WO2024018648A1 - 廃棄物取扱食品残渣資源化装置、廃棄物取扱食品残渣資源化方法、廃棄物取扱食品残渣加水分解原料、及びペレットの製造又はペレットの製造による価値情報の取得方法、汚れ廃プラ処理システムおよび方法、資源回収システム及び方法 - Google Patents

廃棄物取扱食品残渣資源化装置、廃棄物取扱食品残渣資源化方法、廃棄物取扱食品残渣加水分解原料、及びペレットの製造又はペレットの製造による価値情報の取得方法、汚れ廃プラ処理システムおよび方法、資源回収システム及び方法 Download PDF

Info

Publication number
WO2024018648A1
WO2024018648A1 PCT/JP2022/038970 JP2022038970W WO2024018648A1 WO 2024018648 A1 WO2024018648 A1 WO 2024018648A1 JP 2022038970 W JP2022038970 W JP 2022038970W WO 2024018648 A1 WO2024018648 A1 WO 2024018648A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
waste plastic
food residue
food
dirty
Prior art date
Application number
PCT/JP2022/038970
Other languages
English (en)
French (fr)
Inventor
耕三 菅波
ジョージス カイル ナカムラ
Original Assignee
タオ・エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022115184A external-priority patent/JP7158794B1/ja
Priority claimed from JP2022117671A external-priority patent/JP7182823B1/ja
Application filed by タオ・エンジニアリング株式会社 filed Critical タオ・エンジニアリング株式会社
Publication of WO2024018648A1 publication Critical patent/WO2024018648A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • B09B3/45Steam treatment, e.g. supercritical water gasification or oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste

Definitions

  • the present invention relates to an apparatus for recycling waste food residues collected in food-related industries, a method for recycling waste food residues, raw materials for hydrolyzing waste food residues, and collected waste food residues and dehydration.
  • the present invention relates to a method for obtaining manufacturing value information by producing pellets from sludge, a system and method for processing contaminated waste plastic, and a system and method for resource recovery.
  • a method for treating food residue is known in which excess sludge is added to food residue as a dispersant, mixed, and dried by heating.
  • dehydration conveying devices are known that have spiral blades and screws and convey food sludge and food residue.
  • Patent Document 1 describes a hydrolysis treatment device for organic waste (raw material) that includes a hydrolysis treatment device. It is stated that organic waste (raw materials) includes sake brewing, brewing, and beverage residue.
  • Patent Document 2 discloses that after dehydrated sludge, vegetable residue, and food residue produced by wastewater treatment are mixed into a pressure can, the pressure can is evacuated, and then the mixture is heated and stirred. Accordingly, a method for processing food residues to form mixed granules is described.
  • Patent Document 3 describes a method for treating food residue in which a dispersant selected from the group consisting of a surfactant, an antifoaming agent, a flocculant, and an oil or fat is added to the food residue, mixed, and dried by heating. It is stated that surplus sludge can be used as a reagent, and that food residue and surplus sludge can be mixed and heat-treated at the same time.
  • Patent Document 4 describes a processing device that hydrolyzes used litter, which is an organic waste, in a pressure-resistant container while stirring in a high-temperature, high-pressure environment, as well as thermally decomposing and carbonizing it. Ru.
  • Patent Document 5 discloses that a material to be decomposed, for example, organic waste, is put into a pressure vessel, water vapor for hydrolysis is injected into the pressure vessel, hydrolyzed while stirring, the pressure is reduced, and then the pressure is forcibly evacuated.
  • a hydrolysis method is described in which the inside of a pressure vessel is dried by supplying dry air.
  • Patent Document 6 describes a dehydration conveyance device for conveying food sludge and food residue, which includes a screw conveyor and a screw dehydrator, and includes spiral blades and a screw.
  • Patent Document 7 describes a waste plastic oil recovery apparatus that includes a thermal decomposition means for thermally decomposing crushed waste plastic at a temperature of 350 to 500° C. to obtain a thermally decomposed product.
  • Patent Document 8 discloses that organic waste is impregnated with a thermoplastic resin to prepare a resin-impregnated material, and the resin-impregnated material is heated in a non-oxidizing atmosphere at a temperature of 600 to 1000°C to impregnate the resin. A method for producing a carbide is described.
  • Patent Document 9 describes a means for separating food packaging and packaged food using mechanical means.
  • Non-Patent Document 1 describes an example in which constituent elements (cereals, plant residues, animal residues) constituting food biomass were carbonized at 500°C in a carbonization recycling system targeting food biomass.
  • Food-related businesses collect a large amount of food residue that has been returned by customers and is treated as waste because it has expired or has expired (hereinafter referred to as food residue handled as waste).
  • food residue handled as waste a large amount of squeezed lees, which is the residue of sake brewing, brewing, or beverage manufacturing, is collected and treated as waste. In either case, a large amount of waste food residue is collected, and its recycling is required.
  • Incineration of collected waste food residues requires large incineration equipment, which generates CO2 and increases processing costs.In the case of landfilling, it is difficult to secure a landfill site, In this case, there is a problem in that the original form is retained as waste food residue, and the polymer material remains as it is.
  • Hydrolysis treatment is a treatment that does not involve incineration, and uses hydrolysis reactions and chemical heat reactions to generate no carbon dioxide or dioxins, and can be treated at lower temperatures than normal heat treatment methods.
  • waste handling food residues collected in large quantities they are usually soft but viscous, and when hydrolyzed, a heat source is required.
  • returned food waste products often contain cooked rice.
  • Cooked rice residue tends to form lumps due to the glue action, which hinders hydrolysis treatment. The same applies to the squeezed lees residue. For this reason, hydrolysis treatment of food residues handled as waste has not been established as an effective method for practical use.
  • Food residues handled as waste including squeezed lees residues, have the characteristics of being soft and viscous food residues, and it is necessary to adopt food residue processing methods that are suitable for their characteristics.
  • Patent Documents 1, 2, and 3 involve heat treatment and not hydrolysis treatment. Although there is a description of mixing and heat-treating waste food residue and excess sludge at the same time, there is no description that it is possible to simultaneously hydrolyze food waste residue and excess sludge.
  • Patent Document 4 The invention described in Patent Document 4 is related to hydrolysis treatment, but it processes used litter in a high temperature and high pressure environment, and it is not treated as waste food residue but as a waste to be treated. It is not possible to appropriately hydrolyze food residues, which are soft but viscous and tend to form lumps, and it has not been possible to hydrolyze them with high processing efficiency.
  • Patent Document 5 is related to hydrolysis treatment, and the residue to be treated is organic waste (raw material), and the organic waste (raw material) includes: It has been suggested that it can be applied to sake brewing, brewing, and beverage residues, but it has only proposed a hydrolysis treatment device with a treatment vessel equipped with a heating jacket and stirring means, and it is not suitable for food waste handling. There is no description of how to perform appropriate hydrolysis treatment with high treatment efficiency when the residue is soft but viscous and tends to form lumps.
  • Patent Document 6 only describes a dehydration conveyance device that conveys food sludge and food residue.
  • the present invention has been developed to eliminate the need for a high-temperature and high-pressure processing environment when adopting hydrolysis treatment for the treatment of food residues that are handled as waste, which are produced in large quantities.
  • the object of the present invention is to provide a method that is suitable for the soft but viscous properties of food residues, and that allows hydrolysis treatment to be carried out appropriately and inexpensively with high processing efficiency.
  • FIG. 1 is a diagram showing the concept of the present invention.
  • Food residues handled as waste materials collected by food-related businesses Food residues returned to food-related businesses, food residues with expired expiration dates, food residues with expired expiration dates, or processed foods with problems
  • Food residue which is soft but viscous, is collected by food-related businesses and disposed of.
  • food residue handled as waste it is referred to as food residue handled as waste.
  • Squeezed lees include shochu lees, sake lees, fruit sake lees, soy sauce lees, tea leaves/fruit juice lees, etc. These food residues are discarded as food residues.
  • Dehydrated sludge as a material to be treated collected by sludge treatment companies - Dehydrated sewage activated sludge that has been dehydrated with sewage activated sludge Contains manure from dairy farming.
  • ⁇ Food-related activated sludge that has been dehydrated with food-related sludge This includes dehydrated sludge from food factories, dehydrated grease trap sludge, dehydrated sludge from processed agricultural product residues, and processed marine product residues.
  • Dehydrated sludge from agricultural product residues includes sawdust, rice husk, wood chips, wheat straw, rice straw, or wood chip fryers that fry wood chips in waste oil.
  • the food-related business and the sludge treatment-related business may be the same business or different businesses. If they are the same company, this is the case where waste handling food residue and food-related activated sludge are collected by a food-related company.
  • used litter which is an organic waste described in Patent Document 5
  • Food residue which is handled as waste material to be processed by food-related businesses, is soft but viscous, and has the property of forming individual bodies.
  • Recycled materials Recycled materials. For example, pellets are applicable.
  • Hydrolysis A decomposition reaction that occurs in the form of water molecules being added.
  • this refers to the decomposition of high molecular materials into low molecular materials with respect to one corresponding bond.
  • organic compounds such as fats, acid chlorides, acid amides, esters, proteins, peptides, starches, and cellulose are hydrolyzed by the action of water or by the action of enzymes, strong acids, or alkalis. There is.
  • hydrolysis of glycol bonds is C 12 H 22 O 11 +H 2 O ⁇ 2C 6 H 12 O 6 It is expressed as
  • Granules Powder is an aggregate of fine solid particles, and granules are an aggregate of relatively coarse solid particles. There is no clear distinction between powder and granules, but with a boundary of around 1 mm, finer particles are often called powders, and coarser particles are often called granules. In this application, both terms are used in a broad sense.
  • Manufacturing value information Refers to technical or technical and economic benefits obtained by implementing the present invention.
  • the present invention relates to a food residue recycling device 100 that processes and recycles waste food residues collected in food-related industries.
  • the food residue resource recovery device 100 consists of a pre-treatment 101, a hydrolysis treatment 102 using a hydrolysis treatment device, and a post-treatment 103.
  • a pretreatment 101 a granular mixture is formed and then hydrolyzed by the hydrolysis treatment device.
  • For treatment 102 it is introduced in the form of granules with an expanded contact area and hydrolyzed, and in post-treatment 103, a resource body is formed.
  • the food residue resource recovery device 100 includes, as a pretreatment 101, waste handling food residue supply means 111 for supplying waste handling food residue; dehydrated sludge supply means 112 for supplying dehydrated sludge obtained by dewatering sludge;
  • a cylindrical body is provided with a first stirring means therein, and in the cylindrical body, dehydrated sludge and waste food residue are mixed while being stirred to form a mixture, and the waste food residue and waste food residue are mixed.
  • a granular mixture forming means 113 is provided for granulating the dehydrated sludge to form a granular mixture in which granulated waste handling food residue is dispersed in the granular dehydrated sludge.
  • a granular mixture in which granulated waste handling food residue is dispersed in granular dehydrated sludge is prepared as an input material.
  • a time delay is provided between the granulation of the dehydrated sludge and the granulation of the food residue, so that the granulation of the dehydrated sludge is delayed from the granulation of the food residue.
  • a granular dehydrated sludge forming means is included which stirs the dehydrated sludge in advance using a stirrer provided inside the cylindrical body to form granular dehydrated sludge.
  • the hydrolysis treatment 102 by the hydrolysis treatment device is resource recycling treatment.
  • the hydrolysis treatment device forms a recyclable raw material forming means 114 that hydrolyzes the granular mixture and steam while stirring to form a low-molecular granular recyclable raw material.
  • the recyclable raw material forming means 114 is The granular mixture and steam are introduced into the reactor and stirred and mixed, and the polymer material is dispersed in the granular mixture. This is a means of hydrolyzing particulate food residue into low-molecular materials to form a granular resource-recycling raw material in which particulate food residues of low-molecular materials are dispersed in granular dehydrated sludge.
  • post-processing 103 It is provided with means 115 for forming a solid recycled body from a granular recycled raw material.
  • the recyclable body forming means 115 that forms solid recyclable bodies is a recyclable body forming means 115 that forms solid recyclable bodies from granular recyclable raw materials.
  • the first agitation means and the second agitation means are provided, and the waste handling food residue and sludge as materials to be processed by the resource recycling raw material forming means 114 are respectively granulated, A granular mixture is formed by dispersing granular waste handling food residue in granular dehydrated sludge, and the granular mixture is fed into a hydrolysis treatment device of a means for forming resource-recycling raw materials. can be hydrolyzed.
  • FIG. 1 is a diagram illustrating the configuration of a food residue recycling device that processes waste food residue collected by a food-related business and recycles it as a resource, which is an embodiment of the present invention
  • FIG. FIG. 1 is a diagram showing the configuration of a food residue recycling device that is an embodiment of the present invention.
  • FIG. 1 is a diagram showing a dirty waste plastic processing system of the present invention.
  • 1 is a diagram showing details of a dirty waste plastic processing system (hereinafter, waste plastic is referred to as waste plastic) which is an embodiment of the present invention.
  • waste plastic is referred to as waste plastic
  • FIG. 3 is a diagram showing the state of obtained organic carbide. Data diagram showing analysis results.
  • FIG. 3 is a diagram showing a state in which a resource material recovery information acquisition device is attached to the dirty waste plastic processing system 100A.
  • FIG. 2 is a diagram showing the configuration of a resource recovery information acquisition device.
  • FIG. 2 is a diagram showing the configuration of a waste food residue recycling device that processes waste food residue collected in the food-related industry and recycles it as a resource, which is an embodiment of the present invention.
  • the relationship between the components and numerical numbers of the waste handling food residue recycling apparatus 100 of this embodiment shown in FIG. 2 is as follows. 1: Food residue supply conveyor, 2: Organic matter compression fractionator, 3: Mono pump, 4: Waste plastic discharge conveyor, 5: Sludge supply conveyor, 6: Sludge transfer conveyor, 7: A first agitator inside the elongated cylinder.
  • Waste handling food residue and dehydrated sludge are prepared. The food residue and dehydrated sludge handled as waste are as described above.
  • Waste handling food residue is transferred from a food residue supply conveyor 1 to an organic matter compression separator 2.
  • the input waste food residue is separated into waste food residue as organic matter and dirty waste plastic by the organic matter compression sorter 2, and the separated waste food residue is separated by the mono pump 3.
  • the granule mixture is transferred to the input section of the granule mixture forming device 7.
  • the food residue supply conveyor 1 is equipped with a load cell, and the measured weight of the waste-handled food residue is transmitted to a personal computer (PC) described later.
  • PC personal computer
  • the sorted dirty waste plastic is transferred to the waste plastic discharge conveyor 4, and is led out to a processing system (not shown) as a raw material for oil-based plastic.
  • the waste plastic discharge conveyor 4 is equipped with a load cell, and the measured weight of the waste handling food residue is transmitted to a personal computer (PC) described later.
  • PC personal computer
  • Dehydrated sludge is put into the sludge supply conveyor 5 and supplied. Dewatered sludge is transferred from the sludge supply conveyor 5 to the input section of the granular mixture forming device 7.
  • the granular mixture forming device 7 has an input section at the inlet, an elongated cylinder connected to the input section, and a stirrer inside the cylinder.
  • the agitator has a pair of fan blades to agitate and mix the input food residue and dehydrated sludge, and further atomizes the food residue and dehydrated sludge to form a granular mixture.
  • the waste food residue and dehydrated sludge are granulated to form a granular mixture in which the granulated waste food residue is dispersed in the granular dehydrated sludge.
  • the granular mixture is pre-treated and presents a situation in which granular waste handling food residue is dispersed in the granular dehydrated sludge, and the granular waste is subjected to hydrolysis. It is prepared as a raw material for hydrolysis of food residues.
  • the granular mixture is transported upward in an obliquely arranged cylinder and is charged into the hydrolyzer 8 from the upper end through an inlet provided at the top of the hydrolyzer 8.
  • the hydrolyzer 8 may be either vertical or horizontal, the horizontal type is preferably adopted for ease of operation and manufacturing, as shown in the figure.
  • the granular waste food residue hydrolyzed raw material to be subjected to hydrolysis is sufficiently granular in the first stirrer, but it is finely divided and homogenized in the second stirrer. Ru.
  • a screw type stirrer can be adopted as the stirrer.
  • the hydrolyzer 8 is provided with a granular mixture inlet for introducing the granular mixture and a steam inlet for introducing steam, and the granular mixture is fed through the mixture inlet. Steam is introduced into the hydrolyzers 8 from the steam input ports.
  • a steam boiler 10 using oil stored in a plastic oil tank 9 as a heat source is provided, and steam generated in the steam boiler 10 is fed into a hydrolysis device 8.
  • the pressure of the hydrolyzer 8 is 1.5 to 3.0 MPa, preferably 1.5 to 2.5 MPa, and the temperature is 150 to 300°C.
  • the hydrolysis time is 30 to 120 minutes.
  • the hydrolyzer 8 has a hydrolysis reaction function, is equipped with a second stirrer inside, and is equipped with a reactor (hydrolysis reactor) equipped with a stirrer (stirring means) inside.
  • a granular mixture and steam are introduced into the granular mixture and mixed with agitation, and the waste handling food residue dispersed in the granular mixture is hydrolyzed into low molecular weight materials, which are then hydrolyzed into granular dehydrated sludge.
  • a wet granular resource material is formed in which the waste food residue is dispersed.
  • a typical example of a recycled raw material is a pelletized raw material.
  • the hydrolyzate converted into a low-molecular material which is a raw material for recycling, is delivered to a hydrolyzate transfer conveyor 11 .
  • the recycled raw material is in a wet state when it is discharged from the hydrolysis device 8.
  • the wet recyclable raw material is transferred by a hydrolyzate transfer conveyor 11 to a dust collection cyclone 13 using hot air generated by an exhaust blower 14 as a heat source.
  • the coagulated liquid is vaporized, and the solidified hydrolyzate (raw material for recycling) is recovered from the lower part.
  • the recyclable raw materials sorted by the dust collection cyclone 13 are dried by the dryer 12, delivered to the dry matter transfer conveyor 15, and stored in the dry matter storage tank 16.
  • the wet granular pellet raw material or the dry granule is dispersed in the granular dehydrated sludge, in which the granular returned waste handling food residue or squeezed lees residue, which has been reduced in molecular weight through hydrolysis, is dispersed.
  • a body-shaped pellet raw material is formed.
  • the dried recyclable raw materials stored in the dry matter storage tank 16 are delivered to the dry matter quantitative supply conveyor 17.
  • the dry matter quantitative supply conveyor 17 is equipped with a load cell, and sends the measured dry recyclable raw material to the pellet generator 18 by measuring every fixed amount.
  • the pellet generator 18 functions as a pelletizer, and pellets are typically formed from the dry resource material.
  • the weight of the dry recyclable raw material measured by the load cell is sent to a personal computer P (PC), which will be described later.
  • a solid recyclable body for example, typically pellets, is formed from the dry recyclable raw material as a product. .
  • the formed pellets are transferred to a pellet transfer conveyor 19, and filled into a flexible container filling machine 20 by the pellet transfer conveyor 19.
  • the flexible container filling machine 20 is equipped with a load cell weighing scale 21 and measures the amount of filling, and the flexible container filling machine 20 is filled with a predetermined amount.
  • Weight information measured by the load cell weight scale 21 is sent to a personal computer (PC) described later.
  • the flexible container filling machine 20 filled with a predetermined amount is transported by a lift 22 to a predetermined location or a predetermined vehicle.
  • FIG. 3 is a diagram showing a situation in which a granular waste-handling food residue hydrolysis raw material to be supplied to hydrolysis is formed.
  • 1 Food residue supply conveyor
  • 2 Organic matter compression separator
  • 3 Mono pump
  • 4 Waste plastic discharge conveyor
  • 5 Sludge supply conveyor
  • 6 Sludge transfer conveyor
  • 7 A first agitator inside the elongated cylinder.
  • a granular mixture forming device equipped with a load cell (load cell weighing scale) on the outer surface is used to create a situation in which granular waste handling food residue is dispersed in granular dehydrated sludge, and hydrolyzed.
  • a granular waste-handling food residue hydrolysis feedstock was formed to be supplied to the plant.
  • FIG. 4 is a diagram showing the hydrolysis treatment status.
  • the formed granular waste food residue hydrolysis raw material is supplied to a tank (processing container) constituting the hydrolyzer 8, and the hydrolysis treatment situation is shown in FIG.
  • the pressure of the hydrolyzer 8 was 2.0 MPa, and the temperature was 230°C.
  • FIG. 5 is a photograph showing the produced pellets.
  • a food residue supply step in which waste handling food residue is supplied; a dehydrated sludge supply step in which dehydrated sludge obtained by dewatering sludge is supplied;
  • a cylindrical body provided with a first stirring means inside is used, and inside the cylindrical body, waste food residue and dehydrated sludge are stirred and mixed to form a mixture, while waste food residue and dehydrated sludge are mixed.
  • a granular mixture forming step in which the dehydrated sludge is granulated to form a granular mixture in which granulated waste handling food residue is dispersed in the granular dehydrated sludge;
  • a reactor equipped with a second stirring means inside is used, and the granular mixture and steam are introduced into the reactor and mixed by stirring to form particulates dispersed in the granular mixture.
  • Waste handling food residue is hydrolyzed into low-molecular materials, and wet granular recyclable raw materials are formed in which the hydrolyzed particulate waste food residue is dispersed in granular dehydrated sludge.
  • raw material formation step a step of forming a solid recycled material from a dry recycled raw material;
  • a food residue recycling method is formed in which waste handling food residue collected in the food-related industry formed with the above is processed and recycled.
  • the food residue supply step for example, returned residue is supplied as waste handling food residue
  • the resource recycling raw material forming step a wet granular pellet raw material or a dry pellet raw material obtained by drying a wet granular pellet raw material is formed.
  • the dewatered sludge supply means supplies food-related sludge as dehydrated sludge
  • a recyclable raw material forming means is formed from waste handling food residues and food-related sludge to form a granular pelletized raw material suitable for feed or fuel.
  • the dewatered sludge supply means supplies sewage activated sludge as dehydrated sludge
  • a resource material forming means is formed from waste handling food residue and sewage activated sludge to form a granular pelletized material suitable for fertilizer.
  • the waste food residues to be treated when adopting hydrolysis treatment to treat waste food residues collected in large quantities, it is not necessary to create a high temperature and high pressure processing environment, and the waste food residues to be treated can be It is suitable for its soft but viscous properties, and can treat food residue with high processing efficiency.
  • pellets can be made from the collected waste food residue and dehydrated sludge.
  • a method for acquiring value information associated with the manufacturing of products is formed.
  • a method for acquiring value information associated with the production of pellets from collected waste food residues and dehydrated sludge will be explained using FIGS. 6 and 7.
  • FIG. 6 is a diagram showing a method for obtaining production value information when producing pellets from collected waste-handled food residues and collected dehydrated sludge.
  • the method for manufacturing pellets from granular pellet raw materials is as described above, and by using the method for manufacturing pellets from granular pellet raw materials, the method 200 for acquiring manufacturing value information of the pellets can be improved. It is formed.
  • the information handled by the terminal 202 of the food-related business is as follows: ⁇ Regarding food residues handled as waste ⁇ Regarding the current waste treatment costs required for processing food residues handled as waste.
  • the information handled by the terminal 203 of the sludge treatment-related company is as follows: ⁇ Concerning dewatered sludge ⁇ Concerning the current waste treatment costs required to treat dehydrated sludge.
  • the information handled by the food residue recycling manager's terminal 201 is as follows: ⁇ Concerning the confirmation of the formation of hydrolyzed raw materials ⁇ Concerning pellets related to the amount of pellets produced ⁇ Concerning comparative fuel consumption related to the comparative amount of consumed fuel ⁇ Concerning carbon dioxide reduction related to the amount of carbon dioxide reduction.
  • FIG. 7 is a diagram showing a method for acquiring value information associated with the production of pellets from collected waste handling food residues and dehydrated sludge.
  • a method 200 for acquiring value information associated with pellet production is formed.
  • the food residue resource recycling information acquisition device 205 is internally equipped with an input means 206, an arithmetic processing means 207, an output means 208, a database (storage means) 209, and a screen display means 210, and a terminal 202 of an external food-related business. It is connected via a connection line 211 to a terminal 203 of the sludge treatment company and a terminal 214 of the recycling body user.
  • the database 209 stores fuel information related to the amount of fuel required for waste handling food residue treatment using the current device and method, and fuel information related to the amount of fuel required for sludge residue treatment using the current device and method. This information includes cost information related to the cost required for each process.
  • the input means 206 can read various information from the terminal 202 of the food-related business, the terminal 203 of the sludge treatment business, and the terminal 214 of the resource recycling business, as well as information stored in the database 209.
  • the input means 206 receives weight information measured by the load cells and load cell weighing scales 21 provided in the food residue supply conveyor 1, the waste plastic discharge conveyor 4, the granule mixture forming device 7, and the dry matter quantitative supply conveyor 17. As a result, the weight of the formed body flowing through each process is obtained and used for calculation processing by the calculation processing means 207.
  • the calculation processing means 207 is ⁇ Obtaining mixture information related to the amount of mixed granular hydrolyzed raw materials ⁇ Obtaining pellet information related to the amount of pellets produced ⁇ Obtaining fuel information related to the comparative amount of fuel consumed ⁇ Related to carbon dioxide reduction amount ⁇ Reduce and obtain dewatered sludge waste information related to dewatered sludge waste reduction amount.
  • Comparison information includes the amount of fuel consumption reduction and/or carbon dioxide reduction, the current waste treatment cost situation required for waste food residue treatment, and the cost situation required for waste food residue treatment obtained by the present invention. Contains cost savings information related to cost savings based on comparisons of
  • Part 1 When producing pellets using waste food residue and dehydrated sludge as raw materials, a mixed situation is created in which particulate waste food residue is dispersed in granular dehydrated sludge, and the granules supplied for hydrolysis are mixed.
  • Granular mixture information related to the mixing amount of granular hydrolyzed raw materials is obtained, Pellet manufacturing information related to the amount of pellets manufactured from the mixed amount is obtained, The amount of fuel consumed to produce a predetermined unit amount of pellets produced from the mixed amount is measured, and consumed fuel information (A) related to the amount of fuel is obtained; Processing of waste food residue is carried out using a predetermined conventional combustion device, combustion method, and combustion method, and the waste food residue is processed using a predetermined conventional combustion device, combustion method, and combustion method.
  • the amount of fuel consumed is obtained and recorded in advance, and fuel consumption information (B) related to the amount of fuel is obtained, Comparative fuel consumption related information that compares the consumed fuel information (A) and the consumed fuel information (B) is obtained from the consumed fuel information (A) and the consumed fuel information (B), Input dewatered sludge information (C) related to the amount of dehydrated sludge is obtained from the amount of dehydrated sludge input to produce a predetermined unit amount of pellets of the manufactured pellets, From information related to pellet manufacturing, related information related to the amount of food residue disposal reduction due to recycling of pellets, and information related to the amount of carbon dioxide emissions reduced from information related to comparison fuel consumption.
  • dewatered sludge reduction information related to reduction of dewatered sludge by inputting the dehydrated sludge into a pellet raw material production method for producing pellet raw material of granular pellet raw material is obtained.
  • Three types of waste reduction amount information are acquired from waste handling food residue waste reduction amount information, exhaust carbon dioxide reduction amount information, and dehydrated sludge waste reduction amount information in accordance with the method of manufacturing pellets from granular pellet raw materials. Manufacturing value information based on each waste reduction unit price is acquired.
  • the output means 208 can output each piece of information acquired by the arithmetic processing means 207 to the outside and to the screen display means 210.
  • the screen display means 210 includes a screen 210A, and displays each piece of information output on the screen.
  • manufacturing value information consisting of three pieces of waste reduction information is acquired by the method of manufacturing pellets from granular pellet raw materials, but it is also possible to acquire manufacturing value information consisting of two pieces of waste reduction information, or Manufacturing value information consisting of one piece of waste reduction information may be acquired.
  • Part 2 and Part 1 will be as follows.
  • Part 2 When producing pellets using waste food residue and dehydrated sludge as raw materials, a mixed situation is created in which particulate waste food residue is dispersed in granular dehydrated sludge, and the granules supplied for hydrolysis are mixed. Granular mixture information related to the mixing amount of granular hydrolyzed raw materials is obtained, Pellet manufacturing information related to the amount of pellets manufactured from the mixed amount is obtained, The amount of fuel consumed to produce a predetermined unit amount of pellets produced from the mixed amount is measured, and consumed fuel information (A) related to the amount of fuel is obtained; Processing of waste food residue is carried out using a predetermined conventional combustion device, combustion method, and combustion method, and the waste food residue is processed using a predetermined conventional combustion device, combustion method, and combustion method.
  • the amount of fuel consumed is obtained and recorded in advance, and fuel consumption information (B) related to the amount of fuel is obtained, Comparative fuel consumption related information that compares the consumed fuel information (A) and the consumed fuel information (B) is obtained from the consumed fuel information (A) and the consumed fuel information (B), From information related to pellet manufacturing, related information related to reduction in waste handling food residue disposal due to recycling of pellets, and information related to comparison fuel consumption, information on reduction in CO2 emissions related to the amount of CO2 emissions reduced. obtained, Two types of waste reduction information, information on food residue waste reduction and information on carbon dioxide emissions reduction, are obtained due to the adoption of a method for manufacturing pellets from granular pellet raw materials, and the unit price for each waste reduction is calculated.
  • a method for acquiring value information associated with pellet production is proposed, which is characterized in that manufacturing value information based on the pellet manufacturing process is acquired.
  • Part 3 When producing pellets using waste food residue and dehydrated sludge as raw materials, a mixed situation is created in which particulate waste food residue is dispersed in granular dehydrated sludge, and the granules supplied for hydrolysis are mixed.
  • Granular mixture information related to the mixing amount of granular hydrolyzed raw materials is obtained, Pellet manufacturing information related to the amount of pellets manufactured from the mixed amount is obtained, The amount of fuel consumed to produce a predetermined unit amount of pellets produced from the mixed amount is measured, and consumed fuel information (A) related to the amount of fuel is obtained; From the pellet manufacturing related information, related information related to the reduction in waste handling food residue waste due to recycling of pellets is obtained, With the adoption of a method for manufacturing pellets from granular pellet raw materials, one piece of waste reduction amount information for waste handling food residue waste reduction amount information is acquired, and manufacturing value information based on the unit price of the waste reduction amount is obtained. A method for acquiring value information associated with pellet manufacturing is proposed.
  • manufacturing value information consisting of three to one pieces of waste reduction information can be acquired.
  • FIG. 8 is a diagram illustrating a method for recycling food residue from waste.
  • FIG. 8 shows a waste food residue recycling method in which collected waste food residue and collected dehydrated sludge are processed and recycled. It consists of collection of target waste 301, waste sorting work 302, acquisition of separated treatment targets 303, sorting of treatment targets 304, and treatment method 305.
  • waste to be treated 301 waste to be treated consisting of waste handling food residue and dehydrated sludge is collected.
  • Dirty plastic including cases where waste plastic is included in dirty plastic
  • Food residues handled as waste ⁇ Food residues handled as waste represented by returned food residues ⁇ Squeezed lees residue sludge
  • Food-related sludge ⁇ Sewage activated sludge is collected by various collection methods.
  • ⁇ Sludge ⁇ Food-related sludge ⁇ Sewage activated sludge is collected by various collection methods. The sludge is dehydrated to become dehydrated sludge.
  • the collected waste consisting of waste food residue and dehydrated sludge is largely separated into dirty waste plastic 313, waste food residue and dehydrated sludge 314.
  • the contaminated waste plastic 313 is separated from the collected waste, and the waste that becomes waste handling food residue and dehydrated sludge shown by the dotted line is acquired.
  • the obtained waste food residues and dehydrated sludge are sorted into two types of waste, food residues 315 and dehydrated sludge 316, respectively, as objects to be treated.
  • the amount of input in the next step is adjusted, and the two wastes, food residue 315 and dehydrated sludge 316, are produced at a mixing ratio suitable for operation.
  • a resource recovery method 317 from dirty waste plastic is adopted as route 1
  • a resource recovery method 318 for food residues handled as waste is adopted as route 2.
  • oil components are typically recovered as resources from the separated dirty plastics.
  • the resource recovery method 317 from dirty waste plastic will be described later using FIG. 9.
  • a waste handling food residue recycling method 318 which is an embodiment of the present invention, is applied.
  • a cylindrical body having a first stirring means provided therein is used, and the sorted waste food residue and dehydrated sludge are stirred and mixed in the cylindrical body to form a mixture, while the above-mentioned
  • the waste handling food residue and dehydrated sludge are granulated to form a granular mixture in which the granulated waste handling food residue is dispersed in the granular dehydrated sludge,
  • a reactor is provided with a second stirring means provided therein, and the granular mixture and steam are introduced into the reactor, stirred and mixed, and the granular mixture becomes particulate food.
  • the residue is hydrolyzed into low-molecular materials, and a granular pelletized raw material is formed in which hydrolyzed granular food-related sludge food residue is dispersed in hydrolyzed granular dehydrated sludge. Solid pellets are formed from the pelletized raw material.
  • a waste food residue recycling method 300 is formed in which the collected waste food residue is processed and recycled.
  • the products collected and recycled by the resource recovery method 317 from dirty waste plastics and the waste handling food residue recycling method 318 belong to the food-related business 311 or the sludge-related business 312.
  • FIG. 9 is a diagram showing the dirty waste plastic processing system of the present invention.
  • FIG. 9 shows means and methods for processing dirty waste plastics to produce clean oily components and organic charred substances as recyclable materials, in connection with the dirty waste plastic processing system 100A of the present invention.
  • a dirty waste plastic processing system 100A is comprised of a pre-processing stage 101A, a resource recycling processing stage 102A, and a post-processing stage 103A, and a resource 104A is generated.
  • ⁇ Dirty waste plastic supply means 111A Dirty waste plastics contaminated with organic matter and containing moisture form an aggregate - Solid dirty waste plastic collection means 112A Separate solid-liquid soiled waste plastic and perform pre-treatment ⁇ Crushing soiled waste plastic forming means 113A Crushing of solid contaminated waste plastic
  • resource recycling processing step 102A ⁇ Waste plastic gas component separation means 114A
  • a heating reactor is used at a temperature sufficient to carbonize the organic contaminants.
  • a reactor is a resource recycling treatment device equipped with a heating means, and typically functions as a waste plastic gas component separation device. A heating treatment is performed in which the heating means heats the waste plastic to a temperature sufficient to carbonize the organic contaminants.
  • a heat treatment that can carbonize organic contaminants attached to or mixed with dirty waste plastics and fix them as organic charred substances is used to separate waste plastic gas components and organic charred substances.
  • the waste plastics are melted and the oil components are separated from the organic residues, but the organic residues cannot be effectively and efficiently separated from the molten oil components.
  • waste plastic gas components are separated from immobilized carbonized organic contaminants.
  • the oil component becomes produced oil and is recycled as clean produced oil, and the recovered organic charred material becomes pellets and recycled as fuel pellets.
  • Waste plastic used for food-related containers or packaging is generated from dirty waste plastic that is contaminated with water and organic matter, and the water is removed from the waste plastic and heat treated.
  • a combination of an oil component from which the produced soil organic carbide has been removed and an organic carbide-containing pellet produced from the soil organic carbide from which the oil component has been removed is provided.
  • FIG. 10 is a diagram showing a dirty waste plastic processing system that is an embodiment of the present invention.
  • Waste plastic that contains moisture and is contaminated with organic matter is called dirty waste plastic.
  • 1A waste plastic supply conveyor
  • 2A waste plastic squeezing machine
  • 3A cyclone
  • 4A pellet supply conveyor
  • 5A crusher
  • 6A crushed waste plastic transfer conveyor
  • 7A soiled waste plastic weight measurement with quantitative supply conveyor
  • 8A Extruder
  • 9A Reactor
  • 10A Gas cooler
  • 11A Oil transfer pump No. 1
  • 12A Primary oil storage tank
  • 13A Oil transfer pump No. 2
  • 14A Essential oil storage tank
  • 15A Lorry
  • 16A Generator
  • 17A Organic char recovery device
  • 18A Organic char pelletization device
  • 19A High concentration waste liquid dilution tank
  • 20A Raw water transfer pump No.
  • Stage ⁇ Dirty waste plastic supply means 1A Waste plastic supply conveyor ⁇ Solid dirty waste plastic recovery means 2A: Waste plastic squeezing machine, 3A: Cyclone, 4A: Pellet supply conveyor ⁇ Crushed dirty waste plastic forming means 5A: Crushing machine, 6A : Shredded waste plastic transfer conveyor, 7A: Dirty waste plastic weight measuring device equipped with quantitative supply conveyor, Resource recovery processing stage/waste plastic gas component separation means 8A: Extruder, 9A: Reactor Post-processing stage/oil component forming means 10A: Gas cooler - Oil component storage means 11A: Oil transfer pump No. 1, 12A: Primary oil storage tank, 13A: Oil transfer pump No.
  • Waste plastics are typically containers and packaging made of plastics that are made of the so-called "three resins suitable for turning into oil”: polyethylene, polypropylene, and polystyrene.
  • the dirty waste plastic conveyed to the waste plastic supply conveyor 1A is squeezed by a waste plastic presser 2A, and the waste liquid taken out at a high concentration is led to a high concentration waste liquid dilution tank 19A, and the dirty waste plastic from which the waste liquid has been removed is It is led out to the cyclone 3A and becomes pellet-shaped dirty waste plastic.
  • the dirty waste plastic in the form of pellets is delivered to the crusher 5A by the pellet supply conveyor 4A.
  • the dirty waste plastic in the form of pellets is crushed into small pieces by the crusher 5A, and sent by the crushed plastic transfer conveyor 6A to the fixed quantity supply conveyor provided in the dirty waste plastic weight measuring device 7, and the amount of dirty waste plastic is measured for each fixed quantity supply. , and are led out to the extruder 8A. That is, the quantitative supply conveyor is provided with a weight measurement load cell.
  • the dirty waste plastic weight measuring device 7 measures the dirty waste plastic weight data for each set dirty waste plastic processing unit via a communication device (not shown) attached thereto, and the dirty waste plastic weight data is shown in FIG. It can be sent to a personal computer (PC) 31A.
  • the personal computer (PC) 31A stores dirty waste plastic weight information in its database 204A.
  • Each fixed amount is delivered to the reactor 9A by the extruder 8A in the form of crushed waste plastic squeeze bodies.
  • a weight measuring device measures the weight of dirty waste plastic for each input amount of dirty waste plastic or for each predetermined input amount of dirty waste plastic, transmits it to the personal computer (PC) shown in FIG. 14, and stores the dirty waste in the database 204A. It can be stored as the amount of plastic input.
  • the reactor 9A is a resource recycling processing device equipped with a heating means (not shown), and typically functions as a waste plastic gas component separation device.
  • a heating treatment is performed in which the heating means heats the waste plastic to a temperature sufficient to carbonize the organic contaminants.
  • the waste plastic is gasified and the organic contaminants are carbonized and fixed, thereby separating the waste plastic into gas components and organic charred substances.
  • waste plastic gas components are separated from immobilized carbonized organic contaminants.
  • waste plastics are thermally decomposed under heating times of 250 to 500°C under several atmospheric pressures, and that organic contaminants related to food are carbonized at temperatures around 500°C under several atmospheric pressures.
  • heating time By setting the heating time to around 500°C and maintaining the heating time appropriately, waste plastic can be gasified and organic pollutants can be carbonized and immobilized. It can be separated into plastic gas component and organic carbide.
  • 0.105 to 0.55 MPa x 300 to 500°C is adopted.
  • a temperature of 0.105 MPa ⁇ 350 to 450° C. is employed.
  • the generated waste plastic gas component can be taken out from the upper part of the reactor 9A, and the organic char can be taken out from the lower part of the reactor 9A.
  • the reactor 9A heat-treats the crushed soiled waste plastic at a temperature higher than the temperature at which waste plastic gas components are formed, and at a temperature sufficient to carbonize organic contaminants attached to the crushed soiled waste plastic, thereby converting the organic contaminants into organic char. It is formed as a waste plastic gas component separation means that fixes and separates waste plastic gas components and organic charred substances.
  • the treatment is performed at, for example, 0.105 MPa x 350 to 450°C.
  • FIG. 11 is a photograph showing the state of waste plastic being thrown into the reactor.
  • the waste plastic is obtained in the form of a solid squeezed body, and the extruder 8A sends out the crushed waste plastic in the shape of a squeezed body shown in the photo to the reactor 9A, where it is thrown into the reactor 9A.
  • FIG. 12 is a diagram showing the state of the obtained organic carbide.
  • organic carbide is obtained in solid form. More than 95% of the organic carbide obtained was carbon.
  • the waste plastic gas component is led out to a gas cooler 10A equipped with a heat exchanger inside, is cooled, and becomes an oil component.
  • the cleaned oil component is produced from dirty waste plastic used for food-related containers or packaging, mixed with water and contaminated with organic matter. It is an oily component obtained by removing moisture from plastic and removing the dirt and organic charred substances produced by heat treatment.
  • the oil component is extracted using oil transfer pump No. 1 to the essential oil storage tank 14A, and stored in the essential oil storage tank 14A.
  • a part of the produced oil stored in the refined oil storage tank 14A is pulled out from the refined oil storage tank 14A and transported to the oil distributor by the lorry 15A.
  • FIG. 13 is a data diagram showing the analysis results.
  • Types of waste plastic PE, PP, PS and mixtures thereof PE.
  • PP Data showing the analysis results for oil components (thermal decomposition oil) obtained from PS was obtained.
  • Another part of the produced oil stored in the refined oil storage tank 14A is extracted from the refined oil storage tank 14A and sent to the generator 16A for power generation, and the generated power is transmitted to the power transmission system.
  • the organic carbide taken out from the reactor 9A is led to an organic carbide recovery device 17A as an organic carbide recovery means, and is pelletized by an organic carbide pelletizing device 18A as a means for solidifying the recovered organic carbide to become organic carbide pellets. It is dried and used as fuel.
  • the entire pellet may be formed of an organic carbide, or the organic carbide may be used as the main component of the pellet, and a combustible material or a noncombustible material may be used and mixed.
  • the pellets formed may be used as fuel, as fertilizer in home gardens, or for other uses.
  • Organic charcoal pellets are waste plastics used for food-related containers or packaging, which are mainly made of polypropylene, polyethylene, or polystyrene, mixed with water, and contaminated with organic matter. It is produced from plastic, and is made of charred organic matter from which water has been removed and oily components have been removed by heat treatment.
  • waste plastics used for food-related containers or packaging are processed to produce clean oil components.
  • a dirty waste plastic processing system will be constructed to collect the waste.
  • the waste plastic is mainly made of polypropylene, polyethylene or polystyrene, contains water and is contaminated with organic matter, and is treated to recover a clean oily component.
  • the dirty waste plastic processing system is Supplying dirty waste plastics that are a collection of dirty waste plastics mixed with moisture and contaminated with organic matter; solid-liquid separation treatment of the supplied dirty waste plastic to recover solid dirty waste plastic; Crushing the collected solid dirty waste plastic to form crushed dirty waste plastic; The formed crushed and contaminated waste plastic is heat-treated at a temperature higher than that at which the waste plastic gas component is formed, and at a temperature sufficient to carbonize the organic contaminants attached to the crushed and contaminated waste plastic, thereby fixing the organic contaminants into organic char. and separating it into waste plastic gas components and organic char, cooling the separated waste plastic gas component to form an oil component; Storing oily ingredients, It has a configuration for recovering oil-based components stored in oil.
  • the dirty waste plastic processing system and method can be understood as a resource material recovery system and method from dirty waste plastic.
  • waste plastic used for food-related containers or packaging that is contaminated with moisture and organic matter is processed to produce clean oily components and solidified organic char as a resource.
  • a resource material generation system from dirty waste plastic is constructed, and the resource material generation system from dirty waste plastic is Supplying dirty waste plastics that are a collection of dirty waste plastics mixed with moisture and contaminated with organic matter; solid-liquid separation treatment of the supplied dirty waste plastic to recover solid dirty waste plastic; Crushing the collected solid dirty waste plastic to form crushed dirty waste plastic, The formed crushed contaminated waste plastic is heat-treated at a temperature higher than the temperature at which waste plastic gas components are formed, and at a temperature sufficient to carbonize the organic contaminants adhering to the crushed contaminated waste plastic, thereby fixing the organic contaminants into organic char. and separating it into waste plastic gas components and organic char, Cooling the separated waste plastic gas components to produce clean oil components; It has a configuration in which the separated organic carbide is solidified to produce a solid organic carbide.
  • the highly concentrated liquid taken out by the waste plastic squeezer 2A is led to the highly concentrated waste liquid dilution tank 19A.
  • Water is supplied to the highly concentrated waste liquid dilution tank 19A, and the highly concentrated liquid is diluted to become dilution water.
  • the dilution water is supplied by raw water transfer pump No. 1 20 to the pressurized flotation device 22A.
  • a condensing agent is added to the dilution water from the condensing agent tank 21A immediately before introduction into the pressure flotation device 22A.
  • the sludge which is a floating substance condensed by the condensing agent and floated to the top of the pressure flotation device 22A, is discharged, and the treated water is sent to the adjustment tank (membrane air type) 24A by the primary treated water transfer pump 23A, and the pH etc. is adjusted, and raw water transfer pump No. 2
  • the water is led out to the water purification device 26A by 25A and purified.
  • the purified water is discharged into general rivers.
  • FIGS. 14 and 15 are diagrams showing a resource recovery information acquisition device provided in conjunction with the resource recovery system (or dirty waste plastic processing system) 100.
  • FIG. 14 is a diagram showing a state in which a resource material recovery information acquisition device is attached to the dirty waste plastic processing system 100A.
  • a personal computer (PC) 31A acquires and monitors data generated in the dirty waste plastic processing system 100A.
  • a measuring device 1 (32A), a measuring device 2 (33A), a measuring device 3 (34A) and a dirty waste plastic weight measuring device 39A provided on the quantitative supply conveyor 7A are used. provided.
  • a branch pipe 36A is provided at the outlet side pipe 35A of the essential oil storage tank 14A, and the branch pipe 36A becomes a branch pipe 37A and a branch pipe 38A.
  • Measuring device 1 (32A) is installed downstream of the branch point of outlet pipe 35A, measuring device 2 (33A) is installed in branch pipe 37A, and measuring device 3 (34A) is installed.
  • a cold air production device 42A is provided in the branch pipe 38A, and a combustor 41A is provided in the branch pipe 37A.
  • the measuring device 1 (32A) is provided at a position after branching of the branch pipe 36A, the measuring device 2 (33A) and the measuring device 3 (34A) may not be provided.
  • Measurement data from measuring device 1 (32A), measuring device 2 (33A), measuring device 3 (34A), and dirty waste plastic weight measuring device 39A is transmitted to a personal computer (PC) 31A.
  • the waste plastic weight data is transmitted to the personal computer (PC) 31A from the input dirty waste plastic weight measuring device 7A, and is stored in the database 204A as dirty waste plastic weight information.
  • FIG. 15 is a diagram showing the configuration of the resource material recovery information acquisition device.
  • the resource material recovery information acquisition device 200A is provided in conjunction with the resource material recovery system 100A from contaminated waste plastic.
  • the resource recovery information acquisition device 200A is configured inside a personal computer (PC) 31A, and is provided in an external measuring device 1 (32A), a measuring device 2 (33A), a measuring device 3 (34A), and the quantitative supply conveyor 7. It is connected to a dirty waste plastic weight measuring device through a communication means 207A, and is equipped with an input means 201A, an arithmetic processing means 202A, an output means 203A, a database 204A, and a screen display means 205A having a screen 205AA. It is constructed by connecting. In the database 204A, - Data related to the amount of oil and waste plastic is recorded based on actual measured values measured in advance.
  • Input means 201A ⁇ The production amount of oil-based components, the internal consumption amount of oil-based components, and the data on the weight of dirty waste plastic measured for each fixed amount supply are input.
  • arithmetic processing means 202A ⁇ Resource oil amount data, processed waste plastic weight data regarding dirty waste plastics, and container packaging recycling data are calculated and acquired.
  • the resource material recovery system 100A removes the charred organic matter generated from the moisture removal treatment and heat treatment of the dirty waste plastic and obtains the oil component
  • the oil amount data of the oil component is obtained.
  • the processed dirty waste plastic and waste are determined based on the obtained resource oil amount data. Obtain data on the amount of plastic waste processed.
  • the output means outputs each data acquired by the arithmetic processing means to the screen 205A of the screen display means 205A or to the outside.
  • dirty waste plastic containing water mixed with organic matter can be treated in the same manner as waste plastic, and the treated product can be used as a resource. , can provide a method.
  • 100 Food residue recycling device
  • 100A Dirty waste plastic processing system
  • 200 Value information acquisition method
  • 300 Waste handling food residue recycling method
  • 1 Food residue supply conveyor
  • 2 Organic matter compression sorter
  • 3 Mono pump
  • 4 Waste plastic discharge conveyor
  • 5 Sludge supply conveyor
  • 6 Sludge transfer conveyor
  • 7 Granular mixture formation with a stirrer installed inside an elongated cylinder and a load cell (load cell weighing scale) on the outside surface.
  • Equipment 8: Hydrolysis device equipped with a stirrer, 9: Plastic oil tank, 10: Steam boiler, 11: Hydrolyzate transfer conveyor, 12: Drying dryer, 13: Dust collection cyclone, 14: Exhaust blower, 15: Dry material transfer conveyor, 16: Dry material storage tank, 17: Dry material quantitative supply conveyor equipped with a load cell, 18: Pellet generator (pelletizer), 19: Pellet transfer conveyor, 20: Flexible container filling machine, 21: Load cell weighing scale , 22: Lift.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】大量に排出される廃棄物取扱食品残渣の処理に加水分解処理を採用するに当たって、高温・高圧の処理環境にすることを要せず、処理対象の廃棄物取扱食品残渣の持つ柔らかくあるが粘性がある性状に適し、高い処理効率で適切に安価に加水分解処理を行ない得るようにする。 【解決手段】筒状体内で、廃棄物取扱食品残渣と脱水汚泥が撹拌混合されて、混合体が形成されながら、廃棄物取扱食品残渣及び脱水汚泥が粒体化されて、粒体状脱水汚泥中に粒状化した廃棄物取扱食品残渣が分散した粒体状の混合体が形成される粒体状混合体形成ステップ、及び反応器に粒体状の混合体及びスチームが導入されて、撹拌混合され、粒体状の混合体の廃棄物取扱食品残渣が低分子材に加水分解され、加水分解した粒体状の脱水汚泥中に加水分解した廃棄物取扱食品残渣が分散した粒体状のペレット化原料が形成される資源化原料形成ステップが形成される。

Description

廃棄物取扱食品残渣資源化装置、廃棄物取扱食品残渣資源化方法、廃棄物取扱食品残渣加水分解原料、及びペレットの製造又はペレットの製造による価値情報の取得方法、汚れ廃プラ処理システムおよび方法、資源回収システム及び方法
 本発明は、食品関連業界に収集される廃棄物取扱食品残渣の資源化装置、廃棄物取扱食品残渣資源化方法、廃棄物取扱食品残渣加水分解原料、及び収集された廃棄物取扱食品残渣及び脱水汚泥からペレットの製造による製造価値情報の取得方法、汚れ廃プラ処理システムおよび方法、資源回収システム及び方法に係る。
 有機系廃棄物(原料)を加水分解処理することが知られる。食品残渣に分散剤として余剰汚泥加えて混合及び加熱乾燥する食品残渣の処理方法が知られる。スクリューコンベヤー及びスクリュー脱水機において、螺旋形式の羽根とスクリューと、を有して、食品汚泥、食品残渣物を搬送する脱水搬送装置が知られる。
 特許文献1には、加水分解処理器を備え、有機系廃棄物(原料)の加水分解処理装置が記載される。有機系廃棄物(原料)には、酒造、醸造、飲料品残渣が含まれる旨が記載される。
 特許文献2には、圧力缶内に、排水処理により生じた脱水汚泥と野菜残渣物と食品残渣物を混合投入した後、圧力缶を真空状態にし、しかる後、混合物に対して加熱撹拌を行うことにより、混合粒状物を形成する食品残渣物の処理方法が記載される。
 特許文献3には、界面活性剤、消泡剤、凝集剤及び油脂からなる群から選ばれたものを分散剤として食品残渣に加えて混合及び加熱乾燥する食品残渣の処理方法が記載され、分散剤として余剰汚泥が使用可能で、食品残渣と余剰汚泥を同時に混合及び加熱処理できることが記載される。
 特許文献4には、耐圧容器内において有機系廃棄物である使用済敷き藁を高温・高圧の環境下で撹拌しながら加水分解すると共に、熱分解し、炭化して処理する処理装置が記載される。
 特許文献5には、圧力容器に被分解物、例えば有機系廃棄物を投入し、圧力容器に加水分解用の水蒸気を注入して撹拌しながら加水分解し、減圧した後に強制排気し、圧力容器に乾燥空気を供給して圧力容器内を乾燥する加水分解方法が記載される。
 特許文献6には、スクリューコンベヤー及びスクリュー脱水機において、螺旋形式の羽根とスクリューと、を有して、食品汚泥、食品残渣物を搬送する脱水搬送装置が記載される。
 特許文献7には、破砕された廃プラスチックを350~500℃の温度で熱分解して熱分解状生成物を得る熱分解手段を備える廃プラスチックの油回収装置が記載される。
特許文献8には、有機質廃棄物に熱可塑性樹脂を含浸して樹脂含浸物を調整し、樹脂含浸物を非酸化性雰囲気中で熱可塑性樹脂を600~1000℃の温度で加熱して樹脂含浸物を炭化する炭化物の製造方法が記載される。
 特許文献9には、食品包装と包装食品を、機械的手段を用いて分別する手段が記載される。
 非特許文献1には、食品系バイオマスを対象とした炭化リサイクルシステムにおいて、食品系バイオマスを構成する構成要素(穀類、植物性残渣、動物性残渣)を500℃で炭化した例が記載される。
特開2011-11129号公報 特開平4-74600号公報 特開2002-205026号公報 特許第4751977号公報 特開2018-51512号公報 特開2007-169057号公報 特許第3372509号公報 特開2002-274824号公報 特許第6842788号公報
廃棄物資源循環学会論文誌 Vol.22.No.3.pp.201-209,2011 食品系バイオマスを対象とした炭化リサイクルシステムの開発
 食品関連業者からは、顧客から返品され、消費期限が切れ、あるいは賞味期限が切れたなどの理由で廃棄物として取り扱われる大量の食品残渣(以下、廃棄物取扱食品残渣という)が収集される。また、別の食品関連業者からは、酒造、醸造又は飲料品製造残渣である大量の絞り粕が廃棄物として取り扱われる絞り粕残渣が収集される。いずれにあっても大量の廃棄物取扱食品残渣が収集され、そのリサイクル化が求められる。
 これらの収集された廃棄物取扱食品残渣は、一般的に焼却、埋め立て又は乾燥の方法で処理される。他方、これらの収集された廃棄物取扱食品残渣は、廃棄物取扱食品残渣の加水分解点を有することを利用して、加水分解処理がなされる。
 収集された廃棄物取扱食品残渣の焼却の場合は、大型の焼却設備が必要であり、COを発生させ、処理費用が嵩む、埋め立ての場合は、埋め立て場所の確保が困難である、乾燥の場合は、廃棄物取扱食品残渣としての原型を留め、高分子材がそのまま残存してしまうという問題がある。
 加水分解処理は、焼却しない処理であって、加水分解反応及び化学熱反応を利用して二酸化炭素、ダイオキシンの発生しない処理をするもので、通常加熱処理方法に比べて低温による処理が可能であり、焼却、埋め立て又は乾燥の方法で処理上の問題が解決されるが、大量に収集された廃棄物取扱食品残渣物の場合、通常柔らかであるが粘性があり、加水分解処理するときに、熱源としてのスチームとの接触効率を確保するという問題がある。例えば、返品された廃棄物取扱食品残渣には、米飯が残渣となっている場合が多い。米飯残渣は、ノリ作用で固まり塊を作りやすく、加水分解処理の障害となる。絞り粕残渣の場合も同様である。このため、廃棄物取扱食品残渣について加水分解処理が実用化に至る有効方法として確立されてこなかった。
 絞り粕残渣を含めて、廃棄物取扱食品残渣は、柔らかで、粘性のある食品残渣であるという性状を有しており、その性状に適した食品残渣物処理方法の採用が求められる。
 上述した特許文献の内、特許文献1、2、3に記載された発明は、加熱処理するものであって加水分解処理するものではない。廃棄物取扱食品残渣と余剰汚泥を同時に混合及び加熱処理する記載があるが、廃棄物取扱食品残渣と余剰汚泥とを同時に加水分解処理を可能とする旨の記載はない。
 特許文献4に記載された発明は、加水分解処理に関するものであるが、高温・高圧の環境下で使用済み敷き藁を処理するもので、廃棄物取扱食品残渣でなく、処理対象の廃棄物取扱食品残渣が持つ柔らかくあるが粘性があって塊を作り易い性状にあるもの対して適切に加水分解できるものではないし、高い処理効率で加水分解処理を行ない得るようになっていない。特許文献5に記載された発明は、加水分解処理に関するものであるが、処理対象の残渣物が有機系廃棄物(原料)を対処するものであって、有機系廃棄物(原料)には、酒造、醸造、及び飲料品残渣にも適用可能であることが示唆されているが、加熱ジャケットと撹拌手段を備えた処理容器を持つ加水分解処理装置を提示するに留まっており、廃棄物取扱食品残渣が柔らかくあるが粘性があって塊を作り易い性状にある場合に、高い処理効率で適切に加水分解処理できるようにすることが記載されていない。
 特許文献6には、食品汚泥、食品残渣物を搬送する脱水搬送装置が記載されるのみである。
 本発明は、係る点に鑑み、大量に排出される廃棄物取扱食品残渣の処理に加水分解処理を採用するに当たって、高温・高圧の処理環境にすることを要せず、処理対象の廃棄物取扱食品残渣の持つ柔らかくあるが粘性がある性状に適し、高い処理効率で適切に安価に加水分解処理を行ない得るようにすることを課題とする。
 図1は、本発明の概念を示す図である。
 本発明の概念を説明する前に、本発明が関連する事項について説明する。
 食品関連業者に収集される処理対象材としての廃棄物取扱食品残渣
 ・食品関連業者に返品された食品残渣、消費期限の切れた食品残渣、賞味期限の切れた食品残渣又は問題のあった加工食品残渣であって、柔らかくあるが粘性がある性状を有し、食品関連業者に回収され、廃棄処分される食品残渣。以下、廃棄物取扱食品残渣という。
 ・酒造、醸造、又は飲料品製造の過程で発生した残渣、具体的には絞り粕残渣。廃棄処分される上述した食品残渣と共に廃棄物取扱食品残渣となる。上述した食品残渣と廃棄物取扱食品残渣は混合されて廃棄物取扱食品残渣とされてもよい。
 ・絞り粕には、焼酎絞り粕、清酒絞り粕、果実酒絞り粕、醤油絞り粕、茶葉・果実ジュース絞り粕等がある。これらの食品残渣は食品残渣として廃棄される。
 汚泥処理関連業者に収集される処理対象材としての脱水汚泥
 ・下水活性汚泥で脱水処理した脱水下水活性汚泥
  酪農業からの糞尿が含まれる。
 ・食品関連汚泥で脱水処理した食品関連活性汚泥
  これには、食品工場廃棄脱水汚泥、グリーストラップ脱水汚泥、農作物加工品残渣脱水汚泥、水産物加工品残渣等がある。農作物加工品残渣脱水汚泥には、おが屑、もみがら、木材チップ、麦わら、稲わら、あるいは木材チップを廃油で揚げた木材チップフライヤーが含まれる。
 食品関連業者と汚泥処理関連業者は、同一の業者である場合と異なった業者である場合がある。同一の業者である場合は、食品関連業者に、廃棄物取扱食品残渣と食品関連活性汚泥が収集されるような場合である。
 本発明では、脱水汚泥が採用されるので、水分調整材あるいは吸着材を添加することを要しない。
 処理対象の廃棄物取扱食品残渣の持つ柔らかくあるが粘性
  比較対象として、特許文献5に記載される有機系廃棄物である使用済敷き藁が選択される。食品関連業者に発生する処理対象材としての廃棄物取扱食品残渣は、柔らかくあるが粘性があり、個性体を形成する性状がある。
 資源化処理
  粒体化した廃棄物取扱食品残渣及び脱水汚泥を加水分解処理器に導入して、効率よく加水分解処理してリサイクリング物質に再生処理することである。
 資源化体
  再生されたリサイクリング物質。例えば、ペレットが該当する。
 加水分解
  水分子が付加するかたちで起こる分解反応。1分子の化合物に1分子の水が反応して2分子の化合物を生成する反応。高分子化合物の場合は、相当する1か所の結合に関して、高分子材を低分子材に分解することをいう。有機化合物では、脂肪、酸塩化物、酸アミド、エステル、蛋白質、ペプチド、デンプン、セルロースなどが、水の作用により、あるいは酵素や強酸又はアルカリの働きが加わって、加水分解することが知られている。例えば、グリコール結合の加水分解は、
122211+HO→2C12
で表される。
 粒体
  粉体とは微細な固体粒子の集合体であり,粒体とは比較的粗い固体粒子の集合体である。 粉体と粒体の明確な区別は存在しないが,1mm近辺を境としてそれより細かいものを粉体,粗いものを粒体と呼ぶ場合が多い。 本出願では、両者を合わせて広い意味で使用する。
 資源化体の活用
 用いられる廃棄物取扱食品残渣及び汚泥に対応して、
 ・飼料
 ・肥料
 ・燃料
 の単独利用、又はこれらの組み合わせ利用がある。
 製造価値情報
 本発明の実施によって得られる技術上の、あるいは技術上及び経済上のメリットをいう。
 図1において、本発明は、食品関連業界に収集される廃棄物取扱食品残渣を処理し、資源化する食品残渣資源化装置100に係る。食品残渣資源化装置100は、前処理101、加水分解処理器による加水分解処理102及び後処理103からなり、前処理101で、粒体状の混合体が形成され、加水分解処理器による加水分解処理102のため接触面積の拡大された粒体の状態で導入され、加水分解が行われ、後処理103では、資源体形成がなされる。
 食品残渣資源化装置100は、前処理101として、
廃棄物取扱食品残渣を供給する廃棄物取扱食品残渣供給手段111、
 汚泥を脱水処理した脱水汚泥を供給する脱水汚泥供給手段112、
 第一の撹拌手段を内部に設けた筒状体を備え、当該筒状体内で、脱水汚泥と廃棄物取扱食品残渣を撹拌しながら混合して、混合体を形成し、廃棄物取扱食品残渣及び脱水汚泥を粒体化して、粒体状脱水汚泥中に粒状化した廃棄物取扱食品残渣が分散した粒体状混合体を形成する粒体状混合体形成手段113を備える。粒体状混合体形成手段113で、粒体状脱水汚泥中に粒状化した廃棄物取扱食品残渣が分散した粒体状混合体が、投入材として準備される。
 粒体状混合体形成手段113には、脱水汚泥の粒体化を食品残渣の粒体化に時間的な工程的に遅れを設けて、脱水汚泥の粒体化を食品残渣の粒体化に先行して行う筒状体内部に備えた撹拌器で当該脱水汚泥を撹拌して粒体状脱水汚泥を形成する粒体状脱水汚泥形成手段が含まれる。
 加水分解処理器による加水分解処理102は、資源化処理のことである。
 加水分解処理器によって、粒体混合体とスチームとの撹拌混合下、加水分解し、低分子化された粒体状資源化原料の形成を行う資源化原料形成手段114が形成される。
 資源化原料形成手段114は、
 第二の撹拌手段を内部に設けた反応器を備え、当該反応器に前記粒体状の混合体及びスチームを導入して、撹拌混合し、前記粒体状混合体中に分散した高分子材の粒子状食品残渣を低分子材に加水分解し、粒体状脱水汚泥中に低分子材の粒子状食品残渣が分散した粒体状の資源化原料を形成する手段である。
 第一の撹拌手段で撹拌し、第二の撹拌手段でさらに撹拌する処理がなされる。
 後処理103として、
 粒体状の資源化原料から固体状の資源化体の形成する資源化体形成手段115を備える。
 固体状の資源化体の形成する資源化体形成手段115は、粒体状の資源化原料から固体状の資源化体を形成する資源化体形成手段115である。
 本発明によれば、第一の撹拌手段及び第二の撹拌手段が設けられて、資源化原料形成手段114への処理対象材としての廃棄物取扱食品残渣及び汚泥がそれぞれ粒体化されて、粒体状の脱水汚泥中に、粒体化した廃棄物取扱食品残渣を分散した粒体状混合体を形成し、当該粒体状混合体を資源化原料形成手段の加水分解処理器に投入して加水分解することができる。
 これによって、大量に収集された廃棄物取扱食品残渣の処理に加水分解処理を採用するに当たって、高温・高圧の処理環境にすることを要せず、処理対象の廃棄物取扱食品残渣の持つ柔らかくあるが粘性がある性状に適し、高い処理効率で廃棄物取扱食品残渣処理を行ない得る。
本発明の実施例である食品関連業者に収集された廃棄物取扱食品残渣を処理し、資源化する食品残渣資源化装置の構成を示す図。 本発明の実施例である食品残渣資源化装置の構成を示す図。 加水分解に供給される粒体状の廃棄物取扱食品残渣加水分解原料を形成した状況を示す図。 加水分解処理状況を示す図。 製造されたペレットを示す写真。 収集された廃棄物取扱食品残渣及び収集された脱水汚泥からペレットの製造するときの製造価値情報の取得方法を示す図。 収集された廃棄物取扱食品残渣及び脱水汚泥からペレットの製造に伴う価値情報の取得方法を示す図。 廃棄物取扱食品残渣資源化方法について示す図。 本発明の汚れ廃プラスチック処理システムを示す図。 本発明の実施例である汚れ廃プラスチック処理システム(以下、廃プラスチックを廃プラと呼ぶ)の詳細を示す図。 リアクターに投入される廃プラの状態を示す図。 取得された有機物炭化物の状態を示す図。 分析結果を示すデータ図。 汚れ廃プラスチック処理システム100Aに資源物質回収情報取得装置が付随して設けられた状態を示す図。 資源物質回収情報取得装置の構成を示す図。
 図2は、本発明の実施例である食品関連業界に収集された廃棄物取扱食品残渣を処理し、資源化する廃棄物取扱食品残渣資源化装置の構成を示す図である。
 図2に示した本実施例の廃棄物取扱食品残渣資源化装置100の構成物と数値番号との関係は、次にとおりである。
1:食品残渣供給コンベヤー、2:有機物圧縮分別機、3:モノーポンプ、4:廃プラ排出コンベヤー、5:汚泥供給コンベヤー、6:汚泥移送コンベヤー、7:細長円筒の内部に第一の撹拌器が設けられ、外面にロードセル(ロードセル重量計)を備えた粒体混合物形成装置、8:内部に第二の撹拌器を設けた加水分解器、9:プラオイルタンク、10:スチームボイラー、11:加水分解物移送コンベヤー、12:乾燥ドライヤー、13:集塵サイクロン、14:排気ブロアー、15:乾燥物移送コンベヤー、16:乾燥物貯留槽、17:ロードセルを備えた乾燥物定量供給コンベヤー、18:ペレット生成器(ペレタイザー)、19:ペレット移送コンベヤー、20:フレコン充填機、21:ロードセル重量計、22:リフト。
 図1に示される各手段と図2に示される構成物との関係は次のとおりである。
 廃棄物取扱食品残渣供給手段111・・食品残渣供給コンベヤー1、有機物圧縮分別機2、モノーポンプ3、廃プラ排出コンベヤー4
 脱水汚泥供給手段112・・汚泥供給コンベヤー5、汚泥移送コンベヤー6
 粒体状混合体形成手段113・・細長円筒の内部に第一の撹拌機が設けられ、外面にロードセル(ロードセル重量計)を備えた粒体混合物形成装置7
 資源化原料形成手段114・・内部に第二の撹拌器を設けた加水分解装置8、プラオイルタンク9、スチームボイラー10
 資源化体形成手段115・・加水分解物移送コンベヤー11、乾燥ドライヤー12、集塵サイクロン13、排気ブロアー14、乾燥物移送コンベヤー15、乾燥物貯留槽16、ロードセルを備えた乾燥物定量供給コンベヤー17、ペレット生成器(ペレタイザー)18
 図1において、廃棄物取扱食品残渣及び脱水汚泥が準備される。廃棄物取扱食品残渣及び脱水汚泥は、前述したとおりのものである。
 廃棄物取扱食品残渣が食品残渣供給コンベヤー1に投入されて、供給される。廃棄物取扱食品残渣が食品残渣供給コンベヤー1から有機物圧縮分別機2に移送される。有機物圧縮分別機2によって、投入された廃棄物取扱食品残渣は、有機物としての廃棄物取扱食品残渣と汚れ廃プラスチックとに分別され、分別された廃棄物取扱食品残渣は、モノ―ポンプ3によって、粒体混合物形成装置7の投入部に移送される。
 食品残渣供給コンベヤー1は、ロードセルを備えており、計測された廃棄物取扱食品残渣の重量は、後述するパソコン(PC)に送信される。
 有機物圧縮分別機2の構造は、特許第6842788号公報に詳しく記載されている。
 分別された汚れ廃プラスチックは、廃プラスチック排出コンベヤー4に移送され、油化プラ原料として図示していない処理システムに導出される。
 廃プラスチック排出コンベヤー4は、ロードセルを備えており、計測された廃棄物取扱食品残渣の重量は、後述するパソコン(PC)に送信される。
 脱水汚泥が汚泥供給コンベヤー5に投入されて、供給される。脱水汚泥が汚泥供給コンベヤー5から粒体混合物形成装置7の投入部に移送される。
 粒体混合物形成装置7は、入口部に投入部を有し、投入部に連結された細長状の円筒を備え、円筒内に撹拌器を有する。撹拌器はペアとなった各ファン翼を有して、投入された食品残渣及び脱水汚泥を撹拌混合し、更に微細化して粒体状の混合体を形成する。
 混合体を形成しながら、廃棄物取扱食品残渣及び脱水汚泥を粒体化して、粒体状脱水汚泥中に粒状化した廃棄物取扱食品残渣が分散した粒体状の混合体を形成する。
 粒体状の混合体は、前処理されたもので、粒体状の脱水汚泥中に、粒子状の廃棄物取扱食品残渣が分散した状況を呈し、加水分解に供される粒体状の廃棄物取扱食品残渣加水分解原料として準備される。
 粒体状の混合体は、斜めに配置された円筒内を上方に移送され、上端部から加水分解器8の上部に設けられた投入口から加水分解器8に投入される。
 加水分解器8は、竪型、横型のいずれでもよいが、操作性、製造の容易性から図に示されるように、好んで横型が採用される。
 加水分解に供される粒体状の廃棄物取扱食品残渣加水分解原料は、第一の撹拌器で十分に粒体状になっているが、第二の撹拌器で微細化、均一化がなされる。撹拌器としては、スクリュー型撹拌器を採用できる。
 加水分解器8には、粒体状の混合体を投入する粒体状の混合体投入口及びスチームを投入するスチーム投入口が設けられ、粒体状の混合体は、混合体投入口から、スチームはスチーム投入口から加水分解器8にそれぞれ投入される。プラオイルタンク9に貯蔵された油を熱源としたスチームボイラー10が設けられ、スチームボイラー10で発生したスチームが加水分解装置8に投入される。加水分解器8の圧力は、1.5~3.0MPa、好ましくは1.5~2.5MPa、温度は、150~300℃が採用される。加水分解時間は、30~120分が採用される。
 スチームボイラー10の熱源には、慣用のものが使用可能であるが、廃プラスチック排出コンベヤー4から排出された油化プラスチック原料を処理することでリサイクル生成された再生油が好んで使用される。
 加水分解器8は、加水分解反応機能を有して、内部に第二の撹拌器を備え、撹拌器(撹拌手段)を内部に設けた反応器(加水分解反応器)を備え、当該反応器に粒体状の混合体及びスチームを導入して、撹拌混合し、粒体状混合体中に分散した廃棄物取扱食品残渣を低分子材に加水分解し、粒体状脱水汚泥中に加水分解した廃棄物取扱食品残渣が分散した湿状態の粒体状の資源化原料を形成する。資源化原料の典型的な例は、ペレット化原料である。
 資源化原料である、低分子材とされた加水分解物は、加水分解物移送コンベヤー11に導出される。
資源化原料は、加水分解装置8から排出された段階では、湿った状態にある。湿った状態の資源化原料は、加水分解物移送コンベヤー11によって、排気ブロアー14で発生した熱風を熱源とした集塵サイクロン13に移送される。凝集液体は蒸気化して下部からは固形化した加水分解物(資源化原料)が回収される。
 集塵サイクロン13で選別された資源化原料は、乾燥ドライヤー12で乾燥され、乾燥物移送コンベヤー15に導出され、乾燥物貯留槽16に貯留される。
 このように、粒体状脱水汚泥中に、加水分解で低分子化した粒子状返品された廃棄物取扱食品残渣又は絞り粕残渣が分散した湿状態の粒体状のペレット原料又は乾燥状態の粒体状のペレット原料が形成される。
 乾燥物貯留槽16に貯留された乾燥資源化原料は、乾燥物定量供給コンベヤー17に導出される。乾燥物定量供給コンベヤー17は、ロードセルを備えており、一定量ごと計測して計測された乾燥資源化原料をペレット生成器18に送出する。
 ペレット生成器18は、ペレタイザーとして機能し、乾燥資源化原料から典型的にはペレットが形成される。
 前記ロードセルで計測された乾燥資源化原料の重量は、後述するパソコンP(PC)に送信される
 乾燥資源化原料から固体状の資源化体、例えば典型的にはペレットが成果物として形成される。
 形成されたペレットは、ペレット移送コンベヤー19に移送され、ペレット移送コンベヤー19によって、フレコン充填機20に充填される。フレコン充填機20は、ロードセル重量計21を備え、充填量を計測して、所定の量が充填されたフレコン充填機20とする。
 ロードセル重量計21で計測された重量情報は、後述するパソコン(PC)に送信される。
 所定の量が充填されたフレコン充填機20は、リフト22によって、所定の箇所あるいは所定の車両に搬送される。
 図3は、加水分解に供給される粒体状の廃棄物取扱食品残渣加水分解原料を形成した状況を示す図である。
1:食品残渣供給コンベヤー、2:有機物圧縮分別機、3:モノーポンプ、4:廃プラ排出コンベヤー、5:汚泥供給コンベヤー、6:汚泥移送コンベヤー、7:細長円筒の内部に第一の撹拌器が設けられ、外面にロードセル(ロードセル重量計)を備えた粒体混合物形成装置が用いられて、粒体状の脱水汚泥中に、粒子状の廃棄物取扱食品残渣が分散した状況を呈し、加水分解に供給される粒体状の廃棄物取扱食品残渣加水分解原料が形成された。
 図3において、2種類の廃棄物取扱食品残渣(1)(2)がトータルで15.0kg準備され、脱水汚泥としておが屑が15.0kg準備された。
 これらの原料が粒体混合物形成装置7に投入された。これらの原料は、撹拌混合され、(3)で示される粒体状の廃棄物取扱食品残渣加水分解原料(4)が形成された。
 図4は、加水分解処理状況を示す図である。
形成された粒体状の廃棄物取扱食品残渣加水分解原料が加水分解器8を構成するタンク(処理容器)に供給されて加水分解処理状況が図4に示される。加水分解器8の圧力は、2.0MPa、温度は、230℃が採用された。
 図5は、成果物の製造されたペレットを示す写真である。
 以上のように、食品関連業界から排出される廃棄物取扱食品残渣を処理し、資源化する食品残渣資源化方法において、
 廃棄物取扱食品残渣が供給される食品残渣供給ステップ、
 汚泥を脱水処理した脱水汚泥が供給される脱水汚泥供給ステップ、
 第一の撹拌手段を内部に設けた筒状体が用いられ、当該筒状体内で、廃棄物取扱食品残渣と脱水汚泥が撹拌混合されて、混合体が形成されながら、廃棄物取扱食品残渣及び脱水汚泥が粒体化されて、粒体状の脱水汚泥中に粒状化した廃棄物取扱食品残渣が分散した粒体状混合体が形成される粒体状混合体形成ステップ、
 第二の撹拌手段を内部に設けた反応器が用いられ、当該反応器に粒体状の混合体及びスチームが導入されて、撹拌混合され、粒体状の混合体中に分散した粒子状の廃棄物取扱食品残渣が低分子材に加水分解し、粒体状の脱水汚泥中に加水分解した粒子状廃棄物取扱食品残渣が分散した湿状態粒体状の資源化原料が形成される資源化原料形成ステップ、
 乾燥資源化原料から固体状の資源化体が形成される資源化体形成ステップ、
 を有して形成された食品関連業界に収集された廃棄物取扱食品残渣が処理され、資源化される食品残渣資源化方法が形成される。
 また、上述した資源化する廃棄物取扱食品残渣資源化方法において、
 食品残渣供給ステップで、廃棄物取扱食品残渣として、例えば返品された残渣が供給され、
 資源化原料形成ステップで、湿状態の粒体状のペレット化原料、又は湿状態の粒体状のペレット原料が乾燥された乾燥ペレット原料が形成される。
 また、上述した資源化する廃棄物取扱食品残渣資源化方法において、
 食品残渣供給ステップで、廃棄物取扱食品残渣として、絞り粕残渣が供給され、
 資源化原料形成ステップで、湿状態の粒体状のペレット化原料、又は湿状態の粒体状のペレット原料が乾燥された乾燥ペレット原料が形成される。
 また、上述した資源化する廃棄物取扱食品残渣資源化方法において、
 脱水汚泥供給手段が、脱水汚泥として、食品関連汚泥を供給し、
 資源化原料形成手段が、廃棄物取扱食品残渣及び食品関連汚泥から形成されて、飼料あるいは燃料に適した粒体状のペレット化原料を形成する。
 また、上述した資源化する廃棄物取扱食品残渣資源化方法において、
 脱水汚泥供給手段が、脱水汚泥として、下水活性汚泥を供給し、
 資源化原料形成手段が、廃棄物取扱食品残渣及び下水活性汚泥から形成されて、肥料に適した粒体状のペレット化原料を形成する。
 本実施例によれば、大量に収集された廃棄物取扱食品残渣の処理に加水分解処理を採用するに当たって、高温・高圧の処理環境にすることを要せず、処理対象の廃棄物取扱食品残渣の持つ柔らかくあるが粘性がある性状に適し、高い処理効率で食品残渣物処理を行ない得る。
 以上、説明した食品関連業界に収集された廃棄物取扱食品残渣を処理し、資源化する廃棄物取扱食品残渣資源化方法を実施することで、収集された廃棄物取扱食品残渣及び脱水汚泥からペレットの製造に伴う価値情報の取得方法が形成される。図6及び図7を用いて収集された廃棄物取扱食品残渣及び脱水汚泥からペレットの製造に伴う価値情報の取得方法を説明する。
 図6は、収集された廃棄物取扱食品残渣及び収集された脱水汚泥からペレットの製造するときの製造価値情報の取得方法を示す図である。
 粒体状のペレット原料からペレットを製造する方法は先に説明した通りであり、粒体状のペレット原料からペレットを製造する方法が用いられることで、当該ペレットの製造価値情報の取得方法200が形成される。
 食品残渣資源化管理者の端末201、食品関連業者の端末202及び汚泥処理関連業者の端末203を通信手段204で接続したときに、食品残渣資源化管理者の端末201に形成される。
 食品関連業者の端末202で取り扱われる情報は、
 ・廃棄物取扱食品残渣に関するもの
 ・廃棄物取扱食品残渣の処理に要する現状廃棄物処理費用に関するもの
 がある。
汚泥処理関連業者の端末203で取り扱われる情報は、
 ・脱水汚泥に関するもの
 ・脱水汚泥の処理に要する現状廃棄物処理費用に関するもの
 がある。
  現状費用とは、現状の処理装置・方法による廃棄物取扱食品残渣の処理に要する現状の費用のことである。
 食品残渣資源化管理者の端末201で取り扱われる情報は、
 ・加水分解原料形成確認に関するもの
 ・製造されたペレット量に関連するペレットに関するもの
 ・対比消費燃料量に関連する対比消費燃料に関するもの
 ・二酸化炭素削減量に関連する二酸化炭素削減に関するもの
 がある。
 図7は、収集された廃棄物取扱食品残渣及び脱水汚泥からペレットの製造に伴う価値情報の取得方法を示す図である。
 食品残渣資源化管理者の端末に形成される食品残渣資源化情報取得装置205を用いることで、ペレット製造に伴う価値情報の取得方法200が形成される。
 食品残渣資源化情報取得装置205は、内部に入力手段206、演算処理手段207、出力手段208、データベース(記憶手段のこと)209及び画面表示手段210を備え、外部の食品関連業者の端末202、汚泥処理業者の端末203及び資源化体利用業者の端末214に接続回線211を介して接続される。
 データベース209は、現状装置・方法による廃棄物取扱食品残渣処理に要する燃料量に関連する燃料情報及び現状装置・方法による汚泥残渣処理に要する燃料量に関連する燃料情報を格納する。これらの情報には、各処理に要する費用に関連する費用情報が含まれる。
 入力手段206は、食品関連業者の端末202、汚泥処理業者の端末203及び資源化体利用業者の端末214からの各種の情報及びデータベース209に格納した情報を読み出すことができる。
 入力手段206には、食品残渣供給コンベヤー1、廃プラ排出コンベヤー4、粒体混合物形成装置7、乾燥物定量供給コンベヤー17 に設けたロードセル及びロードセル重量計21が計測した重量情報が入力される。これによって、それぞれの工程を流れる形成体の重量が取得され、演算処理手段207による演算処理に使用される。
 演算処理手段207は、
 ・粒体状の加水分解原料の混合量に関連した混合情報の取得
 ・製造されたペレット量に関連したペレット情報の取得
 ・対比消費燃料量に関連した燃料情報の取得
 ・二酸化炭素削減量に関連した二酸化炭素情報
 ・脱水汚泥廃棄削減量に関連した脱水汚泥廃棄削減
と取得を行う。
 対比情報には、消費燃料削減量あるいは/及び二酸化炭素削減量に、廃棄物取扱食品残渣処理に要する現状の廃棄物処理費用状況と本発明で得られる廃棄物取扱食品残渣処理に要する費用状況との比較に基づく費用削減に関連した費用削減情報が含まれる。
 脱水汚泥の処理に要する費用についても同様である。
その1が構成される。
その1
 廃棄物取扱食品残渣及び脱水汚泥を原料としたペレットを製造するに際して、粒体状の脱水汚泥中に、粒子状の廃棄物取扱食品残渣が分散した混合状況を呈し、加水分解に供給される粒体状の加水分解原料の混合量に関連した粒体状の混合情報が取得され、
当該混合量から製造されたペレット量に関連したペレット製造情報が取得され、
当該混合量から製造されたペレットの所定単位のペレット量を製造するに消費した燃料量が計測されて燃料量に関連した消費燃料情報(A)が取得され、
 予め定めた従来の燃焼装置、燃焼方法として定めた燃焼装置、燃焼方法で廃棄物取扱食品残渣を処理することが実施されて、所定の単位量の廃棄物取扱食品残渣量を処理するのに要した燃料量が取得されて、予め記録され、当該燃料量に関連した消費燃料情報(B)が取得され、
 消費燃料情報(A)及び消費燃料情報(B)から、消費燃料情報(A)及び消費燃料情報(B)を対比した対比消費燃料関連情報が取得され、
 製造されたペレットの所定単位のペレット量を製造するに投入した脱水汚泥量から、当該脱水汚泥量に関連した投入脱水汚泥情報(C)が取得され、
 ペレット製造関連情報から、ペレットのリサイクル化による廃棄物取扱食品残渣廃棄削減量に関連する関連情報、及び対比消費燃料関連情報から、削減される排出二酸化炭素量に関連した排出二酸化炭素削減情報が取得され、及び投入脱水汚泥情報から、粒体状のペレット原料のペレット原料を製造するペレット原料製造方法に脱水汚泥を投入することによる脱水汚泥の削減に関連した脱水汚泥削減情報が取得され、
粒体状のペレット原料からペレットを製造する方法に伴って廃棄物取扱食品残渣廃棄削減量情報、排出二酸化炭素削減量情報及び脱水汚泥廃棄削減量情報から3つの廃棄削減量情報が取得されて、各廃棄削減量単価に基づく製造価値情報が取得される。
 出力手段208は、演算処理手段207で取得された各情報を外部及び画面表示手段210に出力することができる。
 画面表示手段210は、画面210Aを備え、画面に出力された各情報を表示する。
 先に、粒体状のペレット原料からペレットを製造する方法による3つの廃棄削減情報からなる製造価値情報が取得されることを示したが、2つの廃棄削減情報からなる製造価値情報の取得、あるいは1つの廃棄削減情報からなる製造価値情報の取得を行なってもよい。
 その場合、その2,その1の構成は次のようになる。
 その2
 廃棄物取扱食品残渣及び脱水汚泥を原料としたペレットを製造するに際して、粒体状の脱水汚泥中に、粒子状の廃棄物取扱食品残渣が分散した混合状況を呈し、加水分解に供給される粒体状の加水分解原料の混合量に関連した粒体状の混合情報が取得され、
当該混合量から製造されたペレット量に関連したペレット製造情報が取得され、
当該混合量から製造されたペレットの所定単位のペレット量を製造するに消費した燃料量が計測されて燃料量に関連した消費燃料情報(A)が取得され、
 予め定めた従来の燃焼装置、燃焼方法として定めた燃焼装置、燃焼方法で廃棄物取扱食品残渣を処理することが実施されて、所定の単位量の廃棄物取扱食品残渣量を処理するのに要した燃料量が取得されて、予め記録され、当該燃料量に関連した消費燃料情報(B)が取得され、
 消費燃料情報(A)及び消費燃料情報(B)から、消費燃料情報(A)及び消費燃料情報(B)を対比した対比消費燃料関連情報が取得され、
 ペレット製造関連情報から、ペレットのリサイクル化による廃棄物取扱食品残渣廃棄削減量に関連する関連情報、及び対比消費燃料関連情報から、削減される排出二酸化炭素量に関連した排出二酸化炭素削減量情報が取得され、
 粒体状のペレット原料からペレットを製造する方法の採用に伴う廃棄物取扱食品残渣廃棄削減量情報及び排出二酸化炭素削減量情報の2つの廃棄削減量情報が取得されて、各廃棄削減量単価に基づく製造価値情報が取得されること
を特徴とするペレット製造に伴う価値情報の取得方法が提案される。
その3
 廃棄物取扱食品残渣及び脱水汚泥を原料としたペレットを製造するに際して、粒体状の脱水汚泥中に、粒子状の廃棄物取扱食品残渣が分散した混合状況を呈し、加水分解に供給される粒体状の加水分解原料の混合量に関連した粒体状の混合情報が取得され、
当該混合量から製造されたペレット量に関連したペレット製造情報が取得され、
当該混合量から製造されたペレットの所定単位のペレット量を製造するに消費した燃料量が計測されて燃料量に関連した消費燃料情報(A)が取得され、
 ペレット製造関連情報から、ペレットのリサイクル化による廃棄物取扱食品残渣廃棄削減量に関連する関連情報が取得され、
 粒体状のペレット原料からペレットを製造する方法の採用に伴って、廃棄物取扱食品残渣廃棄削減量情報の1つの廃棄削減量情報が取得されて、当該廃棄削減量単価に基づいた製造価値情報が取得されること
を特徴とするペレット製造に伴う価値情報の取得方法が提案される。
 本実施例によれば、上述したように、3~1つの廃棄削減情報からなる製造価値情報を取得することができる。
 図8は、廃棄物取扱食品残渣資源化方法について示す図である。
 図8に、収集された廃棄物取扱食品残渣及び収集された脱水汚泥が処理され、資源化される廃棄物取扱食品残渣資源化方法が示される
 当該廃棄物取扱食品残渣資源化方法300は、処理対象の廃棄物の収集301,廃棄物分別作業302,分別された処理対象物の取得303、処理対象物の選り分け304及び処理法305から構成される。
 処理対象の廃棄物の収集301で、廃棄物取扱食品残渣及び脱水汚泥からなる処理対象の廃棄物が収集される。
食品関連業者に、数値番号311で示すように、
汚れプラスチック(汚れプラスチック中に、廃プラスチックがある場合を含む)
廃棄物取扱食品残渣
 ・返品された食品残渣に代表される廃棄物取扱食品残渣
 ・絞り粕残渣
汚泥
 ・食品関連汚泥
 ・下水活性汚泥
が各種の収集手段で収集される。
汚泥関連業者に、数値番号312で示すように、
 ・汚泥
 ・食品関連汚泥
 ・下水活性汚泥
が各種の収集手段で収集される。汚泥は、脱水され脱水汚泥とされる。
 廃棄物分別作業302で、廃棄物取扱食品残渣及び脱水汚泥からなる収集された廃棄物は、汚れ廃プラスチック313、廃棄物取扱食品残渣及び脱水汚泥314の廃棄物に大きく分別される。
 分別された処理対象物の取得303で、収集された廃棄物から汚れ廃プラスチック313が分別された、点線で示される廃棄物取扱食品残渣及び脱水汚泥になる廃棄物が取得される。
 処理対象物の選り分け304で、取得された廃棄物取扱食品残渣及び脱水汚泥の廃棄物は、廃棄物取扱食品残渣315及び脱水汚泥316の2つの廃棄物に、それぞれに処理対象物として選り分けられる。この選り分けで、次のステップにおける投入量が調整され、操業上適切な混合比になる廃棄物取扱食品残渣315及び脱水汚泥316の2つの廃棄物とされる。
 処理法305で、ルート1として汚れ廃プラスチックからの資源回収方法317及びルート2として廃棄物取扱食品残渣資源化方法318が採用される。汚れ廃プラスチックからの資源回収方法の適用で、分別された汚れプラスチックから典型的には油成分が資源として回収される。
 汚れ廃プラスチックからの資源回収方法317については、図9を用いて後述する。
 なお、汚れ廃プラスチックからの資源回収方法317は、本件特許出願人になる日本国における特願2022-115184号に詳細が説明される。
 処理法305のルート2で、本願発明の実施例である廃棄物取扱食品残渣資源化方法318が適用される。
 第一の撹拌手段が内部に設けられた筒状体が用いられて、当該筒状体内で、選り分けられた廃棄物取扱食品残渣と脱水汚泥が撹拌混合されて、混合体が形成されながら、前記廃棄物取扱食品残渣及び脱水汚泥が粒体化されて、前記粒体状脱水汚泥中に粒状化した廃棄物取扱食品残渣が分散した粒体状混合体が形成され、
 第二の撹拌手段が内部に設けられた反応器が備えられ、当該反応器に前記粒体状の混合体及びスチームが導入されて、撹拌混合され、前記粒体状混合体の粒子状の食品残渣が低分子材に加水分解され、加水分解した粒体状の脱水汚泥中に加水分解した粒子状の食品関連汚泥食品残渣が分散した粒体状のペレット化原料が形成され、
 ペレット化原料から固体状のペレットが形成される。
 このようにして、収集された廃棄物取扱食品残渣が処理されて、資源化される廃棄物取扱食品残渣資源化方法300が形成される。
 汚れ廃プラスチックからの資源回収方法317及び廃棄物取扱食品残渣資源化方法318で回収、再生された成果物は、食品関連業者311、あるいは汚泥関連業者312に帰属する。
 図9は、本発明の汚れ廃プラスチック処理システムを示す図である。
 図9に、本発明の汚れ廃プラスチック処理システム100Aに関連して、汚れ廃プラスチックを処理して資源物としてのクリーンな油化成分及び有機質炭化物を生成する手段、方法が示される。
 本発明は、図9示されるように、汚れ廃プラスチック処理システム100Aは、前処理段階101A、資源化処理段階102A及び後処理段階103Aから構成され、資源104Aが生成される。
 前処理段階101Aとして、
 ・汚れ廃プラスチック供給手段111A
  有機物で汚染され、水分を包含する汚れ廃プラスチックが集合体を形成
 ・固体状汚れ廃プラスチック回収手段112A
  汚れ廃プラスチックを固液分離して前処理を実施
 ・破砕汚れ廃プラスチック形成手段113A
  固体状汚れ廃プラスチックの破砕
 資源化処理段階102Aとして、
 ・廃プラスチックガス成分分離手段114A
  有機質汚染物が炭化するに十分な温度で加熱処理
 リアクターが用いられる。リアクターは、加熱手段を備えた資源化処理装置であり、典型的には廃プラガス成分分離装置としての機能を有する。加熱手段が廃プラを加熱して、有機質汚染物が炭化するに十分な温度で加熱される加熱処理がなされる。
 汚れ廃プラスチックに付着あるいは混在する有機質汚染物を炭化して有機質炭化物として固定化することのできる加熱処理を採用して、廃プラガス成分と有機質炭化物とに分離する。廃プラスチックについての加熱処理で、廃プラスチックを溶融して油化成分を有機質残渣と分離する方式では、有機質残渣を溶融した油化成分から有効的に効率的に分離することができない。
 上述した加熱処理で、有機質汚染物を炭化して固定化することのできる加熱温度で、有機質汚染物を炭化し、廃プラをガス化して、廃プラガス成分と有機質炭化物とに有効的に効率的に分離する。典型的には、廃プラガス成分が固定化された炭化有機質汚染物から分離される。
 後処理段階103Aとして、
 ・油化成分形成手段115A
  廃プラスチックガス成分を冷却して油化
 ・油化成分貯油手段116A
  油化成分の貯油
 ・油化成分回収手段117A
  油化成分の回収
及び
 ・有機質炭化物回収手段118A
 ・回収有機質炭化物の固化手段119A
が設けられる。以上の手段を備えることで、クリーンな油化成分が生成され、燃料ペレットが生成される。「手段」は、「ステップ」に読み替え可能である。
 資源104として、油化成分121Aと有機質炭化物含有ペレット122Aの組み合わせが形成される。
 油化成分は、生成油となり、クリーンな生成油として資源化され、回収有機質炭化物は、ペレットとなり、燃料ペレットとして資源化される。
 食品関連容器あるいは包装に用いられた廃プラであって、水分が混在し、有機質物で汚染された汚れ廃プラから生成されたものであって、当該廃プラから水分が除去され、加熱処理で生成された汚れ有機質の炭化物が除去された油化成分と当該油化成分が除去された汚れ有機質の炭化物を材料として生成された有機質炭化物含有ペレットの組み合わせが提供される。
 図10は、本発明の実施例である汚れ廃プラスチック処理システムを示す図である。
 水分が混在し、有機質物で汚染された廃プラを汚れ廃プラと称する。
 図10において示される汚れ廃プラスチック処理システム100Aを構成する装置、部材と関連番号との関係は次のとおりである。
 1A:廃プラ供給コンベヤー、2A:廃プラ圧搾機、3A:サイクロン、4A:ペレット供給コンベヤー、5A:破砕機、6A:破砕廃プラ移送コンベヤー、7A:定量供給コンベヤーを備えた汚れ廃プラ重量計測器、8A:押し出し機、9A:リアクター、10A:ガス冷却器、11A:オイル移送ポンプNo.1、12A:一次貯油槽、13A:オイル移送ポンプNo.2、14A:精油貯槽、15A:ローリー車、16A:発電機、17A:有機質炭化物回収装置、18A:有機質炭化物ペレット化装置、19A:高濃度廃液希釈槽、20A:原水移送ポンプNo.1、21A:凝縮剤タンク、22A:加圧浮上装置、23A:一次処理水移送ポンプ、24A:調整槽(膜気式)、25A:原水移送ポンプNo.2、26A:浄水装置

 図9に示される各手段と図10に記載される装置、部材との関連は、次のとおりである。
 段階
 ・汚れ廃プラスチック供給手段 1A:廃プラ供給コンベヤー
 ・固体状汚れ廃プラスチック回収手段 2A:廃プラ圧搾機、3A:サイクロン、4A:ペレット供給コンベヤー
 ・破砕汚れ廃プラスチック形成手段 5A:破砕機、6A:破砕廃プラ移送コンベヤー、7A:定量供給コンベヤーを備えた汚れ廃プラ重量計測器、
 資源化処理段階
・廃プラスチックガス成分分離手段 8A:押し出し機、9A:リアクター
 後処理段階
・油化成分形成手段 10A:ガス冷却器
 ・油化成分貯油手段 11A:オイル移送ポンプNo.1、12A:一次貯油槽、13A:オイル移送ポンプNo.2、14A:精油貯槽
 ・油化成分回収手段 15A:ローリー車、16A:発電機
 及び
 ・有機質炭化物回収手段 17A:有機質炭化物回収装置
 ・回収有機質炭化物の固化手段 18A:有機質炭化物ペレット化装置
 図10において、水分が混在し、有機質物で汚染された汚れ廃プラは、缶、瓶、金属などの異物が分別された後に集合され、廃プラトラックによって廃プラ供給コンベヤー1Aに搬送される。
 水分が混在し、有機質物で汚染された汚れ廃プラは、典型的には食品関連事業者から排出され、有機質物は、主要な構成要素(穀類、植物性残渣、動物性残渣)からなり、廃プラに付着あるいは内蔵される。廃プラは、典型的にはポリエチレン、ポリプロピレン、ポリスチレンのいわゆる「油化適正3樹脂」になるプラスチック製容器、包装である。
 廃プラ供給コンベヤー1Aに搬送された汚れ廃プラは、廃プラ圧搾機2Aで圧搾され、高濃度で取り出された廃液が高濃度廃液希釈槽19Aに導出され、廃液が取り除かれた汚れ廃プラはサイクロン3Aに導出され、ペレット状の汚れ廃プラとなる。
 ペレット状の汚れ廃プラは、ペレット供給コンベヤー4Aにより破砕機5Aに導出される。
 ペレット状の汚れ廃プラは、破砕機5Aで細かく破砕され、破砕プラ移送コンベヤー6Aによって汚れ廃プラ重量計測器7に備えた定量供給コンベヤーに送られ、定量供給ごとに汚れ廃プラ量が計測され、押し出し機8Aへ導出される。すなわち定量供給コンベヤーには、重量計測ロードセルが設けられている。汚れ廃プラ重量計測器7は、それ付随して設けられた通信機(図示せず)を介して、設定された汚れ廃プラ処理単位ごとに計測された汚れ廃プラ重量データを図14に示すパソコン(PC)31Aへ送信することができる。パソコン(PC)31Aは、そのデータベース204Aに汚れ廃プラ重量情報を格納する。
 定量ごとに押し出し機8Aによってリアクター9Aへと、破砕された廃プラ絞り体状で導出される。
 重量計測器によって、汚れ廃プラの投入量ごと、あるいは汚れ廃プラの所定の投入量ごとの汚れ廃プラの重量を計測して図14に示すパソコン(PC)に送信し、データベース204Aに汚れ廃プラの投入量として記憶しておくことができる。
 リアクター9Aは、加熱手段(図示せず)を備えた資源化処理装置であり、典型的には廃プラガス成分分離装置としての機能を有する。加熱手段が廃プラを加熱して、有機質汚染物が炭化するに十分な温度で加熱される加熱処理がなされる。この加熱処理で、廃プラをガス化し、有機質汚染物を炭化して固定化することで、廃プラガス成分と有機質炭化物とに分離する。典型的には、廃プラガス成分が固定化された炭化有機質汚染物から分離される。
 廃プラは、例えば数気圧下、250~500℃の加熱時間で熱分解することが知られており、食品に関連した有機質汚染物は、例えば数気圧下、500℃近辺で炭化することが知られており、500℃近辺の加熱時間にして適宜加熱時間を維持することで、廃プラをガス化し、有機質汚染物を炭化して固定化することができ、リアクター内を2層化して、廃プラガス成分と有機質炭化物とに分離することができる。
 本実施例では、0.105~0.55MPa×300~500℃が採用される。好ましくは、0.105MPa×350~450℃が採用される。
 生成された廃プラガス成分は、リアクター9Aの上部から、そして有機質炭化物は、リアクター9Aの下部から取り出され得る。
 リアクター9Aは、破砕汚れ廃プラを、廃プラガス成分を形成する温度以上で、破砕汚れ廃プラに付着する有機質汚染物を炭化するに十分な温度で加熱処理して、有機質汚染物を有機質炭化物に固定し、廃プラガス成分と有機質炭化物とに分離する廃プラガス成分分離手段として形成される。
 リアクター9Aでは、例えば0.105MPa×350~450℃で処理される。
 リアクター9Aの機能については、図9の説明で述べたので、これ以上繰り返さない。
 図11は、リアクターに投入される廃プラの状態を示す写真である。
 廃プラは、絞り体状の固体状で取得され、押し出し機8Aによって、写真に示される破砕された廃プラ絞り体状の廃プラがリアクター9Aに送り出され、投入される。
 図12は、取得された有機物炭化物の状態を示す図である。
 図12に示されるように、有機物炭化物が固形体状で取得される。取得された有機物炭化物の95%以上が炭素であった。
 廃プラガス成分は、熱交換器を内部に備えたガス冷却器10Aに導出され、冷却され、油化成分となる。
 クリーン化された油化成分は、廃プラが食品関連容器あるいは包装に用いられた廃プラであって、水分が混在し、有機質物で汚染された汚れ廃プラから生成されたもので、当該廃プラから水分が除去され、加熱処理で生成された汚れ有機質の炭化物が除去された油化成分である。
 油化成分は、オイル移送ポンプNo.1によって精油貯槽14Aに導出され、精油貯槽14Aに貯蔵される。
 精油貯槽14Aに貯蔵された生成油は、その一部が精油貯槽14Aから引き抜かれてローリー車15Aによって石油元売業者へと搬送される。
 図13は、分析結果を示すデータ図である。
 廃プラの種類PE、PP、PS及びこれらの混合物PE.PP.PSから取得された油化成分(熱分解油のこと)についての分析結果を示すデータが得られた。
 精油貯槽14Aに貯蔵された生成油は、他の一部が精油貯槽14Aから引き抜かれて発電機16Aに送られて発電に供され、発電電力は送電システムに送電される。
 リアクター9Aから取り出された有機質の炭化物は、有機質炭化物回収手段としての有機質炭化物回収装置17Aに導出され、回収有機質炭化物の固化手段としての有機質炭化物ペレット化装置18Aでペレット化され、有機質炭化物ペレットとなり、乾燥されて燃料として使用される。
 ペレット形成に際しては、ペレット全体が有機質炭化物で形成されてもよいし、ペレットの主要構成として有機質炭化物が用いられ、一部に可燃性物質あるいは不燃性物質が用いられて混合されてもよい。形成されたペレットは、燃料として用いられてもよいし、家庭菜園における肥料としてあるいはその他の用途に用いられる。
 有機質炭化物ペレットは、廃プラが、食品関連容器あるいは包装に用いられた廃プラであって、主としてポリプロピレン、ポリエチレン及びポリスチレンのいずれかからになり、水分が混合され、有機質物で汚染された汚れ廃プラから生成されたものであって、水分が除去され、加熱処理で油化成分が除去された汚れ有機質の炭化物からなる。
 以上のように、本実施例によれば、食品関連容器あるいは包装に用いられた廃プラであって、水分が混在し、有機質物で汚染された汚れ廃プラを処理してクリーンな油化成分を回収する汚れ廃プラ処理システムが構成される。
廃プラが、主としてポリプロピレン、ポリエチレン及びポリスチレンのいずれかからになり、水分が混在し、有機質物で汚染された汚れ廃プラを処理してクリーンな油化成分を回収する。
 汚れ廃プラ処理システムは、
 水分が混在し、有機質物で汚染された汚れ廃プラが集合された汚れ廃プラを供給すること、
 供給された汚れ廃プラを固液分離処理して固体状汚れ廃プラを回収すること、
 回収された固体状汚れ廃プラを破砕して、破砕汚れ廃プラを形成すること、
 形成された破砕汚れ廃プラを、廃プラガス成分を形成する温度以上で、破砕汚れ廃プラに付着する有機質汚染物を炭化するに十分な温度で加熱処理して、有機質汚染物を有機質炭化物に固定し、廃プラガス成分と有機質炭化物とに分離すること、
 分離された廃プラガス成分を冷却して油化成分を形成すること、
 油化成分を貯油すること、
 貯油された油化成分を回収することの構成を有する。
 また、本実施例によれば、汚れ廃プラ処理システム及び方法は、汚れ廃プラからの資源物質回収システム及び方法として把握することが可能である。
 この場合、食品関連容器あるいは包装に用いられた廃プラであって、水分が混在し、有機質物で汚染された汚れ廃プラを処理してクリーンな油化成分と固形化された有機質炭化物を資源として生成する汚れ廃プラからの資源物質生成システムが構成され、汚れ廃プラからの資源物質生成システムは、
 水分が混在し、有機質物で汚染された汚れ廃プラが集合された汚れ廃プラを供給すること、
 供給された汚れ廃プラを固液分離処理して固体状汚れ廃プラを回収すること、
 回収された固体状汚れ廃プラを破砕して、破砕汚れ廃プラを形成するおこと、
 形成された破砕汚れ廃プラを、廃プラガス成分を形成する温度以上で、破砕汚れ廃プラに付着する有機汚染物を炭化するに十分な温度で加熱処理して、有機質汚染物を有機質炭化物に固定し、廃プラガス成分と有機質炭化物とに分離すること、
 分離された廃プラガス成分を冷却して、クリーンな油化成分を生成すること、
 分離された有機質炭化物を固化して、固形有機質炭化物を生成することになる構成を有する。
 廃プラ圧搾機2Aで取り出された高濃縮液は、高濃縮廃液希釈槽19Aに導出される。高濃縮廃液希釈槽19Aに給水がなされ、高濃縮液は希釈され、希釈水とされる。
 希釈水は、原水移送ポンプNo.1 20によって加圧浮上装置22Aに送られる。希釈水には、加圧浮上装置22Aへの導入直前に凝縮剤タンク21Aから凝縮剤が添加される。
 凝縮剤によって凝縮され、加圧浮上装置22Aの上部に浮上した浮上物であるスラッジは排出され、処理水は、一次処理水移送ポンプ23Aによって調整槽(膜気式)24Aに送られ、pHなどが調整され、原水移送ポンプNo.2 25Aによって浄水装置26Aに導出され、浄水される。
 浄水された水は、一般河川に放流される。
 図14及び15は、資源物質回収システム(あるいは汚れ廃プラスチック処理システム)100に付随して設けられる資源物質回収情報取得装置を示す図である。
 図14は、汚れ廃プラスチック処理システム100Aに資源物質回収情報取得装置が付随して設けられた状態を示す図である。
 図14において、汚れ廃プラスチック処理システム100Aで発生したデータを取得、監視するパソコン(PC)31Aが設けられる。パソコン(PC)31Aにデータの提供するために、計測器1(32A)、計測器2(33A)、計測器3(34A)及び定量供給コンベヤー7Aに備えられた汚れ廃プラ重量計測器39Aが設けられる。
 精油貯槽14Aの出口側配管35Aに分岐配管36Aが設けられ、分岐配管36Aは、分岐管37A及び分岐管38Aとなる。出口側配管35Aの分岐点の下流側に計測器1(32A)が設置され、分岐管37Aに計測器2(33A)が設置され、計測器3(34A)が設置される。
 分岐管38Aに冷気製造装置42Aが、そして分岐管37Aに燃焼器41Aが設けられる。
計測器1(32A)を分岐配管36Aの分岐後の位置に設ける場合には、計測器2(33A)、計測器3(34A)を設けなくてもよい。
計測器1(32A)、計測器2(33A)、計測器3(34A)及び汚れ廃プラ重量計測器39Aからの計測データがパソコン(PC)31Aに送信される。パソコン(PC)31Aには、投入された汚れ汚れ廃プラ重量計測器7Aから廃プラ重量データが送信され、データベース204Aに汚れ廃プラ重量情報として格納される。
 図15は、資源物質回収情報取得装置の構成を示す図である。
 資源物質回収情報取得装置200Aは、汚れ廃プラからの資源物質回収システム100Aに付随して設けられる。
 資源物質回収情報取得装置200Aは、パソコン(PC)31Aの内部に構成され、外部の計測器1(32A)、計測器2(33A)、計測器3(34A)及び定量供給コンベヤー7に備えられた汚れ廃プラ重量計測器に通信手段207Aで接続され、内部に入力手段201A,演算処理手段202A、出力手段203A、データベース204A及び画面205AAを持つ画面表示手段205Aを備えて、連結回路206Aで各連結することで構成される。
データベース204Aに、
・油量と廃プラ量との関係データが予め計測された実測値に基づいて記録される。
入力手段201Aに、
・油化成分の生成量
・油化成分の内部の消費量
・定量供給毎に計測された汚れ廃プラ重量データ
が入力される。
演算処理手段202Aで、
・資源油量データ
・汚れ廃プラに関しての処理廃プラ重量データ
・容器包装リサイクルデータ
が演算処理されて取得される。
 資源物質回収システム100Aによって、当該汚れ廃プラに対する水分除去処理及び加熱処理で生成された汚れ有機質の炭化物を除去して油化成分を取得したときに、当該油化成分の生成油量データから当該資源物質回収システムで消費された油化成分の消費油量データを差し引いた資源として活用可能な油化成分の資源油量データを取得する。
 データベース204Aに記録された、油量(重量)と廃プラの量(重量)と汚れ廃プラの量(重量)の関係を参照し、取得した資源油量データから処理された汚れ廃プラ及び廃プラに関しての処理廃プラ量データを取得する。
 汚れ廃プラに関しての処理される廃プラ量データが参照されて、プラ業者、本件の場合、食品関連業者に求められる廃プラの量(重量)に基づく容器包装リサイクルデータが演算処理され、取得される。業者は、法律上の要求である容器包装リサイクル量に関するデータを取得し、法律上の要求に対応することができ、またCOの排出を削減し、CO排出削減権を取得することができる。
 出力手段からは、演算処理手段で取得された各データが画面表示手段205Aの画面205Aあるいは外部に出力される。
 本発明によれば、有機質汚染物を炭化して有機質炭化物として固定化することのできる加熱処理が採用可能であり、廃プラガス成分と有機質炭化物とに分離することができる。
 これによれば、水分が混在し、有機物で汚染された水分を包含する汚れ廃プラスチックについて、廃プラスチックの場合と同等に処理することができ、処理した生成物を資源として活用することのできる手段、方法を提供することができる。
 100:食品残渣資源化装置、100A:汚れ廃プラスチック処理システム、200:価値情報の取得方法、300:廃棄物取扱食品残渣資源化方法、1:食品残渣供給コンベヤー、2:有機物圧縮分別機、3:モノーポンプ、4:廃プラ排出コンベヤー、5:汚泥供給コンベヤー、6:汚泥移送コンベヤー、7:細長円筒の内部に撹拌機が設けられ、外面にロードセル(ロードセル重量計)を備えた粒体混合物形成装置、8:撹拌機を設けた加水分解装置、9:プラオイルタンク、10:スチームボイラー、11:加水分解物移送コンベヤー、12:乾燥ドライヤー、13:集塵サイクロン、14:排気ブロアー、15:乾燥物移送コンベヤー、16:乾燥物貯留槽、17:ロードセルを備えた乾燥物定量供給コンベヤー、18:ペレット生成器(ペレタイザー)、19:ペレット移送コンベヤー、20:フレコン充填機、21:ロードセル重量計、22:リフト。

Claims (13)

  1.  収集された廃棄物取扱食品残渣を処理し、資源化する廃棄物取扱食品残渣資源化装置において、
     廃棄物取扱食品残渣を供給する廃棄物取扱食品残渣供給手段、
     汚泥を脱水処理した脱水汚泥を供給する脱水汚泥供給手段、
     第一の撹拌手段を内部に設けた筒状体を備え、当該筒状体内で、廃棄物取扱食品残渣と脱水汚泥を撹拌混合して、混合体を形成しながら、前記廃棄物取扱食品残渣及び脱水汚泥を粒体化して、粒体状脱水汚泥中に粒体状化した廃棄物取扱食品残渣が分散した粒体状混合体を形成する粒体状混合体形成手段、
     第二の撹拌手段を内部に設けた反応器を備え、当該反応器に前記粒体状混合体及びスチームを導入して、撹拌混合し、前記粒体状混合体中に分散した廃棄物取扱食品残渣を低分子材に加水分解し、粒体状脱水汚泥中に加水分解した廃棄物取扱食品残渣が分散した資源化原料を形成する資源化原料形成手段、
     資源化原料から固体状の資源化体を形成する資源化体形成手段、
     を有して形成された収集された廃棄物取扱食品残渣を処理し、資源化する廃棄物取扱食品残渣資源化装置。
  2.  請求項1に記載された収集された廃棄物取扱食品残渣を処理し、資源化する廃棄物取扱食品残渣資源化装置において、
     前記脱水汚泥供給手段が、脱水汚泥として、食品関連汚泥を供給し、
     前記資源化原料形成手段が、廃棄物取扱食品残渣及び食品関連汚泥から形成されて、飼料あるいは燃料に適した粒体状混合体のペレット化原料を形成すること
     を特徴とする収集された廃棄物取扱食品残渣を処理し、資源化する廃棄物取扱食品残渣資源化装置。
  3.  請求項1に記載された収集された廃棄物取扱食品残渣を処理し、資源化する廃棄物取扱食品残渣資源化装置において、
     前記脱水汚泥供給手段が、脱水汚泥として、下水活性汚泥を供給し、
     前記資源化原料形成手段が、廃棄物取扱食品残渣及び下水活性汚泥から形成されて、肥料に適した粒体状混合体のペレット化原料を形成すること
     を特徴とする収集された食品残渣を処理し、資源化する廃棄物取扱食品残渣資源化装置。
  4.  収集された廃棄物取扱食品残渣が処理され、資源化される廃棄物取扱食品残渣資源化方法において、
     顧客から返品され、消費期限が切れた、あるいは賞味期限が切れて廃棄物として取り扱われる大量の廃棄物取扱食品残渣が供給される廃棄物取扱食品残渣供給ステップ、
     食品関連汚泥が脱水処理された脱水汚泥が供給される脱水汚泥供給ステップ、
     第一の撹拌手段が内部に設けられた筒状体が用いられて、当該筒状体内で、廃棄物取扱食品残渣と脱水汚泥が撹拌混合されて、前記廃棄物取扱食品残渣及び脱水汚泥から粒体状混合体が形成され、粒体状脱水汚泥中に粒体状化した廃棄物取扱食品残渣が分散した粒体状の混合体が形成される粒体状混合体形成ステップ、
     第二の撹拌手段が内部に設けられた反応器が備えられ、当該反応器に前記粒体状の混合体及びスチームが導入されて、撹拌混合され、粒体状混合体の廃棄物取扱食品残渣が低分子材に加水分解され、粒体状の脱水汚泥中に加水分解した廃棄物取扱食品残渣が分散した粒体状混合体のペレット化原料が形成される資源化原料形成ステップ、
     ペレット化原料から固体状のペレットが形成される資源化体形成ステップ、
     を有して形成された、収集された廃棄物取扱食品残渣が処理される資源化する廃棄物取扱食品残渣資源化方法。
  5.  収集された廃棄物取扱食品残渣が処理され、資源化される廃棄物取扱食品残渣資源化方法において、
     酒造、醸造、又は飲料品製造の過程で発生した絞り粕残渣である大量の廃棄物取扱食品残渣が供給される廃棄物取扱食品残渣供給ステップ、
     食品関連汚泥が脱水処理された脱水汚泥が供給される脱水汚泥供給ステップ、
     第一の撹拌手段が内部に設けられた筒状体が用いられて、当該筒状体内で、廃棄物取扱食品残渣と脱水汚泥が撹拌混合されて、前記廃棄物取扱食品残渣及び脱水汚泥から粒体状混合体が形成化され、粒体状脱水汚泥中に粒体状化した廃棄物取扱食品残渣が分散した粒体状混合体が形成される粒体状混合体形成ステップ、
     第二の撹拌手段が内部に設けられた反応器が備えられ、当該反応器に前記粒体状の混合体及びスチームが導入されて、撹拌混合され、前記粒体状混合体の廃棄物取扱食品残渣が低分子材に加水分解され、粒体状の脱水汚泥中に加水分解した廃棄物取扱食品残渣が分散した粒体状混合体のペレット化原料が形成される資源化原料形成ステップ、
     ペレット化原料から固体状のペレットが形成される資源化体形成ステップ、
     を有して形成された、収集された廃棄物取扱食品残渣が処理される資源化する廃棄物取扱食品残渣資源化方法。
  6.  収集された廃棄物取扱食品残渣及び収集された脱水汚泥処理され、資源化される廃棄物取扱食品残渣資源化方法において、
     廃棄物取扱食品残渣及び脱水汚泥が処理対象の廃棄物として収集されるステップ、
     収集された廃棄物を汚れ廃プラスチック、廃棄物取扱食品残渣及び脱水汚泥に大きく分別される廃棄物分別ステップ、
     収集された廃棄物から汚れ廃プラスチックが分別されて、廃棄物取扱食品残渣及び脱水汚泥が取得される廃棄物取扱食品残渣及び脱水汚泥取得ステップ、
     取得された廃棄物取扱食品残渣及び脱水汚泥が廃棄物取扱食品残渣及び脱水汚泥のそれぞれに個別の処理対象物として選り分けられる処理対象物選り分けステップ、
     第一の撹拌手段が内部に設けられた筒状体が用いられて、当該筒状体内で、選り分けられた廃棄物取扱食品残渣と脱水汚泥が撹拌混合されて、前記廃棄物取扱食品残渣及び脱水汚泥から粒体状混合体が形成され、粒体状脱水汚泥中に粒状化した廃棄物取扱食品残渣が分散した粒体状混合体が形成される粒体状混合体形成ステップ、
     第二の撹拌手段が内部に設けられた反応器が備えられ、当該反応器に前記粒体状の混合体及びスチームが導入されて、撹拌混合され、前記粒体状混合体の粒体状の廃棄物取扱食品残渣が低分子材に加水分解され、粒体状の脱水汚泥中に加水分解した廃棄物取扱食品残渣が分散した粒体状混合体になるペレット化原料が形成される資源化原料形成ステップ、
     ペレット化原料から固体状のペレットが形成される資源化体形成ステップ、
     を有して形成された、収集された廃棄物取扱食品残渣が処理されて、資源化される廃棄物取扱食品残渣資源化方法。
  7.  廃棄物取扱食品残渣及び脱水汚泥を拡散混合して形成された粒体状混合体であって、脱水汚泥中に粒体状した加水分解に供給される廃棄物取扱食品残渣加水分解原料。
  8.  食品関連容器あるいは包装に用いられた廃プラであって、水分が混在し、有機質物で汚染された汚れ廃プラを処理してクリーンな油化成分を回収する汚れ廃プラ処理システムにおいて、
     食品関連容器あるいは包装に用いられ、缶、瓶、金属などの異物が分別された後に集合された、水分が混在し、食品関連事業者排出残渣の有機質物で汚染された汚れ廃プラを供給する汚れ廃プラ供給手段、
     供給汚染された汚れ廃プラを圧搾し、汚れ廃プラから高濃度廃液を分離して、固液分離処理し、異物が分別され、固液分離された汚れ廃プラからペレット状の汚れ廃プラを形成するペレット状固体状汚れ廃プラ形成手段、
    形成されたペレット状の固体状汚れ廃プラを破砕して、破砕汚れ廃プラを形成する破砕汚れ廃プラ形成手段、
     形成された破砕汚れ廃プラを、廃プラガス成分を形成する温度以上で、破砕汚れ廃プラに付着する有機質汚染物を炭化するに十分な温度で加熱処理して、有機質汚染物を有機質炭化物に固定し、廃プラガス成分と有機質炭化物とに分離する廃プラガス成分分離手段、
     分離された廃プラガス成分を冷却して油化成分を形成する油化成分形成手段、
     油化成分を貯油する貯油手段、
     貯油された油化成分を回収する油化成分回収手段、
     分離された有機質炭化物を固化して、固化有機質炭化物を生成する固化有機質炭化物生成手段、
     を有して構成される汚れ廃プラ処理システム。
  9.  食品関連容器あるいは包装に用いられた廃プラであって、水分が混在し、有機質物で汚染された汚れ廃プラを処理してクリーンな油化成分を回収する汚れ廃プラ処理方法において、
     食品関連容器あるいは包装に用いられ、缶、瓶、金属などの異物が分別された後に集合された、水分が混在し、食品関連事業者排出残渣の有機質物で汚染された汚れ廃プラを供給する汚れ廃プラ供給ステップ、
     供給汚染された汚れ廃プラが圧搾され、汚れ廃プラから高濃度廃液が分離されて、固液分離処理され、異物が分別され、固液分離された汚れ廃プラからペレット状の汚れ廃プラが形成される固体状汚れ廃プラ形成ステップ、
     形成されたペレット状の固体状汚れ廃プラが破砕されて、破砕汚れ廃プラが形成される破砕汚れ廃プラ形成ステップ、
     形成された破砕汚れ廃プラが、廃プラガス成分を形成する温度以上で、破砕汚れ廃プラに付着する有機汚染物が炭化するに十分な温度で加熱処理されて、有機質汚染物が有機質炭化物に固定され、廃プラガス成分と有機質炭化物とが形成、分離される廃プラガス成分分離ステップ、
     分離された廃プラガス成分が冷却されて油化成分が形成される油化成分形成ステップ、
     油化成分が貯油される貯油ステップ、
     貯油された油化成分が回収される油化成分回収ステップ、
     分離された有機質炭化物が固化されて、固化有機質炭化物が生成される固化有機質炭化物生成ステップ、
     を有して構成される汚れ廃プラ処理方法。
  10.  食品関連容器あるいは包装に用いられた廃プラであって、水分が混在し、有機質物で汚染された汚れ廃プラを処理してクリーンな油化成分と固形化された有機質炭化物を資源として生成する汚れ廃プラからの資源物質生成システムにおいて、
     食品関連容器あるいは包装に用いられ、缶、瓶、金属などの異物が分別された後に集合された、水分が混在し、食品関連事業者排出残渣の有機質物で汚染された汚れ廃プラを供給する汚れ廃プラ供給手段、
    供給汚染された汚れ廃プラを圧搾し、汚れ廃プラから高濃度廃液を分離して、固液分離処理し、異物が分別され、固液分離された汚れ廃プラからペレット状の汚れ廃プラを形成するペレット状の固体状汚れ廃プラ形成手段、
     形成されたペレット状の固体状汚れ廃プラを破砕して、破砕汚れ廃プラを形成する破砕汚れ廃プラ形成手段、
    分離された高濃度廃液を浄化する浄化手段、
     形成された破砕汚れ廃プラを、廃プラガス成分を形成する温度以上で、破砕汚れ廃プラに付着する有機汚染物を炭化するに十分な温度で加熱処理して、有機質汚染物を有機質炭化物に固定し、廃プラガス成分と有機質炭化物とに分離する成分別分離手段、
     分離された廃プラガス成分を冷却して、クリーンな油化成分を生成するクリーン油化成分生成手段、
     分離された有機質炭化物をペレット状に固化して、ペレット有機質炭化物を生成するペレット有機質炭化物生成手段、
     を有して構成されることを特徴とする汚れ廃プラからの資源物質回収システム。
  11.  食品関連容器あるいは包装に用いられた廃プラであって、水分が混在し、有機質物で汚染された汚れ廃プラを処理してクリーンな油化成分と固形化された有機質炭化物を資源として生成する資源物質回収方法において、
     食品関連容器あるいは包装に用いられ、缶、瓶、金属などの異物が分別された後に集合された、水分が混在し、食品関連事業者排出残渣の有機質物で汚染された汚れ廃プラを供給する汚れ廃プラ供給ステップ、
     供給汚染された汚れ廃プラが圧搾され、汚れ廃プラから高濃度廃液が分離されて、固液分離処理され、異物が分別され、固液分離された汚れ廃プラからペレット状の汚れ廃プラが形成されるペレット状の固体状汚れ廃プラ形成ステップ、
     形成されたペレット状の固体状汚れ廃プラが破砕されて、破砕汚れ廃プラが形成される破砕汚れ廃プラ形成ステップ、
     分離された高濃度廃液が浄化される浄化ステップ、
     形成された破砕汚れ廃プラが、廃プラガス成分を形成する温度以上で、破砕汚れ廃プラに付着する有機汚染物が炭化するに十分な温度で加熱処理されて、有機質汚染物が有機質炭化物に固定され、廃プラガス成分と有機質炭化物とに分離される成分別分離ステップ、
     分離された廃プラガス成分が冷却されて、クリーンな油化成分として生成されるクリーン油化成分生成ステップ、
     分離された有機質炭化物がペレット状に固化されて、ペレット有機質炭化物が生成されるペレット有機質炭化物生成ステップ、
     を有して構成されることを特徴とする汚れ廃プラからの資源物質回収方法。
  12.  請求項10に記載された資源物質回収システムにおいて、
     汚れ廃プラの重量を測定する汚れ廃プラ重量測定手段、
     形成された油化成分で、資源として活用可能な油化成分の資源油量データを取得する資源油量データ取得手段、
     汚れ廃プラ重量測定手段で取得された汚れ廃プラ重量データ及び資源油量データ取得手段で取得された資源油量データから処理廃プラ量データを取得する処理廃プラ量データ取得手段、
     を有して構成されることを特徴とする資源物質回収システム。
  13.  請求項11に記載された資源物質回収方法において、
     汚れ廃プラの重量が測定される汚れ廃プラ重量測定ステップ、
     形成された油化成分で、資源として活用可能な油化成分の資源油量データを取得する資源油量データ取得ステップ、
     汚れ廃プラ重量測定ステップで取得された汚れ廃プラ重量データ及び資源油量データ取得ステップで取得された資源油量データから処理廃プラ量データが取得される処理廃プラ量データ取得ステップ、
     を有して構成されることを特徴とする資源物質回収方法。
PCT/JP2022/038970 2022-07-20 2022-10-19 廃棄物取扱食品残渣資源化装置、廃棄物取扱食品残渣資源化方法、廃棄物取扱食品残渣加水分解原料、及びペレットの製造又はペレットの製造による価値情報の取得方法、汚れ廃プラ処理システムおよび方法、資源回収システム及び方法 WO2024018648A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-115184 2022-07-20
JP2022115184A JP7158794B1 (ja) 2022-07-20 2022-07-20 ハンドスキャナ汚れ廃プラ処理システム、汚れ廃プラ処理方法、資源物質回収システム及び資源物質回収方法
JP2022-117671 2022-07-25
JP2022117671A JP7182823B1 (ja) 2022-07-25 2022-07-25 廃棄物取扱食品残渣資源化装置、廃棄物取扱食品残渣資源化方法、廃棄物取扱食品残渣加水分解原料、及びペレットの製造又はペレットの製造による価値情報の取得方法

Publications (1)

Publication Number Publication Date
WO2024018648A1 true WO2024018648A1 (ja) 2024-01-25

Family

ID=89617520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038970 WO2024018648A1 (ja) 2022-07-20 2022-10-19 廃棄物取扱食品残渣資源化装置、廃棄物取扱食品残渣資源化方法、廃棄物取扱食品残渣加水分解原料、及びペレットの製造又はペレットの製造による価値情報の取得方法、汚れ廃プラ処理システムおよび方法、資源回収システム及び方法

Country Status (1)

Country Link
WO (1) WO2024018648A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474600A (ja) * 1990-07-13 1992-03-09 Kamigaki Tekkosho:Kk 脱水汚泥と野菜残渣物及び食品残渣物の処理方法
JPH11221541A (ja) * 1998-02-10 1999-08-17 Kubota Corp 有機性廃棄物の再資源化方法
JP2005247665A (ja) * 2004-03-08 2005-09-15 Kurita Water Ind Ltd 熟成コンポスト様物の製造方法及び有機肥料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474600A (ja) * 1990-07-13 1992-03-09 Kamigaki Tekkosho:Kk 脱水汚泥と野菜残渣物及び食品残渣物の処理方法
JPH11221541A (ja) * 1998-02-10 1999-08-17 Kubota Corp 有機性廃棄物の再資源化方法
JP2005247665A (ja) * 2004-03-08 2005-09-15 Kurita Water Ind Ltd 熟成コンポスト様物の製造方法及び有機肥料

Similar Documents

Publication Publication Date Title
US5100066A (en) Method for processing domestic, industrial and other similar waste with the production of a cellulose material
KR101315807B1 (ko) 미생물제재를 이용한 무방류시스템에 의한 유기성폐기물 처리방법 및 고형연료(퇴비)생산방법과 그 장치
US6774271B2 (en) Method and system of converting waste plastics into hydrocarbon oil
US8877992B2 (en) Methods and apparatus for converting waste materials into fuels and other useful products
JPH09507386A (ja) 工業用エタノールの製造方法
EP2679659B1 (en) Method and plant for production of a fuel gas from waste
JP2012082434A (ja) 有機材料、廃棄物材料または低価値材料を有用な生成物へと転換するための方法および装置
HU204553B (en) Process and apparatus for producing utilizable gas from waste materials
CN102665921A (zh) 加工材料的方法和设备
CN106635115B (zh) 利用混合废塑料垃圾高效清洁制油的方法及水热反应系统
JP2011011129A (ja) 加水分解処理装置
WO2024018648A1 (ja) 廃棄物取扱食品残渣資源化装置、廃棄物取扱食品残渣資源化方法、廃棄物取扱食品残渣加水分解原料、及びペレットの製造又はペレットの製造による価値情報の取得方法、汚れ廃プラ処理システムおよび方法、資源回収システム及び方法
KR102295902B1 (ko) 아임계 포화증기처리를 통한 혼합 폐플라스틱의 자원화 방법 및 장치
JP2008095024A (ja) 廃プラスチックリサイクルシステム
JP7182823B1 (ja) 廃棄物取扱食品残渣資源化装置、廃棄物取扱食品残渣資源化方法、廃棄物取扱食品残渣加水分解原料、及びペレットの製造又はペレットの製造による価値情報の取得方法
JP2002060757A (ja) 廃プラスチックの再生システム
JP3532572B2 (ja) 都市固形廃棄物処理設備及び乳酸製造方法
JP2017144415A (ja) 廃棄物処理システム及び固形燃料の製造方法
Triyono et al. Experimental study on utilization of indonesian non-recycled organic waste as renewable solid fuel using wet torrefaction process
US20170297067A1 (en) Waste Stream Recovery Conversion Technologies
CN212703648U (zh) 一种城市生活垃圾湿式工艺处理系统
JP7158794B1 (ja) ハンドスキャナ汚れ廃プラ処理システム、汚れ廃プラ処理方法、資源物質回収システム及び資源物質回収方法
KR102071286B1 (ko) 아임계 포화증기처리를 통한 혼합 폐플라스틱의 자원화 방법 및 장치
JPH07284749A (ja) 一般廃棄物処理システム
KR20020072889A (ko) 폐합성수지의 유화방법 및 유화 설비 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952031

Country of ref document: EP

Kind code of ref document: A1