WO2024018983A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2024018983A1
WO2024018983A1 PCT/JP2023/025837 JP2023025837W WO2024018983A1 WO 2024018983 A1 WO2024018983 A1 WO 2024018983A1 JP 2023025837 W JP2023025837 W JP 2023025837W WO 2024018983 A1 WO2024018983 A1 WO 2024018983A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
heat exchanger
flat tube
fin
water
Prior art date
Application number
PCT/JP2023/025837
Other languages
French (fr)
Japanese (ja)
Inventor
文 奥野
健 佐藤
智己 廣川
透 安東
晨 鄭
賢吾 内田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024018983A1 publication Critical patent/WO2024018983A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus

Definitions

  • the fins of the heat exchanger disclosed in Patent Document 1 have water guiding regions arranged above and below each of the plurality of flat tubes, and a drainage region arranged on one side of each of the plurality of flat tubes.
  • the water guiding region has a water guiding structure that guides water to the drainage region, and the drainage region has a drainage structure that guides water in the direction of gravity.
  • Patent Document 1 the water generated around the flat pipe is drawn into the water guiding area and then transported to the drainage area. Since the water is drained in two stages, it takes time to drain the water.
  • the heat exchanger of the first aspect includes a plurality of flat tubes and fins.
  • the flat tubes are arranged in the first direction.
  • the fins are joined to the flat tube.
  • the heat exchanger performs heat exchange between the refrigerant flowing inside the flat tube and the air flowing outside the flat tube along a second direction intersecting the first direction.
  • the fin has a first joint portion and a first plate portion.
  • the first joint portion is joined to the first flat tube.
  • the first plate is located between the downstream end of the airflow and the first junction.
  • a first protrusion for flowing water in a first direction near the first flat tube is formed on the first plate.
  • the first protrusion allows water near the first flat tube to flow in the first direction. Therefore, it is possible to reduce the time required to drain water in the vicinity of the flat tube adhering to the fins in the first direction.
  • the heat exchanger of the second aspect is the heat exchanger of the first aspect, and the first protrusion extends in the first direction.
  • the first protrusion extends in the first direction, water can be carried along the first protrusion. Therefore, it is possible to further reduce the time required to drain water in the vicinity of the flat tube adhering to the fins in the first direction.
  • the heat exchanger according to the third aspect is the heat exchanger according to the first aspect or the second aspect, and the distance in the second direction between the downstream end of the air flow of the first flat tube and the first protrusion is , is smaller than the distance in the second direction between the airflow downstream end of the fin and the first protrusion.
  • the first protrusion is arranged on the upstream side close to the flat tubes in the first plate part, it is possible to suppress water from flying away from the heat exchanger.
  • the heat exchanger according to the fourth aspect is the heat exchanger according to any one of the first to third aspects, and the fin further includes a second joint portion and a second plate portion.
  • the second joint portion is joined to the first flat tube and a second flat tube adjacent to the first flat tube in the first direction.
  • the second plate portion is located between the first joint portion and the second joint portion.
  • a second protrusion extending in a direction inclined with respect to the first direction and the second direction is formed on the second plate portion.
  • water between the first flat tube and the second flat tube can be drained by the second protrusion.
  • the heat exchanger according to the fifth aspect is the heat exchanger according to the fourth aspect, and the first protrusion extends in the vertical direction.
  • the second protrusion extends obliquely downward from near the downstream portion of the first flat tube in the air flow.
  • the second protrusion allows water on the downstream side below the first flat tube to flow downward.
  • the heat exchanger according to the sixth aspect is the heat exchanger according to the fourth aspect, and the first protrusion extends in the vertical direction.
  • the second protrusion extends diagonally downward from near the upstream portion of the first flat tube in the air flow direction.
  • the second protrusion allows water on the upstream side below the first flat tube to flow downward.
  • the heat exchanger according to the seventh aspect is the heat exchanger according to any one of the first to sixth aspects, wherein the fin includes a second joint, a second plate, and a third plate. It also has.
  • the second joint portion is joined to the first flat tube and a second flat tube adjacent to the first flat tube in the first direction.
  • the second plate portion is located between the first joint portion and the second joint portion.
  • the third plate is located between the downstream end of the airflow and the second plate.
  • a third protrusion that is continuous with the first protrusion is formed in the third plate part.
  • the first protrusion and the third protrusion allow water near the first flat tube to flow in the first direction to the second flat tube.
  • the heat exchanger according to the eighth aspect is the heat exchanger according to any one of the first to seventh aspects, and the fin further includes a second joint portion and a second plate portion.
  • the second joint portion is joined to the first flat tube and a second flat tube adjacent to the first flat tube in the first direction.
  • the second plate portion is located between the first joint portion and the second joint portion. A notch for promoting heat transfer is formed in the second plate portion.
  • the cutouts can promote heat transfer between the air and the fins.
  • the heat exchanger according to the ninth aspect is the heat exchanger according to any one of the first to eighth aspects, and a plurality of fins are arranged in the direction in which the flat tube extends.
  • the fin pitch of the fins is 1.2 mm or more and 1.4 mm or less.
  • the height of the first protrusion is 0.1 mm or more and 0.6 mm or less.
  • the heat exchanger according to the ninth aspect in a heat exchanger in which a plurality of fins are stacked, it is possible to easily reduce the time for draining water in the first direction by the first protrusion.
  • the heat exchanger according to the tenth aspect is the heat exchanger according to any one of the first to ninth aspects, and is included in the indoor unit of the air conditioner.
  • the heat exchanger of the tenth aspect can be applied to a heat exchanger of an indoor unit of an air conditioner.
  • FIG. 1 is a schematic configuration diagram of an air conditioner including a heat exchanger according to an embodiment of the present disclosure.
  • FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view of a heat exchanger according to an embodiment of the present disclosure. It is an enlarged view of the fin which constitutes a heat exchanger. It is a diagram for explaining the flow of water. It is an enlarged view of the fin which constitutes the heat exchanger concerning a modification. It is an enlarged view of the fin which comprises the heat exchanger based on another modification.
  • Air conditioner 200 An air conditioner including a heat exchanger according to an embodiment of the present disclosure will be described with reference to FIG. 1.
  • the air conditioner 200 is a device used for heating and cooling indoor rooms such as buildings by performing vapor compression type refrigeration cycle operation.
  • the air conditioner 200 mainly includes an outdoor unit 220, an indoor unit 230, and a liquid refrigerant communication pipe 240 and a gas refrigerant communication pipe 250 that connect the outdoor unit 220 and the indoor unit 230.
  • the vapor compression type refrigerant circuit 210 of the air conditioner 200 is configured by connecting an outdoor unit 220 and an indoor unit 230 via a liquid refrigerant communication pipe 240 and a gas refrigerant communication pipe 250.
  • Outdoor unit 220 is installed outdoors.
  • the outdoor unit 220 mainly includes a compressor 221, a flow path switching mechanism 222, an outdoor heat exchanger 223, and an expansion mechanism 224.
  • the compressor 221 is a mechanism that compresses the low pressure refrigerant in the refrigeration cycle until it becomes high pressure.
  • the flow path switching mechanism 222 is a mechanism that switches the direction of refrigerant flow when switching between cooling operation and heating operation. During cooling operation, the flow path switching mechanism 222 connects the discharge side of the compressor 221 to the gas side of the outdoor heat exchanger 223, and connects the gas side of the indoor heat exchanger 231 (described later) via the gas refrigerant communication pipe 250. and the suction side of the compressor 221 (see the solid line of the flow path switching mechanism 222 in FIG. 1). Further, during heating operation, the flow path switching mechanism 222 connects the discharge side of the compressor 221 and the gas side of the indoor heat exchanger 231 via the gas refrigerant communication pipe 250, and also connects the gas side of the outdoor heat exchanger 223. and the suction side of the compressor 221 (see the broken line of the flow path switching mechanism 222 in FIG. 1).
  • the outdoor heat exchanger 223 is a heat exchanger that functions as a radiator for refrigerant during cooling operation and as an evaporator for refrigerant during heating operation.
  • the outdoor heat exchanger 223 has its liquid side connected to the expansion mechanism 224 and its gas side connected to the flow path switching mechanism 222.
  • the expansion mechanism 224 reduces the pressure of the high-pressure liquid refrigerant that has radiated heat in the outdoor heat exchanger 223 before sending it to the indoor heat exchanger 231, and during heating operation, it reduces the pressure of the high-pressure liquid refrigerant that has radiated heat in the indoor heat exchanger 231 to the outside. This is a mechanism that reduces the pressure before sending it to the heat exchanger 223.
  • the outdoor unit 220 is provided with an outdoor fan 225 for sucking outdoor air into the outdoor unit 220, supplying the outdoor air to the outdoor heat exchanger 223, and then discharging it outside the outdoor unit 220. .
  • the indoor unit 230 is installed indoors.
  • the indoor unit 230 mainly includes an indoor heat exchanger 231 and an indoor fan 232.
  • the indoor heat exchanger 231 is a heat exchanger that functions as a refrigerant evaporator during cooling operation and as a refrigerant radiator during heating operation.
  • the indoor heat exchanger 231 has a liquid side connected to a liquid refrigerant communication pipe 240 and a gas side connected to a gas refrigerant communication pipe 250.
  • the indoor unit 230 is provided with an indoor fan 232 for sucking indoor air into the indoor unit 230, supplying the indoor air to the indoor heat exchanger 231, and then discharging it outside the indoor unit 230. .
  • the low-pressure refrigerant whose pressure has been reduced in the expansion mechanism 224 is sent to the indoor heat exchanger 231 through the liquid refrigerant communication pipe 240.
  • the low-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with indoor air supplied by the indoor fan 232 in the indoor heat exchanger 231 and evaporates. As a result, the indoor air is cooled and blown into the room.
  • the low-pressure refrigerant evaporated in the indoor heat exchanger 231 is sucked into the compressor 221 again through the gas refrigerant communication pipe 250 and the flow path switching mechanism 222.
  • (1-3-2) Heating Operation When the air conditioner 200 performs a heating operation, the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 221, compressed to the high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure refrigerant discharged from the compressor 221 is sent to the indoor heat exchanger 231 through the flow path switching mechanism 222 and the gas refrigerant communication pipe 250.
  • the high-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with indoor air supplied by the indoor fan 232 in the indoor heat exchanger 231 and radiates heat. As a result, indoor air is heated and blown into the room.
  • the high-pressure refrigerant that has radiated heat in the indoor heat exchanger 231 is sent to the expansion mechanism 224 through the liquid refrigerant communication pipe 240 and is reduced in pressure to a low pressure in the refrigeration cycle.
  • the low-pressure refrigerant whose pressure has been reduced in the expansion mechanism 224 is sent to the outdoor heat exchanger 223.
  • the low-pressure refrigerant sent to the outdoor heat exchanger 223 exchanges heat with outdoor air supplied by the indoor fan 232 in the outdoor heat exchanger 223 and evaporates.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 223 is sucked into the compressor 221 again through the flow path switching mechanism 222 .
  • Heat Exchanger (2-1) Overall Configuration A heat exchanger 10 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 5.
  • the heat exchanger 10 of this embodiment is included in the indoor unit 230 of the air conditioner 200 in FIG.
  • the heat exchanger 10 is the indoor heat exchanger 231 shown in FIG.
  • the heat exchanger 10 includes a plurality of flat tubes 20 and a plurality of fins 30.
  • the flat tubes 20 are arranged in the first direction.
  • the fins 30 are joined to the flat tube 20.
  • the heat exchanger 10 performs heat exchange between the refrigerant flowing inside the flat tube 20 and the air flowing outside the flat tube 20.
  • the heat exchanger 10 allows heat exchange between air and refrigerant without mixing them with each other.
  • the first direction here is the vertical direction.
  • the second direction is orthogonal to the first direction. Specifically, the second direction is the left-right direction. Further, as shown in FIGS. 2 to 5, the air flow is from left to right. In other words, the left side is the upstream side of the air flow, and the right side is the downstream side of the air flow.
  • the plurality of flat tubes 20 are arranged parallel to each other at intervals in the first direction.
  • the flat tube 20 extends in the third direction, as shown in FIG.
  • the third direction intersects the first direction and the second direction.
  • the third direction here is orthogonal to the first direction and the second direction. Specifically, the third direction is the front-back direction.
  • the cross-sectional shape of the flat tube 20 is a flat oval or a rectangle with rounded corners.
  • the length (width) of the flat tube 20 in the second direction is longer than the length (thickness) of the flat tube 20 in the first direction.
  • the flat tube 20 is made of aluminum or aluminum alloy, for example.
  • the flat tube 20 is a heat transfer tube through which a refrigerant flows.
  • a plurality of through holes 21 are formed in the flat tube 20 in a line in the second direction, through which the refrigerant to be heat exchanged with the air in the heat exchanger 10 passes.
  • the plurality of through holes penetrate along the third direction.
  • (2-2-2) Fin The fin 30 is joined to the plurality of flat tubes 20.
  • the flat tube 20 and the fins 30 are joined to each other by brazing.
  • the fins 30 increase the heat transfer area between the flat tube 20 and the air and promote heat exchange between the refrigerant and the air.
  • the plurality of fins 30 are arranged parallel to each other at intervals in the third direction.
  • the fins 30 extend in the first direction.
  • the fins 30 are arranged to intersect (perpendicularly here) to the extending direction of the flat tube 20.
  • the plurality of fins 30 are arranged in parallel and at equal intervals.
  • the plurality of fins 30 are arranged in the third direction at a predetermined fin pitch P.
  • the fin pitch P of this embodiment is 1.2 mm or more and 1.4 mm or less.
  • the fin 30 has a flat plate shape.
  • the fins 30 are formed by press working or the like.
  • the fins 30 are made of aluminum or aluminum alloy, for example.
  • the fins 30 are formed with a plurality of insertion portions 31 through which the flat tubes 20 are passed.
  • the insertion portion 31 is cut out in the second direction from the upstream end 30a of the air flow toward the downstream end 30b.
  • the plurality of insertion portions 31 are lined up at intervals in the first direction.
  • the fin 30 has a first joint 32 , a first plate 33 , a second joint 34 , a second plate 35 , and a third plate 36 .
  • first flat tube 20a the flat tube 20 located on the upper side
  • second flat tube 20b the flat tube 20 located on the lower side
  • the first flat tube 20a and the second flat tube 20b are adjacent to each other in the first direction.
  • the first joint 32 is joined to the first flat tube 20a.
  • the first joint portion 32 is U-shaped in cross-sectional view.
  • the first joint portion 32 of this embodiment is a collar portion. Specifically, the first joint portion 32 rises in the third direction from the insertion portion 31 on one surface (front surface) of the fin 30 toward the other surface (back surface) of the adjacent fin 30 .
  • the first plate portion 33 is located between the downstream end 30b of the air flow and the first joint portion 32.
  • the first plate portion 33 is continuous with the first joint portion 32 .
  • a first protrusion 133 and a rib 134 are formed on the first plate portion 33 .
  • the first protrusion 133 allows water to flow in the first direction near the first flat tube 20a.
  • the first protrusion 133 is a water guiding rib that causes water near the first flat tube 20a to flow in the first direction.
  • the distance L1 in the second direction between the airflow downstream end 120a of the first flat tube 20a and the first protrusion 133 is the same as the distance L1 between the airflow downstream end 30b of the fin 30 and the first protrusion 133.
  • the distance L2 in the second direction from the first protrusion 133 is smaller than the distance L2 in the second direction.
  • the distance L1 is preferably 1/3 or less of the distance L2, and more preferably 1/5 or less of the distance L2.
  • the first protrusion 133 extends in the first direction. In FIGS. 3 to 5, the first protrusion 133 extends in the vertical direction. The first protrusion 133 of this embodiment extends in the direction of gravity. Therefore, the first protrusion 133 of this embodiment causes water to flow downward under its own weight near the downstream side of the first joint 32 joined to the first flat tube 20a.
  • the height of the first protrusion 133 is not particularly limited, but is, for example, 0.1 mm or more and 0.6 mm or less. Note that the height is the distance from one surface of the fin 30 to the other surface of the adjacent fin 30 (distance in the third direction).
  • the ribs 134 are ribs for promoting heat transfer.
  • the ribs 134 protrude from one surface toward the other surfaces of the adjacent fins 30.
  • the rib 134 has a rectangular shape in cross-sectional view. 3 to 5, the length (width) of the rib 134 in the second direction is greater than the length (width) of the first protrusion 133 in the second direction.
  • the second joint portion 34 is joined to the second flat tube 20b.
  • the second joint 34 has the same shape as the first joint 32.
  • the second plate part 35 is located between the first joint part 32 and the second joint part 34.
  • the second plate portion 35 is continuous with the first joint portion 32 and the second joint portion 34 .
  • a second protrusion 135 and a notch 37 are formed in the second plate portion 35 .
  • the second protrusion 135 extends in a direction inclined with respect to the first direction and the second direction. In FIGS. 3 to 5, the second protrusion 135 extends from the upper end of the second plate 35 toward the lower right.
  • the second protrusion 135 is a water guiding rib that drains water between the first flat tube 20a and the second flat tube 20b.
  • the second protrusion 135 of this embodiment extends obliquely downward from near the downstream portion of the air flow of the first flat tube 20a. Specifically, the second protrusion 135 extends from near the downstream end 120a toward the downstream side of the air flow so as to be connected to the third protrusion 136. Therefore, the second protrusion 135 here is a water guiding rib that drains water near the downstream part of the air flow between the first flat tube 20a and the second flat tube 20b to the lower right. .
  • a distance L3 in the second direction between the air flow downstream end 120a of the first flat tube 20a and one end in the second direction (the left end in FIG. 4) of the second protrusion 135 is It is smaller than the distance L4 in the second direction between the upstream end 30a of the air flow of No. 30 and one end (the left end in FIG. 4) of the second protrusion 135 in the second direction.
  • the distance L3 is preferably 1/3 or less of the distance L4, and more preferably 1/5 or less of the distance L4.
  • the height of the second protrusion 135 may be the same as the height of the first protrusion 133, may be lower, or may be higher.
  • the height of the second protrusion 135 is, for example, 0.1 mm or more and 0.6 mm or less.
  • the cutout 37 is a cutout 37 for promoting heat transfer.
  • a plurality of notches 37 (three in FIG. 3) are arranged in the second direction. Moreover, the notch 37 extends in the first direction. Here, the notch 37 is recessed from the other side toward one side of the adjacent fins 30.
  • the third plate part 36 is located between the downstream end 30b of the air flow and the second plate part 35.
  • the third plate part 36 is continuous with the first plate part 33 and the second plate part 35.
  • a third protrusion 136 that is continuous with the first protrusion 133 is formed on the third plate portion 36 .
  • the third protrusion 136 is a water guiding rib that allows water from the first protrusion 133 to flow in the first direction.
  • the third protrusion 136 extends in the first direction. In FIGS. 3-5, the third protrusion 136 extends in the vertical direction. The third protrusion 136 of this embodiment extends in the direction of gravity. Therefore, the third protrusion 136 of this embodiment causes water from the first protrusion 133 to flow downward.
  • the position of the third protrusion 136 in the second direction is the same as that of the first protrusion 133.
  • the first protrusion 133 and the third protrusion 136 are linearly continuous in the vertical direction.
  • the height of the third protrusion 136 may be the same as the height of the first protrusion 133, may be lower, or may be higher. Here, the height of the third protrusion 136 is the same as that of the first protrusion 133.
  • the fins 30 of this embodiment do not have a shape that prevents the first protrusion 133, the second protrusion 135, and the third protrusion 136 from introducing water.
  • FIG. 3 shows the region of the fin 30 that is joined to the first flat tube 20a and the second flat tube 20b, as shown in FIG. 2, the fin 30 of this embodiment has three or more It is joined to the flat tube 20 of.
  • a continuous linear rib between the first protrusion 133 and the third protrusion 136 extends from the upper end to the lower end of the fin 30.
  • water W as condensed water adhering to the upper part of the first flat tube 20a moves along the first joint 32. Specifically, the water W moves in an arc shape along the curved portion of the first protrusion 133.
  • the water that has moved along the first protrusion 133 and the water W that has adhered to the lower part of the first flat tube 20a is moved along the second protrusion 135 in the first direction and the second direction. It moves in a direction that is inclined to the opposite direction (lower right side in FIG. 5).
  • the water W moves in the first direction (downward in FIG. 5) along the third protrusion 136 that is connected to the second protrusion 135 and continuous with the first protrusion 133.
  • the water W generated around the first flat tube 20a is drawn directly into the first protrusion 133 and the second protrusion 135 and drained downward along the third protrusion 136. ing. In other words, the water W is drained downward by being transmitted through the first protrusion 133, the second protrusion 135, and the third protrusion 136. Therefore, it is possible to prevent the water W generated around the first flat tube 20a from getting caught on the way, and the speed of drainage can be increased.
  • the water W may be lower than the first protrusion in FIG.
  • the water may flow to the left of the protrusion 133 and the third protrusion 136 in some cases.
  • the water W mainly flows into the first protrusion 133 and the third protrusion 136. It flows on the right side of the protrusion 136.
  • the water W mainly flows to the first protrusion. 133 and the left side of the third protrusion 136 .
  • the heat exchanger 10 includes a plurality of flat tubes 20 and fins 30.
  • the flat tubes 20 are arranged in the first direction.
  • the fins 30 are joined to the flat tube 20.
  • the heat exchanger 10 performs heat exchange between the refrigerant flowing inside the flat tube 20 and the air flowing outside the flat tube 20 along a second direction intersecting the first direction.
  • the fin 30 has a first joint portion 32 and a first plate portion 33.
  • the first joint portion 32 is joined to the first flat tube 20a.
  • the first plate portion 33 is located between the downstream end 30b of the air flow and the first joint portion 32.
  • a first protrusion 133 is formed on the first plate portion 33 to allow water to flow in a first direction near the first flat tube 20a.
  • the first protrusion 133 allows the water W near the first flat tube 20a to flow in the first direction. Therefore, it is possible to reduce the time required to drain water in the vicinity of the first flat tube 20a attached to the fin 30 in the first direction.
  • the water generated around the first flat tubes 20a is not carried to the downstream end 30b of the air flow of the fins 30, and the water generated around the first flat tubes 20a is not transported to the downstream end 30b of the air flow of the fins 30. Drain water using the protrusion 133 of No. 1. Therefore, water can be prevented from flying away from the fins 30.
  • the first protrusion 133 extends in the first direction. Therefore, water W can be carried along the first protrusion 133. Therefore, the time for draining the water W near the first flat tube 20a adhering to the fin 30 in the first direction can be further reduced.
  • the distance L1 in the second direction between the air flow downstream end 120a of the first flat tube 20a and the first protrusion 133 is the distance L1 between the air flow downstream end 30b of the fin 30. is smaller than the distance L2 from the first protrusion 133 in the second direction.
  • the first protruding portion 133 is arranged near the first flat tube 20a and on the upstream side of the air flow. For this reason, it is possible to further suppress water from flying away from the heat exchanger 10.
  • the fins 30 further include a second joint portion 34 and a second plate portion 35.
  • the second joint 34 is joined to the first flat tube 20a and the second flat tube 20b adjacent in the first direction.
  • the second plate portion 35 is located between the first joint portion 32 and the second joint portion 34.
  • a second protrusion 135 is formed on the second plate portion 35 and extends in a direction inclined with respect to the first direction and the second direction.
  • the second protrusion 135 can drain water W between the first flat tube 20a and the second flat tube 20b.
  • the first protrusion 133 extends in the vertical direction.
  • the second protruding portion 135 extends obliquely downward from near the downstream portion of the air flow of the first flat tube 20a.
  • the second protrusion 135 allows the water W below and downstream of the first flat tube 20a to flow downward.
  • the fins 30 further include a second joint portion 34, a second plate portion 35, and a third plate portion 36.
  • the second joint 34 is joined to the first flat tube 20a and the second flat tube 20b adjacent in the first direction.
  • the second plate portion 35 is located between the first joint portion 32 and the second joint portion 34.
  • the third plate part 36 is located between the downstream end 30b of the air flow and the second plate part 35.
  • a third protrusion 136 that is continuous with the first protrusion 133 is formed on the third plate portion 36 .
  • first protrusion 133 and the third protrusion 136 allow water W near the first flat tube 20a to flow in the first direction to the second flat tube 20b.
  • the second protrusion 135 guides the water W below and downstream of the first flat tube 20a to the third protrusion 136, and the third protrusion 136 allows the water to flow further downward. can.
  • the fins 30 further include a second joint portion 34 and a second plate portion 35.
  • the second joint 34 is joined to the first flat tube 20a and the second flat tube 20b adjacent in the first direction.
  • the second plate portion 35 is located between the first joint portion 32 and the second joint portion 34.
  • a notch 37 for promoting heat transfer is formed in the second plate portion 35 .
  • the notches 37 can promote heat transfer between the air and the fins 30. Thereby, heat exchange between the refrigerant flowing inside the flat tube 20 and the air flowing outside the fins 30 can be promoted.
  • a plurality of fins 30 are lined up in the direction in which the flat tubes 20 extend.
  • the fin pitch P of the fins 30 is 1.2 mm or more and 1.4 mm or less.
  • the height of the first protrusion 133 is 0.1 mm or more and 0.6 mm or less.
  • the heat exchanger 10 of this embodiment is included in the indoor unit 230 of the air conditioner 200.
  • the heat exchanger 10 of this embodiment can be applied to the indoor unit 230 of the air conditioner 200.
  • the heat exchanger 10 of this embodiment can reduce the time for draining water and can suppress water from flying off the fins 30, so it is suitably used in the indoor heat exchanger 231 placed indoors.
  • the second protrusion 135 extends obliquely downward from near the downstream portion of the air flow of the first flat tube 20a, but is not limited thereto.
  • the second protrusion 135 extends diagonally downward from the vicinity of the air flow upstream portion 120b of the first flat tube 20a.
  • the second protrusion 135 extends from near the upstream end of the air flow of the first joint 32 to the lower right.
  • the distance in the second direction between the air flow downstream end 120a of the first flat tube 20a and one end in the second direction (the left end in FIG. 6) of the second protrusion 135 is is larger than the distance in the second direction between the upstream end 30a of the air flow and one end (the left end in FIG. 6) of the second protrusion 135 in the second direction.
  • water W adhering to the lower part of the first flat tube 20a flows from the upstream side of the air flow along the second protrusion 135 in a direction that is inclined with respect to the first direction and the second direction. (to the lower right side in FIG. 6). Then, it moves in the first direction (downward in FIG. 6) along the third protrusion 136 connected to the second protrusion 135.
  • the first protrusion 133 extends in the vertical direction.
  • the second protruding portion 135 extends diagonally downward from near the air flow upstream portion 120b of the first flat tube 20a.
  • the second protrusion 135 allows the water W below and upstream of the first flat tube 20a to flow downward.
  • the first protrusion 133 and the third protrusion 136 are formed as water guide ribs that allow water to flow in the first direction, but other water guide ribs may also be formed.
  • the heat exchanger 12 of this modification includes a fourth protrusion on the downstream side of the air flow of the first protrusion 133 and the third protrusion 136 for flowing water in the first direction.
  • a protrusion 138 is further formed.
  • the fourth protrusion 138 is formed near the air flow downstream end 30b of the fin 30 so as to extend in the first direction.
  • the fourth protrusion 138 extends continuously from the upper end to the lower end of the fin 30.
  • the fourth protrusion 138 is parallel to the first protrusion 133 and the third protrusion 136, and is linear.
  • the heat exchanger 10 is applied to the air conditioner 200, but is not limited thereto.
  • the heat exchanger 10 may be applied to a refrigeration device such as a water heater, a floor heating device, or a refrigerator.
  • Air conditioner 10 Air conditioner 10, 11, 12: Heat exchanger 20, 20a, 20b: Flat tube 30: Fin 30b, 120a: Downstream end 32: First joint 33: First plate 34: Second joint Part 35: Second plate part 36: Third plate part 37: Notch 133: First protrusion 135: Second protrusion 136: Third protrusion 200: Air conditioner 210: Refrigerant circuit 230: Indoor machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger (10) is provided with a plurality of flat tubes (20) and fins (30). The flat tubes (20) are aligned in a first direction. The fins (30) are joined to the flat tubes (20). The heat exchanger (10) performs heat exchange between refrigerant flowing inside the flat tubes (20) and air flowing outside the flat tubes (20) along a second direction crossing the first direction. The fins (30) each have a first joint part (32) and a first plate part (33). The first joint part (32) is joined to a first flat tube (20a). The first plate part (33) is positioned between the downstream end (30b) of air flow and the first joint part (32). The first plate part (33) has formed therein a first protruding part (133) for allowing water to flow in the first direction in the vicinity of the first flat tube (20a).

Description

熱交換器Heat exchanger
 熱交換器に関する。 Regarding heat exchangers.
 従来、扁平管とフィンとを備える熱交換器が知られている。このような熱交換器として、例えば、国際公開第2018/003123号(特許文献1)が挙げられる。 Conventionally, heat exchangers comprising flat tubes and fins are known. An example of such a heat exchanger is International Publication No. 2018/003123 (Patent Document 1).
 特許文献1の熱交換器のフィンは、複数の扁平管のそれぞれの上下に配した導水領域と、複数の扁平管のそれぞれの一方の側部に配した排水領域と、を有している。そして、導水領域は、排水領域に水を導く導水構造を有し、排水領域は、重力方向に水を導く排水構造を有している。 The fins of the heat exchanger disclosed in Patent Document 1 have water guiding regions arranged above and below each of the plurality of flat tubes, and a drainage region arranged on one side of each of the plurality of flat tubes. The water guiding region has a water guiding structure that guides water to the drainage region, and the drainage region has a drainage structure that guides water in the direction of gravity.
 上記特許文献1では、扁平管の周りで発生した水を、導水領域に引き込んでから、排水領域に運んでいる。このように2段階で排水を行うので、排水に時間がかかる。 In Patent Document 1, the water generated around the flat pipe is drawn into the water guiding area and then transported to the drainage area. Since the water is drained in two stages, it takes time to drain the water.
 第1観点の熱交換器は、複数の扁平管と、フィンと、を備える。扁平管は、第1方向に並ぶ。フィンは、扁平管に接合される。熱交換器は、扁平管の中を流れる冷媒と、扁平管の外を第1方向に交差する第2方向に沿って流れる空気と、の間で熱交換を行わせる。フィンは、第1の接合部と、第1板部と、を有する。第1の接合部は、第1の扁平管と接合されている。第1板部は、空気流れの下流端と第1の接合部との間に位置する。第1板部には、第1の扁平管の近傍において第1方向に水を流すための第1の突出部が形成されている。 The heat exchanger of the first aspect includes a plurality of flat tubes and fins. The flat tubes are arranged in the first direction. The fins are joined to the flat tube. The heat exchanger performs heat exchange between the refrigerant flowing inside the flat tube and the air flowing outside the flat tube along a second direction intersecting the first direction. The fin has a first joint portion and a first plate portion. The first joint portion is joined to the first flat tube. The first plate is located between the downstream end of the airflow and the first junction. A first protrusion for flowing water in a first direction near the first flat tube is formed on the first plate.
 第1観点の熱交換器では、第1の突出部によって、第1の扁平管の近傍の水を第1方向に流すことができる。したがって、フィンに付着した扁平管の近傍の水を、第1方向に排水する時間を減らすことができる。 In the heat exchanger of the first aspect, the first protrusion allows water near the first flat tube to flow in the first direction. Therefore, it is possible to reduce the time required to drain water in the vicinity of the flat tube adhering to the fins in the first direction.
 第2観点の熱交換器は、第1観点の熱交換器であって、第1の突出部は、第1方向に延びる。 The heat exchanger of the second aspect is the heat exchanger of the first aspect, and the first protrusion extends in the first direction.
 第2観点の熱交換器では、第1の突出部は第1方向に延びるので、第1の突出部に沿って水を運ぶことができる。このため、フィンに付着した扁平管の近傍の水を、第1方向に排水する時間をより減らすことができる。 In the heat exchanger of the second aspect, since the first protrusion extends in the first direction, water can be carried along the first protrusion. Therefore, it is possible to further reduce the time required to drain water in the vicinity of the flat tube adhering to the fins in the first direction.
 第3観点の熱交換器は、第1観点または第2観点の熱交換器であって、第1の扁平管の空気流れの下流端と、第1の突出部との第2方向の距離は、フィンの空気流れの下流端と、第1の突出部との第2方向の距離よりも小さい。 The heat exchanger according to the third aspect is the heat exchanger according to the first aspect or the second aspect, and the distance in the second direction between the downstream end of the air flow of the first flat tube and the first protrusion is , is smaller than the distance in the second direction between the airflow downstream end of the fin and the first protrusion.
 第3観点の熱交換器では、第1板部において扁平管に近い上流側に第1の突出部が配置されるので、熱交換器から水が飛ぶことを抑制できる。 In the heat exchanger of the third aspect, since the first protrusion is arranged on the upstream side close to the flat tubes in the first plate part, it is possible to suppress water from flying away from the heat exchanger.
 第4観点の熱交換器は、第1観点から第3観点のいずれかの熱交換器であって、フィンは、第2の接合部と、第2板部と、をさらに有する。第2の接合部は、第1の扁平管と第1方向に隣り合う第2の扁平管と接合されている。第2板部は、第1の接合部と第2の接合部との間に位置する。第2板部には、第1方向及び第2方向に対して傾斜する方向に延びる第2の突出部が形成されている。 The heat exchanger according to the fourth aspect is the heat exchanger according to any one of the first to third aspects, and the fin further includes a second joint portion and a second plate portion. The second joint portion is joined to the first flat tube and a second flat tube adjacent to the first flat tube in the first direction. The second plate portion is located between the first joint portion and the second joint portion. A second protrusion extending in a direction inclined with respect to the first direction and the second direction is formed on the second plate portion.
 第4観点の熱交換器では、第2の突出部によって、第1の扁平管と第2の扁平管との間の水を排水することができる。 In the heat exchanger of the fourth aspect, water between the first flat tube and the second flat tube can be drained by the second protrusion.
 第5観点の熱交換器は、第4観点の熱交換器であって、第1の突出部は、上下方向に延びる。第2の突出部は、第1の扁平管の空気流れの下流部の近傍から、斜め下方に延びる。 The heat exchanger according to the fifth aspect is the heat exchanger according to the fourth aspect, and the first protrusion extends in the vertical direction. The second protrusion extends obliquely downward from near the downstream portion of the first flat tube in the air flow.
 第5観点の熱交換器では、第2の突出部によって、第1の扁平管の下方の下流側の水を、下方に流すことができる。 In the heat exchanger of the fifth aspect, the second protrusion allows water on the downstream side below the first flat tube to flow downward.
 第6観点の熱交換器は、第4観点の熱交換器であって、第1の突出部は、上下方向に延びる。第2の突出部は、第1の扁平管の空気流れの上流部の近傍から、斜め下方に延びる。 The heat exchanger according to the sixth aspect is the heat exchanger according to the fourth aspect, and the first protrusion extends in the vertical direction. The second protrusion extends diagonally downward from near the upstream portion of the first flat tube in the air flow direction.
 第6観点の熱交換器では、第2の突出部によって、第1の扁平管の下方の上流側の水を下方に流すことができる。 In the heat exchanger of the sixth aspect, the second protrusion allows water on the upstream side below the first flat tube to flow downward.
 第7観点の熱交換器は、第1観点から第6観点のいずれかの熱交換器であって、フィンは、第2の接合部と、第2板部と、第3板部と、をさらに有する。第2の接合部は、第1の扁平管と第1方向に隣り合う第2の扁平管と接合されている。第2板部は、第1の接合部と第2の接合部との間に位置する。第3板部は、空気流れの下流端と第2板部との間に位置する。第3板部には、第1の突出部と連続する第3の突出部が形成されている。 The heat exchanger according to the seventh aspect is the heat exchanger according to any one of the first to sixth aspects, wherein the fin includes a second joint, a second plate, and a third plate. It also has. The second joint portion is joined to the first flat tube and a second flat tube adjacent to the first flat tube in the first direction. The second plate portion is located between the first joint portion and the second joint portion. The third plate is located between the downstream end of the airflow and the second plate. A third protrusion that is continuous with the first protrusion is formed in the third plate part.
 第7観点の熱交換器では、第1の突出部及び第3の突出部よって、第1の扁平管の近傍の水を、第1方向において、第2の扁平管まで流すことができる。 In the heat exchanger of the seventh aspect, the first protrusion and the third protrusion allow water near the first flat tube to flow in the first direction to the second flat tube.
 第8観点の熱交換器は、第1観点から第7観点のいずれかの熱交換器であって、フィンは、第2の接合部と、第2板部と、をさらに有する。第2の接合部は、第1の扁平管と第1方向に隣り合う第2の扁平管と接合されている。第2板部は、第1の接合部と第2の接合部との間に位置する。第2板部には、伝熱促進用の切り欠きが形成されている。 The heat exchanger according to the eighth aspect is the heat exchanger according to any one of the first to seventh aspects, and the fin further includes a second joint portion and a second plate portion. The second joint portion is joined to the first flat tube and a second flat tube adjacent to the first flat tube in the first direction. The second plate portion is located between the first joint portion and the second joint portion. A notch for promoting heat transfer is formed in the second plate portion.
 第8観点の熱交換器では、切り欠きによって、空気とフィンとの間の伝熱を促進することができる。 In the heat exchanger of the eighth aspect, the cutouts can promote heat transfer between the air and the fins.
 第9観点の熱交換器は、第1観点から第8観点のいずれかの熱交換器であって、フィンは、扁平管の延びる方向に複数並ぶ。フィンのフィンピッチは、1.2mm以上1.4mm以下である。第1の突出部の高さは、0.1mm以上0.6mm以下である。 The heat exchanger according to the ninth aspect is the heat exchanger according to any one of the first to eighth aspects, and a plurality of fins are arranged in the direction in which the flat tube extends. The fin pitch of the fins is 1.2 mm or more and 1.4 mm or less. The height of the first protrusion is 0.1 mm or more and 0.6 mm or less.
 第9観点の熱交換器では、複数のフィンが積層される熱交換器において、第1の突出部により、第1方向に排水する時間を減らすことが容易に実現できる。 In the heat exchanger according to the ninth aspect, in a heat exchanger in which a plurality of fins are stacked, it is possible to easily reduce the time for draining water in the first direction by the first protrusion.
 第10観点の熱交換器は、第1観点から第9観点のいずれかの熱交換器であって、空気調和装置の室内機に含まれる。 The heat exchanger according to the tenth aspect is the heat exchanger according to any one of the first to ninth aspects, and is included in the indoor unit of the air conditioner.
 第10観点の熱交換器は、空気調和装置の室内機の熱交換器に適用することができる。 The heat exchanger of the tenth aspect can be applied to a heat exchanger of an indoor unit of an air conditioner.
本開示の一実施形態に係る熱交換器を備える空気調和装置の概略構成図である。1 is a schematic configuration diagram of an air conditioner including a heat exchanger according to an embodiment of the present disclosure. 本開示の一実施形態に係る熱交換器の斜視図である。FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present disclosure. 本開示の一実施形態に係る熱交換器の断面図である。FIG. 1 is a cross-sectional view of a heat exchanger according to an embodiment of the present disclosure. 熱交換器を構成するフィンの拡大図である。It is an enlarged view of the fin which constitutes a heat exchanger. 水の流れを説明するための図である。It is a diagram for explaining the flow of water. 変形例に係る熱交換器を構成するフィンの拡大図である。It is an enlarged view of the fin which constitutes the heat exchanger concerning a modification. 別の変形例に係る熱交換器を構成するフィンの拡大図である。It is an enlarged view of the fin which comprises the heat exchanger based on another modification.
 (1)空気調和装置
 本開示の一実施形態に係る熱交換器を備える空気調和装置について、図1を参照して説明する。図1に示すように、空気調和装置200は、蒸気圧縮式の冷凍サイクル運転を行うことによって、建物等の室内の冷暖房に使用される装置である。
(1) Air conditioner An air conditioner including a heat exchanger according to an embodiment of the present disclosure will be described with reference to FIG. 1. As shown in FIG. 1, the air conditioner 200 is a device used for heating and cooling indoor rooms such as buildings by performing vapor compression type refrigeration cycle operation.
 空気調和装置200は、主として、室外機220と、室内機230と、室外機220と室内機230とを接続する液冷媒連絡管240及びガス冷媒連絡管250と、を有している。そして、空気調和装置200の蒸気圧縮式の冷媒回路210は、室外機220と室内機230とが液冷媒連絡管240及びガス冷媒連絡管250を介して接続されることによって構成されている。 The air conditioner 200 mainly includes an outdoor unit 220, an indoor unit 230, and a liquid refrigerant communication pipe 240 and a gas refrigerant communication pipe 250 that connect the outdoor unit 220 and the indoor unit 230. The vapor compression type refrigerant circuit 210 of the air conditioner 200 is configured by connecting an outdoor unit 220 and an indoor unit 230 via a liquid refrigerant communication pipe 240 and a gas refrigerant communication pipe 250.
 (1-1)室外機
 室外機220は、室外に設置されている。室外機220は、主として、圧縮機221と、流路切換機構222と、室外熱交換器223と、膨張機構224と、を有している。
(1-1) Outdoor unit The outdoor unit 220 is installed outdoors. The outdoor unit 220 mainly includes a compressor 221, a flow path switching mechanism 222, an outdoor heat exchanger 223, and an expansion mechanism 224.
 圧縮機221は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機構である。 The compressor 221 is a mechanism that compresses the low pressure refrigerant in the refrigeration cycle until it becomes high pressure.
 流路切換機構222は、冷房運転と暖房運転との切換時に、冷媒の流れの方向を切り換える機構である。流路切換機構222は、冷房運転時には、圧縮機221の吐出側と室外熱交換器223のガス側とを接するとともに、ガス冷媒連絡管250を介して室内熱交換器231(後述)のガス側と圧縮機221の吸入側とを接続する(図1における流路切換機構222の実線を参照)。また、流路切換機構222は、暖房運転時には、ガス冷媒連絡管250を介して圧縮機221の吐出側と室内熱交換器231のガス側とを接続するとともに、室外熱交換器223のガス側と圧縮機221の吸入側とを接続する(図1における流路切換機構222の破線を参照)。 The flow path switching mechanism 222 is a mechanism that switches the direction of refrigerant flow when switching between cooling operation and heating operation. During cooling operation, the flow path switching mechanism 222 connects the discharge side of the compressor 221 to the gas side of the outdoor heat exchanger 223, and connects the gas side of the indoor heat exchanger 231 (described later) via the gas refrigerant communication pipe 250. and the suction side of the compressor 221 (see the solid line of the flow path switching mechanism 222 in FIG. 1). Further, during heating operation, the flow path switching mechanism 222 connects the discharge side of the compressor 221 and the gas side of the indoor heat exchanger 231 via the gas refrigerant communication pipe 250, and also connects the gas side of the outdoor heat exchanger 223. and the suction side of the compressor 221 (see the broken line of the flow path switching mechanism 222 in FIG. 1).
 室外熱交換器223は、冷房運転時には冷媒の放熱器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交換器である。室外熱交換器223は、その液側が膨張機構224に接続されており、ガス側が流路切換機構222に接続されている。 The outdoor heat exchanger 223 is a heat exchanger that functions as a radiator for refrigerant during cooling operation and as an evaporator for refrigerant during heating operation. The outdoor heat exchanger 223 has its liquid side connected to the expansion mechanism 224 and its gas side connected to the flow path switching mechanism 222.
 膨張機構224は、冷房運転時には室外熱交換器223において放熱した高圧の液冷媒を室内熱交換器231に送る前に減圧し、暖房運転時には室内熱交換器231において放熱した高圧の液冷媒を室外熱交換器223に送る前に減圧する機構である。 During cooling operation, the expansion mechanism 224 reduces the pressure of the high-pressure liquid refrigerant that has radiated heat in the outdoor heat exchanger 223 before sending it to the indoor heat exchanger 231, and during heating operation, it reduces the pressure of the high-pressure liquid refrigerant that has radiated heat in the indoor heat exchanger 231 to the outside. This is a mechanism that reduces the pressure before sending it to the heat exchanger 223.
 また、室外機220には、室外機220内に室外空気を吸入して、室外熱交換器223に室外空気を供給した後に、室外機220外に排出するための室外ファン225が設けられている。 Further, the outdoor unit 220 is provided with an outdoor fan 225 for sucking outdoor air into the outdoor unit 220, supplying the outdoor air to the outdoor heat exchanger 223, and then discharging it outside the outdoor unit 220. .
 (1-2)室内機
 室内機230は、室内に設置されている。室内機230は、主として、室内熱交換器231と、室内ファン232と、を有している。
(1-2) Indoor unit The indoor unit 230 is installed indoors. The indoor unit 230 mainly includes an indoor heat exchanger 231 and an indoor fan 232.
 室内熱交換器231は、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の放熱器として機能する熱交換器である。室内熱交換器231は、その液側が液冷媒連絡管240に接続されており、ガス側がガス冷媒連絡管250に接続されている。 The indoor heat exchanger 231 is a heat exchanger that functions as a refrigerant evaporator during cooling operation and as a refrigerant radiator during heating operation. The indoor heat exchanger 231 has a liquid side connected to a liquid refrigerant communication pipe 240 and a gas side connected to a gas refrigerant communication pipe 250.
 また、室内機230には、室内機230内に室内空気を吸入して、室内熱交換器231に室内空気を供給した後に、室内機230外に排出するための室内ファン232が設けられている。 Further, the indoor unit 230 is provided with an indoor fan 232 for sucking indoor air into the indoor unit 230, supplying the indoor air to the indoor heat exchanger 231, and then discharging it outside the indoor unit 230. .
 (1-3)動作
 (1-3-1)冷房運転
 空気調和装置200が冷房運転を行う場合、冷凍サイクルにおける低圧の冷媒は、圧縮機221に吸入され、冷凍サイクルにおける高圧まで圧縮された後に吐出される。圧縮機221から吐出された高圧の冷媒は、流路切換機構222を通じて、室外熱交換器223に送られる。室外熱交換器223に送られた高圧の冷媒は、室外熱交換器223において、室外ファン225によって供給される室外空気と熱交換を行って放熱する。室外熱交換器223において放熱した高圧の冷媒は、膨張機構224に送られて、冷凍サイクルにおける低圧まで減圧される。膨張機構224において減圧された低圧の冷媒は、液冷媒連絡管240を通じて、室内熱交換器231に送られる。室内熱交換器231に送られた低圧の冷媒は、室内熱交換器231において、室内ファン232によって供給される室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却されて室内に吹き出される。室内熱交換器231において蒸発した低圧の冷媒は、ガス冷媒連絡管250及び流路切換機構222を通じて、再び、圧縮機221に吸入される。
(1-3) Operation (1-3-1) Cooling operation When the air conditioner 200 performs cooling operation, the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 221, compressed to the high pressure in the refrigeration cycle, and then It is discharged. The high-pressure refrigerant discharged from the compressor 221 is sent to the outdoor heat exchanger 223 through the flow path switching mechanism 222. The high-pressure refrigerant sent to the outdoor heat exchanger 223 exchanges heat with outdoor air supplied by the outdoor fan 225 in the outdoor heat exchanger 223, and radiates heat. The high-pressure refrigerant that has radiated heat in the outdoor heat exchanger 223 is sent to the expansion mechanism 224 and is reduced in pressure to a low pressure in the refrigeration cycle. The low-pressure refrigerant whose pressure has been reduced in the expansion mechanism 224 is sent to the indoor heat exchanger 231 through the liquid refrigerant communication pipe 240. The low-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with indoor air supplied by the indoor fan 232 in the indoor heat exchanger 231 and evaporates. As a result, the indoor air is cooled and blown into the room. The low-pressure refrigerant evaporated in the indoor heat exchanger 231 is sucked into the compressor 221 again through the gas refrigerant communication pipe 250 and the flow path switching mechanism 222.
 (1-3-2)暖房運転
 空気調和装置200が暖房運転を行う場合、冷凍サイクルにおける低圧の冷媒は、圧縮機221に吸入され、冷凍サイクルにおける高圧まで圧縮された後に吐出される。圧縮機221から吐出された高圧の冷媒は、流路切換機構222及びガス冷媒連絡管250を通じて、室内熱交換器231に送られる。室内熱交換器231に送られた高圧の冷媒は、室内熱交換器231において、室内ファン232によって供給される室内空気と熱交換を行って放熱する。これにより、室内空気は加熱されて室内に吹き出される。室内熱交換器231において放熱した高圧の冷媒は、液冷媒連絡管240を通じて、膨張機構224に送られて、冷凍サイクルにおける低圧まで減圧される。膨張機構224において減圧された低圧の冷媒は、室外熱交換器223に送られる。室外熱交換器223に送られた低圧の冷媒は、室外熱交換器223において、室内ファン232によって供給される室外空気と熱交換を行って蒸発する。室外熱交換器223において蒸発した低圧の冷媒は、流路切換機構222を通じて、再び、圧縮機221に吸入される。
(1-3-2) Heating Operation When the air conditioner 200 performs a heating operation, the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 221, compressed to the high pressure in the refrigeration cycle, and then discharged. The high-pressure refrigerant discharged from the compressor 221 is sent to the indoor heat exchanger 231 through the flow path switching mechanism 222 and the gas refrigerant communication pipe 250. The high-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with indoor air supplied by the indoor fan 232 in the indoor heat exchanger 231 and radiates heat. As a result, indoor air is heated and blown into the room. The high-pressure refrigerant that has radiated heat in the indoor heat exchanger 231 is sent to the expansion mechanism 224 through the liquid refrigerant communication pipe 240 and is reduced in pressure to a low pressure in the refrigeration cycle. The low-pressure refrigerant whose pressure has been reduced in the expansion mechanism 224 is sent to the outdoor heat exchanger 223. The low-pressure refrigerant sent to the outdoor heat exchanger 223 exchanges heat with outdoor air supplied by the indoor fan 232 in the outdoor heat exchanger 223 and evaporates. The low-pressure refrigerant evaporated in the outdoor heat exchanger 223 is sucked into the compressor 221 again through the flow path switching mechanism 222 .
 (2)熱交換器
 (2-1)全体構成
 本開示の一実施形態に係る熱交換器10について、図1~図5を参照して説明する。本実施形態の熱交換器10は、図1の空気調和装置200の室内機230に含まれる。具体的には、熱交換器10は、図1に示す室内熱交換器231である。
(2) Heat Exchanger (2-1) Overall Configuration A heat exchanger 10 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 5. The heat exchanger 10 of this embodiment is included in the indoor unit 230 of the air conditioner 200 in FIG. Specifically, the heat exchanger 10 is the indoor heat exchanger 231 shown in FIG.
 図2~図5に示すように、熱交換器10は、複数の扁平管20と、複数のフィン30と、を備えている。扁平管20は、第1方向に並ぶ。フィン30は、扁平管20に接合される。熱交換器10は、扁平管20の中を流れる冷媒と、扁平管20の外を流れる空気と、の間で熱交換を行わせる。熱交換器10は、空気と冷媒との間で、互いに混合させることなく熱交換を行わせる。 As shown in FIGS. 2 to 5, the heat exchanger 10 includes a plurality of flat tubes 20 and a plurality of fins 30. The flat tubes 20 are arranged in the first direction. The fins 30 are joined to the flat tube 20. The heat exchanger 10 performs heat exchange between the refrigerant flowing inside the flat tube 20 and the air flowing outside the flat tube 20. The heat exchanger 10 allows heat exchange between air and refrigerant without mixing them with each other.
 空気は、扁平管20の外を第1方向に交差する第2方向に沿って流れる。ここでの第1方向は、上下方向である。第2方向は、第1方向と直交する。具体的には、第2方向は、左右方向である。また、図2~図5に示すように、空気流れは、左から右に向かう方向である。換言すると、左側が空気流れの上流側で、右側が空気流れの下流側である。 Air flows outside the flat tube 20 along a second direction that intersects with the first direction. The first direction here is the vertical direction. The second direction is orthogonal to the first direction. Specifically, the second direction is the left-right direction. Further, as shown in FIGS. 2 to 5, the air flow is from left to right. In other words, the left side is the upstream side of the air flow, and the right side is the downstream side of the air flow.
 (2-2)詳細構成
 (2-2-1)扁平管
 図3に示すように、複数の扁平管20は、第1方向において、間隔をあけて、互いに平行に配置されている。扁平管20は、図2に示すように、第3方向に延びる。第3方向は、第1方向及び第2方向と交差する。ここでの第3方向は、第1方向及び第2方向と直交する。具体的には、第3方向は、前後方向である。
(2-2) Detailed configuration (2-2-1) Flat tubes As shown in FIG. 3, the plurality of flat tubes 20 are arranged parallel to each other at intervals in the first direction. The flat tube 20 extends in the third direction, as shown in FIG. The third direction intersects the first direction and the second direction. The third direction here is orthogonal to the first direction and the second direction. Specifically, the third direction is the front-back direction.
 図2~図5に示すように、扁平管20の断面形状は、扁平な長円形または角の丸い矩形である。扁平管20の第2方向の長さ(幅)は、扁平管20の第1方向の長さ(厚み)よりも長い。扁平管20は、例えば、アルミニウムまたはアルミニウム合金製である。 As shown in FIGS. 2 to 5, the cross-sectional shape of the flat tube 20 is a flat oval or a rectangle with rounded corners. The length (width) of the flat tube 20 in the second direction is longer than the length (thickness) of the flat tube 20 in the first direction. The flat tube 20 is made of aluminum or aluminum alloy, for example.
 扁平管20は、内部に冷媒を流す伝熱管である。扁平管20には、熱交換器10で空気と熱交換される冷媒が通過する複数の貫通孔21が第2方向に並んで形成されている。この複数の貫通孔は、第3方向に沿って貫通する。 The flat tube 20 is a heat transfer tube through which a refrigerant flows. A plurality of through holes 21 are formed in the flat tube 20 in a line in the second direction, through which the refrigerant to be heat exchanged with the air in the heat exchanger 10 passes. The plurality of through holes penetrate along the third direction.
 (2-2-2)フィン
 フィン30は、複数の扁平管20に接合されている。ここでは、扁平管20及びフィン30は、互いにロウ付けによって接合されている。フィン30は、扁平管20と空気との伝熱面積を増大させて、冷媒と空気との熱交換を促進する。
(2-2-2) Fin The fin 30 is joined to the plurality of flat tubes 20. Here, the flat tube 20 and the fins 30 are joined to each other by brazing. The fins 30 increase the heat transfer area between the flat tube 20 and the air and promote heat exchange between the refrigerant and the air.
 図2に示すように、複数のフィン30は、第3方向において、間隔をあけて、互いに平行に配置されている。フィン30は、第1方向に延びる。フィン30は、扁平管20の延在方向と交差(ここでは直交)するように配置されている。本実施形態では、複数のフィン30は、平行、かつ、等間隔に配置されている。換言すると、複数のフィン30は、所定のフィンピッチPで第3方向に並んでいる。本実施形態のフィンピッチPは、1.2mm以上1.4mm以下である。 As shown in FIG. 2, the plurality of fins 30 are arranged parallel to each other at intervals in the third direction. The fins 30 extend in the first direction. The fins 30 are arranged to intersect (perpendicularly here) to the extending direction of the flat tube 20. In this embodiment, the plurality of fins 30 are arranged in parallel and at equal intervals. In other words, the plurality of fins 30 are arranged in the third direction at a predetermined fin pitch P. The fin pitch P of this embodiment is 1.2 mm or more and 1.4 mm or less.
 フィン30は、平板状である。フィン30は、プレス加工などにより、形成される。フィン30は、例えば、アルミニウムまたはアルミニウム合金製である。 The fin 30 has a flat plate shape. The fins 30 are formed by press working or the like. The fins 30 are made of aluminum or aluminum alloy, for example.
 図3~図5に示すように、フィン30には、扁平管20を通すための挿入部31が複数形成されている。挿入部31は、空気流れの上流端30aから下流端30b側に向けて第2方向に切り欠かれている。複数の挿入部31は、第1方向において、間隔をあけて並んでいる。 As shown in FIGS. 3 to 5, the fins 30 are formed with a plurality of insertion portions 31 through which the flat tubes 20 are passed. The insertion portion 31 is cut out in the second direction from the upstream end 30a of the air flow toward the downstream end 30b. The plurality of insertion portions 31 are lined up at intervals in the first direction.
 フィン30は、第1の接合部32と、第1板部33と、第2の接合部34と、第2板部35と、第3板部36と、を有している。以下、図3において、上側に位置する扁平管20を第1の扁平管20aとし、下側に位置する扁平管20を第2の扁平管20bとして、説明する。第1の扁平管20aと第2の扁平管20bとは、第1方向に隣り合う。 The fin 30 has a first joint 32 , a first plate 33 , a second joint 34 , a second plate 35 , and a third plate 36 . Hereinafter, in FIG. 3, the flat tube 20 located on the upper side will be referred to as a first flat tube 20a, and the flat tube 20 located on the lower side will be referred to as a second flat tube 20b. The first flat tube 20a and the second flat tube 20b are adjacent to each other in the first direction.
 図3に示すように、第1の接合部32は、第1の扁平管20aと接合されている。ここでは、第1の接合部32は、断面視において、U字形状である。本実施形態の第1の接合部32は、カラー部である。詳細には、第1の接合部32は、フィン30の一方面(表面)側の挿入部31から、隣り合うフィン30の他方面(裏面)に向かって、第3方向に立ち上がっている。 As shown in FIG. 3, the first joint 32 is joined to the first flat tube 20a. Here, the first joint portion 32 is U-shaped in cross-sectional view. The first joint portion 32 of this embodiment is a collar portion. Specifically, the first joint portion 32 rises in the third direction from the insertion portion 31 on one surface (front surface) of the fin 30 toward the other surface (back surface) of the adjacent fin 30 .
 第1板部33は、空気流れの下流端30bと第1の接合部32との間に位置する。第1板部33は、第1の接合部32と連続する。第1板部33には、第1の突出部133と、リブ134とが形成されている。 The first plate portion 33 is located between the downstream end 30b of the air flow and the first joint portion 32. The first plate portion 33 is continuous with the first joint portion 32 . A first protrusion 133 and a rib 134 are formed on the first plate portion 33 .
 第1の突出部133は、第1の扁平管20aの近傍において第1方向に水を流すものである。換言すると、第1の突出部133は、第1の扁平管20aの近傍の水を第1方向に流す導水用リブである。 The first protrusion 133 allows water to flow in the first direction near the first flat tube 20a. In other words, the first protrusion 133 is a water guiding rib that causes water near the first flat tube 20a to flow in the first direction.
 図4に示すように、第1の扁平管20aの空気流れの下流端120aと、第1の突出部133との第2方向の距離L1は、フィン30の空気流れの下流端30bと、第1の突出部133との第2方向の距離L2よりも小さい。距離L1は、距離L2の1/3以下であることが好ましく、距離L2の1/5以下であることがより好ましい。 As shown in FIG. 4, the distance L1 in the second direction between the airflow downstream end 120a of the first flat tube 20a and the first protrusion 133 is the same as the distance L1 between the airflow downstream end 30b of the fin 30 and the first protrusion 133. The distance L2 in the second direction from the first protrusion 133 is smaller than the distance L2 in the second direction. The distance L1 is preferably 1/3 or less of the distance L2, and more preferably 1/5 or less of the distance L2.
 第1の突出部133は、第1方向に延びる。図3~図5では、第1の突出部133は、上下方向に延びる。本実施形態の第1の突出部133は、重力方向に延びる。このため、本実施形態の第1の突出部133は、第1の扁平管20aと接合されている第1の接合部32の下流側近傍において、自重で下方に水を流す。 The first protrusion 133 extends in the first direction. In FIGS. 3 to 5, the first protrusion 133 extends in the vertical direction. The first protrusion 133 of this embodiment extends in the direction of gravity. Therefore, the first protrusion 133 of this embodiment causes water to flow downward under its own weight near the downstream side of the first joint 32 joined to the first flat tube 20a.
 第1の突出部133の高さは、特に限定されないが、例えば、0.1mm以上0.6mm以下である。なお、高さとは、フィン30の一方面から、隣り合うフィン30の他方面に向かって突出する距離(第3方向に向かう距離)である。 The height of the first protrusion 133 is not particularly limited, but is, for example, 0.1 mm or more and 0.6 mm or less. Note that the height is the distance from one surface of the fin 30 to the other surface of the adjacent fin 30 (distance in the third direction).
 リブ134は、伝熱促進用のリブである。リブ134は、一方面から、隣り合うフィン30の他方面に向かって突出している。リブ134は、断面視において矩形状である。図3~図5では、リブ134の第2方向の長さ(幅)は、第1の突出部133の第2方向の長さ(幅)よりも大きい。 The ribs 134 are ribs for promoting heat transfer. The ribs 134 protrude from one surface toward the other surfaces of the adjacent fins 30. The rib 134 has a rectangular shape in cross-sectional view. 3 to 5, the length (width) of the rib 134 in the second direction is greater than the length (width) of the first protrusion 133 in the second direction.
 第2の接合部34は、第2の扁平管20bと接合されている。第2の接合部34は、第1の接合部32と同じ形状である。 The second joint portion 34 is joined to the second flat tube 20b. The second joint 34 has the same shape as the first joint 32.
 第2板部35は、第1の接合部32と第2の接合部34との間に位置する。第2板部35は、第1の接合部32及び第2の接合部34と連続する。第2板部35には、第2の突出部135と、切り欠き37とが形成されている。 The second plate part 35 is located between the first joint part 32 and the second joint part 34. The second plate portion 35 is continuous with the first joint portion 32 and the second joint portion 34 . A second protrusion 135 and a notch 37 are formed in the second plate portion 35 .
 第2の突出部135は、第1方向及び第2方向に対して傾斜する方向に延びる。図3~図5では、第2の突出部135は、第2板部35の上端部から、右下に向けて延びる。第2の突出部135は、第1の扁平管20aと第2の扁平管20bとの間の水を排水する導水用リブである。 The second protrusion 135 extends in a direction inclined with respect to the first direction and the second direction. In FIGS. 3 to 5, the second protrusion 135 extends from the upper end of the second plate 35 toward the lower right. The second protrusion 135 is a water guiding rib that drains water between the first flat tube 20a and the second flat tube 20b.
 本実施形態の第2の突出部135は、第1の扁平管20aの空気流れの下流部の近傍から、斜め下方に延びる。詳細には、第2の突出部135は、下流端120aの近傍から、空気流れの下流側に向けて、第3の突出部136と連結されるように延びる。このため、ここでの第2の突出部135は、第1の扁平管20aと第2の扁平管20bとの間における空気流れの下流部近傍の水を右下に排水する導水用リブである。 The second protrusion 135 of this embodiment extends obliquely downward from near the downstream portion of the air flow of the first flat tube 20a. Specifically, the second protrusion 135 extends from near the downstream end 120a toward the downstream side of the air flow so as to be connected to the third protrusion 136. Therefore, the second protrusion 135 here is a water guiding rib that drains water near the downstream part of the air flow between the first flat tube 20a and the second flat tube 20b to the lower right. .
 図4に示すように、第1の扁平管20aの空気流れの下流端120aと、第2の突出部135の第2方向一端(図4では左端)との第2方向の距離L3は、フィン30の空気流れの上流端30aと、第2の突出部135の第2方向の一端(図4では左端)との第2方向の距離L4よりも小さい。距離L3は、距離L4の1/3以下であることが好ましく、距離L4の1/5以下であることがより好ましい。 As shown in FIG. 4, a distance L3 in the second direction between the air flow downstream end 120a of the first flat tube 20a and one end in the second direction (the left end in FIG. 4) of the second protrusion 135 is It is smaller than the distance L4 in the second direction between the upstream end 30a of the air flow of No. 30 and one end (the left end in FIG. 4) of the second protrusion 135 in the second direction. The distance L3 is preferably 1/3 or less of the distance L4, and more preferably 1/5 or less of the distance L4.
 第2の突出部135の高さは、第1の突出部133の高さと同じであってもよく、低くてもよく、高くてもよい。ここでは、第2の突出部135の高さは、例えば、0.1mm以上0.6mm以下である。 The height of the second protrusion 135 may be the same as the height of the first protrusion 133, may be lower, or may be higher. Here, the height of the second protrusion 135 is, for example, 0.1 mm or more and 0.6 mm or less.
 切り欠き37は、伝熱促進用の切り欠き37である。切り欠き37は、第2方向に、複数(図3では3つ)並ぶ。また、切り欠き37は、第1方向に延びる。ここでは、切り欠き37は、他方面から、隣り合うフィン30の一方面に向かって凹んでいる。 The cutout 37 is a cutout 37 for promoting heat transfer. A plurality of notches 37 (three in FIG. 3) are arranged in the second direction. Moreover, the notch 37 extends in the first direction. Here, the notch 37 is recessed from the other side toward one side of the adjacent fins 30.
 第3板部36は、空気流れの下流端30bと第2板部35との間に位置する。第3板部36は、第1板部33及び第2板部35と連続する。 The third plate part 36 is located between the downstream end 30b of the air flow and the second plate part 35. The third plate part 36 is continuous with the first plate part 33 and the second plate part 35.
 第3板部36には、第1の突出部133と連続する第3の突出部136が形成されている。第3の突出部136は、第1の突出部133からの水を第1方向に流す導水用リブである。 A third protrusion 136 that is continuous with the first protrusion 133 is formed on the third plate portion 36 . The third protrusion 136 is a water guiding rib that allows water from the first protrusion 133 to flow in the first direction.
 第3の突出部136は、第1方向に延びる。図3~図5では、第3の突出部136は、上下方向に延びる。本実施形態の第3の突出部136は、重力方向に延びる。このため、本実施形態の第3の突出部136は、第1の突出部133からの水を、下方に流す。 The third protrusion 136 extends in the first direction. In FIGS. 3-5, the third protrusion 136 extends in the vertical direction. The third protrusion 136 of this embodiment extends in the direction of gravity. Therefore, the third protrusion 136 of this embodiment causes water from the first protrusion 133 to flow downward.
 第3の突出部136の第2方向位置は、第1の突出部133と同じである。換言すると、第1の突出部133と第3の突出部136とは、上下方向に直線状に連続している。 The position of the third protrusion 136 in the second direction is the same as that of the first protrusion 133. In other words, the first protrusion 133 and the third protrusion 136 are linearly continuous in the vertical direction.
 第3の突出部136の高さは、第1の突出部133の高さと同じであってもよく、低くてもよく、高くてもよい。ここでは、第3の突出部136の高さは、第1の突出部133と同じである。 The height of the third protrusion 136 may be the same as the height of the first protrusion 133, may be lower, or may be higher. Here, the height of the third protrusion 136 is the same as that of the first protrusion 133.
 なお、本実施形態のフィン30は、第1の突出部133、第2の突出部135及び第3の突出部136による導水を妨げる形状を有していない。 Note that the fins 30 of this embodiment do not have a shape that prevents the first protrusion 133, the second protrusion 135, and the third protrusion 136 from introducing water.
 また、図3は、フィン30において、第1の扁平管20a及び第2の扁平管20bと接合される領域を示すが、図2に示すように、本実施形態のフィン30は、3つ以上の扁平管20と接合されている。そして、第1の突出部133と第3の突出部136とで連続する直線状のリブは、フィン30の上端部から下端部にかけて延びる。 Moreover, although FIG. 3 shows the region of the fin 30 that is joined to the first flat tube 20a and the second flat tube 20b, as shown in FIG. 2, the fin 30 of this embodiment has three or more It is joined to the flat tube 20 of. A continuous linear rib between the first protrusion 133 and the third protrusion 136 extends from the upper end to the lower end of the fin 30.
 (2-3)動作
 図1に示す空気調和装置200の冷房運転、暖房運転などの動作時、冷媒回路210において、冷媒が室内熱交換器231としての熱交換器10の扁平管20に送られる。この冷媒は、扁平管20の複数の貫通孔21を流れる。そして、扁平管20の中を流れる冷媒と、扁平管20の外を流れる室内空気とが熱交換を行う。このとき、フィン30における扁平管20との接合部の周囲で、凝縮水が発生することがある。
(2-3) Operation When the air conditioner 200 shown in FIG. . This refrigerant flows through the plurality of through holes 21 of the flat tube 20. Then, the refrigerant flowing inside the flat tube 20 and the indoor air flowing outside the flat tube 20 exchange heat. At this time, condensed water may be generated around the joint portion of the fin 30 with the flat tube 20.
 図5に示すように、第1の扁平管20aの上部に付着した凝縮水としての水Wは、第1の接合部32に沿って移動する。詳細には、水Wは、第1の突出部133の湾曲部分に沿って円弧状に移動する。 As shown in FIG. 5, water W as condensed water adhering to the upper part of the first flat tube 20a moves along the first joint 32. Specifically, the water W moves in an arc shape along the curved portion of the first protrusion 133.
 また、第1の突出部133に沿って移動した水、及び、第1の扁平管20aの下部に付着した水Wは、第2の突出部135に沿って、第1方向及び第2方向に対して傾斜する方向(図5では右下側)に移動する。 Further, the water that has moved along the first protrusion 133 and the water W that has adhered to the lower part of the first flat tube 20a is moved along the second protrusion 135 in the first direction and the second direction. It moves in a direction that is inclined to the opposite direction (lower right side in FIG. 5).
 そして、水Wは、第2の突出部135と連結され、かつ第1の突出部133と連続する第3の突出部136に沿って、第1方向(図5では下側)に移動する。 Then, the water W moves in the first direction (downward in FIG. 5) along the third protrusion 136 that is connected to the second protrusion 135 and continuous with the first protrusion 133.
 このように、第1の扁平管20aの周りで発生した水Wを、第1の突出部133及び第2の突出部135に直接引き込んで、第3の突出部136に沿って下方に排水している。換言すると、水Wを、第1の突出部133、第2の突出部135及び第3の突出部136を伝わせることによって、下方に排水している。このため、第1の扁平管20aの周りで発生した水Wが途中で引っ掛かることを抑制できるとともに、排水のスピードを高めることができる。 In this way, the water W generated around the first flat tube 20a is drawn directly into the first protrusion 133 and the second protrusion 135 and drained downward along the third protrusion 136. ing. In other words, the water W is drained downward by being transmitted through the first protrusion 133, the second protrusion 135, and the third protrusion 136. Therefore, it is possible to prevent the water W generated around the first flat tube 20a from getting caught on the way, and the speed of drainage can be increased.
 なお、水Wの量、第1の突出部133の高さ、第2の突出部135の高さ、第3の突出部136の高さなどによって、水Wは、図5において、第1の突出部133及び第3の突出部136の左側を流れる場合がある。例えば、第2の突出部135の高さが第1の突出部133及び第3の突出部136の高さよりも高い場合には、水Wは、主に、第1の突出部133及び第3の突出部136の右側を流れる。一方、第2の突出部135の高さが第1の突出部133及び第3の突出部136の高さよりも低い、または、同じ場合には、水Wは、主に、第1の突出部133及び第3の突出部136の左側を流れる。 Note that depending on the amount of water W, the height of the first protrusion 133, the height of the second protrusion 135, the height of the third protrusion 136, etc., the water W may be lower than the first protrusion in FIG. The water may flow to the left of the protrusion 133 and the third protrusion 136 in some cases. For example, when the height of the second protrusion 135 is higher than the height of the first protrusion 133 and the third protrusion 136, the water W mainly flows into the first protrusion 133 and the third protrusion 136. It flows on the right side of the protrusion 136. On the other hand, if the height of the second protrusion 135 is lower than or the same as the heights of the first protrusion 133 and the third protrusion 136, the water W mainly flows to the first protrusion. 133 and the left side of the third protrusion 136 .
 (3)特徴
 (3-1)
 本実施形態に係る熱交換器10は、複数の扁平管20と、フィン30と、を備える。扁平管20は、第1方向に並ぶ。フィン30は、扁平管20に接合される。熱交換器10は、扁平管20の中を流れる冷媒と、扁平管20の外を第1方向に交差する第2方向に沿って流れる空気と、の間で熱交換を行わせる。フィン30は、第1の接合部32と、第1板部33と、を有する。第1の接合部32は、第1の扁平管20aと接合されている。第1板部33は、空気流れの下流端30bと第1の接合部32との間に位置する。第1板部33には、第1の扁平管20aの近傍において第1方向に水を流すための第1の突出部133が形成されている。
(3) Features (3-1)
The heat exchanger 10 according to this embodiment includes a plurality of flat tubes 20 and fins 30. The flat tubes 20 are arranged in the first direction. The fins 30 are joined to the flat tube 20. The heat exchanger 10 performs heat exchange between the refrigerant flowing inside the flat tube 20 and the air flowing outside the flat tube 20 along a second direction intersecting the first direction. The fin 30 has a first joint portion 32 and a first plate portion 33. The first joint portion 32 is joined to the first flat tube 20a. The first plate portion 33 is located between the downstream end 30b of the air flow and the first joint portion 32. A first protrusion 133 is formed on the first plate portion 33 to allow water to flow in a first direction near the first flat tube 20a.
 本実施形態の熱交換器10では、第1の突出部133によって、第1の扁平管20aの近傍の水Wを第1方向に流すことができる。したがって、フィン30に付着した第1の扁平管20aの近傍の水を、第1方向に排水する時間を減らすことができる。 In the heat exchanger 10 of this embodiment, the first protrusion 133 allows the water W near the first flat tube 20a to flow in the first direction. Therefore, it is possible to reduce the time required to drain water in the vicinity of the first flat tube 20a attached to the fin 30 in the first direction.
 また、本実施形態の熱交換器10では、第1の扁平管20aの周りで発生した水を、フィン30の空気流れの下流端30bまで運ぶことなく、第1の扁平管20aの近傍の第1の突出部133を用いて排水する。したがって、フィン30から水が飛ぶことを抑制できる。 In addition, in the heat exchanger 10 of the present embodiment, the water generated around the first flat tubes 20a is not carried to the downstream end 30b of the air flow of the fins 30, and the water generated around the first flat tubes 20a is not transported to the downstream end 30b of the air flow of the fins 30. Drain water using the protrusion 133 of No. 1. Therefore, water can be prevented from flying away from the fins 30.
 (3-2)
 本実施形態の熱交換器10において、第1の突出部133は、第1方向に延びる。このため、第1の突出部133に沿って水Wを運ぶことができる。このため、フィン30に付着した第1の扁平管20aの近傍の水Wを、第1方向に排水する時間をより減らすことができる。
(3-2)
In the heat exchanger 10 of this embodiment, the first protrusion 133 extends in the first direction. Therefore, water W can be carried along the first protrusion 133. Therefore, the time for draining the water W near the first flat tube 20a adhering to the fin 30 in the first direction can be further reduced.
 (3-3)
 本実施形態の熱交換器10において、第1の扁平管20aの空気流れの下流端120aと、第1の突出部133との第2方向の距離L1は、フィン30の空気流れの下流端30bと、第1の突出部133との第2方向の距離L2よりも小さい。
(3-3)
In the heat exchanger 10 of the present embodiment, the distance L1 in the second direction between the air flow downstream end 120a of the first flat tube 20a and the first protrusion 133 is the distance L1 between the air flow downstream end 30b of the fin 30. is smaller than the distance L2 from the first protrusion 133 in the second direction.
 これにより、第1板部33において、第1の扁平管20aの近くであって、空気流れの上流側に、第1の突出部133が配置される。このため、熱交換器10から水が飛ぶことをより抑制できる。 As a result, in the first plate portion 33, the first protruding portion 133 is arranged near the first flat tube 20a and on the upstream side of the air flow. For this reason, it is possible to further suppress water from flying away from the heat exchanger 10.
 (3-4)
 本実施形態の熱交換器10において、フィン30は、第2の接合部34と、第2板部35と、をさらに有する。第2の接合部34は、第1の扁平管20aと第1方向に隣り合う第2の扁平管20bと接合されている。第2板部35は、第1の接合部32と第2の接合部34との間に位置する。第2板部35には、第1方向及び第2方向に対して傾斜する方向に延びる第2の突出部135が形成されている。
(3-4)
In the heat exchanger 10 of this embodiment, the fins 30 further include a second joint portion 34 and a second plate portion 35. The second joint 34 is joined to the first flat tube 20a and the second flat tube 20b adjacent in the first direction. The second plate portion 35 is located between the first joint portion 32 and the second joint portion 34. A second protrusion 135 is formed on the second plate portion 35 and extends in a direction inclined with respect to the first direction and the second direction.
 ここでは、第2の突出部135により、第1の扁平管20aと第2の扁平管20bとの間の水Wを排水することができる。 Here, the second protrusion 135 can drain water W between the first flat tube 20a and the second flat tube 20b.
 (3-5)
 本実施形態の熱交換器10において、第1の突出部133は、上下方向に延びる。第2の突出部135は、第1の扁平管20aの空気流れの下流部の近傍から、斜め下方に延びる。
(3-5)
In the heat exchanger 10 of this embodiment, the first protrusion 133 extends in the vertical direction. The second protruding portion 135 extends obliquely downward from near the downstream portion of the air flow of the first flat tube 20a.
 ここでは、第2の突出部135により、第1の扁平管20aの下方かつ下流側の水Wを、下方に流すことができる。 Here, the second protrusion 135 allows the water W below and downstream of the first flat tube 20a to flow downward.
 (3-6)
 本実施形態の熱交換器10において、フィン30は、第2の接合部34と、第2板部35と、第3板部36と、をさらに有する。第2の接合部34は、第1の扁平管20aと第1方向に隣り合う第2の扁平管20bと接合されている。第2板部35は、第1の接合部32と第2の接合部34との間に位置する。第3板部36は、空気流れの下流端30bと第2板部35との間に位置する。第3板部36には、第1の突出部133と連続する第3の突出部136が形成されている。
(3-6)
In the heat exchanger 10 of this embodiment, the fins 30 further include a second joint portion 34, a second plate portion 35, and a third plate portion 36. The second joint 34 is joined to the first flat tube 20a and the second flat tube 20b adjacent in the first direction. The second plate portion 35 is located between the first joint portion 32 and the second joint portion 34. The third plate part 36 is located between the downstream end 30b of the air flow and the second plate part 35. A third protrusion 136 that is continuous with the first protrusion 133 is formed on the third plate portion 36 .
 ここでは、第1の突出部133及び第3の突出部136より、第1の扁平管20aの近傍の水Wを、第1方向において、第2の扁平管20bまで流すことができる。 Here, the first protrusion 133 and the third protrusion 136 allow water W near the first flat tube 20a to flow in the first direction to the second flat tube 20b.
 また、第2の突出部135により、第1の扁平管20aの下方かつ下流側の水Wを、第3の突出部136に導き、さらに第3の突出部136により、さらに下方に流すことができる。 Further, the second protrusion 135 guides the water W below and downstream of the first flat tube 20a to the third protrusion 136, and the third protrusion 136 allows the water to flow further downward. can.
 (3-7)
 本実施形態の熱交換器10において、フィン30は、第2の接合部34と、第2板部35と、をさらに有する。第2の接合部34は、第1の扁平管20aと第1方向に隣り合う第2の扁平管20bと接合されている。第2板部35は、第1の接合部32と第2の接合部34との間に位置する。第2板部35には、伝熱促進用の切り欠き37が形成されている。
(3-7)
In the heat exchanger 10 of this embodiment, the fins 30 further include a second joint portion 34 and a second plate portion 35. The second joint 34 is joined to the first flat tube 20a and the second flat tube 20b adjacent in the first direction. The second plate portion 35 is located between the first joint portion 32 and the second joint portion 34. A notch 37 for promoting heat transfer is formed in the second plate portion 35 .
 ここでは、切り欠き37により、空気とフィン30との間の伝熱を促進することができる。これにより、扁平管20の内部を流れる冷媒と、フィン30の外部を流れる空気との熱交換を促進することができる。 Here, the notches 37 can promote heat transfer between the air and the fins 30. Thereby, heat exchange between the refrigerant flowing inside the flat tube 20 and the air flowing outside the fins 30 can be promoted.
 (3-8)
 本実施形態の熱交換器10において、フィン30は、扁平管20の延びる方向に複数並ぶ。フィン30のフィンピッチPは、1.2mm以上1.4mm以下である。第1の突出部133の高さは、0.1mm以上0.6mm以下である。
(3-8)
In the heat exchanger 10 of this embodiment, a plurality of fins 30 are lined up in the direction in which the flat tubes 20 extend. The fin pitch P of the fins 30 is 1.2 mm or more and 1.4 mm or less. The height of the first protrusion 133 is 0.1 mm or more and 0.6 mm or less.
 これにより、複数のフィン30が積層される熱交換器10において、第1の突出部133により、第1方向に排水する時間を減らすことが容易に実現できる。 Thereby, in the heat exchanger 10 in which a plurality of fins 30 are stacked, it is possible to easily reduce the time for draining water in the first direction by the first protrusion 133.
 (3-9)
 本実施形態の熱交換器10は、空気調和装置200の室内機230に含まれる。換言すると、本実施形態の熱交換器10は、空気調和装置200の室内機230に適用することができる。本実施形態の熱交換器10は、排水する時間を減らすことができるとともに、フィン30から水が飛ぶことを抑制できるので、室内に配置される室内熱交換器231に好適に用いられる。
(3-9)
The heat exchanger 10 of this embodiment is included in the indoor unit 230 of the air conditioner 200. In other words, the heat exchanger 10 of this embodiment can be applied to the indoor unit 230 of the air conditioner 200. The heat exchanger 10 of this embodiment can reduce the time for draining water and can suppress water from flying off the fins 30, so it is suitably used in the indoor heat exchanger 231 placed indoors.
 (4)変形例
 (4-1)変形例1
 上述した実施形態では、第2の突出部135は、第1の扁平管20aの空気流れの下流部の近傍から、斜め下方に延びるが、これに限定されない。本変形例の熱交換器11では、図6に示すように、第2の突出部135は、第1の扁平管20aの空気流れの上流部120bの近傍から、斜め下方に延びる。ここでは、第2の突出部135は、第1の接合部32の空気流れの上流端の近傍から、右下に延びる。
(4) Modification example (4-1) Modification example 1
In the embodiment described above, the second protrusion 135 extends obliquely downward from near the downstream portion of the air flow of the first flat tube 20a, but is not limited thereto. In the heat exchanger 11 of this modification, as shown in FIG. 6, the second protrusion 135 extends diagonally downward from the vicinity of the air flow upstream portion 120b of the first flat tube 20a. Here, the second protrusion 135 extends from near the upstream end of the air flow of the first joint 32 to the lower right.
 図6に示すように、第1の扁平管20aの空気流れの下流端120aと、第2の突出部135の第2方向一端(図6では左端)との第2方向の距離は、フィン30の空気流れの上流端30aと、第2の突出部135の第2方向の一端(図6では左端)との第2方向の距離よりも大きい。 As shown in FIG. 6, the distance in the second direction between the air flow downstream end 120a of the first flat tube 20a and one end in the second direction (the left end in FIG. 6) of the second protrusion 135 is is larger than the distance in the second direction between the upstream end 30a of the air flow and one end (the left end in FIG. 6) of the second protrusion 135 in the second direction.
 本変形例では、第1の扁平管20aの下部に付着した水Wは、空気流れの上流側から、第2の突出部135に沿って、第1方向及び第2方向に対して傾斜する方向(図6では右下側)に移動する。そして、第2の突出部135と連結された第3の突出部136に沿って、第1方向(図6では下側)に移動する。 In this modification, water W adhering to the lower part of the first flat tube 20a flows from the upstream side of the air flow along the second protrusion 135 in a direction that is inclined with respect to the first direction and the second direction. (to the lower right side in FIG. 6). Then, it moves in the first direction (downward in FIG. 6) along the third protrusion 136 connected to the second protrusion 135.
 このように、本変形例の熱交換器11では、第1の突出部133は、上下方向に延びる。第2の突出部135は、第1の扁平管20aの空気流れの上流部120bの近傍から、斜め下方に延びる。 In this way, in the heat exchanger 11 of this modification, the first protrusion 133 extends in the vertical direction. The second protruding portion 135 extends diagonally downward from near the air flow upstream portion 120b of the first flat tube 20a.
 ここでは、第2の突出部135によって、第1の扁平管20aの下方かつ上流側の水Wを下方に流すことができる。 Here, the second protrusion 135 allows the water W below and upstream of the first flat tube 20a to flow downward.
 (4-2)変形例2
 上述した実施形態では、第1方向に水を流す導水用リブとして、第1の突出部133及び第3の突出部136が形成されているが、さらに別の導水用リブが形成されてもよい。図7に示すように、本変形例の熱交換器12には、第1の突出部133及び第3の突出部136の空気流れの下流側に、第1方向に水を流すための第4の突出部138がさらに形成されている。
(4-2) Modification example 2
In the embodiment described above, the first protrusion 133 and the third protrusion 136 are formed as water guide ribs that allow water to flow in the first direction, but other water guide ribs may also be formed. . As shown in FIG. 7, the heat exchanger 12 of this modification includes a fourth protrusion on the downstream side of the air flow of the first protrusion 133 and the third protrusion 136 for flowing water in the first direction. A protrusion 138 is further formed.
 詳細には、第4の突出部138は、フィン30の空気流れの下流端30b近傍に、第1方向に延びるように形成されている。第4の突出部138は、フィン30の上端部から下端部にかけて連続して延びる。第4の突出部138は、第1の突出部133及び第3の突出部136と平行、かつ、直線状である。 Specifically, the fourth protrusion 138 is formed near the air flow downstream end 30b of the fin 30 so as to extend in the first direction. The fourth protrusion 138 extends continuously from the upper end to the lower end of the fin 30. The fourth protrusion 138 is parallel to the first protrusion 133 and the third protrusion 136, and is linear.
 (4-3)変形例3
 上述した実施形態では、フィン30に、伝熱促進用の切り欠き37、リブ134などが形成されているが、これに限定されない。伝熱促進用の切り欠き、リブなどは適宜形成される。本変形例では、第3の突出部136の両横に、伝熱促進用のリブがさらに形成されている。両横のリブは、断面視において、例えば、L字形状である。
(4-3) Modification example 3
In the embodiment described above, the notch 37 for promoting heat transfer, the rib 134, etc. are formed in the fin 30, but the present invention is not limited thereto. Cutouts, ribs, etc. for promoting heat transfer are formed as appropriate. In this modification, ribs for promoting heat transfer are further formed on both sides of the third protrusion 136. The ribs on both sides are, for example, L-shaped in cross-sectional view.
 (4-4)変形例4
 上述した実施形態では、熱交換器10は、室内熱交換器231に適用されるが、これに限定されない。本変形例では、熱交換器10は、室外熱交換器223に適用される。
(4-4) Modification example 4
In the embodiment described above, the heat exchanger 10 is applied to the indoor heat exchanger 231, but is not limited thereto. In this modification, the heat exchanger 10 is applied to an outdoor heat exchanger 223.
 (4-5)変形例5
 上述した実施形態では、熱交換器10は、空気調和装置200に適用されるが、これに限定されない。熱交換器10は、給湯装置、床暖房装置、冷蔵装置等の冷凍装置に適用されてもよい。
(4-5) Modification example 5
In the embodiment described above, the heat exchanger 10 is applied to the air conditioner 200, but is not limited thereto. The heat exchanger 10 may be applied to a refrigeration device such as a water heater, a floor heating device, or a refrigerator.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the present disclosure as described in the claims. .
1         :空気調和装置
10,11,12  :熱交換器
20,20a,20b:扁平管
30        :フィン
30b,120a  :下流端
32        :第1の接合部
33        :第1板部
34        :第2の接合部
35        :第2板部
36        :第3板部
37        :切り欠き
133       :第1の突出部
135       :第2の突出部
136       :第3の突出部
200       :空気調和装置
210       :冷媒回路
230       :室内機
1: Air conditioner 10, 11, 12: Heat exchanger 20, 20a, 20b: Flat tube 30: Fin 30b, 120a: Downstream end 32: First joint 33: First plate 34: Second joint Part 35: Second plate part 36: Third plate part 37: Notch 133: First protrusion 135: Second protrusion 136: Third protrusion 200: Air conditioner 210: Refrigerant circuit 230: Indoor machine
国際公開第2018/003123号International Publication No. 2018/003123

Claims (10)

  1.  第1方向に並ぶ複数の扁平管(20)と、
     前記扁平管に接合されるフィン(30)と、
    を備え、
     前記扁平管の中を流れる冷媒と、前記扁平管の外を前記第1方向に交差する第2方向に沿って流れる空気と、の間で熱交換を行わせる熱交換器であって、
     前記フィンは、
      第1の前記扁平管と接合されている第1の接合部(32)と、
      空気流れの下流端と前記第1の接合部との間に位置する第1板部(33)と、
    を有し、
     前記第1板部には、前記第1の扁平管の近傍において前記第1方向に水を流すための第1の突出部(133)が形成されている、
    熱交換器(10)。
    a plurality of flat tubes (20) lined up in a first direction;
    a fin (30) joined to the flat tube;
    Equipped with
    A heat exchanger that performs heat exchange between a refrigerant flowing inside the flat tube and air flowing outside the flat tube along a second direction intersecting the first direction,
    The fin is
    a first joint part (32) joined to the first flat tube;
    a first plate portion (33) located between the downstream end of the air flow and the first joint portion;
    has
    A first protrusion (133) for flowing water in the first direction near the first flat tube is formed in the first plate part.
    Heat exchanger (10).
  2.  前記第1の突出部は、前記第1方向に延びる、
    請求項1に記載の熱交換器。
    the first protrusion extends in the first direction;
    The heat exchanger according to claim 1.
  3.  前記第1の扁平管の空気流れの下流端(120a)と、前記第1の突出部との前記第2方向の距離(L1)は、前記フィンの空気流れの下流端(30b)と、前記第1の突出部との前記第2方向の距離(L2)よりも小さい、
    請求項1または2に記載の熱交換器。
    The distance (L1) in the second direction between the air flow downstream end (120a) of the first flat tube and the first protrusion is equal to the distance (L1) between the air flow downstream end (30b) of the fin and the smaller than the distance (L2) in the second direction from the first protrusion;
    The heat exchanger according to claim 1 or 2.
  4.  前記フィンは、
      前記第1の扁平管と前記第1方向に隣り合う第2の前記扁平管と接合されている第2の接合部(34)と、
      前記第1の接合部と前記第2の接合部との間に位置する第2板部(35)と、
    をさらに有し、
     前記第2板部には、前記第1方向及び前記第2方向に対して傾斜する方向に延びる第2の突出部(135)が形成されている、
    請求項1~3のいずれか1項に記載の熱交換器。
    The fin is
    a second joint portion (34) joined to the first flat tube and the second flat tube adjacent in the first direction;
    a second plate part (35) located between the first joint part and the second joint part;
    It further has
    A second protrusion (135) extending in a direction inclined with respect to the first direction and the second direction is formed on the second plate part.
    The heat exchanger according to any one of claims 1 to 3.
  5.  前記第1の突出部は、上下方向に延び、
     前記第2の突出部は、前記第1の扁平管の空気流れの下流部の近傍から、斜め下方に延びる、
    請求項4に記載の熱交換器。
    The first protrusion extends in the vertical direction,
    The second protrusion extends obliquely downward from near the downstream portion of the air flow of the first flat tube.
    The heat exchanger according to claim 4.
  6.  前記第1の突出部は、上下方向に延び、
     前記第2の突出部は、前記第1の扁平管の空気流れの上流部の近傍から、斜め下方に延びる、
    請求項4に記載の熱交換器。
    The first protrusion extends in the vertical direction,
    The second protrusion extends obliquely downward from near the upstream portion of the air flow of the first flat tube.
    The heat exchanger according to claim 4.
  7.  前記フィンは、
      前記第1の扁平管と前記第1方向に隣り合う第2の前記扁平管と接合されている第2の接合部(34)と、
      前記第1の接合部と前記第2の接合部との間に位置する第2板部(35)と、
      空気流れの下流端と前記第2板部との間に位置する第3板部(36)と、
    をさらに有し、
     前記第3板部には、前記第1の突出部と連続する第3の突出部(136)が形成されている、
    請求項1~6のいずれか1項に記載の熱交換器。
    The fin is
    a second joint portion (34) joined to the first flat tube and the second flat tube adjacent in the first direction;
    a second plate part (35) located between the first joint part and the second joint part;
    a third plate portion (36) located between the downstream end of the air flow and the second plate portion;
    It further has
    A third protrusion (136) that is continuous with the first protrusion is formed in the third plate part.
    The heat exchanger according to any one of claims 1 to 6.
  8.  前記フィンは、
      前記第1の扁平管と前記第1方向に隣り合う第2の前記扁平管と接合されている第2の接合部(34)と、
      前記第1の接合部と前記第2の接合部との間に位置する第2板部(35)と、
    をさらに有し、
     前記第2板部には、伝熱促進用の切り欠き(37)が形成されている、
    請求項1~7のいずれか1項に記載の熱交換器。
    The fin is
    a second joint portion (34) joined to the first flat tube and the second flat tube adjacent in the first direction;
    a second plate part (35) located between the first joint part and the second joint part;
    It further has
    A notch (37) for promoting heat transfer is formed in the second plate part.
    The heat exchanger according to any one of claims 1 to 7.
  9.  前記フィンは、前記扁平管の延びる方向に複数並び、
     前記フィンのフィンピッチ(P)は、1.2mm以上1.4mm以下であり、
     前記第1の突出部の高さは、0.1mm以上0.6mm以下である、
    請求項1~8のいずれか1項に記載の熱交換器。
    A plurality of the fins are arranged in a direction in which the flat tube extends,
    The fin pitch (P) of the fins is 1.2 mm or more and 1.4 mm or less,
    The height of the first protrusion is 0.1 mm or more and 0.6 mm or less,
    The heat exchanger according to any one of claims 1 to 8.
  10.  空気調和装置(200)の室内機(230)に含まれる、請求項1~9のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 9, which is included in an indoor unit (230) of an air conditioner (200).
PCT/JP2023/025837 2022-07-19 2023-07-13 Heat exchanger WO2024018983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-114818 2022-07-19
JP2022114818A JP2024012956A (en) 2022-07-19 2022-07-19 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2024018983A1 true WO2024018983A1 (en) 2024-01-25

Family

ID=89617839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025837 WO2024018983A1 (en) 2022-07-19 2023-07-13 Heat exchanger

Country Status (2)

Country Link
JP (1) JP2024012956A (en)
WO (1) WO2024018983A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180U (en) * 1981-06-18 1983-01-05 松下電器産業株式会社 Tube heat exchanger with fins
WO2018003123A1 (en) * 2016-07-01 2018-01-04 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2018073898A1 (en) * 2016-10-18 2018-04-26 三菱電機株式会社 Heat exchanger, outdoor unit, and manufacturing device and manufacturing method for heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180U (en) * 1981-06-18 1983-01-05 松下電器産業株式会社 Tube heat exchanger with fins
WO2018003123A1 (en) * 2016-07-01 2018-01-04 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2018073898A1 (en) * 2016-10-18 2018-04-26 三菱電機株式会社 Heat exchanger, outdoor unit, and manufacturing device and manufacturing method for heat exchanger

Also Published As

Publication number Publication date
JP2024012956A (en) 2024-01-31

Similar Documents

Publication Publication Date Title
JP6165360B2 (en) Heat exchanger and air conditioner
JP6897372B2 (en) Heat exchanger
US10047962B2 (en) Indoor unit for air-conditioning apparatus
WO2019142642A1 (en) Indoor heat exchanger and air conditioning device
US11499762B2 (en) Heat exchanger and air conditioner
JP2015218907A (en) Heat exchanger
US11175053B2 (en) Heat exchanger, refrigeration cycle device, and air-conditioning apparatus
WO2017208493A1 (en) Air conditioner
WO2024018983A1 (en) Heat exchanger
JP2019027614A (en) Heat exchanging device and air conditioner
JP6318371B2 (en) Outdoor unit and refrigeration cycle apparatus using the same
WO2024034584A1 (en) Heat exchanger
KR100768165B1 (en) Drain panel of ceiling type air conditioner
JP2022148602A (en) Heat exchanger
JP7453578B2 (en) Heat exchanger
JP2015227754A (en) Heat exchanger
WO2019240055A1 (en) Heat exchanger and air conditioner
KR100829185B1 (en) Air conditioner
JP7353483B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
US20200166253A1 (en) Heat exchanger, and refrigeration cycle apparatus
JP7190579B2 (en) Fin used in heat exchanger, heat exchanger having fins, and refrigeration cycle device having heat exchanger
JP7011187B2 (en) Refrigerant shunt and air conditioner
JP7019067B2 (en) Heat exchanger and refrigeration cycle equipment
CN109219723A (en) The outdoor unit of air-conditioning device
JP2002022307A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842906

Country of ref document: EP

Kind code of ref document: A1