WO2024018724A1 - Cold rolling equipment, steel plate manufacturing equipment, cold rolling method, and steel plate manufacturing method - Google Patents

Cold rolling equipment, steel plate manufacturing equipment, cold rolling method, and steel plate manufacturing method Download PDF

Info

Publication number
WO2024018724A1
WO2024018724A1 PCT/JP2023/016986 JP2023016986W WO2024018724A1 WO 2024018724 A1 WO2024018724 A1 WO 2024018724A1 JP 2023016986 W JP2023016986 W JP 2023016986W WO 2024018724 A1 WO2024018724 A1 WO 2024018724A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold rolling
steel strip
metal steel
rolls
control device
Prior art date
Application number
PCT/JP2023/016986
Other languages
French (fr)
Japanese (ja)
Inventor
公貴 日野
正樹 平井
一郎 田野口
哲矢 荒川
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024018724A1 publication Critical patent/WO2024018724A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning

Definitions

  • the present disclosure relates to cold rolling equipment, steel sheet manufacturing equipment, cold rolling methods, and steel sheet manufacturing methods.
  • Steel plates containing Si such as electrical steel plates, have low toughness and are prone to brittle fracture during rolling.
  • the greater the amount of Si contained in a steel sheet the lower the ductile-brittle transition temperature tends to be.
  • As a method of preventing brittle fracture there is a method of heating a steel plate to a temperature equal to or higher than the ductile-brittle transition temperature before rolling.
  • coolant is injected towards the nip between the work roll and the steel plate in order to lubricate the steel plate during rolling and prevent thermal deformation of the work roll. Therefore, the injected coolant bounces off the work rolls and flows over the steel plate towards the entry side.
  • coolant liquid coolant flowing toward the inlet side
  • the length of the coolant in the longitudinal direction of the steel plate increases as the line speed decreases. Furthermore, as the line speed increases, the force of drawing in the coolant by the steel plate becomes stronger, so the liquid riding length tends to become shorter. Therefore, when the line speed is slow, even if the steel plate is preheated, the steel plate is cooled to about the temperature of the coolant.
  • Patent Document 1 discloses a technology in which a draining device is provided to spray draining air onto the top roll of a rolling mill in order to prevent the coolant sprayed onto the top roll of a rolling mill from falling onto the strip and lowering the temperature of the strip. Disclosed.
  • Patent Document 2 In order to solve the lack of lubrication of the steel plate that occurs in the draining device of Patent Document 1, for example, as shown in Patent Document 2, a technique is disclosed in which a highly concentrated emulsion is supplied to the steel plate in a small amount.
  • the present disclosure has been made in view of such problems, and provides cold rolling equipment, steel plate production equipment, cold rolling method, and steel plate production that can suppress deformation of work rolls and suppress brittle cracking during rolling.
  • the purpose is to provide a method.
  • (1) Cold rolling equipment one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills; a plurality of rolls provided in the metal steel strip for conveying the metal steel strip, and a control device that controls the height difference of the plurality of rolls,
  • the control device is configured such that, on the upstream side of at least a portion of the one or more cold rolling mills including the most upstream rolling mill provided on the most upstream side, the metal steel strip is lowered toward the downstream side in the conveying direction.
  • the plurality of rolls are controlled as follows.
  • the control device controls the steel type of the metal steel strip, the line speed, the injection flow rate of the coolant, and the flow rate of the metal steel strip on the upstream side of at least a portion of the one or more cold rolling mills including the most upstream rolling mill.
  • An inclination angle of the metal steel strip with respect to a biting portion of the one or more cold rolling mills is set based on at least one of temperature and a target temperature of the metal steel strip.
  • the control device controls the plurality of rolls so that the inclination angle is 2° or more and 10° or less.
  • the one or more cold rolling mills are plural,
  • the control device is configured such that, on the upstream side of at least a portion of the one or more cold rolling mills including the most downstream rolling mill provided on the most downstream side, the metal steel strip is positioned at a higher level toward the downstream side in the conveying direction.
  • the plurality of rolls are controlled as follows.
  • the cold rolling equipment includes: one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills; a plurality of rolls provided in the metal steel strip for conveying the metal steel strip, and a control device that controls the height difference of the plurality of rolls,
  • the control device is configured such that, on the upstream side of at least some of the one or more cold rolling mills including the most downstream rolling mill provided on the most downstream side, the metal steel strip is positioned at a higher level toward the downstream side in the conveying direction.
  • the plurality of rolls are controlled as follows.
  • the control device controls the steel type of the metal steel strip, the line speed, the injection flow rate of the coolant, and the flow rate of the metal steel strip on the upstream side of at least a portion of the one or more cold rolling mills including the most downstream rolling mill.
  • An inclination angle of the metal steel strip with respect to a biting portion of the one or more cold rolling mills is set based on at least one of temperature and a target temperature of the metal steel strip.
  • the control device controls the plurality of rolls so that the inclination angle is ⁇ 10° or more and ⁇ 2° or less.
  • the steel plate manufacturing equipment includes: The cold rolling equipment according to any one of (1) to (7) and equipment for cutting the metal steel strip are provided.
  • the cold rolling method includes: one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills;
  • a cold rolling method carried out in a cold rolling facility comprising: a plurality of rolls provided at a steel strip for transporting a metal steel strip; and a control device for controlling a height difference between the plurality of rolls.
  • the control device is configured such that, on the upstream side of at least some of the one or more cold rolling mills including the most upstream rolling mill provided on the most upstream side, the metal steel strip is positioned at a lower level toward the downstream side in the conveying direction. controlling the plurality of rolls in such a manner.
  • the cold rolling method includes: one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills;
  • a cold rolling method carried out in a cold rolling facility comprising: a plurality of rolls provided at a steel strip for transporting a metal steel strip; and a control device for controlling a height difference between the plurality of rolls.
  • the control device is configured such that, on the upstream side of at least some of the one or more cold rolling mills including the most downstream rolling mill provided on the most downstream side, the metal steel strip is positioned at a higher level toward the downstream side in the conveying direction. controlling the plurality of rolls in such a manner.
  • a method for manufacturing a steel plate according to an embodiment of the present disclosure includes a step of performing the cold rolling method of (9) or (10) and cutting the metal steel strip.
  • FIG. 1 is a diagram illustrating a configuration example of a cold rolling mill included in cold rolling equipment according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a cold rolling mill included in cold rolling equipment according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram for explaining changes in temperature of a metal steel strip in a cold rolling facility.
  • the cold rolling equipment includes a heating device, a plurality of rolls, and first to fourth cold rolling mills.
  • the first to fourth cold rolling mills perform cold rolling of a metal steel strip that is heated by a heating device and conveyed by a plurality of rolls.
  • the cold rolling equipment includes a heating device, a first cold rolling mill, a second cold rolling mill, a third cold rolling mill, and a third cold rolling mill from the upstream side to the downstream side in the conveying direction of the metal steel strip.
  • 4 cold rolling mills are installed in sequence.
  • the cold rolling equipment may constitute a part of the steel plate manufacturing equipment.
  • the steel plate manufacturing equipment may further include equipment for cutting a metal steel strip, for example downstream of the fourth cold rolling mill, to cut out a steel plate of a desired size.
  • Each of the first to fourth cold rolling mills includes a coolant header (see FIG. 1) that injects coolant toward the work roll and the metal steel strip.
  • the coolant is, for example, a liquid mixture of rolling oil and water, and is injected for the purpose of ensuring lubricity and cooling the work rolls.
  • Steel sheets manufactured by manufacturing equipment including cold rolling equipment include, for example, electrical steel sheets.
  • electrical steel sheets have a ductile-brittle transition temperature of 70 to 80°C, so after being heated to a degree above the ductile-brittle transition temperature (for example, 200 to 500°C), they are inserted into rolling equipment and rolled.
  • the temperature of the steel strip decreases due to rolling oil, etc. provided during rolling, and the temperature of the metal steel strip at the time of biting in the cold rolling mill (hereinafter also referred to as "plate temperature”) reaches the ductile-brittle transition temperature. If it is less than that, breakage is likely to occur.
  • the plate temperature could drop lower than expected.
  • the plate temperature at the time of biting is high, breakage can be prevented, but there is also processing heat generated during rolling, and the plate temperature can become even higher in the downstream rolling pass. If the plate temperature is higher than expected, the thermal crown of the work roll will grow, potentially causing shape defects in the rolled metal steel strip.
  • the graph in the lower part of FIG. 3 shows the change in temperature of the metal steel strip.
  • the vertical axis shows the temperature of the metal steel strip
  • the horizontal axis shows the position in the manufacturing process corresponding to the cold rolling equipment shown in the above figure.
  • the coolant injected in the first to fourth cold rolling mills bounces off the work rolls and flows over the metal steel strip toward the entry side (upstream side), causing coolant flooding.
  • the length in the longitudinal direction (conveying direction) of the metal steel strip carrying the coolant becomes longer as the line speed is lower, and becomes shorter as the line speed becomes faster because the force for drawing in the coolant by the steel plate becomes stronger.
  • a metal steel strip is rolled and stretched in the longitudinal direction by a rolling mill, so the line speed increases from the upstream cold rolling mill to the downstream cold rolling mill.
  • the line speed is relatively slow
  • the length of the coolant liquid is long
  • the temperature of the metal steel strip is lower than the optimum temperature (ductile-brittle). (below the transition temperature).
  • the line speed is relatively high
  • the length of the coolant liquid is short, and heat generated during rolling accumulates, causing the temperature of the work roll and the shape of the metal steel strip to be defective. The temperature is raised above the temperature at which shape defects occur.
  • the cold rolling equipment for example, based on the measurement results such as the plate temperature as shown in the lower diagram of FIG.
  • the length of the coolant can be adjusted.
  • the temperature of the metal steel strip falls within the optimum temperature range, suppressing deformation of the work roll and suppressing brittle cracking during rolling.
  • FIG. 1 is a diagram showing an example of the configuration of a cold rolling mill included in the cold rolling equipment according to the present embodiment.
  • the cold rolling equipment includes one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and a cold rolling mill located upstream of the cold rolling mill in the conveyance direction of the metal steel strip. It includes a plurality of rolls provided on the side for conveying the metal steel strip, and a control device that controls the height difference between the plurality of rolls.
  • the number of cold rolling mills included in the cold rolling equipment is not particularly limited, this embodiment will be described assuming that it is four as shown in FIG. 3.
  • FIG. 1 shows an enlarged view of one of a plurality of cold rolling mills included in a cold rolling facility.
  • the height of each of the plurality of rolls on the entrance side of the cold rolling mill can be adjusted by a lifting device.
  • the elevating device is, for example, a screw jack, but is not limited to a specific device.
  • the control device controls the height difference between the plurality of rolls by causing the lifting device to raise and lower the rolls based on the control signal.
  • the control device controls the plurality of rolls so that the metal steel strip becomes lower toward the downstream side in the conveyance direction.
  • the control device controls the inclination angle to be positive, with the angle of the metal steel strip on the entry side with respect to the horizontal direction of the biting part of the cold rolling mill being defined as the inclination angle.
  • the control device controls the metal steel strip to be at a lower position toward the downstream side in the conveying direction at the entrance side of the cold rolling mill where the temperature of the metal steel strip is lower than the optimum temperature.
  • the temperature of the metal steel strip can be increased.
  • the length of the coolant liquid becomes long, and the temperature of the metal steel strip decreases below the optimum temperature.
  • the control device may control the metal steel strip to be at a lower level toward the downstream side in the conveyance direction on the upstream side of one or more cold rolling mills including the most upstream rolling mill.
  • the control device raises and lowers the entry side rolls of the first cold rolling mill (most upstream rolling mill) and the second cold rolling mill so that the inclination angle is positive.
  • the temperature of the metal strip can be increased to within the optimum temperature range.
  • the control device may set the inclination angle of the first cold rolling mill to the same inclination angle as that of the second cold rolling mill, or may set it to a different inclination angle.
  • the control device controls at least the steel type of the metal steel strip, the line speed, the coolant injection flow rate, the temperature of the metal steel strip, and the target temperature of the metal steel strip on the upstream side of one or more cold rolling mills including the most upstream rolling mill.
  • the tilt angle may be set based on one.
  • the control device may set the inclination angle of the first cold rolling mill (the most upstream rolling mill), for example, based on the temperature of the metal steel strip and the target temperature of the metal steel strip.
  • the control device also sets the inclination angle of the second cold rolling mill so that the inclination angle is smaller than the inclination angle of the first cold rolling mill, based on, for example, a difference in line speed. good.
  • the control device controls the plurality of rolls so that the inclination angle is 2° or more and 10° or less.
  • the degree of shortening of the length of the coolant layer is small and the effect of temperature increase is small.
  • the inclination angle is larger than 10°, smooth conveyance of the metal steel strip may be hindered.
  • the control device may control the plurality of rolls so that the inclination angle is greater than or equal to 5 degrees and less than or equal to 10 degrees.
  • the length of the sloped portion is preferably a certain length because if it is too short, the coolant may ride over the sloped portion.
  • the length of the inclined portion is preferably 1 m or more. Further, due to equipment constraints, an upper limit may be set on the length of the inclined portion. As an example, the length of the inclined portion is preferably 3 m or less.
  • FIG. 2 is a diagram showing another configuration example of a cold rolling mill included in the cold rolling equipment according to the present embodiment.
  • the cold rolling equipment includes one or more cold rolling mills, a plurality of rolls, and a control device.
  • FIG. 2 will be described as an enlarged view of one of a plurality of cold rolling mills included in the same cold rolling equipment as FIG. 1.
  • the height of each of the plurality of rolls on the entrance side of the cold rolling mill can be adjusted by a lifting device, similar to FIG. 1.
  • the control device controls the plurality of rolls so that the metal steel strip becomes higher toward the downstream side in the conveyance direction. That is, in the example of FIG. 2, the control device controls the tilt angle to be negative.
  • the inclination angle is negative, the coolant that bounces off the work roll and flows toward the entry side (upstream side) on the metal steel strip extends further upstream due to the inclination. Therefore, the length of the coolant can be increased.
  • the control device controls the metal steel strip so that it becomes higher toward the downstream side in the conveying direction at the entrance side of the cold rolling mill where the temperature of the metal steel strip has risen above the shape defect generation temperature. By this, the temperature of the metal steel strip can be lowered.
  • the control device may control the metal steel strip to be at a higher level toward the downstream side in the conveyance direction on the upstream side of one or more cold rolling mills including the most downstream rolling mill. In the example of FIG.
  • the control device increases and decreases the length of the coolant liquid by raising and lowering the entrance roll of the fourth cold rolling mill (the most downstream rolling mill) so that the inclination angle is negative.
  • the length can be increased to reduce the temperature of the metal strip to within the optimum temperature range.
  • the control device controls the steel type of the metal steel strip, the line speed, the coolant injection flow rate, the temperature of the metal steel strip, and the target of the metal steel strip on the upstream side of one or more cold rolling mills including the most downstream rolling mill.
  • the tilt angle may be set based on at least one of temperature.
  • the control device may set the inclination angle of the fourth cold rolling mill (the most downstream rolling mill), for example, based on the temperature of the metal steel strip and the target temperature of the metal steel strip.
  • the control device calculates the optimum length of the coolant liquid based on, for example, the steel type of the metal steel strip, the line speed, and the coolant injection flow rate, and adjusts the length of the coolant liquid to match the calculated value.
  • the inclination angle of the fourth cold rolling mill may be set to .
  • the control device controls the plurality of rolls so that the inclination angle is ⁇ 10° or more and ⁇ 2° or less.
  • the control device may control the plurality of rolls so that the inclination angle is ⁇ 10° or more and ⁇ 3° or less.
  • the type of cold rolling mill that the cold rolling equipment is equipped with is not limited.
  • the cold rolling mill may be, for example, a multi-high rolling mill or a reverse rolling mill.
  • different types of cold rolling mills may be included. Even when the cold rolling mill is a reverse rolling mill, the inclination angle for adjusting the length of the coolant layer may be set so as to keep the temperature of the metal steel strip in the optimum range.
  • the cold rolling equipment may have a limiting mechanism to prevent the inclination angle from exceeding a predetermined angle range (for example, ⁇ 10° to 10°).
  • the limiting mechanism may be, for example, a mechanical stopper, or may be a device that limits the range of motion of the lifting device based on a signal from a detection device such as a proximity switch.
  • the cold rolling equipment according to the present embodiment is used as a part of steel plate manufacturing equipment, as described above.
  • the control device of the cold rolling equipment controls a plurality of rolls on the upstream side of one or more cold rolling mills including the most upstream rolling mill so that the metal steel strip is at a lower position toward the downstream side in the conveying direction.
  • a cold rolling method can be carried out, comprising the steps of:
  • the control device of the cold rolling equipment controls a plurality of rolls on the upstream side of one or more cold rolling mills including the most downstream rolling mill so that the metal steel strip is at a higher position toward the downstream side in the conveying direction.
  • a cold rolling method can be carried out, comprising the steps of:
  • the steel sheet manufacturing equipment can perform a method of manufacturing a steel sheet, which includes performing a cold rolling method and further cutting a metal steel strip.
  • the cold rolling equipment, the steel sheet manufacturing equipment, the cold rolling method, and the steel sheet manufacturing method according to the present embodiment adjust the length of the coolant liquid through the above configuration or process (step). to bring the temperature of the metal steel strip within the optimum temperature range. Therefore, deformation of the work roll can be suppressed and brittle cracking during rolling can be suppressed.
  • a cold rolling facility including four cold rolling mills has been described with reference to FIG. 3, but the number of cold rolling mills included in the cold rolling facility is not limited.
  • the control device can control multiple rolls such that the metal steel strip is lowered toward the downstream side in the conveying direction, and Only one of the plurality of rolls may be controlled at higher positions toward the downstream side.
  • each of the intermediate cold rolling mills other than the most upstream rolling mill and the most downstream rolling mill has a positive inclination angle according to the control device. It may be adjusted to have a negative inclination angle, or it may be adjusted to have a negative inclination angle, or the inclination angle may not be adjusted.
  • Example 2 Using the cold rolling equipment described in the above embodiment, a rolling experiment was conducted to determine whether seizure and plate breakage occur after rolling.
  • the cold rolling equipment used was one equipped with four cold rolling mills as shown in FIG. Table 1 shows the components (mass%) of the target steel types A to C. In Table 1, "Bal.” indicates that the remainder is Fe.
  • a rolling experiment was conducted with the inclination angle changed from 0° to 10°.
  • the inclination angle of the first cold rolling mill No. 1std
  • the coolant flow rate was 100 to 300 L/min.
  • the initial temperature of the steel plate (metal steel strip) to be passed was 200°C.
  • the steel plate (metal steel strip) had a width of 1000 mm and an initial plate thickness of 2.0 mm.
  • the line speed was 15 mpm or 100 mpm.
  • the plate thickness was set from 2.0 mm to 1.2 mm by rolling with the first cold rolling mill.
  • the coolant used was a mixture of 5% rolling oil and 95% pure water.
  • the temperature of the coolant was 60°C.
  • Table 2 shows the results of the first experiment. No. Under condition 1, the liquid riding length was 100 mm or less, but seizure occurred. No. Seizure did not occur under condition No. 5, but the length of the coolant was as long as 600 mm, and the plate temperature at the entrance side was 60°C, a drop of 140°C from the initial temperature, causing the plate to break. No. 3 and no. No. 4 was the result of tilting the pass line, but no burn-in occurred in either case. Also, No. 3 and no. In No. 4, the plate temperature at the entry side was also 80° C. or higher, which was the ductile-brittle transition temperature or higher, and no plate breakage occurred.
  • the cold rolling equipment used was one equipped with four cold rolling mills as shown in FIG. Table 1 shows the components (mass%) of the target steel types A to C.
  • a rolling experiment was conducted with the inclination angle changed from 0° to -10°.
  • the inclination angle of the fourth cold rolling mill No. 4 standard
  • the coolant flow rate was 2000 to 3000 L/min.
  • the initial temperature of the steel plate (metallic steel strip) to be passed was 300°C.
  • the steel plate (metal steel strip) had a width of 1000 mm and an initial plate thickness of 2.0 mm.
  • the line speed was 1000 to 1500 mpm.
  • the plate thickness was set from 0.4 mm to 0.3 mm by rolling with the fourth cold rolling mill.
  • the coolant used was a mixture of 5% rolling oil and 95% pure water.
  • the temperature of the coolant was 60°C.
  • Table 3 shows the results of the second experiment.
  • the inclination angle was 0° and the plate temperature at the entrance side was 250°C
  • quarter elongation shape defect
  • the length of the coolant was 400mm.
  • the inclination angle was -2° and the plate temperature at the entrance side was 250°C
  • the length of the coolant was 1500mm, and no quarter elongation occurred.

Abstract

Provided are cold rolling equipment, steel plate manufacturing equipment, a cold rolling method, and a steel sheet manufacturing method capable of suppressing deformation of work rolls and suppressing brittle fracture during rolling. The cold rolling equipment comprises: one or more cold rolling mills that spray a coolant toward the work rolls and a metal steel strip to cold-roll the metal steel strip; a plurality of rolls that are provided farther upstream than the one or more cold rolling mills in a conveyance direction of the metal steel strip and are used to convey the metal steel strip; and a control device that controls the height difference between the plurality of rolls. The control device controls the plurality of rolls such that the metal steel strip is lowered toward the downstream side in the conveyance direction, on the upstream side of at least a portion of one or more cold rolling mills including the most upstream rolling mill provided on the most upstream side.

Description

冷間圧延設備、鋼板の製造設備、冷間圧延方法及び鋼板の製造方法Cold rolling equipment, steel plate manufacturing equipment, cold rolling method, and steel plate manufacturing method
 本開示は、冷間圧延設備、鋼板の製造設備、冷間圧延方法及び鋼板の製造方法に関する。 The present disclosure relates to cold rolling equipment, steel sheet manufacturing equipment, cold rolling methods, and steel sheet manufacturing methods.
 電磁鋼板等のSiを含む鋼板は靭性が低く圧延時に脆性破壊しやすい。一般的に鋼板中に含まれるSi量が多いほど延性脆性遷移温度は低くなる傾向にある。脆性破壊を防止する方法として圧延前に鋼板を延性脆性遷移温度以上に加熱する方法がある。 Steel plates containing Si, such as electrical steel plates, have low toughness and are prone to brittle fracture during rolling. Generally, the greater the amount of Si contained in a steel sheet, the lower the ductile-brittle transition temperature tends to be. As a method of preventing brittle fracture, there is a method of heating a steel plate to a temperature equal to or higher than the ductile-brittle transition temperature before rolling.
 鋼板の圧延設備、タンデムミル等では圧延時の鋼板の潤滑性及びワークロールの熱変形を防止するためクーラントをワークロールと鋼板の噛み込み部に向けて噴射している。そのため噴射したクーラントはワークロールで跳ね返り、鋼板上を入側に向かって流れる。圧延前に鋼板を加熱した場合、入側に向かって流れてきたクーラント(クーラント液乗り)によって鋼板温度は低下する。 In steel plate rolling equipment, tandem mills, etc., coolant is injected towards the nip between the work roll and the steel plate in order to lubricate the steel plate during rolling and prevent thermal deformation of the work roll. Therefore, the injected coolant bounces off the work rolls and flows over the steel plate towards the entry side. When a steel plate is heated before rolling, the temperature of the steel plate decreases due to coolant flowing toward the inlet side (coolant liquid).
 クーラントの鋼板長手方向の液乗り長さはライン速度が遅いほど長くなる。また、ライン速度が速くなると鋼板によりクーラントを引き込む力が強くなるため、液乗り長さは短くなる傾向にある。そのためライン速度が遅いときは、鋼板を予熱してもクーラントの温度程度まで鋼板が冷却される。 The length of the coolant in the longitudinal direction of the steel plate increases as the line speed decreases. Furthermore, as the line speed increases, the force of drawing in the coolant by the steel plate becomes stronger, so the liquid riding length tends to become shorter. Therefore, when the line speed is slow, even if the steel plate is preheated, the steel plate is cooled to about the temperature of the coolant.
 例えば特許文献1には、圧延機の上ロールに吹き付けたクーラントがストリップに落下してストリップの温度が低下するのを防止するため、上ロールに液切り用エアーを吹き付ける液切り装置を設ける技術が開示されている。 For example, Patent Document 1 discloses a technology in which a draining device is provided to spray draining air onto the top roll of a rolling mill in order to prevent the coolant sprayed onto the top roll of a rolling mill from falling onto the strip and lowering the temperature of the strip. Disclosed.
 上記特許文献1の液切り装置で生じる鋼板の潤滑不足を解消するために、例えば特許文献2に示すようにエマルションを高濃度にして鋼板に少量供給する技術が開示されている。 In order to solve the lack of lubrication of the steel plate that occurs in the draining device of Patent Document 1, for example, as shown in Patent Document 2, a technique is disclosed in which a highly concentrated emulsion is supplied to the steel plate in a small amount.
 一方で多段圧延機等の後段スタンドにおいて、圧延時の加工発熱により鋼板温度は上昇するが、温度が高すぎると、圧延時にワークロールへの入熱量が多くなり、ワークロールにサーマルクラウンが形成される。サーマルクラウンが形成されると鋼板の圧延形状が悪化する。 On the other hand, in downstream stands such as multi-high rolling mills, the temperature of the steel sheet rises due to the heat generated during rolling, but if the temperature is too high, the amount of heat input to the work roll during rolling increases and a thermal crown is formed on the work roll. Ru. When a thermal crown is formed, the rolled shape of the steel sheet deteriorates.
 特に圧延速度が速くなると単位時間当たりの入熱量は増加し、サーマルクラウンがさらに成長し、鋼板の圧延形状が悪化する。 In particular, as the rolling speed increases, the amount of heat input per unit time increases, the thermal crown grows further, and the rolled shape of the steel sheet deteriorates.
特開2000-271614号公報Japanese Patent Application Publication No. 2000-271614 特開2006-272382号公報JP2006-272382A
 しかし特許文献1に記載されている液切り装置を設けることは板温低下抑制のためには有効であるものの、鋼板の潤滑不良が生じて焼付が発生しやすい。 However, although providing the liquid draining device described in Patent Document 1 is effective for suppressing a decrease in plate temperature, poor lubrication of the steel plate occurs and seizure is likely to occur.
 特許文献2の場合、圧延機入側でエマルションを鋼板に供給するため、エマルションの液乗りによって鋼板が冷却され鋼板の温度が低下する。 In the case of Patent Document 2, since the emulsion is supplied to the steel plate on the inlet side of the rolling mill, the steel plate is cooled by the emulsion and the temperature of the steel plate is lowered.
 ここで、多段圧延機等の後段スタンドにおいて、圧延時の加工発熱により鋼板温度が高すぎる場合、クーラント液乗りによって鋼板温度は低下し、ワークロールへの入熱量を抑制することができる。しかし、圧延速度が速い場合、液乗り長が短くなるため、冷却効果は小さい。 Here, in a downstream stand such as a multi-high rolling mill, if the temperature of the steel plate is too high due to heat generated during rolling, the temperature of the steel plate is lowered by the coolant and the amount of heat input to the work rolls can be suppressed. However, when the rolling speed is high, the liquid riding length becomes short, so the cooling effect is small.
 またクーラント流量を増やすことで冷却能力が向上し、液乗り長が長くなることで更に冷却能力は向上する。ただし、ポンプの増強、クーラント送水配管径、循環タンクサイズの見直しが必要である。 In addition, increasing the coolant flow rate improves the cooling capacity, and increasing the liquid riding length further improves the cooling capacity. However, it is necessary to increase the number of pumps, and review the diameter of the coolant water supply piping and the size of the circulation tank.
 本開示はこのような課題を鑑みてなされたものであり、ワークロールの変形を抑制し、圧延時の脆性割れを抑制できる冷間圧延設備、鋼板の製造設備、冷間圧延方法及び鋼板の製造方法を提供することを目的とする。 The present disclosure has been made in view of such problems, and provides cold rolling equipment, steel plate production equipment, cold rolling method, and steel plate production that can suppress deformation of work rolls and suppress brittle cracking during rolling. The purpose is to provide a method.
 (1)本開示の一実施形態に係る冷間圧延設備は、
 ワークロール及び金属鋼帯に向けてクーラントを噴射し、前記金属鋼帯を冷間圧延する1以上の冷間圧延機と、前記1以上の冷間圧延機よりも金属鋼帯の搬送方向上流側に設けられて金属鋼帯の搬送に供される複数のロールと、前記複数のロールの高低差を制御する制御装置と、を備え、
 前記制御装置は、最も上流側に設けられた最上流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯が搬送方向下流側に向かって低位となるように前記複数のロールを制御する。
(1) Cold rolling equipment according to an embodiment of the present disclosure,
one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills; a plurality of rolls provided in the metal steel strip for conveying the metal steel strip, and a control device that controls the height difference of the plurality of rolls,
The control device is configured such that, on the upstream side of at least a portion of the one or more cold rolling mills including the most upstream rolling mill provided on the most upstream side, the metal steel strip is lowered toward the downstream side in the conveying direction. The plurality of rolls are controlled as follows.
 (2)本開示の一実施形態として、(1)において、
 前記制御装置は、前記最上流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯の鋼種、ライン速度、前記クーラントの噴射流量、前記金属鋼帯の温度及び前記金属鋼帯の目標温度の少なくとも1つに基づいて、前記1以上の冷間圧延機の噛み込み部に対する前記金属鋼帯の傾斜角度を設定する。
(2) As an embodiment of the present disclosure, in (1),
The control device controls the steel type of the metal steel strip, the line speed, the injection flow rate of the coolant, and the flow rate of the metal steel strip on the upstream side of at least a portion of the one or more cold rolling mills including the most upstream rolling mill. An inclination angle of the metal steel strip with respect to a biting portion of the one or more cold rolling mills is set based on at least one of temperature and a target temperature of the metal steel strip.
 (3)本開示の一実施形態として、(2)において、
 前記制御装置は、前記傾斜角度が2°以上かつ10°以下であるように前記複数のロールを制御する。
(3) As an embodiment of the present disclosure, in (2),
The control device controls the plurality of rolls so that the inclination angle is 2° or more and 10° or less.
 (4)本開示の一実施形態として、(1)から(3)のいずれかにおいて、
 前記1以上の冷間圧延機が複数であって、
 前記制御装置は、最も下流側に設けられた最下流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯が搬送方向下流側に向かって高位となるように前記複数のロールを制御する。
(4) As an embodiment of the present disclosure, in any one of (1) to (3),
The one or more cold rolling mills are plural,
The control device is configured such that, on the upstream side of at least a portion of the one or more cold rolling mills including the most downstream rolling mill provided on the most downstream side, the metal steel strip is positioned at a higher level toward the downstream side in the conveying direction. The plurality of rolls are controlled as follows.
 (5)本開示の一実施形態に係る冷間圧延設備は、
 ワークロール及び金属鋼帯に向けてクーラントを噴射し、前記金属鋼帯を冷間圧延する1以上の冷間圧延機と、前記1以上の冷間圧延機よりも金属鋼帯の搬送方向上流側に設けられて金属鋼帯の搬送に供される複数のロールと、前記複数のロールの高低差を制御する制御装置と、を備え、
 前記制御装置は、最も下流側に設けられた最下流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯が搬送方向下流側に向かって高位となるように前記複数のロールを制御する。
(5) The cold rolling equipment according to an embodiment of the present disclosure includes:
one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills; a plurality of rolls provided in the metal steel strip for conveying the metal steel strip, and a control device that controls the height difference of the plurality of rolls,
The control device is configured such that, on the upstream side of at least some of the one or more cold rolling mills including the most downstream rolling mill provided on the most downstream side, the metal steel strip is positioned at a higher level toward the downstream side in the conveying direction. The plurality of rolls are controlled as follows.
 (6)本開示の一実施形態として、(5)において、
 前記制御装置は、前記最下流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯の鋼種、ライン速度、前記クーラントの噴射流量、前記金属鋼帯の温度及び前記金属鋼帯の目標温度の少なくとも1つに基づいて、前記1以上の冷間圧延機の噛み込み部に対する前記金属鋼帯の傾斜角度を設定する。
(6) As an embodiment of the present disclosure, in (5),
The control device controls the steel type of the metal steel strip, the line speed, the injection flow rate of the coolant, and the flow rate of the metal steel strip on the upstream side of at least a portion of the one or more cold rolling mills including the most downstream rolling mill. An inclination angle of the metal steel strip with respect to a biting portion of the one or more cold rolling mills is set based on at least one of temperature and a target temperature of the metal steel strip.
 (7)本開示の一実施形態として、(6)において、
 前記制御装置は、前記傾斜角度が-10°以上かつ-2°以下であるように前記複数のロールを制御する。
(7) As an embodiment of the present disclosure, in (6),
The control device controls the plurality of rolls so that the inclination angle is −10° or more and −2° or less.
 (8)本開示の一実施形態に係る鋼板の製造設備は、
 (1)から(7)のいずれかの冷間圧延設備と、前記金属鋼帯を切断する設備と、を備える。
(8) The steel plate manufacturing equipment according to an embodiment of the present disclosure includes:
The cold rolling equipment according to any one of (1) to (7) and equipment for cutting the metal steel strip are provided.
 (9)本開示の一実施形態に係る冷間圧延方法は、
 ワークロール及び金属鋼帯に向けてクーラントを噴射し、前記金属鋼帯を冷間圧延する1以上の冷間圧延機と、前記1以上の冷間圧延機よりも金属鋼帯の搬送方向上流側に設けられて金属鋼帯の搬送に供される複数のロールと、前記複数のロールの高低差を制御する制御装置と、を備える冷間圧延設備において実行される冷間圧延方法であって、
 前記制御装置が、最も上流側に設けられた最上流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯が搬送方向下流側に向かって低位となるように前記複数のロールを制御するステップを含む。
(9) The cold rolling method according to an embodiment of the present disclosure includes:
one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills; A cold rolling method carried out in a cold rolling facility comprising: a plurality of rolls provided at a steel strip for transporting a metal steel strip; and a control device for controlling a height difference between the plurality of rolls.
The control device is configured such that, on the upstream side of at least some of the one or more cold rolling mills including the most upstream rolling mill provided on the most upstream side, the metal steel strip is positioned at a lower level toward the downstream side in the conveying direction. controlling the plurality of rolls in such a manner.
 (10)本開示の一実施形態に係る冷間圧延方法は、
 ワークロール及び金属鋼帯に向けてクーラントを噴射し、前記金属鋼帯を冷間圧延する1以上の冷間圧延機と、前記1以上の冷間圧延機よりも金属鋼帯の搬送方向上流側に設けられて金属鋼帯の搬送に供される複数のロールと、前記複数のロールの高低差を制御する制御装置と、を備える冷間圧延設備において実行される冷間圧延方法であって、
 前記制御装置が、最も下流側に設けられた最下流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯が搬送方向下流側に向かって高位となるように前記複数のロールを制御するステップを含む。
(10) The cold rolling method according to an embodiment of the present disclosure includes:
one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills; A cold rolling method carried out in a cold rolling facility comprising: a plurality of rolls provided at a steel strip for transporting a metal steel strip; and a control device for controlling a height difference between the plurality of rolls.
The control device is configured such that, on the upstream side of at least some of the one or more cold rolling mills including the most downstream rolling mill provided on the most downstream side, the metal steel strip is positioned at a higher level toward the downstream side in the conveying direction. controlling the plurality of rolls in such a manner.
 (11)本開示の一実施形態に係る鋼板の製造方法は、
 (9)又は(10)の冷間圧延方法を実行し、前記金属鋼帯を切断するステップを含む。
(11) A method for manufacturing a steel plate according to an embodiment of the present disclosure,
The method includes a step of performing the cold rolling method of (9) or (10) and cutting the metal steel strip.
 本開示によれば、ワークロールの変形を抑制し、圧延時の脆性割れを抑制できる冷間圧延設備、鋼板の製造設備、冷間圧延方法及び鋼板の製造方法を提供することができる。 According to the present disclosure, it is possible to provide cold rolling equipment, steel sheet manufacturing equipment, cold rolling method, and steel sheet manufacturing method that can suppress deformation of work rolls and suppress brittle cracking during rolling.
図1は、本開示の一実施形態に係る冷間圧延設備が備える冷間圧延機の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a cold rolling mill included in cold rolling equipment according to an embodiment of the present disclosure. 図2は、本開示の一実施形態に係る冷間圧延設備が備える冷間圧延機の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a cold rolling mill included in cold rolling equipment according to an embodiment of the present disclosure. 図3は、冷間圧延設備における金属鋼帯の温度の変化を説明するための図である。FIG. 3 is a diagram for explaining changes in temperature of a metal steel strip in a cold rolling facility.
 以下、図面を参照して本開示の一実施形態に係る冷間圧延設備、鋼板の製造設備、冷間圧延方法及び鋼板の製造方法が説明される。 Hereinafter, a cold rolling facility, a steel plate manufacturing facility, a cold rolling method, and a steel plate manufacturing method according to an embodiment of the present disclosure will be described with reference to the drawings.
 まず、図3を参照して、冷間圧延設備における金属鋼帯の温度変化の例が説明される。図3の例において、冷間圧延設備は、加熱装置、複数のロール及び第1から第4の冷間圧延機を備える。第1から第4の冷間圧延機は、加熱装置によって加熱されて、複数のロールによって搬送される金属鋼帯の冷間圧延を行う。冷間圧延設備は、金属鋼帯の搬送方向の上流側から下流側に向かって、加熱装置、第1の冷間圧延機、第2の冷間圧延機、第3の冷間圧延機及び第4の冷間圧延機を順に備える。冷間圧延設備は、鋼板の製造設備の一部を構成してよい。鋼板の製造設備は、例えば第4の冷間圧延機より下流側に、金属鋼帯を切断する設備をさらに備えて、所望のサイズの鋼板を切り出してよい。 First, with reference to FIG. 3, an example of temperature change of a metal steel strip in a cold rolling facility will be explained. In the example of FIG. 3, the cold rolling equipment includes a heating device, a plurality of rolls, and first to fourth cold rolling mills. The first to fourth cold rolling mills perform cold rolling of a metal steel strip that is heated by a heating device and conveyed by a plurality of rolls. The cold rolling equipment includes a heating device, a first cold rolling mill, a second cold rolling mill, a third cold rolling mill, and a third cold rolling mill from the upstream side to the downstream side in the conveying direction of the metal steel strip. 4 cold rolling mills are installed in sequence. The cold rolling equipment may constitute a part of the steel plate manufacturing equipment. The steel plate manufacturing equipment may further include equipment for cutting a metal steel strip, for example downstream of the fourth cold rolling mill, to cut out a steel plate of a desired size.
 第1から第4の冷間圧延機のそれぞれは、ワークロール及び金属鋼帯に向けてクーラントを噴射するクーラントヘッダー(図1参照)を備える。クーラントは、例えば圧延油と水を混合した液体であって、潤滑性確保及びワークロールの冷却を目的として噴射される。 Each of the first to fourth cold rolling mills includes a coolant header (see FIG. 1) that injects coolant toward the work roll and the metal steel strip. The coolant is, for example, a liquid mixture of rolling oil and water, and is injected for the purpose of ensuring lubricity and cooling the work rolls.
 冷間圧延機に金属鋼帯を噛み込む際に、ある程度の温度がなければ脆性破断の可能性がある。冷間圧延設備を含む製造設備によって製造される鋼板は例えば電磁鋼板を含む。通常、電磁鋼板は延性脆性遷移温度が70~80℃であるため、延性脆性遷移温度以上(例えば200℃~500℃)に程度加熱された後、圧延設備に挿入され圧延される。しかし、圧延の際に供される圧延油等により鋼板温度が低下し、冷間圧延機での噛み込み時の金属鋼帯の温度(以下「板温」とも称される)が延性脆性遷移温度未満になると破断が発生しやすい。冷間圧延設備において、圧延油の液乗り次第では板温が想定より低下してしまうことがあった。 When a metal steel strip is inserted into a cold rolling mill, if it is not heated to a certain level, there is a possibility of brittle fracture. Steel sheets manufactured by manufacturing equipment including cold rolling equipment include, for example, electrical steel sheets. Generally, electrical steel sheets have a ductile-brittle transition temperature of 70 to 80°C, so after being heated to a degree above the ductile-brittle transition temperature (for example, 200 to 500°C), they are inserted into rolling equipment and rolled. However, the temperature of the steel strip decreases due to rolling oil, etc. provided during rolling, and the temperature of the metal steel strip at the time of biting in the cold rolling mill (hereinafter also referred to as "plate temperature") reaches the ductile-brittle transition temperature. If it is less than that, breakage is likely to occur. In cold rolling equipment, depending on the level of rolling oil, the plate temperature could drop lower than expected.
 一方、噛み込み時の板温が高いと破断は防止できるが、圧延時の加工発熱などもあり、下流側の圧延パスにおいて板温がさらに高温になり得る。板温が想定以上に高温であると、ワークロールのサーマルクラウンが成長して、圧延後の金属鋼帯において形状不良を引き起こす可能性がある。 On the other hand, if the plate temperature at the time of biting is high, breakage can be prevented, but there is also processing heat generated during rolling, and the plate temperature can become even higher in the downstream rolling pass. If the plate temperature is higher than expected, the thermal crown of the work roll will grow, potentially causing shape defects in the rolled metal steel strip.
 図3の下図のグラフは、金属鋼帯の温度の変化を示す。縦軸が金属鋼帯の温度を示し、横軸が上図の冷間圧延設備と対応する製造工程における位置を示す。第1から第4の冷間圧延機において噴射されたクーラントはワークロールで跳ね返り、金属鋼帯の上を入側(上流側)に向かって流れて、クーラント液乗りが生じる。クーラント液乗りの金属鋼帯の長手方向(搬送方向)への長さは、ライン速度が遅いほど長くなり、ライン速度が速くなると鋼板によりクーラントを引き込む力が強くなるため短くなる。冷間圧延設備において、金属鋼帯は圧延機で長手方向に圧延され延伸するため、上流側の冷間圧延機から下流側の冷間圧延機に向かって、ライン速度が速くなる。図3の例において、ライン速度が比較的遅い第1の冷間圧延機及び第2の冷間圧延機ではクーラント液乗りの長さが長くなり、金属鋼帯の温度を最適温度未満(延性脆性遷移温度未満)に低下させている。また、ライン速度が比較的速い第4の冷間圧延機ではクーラント液乗りの長さが短く、圧延時の加工発熱などが蓄積されて、ワークロールの温度を、金属鋼帯が形状不良を引き起こす形状不良発生温度以上に上昇させている。 The graph in the lower part of FIG. 3 shows the change in temperature of the metal steel strip. The vertical axis shows the temperature of the metal steel strip, and the horizontal axis shows the position in the manufacturing process corresponding to the cold rolling equipment shown in the above figure. The coolant injected in the first to fourth cold rolling mills bounces off the work rolls and flows over the metal steel strip toward the entry side (upstream side), causing coolant flooding. The length in the longitudinal direction (conveying direction) of the metal steel strip carrying the coolant becomes longer as the line speed is lower, and becomes shorter as the line speed becomes faster because the force for drawing in the coolant by the steel plate becomes stronger. In cold rolling equipment, a metal steel strip is rolled and stretched in the longitudinal direction by a rolling mill, so the line speed increases from the upstream cold rolling mill to the downstream cold rolling mill. In the example shown in Fig. 3, in the first cold rolling mill and the second cold rolling mill where the line speed is relatively slow, the length of the coolant liquid is long, and the temperature of the metal steel strip is lower than the optimum temperature (ductile-brittle). (below the transition temperature). In addition, in the fourth cold rolling mill, where the line speed is relatively high, the length of the coolant liquid is short, and heat generated during rolling accumulates, causing the temperature of the work roll and the shape of the metal steel strip to be defective. The temperature is raised above the temperature at which shape defects occur.
 本実施形態に係る冷間圧延設備は、以下に説明するように、例えば図3下図のような板温等の測定結果に基づいて、それぞれの冷間圧延機の上流において、冷間圧延機の噛み込み部に対する金属鋼帯の傾斜角度を設定して、クーラント液乗りの長さを調整することができる。クーラント液乗りの長さが調整されることによって、金属鋼帯の温度が最適温度の範囲内となり、ワークロールの変形を抑制し、圧延時の脆性割れを抑制することができる。 As will be explained below, the cold rolling equipment according to the present embodiment, for example, based on the measurement results such as the plate temperature as shown in the lower diagram of FIG. By setting the angle of inclination of the metal steel strip with respect to the biting part, the length of the coolant can be adjusted. By adjusting the length of the coolant flow, the temperature of the metal steel strip falls within the optimum temperature range, suppressing deformation of the work roll and suppressing brittle cracking during rolling.
 図1は、本実施形態に係る冷間圧延設備が備える冷間圧延機の構成例を示す図である。冷間圧延設備は、ワークロール及び金属鋼帯に向けてクーラントを噴射し、金属鋼帯を冷間圧延する1以上の冷間圧延機と、冷間圧延機よりも金属鋼帯の搬送方向上流側に設けられて金属鋼帯の搬送に供される複数のロールと、複数のロールの高低差を制御する制御装置と、を備える。冷間圧延設備が備える冷間圧延機の数は、特に限定されないが、本実施形態において図3のように4つであるとして説明する。図1は、冷間圧延設備が備える複数の冷間圧延機の1つを拡大して示している。 FIG. 1 is a diagram showing an example of the configuration of a cold rolling mill included in the cold rolling equipment according to the present embodiment. The cold rolling equipment includes one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and a cold rolling mill located upstream of the cold rolling mill in the conveyance direction of the metal steel strip. It includes a plurality of rolls provided on the side for conveying the metal steel strip, and a control device that controls the height difference between the plurality of rolls. Although the number of cold rolling mills included in the cold rolling equipment is not particularly limited, this embodiment will be described assuming that it is four as shown in FIG. 3. FIG. 1 shows an enlarged view of one of a plurality of cold rolling mills included in a cold rolling facility.
 図1に示すように、冷間圧延機の入側の複数のロールのそれぞれは、昇降装置により高さを調整することができる。昇降装置は、例えばスクリュージャッキ等であるが、特定の装置に限定されない。制御装置は、制御信号によって昇降装置にロールを昇降させて、複数のロールの高低差を制御する。図1の例において、制御装置は、金属鋼帯が搬送方向下流側に向かって低位となるように複数のロールを制御している。冷間圧延機の噛み込み部の水平方向に対する入側の金属鋼帯の角度を傾斜角度として、図1の例において、制御装置は傾斜角度が正であるように制御する。傾斜角度が正であると、ワークロールで跳ね返り、金属鋼帯の上を入側(上流側)に向かって流れたクーラントが傾斜によって冷間圧延機の噛み込み部に戻る。そのため、クーラント液乗りの長さを短くすることができる。したがって、制御装置は、金属鋼帯の温度が最適温度未満に低下している冷間圧延機の入側において、金属鋼帯が搬送方向下流側に向かって低位となるように制御することによって、金属鋼帯の温度を上昇させることができる。一般に、最も上流側に設けられた最上流圧延機の入側において、クーラント液乗りの長さが長くなり、最適温度未満に金属鋼帯の温度が低下する。そのため、制御装置は、最上流圧延機を含む1以上の冷間圧延機の上流側において、金属鋼帯が搬送方向下流側に向かって低位となるように制御すればよい。図3の例において、制御装置は、第1の冷間圧延機(最上流圧延機)及び第2の冷間圧延機について、傾斜角度が正であるように入側のロールを昇降させることで、クーラント液乗りの長さを短くして、金属鋼帯の温度を上昇させて、最適温度範囲内にすることができる。 As shown in FIG. 1, the height of each of the plurality of rolls on the entrance side of the cold rolling mill can be adjusted by a lifting device. The elevating device is, for example, a screw jack, but is not limited to a specific device. The control device controls the height difference between the plurality of rolls by causing the lifting device to raise and lower the rolls based on the control signal. In the example of FIG. 1, the control device controls the plurality of rolls so that the metal steel strip becomes lower toward the downstream side in the conveyance direction. In the example of FIG. 1, the control device controls the inclination angle to be positive, with the angle of the metal steel strip on the entry side with respect to the horizontal direction of the biting part of the cold rolling mill being defined as the inclination angle. When the inclination angle is positive, the coolant that bounces off the work rolls and flows over the metal strip toward the entry side (upstream side) returns to the biting part of the cold rolling mill due to the inclination. Therefore, the length of the coolant can be shortened. Therefore, the control device controls the metal steel strip to be at a lower position toward the downstream side in the conveying direction at the entrance side of the cold rolling mill where the temperature of the metal steel strip is lower than the optimum temperature. The temperature of the metal steel strip can be increased. Generally, on the inlet side of the most upstream rolling mill provided on the most upstream side, the length of the coolant liquid becomes long, and the temperature of the metal steel strip decreases below the optimum temperature. Therefore, the control device may control the metal steel strip to be at a lower level toward the downstream side in the conveyance direction on the upstream side of one or more cold rolling mills including the most upstream rolling mill. In the example of FIG. 3, the control device raises and lowers the entry side rolls of the first cold rolling mill (most upstream rolling mill) and the second cold rolling mill so that the inclination angle is positive. By shortening the coolant flow length, the temperature of the metal strip can be increased to within the optimum temperature range.
 ここで、制御装置は、第1の冷間圧延機における傾斜角度を、第2の冷間圧延機と同じ傾斜角度に設定してよいし、異なる傾斜角度に設定してよい。制御装置は、最上流圧延機を含む1以上の冷間圧延機の上流側において、金属鋼帯の鋼種、ライン速度、クーラントの噴射流量、金属鋼帯の温度及び金属鋼帯の目標温度の少なくとも1つに基づいて、傾斜角度を設定してよい。制御装置は、例えば金属鋼帯の温度及び金属鋼帯の目標温度に基づいて、第1の冷間圧延機(最上流圧延機)の傾斜角度を設定してよい。また、制御装置は、例えばライン速度の違い等に基づいて、第1の冷間圧延機の傾斜角よりも傾斜角度が小さくなるように、第2の冷間圧延機の傾斜角度を設定してよい。 Here, the control device may set the inclination angle of the first cold rolling mill to the same inclination angle as that of the second cold rolling mill, or may set it to a different inclination angle. The control device controls at least the steel type of the metal steel strip, the line speed, the coolant injection flow rate, the temperature of the metal steel strip, and the target temperature of the metal steel strip on the upstream side of one or more cold rolling mills including the most upstream rolling mill. The tilt angle may be set based on one. The control device may set the inclination angle of the first cold rolling mill (the most upstream rolling mill), for example, based on the temperature of the metal steel strip and the target temperature of the metal steel strip. The control device also sets the inclination angle of the second cold rolling mill so that the inclination angle is smaller than the inclination angle of the first cold rolling mill, based on, for example, a difference in line speed. good.
 制御装置は、傾斜角度が2°以上かつ10°以下であるように複数のロールを制御することが好ましい。後述の実験例で示されるように傾斜角度が2°未満ではクーラント液乗りの長さの短縮の度合いが小さく温度上昇の効果が小さい。また、傾斜角度が10°より大きいと金属鋼帯の円滑な搬送が妨げられるおそれがあるためである。傾斜角度が5°以上の場合に、クーラント液乗りの長さを50%以上短くできる可能性がある。そのため、制御装置は、傾斜角度が5°以上かつ10°以下であるように複数のロールを制御してよい。 It is preferable that the control device controls the plurality of rolls so that the inclination angle is 2° or more and 10° or less. As shown in the experimental examples described later, when the inclination angle is less than 2 degrees, the degree of shortening of the length of the coolant layer is small and the effect of temperature increase is small. Moreover, if the inclination angle is larger than 10°, smooth conveyance of the metal steel strip may be hindered. When the angle of inclination is 5° or more, there is a possibility that the length of the coolant layer can be shortened by 50% or more. Therefore, the control device may control the plurality of rolls so that the inclination angle is greater than or equal to 5 degrees and less than or equal to 10 degrees.
 ここで、傾斜部分の長さは、短すぎるとクーラント液乗りが傾斜部を乗り越える可能性があるため、ある程度の長さを有するとよい。傾斜部分の長さは、一例として1m以上が好ましい。また、設備制約上、傾斜部分の長さに上限が定められてよい。傾斜部分の長さは、一例として3m以下が好ましい。 Here, the length of the sloped portion is preferably a certain length because if it is too short, the coolant may ride over the sloped portion. As an example, the length of the inclined portion is preferably 1 m or more. Further, due to equipment constraints, an upper limit may be set on the length of the inclined portion. As an example, the length of the inclined portion is preferably 3 m or less.
 図2は、本実施形態に係る冷間圧延設備が備える冷間圧延機の別の構成例を示す図である。冷間圧延設備は、図1と同様に、1以上の冷間圧延機と、複数のロールと、制御装置と、を備える。図2は、図1と同じ冷間圧延設備が備える複数の冷間圧延機の1つを拡大して示しているとして説明する。 FIG. 2 is a diagram showing another configuration example of a cold rolling mill included in the cold rolling equipment according to the present embodiment. As in FIG. 1, the cold rolling equipment includes one or more cold rolling mills, a plurality of rolls, and a control device. FIG. 2 will be described as an enlarged view of one of a plurality of cold rolling mills included in the same cold rolling equipment as FIG. 1.
 冷間圧延機の入側の複数のロールのそれぞれは、図1と同様に、昇降装置により高さを調整することができる。図2の例において、制御装置は、金属鋼帯が搬送方向下流側に向かって高位となるように複数のロールを制御している。つまり、図2の例において、制御装置は傾斜角度が負であるように制御する。傾斜角度が負であると、ワークロールで跳ね返り、金属鋼帯の上を入側(上流側)に向かって流れたクーラントが傾斜によってさらに上流側に延びる。そのため、クーラント液乗りの長さを長くすることができる。したがって、制御装置は、金属鋼帯の温度が形状不良発生温度以上に上昇している冷間圧延機の入側において、金属鋼帯が搬送方向下流側に向かって高位となるように制御することによって、金属鋼帯の温度を低下させることができる。一般に、最も下流側に設けられた最下流圧延機の入側において、クーラント液乗りの長さが短く、圧延時の加工発熱などが蓄積されて、形状不良発生温度以上に金属鋼帯の温度が上昇する。そのため、制御装置は、最下流圧延機を含む1以上の冷間圧延機の上流側において、金属鋼帯が搬送方向下流側に向かって高位となるように制御すればよい。図3の例において、制御装置は、第4の冷間圧延機(最下流圧延機)について、傾斜角度が負であるように入側のロールを昇降させることで、クーラント液乗りの長さを長くして、金属鋼帯の温度を低下させて、最適温度範囲内にすることができる。 The height of each of the plurality of rolls on the entrance side of the cold rolling mill can be adjusted by a lifting device, similar to FIG. 1. In the example of FIG. 2, the control device controls the plurality of rolls so that the metal steel strip becomes higher toward the downstream side in the conveyance direction. That is, in the example of FIG. 2, the control device controls the tilt angle to be negative. When the inclination angle is negative, the coolant that bounces off the work roll and flows toward the entry side (upstream side) on the metal steel strip extends further upstream due to the inclination. Therefore, the length of the coolant can be increased. Therefore, the control device controls the metal steel strip so that it becomes higher toward the downstream side in the conveying direction at the entrance side of the cold rolling mill where the temperature of the metal steel strip has risen above the shape defect generation temperature. By this, the temperature of the metal steel strip can be lowered. Generally, on the inlet side of the most downstream rolling mill, which is installed at the most downstream side, the length of the coolant liquid is short, and heat generated during rolling accumulates, causing the temperature of the metal steel strip to rise above the temperature at which shape defects occur. Rise. Therefore, the control device may control the metal steel strip to be at a higher level toward the downstream side in the conveyance direction on the upstream side of one or more cold rolling mills including the most downstream rolling mill. In the example of FIG. 3, the control device increases and decreases the length of the coolant liquid by raising and lowering the entrance roll of the fourth cold rolling mill (the most downstream rolling mill) so that the inclination angle is negative. The length can be increased to reduce the temperature of the metal strip to within the optimum temperature range.
 ここで、制御装置は、最下流圧延機を含む1以上の冷間圧延機の上流側において、金属鋼帯の鋼種、ライン速度、クーラントの噴射流量、金属鋼帯の温度及び金属鋼帯の目標温度の少なくとも1つに基づいて、傾斜角度を設定してよい。制御装置は、例えば金属鋼帯の温度及び金属鋼帯の目標温度に基づいて、第4の冷間圧延機(最下流圧延機)の傾斜角度を設定してよい。また、制御装置は、例えば金属鋼帯の鋼種、ライン速度及びクーラントの噴射流量に基づいて、最適なクーラント液乗りの長さを計算で求めて、クーラント液乗りの長さが計算値に合うように、第4の冷間圧延機の傾斜角度を設定してよい。 Here, the control device controls the steel type of the metal steel strip, the line speed, the coolant injection flow rate, the temperature of the metal steel strip, and the target of the metal steel strip on the upstream side of one or more cold rolling mills including the most downstream rolling mill. The tilt angle may be set based on at least one of temperature. The control device may set the inclination angle of the fourth cold rolling mill (the most downstream rolling mill), for example, based on the temperature of the metal steel strip and the target temperature of the metal steel strip. In addition, the control device calculates the optimum length of the coolant liquid based on, for example, the steel type of the metal steel strip, the line speed, and the coolant injection flow rate, and adjusts the length of the coolant liquid to match the calculated value. The inclination angle of the fourth cold rolling mill may be set to .
 制御装置は、傾斜角度が-10°以上かつ-2°以下であるように複数のロールを制御することが好ましい。後述の実験例で示されるように傾斜角度が-2°以上ではクーラント液乗りの長さの延長の度合いが小さく温度低下の効果が小さい。また、傾斜角度が-10°より大きいと金属鋼帯の円滑な搬送が妨げられるおそれがあるためである。傾斜角度が-3°以下の場合に、クーラント液乗りの長さを3倍以上長くできる可能性がある。そのため、制御装置は、傾斜角度が-10°以上かつ-3°以下であるように複数のロールを制御してよい。 Preferably, the control device controls the plurality of rolls so that the inclination angle is −10° or more and −2° or less. As shown in the experimental examples described later, when the inclination angle is −2° or more, the degree of extension of the length of the coolant layer is small, and the temperature reduction effect is small. Further, if the inclination angle is larger than -10°, smooth conveyance of the metal steel strip may be hindered. When the inclination angle is −3° or less, there is a possibility that the length of the coolant can be increased by more than three times. Therefore, the control device may control the plurality of rolls so that the inclination angle is −10° or more and −3° or less.
 ここで、冷間圧延設備が備える冷間圧延機の種類は限定されない。冷間圧延機は、例えば多段圧延機であってよいし、リバース圧延機であってよい。また、異なる種類の冷間圧延機が含まれていてよい。冷間圧延機がリバース圧延機である場合にも、金属鋼帯の温度を最適範囲にするように、クーラント液乗りの長さを調整する傾斜角度が設定されればよい。 Here, the type of cold rolling mill that the cold rolling equipment is equipped with is not limited. The cold rolling mill may be, for example, a multi-high rolling mill or a reverse rolling mill. Also, different types of cold rolling mills may be included. Even when the cold rolling mill is a reverse rolling mill, the inclination angle for adjusting the length of the coolant layer may be set so as to keep the temperature of the metal steel strip in the optimum range.
 また、冷間圧延設備は、傾斜角度が所定角度範囲(例えば-10°~10°)を超えないように制限機構を有していてよい。制限機構は、例えばメカストッパーであってよいし、近接スイッチ等の検出装置からの信号に基づいて昇降装置の可動域を制限する装置であってよい。 Additionally, the cold rolling equipment may have a limiting mechanism to prevent the inclination angle from exceeding a predetermined angle range (for example, −10° to 10°). The limiting mechanism may be, for example, a mechanical stopper, or may be a device that limits the range of motion of the lifting device based on a signal from a detection device such as a proximity switch.
 本実施形態に係る冷間圧延設備は、上記のように、鋼板の製造設備の一部として用いられる。また、冷間圧延設備の制御装置は、最上流圧延機を含む1以上の冷間圧延機の上流側において、金属鋼帯が搬送方向下流側に向かって低位となるように複数のロールを制御するステップを含む、冷間圧延方法を実行できる。また、冷間圧延設備の制御装置は、最下流圧延機を含む1以上の冷間圧延機の上流側において、金属鋼帯が搬送方向下流側に向かって高位となるように複数のロールを制御するステップを含む、冷間圧延方法を実行できる。鋼板の製造設備は、冷間圧延方法を実行して、さらに金属鋼帯を切断するステップを含む、鋼板の製造方法を実行できる。 The cold rolling equipment according to the present embodiment is used as a part of steel plate manufacturing equipment, as described above. In addition, the control device of the cold rolling equipment controls a plurality of rolls on the upstream side of one or more cold rolling mills including the most upstream rolling mill so that the metal steel strip is at a lower position toward the downstream side in the conveying direction. A cold rolling method can be carried out, comprising the steps of: In addition, the control device of the cold rolling equipment controls a plurality of rolls on the upstream side of one or more cold rolling mills including the most downstream rolling mill so that the metal steel strip is at a higher position toward the downstream side in the conveying direction. A cold rolling method can be carried out, comprising the steps of: The steel sheet manufacturing equipment can perform a method of manufacturing a steel sheet, which includes performing a cold rolling method and further cutting a metal steel strip.
 以上のように、本実施形態に係る冷間圧延設備、鋼板の製造設備、冷間圧延方法及び鋼板の製造方法は、上記の構成又は工程(ステップ)によって、クーラント液乗りの長さを調整して、金属鋼帯の温度を最適温度範囲内にする。そのため、ワークロールの変形を抑制し、圧延時の脆性割れを抑制することができる。 As described above, the cold rolling equipment, the steel sheet manufacturing equipment, the cold rolling method, and the steel sheet manufacturing method according to the present embodiment adjust the length of the coolant liquid through the above configuration or process (step). to bring the temperature of the metal steel strip within the optimum temperature range. Therefore, deformation of the work roll can be suppressed and brittle cracking during rolling can be suppressed.
 本開示の実施形態について、諸図面に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。例えば、各構成部などに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部などを1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態は装置が備えるプロセッサにより実行されるプログラム又はプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。 Although the embodiments of the present disclosure have been described based on the drawings, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. For example, functions included in each component can be rearranged so as not to be logically contradictory, and a plurality of components can be combined into one or divided. Embodiments according to the present disclosure can also be realized as a program executed by a processor included in the device or a storage medium recording the program. It is to be understood that these are also encompassed within the scope of the present disclosure.
 上記の実施形態において、図3を参照しながら、4つの冷間圧延機を含む冷間圧延設備について説明したが、冷間圧延設備が含む冷間圧延機の数は限定されない。例えば、冷間圧延設備が1つの冷間圧延機だけを備えて、制御装置は、金属鋼帯が搬送方向下流側に向かって低位となるような複数のロールの制御と金属鋼帯が搬送方向下流側に向かって高位となるような複数のロールの制御の一方だけを実行してよい。また、冷間圧延設備が複数の冷間圧延機を含む場合に、最上流圧延機と最下流圧延機を除く中間に設けられる冷間圧延機のそれぞれは、制御装置によって正の傾斜角度を有するように調整されてよいし、負の傾斜角度を有するように調整されてよいし、傾斜角度の調整が行われなくてよい。 In the above embodiment, a cold rolling facility including four cold rolling mills has been described with reference to FIG. 3, but the number of cold rolling mills included in the cold rolling facility is not limited. For example, if the cold rolling equipment is equipped with only one cold rolling mill, the control device can control multiple rolls such that the metal steel strip is lowered toward the downstream side in the conveying direction, and Only one of the plurality of rolls may be controlled at higher positions toward the downstream side. In addition, when the cold rolling equipment includes a plurality of cold rolling mills, each of the intermediate cold rolling mills other than the most upstream rolling mill and the most downstream rolling mill has a positive inclination angle according to the control device. It may be adjusted to have a negative inclination angle, or it may be adjusted to have a negative inclination angle, or the inclination angle may not be adjusted.
 以下、本開示内容の効果を実施例(実験例)に基づいて具体的に説明するが、本開示内容はこれら実施例に限定されるものではない。 Hereinafter, the effects of the present disclosure will be specifically explained based on examples (experimental examples), but the present disclosure is not limited to these examples.
(実施例)
 上記の実施形態において説明した冷間圧延設備を用いて、圧延後に焼付及び板破断が発生するか圧延実験を行った。冷間圧延設備は、図3のように4つの冷間圧延機を備えるものが用いられた。対象とした鋼種A~Cの成分(質量%)は表1の通りである。表1において「Bal.」は残部がFeであることを示す。
(Example)
Using the cold rolling equipment described in the above embodiment, a rolling experiment was conducted to determine whether seizure and plate breakage occur after rolling. The cold rolling equipment used was one equipped with four cold rolling mills as shown in FIG. Table 1 shows the components (mass%) of the target steel types A to C. In Table 1, "Bal." indicates that the remainder is Fe.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 傾斜角度は0°~10°と変更して圧延実験(第1の実験)を行った。第1の実験において、最上流圧延機である第1の冷間圧延機(No.1std)の傾斜角度が変更された。クーラントの流量は100~300L/minとした。通板する鋼板(金属鋼帯)の初期温度は200℃とした。鋼板(金属鋼帯)サイズは幅を1000mm、初期の板厚を2.0mmとした。ライン速度は15mpm又は100mpmとした。板厚は、第1の冷間圧延機の圧延によって2.0mmから1.2mmになるように設定された。使用するクーラントは5%圧延油に95%純水を加えたものが使用された。クーラントの温度は60℃であった。 A rolling experiment (first experiment) was conducted with the inclination angle changed from 0° to 10°. In the first experiment, the inclination angle of the first cold rolling mill (No. 1std), which is the most upstream rolling mill, was changed. The coolant flow rate was 100 to 300 L/min. The initial temperature of the steel plate (metal steel strip) to be passed was 200°C. The steel plate (metal steel strip) had a width of 1000 mm and an initial plate thickness of 2.0 mm. The line speed was 15 mpm or 100 mpm. The plate thickness was set from 2.0 mm to 1.2 mm by rolling with the first cold rolling mill. The coolant used was a mixture of 5% rolling oil and 95% pure water. The temperature of the coolant was 60°C.
 表2は第1の実験の結果を示す。No.1の条件では液乗り長は100mm以下となったが、焼付が発生した。No.5の条件で焼付は発生しなかったが、クーラント液乗りの長さが600mmと長く、入側での板温も60℃と初期温度から140℃低下し板破断した。No.3及びNo.4はパスラインを傾斜させた結果であるが、いずれも焼付が発生しなかった。また、No.3及びNo.4では、入側での板温も80℃以上であって、延性脆性遷移温度以上となり、板破断も発生しなかった。 Table 2 shows the results of the first experiment. No. Under condition 1, the liquid riding length was 100 mm or less, but seizure occurred. No. Seizure did not occur under condition No. 5, but the length of the coolant was as long as 600 mm, and the plate temperature at the entrance side was 60°C, a drop of 140°C from the initial temperature, causing the plate to break. No. 3 and no. No. 4 was the result of tilting the pass line, but no burn-in occurred in either case. Also, No. 3 and no. In No. 4, the plate temperature at the entry side was also 80° C. or higher, which was the ductile-brittle transition temperature or higher, and no plate breakage occurred.
 その他の結果については、表2の通りである。比較例については、傾斜角度が0°であって、板破断が高い確率で発生した。表2の発明例より、鋼板(金属鋼帯)の初期温度が200℃の場合、パスラインを傾斜させて板破断を防止するために、最上流圧延機の傾斜角度を5°以上にすると防止効果がさらに高まることがわかった。この結果は、中間に設けられる冷間圧延機であって、入側の鋼板(金属鋼帯)の温度が延性脆性遷移温度未満である冷間圧延機についても同様と考えられる。 Other results are shown in Table 2. In the comparative example, the inclination angle was 0°, and plate breakage occurred with a high probability. From the invention example in Table 2, when the initial temperature of the steel plate (metal steel strip) is 200°C, in order to prevent plate breakage by tilting the pass line, it can be prevented by setting the inclination angle of the most upstream rolling mill to 5° or more. It was found that the effect was even greater. This result is considered to be the same for a cold rolling mill provided in the middle, in which the temperature of the steel plate (metallic steel strip) on the entry side is lower than the ductile-brittle transition temperature.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、上記の実施形態において説明した冷間圧延設備を用いて、圧延後に形状不良が発生するか圧延実験を行った。冷間圧延設備は、図3のように4つの冷間圧延機を備えるものが用いられた。対象とした鋼種A~Cの成分(質量%)は表1の通りである。 Further, using the cold rolling equipment described in the above embodiment, a rolling experiment was conducted to determine whether shape defects would occur after rolling. The cold rolling equipment used was one equipped with four cold rolling mills as shown in FIG. Table 1 shows the components (mass%) of the target steel types A to C.
 傾斜角度は0°~-10°と変更して圧延実験(第2の実験)を行った。第2の実験において、最下流圧延機である第4の冷間圧延機(No.4std)の傾斜角度が変更された。クーラントの流量は2000~3000L/minとした。通板する鋼板(金属鋼帯)の初期温度は300℃とした。鋼板(金属鋼帯)サイズは幅を1000mm、初期の板厚を2.0mmとした。ライン速度は1000~1500mpmとした。板厚は、第4の冷間圧延機の圧延によって0.4mmから0.3mmになるように設定された。使用するクーラントは5%圧延油に95%純水を加えたものが使用された。クーラントの温度は60℃であった。 A rolling experiment (second experiment) was conducted with the inclination angle changed from 0° to -10°. In the second experiment, the inclination angle of the fourth cold rolling mill (No. 4 standard), which is the most downstream rolling mill, was changed. The coolant flow rate was 2000 to 3000 L/min. The initial temperature of the steel plate (metallic steel strip) to be passed was 300°C. The steel plate (metal steel strip) had a width of 1000 mm and an initial plate thickness of 2.0 mm. The line speed was 1000 to 1500 mpm. The plate thickness was set from 0.4 mm to 0.3 mm by rolling with the fourth cold rolling mill. The coolant used was a mixture of 5% rolling oil and 95% pure water. The temperature of the coolant was 60°C.
 表3は第2の実験の結果を示す。傾斜角度が0°で入側での板温が250℃の場合に、クーラント液乗りの長さが400mmで、クオーター伸び(形状不良)が発生した。傾斜角度が-2°で入側での板温が250℃の場合に、クーラント液乗りの長さが1500mmとなり、クオーター伸びは発生しなかった。 Table 3 shows the results of the second experiment. When the inclination angle was 0° and the plate temperature at the entrance side was 250°C, quarter elongation (shape defect) occurred when the length of the coolant was 400mm. When the inclination angle was -2° and the plate temperature at the entrance side was 250°C, the length of the coolant was 1500mm, and no quarter elongation occurred.
 その他の結果については、表3の通りである。比較例については、傾斜角度が0°であって、形状不良が高い確率で発生した。表3の発明例より、鋼板(金属鋼帯)の初期温度が300℃の場合、パスラインを傾斜させて形状不良を防止するために、最下流圧延機の傾斜角度を-2°以下にすると防止効果が高まることがわかった。この結果は、中間に設けられる冷間圧延機であって、入側の鋼板(金属鋼帯)の温度が形状不良発生温度以上である冷間圧延機についても同様と考えられる。 Other results are shown in Table 3. In the comparative example, the inclination angle was 0°, and shape defects occurred with a high probability. From the invention example in Table 3, when the initial temperature of the steel plate (metal steel strip) is 300°C, in order to prevent shape defects by inclining the pass line, the inclination angle of the most downstream rolling mill is set to -2° or less. It was found that the prevention effect was enhanced. This result is considered to be similar to a cold rolling mill that is provided in the middle and in which the temperature of the steel plate (metal steel strip) on the entry side is equal to or higher than the shape defect generation temperature.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (11)

  1.  ワークロール及び金属鋼帯に向けてクーラントを噴射し、前記金属鋼帯を冷間圧延する1以上の冷間圧延機と、前記1以上の冷間圧延機よりも金属鋼帯の搬送方向上流側に設けられて金属鋼帯の搬送に供される複数のロールと、前記複数のロールの高低差を制御する制御装置と、を備え、
     前記制御装置は、最も上流側に設けられた最上流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯が搬送方向下流側に向かって低位となるように前記複数のロールを制御する、冷間圧延設備。
    one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills; a plurality of rolls provided in the metal steel strip for conveying the metal steel strip, and a control device that controls the height difference of the plurality of rolls,
    The control device is configured such that, on the upstream side of at least a portion of the one or more cold rolling mills including the most upstream rolling mill provided on the most upstream side, the metal steel strip is lowered toward the downstream side in the conveying direction. A cold rolling facility that controls the plurality of rolls in such a manner.
  2.  前記制御装置は、前記最上流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯の鋼種、ライン速度、前記クーラントの噴射流量、前記金属鋼帯の温度及び前記金属鋼帯の目標温度の少なくとも1つに基づいて、前記1以上の冷間圧延機の噛み込み部に対する前記金属鋼帯の傾斜角度を設定する、請求項1に記載の冷間圧延設備。 The control device controls the steel type of the metal steel strip, the line speed, the injection flow rate of the coolant, and the flow rate of the metal steel strip on the upstream side of at least a portion of the one or more cold rolling mills including the most upstream rolling mill. The cold rolling according to claim 1, wherein the inclination angle of the metal steel strip with respect to the biting part of the one or more cold rolling mills is set based on at least one of temperature and a target temperature of the metal steel strip. Facility.
  3.  前記制御装置は、前記傾斜角度が2°以上かつ10°以下であるように前記複数のロールを制御する、請求項2記載の冷間圧延設備。 The cold rolling equipment according to claim 2, wherein the control device controls the plurality of rolls so that the inclination angle is 2° or more and 10° or less.
  4.  前記1以上の冷間圧延機が複数であって、
     前記制御装置は、最も下流側に設けられた最下流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯が搬送方向下流側に向かって高位となるように前記複数のロールを制御する、請求項1から3のいずれか一項に記載の冷間圧延設備。
    The one or more cold rolling mills are plural,
    The control device is configured such that, on the upstream side of at least some of the one or more cold rolling mills including the most downstream rolling mill provided on the most downstream side, the metal steel strip is positioned at a higher level toward the downstream side in the conveying direction. The cold rolling equipment according to any one of claims 1 to 3, wherein the plurality of rolls are controlled as follows.
  5.  ワークロール及び金属鋼帯に向けてクーラントを噴射し、前記金属鋼帯を冷間圧延する1以上の冷間圧延機と、前記1以上の冷間圧延機よりも金属鋼帯の搬送方向上流側に設けられて金属鋼帯の搬送に供される複数のロールと、前記複数のロールの高低差を制御する制御装置と、を備え、
     前記制御装置は、最も下流側に設けられた最下流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯が搬送方向下流側に向かって高位となるように前記複数のロールを制御する、冷間圧延設備。
    one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills; a plurality of rolls provided in the metal steel strip for conveying the metal steel strip, and a control device that controls the height difference of the plurality of rolls,
    The control device is configured such that, on the upstream side of at least some of the one or more cold rolling mills including the most downstream rolling mill provided on the most downstream side, the metal steel strip is positioned at a higher level toward the downstream side in the conveying direction. A cold rolling facility that controls the plurality of rolls in such a manner.
  6.  前記制御装置は、前記最下流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯の鋼種、ライン速度、前記クーラントの噴射流量、前記金属鋼帯の温度及び前記金属鋼帯の目標温度の少なくとも1つに基づいて、前記1以上の冷間圧延機の噛み込み部に対する前記金属鋼帯の傾斜角度を設定する、請求項5に記載の冷間圧延設備。 The control device controls the steel type of the metal steel strip, the line speed, the injection flow rate of the coolant, and the flow rate of the metal steel strip on the upstream side of at least a portion of the one or more cold rolling mills including the most downstream rolling mill. The cold rolling according to claim 5, wherein the inclination angle of the metal steel strip with respect to the biting part of the one or more cold rolling mills is set based on at least one of temperature and a target temperature of the metal steel strip. Facility.
  7.  前記制御装置は、前記傾斜角度が-10°以上かつ-2°以下であるように前記複数のロールを制御する、請求項6に記載の冷間圧延設備。 The cold rolling equipment according to claim 6, wherein the control device controls the plurality of rolls so that the inclination angle is −10° or more and −2° or less.
  8.  請求項1から7のいずれか一項に記載の冷間圧延設備と、前記金属鋼帯を切断する設備と、を備える、鋼板の製造設備。 Steel plate manufacturing equipment comprising the cold rolling equipment according to any one of claims 1 to 7 and equipment for cutting the metal steel strip.
  9.  ワークロール及び金属鋼帯に向けてクーラントを噴射し、前記金属鋼帯を冷間圧延する1以上の冷間圧延機と、前記1以上の冷間圧延機よりも金属鋼帯の搬送方向上流側に設けられて金属鋼帯の搬送に供される複数のロールと、前記複数のロールの高低差を制御する制御装置と、を備える冷間圧延設備において実行される冷間圧延方法であって、
     前記制御装置が、最も上流側に設けられた最上流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯が搬送方向下流側に向かって低位となるように前記複数のロールを制御するステップを含む、冷間圧延方法。
    one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills; A cold rolling method carried out in a cold rolling facility comprising: a plurality of rolls provided at a steel strip for transporting a metal steel strip; and a control device for controlling a height difference between the plurality of rolls.
    The control device is configured such that, on the upstream side of at least some of the one or more cold rolling mills including the most upstream rolling mill provided on the most upstream side, the metal steel strip is positioned at a lower level toward the downstream side in the conveying direction. A cold rolling method comprising the step of controlling the plurality of rolls in such a manner.
  10.  ワークロール及び金属鋼帯に向けてクーラントを噴射し、前記金属鋼帯を冷間圧延する1以上の冷間圧延機と、前記1以上の冷間圧延機よりも金属鋼帯の搬送方向上流側に設けられて金属鋼帯の搬送に供される複数のロールと、前記複数のロールの高低差を制御する制御装置と、を備える冷間圧延設備において実行される冷間圧延方法であって、
     前記制御装置が、最も下流側に設けられた最下流圧延機を含む前記1以上の冷間圧延機の少なくとも一部の上流側において、前記金属鋼帯が搬送方向下流側に向かって高位となるように前記複数のロールを制御するステップを含む、冷間圧延方法。
    one or more cold rolling mills that inject coolant toward the work rolls and the metal steel strip to cold-roll the metal steel strip, and an upstream side in the conveyance direction of the metal steel strip than the one or more cold rolling mills; A cold rolling method carried out in a cold rolling facility comprising: a plurality of rolls provided at a steel strip for transporting a metal steel strip; and a control device for controlling a height difference between the plurality of rolls.
    The control device is configured such that, on the upstream side of at least some of the one or more cold rolling mills including the most downstream rolling mill provided on the most downstream side, the metal steel strip is positioned at a higher level toward the downstream side in the conveying direction. A cold rolling method comprising the step of controlling the plurality of rolls in such a manner.
  11.  請求項9又は10に記載の冷間圧延方法を実行し、前記金属鋼帯を切断するステップを含む、鋼板の製造方法。 A method for manufacturing a steel plate, comprising the step of performing the cold rolling method according to claim 9 or 10 and cutting the metal steel strip.
PCT/JP2023/016986 2022-07-19 2023-04-28 Cold rolling equipment, steel plate manufacturing equipment, cold rolling method, and steel plate manufacturing method WO2024018724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022115033A JP2024013098A (en) 2022-07-19 2022-07-19 Cold rolling facility, steel sheet manufacturing facility, cold rolling method, and steel sheet manufacturing method
JP2022-115033 2022-07-19

Publications (1)

Publication Number Publication Date
WO2024018724A1 true WO2024018724A1 (en) 2024-01-25

Family

ID=89617328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016986 WO2024018724A1 (en) 2022-07-19 2023-04-28 Cold rolling equipment, steel plate manufacturing equipment, cold rolling method, and steel plate manufacturing method

Country Status (2)

Country Link
JP (1) JP2024013098A (en)
WO (1) WO2024018724A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158204A (en) * 1980-05-07 1981-12-05 Nippon Steel Corp Asymmetrical rolling method for strip
JPH0796302A (en) * 1993-09-28 1995-04-11 Nippon Steel Corp Method for rolling steel strip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158204A (en) * 1980-05-07 1981-12-05 Nippon Steel Corp Asymmetrical rolling method for strip
JPH0796302A (en) * 1993-09-28 1995-04-11 Nippon Steel Corp Method for rolling steel strip

Also Published As

Publication number Publication date
JP2024013098A (en) 2024-01-31

Similar Documents

Publication Publication Date Title
KR100889018B1 (en) Method of lubricant supply in cold rolling
EP1935521B1 (en) A hot rolling mill for a steel plate or sheet and hot rolling methods using such mill
EP2465620A1 (en) Method for cooling hot-rolled steel plate
WO2024018724A1 (en) Cold rolling equipment, steel plate manufacturing equipment, cold rolling method, and steel plate manufacturing method
CN108713068B (en) Continuous hot-dip metal plating device and continuous hot-dip metal plating method
CN114472523B (en) Preparation method of high-brightness aluminum plastic film aluminum foil and aluminum plastic film aluminum foil
CN113231479B (en) Method for reducing plate shape defects of dry type leveling machine
CN111974802B (en) Cold continuous rolling ultra-low roughness high strength steel light panel and cover type annealing production method thereof
US20020017747A1 (en) Rolls for disposing at entry side or exit side of quenching zone of continuous annealing furnace and quenching zone unit using rolls
KR101665795B1 (en) Method for manufacturing soft steel wire rod
KR101063078B1 (en) Cold rolled steel sheet manufacturing method for reducing wave defects
JP5040883B2 (en) Method for producing austenitic stainless steel strip
JP3637901B2 (en) Cold rolling method for metal sheet
JP7342831B2 (en) Hot rolling mill and hot rolled steel sheet manufacturing method
JP2020138218A (en) Cold rolling method and cold rolling facility for metal strip
JP2018015801A (en) Temper rolling method and temper rolling device
CN111069553A (en) Quality improvement method of continuous casting billet
JP6295976B2 (en) Temper rolling method
JP2005296973A (en) Method and apparatus for manufacturing hot-rolled steel plate
CN115921571B (en) Rolled copper foil manufacturing method and rolled copper foil
CN114472545B (en) Dynamic control method for loop lifting angle of finishing mill loop
CN112371750B (en) Control method for width precision of low-carbon steel annealed plate
CN113235006B (en) Method for producing low-carbon austenitic stainless steel bar by reducing load of rolling mill
KR100511117B1 (en) Hearth rolls for heating furnace and soaking furnace of vertical heat treating furnace and vertical heat treating furnace including hearth rolls
KR101333425B1 (en) Continuous annealing line having enhanced purging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842656

Country of ref document: EP

Kind code of ref document: A1