and the durability of the cutting edge part 2 can be improved.
  • the hard particles 4 contained in the cutting edge part 2 have a higher hardness (Vickers hardness) than the second metal 2a contained in the cutting edge part 2, and contain tungsten carbide (WC). With such a configuration, the hardness of the entire cutting edge portion 2 can be improved, and the wear resistance of the cutting edge portion 2 can be improved. Furthermore, the hard particles 4 are made of a material having higher hardness than the second metal 2a. Therefore, when the blade 1 is used, the hard particles 4 come into contact with the object, thereby improving the sharpness of the cutting edge portion 2 with respect to the object.
  • the hard particles 4 may include a material that is not only harder than the second metal 2a but also harder than the first metal. That is, the hard particles 4 may contain a material harder than the first metal other than tungsten carbide. Examples of such materials include cermets containing titanium carbide (TiC), titanium nitride (TiN), tantalum carbide (TaC), vanadium carbide (VC), and the like. In this way, by using the hard particles 4 having sufficient hardness, the sharpness and wear resistance of the cutting edge portion 2 can be further improved.
  • the hard particles 4 may have a Vickers hardness of, for example, 1000 Hv or more and 4000 Hv or less.
  • the hard particles 4 may be contained in a proportion of 2% by volume or more and 25% by volume or less. If the hard particles 4 in the cutting edge portion 2 are contained in a proportion of 2% by volume or more, the sharpness and wear resistance can be further improved. When the hard particles 4 of the cutting edge portion 2 are contained in a proportion of 25% by volume or less, the productivity of laser cladding can be maintained at a high level.
  • the content of hard particles 4 can be determined by observing the cross section of the cutting edge part 2 (a cross section parallel to the yz plane) using a scanning electron microscope, and from the photograph of the observed image, calculating the content of the hard particles 4 with respect to the entire area of the cutting edge part 2. It is sufficient to calculate the area ratio as volume %. Specifically, the content rate of hard particles 4 is calculated as follows. First, cross-sectional observation of the blade edge part 2 is performed at five different positions at approximately equal intervals along the length direction (x-axis direction) of the blade edge part 2. Next, the area ratio of the hard particles 4 is measured at these five locations. The average value of the area ratio of the hard particles 4 at these five locations is determined. By regarding the average value of this area ratio as the content rate of the hard particles 4, the content rate of the hard particles 4 is calculated.
  • the tungsten content in the matrix region where the hard particles 4 are not present may be 15% by mass or less. If the tungsten content is 15% by mass or less, the matrix region where no hard particles 4 are present has high toughness, and the cutting edge portion 2 is less likely to chip.
  • the shape of the hard particles 4 is not limited, and various shapes can be adopted.
  • Examples of the shape of the hard particles 4 include a spherical shape, an ellipsoidal shape, and a polyhedral shape.
  • the hard particles 4 may have a polyhedral shape.
  • an angular polyhedral shape may be used.
  • the hard particles 4 are not limited to those having a regular shape such as a spherical shape, an ellipsoid shape, or a polyhedral shape.
  • the hard particles 4 may have an irregular shape, for example, a shape in which a part is sharp like a needle or a shape in which a part has a depression (a recess 4a as shown in FIG. 6).
  • the hard particles 4 may be particles having a single shape or may be a mixture of particles having various shapes.
  • At least one of the hard particles 4 included in the cutting edge portion 2 may be exposed from the cutting edge portion 2.
  • the cutting edge portion 2 includes a cutting edge 2A and a pair of side surfaces 2c located on both sides of the cutting edge 2A. At least one of the hard particles 4 may be exposed from the side surface 2c of the cutting edge portion 2, or may be exposed from the cutting edge 2A, for example.
  • the hard particle 4 comes into contact with the object when cutting the object using the blade 1. As a result, the sharpness of the cutting edge portion 2 becomes good, and the wear resistance of the cutting edge portion 2 can be improved.
  • a plurality of hard particles 4 are exposed from both side surfaces 2c of the cutting edge portion 2. As shown in FIGS. Therefore, the sharpness and wear resistance of the cutting edge portion 2 are further improved.
  • the hard particles 4 exposed from the cutting edge 2A of the cutting edge portion 2 will come into contact with the object when cutting the object using the knife 1. As a result, the sharpness of the cutting edge 2A can be improved.
  • the recess 4a may be exposed from the surface of the cutting edge portion 2 in at least one of the hard particles 4 having the recess 4a. Since the concave portion 4a is exposed from the surface of the blade edge portion 2, the sharpness of the blade edge portion 2 is further improved. Furthermore, the slipperiness of the blade 1 is further improved due to the reduction in the contact area.
  • the hard particles 4 are inserted into the length direction (x-axis direction) and the width of the base part 3 inside the blade edge part 2. They may be dispersed not only in the direction (y-axis direction) but also in the thickness direction (z-axis direction) of the base portion 3.
  • the hard particles 4 may have a particle diameter of, for example, 5 ⁇ m or more and 50 ⁇ m or less. In order to obtain the hard particles 4 having such a particle size, particles having a particle size of less than 5 ⁇ m and particles having a particle size of more than 50 ⁇ m may be separated using, for example, a sieve.
  • the Vickers hardness of the hard particles 4, the first metal, and the second metal 2a may be measured using a method according to JIS Z 2244 (ISO 6507-2, hereinafter the same). If measurement by this method is difficult, identify the compositions of the hard particles 4, the first metal, and the second metal 2a, prepare samples having almost the same composition as the identified compositions, and measure these samples. It may be measured by a method according to JIS Z 2244.
  • the Vickers hardness of the first metal, the second metal 2a, and the hard particles 4 may be determined as long as the magnitude relationship can be determined. Therefore, even if there is a discrepancy between the identified composition and the composition of the sample, it is allowed as long as it does not substantially affect the magnitude relationship.
  • the cutting edge portion 2 has an iron content of 10% by mass or more in the matrix region where no hard particles 4 are present, and a mass ratio of the iron content to the tungsten content ( Fe/W) is 1 or more.
  • Fe/W mass ratio of the iron content to the tungsten content
  • the cutting edge portion 2 of the cutter 1 becomes less likely to be damaged. It is presumed that if 10% by mass or more of iron is contained in the matrix region where the hard particles 4 are not present, an Fe-rich FeNi alloy is formed. As a result, it is presumed that the thermal expansion coefficient decreases, the thermal stress of the metal decreases, and the occurrence of cracks decreases. There is no upper limit to the iron content in the matrix region where hard particles 4 are not present, and may be, for example, 40% by mass or less.
  • the mass ratio (Fe/W) between the iron content and the tungsten content is 1 or more, that is, the tungsten content is less than the iron content, the iron The higher the content, the more difficult it is for tungsten to dissolve into the matrix. As a result, the increase in hardness of the matrix region is reduced, and the toughness of the cutting edge portion 2 can be improved.
  • the mass ratio (Fe/W) between the content of iron and the content of tungsten is not limited as long as it is 1 or more. For example, the upper limit may be about 20.
  • FIG. 7 to 10 are diagrams for explaining one embodiment of a method for manufacturing the cutter 1 shown in FIG. 1.
  • FIG. One embodiment of the method for manufacturing the cutlery 1 includes, for example, the following steps (a) to (d).
  • a base portion 3 containing a first metal is prepared.
  • the base portion 3 has a shape as shown in FIG.
  • the base portion 3 is prepared, for example, by pressing a stainless steel plate material, punching out a mold of a predetermined cutter 1, and then hardening the mold. In quenching, preheating, quenching, and cooling may be repeated several times. The hardness of the base portion 3 can be increased by hardening.
  • the base portion 3 is heated at a lower temperature than in the quenching that will be performed later.
  • the residual heat can reduce the occurrence of cracks, etc. that tend to occur when high temperatures are reached during quenching.
  • the hardening conditions can be set appropriately depending on the material, and for example, the conditions may be set to heat the base portion 3 at a temperature of 1000° C. or higher.
  • cooling the base portion 3 is rapidly cooled from the hardening temperature. By cooling, the materials activated by quenching can be fixed together.
  • step (b) metal powder, iron-containing metal, and hard particles 4 that constitute the second metal 2a are prepared.
  • the second metal 2a and the hard particles 4 are as described above, and detailed description thereof will be omitted.
  • iron-containing metals include iron, stainless steel, and alloys containing iron as a main component.
  • stainless steel include SUS410L and SUS316.
  • step (c) the metal powder constituting the second metal 2a, the metal powder of the iron-containing metal, and the hard particles 4 are injected onto the end portion 3C of the base portion 3, while the metal powder is and baking metal powder of ferrous metals.
  • the blade member has an iron content of 10% by mass or more in the matrix region where no hard particles 4 are present, and a mass ratio of iron content to tungsten content (Fe/W) of 1 or more. 6 is formed.
  • Examples of the method of baking the metal powder and the iron (Fe)-containing metal powder constituting the second metal 2a include a method of melting and baking with a laser. Such a method includes, for example, a cladding technique using a laser.
  • metal powder constituting the second metal 2a and metal powder of an iron (Fe)-containing metal are applied from the side of the laser beam 7a to the vicinity of the end 3C of the base portion 3.
  • the cladding material 6a containing bodies is supplied from the nozzle 7.
  • the cladding material 6a which is the material constituting the cutting edge portion 2
  • Inert gas 7b is blown toward end portion 3C from further outside of cladding material 6a. This makes it easier for the cladding material 6a to be exposed to the laser beam 7a.
  • the inert gas 7b include argon gas.
  • the inert gas 7b can be discharged from the same path as the laser beam 7a, as shown in FIG. Thereby, the inert gas 7b can be blown against the end portion 3C from inside the cladding material 6a.
  • Hard particles 4 are mixed when dissolving the cladding material 6a.
  • the cladding material 6a other than the hard particles 4 is melted by the laser beam 7a and adheres to the end portion 3C.
  • the hard particles 4 since the hard particles 4 have a high melting point, they are difficult to melt by the laser beam 7a.
  • a portion of the tungsten carbide (WC) of the hard particles 4 decomposes, and the tungsten (W) dissolves into the matrix during processing of the blade member 6. If hard particles 4 are mixed in when melting the cladding material 6a, a plurality of hard particles 4 can be dispersed in the cutting edge portion 2.
  • the iron content contained in the metal powder constituting the second metal 2a must be taken into consideration.
  • the amount of iron derived from the iron-containing metal may be adjusted as appropriate.
  • the amount of iron derived from iron-containing metals may be adjusted to 5% by mass or more, and may be adjusted to about 30% by mass at most.
  • the mass ratio (Fe/W) may be set to 1 or more.
  • step (d) the blade member 6 and the base portion 3 are polished.
  • Polishing is performed using, for example, a polishing stone whose surface is coated with particles of aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), diamond, or a mixture thereof. Polishing may be performed in multiple steps. For example, as shown in FIG. 10, first polishing may be performed along dotted line L1, and then second polishing may be performed along dotted line L2.
  • a base portion 3 as shown in FIG. 7 was manufactured using stainless steel.
  • the metal powder constituting the second metal 2a, the metal powder of iron (Fe)-containing metal, and the hard particles 4 are injected onto the end portion 3C of the obtained base portion 3, while the metal powder is was burned onto the end 3C.
  • the metal powder a mixture of Inconel 600 and a metal containing iron (Fe) was used.
  • SUS410L was used as the iron (Fe)-containing metal.
  • the hard particles 4 particles made of tungsten carbide (WC) were used as the hard particles 4 (tungsten carbide) were used. Adjustments were made so that the metal powder content was 85% by mass and the hard particles 4 (tungsten carbide) were 15% by mass.
  • Iron (Fe)-containing metals are used so that the amount of iron added is as shown in Table 1 (5% by mass, 10% by mass, 15% by mass, 20% by mass, 25% by mass and 30% by mass). did.
  • Baking of the metal powder onto the end portion 3C was performed using an apparatus as shown in FIG. Specifically, a mixture of Inconel 600 and an iron-containing metal (cladding material 6a) was supplied from the nozzle 7 to the vicinity of the end portion 3C of the base portion 3 from the side of the laser beam 7a. Then, when the cladding material 6a was dissolved, the hard particles 4 were mixed. The cladding material 6a other than the hard particles 4 was melted by the laser beam 7a and adhered to the end portion 3C. On the other hand, the hard particles 4 have a high melting point.
  • the cladding material 6a which is the material forming the cutting edge, was melted and was able to be metallically bonded to the end portion 3C of the base portion 3. Furthermore, a plurality of hard particles 4 could be dispersed at the cutting edge. Table 1 shows the proportions of the components constituting the cutting edge of the obtained cutlery (sample Nos. 1 to 6).
  • the strength of the cutting edge portion of the obtained cutlery (sample Nos. 1 to 6) was verified. Specifically, in a drop test, an iron ball was dropped freely onto the cutting edge from a certain height to verify the strength of the cutting edge. It was visually confirmed whether there was any damage such as cracks or chips on the cutting edge. If damage such as cracking or chipping did not occur at the cutting edge, it was evaluated as "absent,” and if it did, it was evaluated as "present.” The results are shown in Table 1.
  • the blades according to the present disclosure have no damage such as cracks or chips at the cutting edge.
  • the mass ratio (Fe/W) between the iron content and the tungsten content is 1 or more, and the iron content is 10% by mass or more ( It can be seen that samples Nos. 1 to 6) have no damage such as cracks or chips at the cutting edge.
  • sample No. 1 was prepared, except that the amount of iron contained in the iron-containing metal and the amount of hard particles 4 added were changed to the amounts shown in Table 2.
  • Cutlery were obtained using the same procedure as for cutlery Nos. 1 to 6. The strength of the cutting edge portion of the obtained cutlery (sample Nos. 7 to 25) was verified in the same manner as above. The results are shown in Table 2.
  • the amount of WC added in the hard particles 4 is 10% by mass or more. It can be made 35% by mass or less.
  • the amount of WC added to the cutting edge portion 2 is set to 10% by mass or more and 35% by mass or less, the content of WC particles increases and wear resistance improves.
  • the blade edge portion 2 is easy to sharpen even if it becomes dull. Thereby, the cutter 1 can be used for a long period of time.
  • the amount of WC added is less than 10% by mass, the content of WC particles becomes low, and the wear resistance tends to decrease.
  • the content of WC in the hard particles 4 can be calculated in volume %.
  • the density of Inconel 600 is 8.42 (g/cm 3 )
  • the density of SUS410L is 7.74 (g/cm 3 )
  • the density of WC is 15.6 (g/cm 3 ).
  • hard particles (WC) 95% by mass (Inconel 600: 90% by mass + SUS410L: 5% by mass): 5% by mass
  • the content of W in the matrix is 2.38% by mass (sample No.
  • the cutting edge portion 2 contains the WC hard particles 4 at a ratio of 2.55% by volume.
  • hard particles (WC) 60% by mass (Inconel 600: 30% by mass + SUS410L: 30% by mass): 40% by mass,
  • a cutlery includes a blade having a base portion and a cutting edge portion connected to the base portion and located along the base portion.
  • the base portion includes a first metal
  • the cutting edge portion includes a second metal and a plurality of hard particles having a higher hardness than the second metal.
  • the hard particles include tungsten carbide.
  • the second metal includes at least nickel, chromium, and iron.
  • the iron content in the matrix region where no hard particles are present is 10% by mass or more, and the mass ratio of the iron content to the tungsten content (Fe/W) is 1 or more.
  • the second metal includes a metal having a lower hardness than the first metal.
  • the hard particles include hard particles having an angular polyhedral shape.
  • the hard particles include a material having a higher hardness than the first metal.
  • the cutting edge portion contains hard particles in a proportion of 2% by volume or more and 25% by volume or less.
  • the tungsten content in the matrix region in which no hard particles are present in the cutting edge portion is 15% by mass or less.
  • the cutting edge portion has a cutting edge and a pair of side surfaces located on both sides of the cutting edge, and at least one of the hard particles is exposed from the side.
  • at least one of the hard particles is exposed from the cutting edge.
  • at least one of the hard particles has a recess, and in at least one of the hard particles having the recess, the recess is located at the cutting edge. exposed from the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Knives (AREA)

Abstract

A knife according to the present disclosure comprises a blade that has a base part and an edge part that is connected to the base part and located along the base part. The base part includes a first metal, and the edge part includes a second metal and a plurality of hard particles having higher hardness than the second metal. The hard particles include tungsten carbide. The second metal includes at least nickel, chromium, and iron. In the edge part, the iron content in a matrix region in which the hard particles are not present is 10% by mass or greater, and the mass ratio (Fe/W) of the iron content and the tungsten content is 1 or greater.

Description

刃物cutlery
 本開示は、刃物に関する。 The present disclosure relates to cutlery.
 従来、金属材料を主成分とする材料からなる包丁が用いられている。その中でも、近年においては、ニッケルおよびクロムを成分とするステンレスからなる包丁が多く用いられている(特許文献1)。 Conventionally, knives made of materials whose main components are metal materials have been used. Among these, in recent years, knives made of stainless steel containing nickel and chromium have been widely used (Patent Document 1).
特開2000-189682号公報Japanese Patent Application Publication No. 2000-189682
 本開示に係る配線基板は、本開示に係る刃物は、基体部と、基体部に繋がり基体部に沿って位置する刃先部とを有する刀身を備える。基体部は、第1金属を含み、刃先部は、第2金属と、第2金属よりも高い硬度を有する複数の硬質粒子とを含む。硬質粒子は、炭化タングステンを含む。第2金属が、少なくともニッケルとクロムと鉄とを含む。刃先部は、硬質粒子が存在しないマトリックス領域における鉄の含有量が10質量%以上であり、かつ鉄の含有量とタングステンの含有量との質量比(Fe/W)が1以上である。 The wiring board according to the present disclosure and the knife according to the present disclosure include a blade having a base portion and a cutting edge portion connected to the base portion and located along the base portion. The base portion includes a first metal, and the cutting edge portion includes a second metal and a plurality of hard particles having a higher hardness than the second metal. The hard particles include tungsten carbide. The second metal includes at least nickel, chromium, and iron. In the cutting edge portion, the iron content in the matrix region where no hard particles are present is 10% by mass or more, and the mass ratio of the iron content to the tungsten content (Fe/W) is 1 or more.
本開示の一実施形態に係る刃物を示す平面図である。FIG. 1 is a plan view showing a cutter according to an embodiment of the present disclosure. 図1に示す刃物の平面透視図である。FIG. 2 is a plan perspective view of the cutter shown in FIG. 1. FIG. 図1に示す刃物を刃先側から見た図である。FIG. 2 is a diagram of the cutter shown in FIG. 1 viewed from the cutting edge side. 図3の領域Xを説明するための拡大断面図である。4 is an enlarged cross-sectional view for explaining region X in FIG. 3. FIG. 図4における刃先部側を拡大した断面図である。FIG. 5 is an enlarged sectional view of the cutting edge portion side in FIG. 4. FIG. 図5に示す硬質粒子とは異なる硬質粒子を含む刃先部を示す拡大断面図である。FIG. 6 is an enlarged sectional view showing a cutting edge portion containing hard particles different from the hard particles shown in FIG. 5. FIG. 図1に示す刃物の製造方法の一実施形態を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining one embodiment of the method for manufacturing the cutlery shown in FIG. 1. FIG. 図1に示す刃物の製造方法の一実施形態において、レーザークラッディング技術の一例を説明する断面図である。FIG. 2 is a cross-sectional view illustrating an example of a laser cladding technique in an embodiment of the method for manufacturing a cutlery shown in FIG. 1. FIG. 図1に示す刃物の製造方法の一実施形態において、レーザークラッディング技術の他の例を説明する断面図である。FIG. 2 is a cross-sectional view illustrating another example of the laser cladding technique in the embodiment of the method for manufacturing a cutlery shown in FIG. 1 . 図1に示す刃物の製造方法の一実施形態における断面図であり、図3の領域Xに相当する部分の拡大断面図である。4 is a cross-sectional view of an embodiment of the method for manufacturing a cutlery shown in FIG. 1, and is an enlarged cross-sectional view of a portion corresponding to region X in FIG. 3. FIG.
 従来の包丁は、刃先が脆く、割れまたは欠けが生じやすい。そのため、優れた耐摩耗性を有し、刃先が破損しにくい刃物が求められている。本開示に係る刃物を、図1~6に基づいて説明する。以下の説明で用いられる図面は模式的なものであり、図面上の寸法比率などは現実のものとは必ずしも一致していない。 Conventional knives have brittle cutting edges and are prone to cracking or chipping. Therefore, there is a need for a cutter that has excellent wear resistance and whose cutting edge is less likely to be damaged. A cutter according to the present disclosure will be explained based on FIGS. 1 to 6. The drawings used in the following explanation are schematic, and the dimensional ratios and the like on the drawings do not necessarily match the actual ones.
 以下、本開示の一実施形態に係る刃物について説明する。一実施形態に係る刃物1は、刀身1aと、刀身1aに接続された柄1bとを備える。 Hereinafter, a cutlery according to an embodiment of the present disclosure will be described. A cutlery 1 according to one embodiment includes a blade 1a and a handle 1b connected to the blade 1a.
 刀身1aは、刃物1の用途に合わせた形状および大きさに設定される。刃物1が包丁の場合、例えば、和包丁(出刃包丁または三徳包丁など)、洋包丁(牛刀など)または中華包丁などが挙げられる。刀身1aは、各包丁の形状に合わせて設定される。刀身1aが包丁以外(例えば、ナイフまたは手術用器具など)の場合、刀身1aの形状は、包丁以外の用途に合わせて設定される。 The blade 1a is set to have a shape and size that match the intended use of the cutlery 1. When the cutlery 1 is a kitchen knife, examples thereof include a Japanese knife (such as a Deba knife or a Santoku knife), a Western knife (such as a beef knife), or a Chinese knife. The blade 1a is set according to the shape of each knife. When the blade 1a is something other than a kitchen knife (for example, a knife or a surgical instrument), the shape of the blade 1a is set according to the purpose other than the kitchen knife.
 刀身1aに接続された柄1bは、刃物1を人が利用する際に人が把持するためのものである。柄1bも刀身1aと同様、刃物1の用途に合わせた形状および大きさに設定される。 The handle 1b connected to the blade 1a is for a person to hold when using the cutlery 1. Like the blade 1a, the handle 1b is also set to have a shape and size suited to the intended use of the cutlery 1.
 刀身1aおよび柄1bは、一体的に形成されていてもよく、別体で形成されていてもよい。刃物1は、柄1bを備えていることに限定されず、刀身1aのみで構成されていてもよい。本実施形態においては、刀身1aおよび柄1bが別体で形成されており、刀身1aの一部が柄1bの内部に挿入され、該挿入部で柄1bに対して固定されている。 The blade 1a and handle 1b may be formed integrally or separately. The cutlery 1 is not limited to having the handle 1b, and may be composed only of the blade 1a. In this embodiment, the blade 1a and the handle 1b are formed separately, and a part of the blade 1a is inserted into the handle 1b, and is fixed to the handle 1b at the insertion part.
 柄1bは、例えば、木材、樹脂、セラミックスまたは金属材料で形成されている。金属材料としては、例えば、チタン系またはステンレス系などのような錆にくい材料が挙げられる。樹脂としては、例えば、ABS樹脂(アクリロニトリル、ブタジエンおよびスチレンの共重合体)、ポリプロピレン樹脂などが挙げられる。 The handle 1b is made of, for example, wood, resin, ceramics, or metal material. Examples of the metal material include rust-resistant materials such as titanium or stainless steel. Examples of the resin include ABS resin (a copolymer of acrylonitrile, butadiene, and styrene), polypropylene resin, and the like.
 刃物1の大きさは限定されず、用途に応じて適宜設定される。刃物1の大きさは、例えば、図1および図2に示すように、長手方向(x軸方向)の全長Ht1が5cm以上40cm以下であってもよい。図1および図2に示すように、後述する刃先部2の長手方向(x軸方向)全長Ht2は、例えば2cm以上35cm以下であってもよい。図3に示すように、刀身1aの全長Ht1と直交する方向の幅方向(y軸方向)の長さHt3は、例えば10mm以上150mm以下であってもよい。図3に示すように、刀身1aの厚みHt4(z軸方向)は、最も厚い部分で、例えば、1mm以上5mm以下であってもよい。柄1bの長さ(x軸方向)および柄1bの厚み(z軸方向)も、適宜設定すればよい。例えば、柄1bの厚みは、5mm以上30mm以下であってもよい。 The size of the cutter 1 is not limited and can be set appropriately depending on the purpose. As for the size of the cutter 1, for example, as shown in FIGS. 1 and 2, the total length Ht1 in the longitudinal direction (x-axis direction) may be 5 cm or more and 40 cm or less. As shown in FIGS. 1 and 2, the total length Ht2 in the longitudinal direction (x-axis direction) of the cutting edge portion 2, which will be described later, may be, for example, 2 cm or more and 35 cm or less. As shown in FIG. 3, the length Ht3 in the width direction (y-axis direction) in the direction perpendicular to the overall length Ht1 of the blade 1a may be, for example, 10 mm or more and 150 mm or less. As shown in FIG. 3, the thickness Ht4 (z-axis direction) of the blade 1a at the thickest portion may be, for example, 1 mm or more and 5 mm or less. The length (x-axis direction) of the handle 1b and the thickness (z-axis direction) of the handle 1b may also be set appropriately. For example, the thickness of the handle 1b may be 5 mm or more and 30 mm or less.
 刀身1aは、基体部3と、基体部3に繋がり基体部3に沿って位置する刃先部2とを有する。基体部3は、第1金属を含む。第1金属としては限定されず、例えば、鋼、合成鋼、ステンレスまたはチタン合金などが挙げられる。 The blade 1a has a base portion 3 and a cutting edge portion 2 connected to the base portion 3 and located along the base portion 3. The base portion 3 includes a first metal. The first metal is not limited, and examples thereof include steel, synthetic steel, stainless steel, and titanium alloy.
 合成鋼としては、例えば、クロム(Cr)、モリブデン(Mo)、バナジウム(V)、タングステン(W)、コバルト(Co)および銅(Cu)からなる群より選択される少なくとも1種の金属を含む材料などが挙げられる。ステンレスとしては、例えば、クロム・ニッケル系またはクロム系などが挙げられる。チタン合金としては、例えば、いわゆる64チタンといわれる、アルミ(Al)を6質量%、バナジウムを4質量%の割合で含むチタン合金などが挙げられる。第1金属がステンレスの場合、錆などに対する基体部3の耐食性を向上させることができる。 The synthetic steel includes, for example, at least one metal selected from the group consisting of chromium (Cr), molybdenum (Mo), vanadium (V), tungsten (W), cobalt (Co), and copper (Cu). Examples include materials. Examples of the stainless steel include chromium-nickel type or chromium type. Examples of the titanium alloy include a titanium alloy called 64 titanium, which contains 6% by mass of aluminum (Al) and 4% by mass of vanadium. When the first metal is stainless steel, the corrosion resistance of the base portion 3 against rust and the like can be improved.
 一実施形態に係る刃物1において、第1金属は基体部3の主成分である。主成分とは、基体部3を構成する全成分100質量%のうち、70質量%を超える成分のことを意味する。 In the cutlery 1 according to one embodiment, the first metal is the main component of the base portion 3. The main component means a component exceeding 70% by mass out of 100% by mass of all components constituting the base portion 3.
 図2に示すように、基体部3は、柄1bから露出した露出部31と、柄1bの内部に挿入された中子32とを含む。露出部31は、長手方向(x軸方向)に沿って背部3Aおよび図4に示すように端部3Cが延在している。露出部31の長手方向先端付近で、露出部31の幅が狭くなっており、露出部31の先端で端部3Cと背部3Aとが繋がっている。端部3Cには、図4に示すように、端部3Cに沿って刃先部2が接続されている。 As shown in FIG. 2, the base portion 3 includes an exposed portion 31 exposed from the handle 1b and a core 32 inserted into the interior of the handle 1b. The exposed portion 31 has a back portion 3A extending along the longitudinal direction (x-axis direction) and an end portion 3C as shown in FIG. The width of the exposed portion 31 is narrowed near the longitudinal tip of the exposed portion 31, and the end portion 3C and the back portion 3A are connected at the tip of the exposed portion 31. As shown in FIG. 4, the cutting edge portion 2 is connected to the end portion 3C along the end portion 3C.
 基体部3の端部3Cは、例えば図4に示すように、基体部3の厚み方向(z軸方向)に対して平行であってもよく、z軸方向に対して傾斜していてもよい。あるいは、基体部3の端部3Cは、z軸方向に対して湾曲していたり屈曲していたりしてもよい。端部3Cが湾曲または屈曲していると、基体部3と刃先部2との接合面積が大きくなる。そのため、基体部3と刃先部2との接合強度が高くなり、刃物1の耐久性が高くなる。 The end portion 3C of the base portion 3 may be parallel to the thickness direction (z-axis direction) of the base portion 3, or may be inclined with respect to the z-axis direction, as shown in FIG. 4, for example. . Alternatively, the end portion 3C of the base portion 3 may be curved or bent with respect to the z-axis direction. When the end portion 3C is curved or bent, the joint area between the base portion 3 and the cutting edge portion 2 becomes large. Therefore, the bonding strength between the base portion 3 and the cutting edge portion 2 is increased, and the durability of the blade 1 is increased.
 中子32は、露出部31よりも幅方向(y軸方向)に狭くなっており、柄1bの内部に挿入されている。一実施形態に係る刃物1における中子32は、少なくとも1つの孔部32aを有する。孔部32aに柄1bの一部が挿入されることによって、刀身1aと柄1bとが強固に固定されている。 The core 32 is narrower in the width direction (y-axis direction) than the exposed portion 31, and is inserted inside the handle 1b. The core 32 in the cutter 1 according to one embodiment has at least one hole 32a. By inserting a portion of the handle 1b into the hole 32a, the blade 1a and the handle 1b are firmly fixed.
 刃先部2は、第2金属2aと複数の硬質粒子4とを含む。第2金属2aは、少なくともニッケル(Ni)とクロム(Cr)と鉄(Fe)とを含む金属である。第2金属2aが、少なくともニッケルとクロムと鉄とを含む金属であれば、刃先部2は、耐食性が向上するとともに、クラックが入りにくくなる。少なくともニッケルとクロムと鉄とを含む金属としては、例えば、インコネル(登録商標)またはコルモノイ(登録商標)などの合金が挙げられる。 The cutting edge portion 2 includes a second metal 2a and a plurality of hard particles 4. The second metal 2a is a metal containing at least nickel (Ni), chromium (Cr), and iron (Fe). If the second metal 2a is a metal containing at least nickel, chromium, and iron, the cutting edge portion 2 will have improved corrosion resistance and will be less likely to crack. Examples of the metal containing at least nickel, chromium, and iron include alloys such as Inconel (registered trademark) and Colmonoy (registered trademark).
 一実施形態に係る刃物1において、刃先部2に含まれる第2金属2aは、基体部3に含まれる第1金属よりも低い硬度(ビッカース硬度)を有する金属を含んでいてもよい。このような構成によって、刃物1は、第1金属と第2金属2aとの双方の利点を持ち合わせることができる。すなわち、刃物1の全体的な強度を、基体部3の第1金属によって高くすることができる。さらに、刃先部2の第2金属2aによって、刃物1の使用時に負荷される応力による刃先部2の割れまたは欠けの発生が低減し、刃先部2の耐久性を向上させることができる。 In the knife 1 according to one embodiment, the second metal 2a included in the cutting edge portion 2 may include a metal having a lower hardness (Vickers hardness) than the first metal included in the base portion 3. With such a configuration, the cutter 1 can have the advantages of both the first metal and the second metal 2a. That is, the overall strength of the cutter 1 can be increased by the first metal of the base portion 3. Furthermore, the second metal 2a of the cutting edge part 2 reduces the occurrence of cracking or chipping of the cutting edge part 2 due to stress applied when the cutting tool 1 is used, and the durability of the cutting edge part 2 can be improved.
 刃先部2に含まれる硬質粒子4は、刃先部2に含まれる第2金属2aよりも高い硬度(ビッカース硬度)を有しており、炭化タングステン(WC)を含んでいる。このような構成によって、刃先部2全体の硬さを向上させることができ、刃先部2の耐摩耗性を向上させることができる。さらに、硬質粒子4は、第2金属2aよりも高い硬度を有する材料によって形成されている。そのため、刃物1の使用時に硬質粒子4が対象物に接触することによって、対象物に対する刃先部2の切れ味が向上する。 The hard particles 4 contained in the cutting edge part 2 have a higher hardness (Vickers hardness) than the second metal 2a contained in the cutting edge part 2, and contain tungsten carbide (WC). With such a configuration, the hardness of the entire cutting edge portion 2 can be improved, and the wear resistance of the cutting edge portion 2 can be improved. Furthermore, the hard particles 4 are made of a material having higher hardness than the second metal 2a. Therefore, when the blade 1 is used, the hard particles 4 come into contact with the object, thereby improving the sharpness of the cutting edge portion 2 with respect to the object.
 硬質粒子4は、第2金属2aよりも硬いだけなく、第1金属よりも硬い材料を含んでいてもよい。すなわち、硬質粒子4は、炭化タングステン以外に、第1金属よりも硬い材料を含んでいてもよい。このような材料としては、例えば、炭化チタン(TiC)、窒化チタン(TiN)、炭化タンタル(TaC)または炭化バナジウム(VC)などを含むサーメットなどが挙げられる。このように、十分な硬さを有する硬質粒子4を用いることによって、刃先部2の切れ味および耐摩耗性をより向上させることができる。硬質粒子4は、例えば、1000Hv以上4000Hv以下のビッカース硬度を有していてもよい。 The hard particles 4 may include a material that is not only harder than the second metal 2a but also harder than the first metal. That is, the hard particles 4 may contain a material harder than the first metal other than tungsten carbide. Examples of such materials include cermets containing titanium carbide (TiC), titanium nitride (TiN), tantalum carbide (TaC), vanadium carbide (VC), and the like. In this way, by using the hard particles 4 having sufficient hardness, the sharpness and wear resistance of the cutting edge portion 2 can be further improved. The hard particles 4 may have a Vickers hardness of, for example, 1000 Hv or more and 4000 Hv or less.
 刃先部2において、硬質粒子4は2体積%以上25体積%以下の割合で含まれていてもよい。刃先部2の硬質粒子4が2体積%以上の割合で含まれていると、切れ味および耐摩耗性をさらに向上させることができる。刃先部2の硬質粒子4が25体積%以下の割合で含まれていると、レーザークラッディングの生産性を高く維持できる。 In the cutting edge portion 2, the hard particles 4 may be contained in a proportion of 2% by volume or more and 25% by volume or less. If the hard particles 4 in the cutting edge portion 2 are contained in a proportion of 2% by volume or more, the sharpness and wear resistance can be further improved. When the hard particles 4 of the cutting edge portion 2 are contained in a proportion of 25% by volume or less, the productivity of laser cladding can be maintained at a high level.
 硬質粒子4の含有率は、刃先部2の断面(yz平面に平行な断面)を走査型電子顕微鏡を用いて観察し、観察画像の写真から、刃先部2全体の面積に対する硬質粒子4の合計の面積の割合を体積%として求めればよい。具体的には、硬質粒子4の含有率は、次のように算出する。まず、刃先部2の長さ方向(x軸方向)に沿ってほぼ均等間隔で異なる5カ所の位置で刃先部2の断面観察を実施する。次に、これら5カ所で硬質粒子4の面積割合を測定する。この5箇所での硬質粒子4の面積の割合の平均値を求める。この面積の割合の平均値を硬質粒子4の含有率と見なすことで、硬質粒子4の含有率が算出される。 The content of hard particles 4 can be determined by observing the cross section of the cutting edge part 2 (a cross section parallel to the yz plane) using a scanning electron microscope, and from the photograph of the observed image, calculating the content of the hard particles 4 with respect to the entire area of the cutting edge part 2. It is sufficient to calculate the area ratio as volume %. Specifically, the content rate of hard particles 4 is calculated as follows. First, cross-sectional observation of the blade edge part 2 is performed at five different positions at approximately equal intervals along the length direction (x-axis direction) of the blade edge part 2. Next, the area ratio of the hard particles 4 is measured at these five locations. The average value of the area ratio of the hard particles 4 at these five locations is determined. By regarding the average value of this area ratio as the content rate of the hard particles 4, the content rate of the hard particles 4 is calculated.
 刃先部2において、硬質粒子4が存在しないマトリックス領域におけるタングステンの含有量は、15質量%以下であってもよい。タングステンの含有量が15質量%以下であれば、硬質粒子4が存在しないマトリックス領域は靭性が高く、刃先部2が欠けにくくなる。 In the cutting edge portion 2, the tungsten content in the matrix region where the hard particles 4 are not present may be 15% by mass or less. If the tungsten content is 15% by mass or less, the matrix region where no hard particles 4 are present has high toughness, and the cutting edge portion 2 is less likely to chip.
 硬質粒子4の形状は限定されず、種々の形状が採用され得る。硬質粒子4の形状としては、例えば、球体状、楕円体状または多面体形状などが挙げられる。これらの中でも、硬質粒子4は多面体形状を有していてもよい。多面体形状の中でも角ばった多面体形状であってもよい。硬質粒子4が角ばった多面体形状を有していると、硬質粒子4と第2金属2aとの密着性を向上させることができる。硬質粒子4は、球体状、楕円体状または多面体形状など規則的な形状を有するものに限定されない。硬質粒子4は、例えば、一部が針状に尖っている形状または一部に窪み(図6に示すような凹部4a)を有する形状など、不規則な形状を有していてもよい。硬質粒子4は、単一の形状を有する粒子であってもよく、種々の形状を有する粒子の混合物であってもよい。 The shape of the hard particles 4 is not limited, and various shapes can be adopted. Examples of the shape of the hard particles 4 include a spherical shape, an ellipsoidal shape, and a polyhedral shape. Among these, the hard particles 4 may have a polyhedral shape. Among the polyhedral shapes, an angular polyhedral shape may be used. When the hard particles 4 have an angular polyhedral shape, the adhesion between the hard particles 4 and the second metal 2a can be improved. The hard particles 4 are not limited to those having a regular shape such as a spherical shape, an ellipsoid shape, or a polyhedral shape. The hard particles 4 may have an irregular shape, for example, a shape in which a part is sharp like a needle or a shape in which a part has a depression (a recess 4a as shown in FIG. 6). The hard particles 4 may be particles having a single shape or may be a mixture of particles having various shapes.
 刃先部2に含まれる硬質粒子4の少なくとも1つは、刃先部2から露出していてもよい。刃先部2は図4および図5に示すように、刃先2Aと、刃先2Aの両側に位置する一対の側面2cとを含んでいる。硬質粒子4の少なくとも1つは、例えば、刃先部2の側面2cから露出していてもよく、刃先2Aから露出していてもよい。 At least one of the hard particles 4 included in the cutting edge portion 2 may be exposed from the cutting edge portion 2. As shown in FIGS. 4 and 5, the cutting edge portion 2 includes a cutting edge 2A and a pair of side surfaces 2c located on both sides of the cutting edge 2A. At least one of the hard particles 4 may be exposed from the side surface 2c of the cutting edge portion 2, or may be exposed from the cutting edge 2A, for example.
 硬質粒子4の少なくとも1つが刃先部2の側面2cから露出していると、刃物1を用いて対象物を切る際、対象物に硬質粒子4が接触する。その結果、刃先部2の切れ味が良好となり、刃先部2の耐摩耗性を向上させることができる。図4および5に示すように、一実施形態に係る刃物1では、刃先部2の双方の側面2cから、複数の硬質粒子4が露出している。このため、刃先部2の切れ味および耐摩耗性がより向上する。 If at least one of the hard particles 4 is exposed from the side surface 2c of the cutting edge portion 2, the hard particle 4 comes into contact with the object when cutting the object using the blade 1. As a result, the sharpness of the cutting edge portion 2 becomes good, and the wear resistance of the cutting edge portion 2 can be improved. As shown in FIGS. 4 and 5, in the cutter 1 according to one embodiment, a plurality of hard particles 4 are exposed from both side surfaces 2c of the cutting edge portion 2. As shown in FIGS. Therefore, the sharpness and wear resistance of the cutting edge portion 2 are further improved.
 一方、硬質粒子4の少なくとも1つが刃先部2の刃先2Aから露出していると、刃物1を用いて対象物を切る際に、刃先2Aから露出する硬質粒子4が対象物に接触する。その結果、刃先2Aの切れ味を向上させることができる。 On the other hand, if at least one of the hard particles 4 is exposed from the cutting edge 2A of the cutting edge portion 2, the hard particles 4 exposed from the cutting edge 2A will come into contact with the object when cutting the object using the knife 1. As a result, the sharpness of the cutting edge 2A can be improved.
 図6に示すように、凹部4aを有する硬質粒子4のうちの少なくとも1つにおいて、凹部4aが刃先部2の表面から露出していてもよい。凹部4aが刃先部2の表面から露出していることによって、刃先部2の切れ味がより向上する。さらに、接触面積の低減による刃物1の滑り性がより向上する。 As shown in FIG. 6, the recess 4a may be exposed from the surface of the cutting edge portion 2 in at least one of the hard particles 4 having the recess 4a. Since the concave portion 4a is exposed from the surface of the blade edge portion 2, the sharpness of the blade edge portion 2 is further improved. Furthermore, the slipperiness of the blade 1 is further improved due to the reduction in the contact area.
 刃先部2を研磨しても刃先部2の表面に硬質粒子4が露出しやすくするために、硬質粒子4は、刃先部2の内部で基体部3の長さ方向(x軸方向)および幅方向(y軸方向)のみならず、基体部3の厚み方向(z軸方向)にも分散していてもよい。 In order to make it easier for the hard particles 4 to be exposed on the surface of the blade edge part 2 even if the blade edge part 2 is polished, the hard particles 4 are inserted into the length direction (x-axis direction) and the width of the base part 3 inside the blade edge part 2. They may be dispersed not only in the direction (y-axis direction) but also in the thickness direction (z-axis direction) of the base portion 3.
 硬質粒子4は、例えば、5μm以上50μm以下の粒子径を有していてもよい。このような粒子径を有する硬質粒子4を得るためには、5μm未満の粒子径を有する粒子および50μmを超える粒子径を有する粒子を、例えばふるいを用いて選別すればよい。 The hard particles 4 may have a particle diameter of, for example, 5 μm or more and 50 μm or less. In order to obtain the hard particles 4 having such a particle size, particles having a particle size of less than 5 μm and particles having a particle size of more than 50 μm may be separated using, for example, a sieve.
 硬質粒子4、第1金属および第2金属2aのビッカース硬度の測定は、JIS Z 2244(ISO6507-2、以下同じ)に準じた方法を用いて行えばよい。仮に、この方法による測定が困難である場合、硬質粒子4、前記第1金属および第2金属2aの組成をそれぞれ同定し、同定した組成とほぼ同等の組成を有する試料を作成し、これら試料についてJIS Z 2244に準じた方法で測定すればよい。 The Vickers hardness of the hard particles 4, the first metal, and the second metal 2a may be measured using a method according to JIS Z 2244 (ISO 6507-2, hereinafter the same). If measurement by this method is difficult, identify the compositions of the hard particles 4, the first metal, and the second metal 2a, prepare samples having almost the same composition as the identified compositions, and measure these samples. It may be measured by a method according to JIS Z 2244.
 本開示に係る刃物おいて、第1金属、第2金属2aおよび硬質粒子4のビッカース硬度は、大小関係を把握することができればよい。したがって、同定した組成と試料の組成とにズレが生じていても、大小関係に実質的に影響しない範囲で許容される。 In the cutlery according to the present disclosure, the Vickers hardness of the first metal, the second metal 2a, and the hard particles 4 may be determined as long as the magnitude relationship can be determined. Therefore, even if there is a discrepancy between the identified composition and the composition of the sample, it is allowed as long as it does not substantially affect the magnitude relationship.
 一実施形態に係る刃物1において、刃先部2は、硬質粒子4が存在しないマトリックス領域における鉄の含有量が10質量%以上であり、かつ鉄の含有量とタングステンの含有量との質量比(Fe/W)が1以上である。刃物1は、このような構成を有することによって、優れた耐摩耗性を有し、刃先部2が破損しにくい。 In the cutter 1 according to one embodiment, the cutting edge portion 2 has an iron content of 10% by mass or more in the matrix region where no hard particles 4 are present, and a mass ratio of the iron content to the tungsten content ( Fe/W) is 1 or more. By having such a configuration, the cutter 1 has excellent wear resistance, and the cutting edge portion 2 is less likely to be damaged.
 硬質粒子4が存在しないマトリックス領域における鉄の含有量が10質量%以上であれば、一実施形態に係る刃物1は、刃先部2が破損しにくくなる。硬質粒子4が存在しないマトリックス領域に10質量%以上の鉄が含まれていると、FeリッチなFeNi合金が形成されると推察される。その結果、熱膨張率が低下して金属の熱ストレスが減少し、クラックの発生が低下すると推察される。硬質粒子4が存在しないマトリックス領域における鉄の含有量について上限は限定されず、例えば40質量%以下であってもよい。 If the iron content in the matrix region where the hard particles 4 are not present is 10% by mass or more, the cutting edge portion 2 of the cutter 1 according to the embodiment becomes less likely to be damaged. It is presumed that if 10% by mass or more of iron is contained in the matrix region where the hard particles 4 are not present, an Fe-rich FeNi alloy is formed. As a result, it is presumed that the thermal expansion coefficient decreases, the thermal stress of the metal decreases, and the occurrence of cracks decreases. There is no upper limit to the iron content in the matrix region where hard particles 4 are not present, and may be, for example, 40% by mass or less.
 硬質粒子4が存在しないマトリックス領域において、タングステンの含有量が多くなるとマトリックス領域の硬度が上昇し、刃先部2の割れまたは欠けが発生しやすくなる。硬質粒子4が存在しないマトリックス領域において、鉄の含有量とタングステンの含有量との質量比(Fe/W)が1以上、すなわち、タングステンの含有量が鉄の含有量よりも少ない場合、鉄の含有量が多く、タングステンはマトリックス中へ溶解しにくくなる。その結果、マトリックス領域の硬度の上昇が低減され、刃先部2の靭性を向上させることができる。鉄の含有量とタングステンの含有量との質量比(Fe/W)は1以上であれば限定されず、例えば、上限は、20程度であってもよい。 In the matrix region where hard particles 4 are not present, when the tungsten content increases, the hardness of the matrix region increases, making the cutting edge portion 2 more likely to crack or chip. In the matrix region where hard particles 4 are not present, if the mass ratio (Fe/W) between the iron content and the tungsten content is 1 or more, that is, the tungsten content is less than the iron content, the iron The higher the content, the more difficult it is for tungsten to dissolve into the matrix. As a result, the increase in hardness of the matrix region is reduced, and the toughness of the cutting edge portion 2 can be improved. The mass ratio (Fe/W) between the content of iron and the content of tungsten is not limited as long as it is 1 or more. For example, the upper limit may be about 20.
 次に、一実施形態に係る刃物1を製造する方法について説明する。一実施形態に係る刃物1が得られる方法であれば限定されない。刃物1の製造方法の一実施形態について、図7~10に基づいて説明する。 Next, a method for manufacturing the cutlery 1 according to one embodiment will be described. The method is not limited as long as it allows the blade 1 according to one embodiment to be obtained. An embodiment of the method for manufacturing the cutlery 1 will be described based on FIGS. 7 to 10.
 図7~図10は、図1に示す刃物1の製造方法の一実施形態を説明するための図である。刃物1の製造方法の一実施形態は、例えば、下記の工程(a)~(d)を包含する。
 (a)第1金属を含む基体部3を準備する工程。
 (b)第2金属2aを構成する金属粉体と鉄含有金属と硬質粒子4とを準備する工程。
 (c)基体部3の端部3Cに対して、第2金属2aを構成する金属粉体と鉄含有金属と硬質粒子4とを噴射しつつ、金属粉体および鉄含有金属を焼き付ける工程。
 (d)刃部材6と基体部3とを研磨する工程。
7 to 10 are diagrams for explaining one embodiment of a method for manufacturing the cutter 1 shown in FIG. 1. FIG. One embodiment of the method for manufacturing the cutlery 1 includes, for example, the following steps (a) to (d).
(a) Step of preparing the base portion 3 containing the first metal.
(b) A step of preparing metal powder, iron-containing metal, and hard particles 4 constituting the second metal 2a.
(c) A step of baking the metal powder and the iron-containing metal while spraying the metal powder, the iron-containing metal, and the hard particles 4 constituting the second metal 2a onto the end portion 3C of the base portion 3.
(d) A step of polishing the blade member 6 and the base portion 3.
 工程(a)では、第1金属を含む基体部3を準備する。基体部3は、図7に示すような形状を有する。基体部3は、例えば、ステンレスの板材をプレス加工して所定の刃物1の型を打ち抜いた後、焼き入れすることによって準備する。焼き入れでは、余熱、焼き入れ、および冷却を何回か繰り返して行ってもよい。焼き入れによって、基体部3の硬度を高めることができる。 In step (a), a base portion 3 containing a first metal is prepared. The base portion 3 has a shape as shown in FIG. The base portion 3 is prepared, for example, by pressing a stainless steel plate material, punching out a mold of a predetermined cutter 1, and then hardening the mold. In quenching, preheating, quenching, and cooling may be repeated several times. The hardness of the base portion 3 can be increased by hardening.
 余熱では、後に実施する焼き入れよりも低い温度で基体部3を加熱する。余熱によって、焼き入れの際に高温になると生じやすいひび割れなどの発生を低減することができる。焼き入れの条件は、材料によって適宜設定することができ、例えば、1000℃以上の温度で基体部3を加熱する条件に設定すればよい。冷却では、焼き入れの温度から急激に基体部3を冷やす。冷却によって、焼き入れで活性した素材同士を固定することができる。 In the preheating, the base portion 3 is heated at a lower temperature than in the quenching that will be performed later. The residual heat can reduce the occurrence of cracks, etc. that tend to occur when high temperatures are reached during quenching. The hardening conditions can be set appropriately depending on the material, and for example, the conditions may be set to heat the base portion 3 at a temperature of 1000° C. or higher. In cooling, the base portion 3 is rapidly cooled from the hardening temperature. By cooling, the materials activated by quenching can be fixed together.
 次いで、工程(b)では、第2金属2aを構成する金属粉体と鉄含有金属と硬質粒子4とを準備する。第2金属2aおよび硬質粒子4については上述の通りであり、詳細な説明は省略する。鉄含有金属としては、例えば、鉄、ステンレスまたは鉄を主成分とする合金などが挙げられる。ステンレスとしては、例えば、SUS410LまたはSUS316などが挙げられる。 Next, in step (b), metal powder, iron-containing metal, and hard particles 4 that constitute the second metal 2a are prepared. The second metal 2a and the hard particles 4 are as described above, and detailed description thereof will be omitted. Examples of iron-containing metals include iron, stainless steel, and alloys containing iron as a main component. Examples of stainless steel include SUS410L and SUS316.
 次いで、工程(c)では、基体部3の端部3Cに対して、第2金属2aを構成する金属粉体と鉄含有金属の金属粉体と硬質粒子4とを噴射しつつ、金属粉体および鉄含有金属の金属粉体を焼き付ける。その結果、硬質粒子4が存在しないマトリックス領域における鉄の含有量が10質量%以上であり、かつ鉄の含有量とタングステンの含有量との質量比(Fe/W)が1以上となる刃部材6が形成される。 Next, in step (c), the metal powder constituting the second metal 2a, the metal powder of the iron-containing metal, and the hard particles 4 are injected onto the end portion 3C of the base portion 3, while the metal powder is and baking metal powder of ferrous metals. As a result, the blade member has an iron content of 10% by mass or more in the matrix region where no hard particles 4 are present, and a mass ratio of iron content to tungsten content (Fe/W) of 1 or more. 6 is formed.
 第2金属2aを構成する金属粉体および鉄(Fe)含有金属の金属粉体を焼き付ける方法としては、例えば、レーザーによって溶解させて焼き付ける方法などが挙げられる。このような方法としては、例えば、レーザーを用いたクラッディング技術が挙げられる。 Examples of the method of baking the metal powder and the iron (Fe)-containing metal powder constituting the second metal 2a include a method of melting and baking with a laser. Such a method includes, for example, a cladding technique using a laser.
 具体的には、図8に示すように、レーザー光7aの横側から基体部3の端部3C付近に対し、第2金属2aを構成する金属粉体および鉄(Fe)含有金属の金属粉体を含むクラッディング材料6aを、ノズル7から供給する。これにより、刃先部2を構成する材料であるクラッディング材料6aを溶解させつつ、端部3Cに金属結合させることができる。クラッディング材料6aのさらに外側から不活性ガス7bを端部3Cに対して吹き付ける。これにより、クラッディング材料6aがレーザー光7aに当たりやすくなる。不活性ガス7bとしては、例えば、アルゴンガスなどが挙げられる。不活性ガス7bは、図9に示すように、レーザー光7aと同じ経路から吐出することができる。これにより、不活性ガス7bは、クラッディング材料6aの内側から端部3Cに対して吹き付けることができる。 Specifically, as shown in FIG. 8, metal powder constituting the second metal 2a and metal powder of an iron (Fe)-containing metal are applied from the side of the laser beam 7a to the vicinity of the end 3C of the base portion 3. The cladding material 6a containing bodies is supplied from the nozzle 7. Thereby, the cladding material 6a, which is the material constituting the cutting edge portion 2, can be melted and metallurgically bonded to the end portion 3C. Inert gas 7b is blown toward end portion 3C from further outside of cladding material 6a. This makes it easier for the cladding material 6a to be exposed to the laser beam 7a. Examples of the inert gas 7b include argon gas. The inert gas 7b can be discharged from the same path as the laser beam 7a, as shown in FIG. Thereby, the inert gas 7b can be blown against the end portion 3C from inside the cladding material 6a.
 クラッディング材料6aを溶解させる際に、硬質粒子4を混ぜる。レーザー光7aによって硬質粒子4以外のクラッディング材料6aが溶解して、端部3Cに付着する。一方、硬質粒子4は融点が高いため、レーザー光7aによって溶解されにくい。しかし、硬質粒子4の炭化タングステン(WC)の一部が分解し、タングステン(W)が刃部材6の加工中にマトリックス中に溶解する。クラッディング材料6aを溶解させる際に硬質粒子4を混ぜると、刃先部2に複数の硬質粒子4を分散させることができる。 Hard particles 4 are mixed when dissolving the cladding material 6a. The cladding material 6a other than the hard particles 4 is melted by the laser beam 7a and adheres to the end portion 3C. On the other hand, since the hard particles 4 have a high melting point, they are difficult to melt by the laser beam 7a. However, a portion of the tungsten carbide (WC) of the hard particles 4 decomposes, and the tungsten (W) dissolves into the matrix during processing of the blade member 6. If hard particles 4 are mixed in when melting the cladding material 6a, a plurality of hard particles 4 can be dispersed in the cutting edge portion 2.
 刃先部2において、硬質粒子4が存在しないマトリックス領域における鉄の含有量を10質量%以上にするためには、第2金属2aを構成する金属粉体に含まれる鉄の含有量を考慮して、鉄含有金属に由来する鉄の添加量を、適宜調整すればよい。例えば、鉄含有金属に由来する鉄の添加量が5質量%以上となるように調整すればよく、多くても30質量%程度に調整すればよい。 In order to make the iron content in the matrix region where the hard particles 4 are not present in the cutting edge portion 2 to be 10% by mass or more, the iron content contained in the metal powder constituting the second metal 2a must be taken into consideration. , the amount of iron derived from the iron-containing metal may be adjusted as appropriate. For example, the amount of iron derived from iron-containing metals may be adjusted to 5% by mass or more, and may be adjusted to about 30% by mass at most.
 第2金属2aに含まれる微量のタングステンまたは硬質粒子4に由来するタングステン、上述の鉄の含有量を考慮して、硬質粒子4が存在しないマトリックス領域における鉄の含有量とタングステンの含有量との質量比(Fe/W)を1以上とすればよい。 Considering the trace amount of tungsten contained in the second metal 2a, the tungsten derived from the hard particles 4, and the above-mentioned iron content, the iron content in the matrix region where the hard particles 4 are not present and the tungsten content are The mass ratio (Fe/W) may be set to 1 or more.
 次いで、工程(d)では、刃部材6と基体部3とを研磨する。研磨は、例えば、酸化アルミニウム(Al)、炭化珪素(SiC)、ダイヤモンドまたはこれらの混合粒子などが表面に塗布された研磨石を用いて行われる。研磨は、複数回に分けて行ってもよい。例えば、図10に示すように、まず点線L1に沿って1回目の研磨を行い、次に、点線L2に沿って第2研磨を行ってもよい。 Next, in step (d), the blade member 6 and the base portion 3 are polished. Polishing is performed using, for example, a polishing stone whose surface is coated with particles of aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), diamond, or a mixture thereof. Polishing may be performed in multiple steps. For example, as shown in FIG. 10, first polishing may be performed along dotted line L1, and then second polishing may be performed along dotted line L2.
 このような方法によって、優れた耐摩耗性を有し、刃先部2が破損しにくい刃物1が得られる。 By such a method, a cutter 1 having excellent wear resistance and whose cutting edge portion 2 is less likely to be damaged can be obtained.
 ステンレス鋼を用いて、図7に示すような基体部3を製造した。次いで、得られた基体部3の端部3Cに対して、第2金属2aを構成する金属粉体と鉄(Fe)含有金属の金属粉体と硬質粒子4とを噴射しつつ、金属粉体を端部3Cに焼き付けた。金属粉体としては、インコネル600と鉄(Fe)含有金属との混合物を使用した。鉄(Fe)含有金属としては、SUS410Lを使用した。硬質粒子4としては炭化タングステン(WC)で形成された粒子を使用した。金属粉体が85質量%および硬質粒子4(炭化タングステン)が15質量%となるように調整した。鉄(Fe)含有金属は、鉄の添加量が表1に記載の添加量(5質量%、10質量%、15質量%、20質量%、25質量%および30質量%)となるように使用した。 A base portion 3 as shown in FIG. 7 was manufactured using stainless steel. Next, the metal powder constituting the second metal 2a, the metal powder of iron (Fe)-containing metal, and the hard particles 4 are injected onto the end portion 3C of the obtained base portion 3, while the metal powder is was burned onto the end 3C. As the metal powder, a mixture of Inconel 600 and a metal containing iron (Fe) was used. SUS410L was used as the iron (Fe)-containing metal. As the hard particles 4, particles made of tungsten carbide (WC) were used. Adjustments were made so that the metal powder content was 85% by mass and the hard particles 4 (tungsten carbide) were 15% by mass. Iron (Fe)-containing metals are used so that the amount of iron added is as shown in Table 1 (5% by mass, 10% by mass, 15% by mass, 20% by mass, 25% by mass and 30% by mass). did.
 端部3Cへの金属粉体の焼き付けは、図8に示すような装置を用いて行った。具体的には、レーザー光7aの横側から基体部3の端部3C付近に対し、インコネル600と鉄含有金属との混合物(クラッディング材料6a)を、ノズル7から供給した。次いで、クラッディング材料6aを溶解させる際に、硬質粒子4を混ぜた。レーザー光7aによって硬質粒子4以外のクラッディング材料6aが溶解して、端部3Cに付着した。一方、硬質粒子4は融点が高い。そのため、レーザー光7aによって溶解されにくいものの、硬質粒子4の炭化タングステンの一部が分解して、タングステンがマトリックス中に溶解した。ノズル7からクラッディング材料6aを供給する際に、クラッディング材料6aのさらに外側から不活性ガス7b(アルゴン)を端部3Cに対して吹き付けた。 Baking of the metal powder onto the end portion 3C was performed using an apparatus as shown in FIG. Specifically, a mixture of Inconel 600 and an iron-containing metal (cladding material 6a) was supplied from the nozzle 7 to the vicinity of the end portion 3C of the base portion 3 from the side of the laser beam 7a. Then, when the cladding material 6a was dissolved, the hard particles 4 were mixed. The cladding material 6a other than the hard particles 4 was melted by the laser beam 7a and adhered to the end portion 3C. On the other hand, the hard particles 4 have a high melting point. Therefore, a part of the tungsten carbide of the hard particles 4 was decomposed and the tungsten was dissolved into the matrix, although it was difficult to dissolve by the laser beam 7a. When the cladding material 6a was supplied from the nozzle 7, an inert gas 7b (argon) was blown onto the end portion 3C from further outside the cladding material 6a.
 このようにして、刃先部を構成する材料であるクラッディング材料6aを溶解させつつ、基体部3の端部3Cに金属結合させることができた。さらに、刃先部に複数の硬質粒子4を分散させることができた。得られた刃物(試料No.1~6)の刃先部を構成している成分の割合を、表1に示す。 In this way, the cladding material 6a, which is the material forming the cutting edge, was melted and was able to be metallically bonded to the end portion 3C of the base portion 3. Furthermore, a plurality of hard particles 4 could be dispersed at the cutting edge. Table 1 shows the proportions of the components constituting the cutting edge of the obtained cutlery (sample Nos. 1 to 6).
 得られた刃物(試料No.1~6)について、刃先部の強度を検証した。具体的には、落下試験で、一定の高さから鉄球を刃先部に自由落下させて刃先部の強度を検証した。刃先部に割れまたは欠けなどの破損が発生しているか否かを、目視で確認した。刃先部に割れまたは欠けなどの破損が発生していなかった場合には「無し」、発生していた場合には「有り」と評価した。結果を表1に示す。 The strength of the cutting edge portion of the obtained cutlery (sample Nos. 1 to 6) was verified. Specifically, in a drop test, an iron ball was dropped freely onto the cutting edge from a certain height to verify the strength of the cutting edge. It was visually confirmed whether there was any damage such as cracks or chips on the cutting edge. If damage such as cracking or chipping did not occur at the cutting edge, it was evaluated as "absent," and if it did, it was evaluated as "present." The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本開示に係る刃物(試料No.1~6)は、刃先部に割れまたは欠けなどの破損が発生していないことがわかる。このように、硬質粒子が存在しないマトリックス領域において、鉄の含有量とタングステンの含有量との質量比(Fe/W)が1以上であり、鉄の含有量が10質量%以上である刃物(試料No.1~6)は、刃先部に割れまたは欠けなどの破損が発生していないことがわかる。 As shown in Table 1, it can be seen that the blades according to the present disclosure (sample Nos. 1 to 6) have no damage such as cracks or chips at the cutting edge. In this way, in the matrix region where there are no hard particles, the mass ratio (Fe/W) between the iron content and the tungsten content is 1 or more, and the iron content is 10% by mass or more ( It can be seen that samples Nos. 1 to 6) have no damage such as cracks or chips at the cutting edge.
 次に、鉄含有金属に含まれる鉄の添加量および硬質粒子4の添加量を、表2に示す添加量に変更した以外は、試料No.1~6の刃物と同様の手順で、刃物(試料No.7~25)を得た。得られた刃物(試料No.7~25)について、刃先部の強度を上記の手順と同様の手順で検証した。結果を表2に示す。 Next, sample No. 1 was prepared, except that the amount of iron contained in the iron-containing metal and the amount of hard particles 4 added were changed to the amounts shown in Table 2. Cutlery (sample Nos. 7 to 25) were obtained using the same procedure as for cutlery Nos. 1 to 6. The strength of the cutting edge portion of the obtained cutlery (sample Nos. 7 to 25) was verified in the same manner as above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本開示に係る刃物(試料No.7~19)は、刃先部に割れまたは欠けなどの破損が発生していないことがわかる。一方、硬質粒子が存在しないマトリックス領域において、鉄の含有量とタングステンの含有量との質量比(Fe/W)が1以下である、または鉄の含有量が10質量%未満である刃物(試料No.20~25)は、刃先部に割れまたは欠けなどの破損が発生していることがわかる。 As shown in Table 2, it can be seen that the blades according to the present disclosure (Samples Nos. 7 to 19) had no damage such as cracks or chips at the cutting edge. On the other hand, in the matrix region where no hard particles exist, the mass ratio of iron content to tungsten content (Fe/W) is 1 or less, or the iron content is less than 10% by mass (sample). Nos. 20 to 25) are found to have damage such as cracks or chips at the cutting edge.
 硬質粒子4が存在しないマトリックス領域において、Feの含有量が10質量%以上となるように鉄含有金属に由来する鉄を添加する場合に、硬質粒子4のWCの添加量は、10質量%以上35質量%以下にすることができる。刃先部2は、WCの添加量を10質量%以上35質量%以下にすると、WCの粒子の含有量が増加して、耐摩耗性が向上する。刃先部2は切れ味が悪くなった場合でも砥ぎやすい。これにより、刃物1は長期間使用することができる。刃先部2は、WCの添加量が10質量%よりも小さくなると、WCの粒子の含有量が低くなり、耐摩耗性が低下しやすくなる。 When adding iron derived from an iron-containing metal so that the Fe content is 10% by mass or more in the matrix region where the hard particles 4 are not present, the amount of WC added in the hard particles 4 is 10% by mass or more. It can be made 35% by mass or less. When the amount of WC added to the cutting edge portion 2 is set to 10% by mass or more and 35% by mass or less, the content of WC particles increases and wear resistance improves. The blade edge portion 2 is easy to sharpen even if it becomes dull. Thereby, the cutter 1 can be used for a long period of time. In the cutting edge portion 2, when the amount of WC added is less than 10% by mass, the content of WC particles becomes low, and the wear resistance tends to decrease.
 刃先部2において、硬質粒子4のWCの含有量は体積%で算出することができる。インコネル600の密度を8.42(g/cm)、SUS410Lの密度を7.74(g/cm)、WCの密度を15.6(g/cm)とする。硬質粒子4のWCの添加量が少ない、例えば、金属粉体(インコネル600+SUS410L):硬質粒子(WC)=95質量%(インコネル600:90質量%+SUS410L:5質量%):5質量%の場合、体積比は、金属粉体:硬質粒子(WC)=11.34(90/8.42+5/7.74):0.32(5/15.6)となり、体積%は、0.32/(11.34+0.32)=0.32/11.64=2.7%となる。ここで、マトリックのWの含有量は、表2より、2.38質量%(試料No.7)であり、Wの溶解量をXとすると、X/(95+X)=0.0238からX=2.32となり、2.32/15.6=0.15体積%が溶解すると推察される。したがって、刃先部2は、WCの硬質粒子4が2.55体積%の割合で含まれることになる。 In the cutting edge portion 2, the content of WC in the hard particles 4 can be calculated in volume %. The density of Inconel 600 is 8.42 (g/cm 3 ), the density of SUS410L is 7.74 (g/cm 3 ), and the density of WC is 15.6 (g/cm 3 ). When the amount of WC added in the hard particles 4 is small, for example, metal powder (Inconel 600 + SUS410L): hard particles (WC) = 95% by mass (Inconel 600: 90% by mass + SUS410L: 5% by mass): 5% by mass, The volume ratio is metal powder: hard particle (WC) = 11.34 (90/8.42 + 5/7.74): 0.32 (5/15.6), and the volume % is 0.32/( 11.34+0.32)=0.32/11.64=2.7%. Here, the content of W in the matrix is 2.38% by mass (sample No. 7) from Table 2, and if the dissolved amount of W is X, then X/(95+X)=0.0238, so X= 2.32, and it is estimated that 2.32/15.6=0.15% by volume is dissolved. Therefore, the cutting edge portion 2 contains the WC hard particles 4 at a ratio of 2.55% by volume.
 硬質粒子4のWCの添加量が多い、例えば、金属粉体(インコネル600+SUS410L):硬質粒子(WC)=60質量%(インコネル600:30質量%+SUS410L:30質量%):40質量%の場合、体積比は、金属粉体:硬質粒子(WC)=7.44(30/8.42+30/7.74):2.56(40/15.6)となり、体積%は、2.56/(7.44+2.56)=2.56/10=25.6%となる。マトリックのWの含有量は、表2より、19質量%(試料No.19)であり、Wの溶解量をXとすると、X/(60+X)=0.19からX=14.1となり、14.1/15.6=0.9体積%が溶解すると推察される。したがって、刃先部2は、WCの硬質粒子が24.7体積%の割合で含まれることなる。 When the amount of WC added in hard particles 4 is large, for example, metal powder (Inconel 600 + SUS410L): hard particles (WC) = 60% by mass (Inconel 600: 30% by mass + SUS410L: 30% by mass): 40% by mass, The volume ratio is metal powder: hard particle (WC) = 7.44 (30/8.42 + 30/7.74): 2.56 (40/15.6), and the volume % is 2.56/( 7.44+2.56)=2.56/10=25.6%. From Table 2, the W content of the matrix is 19% by mass (sample No. 19), and if the dissolved amount of W is X, then X/(60+X) = 0.19, so X = 14.1. It is estimated that 14.1/15.6=0.9% by volume is dissolved. Therefore, the cutting edge portion 2 contains 24.7% by volume of WC hard particles.
 以上、本開示の実施形態について説明した。しかし、本開示に係る実施形態は上述の実施形態に限定されるものではなく、下記の(1)に示す本開示の範囲内で種々の変更および改良が可能である。 The embodiments of the present disclosure have been described above. However, the embodiments according to the present disclosure are not limited to the above-described embodiments, and various changes and improvements can be made within the scope of the present disclosure shown in (1) below.
 (1)本開示に係る刃物は、基体部と、基体部に繋がり基体部に沿って位置する刃先部とを有する刀身を備える。基体部は、第1金属を含み、刃先部は、第2金属と、第2金属よりも高い硬度を有する複数の硬質粒子とを含む。硬質粒子は、炭化タングステンを含む。第2金属が、少なくともニッケルとクロムと鉄とを含む。刃先部は、硬質粒子が存在しないマトリックス領域における鉄の含有量が10質量%以上であり、かつ鉄の含有量とタングステンの含有量との質量比(Fe/W)が1以上である。 (1) A cutlery according to the present disclosure includes a blade having a base portion and a cutting edge portion connected to the base portion and located along the base portion. The base portion includes a first metal, and the cutting edge portion includes a second metal and a plurality of hard particles having a higher hardness than the second metal. The hard particles include tungsten carbide. The second metal includes at least nickel, chromium, and iron. In the cutting edge portion, the iron content in the matrix region where no hard particles are present is 10% by mass or more, and the mass ratio of the iron content to the tungsten content (Fe/W) is 1 or more.
 本開示の実施形態に関し、以下の(2)~(9)に示す実施形態をさらに開示する。 Regarding the embodiments of the present disclosure, embodiments shown in (2) to (9) below are further disclosed.
 (2)上記(1)に記載の刃物において、第2金属は、第1金属よりも低い硬度を有する金属を含む。
 (3)上記(1)または(2)に記載の刃物において、硬質粒子は、角ばった多面体形状を有する硬質粒子を含む。
 (4)上記(1)~(3)のいずれかに記載の刃物において、硬質粒子は、第1金属よりも高い硬度を有する材料を含む。
 (5)上記(1)~(4)のいずれかに記載の刃物において、刃先部は、硬質粒子を2体積%以上25体積%以下の割合で含む。
 (6)上記(1)~(5)のいずれかに記載の刃物において、刃先部は、硬質粒子が存在しないマトリックス領域におけるタングステンの含有量が、15質量%以下である。
 (7)上記(1)~(6)のいずれかに記載の刃物において、刃先部は、刃先と、刃先の両側に位置する一対の側面とを有し、硬質粒子のうちの少なくとも1つが、側面から露出している。
 (8)上記(1)~(7)のいずれかに記載の刃物において、硬質粒子のうちの少なくとも1つが、刃先から露出している。
 (9)上記(1)~(8)のいずれかに記載の刃物において、硬質粒子のうちの少なくとも1つが凹部を有し、凹部を有する硬質粒子のうちの少なくとも1つにおいて、凹部が刃先部の表面から露出している。
(2) In the cutlery described in (1) above, the second metal includes a metal having a lower hardness than the first metal.
(3) In the cutlery described in (1) or (2) above, the hard particles include hard particles having an angular polyhedral shape.
(4) In the cutlery according to any one of (1) to (3) above, the hard particles include a material having a higher hardness than the first metal.
(5) In the cutlery according to any one of (1) to (4) above, the cutting edge portion contains hard particles in a proportion of 2% by volume or more and 25% by volume or less.
(6) In the cutter according to any one of (1) to (5) above, the tungsten content in the matrix region in which no hard particles are present in the cutting edge portion is 15% by mass or less.
(7) In the cutler according to any one of (1) to (6) above, the cutting edge portion has a cutting edge and a pair of side surfaces located on both sides of the cutting edge, and at least one of the hard particles is exposed from the side.
(8) In the cutter according to any one of (1) to (7) above, at least one of the hard particles is exposed from the cutting edge.
(9) In the cutter according to any one of (1) to (8) above, at least one of the hard particles has a recess, and in at least one of the hard particles having the recess, the recess is located at the cutting edge. exposed from the surface.
 1  刃物
 1a 刀身
 1b 柄
 2  刃先部
 2a 第2金属
 2A 刃先
 2c 側面
 3  基体部
 31 露出部
 32 中子
 32a 孔部
 3A 背部
 3C 端部
 4  硬質粒子
 4a 凹部
 6  刃部材
 6a クラッディング材料
 7 ノズル
 7a レーザー光
 7b 不活性ガス
1 Knife 1a Blade 1b Handle 2 Cutting edge 2a Second metal 2A Cutting edge 2c Side 3 Base 31 Exposed part 32 Core 32a Hole 3A Back 3C End 4 Hard particle 4a Recess 6 Blade member 6a Cladding material 7 Nozzle 7a Laser Light 7b Inert gas

Claims (9)

  1.  基体部と、
     該基体部に繋がり前記基体部に沿って位置する刃先部と、
    を有する刀身を備え、
     前記基体部は、第1金属を含み、
     前記刃先部は、第2金属と、該第2金属よりも高い硬度を有する複数の硬質粒子とを含み、
     前記硬質粒子が、炭化タングステンを含み、
     前記第2金属が、少なくともニッケルとクロムと鉄とを含み、
     前記刃先部は、前記硬質粒子が存在しないマトリックス領域における鉄の含有量が10質量%以上であり、かつ鉄の含有量とタングステンの含有量との質量比(Fe/W)が1以上である、
    刃物
    a base portion;
    a cutting edge portion connected to the base portion and located along the base portion;
    Equipped with a blade that has
    The base portion includes a first metal,
    The cutting edge portion includes a second metal and a plurality of hard particles having a higher hardness than the second metal,
    the hard particles include tungsten carbide,
    The second metal includes at least nickel, chromium, and iron,
    In the cutting edge portion, the iron content in the matrix region where the hard particles are not present is 10% by mass or more, and the mass ratio of the iron content to the tungsten content (Fe/W) is 1 or more. ,
    cutlery
  2.  前記第2金属は、前記第1金属よりも低い硬度を有する金属を含む、請求項1に記載の刃物。 The cutlery according to claim 1, wherein the second metal includes a metal having a lower hardness than the first metal.
  3.  前記硬質粒子は、角ばった多面体形状を有する硬質粒子を含む、請求項1または2に記載の刃物。 The cutlery according to claim 1 or 2, wherein the hard particles include hard particles having an angular polyhedral shape.
  4.  前記硬質粒子は、前記第1金属よりも高い硬度を有する材料を含む、請求項1~3のいずれかに記載の刃物。 The cutlery according to any one of claims 1 to 3, wherein the hard particles include a material having a higher hardness than the first metal.
  5.  前記刃先部は、前記硬質粒子を2体積%以上25体積%以下の割合で含む、請求項1~4のいずれかに記載の刃物。 The cutter according to any one of claims 1 to 4, wherein the cutting edge portion contains the hard particles in a proportion of 2% by volume or more and 25% by volume or less.
  6.  前記刃先部は、前記硬質粒子が存在しないマトリックス領域におけるタングステンの含有量が、15質量%以下である、請求項1~5のいずれかに記載の刃物。 The cutter according to any one of claims 1 to 5, wherein the cutting edge portion has a tungsten content of 15% by mass or less in a matrix region where the hard particles are not present.
  7.  前記刃先部は、刃先と、該刃先の両側に位置する一対の側面とを有し、前記硬質粒子のうちの少なくとも1つが、前記側面から露出している、請求項1~6のいずれかに記載の刃物。 The cutting edge portion has a cutting edge and a pair of side surfaces located on both sides of the cutting edge, and at least one of the hard particles is exposed from the side surfaces. The knife mentioned.
  8.  前記硬質粒子のうちの少なくとも1つが、前記刃先から露出している、請求項1~7のいずれかに記載の刃物。 The cutter according to any one of claims 1 to 7, wherein at least one of the hard particles is exposed from the cutting edge.
  9.  前記硬質粒子のうちの少なくとも1つが凹部を有し、該凹部を有する硬質粒子のうちの少なくとも1つにおいて、前記凹部が刃先部の表面から露出している、請求項1~8のいずれかに記載の刃物。 Any one of claims 1 to 8, wherein at least one of the hard particles has a recess, and in at least one of the hard particles having the recess, the recess is exposed from the surface of a cutting edge. The knife mentioned.
PCT/JP2023/026687 2022-07-21 2023-07-20 Knife WO2024019129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022116163 2022-07-21
JP2022-116163 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024019129A1 true WO2024019129A1 (en) 2024-01-25

Family

ID=89617907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026687 WO2024019129A1 (en) 2022-07-21 2023-07-20 Knife

Country Status (1)

Country Link
WO (1) WO2024019129A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060090603A1 (en) * 2004-09-24 2006-05-04 Kai U.S.A., Ltd., Dba Kershaw Knives Knife blade manufacturing process
JP2013154599A (en) * 2012-01-31 2013-08-15 Toyo Kohan Co Ltd Mold part, material for mold part, and method for manufacturing these items
JP2016041853A (en) * 2015-11-04 2016-03-31 住友電工ハードメタル株式会社 Cemented carbide, micro-drill and method for producing cemented carbide
JP2018008074A (en) * 2015-06-22 2018-01-18 京セラ株式会社 Cutter
WO2021081143A1 (en) * 2019-10-22 2021-04-29 Milwaukee Electric Tool Corporation Cladded tool and method of making a cladded tool
JP2022100186A (en) * 2020-12-23 2022-07-05 日本特殊陶業株式会社 Cutter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060090603A1 (en) * 2004-09-24 2006-05-04 Kai U.S.A., Ltd., Dba Kershaw Knives Knife blade manufacturing process
JP2013154599A (en) * 2012-01-31 2013-08-15 Toyo Kohan Co Ltd Mold part, material for mold part, and method for manufacturing these items
JP2018008074A (en) * 2015-06-22 2018-01-18 京セラ株式会社 Cutter
JP2016041853A (en) * 2015-11-04 2016-03-31 住友電工ハードメタル株式会社 Cemented carbide, micro-drill and method for producing cemented carbide
WO2021081143A1 (en) * 2019-10-22 2021-04-29 Milwaukee Electric Tool Corporation Cladded tool and method of making a cladded tool
JP2022100186A (en) * 2020-12-23 2022-07-05 日本特殊陶業株式会社 Cutter

Similar Documents

Publication Publication Date Title
JP6774716B2 (en) Cutlery
JP6953674B2 (en) Cemented Carbide and Cutting Tools
JP2006316309A (en) High wear resistant tough steel having excellent fatigue strength
EP2567770A1 (en) Brazing bond type diamond tool with excellent cuttability and method of manufacturing the same
CN108883469A (en) The Surface hardened layer of cemented carbide body
WO2024019129A1 (en) Knife
KR102006486B1 (en) Cutting tool
US6447569B1 (en) Diamond containing edge material
US6129953A (en) Process for coating a titanium golf club head and manufacture of titanium inserts
US20060185254A1 (en) Titanium coated diamond containing edge material and method for manufacturing the same
CN115464689A (en) Tool and method of manufacturing a tool
WO2022210604A1 (en) Cutting tool
US6892490B2 (en) Fishing hook
JP2018016875A (en) Composite member and cutting tool composed of the same
WO2021002416A1 (en) Kitchen knife and blade
RU2424875C2 (en) Hard-alloy tip and method of its production
US20240181546A1 (en) Reciprocating Saw Blade Having Teeth Formed of a Cemented Ceramic Material Welded to the Body of the Blade
JP4694227B2 (en) Continuous casting mold
JP2764659B2 (en) Stainless steel with uniform structure
KR100542814B1 (en) High toughness TiCN-based cermet for cutting tools and manufacturing method thereof
US20090087269A1 (en) Cutting tool
JP2024515501A (en) Tool and manufacturing method thereof
CN117324639A (en) Nickel-copper-based diamond composite material and electron beam additive manufacturing process and application thereof
JP2023134936A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy
JP2020020047A (en) Cermet and cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843052

Country of ref document: EP

Kind code of ref document: A1