WO2024018566A1 - Laser oscillator, failure sensing method, and optical fiber inspection method - Google Patents

Laser oscillator, failure sensing method, and optical fiber inspection method Download PDF

Info

Publication number
WO2024018566A1
WO2024018566A1 PCT/JP2022/028244 JP2022028244W WO2024018566A1 WO 2024018566 A1 WO2024018566 A1 WO 2024018566A1 JP 2022028244 W JP2022028244 W JP 2022028244W WO 2024018566 A1 WO2024018566 A1 WO 2024018566A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
laser
laser oscillator
photodetector
visible light
Prior art date
Application number
PCT/JP2022/028244
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 千葉
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/028244 priority Critical patent/WO2024018566A1/en
Publication of WO2024018566A1 publication Critical patent/WO2024018566A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range

Definitions

  • the present invention relates to a technique for transmitting a laser beam through an optical fiber, and particularly relates to a laser oscillator that transmits a laser beam through an optical fiber, a failure detection method thereof, and an optical fiber inspection method.
  • a typical optical fiber has a structure with a cladding layer around the outer periphery of a core layer, and uses the difference in refractive index at the interface between the core layer and cladding layer to transmit light incident on the core layer. do.
  • Patent Document 1 describes the need to reliably detect when a fiber fuse occurs in an optical fiber, and the visible light from the fiber fuse has been developed to be monitored at a monitoring position.
  • a technique has been disclosed for stopping the oscillation of a laser beam when the oscillation of the laser beam is detected.
  • One aspect of conventional technology for detecting the fiber fuse phenomenon that occurs in optical fibers is that the occurrence of the fiber fuse itself cannot be detected until the fiber fuse has progressed from the origin to the position of the photodetector. For this reason, there is a time lag between when a fiber fuse occurs in the optical fiber and laser beam transmission is no longer possible, and when a defect in the optical fiber is detected and the oscillation source stops operating. There was a problem that efficiency and communication efficiency decreased.
  • a laser oscillator including a laser oscillation source, a drive power source, an oscillation control device, and an optical fiber that transmits a laser beam emitted from the laser oscillation source
  • the optical fiber further includes a photodetector that detects light, and is configured to have a coating layer that reflects at least a portion of visible light on the outside of the cladding layer of the optical fiber.
  • an oscillation control device for a laser oscillator that includes a laser oscillation source, a drive power source, an oscillation control device, and an optical fiber that transmits a laser beam oscillated from the laser oscillation source.
  • the laser oscillator further includes a photodetector that detects light from the outer peripheral surface of the optical fiber, and the optical fiber has a coating layer that reflects at least a part of visible light on the outside of the cladding layer. Based on the detected value of visible light by the photodetector, it is determined that there is a failure in the optical fiber.
  • an optical fiber inspection method for determining defects in an optical fiber by making a laser beam enter the inside of the optical fiber.
  • a device that forms a reflective coating layer introduces a laser beam emitted from a laser oscillator into one end of the optical fiber, and determines whether the optical fiber is defective based on the detected value of light detected from the outer peripheral surface of the optical fiber. It is.
  • FIG. 1 is a schematic diagram showing the configuration of a laser oscillator according to a first embodiment, which is a typical example of the present invention.
  • 2 is a partial cross-sectional view showing the internal structure of the optical fiber shown in FIG. 1.
  • FIG. 3 is a partial cross-sectional view showing behavior when a fiber fuse occurs in the optical fiber shown in FIG. 2.
  • FIG. 3 is a flowchart illustrating an example of the operation of the failure detection method according to the first embodiment.
  • FIG. 2 is a block diagram showing a state in which a laser beam is normally transmitted in the laser oscillator according to the first embodiment.
  • FIG. 2 is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the first embodiment.
  • FIG. 7 is a block diagram showing an outline of a photodetector applied to a laser oscillator according to a modification of the second embodiment.
  • FIG. 7 is a block diagram showing a state in which a fiber fuse is generated during laser beam transmission in a laser oscillator according to a third embodiment.
  • FIG. 7 is a block diagram showing a state in which a laser beam is transmitted to an optical fiber in a laser oscillator according to a modification of the third embodiment.
  • FIG. 7 is a schematic diagram showing the configuration of a laser oscillator according to a fourth embodiment.
  • FIG. 12 is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the fifth embodiment.
  • FIG. 12 is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in a laser oscillator according to a first modification of the fifth embodiment.
  • FIG. 12 is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in a laser oscillator according to a second modification of the fifth embodiment.
  • FIG. 12C is a partial cross-sectional view schematically showing the vicinity of the stopper member shown in FIG. 12C.
  • FIG. 12 is a block diagram showing an overview of a preparatory operation of an optical fiber inspection method according to a sixth embodiment.
  • FIG. 12 is a block diagram showing an overview of the operation when the optical fiber is a non-defective item in the optical fiber inspection method according to the sixth embodiment.
  • FIG. 12 is a block diagram showing an overview of the operation when the optical fiber is a defective product in the optical fiber inspection method according to the sixth embodiment.
  • FIG. 1 is a schematic diagram showing the configuration of a laser oscillator according to a first embodiment, which is a typical example of the present invention.
  • FIG. 2 is a partial cross-sectional view showing the internal structure of the optical fiber shown in FIG.
  • FIG. 3 is a partial cross-sectional view showing behavior when a fiber fuse occurs in the optical fiber shown in FIG. 2.
  • the laser oscillator 100 includes a laser oscillation source 110, a drive power source 120, an oscillation control device 130, and an optical fiber 140 that transmits the laser beam LB oscillated from the laser oscillation source 110. , and a photodetector 150 that detects light (visible light VL) from the outer peripheral surface of the optical fiber 140.
  • the oscillation control device 130 of the laser oscillator 100 is configured to turn on and off in response to an oscillation command signal OS from the main control unit 20 of the control device 10 of the object that emits the laser beam LB. has been done.
  • the laser oscillation source 110 is a laser source with a wavelength that has high absorption efficiency and can be transmitted through an optical fiber, depending on the work to be irradiated with the laser beam LB used for processing or measurement. Ru.
  • Examples of such a laser oscillation source 110 include a YAG laser, a YVO 4 laser, a fiber laser, a disk laser, and a direct diode laser.
  • the laser beam LB emitted from the laser oscillation source 110 may be either a continuous wave or a pulse wave.
  • the drive power source 120 supplies or stops driving power to the laser oscillation source 110 based on control commands (drive command signal DS and stop command signal SS) from an oscillation control device 130, which will be described later. Note that although FIG. 1 illustrates a case where the drive power source 120 is provided inside the laser oscillator 100, the drive power source 120 may be provided outside the casing that constitutes the laser oscillator 100.
  • the oscillation control device 130 outputs a drive command signal DS or a stop command signal SS to the drive power source 120 based on the oscillation command signal OS from the main control unit 20 of the control device 10. Further, in the laser oscillator 100 according to the first embodiment, the oscillation control device 130 determines that a failure (fiber fuse: FF) has occurred in the optical fiber 140 based on a detected value by the photodetector 150, which will be described later. It also has functions.
  • a failure fiber fuse: FF
  • the optical fiber 140 includes a core layer 142 that transmits the laser beam LB emitted from the laser oscillation source 110, a cladding layer 144 surrounding the outside of the core layer 142, and a cladding layer 144. a covering layer 146 covering the outer surface of the holder.
  • the laser beam LB is transmitted by being reflected at the interface IF1 between the core layer 142 and the cladding layer 144 due to the difference in refractive index between the core layer 142 and the cladding layer 144.
  • examples of materials constituting the core layer 142 and cladding layer 144 of the optical fiber 140 include glasses such as quartz glass and fluoride glass, and transparent plastics.
  • the covering layer 146 is formed of a material that reflects at least a portion of visible light VL, which will be described later.
  • An example of such a covering layer 146 is acrylic resin.
  • a part of the visible light VL transmitted through the cladding layer 144 returns to the laser oscillation source 110 side, leaks out from the opening 146a of the cladding layer 146, and reaches the light receiving section 152 of the photodetector 150.
  • the light is received by
  • the photodetector 150 receives the visible light VL, it outputs a detection signal LD corresponding to the detection level to the oscillation control device 130.
  • FIG. 1 illustrates a case where the opening 146a is formed in a part of the optical fiber 140 located near the photodetector 150, the coating layer 146 is not formed without the opening 146a.
  • the photodetector 150 may be configured to detect a portion of the visible light VL leaking from the sensor.
  • FIG. 4 is a flowchart illustrating an example of the operation of the failure detection method according to the first embodiment.
  • FIG. 5A is a block diagram showing a state in which a laser beam is normally transmitted in the laser oscillator according to the first embodiment.
  • FIG. 5B is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the first embodiment.
  • the oscillation control device 130 receives an oscillation command signal OS from the main control unit 20 of the external control device 10 (step S101).
  • the laser oscillator 100 according to the first embodiment shown in FIG. 1 is configured to continue oscillating the laser beam LB while receiving the oscillation command signal OS.
  • the oscillation control device 130 which is receiving the oscillation command signal OS, outputs the drive command signal DS to the drive power supply 120 (step S102).
  • the drive power supply 120 that has received the drive command signal DS supplies drive power to the laser oscillation source 110, and thereby, as shown in FIG. 5A, the laser beam LB is emitted from the laser oscillation source 110.
  • the oscillation control device 130 determines whether the detection signal LD of visible light VL is received from the photodetector 150 (step S103). In step S103, if it is determined that the detection signal LD from the photodetector 150 has been received, the oscillation control device 130 determines that the photodetector 150 has detected the visible light VL, that is, the optical fiber 140 has detected the visible light VL, as shown in FIG. It is determined that a malfunction (fiber fuse) has occurred in the controller 10, and a stop command signal SS to stop the operation of the laser oscillator 100 is output to notify the main control unit 20 of the control device 10 (step S104).
  • the oscillation control device 130 outputs a stop command signal SS to the drive power supply 120 to stop outputting the drive power to the laser oscillation source 110 (step 105), and ends the control operation of the laser oscillator 100.
  • the main control unit 20 that has received the stop command signal SS from the oscillation control device 130 sends a display command signal DC to the display unit 30 to indicate that a failure has occurred in the optical fiber 140. It may also be configured to output.
  • the oscillation control device 130 determines whether the oscillation command signal OS is received from the main control unit 20 (Ste S106). If it is determined in step S106 that the oscillation command signal OS is still being received, the oscillation control device 130 returns to step S102, outputs the drive command signal DS to the drive power supply 120, and executes the subsequent steps. repeat.
  • step S106 determines that the oscillation command signal OS has not been received
  • the oscillation control device 130 determines that the laser oscillation operation command from the main control unit 20 has stopped, and proceeds to step S105. Then, the oscillation control device 130 outputs a stop command signal SS to the drive power supply 120 to stop outputting the drive power to the laser oscillation source 110, and ends the control operation of the laser oscillator 100.
  • the oscillation control device 130 of the laser oscillator 100 receives the detection signal LD of visible light VL from the photodetector 150 while emitting the laser beam LB from the laser oscillation source 110, It is possible to determine and notify that a malfunction (fiber fuse) has occurred in the optical fiber 140. On the other hand, when the detection signal LD from the photodetector 150 is not received, the emission of the laser beam LB is continued until the oscillation command signal OS is no longer received.
  • FIG. 6 is a flowchart illustrating an example of the operation of the failure detection method according to the first modification of the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of the operation of the failure detection method according to the second modification of the first embodiment.
  • the oscillation control device 130 determines that the detection signal LD from the photodetector 150 has been received in step S103, Furthermore, it is determined whether the detected value of the intensity level of the visible light VL based on the detection signal LD is equal to or higher than a predetermined threshold (step S103a).
  • the predetermined threshold value serving as an index of the strength level is set, for example, to the strength level actually measured in the past when a fiber fuse occurred.
  • step S103a If it is determined in step S103a that the detected value is equal to or greater than the threshold value, the oscillation control device 130 determines that a defect (fiber fuse) has definitely occurred in the optical fiber 140, and the main control unit of the control device 10 20, a stop command signal SS to stop the operation of the laser oscillator 100 is output and notified (step S104). On the other hand, if it is determined in step S103a that the detected value is lower than the threshold value, the oscillation control device 130 returns to step S102, outputs the drive command signal DS to the drive power source 120, and repeats the subsequent steps.
  • a defect fiber fuse
  • the determination based on the detection signal LD from the photodetector 150 is made based on whether the detection signal LD is greater than or equal to a predetermined threshold. Erroneous detection due to a detection value (so-called noise) that is less than the threshold value at 150 can be avoided.
  • the oscillation control device 130 determines that the detection signal LD from the photodetector 150 has been received in step S103, It is determined that a problem (fiber fuse) has occurred in the optical fiber 140, and an emergency stop command signal ES is output to the drive power source 120 (step S103b). Then, upon receiving the emergency stop command signal ES, the drive power supply 120 immediately stops supplying drive power to the laser oscillation source 110.
  • the oscillation control device 130 outputs a stop command signal SS to notify the main control unit 20 of the control device 10 of stopping the operation of the laser oscillator 100 (step S104).
  • the oscillation control device 130 executes the same operations from step S106 as described in FIG. 4.
  • the drive power to the laser oscillation source 110 is immediately applied to the laser oscillation source 110 when the fiber fuse is detected, prior to notifying the control device 10. Since the supply is stopped, it is possible to suppress the progress of a problem in the optical fiber 140 caused by continuing to emit the laser beam LB after detecting a problem in the optical fiber 140.
  • the laser oscillator and failure detection method provide a coating layer that reflects at least a part of visible light on the outside of the cladding layer of the optical fiber, and By arranging a photodetector that detects light from the outer peripheral surface of the fiber, it becomes possible to quickly detect a malfunction caused by the fiber fuse that occurs when transmitting the laser beam.
  • the flowcharts according to the modified examples shown in FIGS. 6 and 7 may be configured to be executed in combination.
  • FIG. 8 is a graph showing an example of the characteristics of a photodetector applied to the laser oscillator and failure detection method according to the second embodiment of the present invention.
  • FIG. 9 is a block diagram showing an outline of a photodetector applied to a laser oscillator according to a modification of the second embodiment.
  • parts that can have the same or common configurations as those in the first embodiment are denoted by the same reference numerals. The explanation of the repetition of is omitted.
  • the photodetector 250 is configured to measure light in a specific range of wavelengths.
  • the photodetector 250 is configured to detect only the visible light wavelength range in order to selectively detect the visible light VL caused by the fiber fuse generated in the core layer 142 of the optical fiber 140. is configured to have a high sensitivity range of .
  • the high-sensitivity range of the sensor of the photodetector 250 is not a range where visible light has high intensity as shown in FIG. It may be set within the possible range.
  • the photodetector 250 detects only the light caused by the fiber fuse, and it is possible to suppress erroneous detection due to, for example, fluctuation of the laser beam LB.
  • the photodetector 250 further includes an optical filter 254 that covers the light-receiving surface of the light-receiving section 252.
  • the optical filter 254 has optical filtering characteristics as shown in FIG. According to such a configuration, a special optical filtering function can be provided to a generally commercially available photodetector 250 by simply providing an additional optical filter 254 that transmits only light with wavelengths in a specific range. It can be applied without any problems.
  • the laser oscillator and failure detection method according to the second embodiment have the effect described in the first embodiment, and also allows the photodetector to select only light with wavelengths in a specific range. Since the optical fiber is configured so that it can be detected visually, it is possible to improve the accuracy of detecting defects in the optical fiber caused by the fiber fuse.
  • FIG. 10A is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the third embodiment.
  • FIG. 10B is a block diagram showing a state in which a laser beam is transmitted to an optical fiber in a laser oscillator according to a modification of the third embodiment. Note that in the third embodiment as well, in the schematic diagrams shown in FIGS. 1 to 9, the same or common configurations as those in the first embodiment and the second embodiment can be adopted. A description of these repetitions will be omitted by attaching reference numerals.
  • the optical fiber 340 has a bent section BS in at least a portion thereof, as shown in FIG. 10A.
  • a bent section BS By having such a bent section BS, the reflection angle of the visible light VL generated by the fiber fuse generated at the fault occurrence position FP changes irregularly, so that the incident angle of the visible light VL guided into the core layer becomes large and easily migrates to the cladding layer side. Therefore, a large amount of the visible light VL that enters the photodetector 150 can also be made to enter from irregular angles.
  • the optical fiber 340 may include an annularly wound section as a bent section BS.
  • the direction of transmission through the optical fiber 340 can be arbitrarily selected, improving the degree of freedom in the layout of the laser oscillator 300 and peripheral devices.
  • FIG. 10B illustrates a case in which the optical fiber 340 is arranged in a ring shape with only one turn, the number of turns may be multiple times.
  • the laser oscillator and failure detection method according to the third embodiment have the advantage that, in addition to the effects described in the first embodiment, at least a part of the optical fiber is provided with a bent section. Therefore, among the visible light caused by the fiber fuse, the light that enters the core layer can be transferred to the cladding layer side, so that the amount detected by the photodetector can be increased.
  • FIG. 11 is a schematic diagram showing the configuration of a laser oscillator according to the fourth embodiment.
  • the same or common configurations can be adopted as those in the first to third embodiments. A description of these repetitions will be omitted by attaching reference numerals.
  • the optical fiber 440 can be exemplified as a fiber laser that is connected to the excitation light source 410 and forms part of the laser oscillation source.
  • the excitation light source 410 emits excitation light that is input to the fiber laser by being supplied with drive power from the drive power supply 120 that has received the drive command signal DS from the oscillation control device 130 .
  • the fiber laser constituting the optical fiber 440 has a core layer doped with a rare earth element and transmits a laser beam LB generated by excitation light from an excitation light source 410 inside an inner cladding layer formed in two layers.
  • a double-clad fiber that emits light by reflecting it and amplifying it can be used.
  • the optical fiber 440 further includes a coating layer (not shown) on the outer surface of the outer cladding layer that reflects at least a portion of visible light, and an opening 446a is formed near the photodetector 150. .
  • visible light VL caused by a fiber fuse generated in the core layer during amplification of the fiber laser is reflected between the outer cladding layer and the coating layer and transmitted within the outer cladding layer.
  • the transmitted visible light VL then leaks from the opening 446a of the coating layer and is received by the light receiving section 152 of the photodetector 150.
  • the laser oscillator and failure detection method according to the fourth embodiment allow the optical fiber to become at least a part of the laser oscillation source. Because of this configuration, the length of the optical fiber serving as the oscillation source can be increased, thereby making it possible to increase the maximum output of the laser oscillator.
  • FIG. 12A is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the fifth embodiment.
  • FIG. 12B is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the first modification of the fifth embodiment.
  • FIG. 12C is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in a laser oscillator according to a second modification of the fifth embodiment.
  • FIG. 12D is a partial sectional view schematically showing the vicinity of the stopper member shown in FIG. 12C.
  • the optical fibers 540 have a structure in which a plurality of optical fibers are continuously connected via a fusion part 560. That is, as an example, as shown in FIG. 12A, the optical fiber 140 connected to the laser oscillation source 110 and another optical fiber 540 are optically connected via the fusion part 560 at the exposed part 546a. There is. Further, like the optical fiber 140, the optical fiber 540 includes a coating layer (not shown) outside the cladding layer that reflects at least a portion of the visible light VL.
  • the fused portion 560 is a portion where two fibers are fused using the same components as the core layer or cladding layer of the optical fibers 140 and 540, and therefore transmits the transmitted laser beam LB with minimal loss. be able to. Further, an exposed portion 546a is formed at the connection portion of the fused portion 560 between the optical fibers 140 and 540, and a photodetector 150 is disposed near the exposed portion 546a. This makes it possible to efficiently detect the transmitted visible light VL using the exposed portion 546a from which the coating has been removed in order to connect the plurality of optical fibers.
  • the optical fiber 140 from which the coating layer 146 has been removed is surrounded in the area of the exposed portion 546a shown in FIG. 12A. It further includes a cylindrical protection member 570.
  • the protective member 570 is formed of a material that transmits at least the visible light VL propagating inside the optical fiber 140 while protecting the components such as the optical fiber 140 and the fused portion 560 that are exposed in the exposed portion 546a. Ru.
  • a material for such a protection member 570 a material having a higher refractive index than the cladding layer 144 of the optical fiber 140 can be exemplified.
  • An annular stopper member 580 is further provided on the outer surface of the coating layer 146 at a position on the source 110 side.
  • the stopper member 580 is made of, for example, a material having a higher refractive index than the coating layer 146 of the optical fiber 140 in which the stopper member 580 is inscribed.
  • the stopper member 580 By providing the stopper member 580 as described above, in the area where the stopper member 580 is arranged, a part of the laser beam LB emitted from the laser oscillator 500 may unintentionally fall into the core, as shown in FIG. 12D, for example.
  • the laser beam LB propagates through the coating layer 146 instead of the layer 142 or the cladding layer 144, the laser beam LB is transmitted into the stopper member 580 without being reflected at the interface IF3 between the coating layer 146 and the stopper member 580. Therefore, it is possible to suppress the interference light (noise light) caused by the unintended laser beam LB from entering the photodetector 150. Therefore, it is possible to improve the detection accuracy of the photodetector 150 and prevent false detection.
  • the laser oscillator and failure detection method according to the fifth embodiment provide the effects described in the first embodiment, as well as the exposure
  • the photodetector near the portion it becomes possible to efficiently detect visible light without providing an opening where the covering portion is removed at another location.
  • the configurations according to the first modification and the second modification of the fifth embodiment described above can also be applied in combination.
  • FIG. 13A is a block diagram showing an overview of the preparatory operation of the optical fiber inspection method according to the sixth embodiment.
  • FIG. 13B is a block diagram showing an outline of the operation when the optical fiber is a non-defective item in the optical fiber inspection method according to the sixth embodiment.
  • FIG. 13C is a block diagram showing an overview of the operation when the optical fiber is a defective product in the optical fiber inspection method according to the sixth embodiment.
  • the optical fiber inspection method detects visible light caused by the fiber fuse generated in the core layer of the optical fiber, as described in the first to fifth embodiments. It applies technology that detects fiber defects as failures. That is, a laser beam is transmitted to the optical fiber to be inspected, and it is determined whether the optical fiber is a good product or a defective product based on whether visible light is detected by a photodetector.
  • the optical fiber 640 to be inspected is provided with a coating layer (not shown) that reflects at least a portion of the visible light VL caused by the fiber fuse on the outside of the cladding layer. ) are preformed.
  • an oscillation command signal OS is sent to the oscillation control device 130, and the laser beam LB is emitted from the laser oscillation source 110 to the optical fiber 640 via the optical fiber 140 and connector 680.
  • the optical fiber 640 to be inspected is non-defective, as shown in FIG. 13B, no fiber fuse is generated and the laser beam LB continues to be transmitted as is.
  • the optical fiber 640 to be inspected is a defective product, as shown in FIG.
  • the light is propagated inside the coating layer of the optical fiber 640 and returns to the optical fiber 140, and a portion thereof is detected by the photodetector 150.
  • the oscillation control device 130 that has received the detection signal LD from the photodetector 150 outputs a failure occurrence signal FS to the external control device 10 to notify it.
  • the optical fiber inspection method includes providing in advance a coating layer that reflects at least a portion of visible light on the outside of the cladding layer of the optical fiber to be inspected.
  • a coating layer that reflects at least a portion of visible light on the outside of the cladding layer of the optical fiber to be inspected.
  • the external control device that receives the stop command signal output from the oscillation control device of the laser oscillator displays the occurrence of a failure on the display section, but the laser oscillator itself has a display section. It may be configured such that when the oscillation control device detects a malfunction in the optical fiber, the malfunction is notified on the display section of the laser oscillator.
  • the specific examples shown in the first to fifth embodiments can be applied in combination with their respective characteristics.
  • control device 20 main control section 30 display section 100 laser oscillator 110 laser oscillation source 120 drive power source 130 oscillation control device 140 optical fiber 142 core layer 144 cladding layer 146 coating layer 146a opening 150 photodetector 152 light receiving section 250 photodetector 252 Light receiving section 254 Optical filter 300 Laser oscillator 340 Optical fiber 400 Laser oscillator 410 Excitation light source 440 Optical fiber 446a Opening section 500 Laser oscillator 540 Optical fiber 546a Exposed section 560 Fusion section 570 Protective member 580 Stopper member 600 Laser Oscillator 640 Optical fiber 680 connector

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser oscillator according to the present invention comprises a laser oscillation source, a drive power supply, an oscillation control device, and an optical fiber that transmits a laser beam oscillated from the laser oscillation source. The laser oscillator further comprises a photodetector that detects light from the peripheral surface of the optical fiber. A coating layer that reflects at least some of visible light is provided on the outer side of a cladding layer of the optical fiber. Further, a method according to the present invention for sensing failure of the laser oscillator determines that an optical fiber has a failure on the basis of a visible light detection value by the photodetector.

Description

レーザ発振器、故障検知方法及び光ファイバ検査方法Laser oscillator, failure detection method and optical fiber inspection method
 本発明は、光ファイバでレーザビームを伝送する技術に関し、特に、光ファイバでレーザビームを伝送するレーザ発振器及びその故障検知方法、さらには光ファイバ検査方法に関する。 The present invention relates to a technique for transmitting a laser beam through an optical fiber, and particularly relates to a laser oscillator that transmits a laser beam through an optical fiber, a failure detection method thereof, and an optical fiber inspection method.
 レーザ加工や光通信の技術分野において、発振源から出射されたレーザビームを光ファイバで伝送する技術が知られている。一般的な光ファイバは、コア層の外周にクラッド層を備えた構造を有しており、コア層とクラッド層との界面における屈折率差を利用して、コア層に入射された光を伝送する。 In the technical fields of laser processing and optical communications, a technology is known in which a laser beam emitted from an oscillation source is transmitted through an optical fiber. A typical optical fiber has a structure with a cladding layer around the outer periphery of a core layer, and uses the difference in refractive index at the interface between the core layer and cladding layer to transmit light incident on the core layer. do.
 このような光ファイバでレーザビームを伝送する際に、例えば光ファイバの製造時にコア層に不純物が混入した場合や、あるいは複数の光ファイバを融着して結合して使用した場合、上記不純物や結合部がレーザビームを吸収して発熱してコア層の破壊を生じることがある。このとき、レーザビームが入射され続けると、コア層の破壊が発振源側に向けて連続的に進展して行く、いわゆる「ファイバヒューズ」が発生する。 When transmitting a laser beam through such an optical fiber, for example, if impurities get mixed into the core layer during the manufacturing of the optical fiber, or if multiple optical fibers are fused and connected, the above impurities and The bonding portion absorbs the laser beam and generates heat, which may cause destruction of the core layer. At this time, if the laser beam continues to be incident, a so-called "fiber fuse" occurs in which the core layer breaks down continuously toward the oscillation source.
 このような「ファイバヒューズ」が生じると、光ファイバの大部分が破壊されてしまうため、レーザビームの伝送が止まってしまうという問題があった。そこで、このような問題を解決する手法として、例えば特許文献1には、光ファイバにファイバヒューズが発生した場合、これを確実に検知する必要として、進展されてきたファイバヒューズによる可視光をモニタ位置で検出した際に、レーザビームの発振を停止する技術が開示されている。 When such a "fiber fuse" occurs, most of the optical fiber is destroyed, causing the problem that the transmission of the laser beam stops. Therefore, as a method to solve such problems, for example, Patent Document 1 describes the need to reliably detect when a fiber fuse occurs in an optical fiber, and the visible light from the fiber fuse has been developed to be monitored at a monitoring position. A technique has been disclosed for stopping the oscillation of a laser beam when the oscillation of the laser beam is detected.
特開2012-127903号公報Japanese Patent Application Publication No. 2012-127903
 従来の光ファイバに発生したファイバヒューズ現象を検知する技術は、ファイバヒューズが発生した起点から光検出器の位置にまで進展した段階でなければ、ファイバヒューズの発生自体を検知できないという一面がある。このため、光ファイバにファイバヒューズが発生してレーザビームの伝送ができなくなってから、光ファイバの不具合を検知して発振源の動作を停止するまでに時間差が生じることになり、レーザビームによる加工効率や通信効率が低下するという問題があった。 One aspect of conventional technology for detecting the fiber fuse phenomenon that occurs in optical fibers is that the occurrence of the fiber fuse itself cannot be detected until the fiber fuse has progressed from the origin to the position of the photodetector. For this reason, there is a time lag between when a fiber fuse occurs in the optical fiber and laser beam transmission is no longer possible, and when a defect in the optical fiber is detected and the oscillation source stops operating. There was a problem that efficiency and communication efficiency decreased.
 このような経緯から、レーザビームを伝送する光ファイバに対して、レーザビームを伝送する際に発生したファイバヒューズに起因する不具合を速やかに検知できる技術が求められている。 Due to these circumstances, there is a need for a technology that can quickly detect defects caused by fiber fuses that occur when transmitting laser beams in optical fibers that transmit laser beams.
 本発明の一態様による、レーザ発振源と、駆動電源と、発振制御装置と、レーザ発振源から発振されるレーザビームを伝送する光ファイバと、を含むレーザ発振器は、光ファイバの外周面からの光を検出する光検出器をさらに備え、当該光ファイバのクラッド層の外側に可視光の少なくとも一部を反射する被覆層を有するものとして構成される。 According to one aspect of the present invention, a laser oscillator including a laser oscillation source, a drive power source, an oscillation control device, and an optical fiber that transmits a laser beam emitted from the laser oscillation source includes The optical fiber further includes a photodetector that detects light, and is configured to have a coating layer that reflects at least a portion of visible light on the outside of the cladding layer of the optical fiber.
 また、本発明の他の一態様による、レーザ発振源と、駆動電源と、発振制御装置と、レーザ発振源から発振されるレーザビームを伝送する光ファイバと、を含むレーザ発振器の発振制御装置が実行する故障検知方法は、上記レーザ発振器が光ファイバの外周面からの光を検出する光検出器をさらに備え、当該光ファイバはクラッド層の外側に可視光の少なくとも一部を反射する被覆層を有し、上記光検出器での可視光の検出値に基づいて、光ファイバの故障であると判別するものである。 Further, according to another aspect of the present invention, there is provided an oscillation control device for a laser oscillator that includes a laser oscillation source, a drive power source, an oscillation control device, and an optical fiber that transmits a laser beam oscillated from the laser oscillation source. In the failure detection method to be carried out, the laser oscillator further includes a photodetector that detects light from the outer peripheral surface of the optical fiber, and the optical fiber has a coating layer that reflects at least a part of visible light on the outside of the cladding layer. Based on the detected value of visible light by the photodetector, it is determined that there is a failure in the optical fiber.
 また、本発明のさらに他の一態様による、内部にレーザビームを入射させることにより、光ファイバの不良を判別する光ファイバ検査方法は、光ファイバのクラッド層の外側に可視光の少なくとも一部を反射する被覆層を形成し、当該光ファイバの一端にレーザ発振器から出射されたレーザビームを導入し、光ファイバの外周面から検出される光の検出値に基づいて光ファイバの不良を判別するものである。 Further, according to still another aspect of the present invention, there is provided an optical fiber inspection method for determining defects in an optical fiber by making a laser beam enter the inside of the optical fiber. A device that forms a reflective coating layer, introduces a laser beam emitted from a laser oscillator into one end of the optical fiber, and determines whether the optical fiber is defective based on the detected value of light detected from the outer peripheral surface of the optical fiber. It is.
本発明の代表的な一例である第1の実施形態によるレーザ発振器の構成を示す概略図である。1 is a schematic diagram showing the configuration of a laser oscillator according to a first embodiment, which is a typical example of the present invention. 図1に示した光ファイバの内部構造を示す部分断面図である。2 is a partial cross-sectional view showing the internal structure of the optical fiber shown in FIG. 1. FIG. 図2に示した光ファイバにおいて、ファイバヒューズが発生した場合の挙動を示す部分断面図である。3 is a partial cross-sectional view showing behavior when a fiber fuse occurs in the optical fiber shown in FIG. 2. FIG. 第1の実施形態による故障検知方法の動作の一例を示すフローチャートである。3 is a flowchart illustrating an example of the operation of the failure detection method according to the first embodiment. 第1の実施形態によるレーザ発振器において、レーザビームが正常に伝送されている状態を示すブロック図である。FIG. 2 is a block diagram showing a state in which a laser beam is normally transmitted in the laser oscillator according to the first embodiment. 第1の実施形態によるレーザ発振器において、レーザビーム伝送時にファイバヒューズが発生した状態を示すブロック図である。FIG. 2 is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the first embodiment. 第1の実施形態の第1変形例による故障検知方法の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation of the failure detection method by the 1st modification of a 1st embodiment. 第1の実施形態の第2変形例による故障検知方法の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation of the failure detection method by the 2nd modification of a 1st embodiment. 第2の実施形態によるレーザ発振器及び故障検知方法に適用される光検出器の特性の一例を示すグラフである。It is a graph which shows an example of the characteristic of the photodetector applied to the laser oscillator and failure detection method by 2nd Embodiment. 第2の実施形態の変形例によるレーザ発振器に適用される光検出器の概要を示すブロック図である。FIG. 7 is a block diagram showing an outline of a photodetector applied to a laser oscillator according to a modification of the second embodiment. 第3の実施形態によるレーザ発振器において、レーザビーム伝送時にファイバヒューズが発生した状態を示すブロック図である。FIG. 7 is a block diagram showing a state in which a fiber fuse is generated during laser beam transmission in a laser oscillator according to a third embodiment. 第3の実施形態の変形例によるレーザ発振器において、光ファイバにレーザビームが伝送されている状態を示すブロック図である。FIG. 7 is a block diagram showing a state in which a laser beam is transmitted to an optical fiber in a laser oscillator according to a modification of the third embodiment. 第4の実施形態によるレーザ発振器の構成を示す概略図である。FIG. 7 is a schematic diagram showing the configuration of a laser oscillator according to a fourth embodiment. 第5の実施形態によるレーザ発振器においてレーザビーム伝送時にファイバヒューズが発生した状態を示すブロック図である。FIG. 12 is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the fifth embodiment. 第5の実施形態の第1変形例によるレーザ発振器においてレーザビーム伝送時にファイバヒューズが発生した状態を示すブロック図である。FIG. 12 is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in a laser oscillator according to a first modification of the fifth embodiment. 第5の実施形態の第2変形例によるレーザ発振器において、レーザビーム伝送時にファイバヒューズが発生した状態を示すブロック図である。FIG. 12 is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in a laser oscillator according to a second modification of the fifth embodiment. 図12Cで示したストッパ部材の近傍の概略を示す部分断面図である。FIG. 12C is a partial cross-sectional view schematically showing the vicinity of the stopper member shown in FIG. 12C. 第6の実施形態による光ファイバ検査方法の準備動作の概要を示すブロック図である。FIG. 12 is a block diagram showing an overview of a preparatory operation of an optical fiber inspection method according to a sixth embodiment. 第6の実施形態による光ファイバ検査方法において光ファイバが良品である場合の動作の概要を示すブロック図である。FIG. 12 is a block diagram showing an overview of the operation when the optical fiber is a non-defective item in the optical fiber inspection method according to the sixth embodiment. 第6の実施形態による光ファイバ検査方法において光ファイバが不良品である場合の動作の概要を示すブロック図である。FIG. 12 is a block diagram showing an overview of the operation when the optical fiber is a defective product in the optical fiber inspection method according to the sixth embodiment.
 以下、本発明の代表的な一例によるレーザ発振器、故障検知方法及びこれらに関連する光ファイバ検査方法の実施形態を図面と共に説明する。 Hereinafter, embodiments of a laser oscillator, a failure detection method, and an optical fiber inspection method related thereto according to a typical example of the present invention will be described with reference to the drawings.
<第1の実施形態>
 図1は、本発明の代表的な一例である第1の実施形態によるレーザ発振器の構成を示す概略図である。また、図2は、図1に示した光ファイバの内部構造を示す部分断面図である。さらに、図3は、図2に示した光ファイバにおいて、ファイバヒューズが発生した場合の挙動を示す部分断面図である。
<First embodiment>
FIG. 1 is a schematic diagram showing the configuration of a laser oscillator according to a first embodiment, which is a typical example of the present invention. Moreover, FIG. 2 is a partial cross-sectional view showing the internal structure of the optical fiber shown in FIG. Furthermore, FIG. 3 is a partial cross-sectional view showing behavior when a fiber fuse occurs in the optical fiber shown in FIG. 2.
 第1の実施形態によるレーザ発振器100は、その一例として、レーザ発振源110と、駆動電源120と、発振制御装置130と、レーザ発振源110から発振されるレーザビームLBを伝送する光ファイバ140と、当該光ファイバ140の外周面からの光(可視光VL)を検出する光検出器150と、を含む。図1に示す例においては、レーザ発振器100の発振制御装置130は、レーザビームLBを出射する対象物の制御装置10の主制御部20からの発振指令信号OSを受けてオンオフ動作するように構成されている。 As an example, the laser oscillator 100 according to the first embodiment includes a laser oscillation source 110, a drive power source 120, an oscillation control device 130, and an optical fiber 140 that transmits the laser beam LB oscillated from the laser oscillation source 110. , and a photodetector 150 that detects light (visible light VL) from the outer peripheral surface of the optical fiber 140. In the example shown in FIG. 1, the oscillation control device 130 of the laser oscillator 100 is configured to turn on and off in response to an oscillation command signal OS from the main control unit 20 of the control device 10 of the object that emits the laser beam LB. has been done.
 レーザ発振源110は、その一例として、加工あるいは測定等に供されるレーザビームLBが照射されるワークに応じて、吸収効率が高くかつ光ファイバでの伝送が可能な波長のレーザ源が適用される。このようなレーザ発振源110としては、YAGレーザ、YVOレーザ、ファイバレーザ、ディスクレーザ、ダイレクトダイオードレーザ等が例示できる。また、レーザ発振源110から出射されるレーザビームLBは、連続波又はパルス波のいずれも適用し得る。 As an example, the laser oscillation source 110 is a laser source with a wavelength that has high absorption efficiency and can be transmitted through an optical fiber, depending on the work to be irradiated with the laser beam LB used for processing or measurement. Ru. Examples of such a laser oscillation source 110 include a YAG laser, a YVO 4 laser, a fiber laser, a disk laser, and a direct diode laser. Further, the laser beam LB emitted from the laser oscillation source 110 may be either a continuous wave or a pulse wave.
 駆動電源120は、後述する発振制御装置130からの制御指令(駆動指令信号DS及び停止指令信号SS)に基づいてレーザ発振源110に駆動電力を供給あるいは停止する。なお、図1では、駆動電源120がレーザ発振器100の内部に設けられる場合を例示しているが、駆動電源120はレーザ発振器100を構成する筐体の外部に設けられてもよい。 The drive power source 120 supplies or stops driving power to the laser oscillation source 110 based on control commands (drive command signal DS and stop command signal SS) from an oscillation control device 130, which will be described later. Note that although FIG. 1 illustrates a case where the drive power source 120 is provided inside the laser oscillator 100, the drive power source 120 may be provided outside the casing that constitutes the laser oscillator 100.
 発振制御装置130は、制御装置10の主制御部20からの発振指令信号OSに基づいて、駆動電源120に駆動指令信号DS又は停止指令信号SSを出力する。また、第1の実施形態によるレーザ発振器100において、発振制御装置130は、後述する光検出器150での検出値に基づいて、光ファイバ140に故障(ファイバヒューズ:FF)が発生したと判別する機能も有する。 The oscillation control device 130 outputs a drive command signal DS or a stop command signal SS to the drive power source 120 based on the oscillation command signal OS from the main control unit 20 of the control device 10. Further, in the laser oscillator 100 according to the first embodiment, the oscillation control device 130 determines that a failure (fiber fuse: FF) has occurred in the optical fiber 140 based on a detected value by the photodetector 150, which will be described later. It also has functions.
 光ファイバ140は、その一例として図2に示すように、レーザ発振源110から出射されたレーザビームLBを伝送するコア層142と、コア層142の外側を包囲するクラッド層144と、クラッド層144の外面を覆う被覆層146と、を含む。レーザビームLBは、コア層142とクラッド層144との屈折率の差によりこれらの界面IF1において反射することで伝送される。なお、光ファイバ140のコア層142及びクラッド層144を構成する材質としては、石英ガラスやフッ化物ガラス等のガラス類や透明なプラスチック類が例示できる。 As shown in FIG. 2 as an example, the optical fiber 140 includes a core layer 142 that transmits the laser beam LB emitted from the laser oscillation source 110, a cladding layer 144 surrounding the outside of the core layer 142, and a cladding layer 144. a covering layer 146 covering the outer surface of the holder. The laser beam LB is transmitted by being reflected at the interface IF1 between the core layer 142 and the cladding layer 144 due to the difference in refractive index between the core layer 142 and the cladding layer 144. In addition, examples of materials constituting the core layer 142 and cladding layer 144 of the optical fiber 140 include glasses such as quartz glass and fluoride glass, and transparent plastics.
 第1の実施形態において、被覆層146は、後述する可視光VLの少なくとも一部を反射するような材質で形成される。このような被覆層146としては、アクリル製樹脂等が例示できる。 In the first embodiment, the covering layer 146 is formed of a material that reflects at least a portion of visible light VL, which will be described later. An example of such a covering layer 146 is acrylic resin.
 そして、図3に示すように、光ファイバ140のコア層142の故障発生位置FPにおいてファイバヒューズが発生した場合、当該ファイバヒューズにより強い発光が生じて、故障発生位置FPを中心とする放射状に可視光VLが放射される。このとき、被覆層146が可視光VLの少なくとも一部を反射する材料で形成されているため、放射された可視光VLはクラッド層144と被覆層146との界面IF2で反射してクラッド層144の内部を伝送される。 As shown in FIG. 3, when a fiber fuse occurs at the fault occurrence position FP of the core layer 142 of the optical fiber 140, strong light emission is generated by the fiber fuse and is visible in a radial direction centered at the fault occurrence position FP. Light VL is emitted. At this time, since the covering layer 146 is formed of a material that reflects at least a part of the visible light VL, the emitted visible light VL is reflected at the interface IF2 between the cladding layer 144 and the covering layer 146, and is reflected in the cladding layer 146. transmitted inside.
 クラッド層144を伝送された可視光VLの一部は、図1に示すように、レーザ発振源110側に戻って、被覆層146の開口部146aから漏れ出し、光検出器150の受光部152によって受光される。光検出器150は、可視光VLを受光すると、その検出レベルに応じた検出信号LDを発振制御装置130に出力する。ここで、図1では、光検出器150の近傍に位置する光ファイバ140の一部に開口部146aが形成される場合を例示しているが、当該開口部146aを形成せずに被覆層146から漏れ出す可視光VLの一部を光検出器150で検出するように構成してもよい。 As shown in FIG. 1, a part of the visible light VL transmitted through the cladding layer 144 returns to the laser oscillation source 110 side, leaks out from the opening 146a of the cladding layer 146, and reaches the light receiving section 152 of the photodetector 150. The light is received by When the photodetector 150 receives the visible light VL, it outputs a detection signal LD corresponding to the detection level to the oscillation control device 130. Here, although FIG. 1 illustrates a case where the opening 146a is formed in a part of the optical fiber 140 located near the photodetector 150, the coating layer 146 is not formed without the opening 146a. The photodetector 150 may be configured to detect a portion of the visible light VL leaking from the sensor.
 次に、図4~図7を用いて、第1の実施形態によるレーザ発振器が実行する故障検知方法の実施態様を説明する。 Next, an embodiment of the failure detection method executed by the laser oscillator according to the first embodiment will be described using FIGS. 4 to 7.
 図4は、第1の実施形態による故障検知方法の動作の一例を示すフローチャートである。また、図5Aは、第1の実施形態によるレーザ発振器において、レーザビームが正常に伝送されている状態を示すブロック図である。さらに、図5Bは、第1の実施形態によるレーザ発振器において、レーザビーム伝送時にファイバヒューズが発生した状態を示すブロック図である。 FIG. 4 is a flowchart illustrating an example of the operation of the failure detection method according to the first embodiment. Moreover, FIG. 5A is a block diagram showing a state in which a laser beam is normally transmitted in the laser oscillator according to the first embodiment. Further, FIG. 5B is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the first embodiment.
 第1の実施形態による故障検知方法は、図4に示すように、まず発振制御装置130が外部の制御装置10の主制御部20から発振指令信号OSを受信する(ステップS101)。ここで、図1に示した第1の実施形態によるレーザ発振器100は、発振指令信号OSを受信している間はレーザビームLBの発振動作を継続するように構成されている。 In the failure detection method according to the first embodiment, as shown in FIG. 4, first, the oscillation control device 130 receives an oscillation command signal OS from the main control unit 20 of the external control device 10 (step S101). Here, the laser oscillator 100 according to the first embodiment shown in FIG. 1 is configured to continue oscillating the laser beam LB while receiving the oscillation command signal OS.
 発振指令信号OSを受信中の発振制御装置130は、駆動電源120に対して駆動指令信号DSを出力する(ステップS102)。そして、駆動指令信号DSを受けた駆動電源120は、レーザ発振源110に駆動電力を供給し、これにより、図5Aに示すように、レーザ発振源110からレーザビームLBが出射される。 The oscillation control device 130, which is receiving the oscillation command signal OS, outputs the drive command signal DS to the drive power supply 120 (step S102). The drive power supply 120 that has received the drive command signal DS supplies drive power to the laser oscillation source 110, and thereby, as shown in FIG. 5A, the laser beam LB is emitted from the laser oscillation source 110.
 続いて、発振制御装置130は、光検出器150から可視光VLの検出信号LDを受信したかどうかを判別する(ステップS103)。ステップS103において、光検出器150からの検出信号LDを受信したと判別した場合、発振制御装置130は、図5Bに示すように、光検出器150が可視光VLを検知した、すなわち光ファイバ140に不具合(ファイバヒューズ)が発生したと判断して、制御装置10の主制御部20にレーザ発振器100の動作を停止する旨の停止指令信号SSを出力して報知する(ステップS104)。 Next, the oscillation control device 130 determines whether the detection signal LD of visible light VL is received from the photodetector 150 (step S103). In step S103, if it is determined that the detection signal LD from the photodetector 150 has been received, the oscillation control device 130 determines that the photodetector 150 has detected the visible light VL, that is, the optical fiber 140 has detected the visible light VL, as shown in FIG. It is determined that a malfunction (fiber fuse) has occurred in the controller 10, and a stop command signal SS to stop the operation of the laser oscillator 100 is output to notify the main control unit 20 of the control device 10 (step S104).
 次に、発振制御装置130は、駆動電源120に対して、レーザ発振源110への駆動電力の出力を停止する停止指令信号SSを出力し(ステップ105)、レーザ発振器100の制御動作を終了する。このとき、発振制御装置130からの停止指令信号SSを受信した主制御部20は、その一例として、表示部30に対して光ファイバ140に故障が発生した旨の表示を行う表示指令信号DCを出力するように構成してもよい。 Next, the oscillation control device 130 outputs a stop command signal SS to the drive power supply 120 to stop outputting the drive power to the laser oscillation source 110 (step 105), and ends the control operation of the laser oscillator 100. . At this time, the main control unit 20 that has received the stop command signal SS from the oscillation control device 130 sends a display command signal DC to the display unit 30 to indicate that a failure has occurred in the optical fiber 140. It may also be configured to output.
 一方、ステップS103において、光検出器150からの検出信号LDを受信していないと判別した場合、発振制御装置130は、主制御部20から発振指令信号OSを受信しているかどうかを判別する(ステップS106)。そして、ステップS106において、発振指令信号OSを依然として受信していると判別した場合、発振制御装置130はステップS102に戻って、駆動電源120に対して駆動指令信号DSを出力し、以後のステップを繰り返す。 On the other hand, if it is determined in step S103 that the detection signal LD from the photodetector 150 is not received, the oscillation control device 130 determines whether the oscillation command signal OS is received from the main control unit 20 ( Step S106). If it is determined in step S106 that the oscillation command signal OS is still being received, the oscillation control device 130 returns to step S102, outputs the drive command signal DS to the drive power supply 120, and executes the subsequent steps. repeat.
 一方、ステップS106において、発振指令信号OSを受信していないと判別した場合、発振制御装置130は、主制御部20からのレーザ発振動作の指令が停止したと判別して、ステップS105に移行して、発振制御装置130は、駆動電源120に対してレーザ発振源110への駆動電力の出力を停止する停止指令信号SSを出力し、レーザ発振器100の制御動作を終了する。 On the other hand, if it is determined in step S106 that the oscillation command signal OS has not been received, the oscillation control device 130 determines that the laser oscillation operation command from the main control unit 20 has stopped, and proceeds to step S105. Then, the oscillation control device 130 outputs a stop command signal SS to the drive power supply 120 to stop outputting the drive power to the laser oscillation source 110, and ends the control operation of the laser oscillator 100.
 このような動作を実行することにより、レーザ発振器100の発振制御装置130は、レーザ発振源110からレーザビームLBを出射中に、光検出器150から可視光VLの検出信号LDを受信した場合、光ファイバ140に不具合(ファイバヒューズ)が発生したと判断して報知することができる。一方、光検出器150からの検出信号LDを受信していない場合には、発振指令信号OSを受信しなくなるまでレーザビームLBの出射を継続させる。 By performing such an operation, when the oscillation control device 130 of the laser oscillator 100 receives the detection signal LD of visible light VL from the photodetector 150 while emitting the laser beam LB from the laser oscillation source 110, It is possible to determine and notify that a malfunction (fiber fuse) has occurred in the optical fiber 140. On the other hand, when the detection signal LD from the photodetector 150 is not received, the emission of the laser beam LB is continued until the oscillation command signal OS is no longer received.
 次に、図6及び図7を用いて、第1の実施形態の変形例について説明する。図6は、第1の実施形態の第1変形例による故障検知方法の動作の一例を示すフローチャートである。図7は、第1の実施形態の第2変形例による故障検知方法の動作の一例を示すフローチャートである。 Next, a modification of the first embodiment will be described using FIGS. 6 and 7. FIG. 6 is a flowchart illustrating an example of the operation of the failure detection method according to the first modification of the first embodiment. FIG. 7 is a flowchart illustrating an example of the operation of the failure detection method according to the second modification of the first embodiment.
 第1の実施形態の第1変形例による故障検知方法において、発振制御装置130は、図6に示すように、ステップS103において、光検出器150からの検出信号LDを受信したと判別した場合、さらに検出信号LDに基づく可視光VLの強度レベルの検出値が所定の閾値以上であるかどうかを判別する(ステップS103a)。このとき、強度レベルの指標となる所定の閾値は、例えば過去に実測したファイバヒューズ発生時の強度レベルに設定される。 In the failure detection method according to the first modification of the first embodiment, as shown in FIG. 6, when the oscillation control device 130 determines that the detection signal LD from the photodetector 150 has been received in step S103, Furthermore, it is determined whether the detected value of the intensity level of the visible light VL based on the detection signal LD is equal to or higher than a predetermined threshold (step S103a). At this time, the predetermined threshold value serving as an index of the strength level is set, for example, to the strength level actually measured in the past when a fiber fuse occurred.
 そして、ステップS103aにおいて、検出値が閾値以上であると判別した場合、発振制御装置130は、光ファイバ140に確実に不具合(ファイバヒューズ)が発生したと判断して、制御装置10の主制御部20にレーザ発振器100の動作を停止する旨の停止指令信号SSを出力して報知する(ステップS104)。一方、ステップS103aにおいて、検出値が閾値より低いと判別した場合、発振制御装置130はステップS102に戻って、駆動電源120に対して駆動指令信号DSを出力し、以後のステップを繰り返す。 If it is determined in step S103a that the detected value is equal to or greater than the threshold value, the oscillation control device 130 determines that a defect (fiber fuse) has definitely occurred in the optical fiber 140, and the main control unit of the control device 10 20, a stop command signal SS to stop the operation of the laser oscillator 100 is output and notified (step S104). On the other hand, if it is determined in step S103a that the detected value is lower than the threshold value, the oscillation control device 130 returns to step S102, outputs the drive command signal DS to the drive power source 120, and repeats the subsequent steps.
 このような動作を実行することにより、第1実施形態の第1変形例では、光検出器150からの検出信号LDに基づく判別を所定の閾値以上であるかどうかにより判別するため、光検出器150での閾値に満たない検出値(いわゆるノイズ)での誤検出を避けることができる。 By performing such an operation, in the first modification of the first embodiment, the determination based on the detection signal LD from the photodetector 150 is made based on whether the detection signal LD is greater than or equal to a predetermined threshold. Erroneous detection due to a detection value (so-called noise) that is less than the threshold value at 150 can be avoided.
 第1の実施形態の第2変形例による故障検知方法において、発振制御装置130は、図7に示すように、ステップS103において、光検出器150からの検出信号LDを受信したと判別した場合、光ファイバ140に不具合(ファイバヒューズ)が発生したと判断して、駆動電源120に緊急停止指令信号ESを出力する(ステップS103b)。そして、緊急停止指令信号ESを受信した駆動電源120は即座にレーザ発振源110への駆動電力の供給を停止する。 In the failure detection method according to the second modification of the first embodiment, as shown in FIG. 7, when the oscillation control device 130 determines that the detection signal LD from the photodetector 150 has been received in step S103, It is determined that a problem (fiber fuse) has occurred in the optical fiber 140, and an emergency stop command signal ES is output to the drive power source 120 (step S103b). Then, upon receiving the emergency stop command signal ES, the drive power supply 120 immediately stops supplying drive power to the laser oscillation source 110.
 次に、発振制御装置130は、制御装置10の主制御部20にレーザ発振器100の動作を停止する旨の停止指令信号SSを出力して報知する(ステップS104)。一方、ステップS103において、光検出器150からの検出信号LDを受信していないと判別した場合、発振制御装置130は、図4で説明したものと同様のステップS106以降の動作を実行する。 Next, the oscillation control device 130 outputs a stop command signal SS to notify the main control unit 20 of the control device 10 of stopping the operation of the laser oscillator 100 (step S104). On the other hand, if it is determined in step S103 that the detection signal LD from the photodetector 150 has not been received, the oscillation control device 130 executes the same operations from step S106 as described in FIG. 4.
 このような動作を実行することにより、第1実施形態の第2変形例では、制御装置10への報知よりも先に、ファイバヒューズを検知した時点で即座にレーザ発振源110への駆動電力の供給を停止するため、光ファイバ140の不具合を検知してからレーザビームLBを出射し続けることによる光ファイバ140の不具合の進展を抑制できる。 By performing such an operation, in the second modified example of the first embodiment, the drive power to the laser oscillation source 110 is immediately applied to the laser oscillation source 110 when the fiber fuse is detected, prior to notifying the control device 10. Since the supply is stopped, it is possible to suppress the progress of a problem in the optical fiber 140 caused by continuing to emit the laser beam LB after detecting a problem in the optical fiber 140.
 上記のような構成を備えることにより、第1の実施形態によるレーザ発振器及び故障検知方法は、光ファイバのクラッド層の外側に可視光の少なくとも一部を反射する被覆層を設けるとともに、当該光ファイバの外周面からの光を検出する光検出器を配置することにより、レーザビームを伝送する際に発生したファイバヒューズに起因する不具合を速やかに検知することが可能となる。なお、図6及び図7で示した変形例によるフローチャートはこれらを組合せて実行するように構成してもよい。 By having the above configuration, the laser oscillator and failure detection method according to the first embodiment provide a coating layer that reflects at least a part of visible light on the outside of the cladding layer of the optical fiber, and By arranging a photodetector that detects light from the outer peripheral surface of the fiber, it becomes possible to quickly detect a malfunction caused by the fiber fuse that occurs when transmitting the laser beam. Note that the flowcharts according to the modified examples shown in FIGS. 6 and 7 may be configured to be executed in combination.
<第2の実施形態>
 図8は、本発明の第2の実施形態によるレーザ発振器及び故障検知方法に適用される光検出器の特性の一例を示すグラフである。また、図9は、第2の実施形態の変形例によるレーザ発振器に適用される光検出器の概要を示すブロック図である。なお、第2の実施形態においては、図1~図7に示した概略図等において、第1の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。
<Second embodiment>
FIG. 8 is a graph showing an example of the characteristics of a photodetector applied to the laser oscillator and failure detection method according to the second embodiment of the present invention. Moreover, FIG. 9 is a block diagram showing an outline of a photodetector applied to a laser oscillator according to a modification of the second embodiment. In addition, in the second embodiment, in the schematic diagrams shown in FIGS. 1 to 7, parts that can have the same or common configurations as those in the first embodiment are denoted by the same reference numerals. The explanation of the repetition of is omitted.
 第2の実施形態によるレーザ発振器100において、光検出器250は、特定範囲の波長の光を測定するように構成されている。例えば、図8に示すように、光検出器250は、光ファイバ140のコア層142で発生したファイバヒューズに起因する可視光VLを選択的に検出するために、可視光の波長範囲にのみセンサの高感度範囲を有するように構成される。 In the laser oscillator 100 according to the second embodiment, the photodetector 250 is configured to measure light in a specific range of wavelengths. For example, as shown in FIG. 8, the photodetector 250 is configured to detect only the visible light wavelength range in order to selectively detect the visible light VL caused by the fiber fuse generated in the core layer 142 of the optical fiber 140. is configured to have a high sensitivity range of .
 このとき、光検出器250のセンサの高感度範囲は、図8に示すような可視光が高強度となる範囲ではなく、過去に実測したファイバヒューズ発生時の強度レベルの近傍を選択的に検出できる範囲に設定されてもよい。これにより、第2の実施形態によるレーザ発振器100では、光検出器250がファイバヒューズに起因する光のみを検出することとなり、例えばレーザビームLBの揺らぎ等に伴う誤検出を抑制することができる。 At this time, the high-sensitivity range of the sensor of the photodetector 250 is not a range where visible light has high intensity as shown in FIG. It may be set within the possible range. As a result, in the laser oscillator 100 according to the second embodiment, the photodetector 250 detects only the light caused by the fiber fuse, and it is possible to suppress erroneous detection due to, for example, fluctuation of the laser beam LB.
 また、第2の実施形態の変形例によるレーザ発振器100では、図9に示すように、光検出器250は受光部252の受光面を覆う光フィルタ254をさらに含む。このとき、光フィルタ254は、図8に示すような光フィルタリング特性を有している。このような構成によれば、特定範囲の波長の光のみを透過するような光フィルタ254を追加的に設けるだけで、一般的に市販されている光検出器250に特別な光フィルタリング機能を設けることなく適用することができる。 Furthermore, in the laser oscillator 100 according to the modification of the second embodiment, as shown in FIG. 9, the photodetector 250 further includes an optical filter 254 that covers the light-receiving surface of the light-receiving section 252. At this time, the optical filter 254 has optical filtering characteristics as shown in FIG. According to such a configuration, a special optical filtering function can be provided to a generally commercially available photodetector 250 by simply providing an additional optical filter 254 that transmits only light with wavelengths in a specific range. It can be applied without any problems.
 上記のような構成を備えることにより、第2の実施形態によるレーザ発振器及び故障検知方法は、第1の実施形態で説明した効果に加えて、光検出器が特定範囲の波長の光のみを選択的に検出できるように構成したため、ファイバヒューズに起因する光ファイバの不具合を検出する精度を高めることが可能となる。 By having the above configuration, the laser oscillator and failure detection method according to the second embodiment have the effect described in the first embodiment, and also allows the photodetector to select only light with wavelengths in a specific range. Since the optical fiber is configured so that it can be detected visually, it is possible to improve the accuracy of detecting defects in the optical fiber caused by the fiber fuse.
<第3の実施形態>
 図10Aは、第3の実施形態によるレーザ発振器において、レーザビーム伝送時にファイバヒューズが発生した状態を示すブロック図である。図10Bは、第3の実施形態の変形例によるレーザ発振器において、光ファイバにレーザビームが伝送されている状態を示すブロック図である。なお、第3の実施形態においても、図1~図9に示した概略図等において、第1の実施形態及び第2の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。
<Third embodiment>
FIG. 10A is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the third embodiment. FIG. 10B is a block diagram showing a state in which a laser beam is transmitted to an optical fiber in a laser oscillator according to a modification of the third embodiment. Note that in the third embodiment as well, in the schematic diagrams shown in FIGS. 1 to 9, the same or common configurations as those in the first embodiment and the second embodiment can be adopted. A description of these repetitions will be omitted by attaching reference numerals.
 第3の実施形態によるレーザ発振器300において、光ファイバ340は、図10Aに示すように、その少なくとも一部に屈曲区間BSを有する。このような屈曲区間BSを有することにより、故障発生位置FPで発生したファイバヒューズにより生じた可視光VLの反射角度が不規則に変化するため、コア層の内部に導かれる可視光VLの入射角度が大きくなってクラッド層側に移行しやすくなる。このため、光検出器150に入射する可視光VLも不規則な角度から多く入射させることができる。 In the laser oscillator 300 according to the third embodiment, the optical fiber 340 has a bent section BS in at least a portion thereof, as shown in FIG. 10A. By having such a bent section BS, the reflection angle of the visible light VL generated by the fiber fuse generated at the fault occurrence position FP changes irregularly, so that the incident angle of the visible light VL guided into the core layer becomes large and easily migrates to the cladding layer side. Therefore, a large amount of the visible light VL that enters the photodetector 150 can also be made to enter from irregular angles.
 また、第3の実施形態の変形例によるレーザ発振器300では、図10Bに示すように、光ファイバ340は屈曲区間BSとして環状に巻かれた区間を含むようにしてもよい。これにより、光ファイバ340による伝送方向が任意に選べるため、レーザ発振器300と周辺装置とのレイアウトの自由度が向上する。なお、図10Bでは、光ファイバ340を1巻だけ環状に配置した場合を例示しているが、巻数を複数回としてもよい。 Furthermore, in a laser oscillator 300 according to a modification of the third embodiment, as shown in FIG. 10B, the optical fiber 340 may include an annularly wound section as a bent section BS. As a result, the direction of transmission through the optical fiber 340 can be arbitrarily selected, improving the degree of freedom in the layout of the laser oscillator 300 and peripheral devices. Note that although FIG. 10B illustrates a case in which the optical fiber 340 is arranged in a ring shape with only one turn, the number of turns may be multiple times.
 上記のような構成を備えることにより、第3の実施形態によるレーザ発振器及び故障検知方法は、第1の実施形態で説明した効果に加えて、光ファイバの少なくとも一部に屈曲区間が設けられているため、ファイバヒューズに起因する可視光のうちコア層に侵入する光をクラッド層側に移行させることができるため、光検出器での検出量を増やすことができる。 By having the above configuration, the laser oscillator and failure detection method according to the third embodiment have the advantage that, in addition to the effects described in the first embodiment, at least a part of the optical fiber is provided with a bent section. Therefore, among the visible light caused by the fiber fuse, the light that enters the core layer can be transferred to the cladding layer side, so that the amount detected by the photodetector can be increased.
<第4の実施形態>
 図11は、第4の実施形態によるレーザ発振器の構成を示す概略図である。なお、第4の実施形態においても、図1~図10Bに示した概略図等において、第1の実施形態~第3の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。
<Fourth embodiment>
FIG. 11 is a schematic diagram showing the configuration of a laser oscillator according to the fourth embodiment. In addition, in the fourth embodiment as well, in the schematic diagrams shown in FIGS. 1 to 10B, the same or common configurations can be adopted as those in the first to third embodiments. A description of these repetitions will be omitted by attaching reference numerals.
 第4の実施形態によるレーザ発振器400において、図11に示すように、光ファイバ440は、励起光源410に接続されてレーザ発振源の一部を構成するファイバレーザとして例示できる。励起光源410は、発振制御装置130から駆動指令信号DSを受信した駆動電源120から駆動電力が供給されることによりファイバレーザに入射される励起光を出射する。 In the laser oscillator 400 according to the fourth embodiment, as shown in FIG. 11, the optical fiber 440 can be exemplified as a fiber laser that is connected to the excitation light source 410 and forms part of the laser oscillation source. The excitation light source 410 emits excitation light that is input to the fiber laser by being supplied with drive power from the drive power supply 120 that has received the drive command signal DS from the oscillation control device 130 .
 光ファイバ440を構成するファイバレーザは、その一例として、コア層に希土類元素をドープして励起光源410からの励起光により発生したレーザビームLBを、2層に形成された内側クラッド層の内部で反射させて増幅することで出射させるダブルクラッド構造のファイバが適用できる。そして、光ファイバ440は、外側クラッド層の外面にさらに可視光の少なくとも一部を反射する被覆層(図示せず)をさらに含むとともに、光検出器150の近傍に開口部446aが形成されている。 For example, the fiber laser constituting the optical fiber 440 has a core layer doped with a rare earth element and transmits a laser beam LB generated by excitation light from an excitation light source 410 inside an inner cladding layer formed in two layers. A double-clad fiber that emits light by reflecting it and amplifying it can be used. The optical fiber 440 further includes a coating layer (not shown) on the outer surface of the outer cladding layer that reflects at least a portion of visible light, and an opening 446a is formed near the photodetector 150. .
 光ファイバ440において、ファイバレーザの増幅中にコア層で生じたファイバヒューズに起因する可視光VLが、外側クラッド層と被覆層との間で反射されて外側クラッド層内を伝送される。そして、伝送された可視光VLは、被覆層の開口部446aから漏れ出し、光検出器150の受光部152によって受光される。 In the optical fiber 440, visible light VL caused by a fiber fuse generated in the core layer during amplification of the fiber laser is reflected between the outer cladding layer and the coating layer and transmitted within the outer cladding layer. The transmitted visible light VL then leaks from the opening 446a of the coating layer and is received by the light receiving section 152 of the photodetector 150.
 上記のような構成を備えることにより、第4実施形態によるレーザ発振器及び故障検知方法は、第1の実施形態で説明した効果に加えて、光ファイバをレーザ発振源の少なくとも一部となるように構成したため、発振源となる光ファイバの長さを長くできることで、レーザ発振器の最大出力を増大させることが可能となる。 By having the above-described configuration, the laser oscillator and failure detection method according to the fourth embodiment, in addition to the effects described in the first embodiment, allow the optical fiber to become at least a part of the laser oscillation source. Because of this configuration, the length of the optical fiber serving as the oscillation source can be increased, thereby making it possible to increase the maximum output of the laser oscillator.
<第5の実施形態>
 図12Aは、第5の実施形態によるレーザ発振器において、レーザビーム伝送時にファイバヒューズが発生した状態を示すブロック図である。また、図12Bは、第5の実施形態の第1変形例によるレーザ発振器において、レーザビーム伝送時にファイバヒューズが発生した状態を示すブロック図である。また、図12Cは、第5の実施形態の第2変形例によるレーザ発振器において、レーザビーム伝送時にファイバヒューズが発生した状態を示すブロック図である。また、図12Dは、図12Cで示したストッパ部材の近傍の概略を示す部分断面図である。
<Fifth embodiment>
FIG. 12A is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the fifth embodiment. Further, FIG. 12B is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in the laser oscillator according to the first modification of the fifth embodiment. Further, FIG. 12C is a block diagram showing a state in which a fiber fuse occurs during laser beam transmission in a laser oscillator according to a second modification of the fifth embodiment. Moreover, FIG. 12D is a partial sectional view schematically showing the vicinity of the stopper member shown in FIG. 12C.
 なお、第5の実施形態においても、図1~図11に示した概略図等において、第1の実施形態~第4の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。 In addition, in the fifth embodiment as well, in the schematic diagrams shown in FIGS. 1 to 11, the same or common configurations can be adopted as those in the first to fourth embodiments. A description of these repetitions will be omitted by attaching reference numerals.
 第5の実施形態によるレーザ発振器500において、光ファイバ540は、複数本が融着部560を介して連続的に接続された構造を有している。すなわち、その一例として図12Aに示すように、レーザ発振源110に接続された光ファイバ140と、別の光ファイバ540と、が露出部546aにおいて融着部560を介して光学的に接続されている。また、光ファイバ540は、光ファイバ140と同様にクラッド層の外側に可視光VLの少なくとも一部を反射する被覆層(図示せず)を含む。 In the laser oscillator 500 according to the fifth embodiment, the optical fibers 540 have a structure in which a plurality of optical fibers are continuously connected via a fusion part 560. That is, as an example, as shown in FIG. 12A, the optical fiber 140 connected to the laser oscillation source 110 and another optical fiber 540 are optically connected via the fusion part 560 at the exposed part 546a. There is. Further, like the optical fiber 140, the optical fiber 540 includes a coating layer (not shown) outside the cladding layer that reflects at least a portion of the visible light VL.
 融着部560は、光ファイバ140及び540のコア層あるいはクラッド層と同一の成分により2本のファイバを融着した部分であり、このため伝送されるレーザビームLBを最小限の損失で伝送することができる。また、光ファイバ140と540との融着部560の接続部には露出部546aが形成されており、当該露出部546aの近傍に光検出器150が配置される。これにより、複数の光ファイバを接続するために被覆が除去された露出部546aを利用して効率的に伝送された可視光VLを検出することが可能となる。 The fused portion 560 is a portion where two fibers are fused using the same components as the core layer or cladding layer of the optical fibers 140 and 540, and therefore transmits the transmitted laser beam LB with minimal loss. be able to. Further, an exposed portion 546a is formed at the connection portion of the fused portion 560 between the optical fibers 140 and 540, and a photodetector 150 is disposed near the exposed portion 546a. This makes it possible to efficiently detect the transmitted visible light VL using the exposed portion 546a from which the coating has been removed in order to connect the plurality of optical fibers.
 また、図12Bに示すように、第5の実施形態の第1変形例によるレーザ発振器500において、図12Aで示した露出部546aの領域に、被覆層146が除去された光ファイバ140を包囲する筒状の保護部材570をさらに備える。保護部材570は、露出部546aにおいて剥き出しとなる光ファイバ140や融着部560等の構成要素を保護しつつ、光ファイバ140の内部を伝搬する可視光VLを少なくとも透過するような材質で形成される。このような保護部材570の材質としては、光ファイバ140のクラッド層144よりも屈折率の大きい材料が例示できる。 Further, as shown in FIG. 12B, in the laser oscillator 500 according to the first modification of the fifth embodiment, the optical fiber 140 from which the coating layer 146 has been removed is surrounded in the area of the exposed portion 546a shown in FIG. 12A. It further includes a cylindrical protection member 570. The protective member 570 is formed of a material that transmits at least the visible light VL propagating inside the optical fiber 140 while protecting the components such as the optical fiber 140 and the fused portion 560 that are exposed in the exposed portion 546a. Ru. As a material for such a protection member 570, a material having a higher refractive index than the cladding layer 144 of the optical fiber 140 can be exemplified.
 また、第5の実施形態の第2変形例によるレーザ発振器500では、図12Cに示すように、露出部546aに含まれる融着部560に加えて、露出部546a近傍の被覆層146のレーザ発振源110側の位置において、被覆層146の外面に環状のストッパ部材580をさらに備える。ここで、ストッパ部材580は、その一例として、当該ストッパ部材580が内接する光ファイバ140の被覆層146よりも屈折率が大きい材質で構成されている。 In addition, in the laser oscillator 500 according to the second modification of the fifth embodiment, as shown in FIG. An annular stopper member 580 is further provided on the outer surface of the coating layer 146 at a position on the source 110 side. Here, the stopper member 580 is made of, for example, a material having a higher refractive index than the coating layer 146 of the optical fiber 140 in which the stopper member 580 is inscribed.
 上記のようなストッパ部材580を設けたことにより、ストッパ部材580の配置された領域では、例えば図12Dに示すように、レーザ発振器500から出射したレーザビームLBの一部が、意図せずにコア層142やクラッド層144ではなく被覆層146を伝搬してくるような場合に、レーザビームLBが被覆層146とストッパ部材580との界面IF3では反射せずにストッパ部材580の内部に透過する形となるため、意図しないレーザビームLBによる雑光(ノイズ光)が光検出器150に入射するのを抑制することができる。このため、光検出器150による検出精度を向上させ、誤検出を防止することが可能となる。 By providing the stopper member 580 as described above, in the area where the stopper member 580 is arranged, a part of the laser beam LB emitted from the laser oscillator 500 may unintentionally fall into the core, as shown in FIG. 12D, for example. In the case where the laser beam LB propagates through the coating layer 146 instead of the layer 142 or the cladding layer 144, the laser beam LB is transmitted into the stopper member 580 without being reflected at the interface IF3 between the coating layer 146 and the stopper member 580. Therefore, it is possible to suppress the interference light (noise light) caused by the unintended laser beam LB from entering the photodetector 150. Therefore, it is possible to improve the detection accuracy of the photodetector 150 and prevent false detection.
 上記のような構成を備えることにより、第5の実施形態によるレーザ発振器及び故障検知方法は、第1の実施形態で説明した効果に加えて、複数の光ファイバを接続する融着部を含む露出部の近傍に光検出器を配置することにより、別の箇所に被覆部を除去した開口部を設けることなく、可視光を効率的に検出することが可能となる。なお、上記説明した第5の実施形態の第1変形例及び第2変形例による構成は、両者を組合せて適用することも可能である。 By having the above-described configuration, the laser oscillator and failure detection method according to the fifth embodiment provide the effects described in the first embodiment, as well as the exposure By arranging the photodetector near the portion, it becomes possible to efficiently detect visible light without providing an opening where the covering portion is removed at another location. Note that the configurations according to the first modification and the second modification of the fifth embodiment described above can also be applied in combination.
<第6の実施形態>
 次に、図13A~図13Cを用いて、本発明の別の具体例である第6の実施形態による光ファイバ検査方法を説明する。
<Sixth embodiment>
Next, an optical fiber inspection method according to a sixth embodiment, which is another specific example of the present invention, will be explained using FIGS. 13A to 13C.
 図13Aは、第6の実施形態による光ファイバ検査方法の準備動作の概要を示すブロック図である。また、図13Bは、第6の実施形態による光ファイバ検査方法において光ファイバが良品である場合の動作の概要を示すブロック図である。さらに、図13Cは、第6の実施形態による光ファイバ検査方法において光ファイバが不良品である場合の動作の概要を示すブロック図である。 FIG. 13A is a block diagram showing an overview of the preparatory operation of the optical fiber inspection method according to the sixth embodiment. Moreover, FIG. 13B is a block diagram showing an outline of the operation when the optical fiber is a non-defective item in the optical fiber inspection method according to the sixth embodiment. Furthermore, FIG. 13C is a block diagram showing an overview of the operation when the optical fiber is a defective product in the optical fiber inspection method according to the sixth embodiment.
 第6の実施形態による光ファイバ検査方法は、上述した第1の実施形態~第5の実施形態において説明した、光ファイバのコア層で発生したファイバヒューズに起因する可視光を検出することにより光ファイバの不具合を故障と検知する技術を応用している。すなわち、検査対象である光ファイバにレーザビームを伝送し、光検出器において可視光の受光を検知したかどうかに基づいて、光ファイバが良品であるか不良品であるかを判別する。 The optical fiber inspection method according to the sixth embodiment detects visible light caused by the fiber fuse generated in the core layer of the optical fiber, as described in the first to fifth embodiments. It applies technology that detects fiber defects as failures. That is, a laser beam is transmitted to the optical fiber to be inspected, and it is determined whether the optical fiber is a good product or a defective product based on whether visible light is detected by a photodetector.
 第6の実施形態による光ファイバ検査方法の準備動作では、図13Aに示すように、レーザ発振器600の出射部である光ファイバ140の一端に設けられたコネクタ680に、検査対象である光ファイバ640の一端を光学的に接続する。このとき、検査対象である光ファイバ640には、第1の実施形態の場合と同様に、クラッド層の外側にファイバヒューズに起因する可視光VLの少なくとも一部を反射する被覆層(図示せず)が予め形成されている。 In the preparatory operation of the optical fiber inspection method according to the sixth embodiment, as shown in FIG. optically connect one end of the At this time, as in the case of the first embodiment, the optical fiber 640 to be inspected is provided with a coating layer (not shown) that reflects at least a portion of the visible light VL caused by the fiber fuse on the outside of the cladding layer. ) are preformed.
 続いて、発振制御装置130に発振指令信号OSを送って、レーザ発振源110から光ファイバ140及びコネクタ680を介して、光ファイバ640にレーザビームLBを出射する。このとき、検査対象である光ファイバ640が良品であれば、図13Bに示すように、ファイバヒューズが発生することなく、レーザビームLBはそのまま伝送され続ける。 Subsequently, an oscillation command signal OS is sent to the oscillation control device 130, and the laser beam LB is emitted from the laser oscillation source 110 to the optical fiber 640 via the optical fiber 140 and connector 680. At this time, if the optical fiber 640 to be inspected is non-defective, as shown in FIG. 13B, no fiber fuse is generated and the laser beam LB continues to be transmitted as is.
 一方、検査対象である光ファイバ640が不良品である場合、図13Cに示すように、光ファイバ640のいずれかの故障発生位置FPで発生したファイバヒューズに起因して生じた可視光VLが、光ファイバ640の被覆層の内側で伝播されて光ファイバ140まで戻り、その一部が光検出器150で検出される。そして、光検出器150からの検出信号LDを受信した発振制御装置130は、故障発生信号FSを外部の制御装置10に出力して報知する。 On the other hand, when the optical fiber 640 to be inspected is a defective product, as shown in FIG. The light is propagated inside the coating layer of the optical fiber 640 and returns to the optical fiber 140, and a portion thereof is detected by the photodetector 150. Then, the oscillation control device 130 that has received the detection signal LD from the photodetector 150 outputs a failure occurrence signal FS to the external control device 10 to notify it.
 上記のような構成を備えることにより、第6の実施形態による光ファイバ検査方法は、検査対象である光ファイバのクラッド層の外側に可視光の少なくとも一部を反射する被覆層を予め設けておき、この光ファイバにレーザ発振器からレーザビームを伝送させた際に、光検出器で可視光が検出されるかどうかによって光ファイバの良否を判別するようにしたため、レーザビームを伝送する際に発生したファイバヒューズに起因する光ファイバの不具合を速やかに検知することが可能となる。なお、第6の実施形態による光ファイバ検査方法においては、図6及び図7で示したフローチャートで実行した動作を組合せて実行するように構成してもよい。 By having the above-described configuration, the optical fiber inspection method according to the sixth embodiment includes providing in advance a coating layer that reflects at least a portion of visible light on the outside of the cladding layer of the optical fiber to be inspected. When a laser beam is transmitted from a laser oscillator through this optical fiber, the quality of the optical fiber is determined by whether visible light is detected by a photodetector. It becomes possible to promptly detect malfunctions in optical fibers caused by fiber fuses. Note that the optical fiber inspection method according to the sixth embodiment may be configured to perform a combination of the operations performed in the flowcharts shown in FIGS. 6 and 7.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 Note that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit. Within the scope of the present invention, any component of the embodiments may be modified or any component of the embodiments may be omitted.
 例えば、上記の実施形態において、レーザ発振器の発振制御装置が出力した停止指令信号を受信した外部の制御装置において、表示部に故障の発生を表示する場合を例示したが、レーザ発振器自体に表示部を設けて、発振制御装置で光ファイバの不具合を検知した時点でレーザ発振器の表示部に故障を報知するように構成してもよい。また、第1の実施形態から第5の実施形態で示した具体例は、それぞれの特徴を組合せて適用することも可能である。 For example, in the above embodiment, the external control device that receives the stop command signal output from the oscillation control device of the laser oscillator displays the occurrence of a failure on the display section, but the laser oscillator itself has a display section. It may be configured such that when the oscillation control device detects a malfunction in the optical fiber, the malfunction is notified on the display section of the laser oscillator. Furthermore, the specific examples shown in the first to fifth embodiments can be applied in combination with their respective characteristics.
 10 制御装置
 20 主制御部
 30 表示部
 100 レーザ発振器
 110 レーザ発振源
 120 駆動電源
 130 発振制御装置
 140 光ファイバ
 142 コア層
 144 クラッド層
 146 被覆層
 146a 開口部
 150 光検出器
 152 受光部
 250 光検出器
 252 受光部
 254 光フィルタ
 300 レーザ発振器
 340 光ファイバ
 400 レーザ発振器
 410 励起光源
 440 光ファイバ
 446a 開口部
 500 レーザ発振器
 540 光ファイバ
 546a 露出部
 560 融着部
 570 保護部材
 580 ストッパ部材
 600 レーザ発振器
 640 光ファイバ
 680 コネクタ
10 control device 20 main control section 30 display section 100 laser oscillator 110 laser oscillation source 120 drive power source 130 oscillation control device 140 optical fiber 142 core layer 144 cladding layer 146 coating layer 146a opening 150 photodetector 152 light receiving section 250 photodetector 252 Light receiving section 254 Optical filter 300 Laser oscillator 340 Optical fiber 400 Laser oscillator 410 Excitation light source 440 Optical fiber 446a Opening section 500 Laser oscillator 540 Optical fiber 546a Exposed section 560 Fusion section 570 Protective member 580 Stopper member 600 Laser Oscillator 640 Optical fiber 680 connector

Claims (13)

  1.  レーザ発振源と、駆動電源と、発振制御装置と、前記レーザ発振源から発振されるレーザビームを伝送する光ファイバと、を含むレーザ発振器であって、
     前記光ファイバの外周面からの光を検出する光検出器をさらに備え、
     前記光ファイバのクラッド層の外側に可視光の少なくとも一部を反射する被覆層を有する
    レーザ発振器。
    A laser oscillator including a laser oscillation source, a driving power source, an oscillation control device, and an optical fiber that transmits a laser beam oscillated from the laser oscillation source,
    further comprising a photodetector that detects light from the outer peripheral surface of the optical fiber,
    A laser oscillator including a coating layer outside the cladding layer of the optical fiber that reflects at least a portion of visible light.
  2.  前記光検出器は、特定範囲の波長の光を測定するように構成されている
    請求項1に記載のレーザ発振器。
    The laser oscillator according to claim 1, wherein the photodetector is configured to measure light in a specific range of wavelengths.
  3.  前記光検出器は、受光部に前記特定範囲の波長の光を透過する光フィルタをさらに有する
    請求項2に記載のレーザ発振器。
    3. The laser oscillator according to claim 2, wherein the photodetector further includes an optical filter in the light receiving section that transmits light having a wavelength in the specific range.
  4.  前記光ファイバは、その少なくとも一部に屈曲区間を有する
    請求項1~3のいずれか1項に記載のレーザ発振器。
    The laser oscillator according to claim 1, wherein the optical fiber has a bent section in at least a portion thereof.
  5.  前記光ファイバは、前記レーザ発振源の少なくとも一部を構成している
    請求項1~4のいずれか1項に記載のレーザ発振器。
    The laser oscillator according to claim 1, wherein the optical fiber constitutes at least a part of the laser oscillation source.
  6.  前記光ファイバは、複数本が融着部を介して連続的に接続された構造を有しており、
     前記光検出器は、前記融着部を含む前記光ファイバの前記被覆層が除去された露出部からの光を検出するように配置されている
    請求項1~4のいずれか1項に記載のレーザ発振器。
    The optical fiber has a structure in which a plurality of optical fibers are continuously connected via a fusion part,
    5. The optical detector according to claim 1, wherein the photodetector is arranged to detect light from an exposed portion of the optical fiber including the fused portion from which the coating layer has been removed. laser oscillator.
  7.  前記露出部の領域に、前記被覆層が除去された前記光ファイバを包囲する筒状の保護部材をさらに備え、
     前記保護部材は、前記光ファイバの内部を伝搬する前記可視光を少なくとも透過するような材質で形成される
    請求項6に記載のレーザ発振器。
    further comprising a cylindrical protection member surrounding the optical fiber from which the coating layer has been removed in the exposed portion region;
    7. The laser oscillator according to claim 6, wherein the protection member is made of a material that transmits at least the visible light propagating inside the optical fiber.
  8.  前記光ファイバは、前記露出部近傍の前記被覆層の前記レーザ発振源側の位置において、前記被覆層の外面に前記レーザビームを透過させる環状のストッパ部材をさらに備える
    請求項6に記載のレーザ発振器。
    The laser oscillator according to claim 6, wherein the optical fiber further includes an annular stopper member that transmits the laser beam on an outer surface of the coating layer at a position on the laser oscillation source side of the coating layer near the exposed portion. .
  9.  レーザ発振源と、駆動電源と、発振制御装置と、前記レーザ発振源から発振されるレーザビームを伝送する光ファイバと、を含むレーザ発振器の前記発振制御装置が実行する故障検知方法であって、
     前記レーザ発振器は、前記光ファイバの外周面からの光を検出する光検出器をさらに備え、
     前記光ファイバは、クラッド層の外側に可視光の少なくとも一部を反射する被覆層を有し、
     前記光検出器での可視光の検出値に基づいて、前記光ファイバの故障であると判別する
    故障検知方法。
    A failure detection method performed by the oscillation control device of a laser oscillator including a laser oscillation source, a drive power source, an oscillation control device, and an optical fiber that transmits a laser beam oscillated from the laser oscillation source, the method comprising:
    The laser oscillator further includes a photodetector that detects light from the outer peripheral surface of the optical fiber,
    The optical fiber has a coating layer outside the cladding layer that reflects at least a portion of visible light,
    A failure detection method for determining that there is a failure in the optical fiber based on a detected value of visible light by the photodetector.
  10.  前記光検出器での可視光の検出値が所定の閾値を超えた場合に、前記光ファイバの故障であると判別する
    請求項9に記載の故障検知方法。
    10. The failure detection method according to claim 9, wherein when the detected value of visible light by the photodetector exceeds a predetermined threshold value, it is determined that the optical fiber has failed.
  11.  前記光ファイバの故障であると判別された場合に、前記駆動電源に対して緊急停止指令を発する
    請求項9又は10に記載の故障検知方法。
    11. The failure detection method according to claim 9, further comprising issuing an emergency stop command to the drive power source when it is determined that the optical fiber is at fault.
  12.  内部にレーザビームを入射させることにより、光ファイバの不良を判別する光ファイバ検査方法であって、
     前記光ファイバのクラッド層の外側に可視光の少なくとも一部を反射する被覆層を形成し、
     前記光ファイバの一端にレーザ発振器から出射された前記レーザビームを導入し、
     前記光ファイバの外周面から検出される光の検出値に基づいて光ファイバの不良を判別する
    光ファイバ検査方法。
    An optical fiber inspection method for determining defects in an optical fiber by injecting a laser beam into the interior, the method comprising:
    forming a coating layer that reflects at least a portion of visible light on the outside of the cladding layer of the optical fiber;
    Introducing the laser beam emitted from a laser oscillator into one end of the optical fiber,
    An optical fiber inspection method for determining whether an optical fiber is defective based on a detected value of light detected from the outer peripheral surface of the optical fiber.
  13.  前記検出値が所定の閾値を超えた場合に、前記光ファイバの不良であると判別する
    請求項12に記載の光ファイバ検査方法。
    13. The optical fiber inspection method according to claim 12, wherein when the detected value exceeds a predetermined threshold value, it is determined that the optical fiber is defective.
PCT/JP2022/028244 2022-07-20 2022-07-20 Laser oscillator, failure sensing method, and optical fiber inspection method WO2024018566A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028244 WO2024018566A1 (en) 2022-07-20 2022-07-20 Laser oscillator, failure sensing method, and optical fiber inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028244 WO2024018566A1 (en) 2022-07-20 2022-07-20 Laser oscillator, failure sensing method, and optical fiber inspection method

Publications (1)

Publication Number Publication Date
WO2024018566A1 true WO2024018566A1 (en) 2024-01-25

Family

ID=89617521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028244 WO2024018566A1 (en) 2022-07-20 2022-07-20 Laser oscillator, failure sensing method, and optical fiber inspection method

Country Status (1)

Country Link
WO (1) WO2024018566A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490389B1 (en) * 2000-04-06 2002-12-03 Nortel Networks Limited Fibre fuse protection
US6628871B2 (en) * 2000-12-22 2003-09-30 Nortel Networks Limited Fiber fuse protection
JP2011090050A (en) * 2009-10-20 2011-05-06 National Institute Of Information & Communication Technology Optical energy transmission device
WO2012073952A1 (en) * 2010-11-29 2012-06-07 古河電気工業株式会社 Fiber laser apparatus, and method of detecting abnormality of fiber laser apparatus
JP2016076598A (en) * 2014-10-06 2016-05-12 株式会社フジクラ Fiber laser device, optical power monitor device, and optical power monitoring method
JP2018022101A (en) * 2016-08-05 2018-02-08 株式会社フジクラ Evaluation device, evaluation method, and combiner
JP2020123704A (en) * 2019-01-31 2020-08-13 ファナック株式会社 Laser controller, laser control system, and laser device, and laser control method
WO2020175622A1 (en) * 2019-02-27 2020-09-03 株式会社フジクラ Laser device
JP2021082748A (en) * 2019-11-21 2021-05-27 株式会社フジクラ Laser device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490389B1 (en) * 2000-04-06 2002-12-03 Nortel Networks Limited Fibre fuse protection
US6628871B2 (en) * 2000-12-22 2003-09-30 Nortel Networks Limited Fiber fuse protection
JP2011090050A (en) * 2009-10-20 2011-05-06 National Institute Of Information & Communication Technology Optical energy transmission device
WO2012073952A1 (en) * 2010-11-29 2012-06-07 古河電気工業株式会社 Fiber laser apparatus, and method of detecting abnormality of fiber laser apparatus
JP2016076598A (en) * 2014-10-06 2016-05-12 株式会社フジクラ Fiber laser device, optical power monitor device, and optical power monitoring method
JP2018022101A (en) * 2016-08-05 2018-02-08 株式会社フジクラ Evaluation device, evaluation method, and combiner
JP2020123704A (en) * 2019-01-31 2020-08-13 ファナック株式会社 Laser controller, laser control system, and laser device, and laser control method
WO2020175622A1 (en) * 2019-02-27 2020-09-03 株式会社フジクラ Laser device
JP2021082748A (en) * 2019-11-21 2021-05-27 株式会社フジクラ Laser device

Similar Documents

Publication Publication Date Title
JP6564418B2 (en) Optical power monitor device and laser device
JP4347688B2 (en) Fiber optic equipment
US9534952B2 (en) Integrated parameter monitoring in a fiber laser/amplifier
JP6694754B2 (en) Laser device and laser system
WO2011122566A1 (en) Light intensity monitoring circuit and fiber laser system
WO2012073952A1 (en) Fiber laser apparatus, and method of detecting abnormality of fiber laser apparatus
CN105026969B (en) With multimode-multimode fibre bundling device super high power fiber ring laser system
JP6468867B2 (en) Optical power monitoring device, optical power monitoring method, and fiber laser device
WO2024018566A1 (en) Laser oscillator, failure sensing method, and optical fiber inspection method
JP4855429B2 (en) Connection method of double clad fiber
US20210060696A1 (en) Laser device and laser processing device using same
EP4119279A1 (en) Failure detection device and laser machining system
WO2015136924A1 (en) Optical fiber device
JP2017183622A (en) Optical monitoring device and laser device
JPS5979137A (en) Detection for disconnection of optical fiber
CN111164404B (en) Fault detection device, laser processing system, and fault detection method
JP7224435B2 (en) laser device
JP2732117B2 (en) Laser device
WO2009105157A1 (en) A fiber optic imaging apparatus
JPH05277775A (en) Laser beam machine
JP2004085310A (en) Laser guide, laser guide disconnection detection system equipped therewith, and laser beam machining device equipped therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951953

Country of ref document: EP

Kind code of ref document: A1