WO2015136924A1 - Optical fiber device - Google Patents

Optical fiber device Download PDF

Info

Publication number
WO2015136924A1
WO2015136924A1 PCT/JP2015/001324 JP2015001324W WO2015136924A1 WO 2015136924 A1 WO2015136924 A1 WO 2015136924A1 JP 2015001324 W JP2015001324 W JP 2015001324W WO 2015136924 A1 WO2015136924 A1 WO 2015136924A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fluorescent member
laser beam
fluorescent
clad
Prior art date
Application number
PCT/JP2015/001324
Other languages
French (fr)
Japanese (ja)
Inventor
仁科 倫太郎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015136924A1 publication Critical patent/WO2015136924A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device

Definitions

  • the present disclosure relates to an optical fiber device that guides laser light from free space to an end face of an optical fiber.
  • laser light with high output and high energy concentration efficiency has been used for processing such as welding and cutting.
  • an optical fiber for transmission of laser light to the vicinity of a processing part, the application range of laser light, such as combining with application equipment such as a robot having a high degree of freedom, has been expanded.
  • an optical fiber device that collects laser light propagating in free space and makes it incident inside from the end face of the optical fiber.
  • This technology is such that high-power laser light is once emitted from a transmission source optical fiber into free space, and the laser light is condensed in free space and incident again on the transmission destination optical fiber, that is, fiber coupling. It is also necessary for the connect device that performs the above. Furthermore, this technique is also required for a switch device that selects one optical fiber from a plurality of optical fibers that are laser beam transmission destinations and makes laser light incident.
  • an optical fiber is composed of a core, a clad, and a coating resin.
  • the core is a part through which light propagates
  • the clad is a part that confines light in the core
  • the coating resin is a part that protects the core and the clad.
  • the laser beam propagating in free space is condensed to a diameter equal to or less than the diameter of the core of the optical fiber with a condensing lens and incident on the core from the end face of the optical fiber. . Therefore, alignment of the optical system is essential. That is, in order to prevent loss of laser light due to leakage into the coating resin while maintaining the quality of the transmitted laser light, it is necessary to make the laser light incident on the core with high accuracy.
  • Patent Document 1 The prior art described in Patent Document 1 will be described with reference to FIG.
  • FIG. 16 is a side view of a conventional optical fiber device 400.
  • the conventional optical fiber device 400 includes a diffuser 403 and a detector in the radial direction of the light incident / incident end 402 of the optical fiber 401 in order to know in advance damage to the light incident / incident end 402 of the optical fiber 401. 404. Then, the intensity of the laser beam reflected in the radial direction is detected by the detector 404, and the damage of the exit / incident end 402 of the optical fiber 401 is determined based on the detected intensity of the laser beam.
  • the conventional optical fiber device can detect an abnormality of the end face of the optical fiber, but cannot determine whether the laser light is incident on the clad due to misalignment of the laser light.
  • the refractive index of the coating resin is higher than the refractive index of the cladding. Therefore, when part of the laser light is incident on the clad due to misalignment of the laser light, the laser light is absorbed by the coating resin while propagating through the optical fiber. Thereby, the output of the laser beam emitted from the emission end face of the optical fiber is reduced. Furthermore, the energy of the laser light absorbed by the coating resin is converted into thermal energy, and the coating resin may generate heat and be damaged.
  • an optical fiber that transmits a high-power laser beam represented by a fiber laser has a refractive index of the coating resin lower than that of the cladding.
  • the laser light is totally reflected at the interface between the clad and the coating resin. That is, since the clad serves as the second core and the coating resin serves as the second clad, the light incident on the clad also propagates to the output end of the optical fiber. Since this optical fiber has two parts that function as a clad, it is also called a double clad fiber.
  • the power of the laser light emitted from the emission end face of the double clad fiber is not different from that when the laser light is incident only on the core. Further, the emission angle of the laser beam emitted from the emission end face of the double clad fiber does not change. For this reason, since the diameter of the laser beam at the emission end face of the optical fiber which is a double clad fiber is increased by the amount including the cladding, the beam quality of the emitted laser beam is deteriorated.
  • an optical system called a processing head for condensing laser light is attached after the output end of the optical fiber, and the processing target is irradiated with the focused laser light. If the beam quality of the laser beam is deteriorated, the spot diameter of the focused laser beam is increased, the light density at the processing point is lowered, and desired optical characteristics cannot be obtained.
  • the processing head repeatedly moves and high-precision positioning control of the processing head is necessary, and the processing head is required to be lightweight and small.
  • the light propagating through the clad is also output from the output end face of the optical fiber. Therefore, it is difficult to determine whether the laser beam is incident only on the core from the output and angle of the emitted laser beam.
  • the laser processing apparatus In order to emit laser light having a desired optical characteristic from the emission end face of the optical fiber, it is important that the laser light incident on the optical fiber is shifted from the core and not incident on the cladding. If the abnormality of the transmission line can be detected, the reliability of the laser processing apparatus can be improved.
  • the coating resin of the optical fiber may be damaged, or the beam quality of the laser light emitted from the optical fiber exit end face Gets worse.
  • the present disclosure provides an optical fiber device that can detect that laser light is incident on the clad of the optical fiber, thereby preventing deterioration of the reliability of the optical fiber device and the quality of the laser light.
  • an optical fiber device includes an optical fiber, a fluorescent member, and a photodetector.
  • the optical fiber has a transmission line having a core and a clad surrounding the core, and a coating surrounding the transmission line.
  • the fluorescent member is in contact with the transmission line at the peeling portion where the coating of the optical fiber is peeled off.
  • the photodetector detects light having the emission wavelength of the fluorescent member.
  • the optical fiber device can detect that laser light is incident on the clad of the optical fiber, thereby preventing deterioration of the reliability of the optical fiber device and the quality of the laser light. it can.
  • FIG. 1 is a cross-sectional view illustrating a configuration of an optical fiber device according to an embodiment.
  • FIG. 2 is a cross-sectional view perpendicular to the extending direction of the optical fiber according to the embodiment.
  • FIG. 3 is a cross-sectional view of an optical fiber having a support layer according to an embodiment perpendicular to the stretching direction.
  • FIG. 4 is a cross-sectional view in the stretching direction of an optical fiber having no support layer according to the embodiment, and (a) is a diagram showing the propagation of laser light when the refractive index of the coating resin is higher than that of the cladding.
  • (B) is a figure which shows propagation
  • FIG. 1 is a cross-sectional view illustrating a configuration of an optical fiber device according to an embodiment.
  • FIG. 2 is a cross-sectional view perpendicular to the extending direction of the optical fiber according to the embodiment.
  • FIG. 5 is a cross-sectional view of an optical fiber having a support layer according to the embodiment in the stretching direction.
  • FIG. 5A is a diagram illustrating propagation of laser light when the refractive index of the coating resin is higher than that of the support layer.
  • FIG. 6B is a diagram showing the propagation of laser light when the refractive index of the coating resin is lower than that of the support layer.
  • 6A and 6B are cross-sectional views of the optical fiber of the embodiment in the extending direction.
  • FIG. 6A is a schematic diagram of laser light incident on an optical fiber having no end cap
  • FIG. 6B is light having an end cap. It is a schematic diagram of the laser beam which injects into a fiber.
  • FIG. 6A is a schematic diagram of laser light incident on an optical fiber having no end cap
  • FIG. 6B is light having an end cap. It is a schematic diagram of the laser beam which injects into a fiber.
  • FIG. 7 is a side view showing the main configuration and operation of the optical fiber device according to the embodiment.
  • FIG. 8 is a cross-sectional view of the present embodiment where the fluorescent member is in contact with the transmission path of the optical fiber.
  • FIG. 9 is a cross-sectional view of the optical fiber and the fluorescent member, showing variations in the arrangement of the fluorescent member.
  • FIG. 10 is a cross-sectional view of an optical fiber and a fluorescent member showing a variation in which a plurality of fluorescent members emitting different fluorescence are arranged.
  • FIG. 11 is a cross-sectional view perpendicular to the extending direction in which the fluorescent member is held by a connector.
  • FIG. 12 is a cross-sectional view in the extending direction showing an optical fiber integrated with a fluorescent member.
  • FIG. 13 is a cross-sectional view showing an optical fiber device in which a photodetector is provided in the connector.
  • FIG. 14 is a cross-sectional view in the extending direction of an optical fiber device having two fluorescent members emitting different fluorescence.
  • FIG. 15 is a side view showing a laser output confirmation device having an optical fiber device according to the embodiment.
  • FIG. 16 is a side view of a conventional optical fiber device.
  • FIG. 1 is a cross-sectional view showing a configuration of an optical fiber device 100 according to the present embodiment.
  • the optical fiber device 100 includes an optical fiber 101, a fluorescent member 108, and a photodetector 110.
  • the optical fiber device 100 includes a connector 201, and includes an optical fiber 101, a fluorescent member 108, and an end cap 112 as an integral unit. Moreover, the optical fiber 101 which has the housing 203 and was integrated by the connector 201 can be hold
  • the housing 203 further holds the optical filter 111 and the photodetector 110 at predetermined positions, and the condenser lens 102 can adjust the focal position of the laser beam 107 incident through the alignment device 204. Installed.
  • the optical fiber 101 includes at least a core 103, a clad 104, and a coating resin 105.
  • the core 103 is a site where the laser beam 107 propagates
  • the clad 104 is a site where the laser beam 107 is confined in the core 103
  • the coating resin 105 is a site that protects the core 103 and the clad 104.
  • the core 103 has a higher refractive index than the clad 104, and the laser beam 107 is totally reflected at the interface between the core 103 and the clad 104 using the difference in refractive index between the core 103 and the clad 104, thereby confining the laser beam 107 in the core 103. While propagating.
  • the refractive index difference between the core 103 and the clad 104 is large, the total reflection angle (critical angle) also increases, so that the laser beam 107 having a larger incident angle can be incident and propagated.
  • FIG. 1 an optical fiber 101 having a support layer 106 is illustrated.
  • the core 103, the clad 104, and the support layer 106 are collectively referred to as a transmission line, and in the optical fiber having no support layer 106, the core 103 and the clad 104 are collectively referred to. It is called a transmission line.
  • the end cap 112 When the high-power laser beam 107 is used, the end cap 112 is fused and connected to the end face of the optical fiber 101 to prevent damage to the end face of the optical fiber 101.
  • the end cap 112 will be described later.
  • the optical fiber 101 includes a core 103, a clad 104, and a coating resin 105.
  • the material of the core 103 and the clad 104 is made of glass with low optical loss or plastic with low optical loss.
  • the core 103 has a refractive index higher than that of the clad 104, and the laser beam 107 propagates through the core 103 due to total reflection of the laser beam 107 due to a difference in refractive index between the core 103 and the clad 104.
  • FIG. 2 is a cross-sectional view perpendicular to the extending direction of the optical fiber 101 of the present embodiment.
  • a core 103 at the center of the optical fiber 101
  • a clad 104 around the core 103
  • a coating resin 105 around the clad 104.
  • the core 103 of the optical fiber 101 is made of pure quartz glass, and the cladding 104 is made of doped quartz glass containing fluorine or boron and having a refractive index lower than that of quartz glass. in use.
  • Quartz glass is a material that has low optical loss, heat resistance, and little thermal expansion. Therefore, when using a high-power laser beam 107, an optical fiber 101 made of quartz glass is usually used.
  • the numerical aperture NA of the optical fiber 101 made of quartz glass is 0.12, 0.15, 0.22, and the core diameter of the optical fiber 101 is ⁇ 100, ⁇ 200, ⁇ 400, ⁇ 600 ⁇ m, or the like.
  • the end of the optical fiber 101 on the emission side of the laser beam 107 is attached to the tip of the arm of the processing robot, and the optical fiber 101 is repeatedly bent and swiveled. Therefore, high mechanical strength of the optical fiber 101 is required.
  • the optical fiber 101 used for such an application further has a support layer 106 around the cladding 104, and the outer diameter of the transmission line is increased to increase the mechanical strength of the optical fiber.
  • FIG. 3 is a cross-sectional view of the optical fiber 101 having the support layer 106 perpendicular to the stretching direction.
  • the support layer 106 is often made of the same material as that of the core 103, and is pure quartz glass when the high-power laser beam 107 is used.
  • the outer diameter of the support layer 106 of the optical fiber 101 is ⁇ 250, ⁇ 500, ⁇ 750, ⁇ 1000 ⁇ m, or the like.
  • the “support layer” in this specification may be simply expressed as “cladding”. In this specification, in order to clarify that the optical function is different from that of the clad 104, it is expressed as “support layer”.
  • the material of the coating resin 105 of the optical fiber 101 is a heat-resistant silicone resin or a heat-resistant fluororesin when the high-power laser beam 107 is used.
  • a material having a lower refractive index than that of the cladding 104 or the support layer 106 is used for the coating resin 105.
  • the laser beam 107 is totally reflected at the interface between the cladding 104 and the coating resin 105, and the laser beam 107 propagates through the cladding 104. Thereby, since the laser beam 107 does not travel toward the coating resin 105, damage to the coating resin 105 can be reduced.
  • the laser light 107 incident on the clad 104 of the optical fiber 101 is propagated to the emission end face of the optical fiber 101, and the optical characteristics of the laser light 107 emitted from the optical fiber 101 are deteriorated.
  • a cooling device is provided at a portion where the laser beam 107 leaks from the core 103 to the cladding 104, such as a fusion connection point where optical fibers are connected to each other, and the cladding 104 or A method of absorbing and removing the laser beam 107 propagating through the support layer 106 is used.
  • FIG. 4 is a cross-sectional view of the optical fiber 101 having no support layer in the stretching direction
  • FIG. 4A is a diagram showing the propagation of the laser light 107 when the refractive index of the coating resin 105 is higher than that of the cladding 104
  • FIG. 6B is a diagram illustrating the propagation of the laser beam 107 when the refractive index of the coating resin 105 is lower than that of the cladding 104.
  • the portion from which the coating resin 105 is removed is in contact with air, and the absolute refractive index of air is 1.0, which is lower than the absolute refractive index of the solid substance. Therefore, the laser beam 107 propagates through a portion (peeling portion) where the air serves as a clad to remove the coating resin 105.
  • the laser beam 107 (solid line) incident on the core 103 of the optical fiber 101 is emitted from the emission end face of the optical fiber 101 as it is.
  • the laser beam 107 (broken line) incident on the clad 104 of the optical fiber 101 travels from the clad 104 toward the coating resin 105, and the laser beam 107 is incident on the coating resin 105 due to the refractive index. It is absorbed by the resin 105 and disappears. The absorbed laser beam 107 is converted from light energy to heat energy, and the coating resin 105 generates heat.
  • the laser beam 107 (solid line) incident on the core 103 of the optical fiber 101 is emitted as it is from the emission end face of the optical fiber 101 as in FIG. Then, the laser beam 107 (broken line) incident on the clad 104 of the optical fiber 101 propagates through the clad 104 and the core 103 while being totally reflected between the clad 104 and the coating resin 105 due to the relationship of the refractive index. 101 exits from the exit end face.
  • FIG. 5 is a cross-sectional view of the optical fiber 101 having the support layer 106 in the stretching direction.
  • FIG. 5A is a diagram illustrating the propagation of the laser light 107 when the refractive index of the coating resin 105 is higher than that of the support layer 106.
  • FIG. 8B is a diagram illustrating the propagation of the laser beam 107 when the refractive index of the coating resin 105 is lower than that of the support layer 106.
  • the portion from which the coating resin 105 is removed is in contact with air, and the absolute refractive index of air is 1.0, which is lower than the absolute refractive index of the solid substance. Therefore, the laser beam 107 propagates through a portion (peeling portion) where the air serves as a clad to remove the coating resin 105.
  • the laser beam 107 (solid line) incident on the core 103 of the optical fiber 101 is emitted from the emission end face of the optical fiber 101 as it is.
  • the laser beam 107 (broken line) incident on the clad 104 of the optical fiber 101 travels from the clad 104 toward the support layer 106.
  • the laser beam 107 is incident on the coating resin 105 from the support layer 106 and is absorbed by the coating resin 105 and disappears.
  • the laser beam 107 (solid line) incident on the core 103 of the optical fiber 101 is emitted as it is from the emission end face of the optical fiber 101, as in FIG.
  • the laser beam 107 (broken line) incident on the clad 104 travels from the clad 104 toward the support layer 106 due to the refractive index.
  • the laser beam 107 is totally reflected between the support layer 106 and the coating resin 105 due to the refractive index, and the laser beam 107 propagates through the cladding 104, the support layer 106, and the core 103, and is emitted from the optical fiber 101. It is emitted from the end face.
  • the high-power laser beam 107 when used, a method of melting and connecting a transparent body block called an end cap 112 to the input / output end surface of the optical fiber 101 is used in order to prevent damage to the input / output end surface.
  • the core 103 on the entrance / exit end face of the optical fiber 101 is in contact with air (exposed), and is easily damaged because the optical strength is reduced.
  • FIG. 6A and 6B are cross-sectional views of the optical fiber 101 according to the present embodiment in the extending direction.
  • FIG. 6A is a schematic diagram of the laser beam 107 incident on the optical fiber 101 having no end cap
  • FIG. 3 is a schematic diagram of laser light 107 incident on an optical fiber 101 having a cap 112.
  • FIG. 6A is a schematic diagram of the laser beam 107 incident on the optical fiber 101 having no end cap
  • FIG. 3 is a schematic diagram of laser light 107 incident on an optical fiber 101 having a cap 112.
  • the end face of the optical fiber 101 can be covered by fusing the end cap 112 to the end of the optical fiber 101.
  • the laser beam 107 incident on the optical fiber 101 and the laser beam 107 emitted from the optical fiber 101 travel in a conical shape. Therefore, the outer diameter of the laser beam 107 at the exposed end face of the end cap 112 is larger than the outer diameter of the laser beam 107 at the end face of the core 103 of the optical fiber 101 covered with the end cap 112.
  • the material of the end cap 112 is preferably heat-resistant pure quartz glass, and the end face of the end cap 112 is preferably subjected to anti-reflection coating.
  • the end cap 112 having a length of 10 mm and a diameter of ⁇ 5 mm and an optical fiber 101 having a core diameter of ⁇ 100 ⁇ m are used to focus laser light 107 having an NA of 0.12 to ⁇ 100 ⁇ m
  • the outer diameter is approximately 2.4 mm as calculated geometrically.
  • the energy density of the laser beam 107 at the end face of the end cap 112 is reduced to 0.0017 times the energy density of the end face of the optical fiber 101 without the end cap 112.
  • the optical fiber 101 has a support layer 106, and an example in which an end cap 112 is connected to an end face to form a connector at the end will be described with reference to FIG.
  • the coating resin 105 near the end of the optical fiber 101 cut to a required length is removed with a stripper to expose the support layer 106.
  • the portion from which the coating resin 105 has been removed is washed with ethanol.
  • the end surface of the optical fiber 101 is cleaved to end the surface.
  • the end cap 112 is fused and connected to the end face of the cleaved optical fiber 101.
  • the fluorescent member 108 is processed into a desired dimension, and the contact surface with the support layer 106 is polished.
  • a connector 201 having a through hole into which the fluorescent member 108 is inserted in advance is prepared.
  • the position of the through hole is provided at a position where the fluorescent member 108 is brought into contact with the support layer 106.
  • the coating resin 105 of the optical fiber 101 is removed and the surface of the support layer 106 is exposed. is doing.
  • the end of the optical fiber 101 is made into a connector. Thereafter, the fluorescent member 108 is inserted from the through hole and brought into contact with the clad 104, and an adhesive is applied from the through hole of the connector 201 to fix the fluorescent member 108 and the connector 201. After the adhesive is cured, the through hole is covered so that the laser beam 107 does not leak from the through hole of the connector 201.
  • a housing 203 is separately manufactured as shown in FIG.
  • An aligning device 204 for finely adjusting the position of the condenser lens 102 is attached inside the housing 203.
  • the position of the condensing lens 102 can be moved by the aligning device 204, and the condensing position of the laser beam 107 that has passed through the condensing lens 102 can be finely adjusted.
  • the housing 203 is processed so that the photodetector 110 and the optical filter 111 can be attached.
  • the photodetector 110 is attached at a position where the fluorescent light 109 is easy to receive, and the incident laser beam 107 is not blocked in consideration of the amount of movement of the alignment device 204.
  • the photodetector 110 is electrically wired and is connected to a measuring device not shown here.
  • the optical filter 111 is attached to the front surface of the light receiving surface of the photodetector 110.
  • the optical fiber 101 formed as a connector is inserted into the housing 203 and fixed.
  • FIG. 7 is a side view showing the main configuration and operation of the optical fiber device 100 according to the present embodiment.
  • FIG. 7 shows only main components for explaining the operation and action of the optical fiber device 100 of the present embodiment.
  • the laser beam 107 condensed by the condenser lens 102 is incident only on the core 103 of the optical fiber 101, the laser beam 107 propagates through the core 103 and reaches the emission end face of the optical fiber 101. However, some laser light 107 may enter the clad 104 of the optical fiber 101 due to vibration or impact.
  • the misalignment includes (a) a deviation in the direction perpendicular to the axis of the optical fiber 101, (b) a deviation in the direction of the axis of the optical fiber 101, and (c) the axis of the optical fiber 101 and the laser beam 107.
  • the optical fiber device 100 has a structure in which the position of the condenser lens 102 is moved and adjusted.
  • the alignment device 204 of the present embodiment includes a feed screw used in a micrometer so that each shift component can be finely adjusted.
  • the fluorescent member 108 is disposed so as to be in contact with the outside of the clad 104 from which the coating resin 105 in the vicinity of the incident end of the optical fiber 101 has been removed. As shown in FIG. 7, in the optical fiber 101 having the support layer 106, the fluorescent member 108 is brought into contact with the outside of the support layer 106. That is, the fluorescent member 108 is brought into contact with the transmission path of the optical fiber 101. In either case, since the clad 104 and the fluorescent member 108 are optically coupled, the laser beam 107 propagating through the clad 104 reaches the fluorescent member 108.
  • the laser beam 107 propagating in the free space is condensed by the condenser lens 102 and adjusted so as to enter the core 103. However, as shown in FIG. 7, when a misalignment occurs and a part of the laser beam 107 enters the clad 104, the laser beam 107 reaches the fluorescent member 108. The laser beam 107 reaching the fluorescent member 108 is absorbed by the fluorescent substance contained in the fluorescent member 108, and the fluorescent member 108 emits fluorescence 109.
  • Fluorescence 109 is emitted in all directions.
  • the fluorescence 109 passes through the support layer 106, the clad 104, and the core 103 and is emitted from the surface of the optical fiber 101 and the end face of the end cap 112 to free space.
  • the light is emitted directly from the fluorescent member 108 to the free space.
  • the intensity of the fluorescence 109 increases as the laser beam 107 incident on the clad 104 increases.
  • FIG. 8 is a cross-sectional view of the present embodiment where the fluorescent member 108 is in contact with the transmission path of the optical fiber 101. Since the coating resin 105 is removed, the coating resin 105 is not described. The fluorescent member 108 is brought into contact with the outside of the support layer 106. In the case of the optical fiber 101 without the support layer 106, the fluorescent member 108 is brought into contact with the outside of the clad 104.
  • the fluorescent material When the laser beam 107 enters the fluorescent member 108, the fluorescent material absorbs the laser beam 107 and excites electrons in the fluorescent material. Then, when the excited electrons return to the stable state, fluorescence 109 having a wavelength different from that of the laser beam 107 is emitted. The fluorescence 109 is emitted in all directions and has no directivity. Since the range of wavelengths to be absorbed for each fluorescent material is determined, the fluorescent material of the fluorescent member 108 is selected in consideration of the wavelength of the laser beam 107 to be used.
  • quartz glass containing a material Yb 2 O 3 containing ytterbium element is used as the fluorescent member 108, and the fluorescent member 108 emits light having a wavelength of 0.98 ⁇ m. Absorbs and emits fluorescence with a wavelength of 1.06 ⁇ m. Further, when quartz glass containing the material Er 2 O 3 containing erbium element is used as the fluorescent member 108, the fluorescent member 108 absorbs the laser beam 107 having a wavelength of 0.98 ⁇ m and emits fluorescence of 1.55 ⁇ m. .
  • the shape of the fluorescent member 108 is polished or cleaved so that the contact surface with the optical fiber 101 is not uneven, and is processed into a smooth surface. Or you may process into the surface of the circular groove
  • a structure in which the fluorescent member 108 is in contact with the optical fiber 101 a structure in which a fluorescent material is contained in the support layer 106 of the optical fiber 101 is also possible.
  • the fluorescent member 108 is not limited to one type, and two or more types of fluorescent members 108 that emit fluorescent light 109 having different wavelengths may be used simultaneously.
  • the fluorescent member 108 containing Yb 2 O 3 and the fluorescent member 108 containing Er 2 O 3 may be brought into contact with one optical fiber 101 at the same time.
  • the optical fiber 101 used in the fiber laser contains a rare earth element in the quartz glass core 103, and the optical fiber 101 can also be used as the fluorescent member.
  • the photodetector 110 is disposed at a position where the fluorescence 109 emitted from the fluorescent member 108 can be detected.
  • the fluorescent light 109 emitted from the end cap 112 to the free space is installed at a position where it can be detected.
  • a photodiode may be used as the photodetector 110.
  • a photodiode is a semiconductor that converts light into an electrical signal. Because of its small size and high-speed response, it is optimal for use as the photodetector 110.
  • the amount of electricity flowing changes depending on the intensity of the received light, and the change in the amount of electricity is read to detect the occurrence of misalignment when the amount of electricity exceeding a specific level flows.
  • the photodetector 110 Since the photodetector 110 has a range of wavelengths that can be measured, the one that can measure the fluorescence 109 is selected. Preferably, by using the photodetector 110 that does not react to the wavelength of the laser beam 107 but reacts to the wavelength of the fluorescence 109, it is not necessary to use an optical filter 111 described later.
  • the light detector 110 receives not only the fluorescence 109 but also the scattered light of the laser beam 107, and may detect an axial deviation even though no axial deviation has occurred.
  • an optical filter 111 having wavelength selectivity is disposed in front of the light receiving surface of the photodetector 110. Since the fluorescence 109 and the laser beam 107 have different wavelengths, an optical filter 111 having a characteristic of passing the fluorescence 109 and blocking the laser beam 107 is used.
  • the scattered light of the laser beam 107 incident on the core 103 is not detected by utilizing the difference between the wavelengths of the laser beam 107 and the fluorescence 109, and it is determined whether the laser beam 107 is incident on the clad 104. Can do.
  • a suitable combination is selected in consideration of the wavelength and intensity of the photodetector 110, the optical filter 111, and the laser beam 107 and the fluorescence 109.
  • the photodetector 110 can detect the intensity of the fluorescence 109 emitted from the fluorescent member 108.
  • fluorescence 109 is emitted by the fluorescent member 108.
  • the operator can confirm that the alignment error has occurred in the optical fiber device 100. I can know.
  • the fluorescent member 108 is not limited to one type, and two or more types of fluorescent members 108 having fluorescent substances having different fluorescent wavelengths may be provided. In this case, since each fluorescent member 108 emits fluorescent light 109 having a different wavelength, the intensity ratio of the fluorescent light 109 changes depending on the position of misalignment. By reading the intensity ratio of the fluorescence 109 with the photodetector 110, it can be estimated in which direction the misalignment has occurred.
  • the fluorescent member emits fluorescence having a wavelength different from that of the laser beam 107 when a part of the laser beam 107 is incident on the clad. Accordingly, it is possible to detect that the laser beam 107 has entered the clad, and to prevent deterioration of the reliability of the optical fiber device and quality of the transmitted laser beam 107 caused by the incident laser beam 107 on the clad. Can do.
  • FIGS. 9A to 9G are cross-sectional views of the optical fiber 101 and the fluorescent member 108 showing variations in the arrangement of the fluorescent member.
  • fluorescent members 108 are in contact with the outside of the clad 104 of the optical fiber 101 that does not have a support layer.
  • four fluorescent members 108 are arranged, but the number of fluorescent members 108 is not limited to four, and any number may be brought into contact.
  • a support layer 113 containing a fluorescent material is provided around the cladding 104 of the optical fiber 101.
  • the support layer 113 is a fluorescent member in which the support layer 106 includes a fluorescent material.
  • the support layer 113 emits fluorescence 109.
  • the fluorescent member 108 is arranged and integrated around the cladding 104 of the optical fiber 101, and the support layer 106 is arranged and integrated around the fluorescent member 108. Similar to FIG. 9B, by arranging the fluorescent member 108 on the entire circumference of the clad 104, misalignment in any direction can be detected. Further, by separately forming the support layer 106 and the fluorescent member 108, the functions of the fluorescent member 108 and the support layer 106 can be fully exhibited.
  • FIG. 9D four fluorescent members 108 are in contact with the outside of the support layer 106 of the optical fiber 101.
  • four fluorescent members 108 are arranged, but the number of fluorescent members 108 is not limited to four, and any number may be brought into contact.
  • two fluorescent members 108 are in contact with the outside of the support layer 106 of the optical fiber 101.
  • the contact surface of the fluorescent member 108 with the optical fiber 101 has a circular groove shape, and the contact area with the optical fiber 101 is increased.
  • two fluorescent members 108 are arranged, but the number of fluorescent members 108 is not limited to two, and any number may be brought into contact.
  • the fluorescent member 108 is disposed and integrated around the support layer 106 of the optical fiber 101.
  • FIG. This is obtained by replacing the arrangement of the support layer 106 and the fluorescent member 108 in FIG. 9C, and has the same effect as in FIG. 9C.
  • a fluorescent member 115 having a core 114 containing a fluorescent substance is brought into contact with the outside of the support layer 106 of the optical fiber 101. That is, an optical fiber containing a fluorescent material in the core is used as the fluorescent member.
  • the fluorescence 109 is emitted from the opposite end face of the fluorescence member 115, the fluorescence 109 can be fiber-transmitted to the photodetector 110, and the fluorescence can be easily transmitted.
  • FIGS. 10A to 10F are cross-sectional views of the optical fiber 101 and the fluorescent member 108 showing a variation in which a plurality of fluorescent members 108 emitting different fluorescence are arranged.
  • two different fluorescent members 108 are in contact with the outside of the cladding 104 of the optical fiber 101 that does not have a support layer.
  • the two different fluorescent members 108 are disposed at positions symmetrical with respect to the central axis of the optical fiber 101.
  • two fluorescent members 108 are arranged, but the number of fluorescent members is not limited to two, and any number may be brought into contact.
  • it is desirable that the fluorescent member 108 is brought into contact with the central axis of the optical fiber 101 at equal intervals.
  • three different fluorescent members 108 are in contact with the outside of the clad 104 of the optical fiber 101 that does not have a support layer.
  • Three different fluorescent members 108 are arranged at equal intervals for each position rotated by 120 ° about the central axis of the optical fiber 101.
  • each of the three fluorescent members 108 generates different fluorescent light 109.
  • the fluorescent member 108 is disposed and integrated around the cladding 104 of the optical fiber 101, and the support layer 113 is disposed and integrated around the fluorescent member 108.
  • the support layer 113 includes the support layer 106 containing a fluorescent material, and the fluorescence wavelength of the fluorescent material contained in the support layer 113 is different from the fluorescence wavelength of the fluorescent member 108.
  • another fluorescent member 108 is arranged and integrated around the cladding 104 of the optical fiber 101, and further, the fluorescent member 108 is arranged and integrated around the fluorescent member 108, and further around the fluorescent member 108.
  • the support layer 106 is disposed and integrated.
  • the wavelength of fluorescence by the fluorescent material contained in the inner fluorescent member 108 is different from the wavelength of fluorescence by the fluorescent material contained in the outer fluorescent member 108.
  • by arranging the fluorescent member 108 on the entire circumference of the clad 104 misalignment in any direction can be detected.
  • the functions of the fluorescent member 108 and the support layer 106 can be fully exhibited.
  • FIG. 10E three different fluorescent members 108 are brought into contact with the outside of the support layer 106 of the optical fiber 101.
  • Three different fluorescent members 108 are arranged at equal intervals for each position rotated by 120 ° about the central axis of the optical fiber 101.
  • each of the three different fluorescent members 108 generates different fluorescent light 109.
  • the four fluorescent members 108 are brought into contact with the outside of the support layer 106 of the optical fiber 101.
  • the four fluorescent members 108 each include two types of fluorescent members.
  • the same type of fluorescent member 108 is brought into contact with the central axis of the optical fiber 101 and rotated by 90 ° about the central axis. It arrange
  • two fluorescent members 108 that emit two types of wavelengths of fluorescence 109 are arranged, but the present invention is not limited to this. Desirably, the fluorescent member 108 is brought into contact with the central axis of the optical fiber 101 at equal intervals.
  • ⁇ Detailed configuration of holding fluorescent member> As one method for holding the fluorescent member 108 arranged as described above, there is a method in which the fluorescent member 108 is bonded to the clad 104 or the support layer 106 with a transparent resin interposed in the gap. As another method of holding the fluorescent member 108, there is a method of holding the fluorescent member 108 with an external structure so that the fluorescent member 108 is brought into contact with the clad 104 or the support layer 106. When the high-power laser beam 107 is used, since the transparent resin may be damaged in the former method, the latter method in which the transparent resin is not interposed in the gap is desirable.
  • FIG. 11 is a cross-sectional view perpendicular to the extending direction, showing two examples in which the fluorescent member 108 is held by the connector 201.
  • the structure held by the fluorescent member 108 using the connector 201 is not particularly limited to this.
  • 11A is a cross-sectional view of the connector 201 in which a through hole for inserting the fluorescent member 108 is provided in the connector 201 in advance, and the optical fiber 101 is integrated with the connector 201 and then the fluorescent member 108 is integrated.
  • the fluorescent member 108 is inserted from the outside of the through hole of the connector 201 and brought into contact with the support layer 106 of the optical fiber 101.
  • the contacted fluorescent member 108 is bonded or mechanically fixed to the connector 201.
  • the through hole is covered from the outside so that the fluorescent light and the laser beam 107 are not emitted to the outside.
  • FIG. 11B is an example of the connector 201 in which the fluorescent member 108 is installed in a guide provided on the connector 201.
  • the fluorescent member 108 installed in the guide is constantly pressed against the support layer 106 of the optical fiber 101 by an elastic body 202 such as a spring.
  • the through hole in FIG. 11 (a) is the guide in FIG. 11 (b), and the lid in FIG. 11 (a) also has the function of holding the elastic body 202 in FIG. 11 (b). ing.
  • FIG. 9B, 9C, 10F, and 10C As an example of a structure for holding the fluorescent member 108 without using an adhesive or a connector, as shown in FIGS. 9B, 9C, 10F, and 10C, FIG. Further, there is a structure in which fluorescent members 108 are arranged in a layered manner around the cladding 104 or the support layer 106 and integrated.
  • FIG. 12 is a cross-sectional view in the extending direction showing two examples of the optical fiber 101 in which the fluorescent member 108 is integrated. As shown in FIG. 12, the fluorescent member 108 can be held also by fusion connection that is generally performed when the optical fiber 101 is connected. Note that the structure in which the fluorescent member 108 is fused and held to the optical fiber 101 is not particularly limited to this.
  • FIG. 12 (a) is a cross-sectional view in the stretching direction showing the optical fiber 101 having the support layer 113 containing the fluorescent material as shown in FIG. 9 (b) on the end face of the optical fiber 101.
  • FIG. 12A the optical fiber having the support layer 113 is fused and connected to the end of the optical fiber not having the support layer 113.
  • the end cap 112 is fused and connected to the opposite end of the optical fiber having the support layer 113.
  • the optical fiber that does not have the support layer 113 and the optical fiber that has the support layer 113 preferably have the same outer diameter of the core 103 and the support layer 113.
  • a support layer 113 having a fluorescent material may be formed at a portion where the support layer 106 having no fluorescent material is removed at the end of the optical fiber 101. By doing in this way, the interface between optical fibers can be decreased.
  • the fluorescent member 108 is arranged and integrated around the cladding 104 as shown in FIG. 9C on the end face of the optical fiber 101, and the support layer 106 is arranged around it to integrate.
  • the optical fiber 101 is fused and connected.
  • the end cap 112 is fused and connected to the opposite end of the optical fiber having the fluorescent member 108.
  • the outer diameters of the core 103 and the support layer 106 are preferably the same for the optical fiber not having the fluorescent member 108 and the optical fiber having the fluorescent member 108.
  • an optical fiber having a structure in which the fluorescent member 108 is arranged and integrated around the clad 104 or the support layer 106 of the optical fiber 101 may be used.
  • the entire length from the incident end to the exit end of the optical fiber has a structure containing a fluorescent material, so that an interface due to fusion splicing can be eliminated and loss due to transmission of the laser beam 107 can be reduced.
  • the fluorescent member 108 is not limited to one type, and a plurality of fluorescent members 108 that emit fluorescent light 109 having different wavelengths may be used simultaneously.
  • misalignment occurs and the laser light 107 incident on the clad 104 reaches the fluorescent member.
  • the amount of the laser beam 107 incident on each fluorescent member 108 varies depending on the incident position of the laser beam 107 on the end face of the optical fiber 101.
  • the ratio of the intensity of the fluorescence 109 emitted from each fluorescent member 108 is changed, and the direction of misalignment can be specified.
  • the aligning device 204 uses a plurality of feed screws, the aligning operation is facilitated by changing the push-in amount of the feed screw based on the intensity ratio of the fluorescence 109.
  • the photodetector 110 is not restricted to the structure attached to the housing 203 as shown in FIG. That is, the photodetector 110 may be attached to the connector 201 that holds the optical fiber 101. In this case, the photodetector 110 is attached to the connector 201 so that the fluorescence 109 emitted to the free space inside the connector 201 can be received.
  • FIG. 13 is a cross-sectional view showing the optical fiber device 100 in which the optical detector 110 is provided in the connector 201.
  • the fluorescent member 108 is inserted through the through hole of the connector 201 and is brought into contact with the support layer 106 and fixed.
  • the photodetector 110 and the optical filter 111 are attached to the connector 201.
  • the photodetector 110 is electrically wired and connected to a measuring instrument (not shown).
  • the optical filter 111 is attached to the front surface of the light receiving surface of the photodetector 110, in other words, between the photodetector 110 and the fluorescent member 108.
  • the alignment device 204 is attached to the housing 203, and after the condenser lens 102 is attached to the alignment device 204, the optical fiber 101 integrated with the connector 201 is inserted into the housing 203 and fixed.
  • the propagation of the laser beam 107 will be described with reference to FIG.
  • the laser beam 107 incident on the clad 104 due to the axial deviation of the laser beam 107 emits fluorescence 109 by the fluorescent member 108.
  • the fluorescent light 109 emitted directly from the fluorescent member 108 into the free space inside the connector 201 passes through the optical filter 111 and enters the photodetector 110. Thereby, it is possible to detect that the laser beam 107 has entered the clad 104 by the photodetector 110 provided in the connector 201.
  • FIG. 14 is a cross-sectional view in the extending direction of the optical fiber device 100 having two fluorescent members 108 that emit different fluorescence.
  • the connector 201 is provided with two fluorescent members 108 a and 108 b that emit fluorescence of different wavelengths, and the housing 203 is provided with two photodetectors 110.
  • the two fluorescent members 108 a and 108 b are brought into contact with the support layer 106 of the optical fiber 101, respectively, and are integrated with the optical fiber 101 by the connector 201.
  • two types of optical filters 111a and 111b having wavelength selectivity are received by the two photodetectors 110, respectively, so that fluorescence of two types of wavelengths emitted by the two fluorescent members 108a and 108b can be detected. Attach to the front of the surface.
  • the optical filter 111a corresponds to the wavelength of fluorescence emitted from the fluorescent member 108a
  • the optical filter 111b corresponds to the wavelength of fluorescence emitted from the fluorescent member 108b.
  • Each of the photodetectors 110 is electrically wired and connected to a measuring instrument (not shown).
  • the alignment device 204 is attached to the housing 203, and after the condenser lens 102 is attached to the alignment device 204, the optical fiber 101 integrated with the connector 201 is inserted into the housing 203 and fixed.
  • the propagation of the laser beam 107 will be described with reference to FIG.
  • the laser beam 107 incident on the clad 104 due to the axial deviation of the laser beam 107 emits fluorescence 109a by the fluorescence member 108a.
  • the fluorescent light 109 a passes through the cladding 104, the support layer 106, the core 103, and the end cap 112, and is emitted to a free space in the housing 203.
  • Fluorescence 109a emitted into free space travels toward the two photodetectors 110.
  • Optical filters 111a and 111b having wavelength selectivity are attached to the front surfaces of the light receiving surfaces of the two photodetectors 110, respectively.
  • the fluorescence 109a is incident on the photodetector 110 corresponding to the optical filter 111a that transmits the fluorescence 109a, and the fluorescence 109a is not incident on the photodetector 110 corresponding to the optical filter 111b that does not transmit the fluorescence 109a.
  • the direction and degree of misalignment can be determined from the intensity of the fluorescent member.
  • the optical fiber device 100 has the same configuration as that shown in FIG. 1, and the manufacturing method is the same as described above. Note that the following specific examples are examples of the present disclosure and do not limit the present disclosure.
  • FIG. 15 is a side view showing a laser output confirmation device having the optical fiber device 100 according to the present embodiment.
  • the optical fiber 101 has a core 103 with a diameter of 100 ⁇ m, a cladding 104 with a diameter of 125 ⁇ m, a support layer 106 with a diameter of 500 ⁇ m, and a numerical aperture NA of 0.22.
  • the core 103 and the support layer 106 are made of pure quartz glass
  • the clad 104 is made of fluorine-doped quartz glass
  • the coating resin 105 is made of a silicone resin having a lower refractive index than that of the clad 104.
  • the end cap 112 made of a pure quartz glass has a cylindrical shape with a diameter of 8 mm and is connected to the entrance / exit end face of the optical fiber 101.
  • the fluorescent member 108 is ytterbium-doped quartz glass.
  • the fluorescent member 108 absorbs the laser beam 107 having a wavelength of 0.98 ⁇ m and emits fluorescence having a wavelength of 1.06 ⁇ m.
  • the photodetector 110 is a photodiode, and the measurement wavelength range of the photodetector 110 is 0.6 ⁇ m to 1.1 ⁇ m.
  • the optical filter 111 has a reflectance of 99% or more with respect to light having a wavelength of 0.98 ⁇ m and a reflectance of 1% with respect to light having a wavelength of 1.06 ⁇ m.
  • the optical fiber 101 is integrated with the connector 201, and the fluorescent member 108 is in contact with the support layer 106.
  • the connector 201 can be fixed by being inserted into the housing 203, and the condenser lens 102 and the alignment device 204 are installed inside the housing 203.
  • the focal length of the condenser lens 102 is 30 mm.
  • a photodetector 110 is attached inside the housing 203, and an optical filter 111 is attached to the front surface of the light receiving surface of the photodetector 110.
  • the operation check of the optical fiber device 100 will be described. The operation is confirmed by entering the laser beam 107 into the optical fiber 101 and measuring the power of the laser beam 107 emitted from the emission end face.
  • the light source of the laser beam 107 is a laser light source 301.
  • the oscillation wavelength of the laser beam 107 emitted from the laser light source 301 is 0.98 ⁇ m, the output is 0 to 100 W, and the NA of the laser beam 107 emitted from the optical fiber 101 is 0.15.
  • a power meter 302 that receives the emitted laser beam 107 is installed near the emission end of the optical fiber 101, thereby measuring the output of the laser beam 107 emitted from the optical fiber 101.
  • the support resin 106 is exposed by removing about 10 cm of the coating resin 105 from the vicinity of the exit end of the optical fiber 101.
  • a transparent resin 303 having a refractive index higher than that of the support layer 106 is brought into contact with the exposed side surface of the support layer 106.
  • the laser beam 107 in the clad 104 is absorbed and removed by the transparent resin 303 having a refractive index higher than that of the support layer 106. Therefore, when the laser beam 107 is transmitted in the clad 104, the output of the laser beam at the emission end face of the optical fiber 101 is reduced, and the display value of the power meter 302 is lowered. This operation is for confirming the misalignment of the laser beam 107 and is not performed during the laser processing.
  • the position of the condenser lens 102 is adjusted by the aligning device 204 while emitting a low-power laser beam 107 of about 5 W from the laser light source 301.
  • the position of the condenser lens 102 is adjusted so that the display value of the power meter 302 is maximized.
  • the position of the condensing lens 102 at which the display value of the power meter 302 is maximized is in a state where there is no misalignment, and the laser beam 107 is incident on the core 103 of the optical fiber 101.
  • the display value of the power meter 302 and the amount of electricity emitted from the photodetector 110 are read while emitting 100 W of high-power laser light 107 from the laser light source 301.
  • the position of the condenser lens 102 is moved to intentionally cause misalignment.
  • the display value of the power meter 302 decreases, and conversely, the amount of electricity output from the photodetector 110 increases. From this correlation, it can be determined that light is incident on the clad 104 due to the axial deviation, and it can be confirmed that the detection of misalignment by the fluorescent member of the present disclosure functions normally.
  • the optical fiber device can detect that laser light has entered the clad, and can prevent deterioration of the reliability of the optical fiber device and deterioration of the quality of the transmitted laser light. Therefore, it is useful in an optical fiber device that guides light from the free space to the end face of the optical fiber.
  • Optical fiber apparatus 101 Optical fiber 102 Condensing lens 103,114 Core 104 Cladding 105 Coating resin 106,113 Support layer 107 Laser beam 108,108a, 108b, 115 Fluorescence member 109,109a Fluorescence 110 Photodetector 111,111a, 111b Optical filter 112 End cap 201 Connector 202 Elastic body 203 Housing 204 Alignment device 301 Laser light source 302 Power meter 303 Transparent resin 400 Optical fiber device 401 Optical fiber 402 Light incident / exit end 403 Diffuser 404 Detector

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 This optical fiber device has an optical fiber, a fluorescent member, and a photodetector. The optical fiber has a transmission channel which has a core and cladding surrounding the core, and a sheath surrounding the transmission channel. The fluorescent member contacts the transmission channel in a stripped section where the sheath of the optical fiber has been stripped. The photodetector detects light of the emission wavelength of the fluorescent member.

Description

光ファイバ装置Fiber optic equipment
 本開示は、レーザ光を自由空間から光ファイバの端面に導く光ファイバ装置に関する。 The present disclosure relates to an optical fiber device that guides laser light from free space to an end face of an optical fiber.
 近年、高出力化が進み、かつ、エネルギーの集中効率がよいレーザ光が溶接や切断などの加工に利用されている。また、光ファイバをレーザ光の加工部近傍までの伝送に用いることで、自由度の高いロボットなどのアプリケーション機器と組み合わせるといった、レーザ光の応用範囲が広がっている。 In recent years, laser light with high output and high energy concentration efficiency has been used for processing such as welding and cutting. In addition, by using an optical fiber for transmission of laser light to the vicinity of a processing part, the application range of laser light, such as combining with application equipment such as a robot having a high degree of freedom, has been expanded.
 レーザ光を光ファイバで伝送するためには、レーザ発振器から射出されたレーザ光を光ファイバ内に導く(入射させる)必要がある。また、すでに光ファイバで伝送されているレーザ光を、アプリケーション機器に用いられる別の光ファイバに導く必要がある。 In order to transmit laser light through an optical fiber, it is necessary to guide (inject) the laser light emitted from the laser oscillator into the optical fiber. In addition, it is necessary to guide laser light already transmitted through an optical fiber to another optical fiber used for application equipment.
 そのために、自由空間を伝搬するレーザ光を集光し、光ファイバの端面から内部へ入射させる光ファイバ装置が必要となる。この技術は、高出力のレーザ光を伝送元の光ファイバから一旦自由空間に射出させ、自由空間内でレーザ光を集光して再び伝送先の光ファイバに入射させるような、即ちファイバカップリングを行うコネクト装置にも必要である。さらにこの技術は、レーザ光の伝送先となる複数の光ファイバから1つの光ファイバを選択して、レーザ光を入射させるスイッチ装置にも必要である。 Therefore, an optical fiber device that collects laser light propagating in free space and makes it incident inside from the end face of the optical fiber is required. This technology is such that high-power laser light is once emitted from a transmission source optical fiber into free space, and the laser light is condensed in free space and incident again on the transmission destination optical fiber, that is, fiber coupling. It is also necessary for the connect device that performs the above. Furthermore, this technique is also required for a switch device that selects one optical fiber from a plurality of optical fibers that are laser beam transmission destinations and makes laser light incident.
 通常、光ファイバはコア、クラッド、被覆樹脂から構成されている。コアは光が伝搬する部位であり、クラッドはコアに光を閉じ込める部位であり、被覆樹脂はコアとクラッドを保護する部位である。光ファイバにレーザ光を入射して伝搬させるには、自由空間を伝搬しているレーザ光を、集光レンズで光ファイバのコアの直径以下に集光し、光ファイバの端面からコアに入射させる。そのため、光学系の調芯は必須である。すなわち、伝送するレーザ光の品質を保ったまま、被覆樹脂に漏れることによるレーザ光のロスを防止するには、高い精度でレーザ光をコアへ入射する必要がある。 Usually, an optical fiber is composed of a core, a clad, and a coating resin. The core is a part through which light propagates, the clad is a part that confines light in the core, and the coating resin is a part that protects the core and the clad. In order to propagate a laser beam incident on an optical fiber, the laser beam propagating in free space is condensed to a diameter equal to or less than the diameter of the core of the optical fiber with a condensing lens and incident on the core from the end face of the optical fiber. . Therefore, alignment of the optical system is essential. That is, in order to prevent loss of laser light due to leakage into the coating resin while maintaining the quality of the transmitted laser light, it is necessary to make the laser light incident on the core with high accuracy.
 特許文献1に記載された従来技術を、図16を用いて説明する。 The prior art described in Patent Document 1 will be described with reference to FIG.
 図16は、従来の光ファイバ装置400の側面図である。図16に示すように、従来の光ファイバ装置400は、光ファイバ401の出入射端402の損傷を事前に知る為に、光ファイバ401の出入射端402の半径方向に拡散体403と検出器404とを有している。そして、半径方向に反射されるレーザ光の強度を検出器404で検出し、検出されたレーザ光の強度によって、光ファイバ401の出入射端402の損傷を判断している。 FIG. 16 is a side view of a conventional optical fiber device 400. As shown in FIG. 16, the conventional optical fiber device 400 includes a diffuser 403 and a detector in the radial direction of the light incident / incident end 402 of the optical fiber 401 in order to know in advance damage to the light incident / incident end 402 of the optical fiber 401. 404. Then, the intensity of the laser beam reflected in the radial direction is detected by the detector 404, and the damage of the exit / incident end 402 of the optical fiber 401 is determined based on the detected intensity of the laser beam.
特表2005-500528号公報JP 2005-500528 Gazette
 しかし、従来の光ファイバ装置では、光ファイバの端面の異常を検知できるが、レーザ光の調芯ずれによって、クラッドにレーザ光が入射されているかどうかという判別はできなかった。 However, the conventional optical fiber device can detect an abnormality of the end face of the optical fiber, but cannot determine whether the laser light is incident on the clad due to misalignment of the laser light.
 一般的な光ファイバでは、クラッドの屈折率よりも被覆樹脂の屈折率の方が高い。そのため、レーザ光の調芯ずれによって、レーザ光の一部がクラッドに入射された場合、レーザ光は光ファイバを伝搬しながら被覆樹脂に吸収される。これにより、光ファイバの出射端面から出射されるレーザ光の出力が低下する。さらに、被覆樹脂に吸収されたレーザ光のエネルギーは熱エネルギーに変換され、被覆樹脂が発熱して損傷する可能性がある。 In general optical fibers, the refractive index of the coating resin is higher than the refractive index of the cladding. Therefore, when part of the laser light is incident on the clad due to misalignment of the laser light, the laser light is absorbed by the coating resin while propagating through the optical fiber. Thereby, the output of the laser beam emitted from the emission end face of the optical fiber is reduced. Furthermore, the energy of the laser light absorbed by the coating resin is converted into thermal energy, and the coating resin may generate heat and be damaged.
 一方で、ファイバレーザに代表されるような高出力のレーザ光を伝送する光ファイバは、クラッドの屈折率よりも被覆樹脂の屈折率が低い。この光ファイバでは、クラッドへレーザ光が入射されても、レーザ光はクラッドと被覆樹脂の界面で全反射する。すなわち、クラッドが第二のコアとして働き、被覆樹脂が第二のクラッドとして働く為、クラッドに入射する光も光ファイバの出射端まで伝搬する。この光ファイバはクラッドとして機能する部位を2つ有しているのでダブルクラッドファイバとも呼ばれている。 On the other hand, an optical fiber that transmits a high-power laser beam represented by a fiber laser has a refractive index of the coating resin lower than that of the cladding. In this optical fiber, even when laser light is incident on the clad, the laser light is totally reflected at the interface between the clad and the coating resin. That is, since the clad serves as the second core and the coating resin serves as the second clad, the light incident on the clad also propagates to the output end of the optical fiber. Since this optical fiber has two parts that function as a clad, it is also called a double clad fiber.
 ダブルクラッドファイバにおいてレーザ光がクラッドに入射すると、ダブルクラッドファイバの出射端面から出射されるレーザ光のパワーはコアのみにレーザ光が入射された時と変わらない。さらに、ダブルクラッドファイバの出射端面から出射されるレーザ光の出射角度も変わらない。このため、ダブルクラッドファイバである光ファイバの出射端面でのレーザ光の径がクラッドを含めた分だけ大きくなっているので、出射されるレーザ光のビーム品質は悪化する。 When the laser light is incident on the clad in the double clad fiber, the power of the laser light emitted from the emission end face of the double clad fiber is not different from that when the laser light is incident only on the core. Further, the emission angle of the laser beam emitted from the emission end face of the double clad fiber does not change. For this reason, since the diameter of the laser beam at the emission end face of the optical fiber which is a double clad fiber is increased by the amount including the cladding, the beam quality of the emitted laser beam is deteriorated.
 レーザによる溶接や切断などのレーザ加工を実施する場合、光ファイバの出射端の後に加工ヘッドと呼ばれるレーザ光を集光する光学系を取り付け、集光したレーザ光を加工対象物に照射する。レーザ光のビーム品質が悪化していると、集光したレーザ光のスポット径が大きくなり、加工点での光密度が低下して所望の光学特性を得られない。レーザ加工を実施する際は、加工ヘッドが繰り返し移動し、且つ、加工ヘッドの高精度な位置決め制御が必要であり、加工ヘッドは軽量で小型なものが求められている。 When performing laser processing such as welding or cutting with a laser, an optical system called a processing head for condensing laser light is attached after the output end of the optical fiber, and the processing target is irradiated with the focused laser light. If the beam quality of the laser beam is deteriorated, the spot diameter of the focused laser beam is increased, the light density at the processing point is lowered, and desired optical characteristics cannot be obtained. When carrying out laser processing, the processing head repeatedly moves and high-precision positioning control of the processing head is necessary, and the processing head is required to be lightweight and small.
 さらに、クラッドにもレーザ光を伝搬させるダブルクラッドファイバを使用する場合には、クラッドを伝搬する光も光ファイバの出射端面より出力される。そのため、出射されたレーザ光の出力、角度からコアにのみレーザ光が入射しているのかどうかの判断は困難であった。 Furthermore, when a double clad fiber that propagates laser light is also used for the clad, the light propagating through the clad is also output from the output end face of the optical fiber. Therefore, it is difficult to determine whether the laser beam is incident only on the core from the output and angle of the emitted laser beam.
 光ファイバの出射端面から支障なく所望の光学特性のレーザ光を出射させるには、光ファイバに入射するレーザ光がコアからずれてクラッドに入射されていないようにすることが重要であり、光ファイバの伝送路の異常が検知できればレーザ加工装置の信頼性を高めることができる。 In order to emit laser light having a desired optical characteristic from the emission end face of the optical fiber, it is important that the laser light incident on the optical fiber is shifted from the core and not incident on the cladding. If the abnormality of the transmission line can be detected, the reliability of the laser processing apparatus can be improved.
 以上のように、調芯ずれが発生して光ファイバのクラッドにレーザ光が入射すると、光ファイバの被覆樹脂が損傷することになったり、光ファイバの出射端面から出射されるレーザ光のビーム品質が悪化する。 As described above, when the misalignment occurs and the laser light enters the optical fiber cladding, the coating resin of the optical fiber may be damaged, or the beam quality of the laser light emitted from the optical fiber exit end face Gets worse.
 そこで本開示は、光ファイバのクラッドにレーザ光が入射したことを検知でき、これにより、光ファイバ装置の信頼性やレーザ光の品質の悪化を防止することができる光ファイバ装置を提供する。 Therefore, the present disclosure provides an optical fiber device that can detect that laser light is incident on the clad of the optical fiber, thereby preventing deterioration of the reliability of the optical fiber device and the quality of the laser light.
 上記課題を解決するために、本開示に係る光ファイバ装置は、光ファイバと、蛍光部材と、光検出器とを有する。光ファイバは、コアおよびコアを囲むクラッドを有する伝送路と、伝送路を囲む被覆とを有する。蛍光部材は、光ファイバの被覆が剥離された剥離部において、伝送路に接する。光検出器は、蛍光部材の発光波長の光を検知する。 In order to solve the above problems, an optical fiber device according to the present disclosure includes an optical fiber, a fluorescent member, and a photodetector. The optical fiber has a transmission line having a core and a clad surrounding the core, and a coating surrounding the transmission line. The fluorescent member is in contact with the transmission line at the peeling portion where the coating of the optical fiber is peeled off. The photodetector detects light having the emission wavelength of the fluorescent member.
 上記の構成により、本開示に係る光ファイバ装置では、光ファイバのクラッドにレーザ光が入射したことを検知でき、これにより、光ファイバ装置の信頼性やレーザ光の品質の悪化を防止することができる。 With the above configuration, the optical fiber device according to the present disclosure can detect that laser light is incident on the clad of the optical fiber, thereby preventing deterioration of the reliability of the optical fiber device and the quality of the laser light. it can.
図1は、実施の形態に係る光ファイバ装置の構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration of an optical fiber device according to an embodiment. 図2は、実施の形態の光ファイバの延伸方向に対して垂直な断面図である。FIG. 2 is a cross-sectional view perpendicular to the extending direction of the optical fiber according to the embodiment. 図3は、実施の形態の、サポート層を有する光ファイバの、延伸方向に垂直な断面図である。FIG. 3 is a cross-sectional view of an optical fiber having a support layer according to an embodiment perpendicular to the stretching direction. 図4は、実施の形態の、サポート層を有さない光ファイバの、延伸方向の断面図であり、(a)は被覆樹脂の屈折率がクラッドよりも高い場合のレーザ光の伝搬を示す図であり、(b)は被覆樹脂の屈折率がクラッドよりも低い場合のレーザ光の伝搬を示す図である。FIG. 4 is a cross-sectional view in the stretching direction of an optical fiber having no support layer according to the embodiment, and (a) is a diagram showing the propagation of laser light when the refractive index of the coating resin is higher than that of the cladding. (B) is a figure which shows propagation | transmission of the laser beam in case the refractive index of coating resin is lower than a clad. 図5は、実施の形態の、サポート層を有する光ファイバの、延伸方向の断面図であり、(a)は被覆樹脂の屈折率がサポート層よりも高い場合のレーザ光の伝搬を示す図であり、(b)は被覆樹脂の屈折率がサポート層よりも低い場合のレーザ光の伝搬を示す図である。FIG. 5 is a cross-sectional view of an optical fiber having a support layer according to the embodiment in the stretching direction. FIG. 5A is a diagram illustrating propagation of laser light when the refractive index of the coating resin is higher than that of the support layer. FIG. 6B is a diagram showing the propagation of laser light when the refractive index of the coating resin is lower than that of the support layer. 図6は、実施の形態の光ファイバの、延伸方向の断面図であり、(a)はエンドキャップを有さない光ファイバへ入射するレーザ光の模式図、(b)はエンドキャップを有する光ファイバへ入射するレーザ光の模式図である。6A and 6B are cross-sectional views of the optical fiber of the embodiment in the extending direction. FIG. 6A is a schematic diagram of laser light incident on an optical fiber having no end cap, and FIG. 6B is light having an end cap. It is a schematic diagram of the laser beam which injects into a fiber. 図7は、実施の形態に係る光ファイバ装置の主要な構成と動作を示す側面図である。FIG. 7 is a side view showing the main configuration and operation of the optical fiber device according to the embodiment. 図8は、本実施の形態の、蛍光部材が光ファイバの伝送路に接する箇所における断面図である。FIG. 8 is a cross-sectional view of the present embodiment where the fluorescent member is in contact with the transmission path of the optical fiber. 図9は、蛍光部材の配置のバリエーションを示す、光ファイバと蛍光部材との断面図である。FIG. 9 is a cross-sectional view of the optical fiber and the fluorescent member, showing variations in the arrangement of the fluorescent member. 図10は、異なる蛍光を発する複数の蛍光部材を配置したバリエーションを示す、光ファイバと蛍光部材との断面図である。FIG. 10 is a cross-sectional view of an optical fiber and a fluorescent member showing a variation in which a plurality of fluorescent members emitting different fluorescence are arranged. 図11は、蛍光部材をコネクタで保持した、延伸方向に垂直な断面図である。FIG. 11 is a cross-sectional view perpendicular to the extending direction in which the fluorescent member is held by a connector. 図12は、蛍光部材を一体化した光ファイバを示す、延伸方向の断面図である。FIG. 12 is a cross-sectional view in the extending direction showing an optical fiber integrated with a fluorescent member. 図13は、コネクタに光検出器を設けた光ファイバ装置を示す断面図である。FIG. 13 is a cross-sectional view showing an optical fiber device in which a photodetector is provided in the connector. 図14は、互いに異なる蛍光を発する2つの蛍光部材を有する光ファイバ装置の、延伸方向の断面図である。FIG. 14 is a cross-sectional view in the extending direction of an optical fiber device having two fluorescent members emitting different fluorescence. 図15は、実施の形態にかかる、光ファイバ装置を有するレーザ出力確認装置を示す側面図である。FIG. 15 is a side view showing a laser output confirmation device having an optical fiber device according to the embodiment. 図16は、従来の光ファイバ装置の側面図である。FIG. 16 is a side view of a conventional optical fiber device.
 以下、本開示の実施の形態について、図面を参照しながら説明する。以下の図面においては、同じ構成要素については同じ符号を付しているので説明を省略する場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following drawings, the same components are denoted by the same reference numerals, and the description thereof may be omitted.
 (実施の形態)
 <光ファイバ装置100の主要構成>
 図1は、本実施の形態に係る光ファイバ装置100の構成を示す断面図である。図1に示すように、光ファイバ装置100は、光ファイバ101と、蛍光部材108と、光検出器110とを有する。
(Embodiment)
<Main configuration of optical fiber device 100>
FIG. 1 is a cross-sectional view showing a configuration of an optical fiber device 100 according to the present embodiment. As shown in FIG. 1, the optical fiber device 100 includes an optical fiber 101, a fluorescent member 108, and a photodetector 110.
 図1に示すように、光ファイバ装置100は、コネクタ201を有し、光ファイバ101と蛍光部材108とエンドキャップ112とを一体として構成している。また、ハウジング203を有し、コネクタ201で一体化された光ファイバ101をハウジング203に対して着脱可能に保持できる。ハウジング203は、さらに、光学フィルタ111と光検出器110を所定の位置に保持し、集光レンズ102は調芯装置204を介して入射するレーザ光107の焦点の位置を調整できるようにハウジング203に設置される。 As shown in FIG. 1, the optical fiber device 100 includes a connector 201, and includes an optical fiber 101, a fluorescent member 108, and an end cap 112 as an integral unit. Moreover, the optical fiber 101 which has the housing 203 and was integrated by the connector 201 can be hold | maintained so that attachment or detachment with respect to the housing 203 is possible. The housing 203 further holds the optical filter 111 and the photodetector 110 at predetermined positions, and the condenser lens 102 can adjust the focal position of the laser beam 107 incident through the alignment device 204. Installed.
 光ファイバ101にレーザ光107を入射して伝搬させるには、自由空間を伝搬しているレーザ光107を集光レンズ102で光ファイバ101のコア103の直径以下に集光して光ファイバ101の端面からコア103に入射する必要がある。光ファイバ101は、少なくとも、コア103、クラッド104、被覆樹脂105を備えている。コア103はレーザ光107が伝搬する部位であり、クラッド104はコア103にレーザ光107を閉じ込める部位であり、被覆樹脂105はコア103とクラッド104を保護する部位である。 In order for the laser beam 107 to be incident on the optical fiber 101 and propagated, the laser beam 107 propagating in free space is condensed by the condensing lens 102 to be equal to or smaller than the diameter of the core 103 of the optical fiber 101, and the optical fiber 101. It is necessary to enter the core 103 from the end face. The optical fiber 101 includes at least a core 103, a clad 104, and a coating resin 105. The core 103 is a site where the laser beam 107 propagates, the clad 104 is a site where the laser beam 107 is confined in the core 103, and the coating resin 105 is a site that protects the core 103 and the clad 104.
 コア103はクラッド104よりも屈折率が高く、コア103とクラッド104の屈折率差を利用してコア103とクラッド104の界面でレーザ光107を全反射させて、コア103にレーザ光107を閉じ込めながら伝搬させている。コア103とクラッド104の屈折率差が大きいと全反射角度(臨界角)も大きくなるため、より大きな入射角のレーザ光107を入射して伝搬させることができる。図1では、サポート層106を有する光ファイバ101を記載している。なお、サポート層106を有する光ファイバにおいては、コア103とクラッド104とサポート層106とをまとめて伝送路といい、サポート層106を有しない光ファイバにおいては、コア103とクラッド104とをまとめて伝送路という。 The core 103 has a higher refractive index than the clad 104, and the laser beam 107 is totally reflected at the interface between the core 103 and the clad 104 using the difference in refractive index between the core 103 and the clad 104, thereby confining the laser beam 107 in the core 103. While propagating. When the refractive index difference between the core 103 and the clad 104 is large, the total reflection angle (critical angle) also increases, so that the laser beam 107 having a larger incident angle can be incident and propagated. In FIG. 1, an optical fiber 101 having a support layer 106 is illustrated. In the optical fiber having the support layer 106, the core 103, the clad 104, and the support layer 106 are collectively referred to as a transmission line, and in the optical fiber having no support layer 106, the core 103 and the clad 104 are collectively referred to. It is called a transmission line.
 高出力のレーザ光107を使用する場合は、エンドキャップ112を光ファイバ101の端面に溶融接続して光ファイバ101の端面の損傷を防止する。エンドキャップ112に関しては後述する。 When the high-power laser beam 107 is used, the end cap 112 is fused and connected to the end face of the optical fiber 101 to prevent damage to the end face of the optical fiber 101. The end cap 112 will be described later.
 先ず、光ファイバ101の各構成要素について詳細に述べる。 First, each component of the optical fiber 101 will be described in detail.
 光ファイバ101はコア103、クラッド104、被覆樹脂105で構成される。コア103とクラッド104の材質は、光損失が低いガラスまたは光損失が低いプラスチックでできている。コア103はクラッド104よりも屈折率が高く、コア103とクラッド104の屈折率差によるレーザ光107の全反射によってコア103をレーザ光107が伝搬する。 The optical fiber 101 includes a core 103, a clad 104, and a coating resin 105. The material of the core 103 and the clad 104 is made of glass with low optical loss or plastic with low optical loss. The core 103 has a refractive index higher than that of the clad 104, and the laser beam 107 propagates through the core 103 due to total reflection of the laser beam 107 due to a difference in refractive index between the core 103 and the clad 104.
 図2は、本実施の形態の光ファイバ101の延伸方向に対して垂直な断面図である。光ファイバ101の中心にコア103があり、コア103の周囲にクラッド104、クラッド104の周囲に被覆樹脂105が配置されている。 FIG. 2 is a cross-sectional view perpendicular to the extending direction of the optical fiber 101 of the present embodiment. There is a core 103 at the center of the optical fiber 101, a clad 104 around the core 103, and a coating resin 105 around the clad 104.
 100Wを超えるような高出力のレーザ光107を伝搬させる場合、光ファイバ101のコア103は純粋石英ガラス、クラッド104はフッ素やホウ素を含有して石英ガラスよりも屈折率を低くしたドープ石英ガラスが使用されている。 When propagating a high-power laser beam 107 exceeding 100 W, the core 103 of the optical fiber 101 is made of pure quartz glass, and the cladding 104 is made of doped quartz glass containing fluorine or boron and having a refractive index lower than that of quartz glass. in use.
 石英ガラスは光損失が低く、耐熱性があり、且つ、熱膨張もほとんどない材質である為、高出力のレーザ光107を使用する時には通常は石英ガラス製の光ファイバ101を使用する。石英ガラス製の光ファイバ101の開口数NAは0.12、0.15、0.22であり、光ファイバ101のコア径はφ100、φ200、φ400、φ600μmなどである。 Quartz glass is a material that has low optical loss, heat resistance, and little thermal expansion. Therefore, when using a high-power laser beam 107, an optical fiber 101 made of quartz glass is usually used. The numerical aperture NA of the optical fiber 101 made of quartz glass is 0.12, 0.15, 0.22, and the core diameter of the optical fiber 101 is φ100, φ200, φ400, φ600 μm, or the like.
 ところで、レーザ溶接などを行う場合、光ファイバ101のレーザ光107の出射側の端部を加工用ロボットのアーム先端に取付けて光ファイバ101を繰り返し屈曲、旋回させることになる。そのため、光ファイバ101の高い機械的強度が要求される。このような用途に使用される光ファイバ101は、クラッド104の周囲にさらにサポート層106を有し、伝送路の外径を太くして、光ファイバの機械的強度を高くしている。 By the way, when performing laser welding or the like, the end of the optical fiber 101 on the emission side of the laser beam 107 is attached to the tip of the arm of the processing robot, and the optical fiber 101 is repeatedly bent and swiveled. Therefore, high mechanical strength of the optical fiber 101 is required. The optical fiber 101 used for such an application further has a support layer 106 around the cladding 104, and the outer diameter of the transmission line is increased to increase the mechanical strength of the optical fiber.
 図3は、サポート層106を有する光ファイバ101の、延伸方向に垂直な断面図である。光ファイバ101の中心にコア103があり、コア103の周囲にクラッド104、クラッド104の周囲にサポート層106、サポート層106の周囲に被覆樹脂105が配置されている。このサポート層106の材質は、コア103と同じ材質が用いられることが多く、高出力のレーザ光107を使用する場合、純粋石英ガラスである。光ファイバ101のサポート層106の外径はφ250、φ500、φ750、φ1000μmなどである。 FIG. 3 is a cross-sectional view of the optical fiber 101 having the support layer 106 perpendicular to the stretching direction. There is a core 103 at the center of the optical fiber 101, a clad 104 around the core 103, a support layer 106 around the clad 104, and a coating resin 105 around the support layer 106. The support layer 106 is often made of the same material as that of the core 103, and is pure quartz glass when the high-power laser beam 107 is used. The outer diameter of the support layer 106 of the optical fiber 101 is φ250, φ500, φ750, φ1000 μm, or the like.
 光ファイバ101では、本明細書における「サポート層」を単に「クラッド」と表現されることもある。本明細書ではクラッド104と光学的機能が異なることを明確にする為に、「サポート層」と表記する。 In the optical fiber 101, the “support layer” in this specification may be simply expressed as “cladding”. In this specification, in order to clarify that the optical function is different from that of the clad 104, it is expressed as “support layer”.
 光ファイバ101の被覆樹脂105の材料は、高出力のレーザ光107を使用する場合、耐熱性のあるシリコーン樹脂、または耐熱性のあるフッ素樹脂が使用される。そして、クラッド104またはサポート層106を伝搬するレーザ光107によって被覆樹脂105が損傷しないようにする為に被覆樹脂105はクラッド104、またはサポート層106よりも屈折率の低い材料が用いられる。被覆樹脂105に屈折率の低い材料を使用すると、クラッド104と被覆樹脂105の界面でレーザ光107が全反射してクラッド104をレーザ光107が伝搬する。これにより、被覆樹脂105に向かってレーザ光107が進行しなくなるため、被覆樹脂105の損傷を軽減することができる。 The material of the coating resin 105 of the optical fiber 101 is a heat-resistant silicone resin or a heat-resistant fluororesin when the high-power laser beam 107 is used. In order to prevent the coating resin 105 from being damaged by the laser beam 107 propagating through the cladding 104 or the support layer 106, a material having a lower refractive index than that of the cladding 104 or the support layer 106 is used for the coating resin 105. When a material having a low refractive index is used for the coating resin 105, the laser beam 107 is totally reflected at the interface between the cladding 104 and the coating resin 105, and the laser beam 107 propagates through the cladding 104. Thereby, since the laser beam 107 does not travel toward the coating resin 105, damage to the coating resin 105 can be reduced.
 しかし、光ファイバ101のクラッド104に入射されたレーザ光107は、光ファイバ101の出射端面まで伝搬され、光ファイバ101から出射するレーザ光107の光学特性が低下する。これに対し、例えば、光ファイバ同士を接続している溶融接続点など、コア103からクラッド104へレーザ光107が多く漏洩する部位に、冷却装置を備え、その部位で一括してクラッド104、またはサポート層106を伝搬するレーザ光107を吸収して除去する方法が用いられる。 However, the laser light 107 incident on the clad 104 of the optical fiber 101 is propagated to the emission end face of the optical fiber 101, and the optical characteristics of the laser light 107 emitted from the optical fiber 101 are deteriorated. On the other hand, for example, a cooling device is provided at a portion where the laser beam 107 leaks from the core 103 to the cladding 104, such as a fusion connection point where optical fibers are connected to each other, and the cladding 104 or A method of absorbing and removing the laser beam 107 propagating through the support layer 106 is used.
 次に、光ファイバ101を伝搬するレーザ光107について説明する。 Next, the laser beam 107 propagating through the optical fiber 101 will be described.
 サポート層106を有しない光ファイバ101におけるレーザ光107の伝搬について説明する。図4は、サポート層を有さない光ファイバ101の、延伸方向の断面図であり、(a)は被覆樹脂105の屈折率がクラッド104よりも高い場合のレーザ光107の伝搬を示す図であり、(b)は被覆樹脂105の屈折率がクラッド104よりも低い場合のレーザ光107の伝搬を示す図である。被覆樹脂105を除去している部分(剥離部)は空気と接しており、空気の絶対屈折率は1.0で固体物質の絶対屈折率よりも低い。そのため、空気がクラッドの役割をして被覆樹脂105を除去している部分(剥離部)はレーザ光107が伝搬する。 The propagation of the laser beam 107 in the optical fiber 101 without the support layer 106 will be described. FIG. 4 is a cross-sectional view of the optical fiber 101 having no support layer in the stretching direction, and FIG. 4A is a diagram showing the propagation of the laser light 107 when the refractive index of the coating resin 105 is higher than that of the cladding 104. FIG. 6B is a diagram illustrating the propagation of the laser beam 107 when the refractive index of the coating resin 105 is lower than that of the cladding 104. The portion from which the coating resin 105 is removed (peeling portion) is in contact with air, and the absolute refractive index of air is 1.0, which is lower than the absolute refractive index of the solid substance. Therefore, the laser beam 107 propagates through a portion (peeling portion) where the air serves as a clad to remove the coating resin 105.
 図4の(a)に示すように、光ファイバ101のコア103に入射したレーザ光107(実線)は、そのまま光ファイバ101の出射端面から出射される。しかし、光ファイバ101のクラッド104に入射したレーザ光107(破線)はクラッド104から被覆樹脂105に向かって光が進行し、屈折率の関係から、レーザ光107は被覆樹脂105に入射し、被覆樹脂105に吸収されて消滅する。吸収されたレーザ光107は光エネルギーから熱エネルギーに変換されて被覆樹脂105が発熱する。 As shown in FIG. 4A, the laser beam 107 (solid line) incident on the core 103 of the optical fiber 101 is emitted from the emission end face of the optical fiber 101 as it is. However, the laser beam 107 (broken line) incident on the clad 104 of the optical fiber 101 travels from the clad 104 toward the coating resin 105, and the laser beam 107 is incident on the coating resin 105 due to the refractive index. It is absorbed by the resin 105 and disappears. The absorbed laser beam 107 is converted from light energy to heat energy, and the coating resin 105 generates heat.
 図4の(b)に示すように、光ファイバ101のコア103に入射したレーザ光107(実線)は、図4の(a)と同様に、そのまま光ファイバ101の出射端面から出射される。そして、光ファイバ101のクラッド104に入射したレーザ光107(破線)は、屈折率の関係から、クラッド104と被覆樹脂105の間で全反射しながら、クラッド104とコア103を伝搬し、光ファイバ101の出射端面から出射される。 As shown in FIG. 4B, the laser beam 107 (solid line) incident on the core 103 of the optical fiber 101 is emitted as it is from the emission end face of the optical fiber 101 as in FIG. Then, the laser beam 107 (broken line) incident on the clad 104 of the optical fiber 101 propagates through the clad 104 and the core 103 while being totally reflected between the clad 104 and the coating resin 105 due to the relationship of the refractive index. 101 exits from the exit end face.
 一方、サポート層106を有する光ファイバ101におけるレーザ光107の伝搬について説明する。図5は、サポート層106を有する光ファイバ101の、延伸方向の断面図であり、(a)は被覆樹脂105の屈折率がサポート層106よりも高い場合のレーザ光107の伝搬を示す図であり、(b)は被覆樹脂105の屈折率がサポート層106よりも低い場合のレーザ光107の伝搬を示す図である。被覆樹脂105を除去している部分(剥離部)は空気と接しており、空気の絶対屈折率は1.0で固体物質の絶対屈折率よりも低い。そのため、空気がクラッドの役割をして被覆樹脂105を除去している部分(剥離部)はレーザ光107が伝搬する。 Meanwhile, the propagation of the laser beam 107 in the optical fiber 101 having the support layer 106 will be described. FIG. 5 is a cross-sectional view of the optical fiber 101 having the support layer 106 in the stretching direction. FIG. 5A is a diagram illustrating the propagation of the laser light 107 when the refractive index of the coating resin 105 is higher than that of the support layer 106. FIG. 8B is a diagram illustrating the propagation of the laser beam 107 when the refractive index of the coating resin 105 is lower than that of the support layer 106. The portion from which the coating resin 105 is removed (peeling portion) is in contact with air, and the absolute refractive index of air is 1.0, which is lower than the absolute refractive index of the solid substance. Therefore, the laser beam 107 propagates through a portion (peeling portion) where the air serves as a clad to remove the coating resin 105.
 図5の(a)に示すように、光ファイバ101のコア103に入射したレーザ光107(実線)は、そのまま光ファイバ101の出射端面から出射される。しかし、光ファイバ101のクラッド104に入射したレーザ光107(破線)は、クラッド104からサポート層106に向かって進行する。さらに、屈折率の関係から、レーザ光107はサポート層106から被覆樹脂105に入射し、被覆樹脂105に吸収されて消滅する。 As shown in FIG. 5A, the laser beam 107 (solid line) incident on the core 103 of the optical fiber 101 is emitted from the emission end face of the optical fiber 101 as it is. However, the laser beam 107 (broken line) incident on the clad 104 of the optical fiber 101 travels from the clad 104 toward the support layer 106. Further, due to the refractive index, the laser beam 107 is incident on the coating resin 105 from the support layer 106 and is absorbed by the coating resin 105 and disappears.
 図5の(b)に示すように、光ファイバ101のコア103に入射したレーザ光107(実線)は、図5の(a)と同様に、そのまま光ファイバ101の出射端面から出射される。そして、クラッド104に入射したレーザ光107(破線)は、屈折率の関係からクラッド104からサポート層106に向かって進行する。しかし、レーザ光107は、屈折率の関係から、サポート層106と被覆樹脂105の間で全反射し、レーザ光107はクラッド104とサポート層106、及びコア103を伝搬し、光ファイバ101の出射端面から出射される。 As shown in FIG. 5B, the laser beam 107 (solid line) incident on the core 103 of the optical fiber 101 is emitted as it is from the emission end face of the optical fiber 101, as in FIG. The laser beam 107 (broken line) incident on the clad 104 travels from the clad 104 toward the support layer 106 due to the refractive index. However, the laser beam 107 is totally reflected between the support layer 106 and the coating resin 105 due to the refractive index, and the laser beam 107 propagates through the cladding 104, the support layer 106, and the core 103, and is emitted from the optical fiber 101. It is emitted from the end face.
 ところで、高出力のレーザ光107を使用する場合、出入端面の損傷を防止する為にエンドキャップ112と呼ばれる透明体のブロックを光ファイバ101の出入端面に溶融接続する方法が用いられる。光ファイバ101の出入端面のコア103は空気と接しており(露出しており)、光学的強度が低下しているため損傷しやすい。 By the way, when the high-power laser beam 107 is used, a method of melting and connecting a transparent body block called an end cap 112 to the input / output end surface of the optical fiber 101 is used in order to prevent damage to the input / output end surface. The core 103 on the entrance / exit end face of the optical fiber 101 is in contact with air (exposed), and is easily damaged because the optical strength is reduced.
 図6は、本実施の形態の光ファイバ101の、延伸方向の断面図であり、(a)はエンドキャップを有さない光ファイバ101へ入射するレーザ光107の模式図、(b)はエンドキャップ112を有する光ファイバ101へ入射するレーザ光107の模式図である。 6A and 6B are cross-sectional views of the optical fiber 101 according to the present embodiment in the extending direction. FIG. 6A is a schematic diagram of the laser beam 107 incident on the optical fiber 101 having no end cap, and FIG. 3 is a schematic diagram of laser light 107 incident on an optical fiber 101 having a cap 112. FIG.
 図6の(a)および(b)に示すように、エンドキャップ112を光ファイバ101の端部に溶融接続することによって、光ファイバ101の端面を覆うことができる。光ファイバ101に入射するレーザ光107や光ファイバ101から出射するレーザ光107は、円錐形状に進行する。そのため、エンドキャップ112の露出した端面でのレーザ光107の外径の方が、エンドキャップ112に覆われた、光ファイバ101のコア103の端面でのレーザ光107の外径よりも大きい。エンドキャップ112を有することによって、空気に露出したエンドキャップ112の端面のレーザ光107のエネルギー密度が低くなり、光ファイバ101の端面の損傷を防止する。 6 (a) and 6 (b), the end face of the optical fiber 101 can be covered by fusing the end cap 112 to the end of the optical fiber 101. The laser beam 107 incident on the optical fiber 101 and the laser beam 107 emitted from the optical fiber 101 travel in a conical shape. Therefore, the outer diameter of the laser beam 107 at the exposed end face of the end cap 112 is larger than the outer diameter of the laser beam 107 at the end face of the core 103 of the optical fiber 101 covered with the end cap 112. By having the end cap 112, the energy density of the laser beam 107 on the end face of the end cap 112 exposed to air is reduced, and damage to the end face of the optical fiber 101 is prevented.
 エンドキャップ112の材質は耐熱性のある純粋石英ガラスが望ましく、エンドキャップ112の端面は無反射コーティングを施すのが望ましい。例えば長さ10mm、直径φ5mmのエンドキャップ112、コア径φ100μmの光ファイバ101を使用して、NA0.12のレーザ光107をφ100μmまで集光する場合、エンドキャップ112の端面でのレーザ光107の外径は幾何学的に計算しておよそφ2.4mmとなる。これにより、エンドキャップ112の端面でのレーザ光107のエネルギー密度は、エンドキャップ112を有しない光ファイバ101の端面のエネルギー密度の0.0017倍に低下する。 The material of the end cap 112 is preferably heat-resistant pure quartz glass, and the end face of the end cap 112 is preferably subjected to anti-reflection coating. For example, when an end cap 112 having a length of 10 mm and a diameter of φ5 mm and an optical fiber 101 having a core diameter of φ100 μm are used to focus laser light 107 having an NA of 0.12 to φ100 μm, the laser beam 107 on the end face of the end cap 112 The outer diameter is approximately 2.4 mm as calculated geometrically. As a result, the energy density of the laser beam 107 at the end face of the end cap 112 is reduced to 0.0017 times the energy density of the end face of the optical fiber 101 without the end cap 112.
 <本開示の光ファイバ装置100の製造方法>
 本開示の光ファイバ装置100の代表的な製造方法を以下に示す。光ファイバ101はサポート層106を有するもので、エンドキャップ112を端面に接続して端部をコネクタ化する例を、図1を用いて説明する。
<Method for Manufacturing Optical Fiber Device 100 of the Present Disclosure>
A typical manufacturing method of the optical fiber device 100 of the present disclosure will be described below. The optical fiber 101 has a support layer 106, and an example in which an end cap 112 is connected to an end face to form a connector at the end will be described with reference to FIG.
 まず、必要な長さに切断した光ファイバ101の端部付近の被覆樹脂105をストリッパで除去してサポート層106を露出する。被覆樹脂105を完全に除去するために、被覆樹脂105を除去した部分をエタノールで洗浄する。その後、光ファイバ101の端面をクリーブして端面出しをする。高出力のレーザ光107を使用する場合はクリーブした光ファイバ101の端面にエンドキャップ112を溶融接続する。一方、蛍光部材108は所望寸法に加工し、サポート層106との接触面を研磨しておく。 First, the coating resin 105 near the end of the optical fiber 101 cut to a required length is removed with a stripper to expose the support layer 106. In order to completely remove the coating resin 105, the portion from which the coating resin 105 has been removed is washed with ethanol. Thereafter, the end surface of the optical fiber 101 is cleaved to end the surface. When the high-power laser beam 107 is used, the end cap 112 is fused and connected to the end face of the cleaved optical fiber 101. On the other hand, the fluorescent member 108 is processed into a desired dimension, and the contact surface with the support layer 106 is polished.
 次に、光ファイバ101の端部をコネクタ化する。予め蛍光部材108を挿入する貫通穴を施したコネクタ201を準備する。貫通穴の位置は蛍光部材108をサポート層106に接触させる位置に施されており、蛍光部材108が接触する部分では、光ファイバ101の被覆樹脂105が除去されていてサポート層106の表面が露出している。 Next, the end of the optical fiber 101 is made into a connector. A connector 201 having a through hole into which the fluorescent member 108 is inserted in advance is prepared. The position of the through hole is provided at a position where the fluorescent member 108 is brought into contact with the support layer 106. In the portion where the fluorescent member 108 is in contact, the coating resin 105 of the optical fiber 101 is removed and the surface of the support layer 106 is exposed. is doing.
 そして、光ファイバ101の端部をコネクタ化する。その後、貫通穴から蛍光部材108を挿入してクラッド104に接触させ、コネクタ201の貫通穴から接着剤を塗布して蛍光部材108とコネクタ201とを固定する。接着剤が硬化した後、レーザ光107がコネクタ201の貫通穴から漏れ出さないように貫通穴に蓋をする。 Then, the end of the optical fiber 101 is made into a connector. Thereafter, the fluorescent member 108 is inserted from the through hole and brought into contact with the clad 104, and an adhesive is applied from the through hole of the connector 201 to fix the fluorescent member 108 and the connector 201. After the adhesive is cured, the through hole is covered so that the laser beam 107 does not leak from the through hole of the connector 201.
 このコネクタ201を差し込んで固定する為に、図1に示すように、ハウジング203を別途製作する。ハウジング203の内部には集光レンズ102の位置を微調整する為の調芯装置204を取り付ける。調芯装置204によって集光レンズ102の位置を移動させ、集光レンズ102を通過したレーザ光107の集光位置を微調整することができる。 In order to insert and fix the connector 201, a housing 203 is separately manufactured as shown in FIG. An aligning device 204 for finely adjusting the position of the condenser lens 102 is attached inside the housing 203. The position of the condensing lens 102 can be moved by the aligning device 204, and the condensing position of the laser beam 107 that has passed through the condensing lens 102 can be finely adjusted.
 また、ハウジング203は、光検出器110と光学フィルタ111を取り付けられるように加工しておく。光検出器110は蛍光109が受光しやすく、かつ、調芯装置204の移動量を考慮し、入射されるレーザ光107を遮らない位置に取り付ける。光検出器110は電気配線されており、ここでは図示していない測定器に接続される。光学フィルタ111は光検出器110の受光面の前面に取り付ける。 The housing 203 is processed so that the photodetector 110 and the optical filter 111 can be attached. The photodetector 110 is attached at a position where the fluorescent light 109 is easy to receive, and the incident laser beam 107 is not blocked in consideration of the amount of movement of the alignment device 204. The photodetector 110 is electrically wired and is connected to a measuring device not shown here. The optical filter 111 is attached to the front surface of the light receiving surface of the photodetector 110.
 最後に、集光レンズ102を調芯装置204に取り付けた後、コネクタ化した光ファイバ101をハウジング203に差し込んで固定する。 Finally, after the condensing lens 102 is attached to the aligning device 204, the optical fiber 101 formed as a connector is inserted into the housing 203 and fixed.
 <本開示の光ファイバ装置100の動作>
 以下、図面を用いて、本実施の形態の光ファイバ装置100の動作について説明する。図7は、本実施の形態に係る光ファイバ装置100の主要な構成と動作を示す側面図である。なお、図7では、本実施の形態の光ファイバ装置100の動作・作用を説明するための主要な構成要素のみを記載している。
<Operation of Optical Fiber Device 100 of Present Disclosure>
Hereinafter, the operation of the optical fiber device 100 of the present embodiment will be described with reference to the drawings. FIG. 7 is a side view showing the main configuration and operation of the optical fiber device 100 according to the present embodiment. FIG. 7 shows only main components for explaining the operation and action of the optical fiber device 100 of the present embodiment.
 通常、集光レンズ102で集光したレーザ光107が光ファイバ101のコア103のみに入射していると、レーザ光107はコア103を伝搬して光ファイバ101の出射端面まで達する。しかし、振動や衝撃で一部のレーザ光107が光ファイバ101のクラッド104に入射してしまうことがある。 Usually, when the laser beam 107 condensed by the condenser lens 102 is incident only on the core 103 of the optical fiber 101, the laser beam 107 propagates through the core 103 and reaches the emission end face of the optical fiber 101. However, some laser light 107 may enter the clad 104 of the optical fiber 101 due to vibration or impact.
 調芯ずれは、(ア)光ファイバ101の軸心に垂直な方向へのずれ、(イ)光ファイバ101の軸心の方向へのずれ、(ウ)光ファイバ101の軸心とレーザ光107の光軸の角度ずれ、という3つの成分である。このような調芯ずれに対し、本実施の形態の光ファイバ装置100は、集光レンズ102の位置を動かして調整する構造である。本実施の形態の調芯装置204は、各ずれの成分を微調整できるようにマイクロメータで使用されるような送りネジを備えている。 The misalignment includes (a) a deviation in the direction perpendicular to the axis of the optical fiber 101, (b) a deviation in the direction of the axis of the optical fiber 101, and (c) the axis of the optical fiber 101 and the laser beam 107. Are the three components of the angle deviation of the optical axis. With respect to such misalignment, the optical fiber device 100 according to the present embodiment has a structure in which the position of the condenser lens 102 is moved and adjusted. The alignment device 204 of the present embodiment includes a feed screw used in a micrometer so that each shift component can be finely adjusted.
 蛍光部材108は、光ファイバ101の入射端近傍の被覆樹脂105が除去されたクラッド104の外側に接触するように設置されている。図7に示すように、サポート層106を有する光ファイバ101では、サポート層106の外側に蛍光部材108を接触させる。すなわち、光ファイバ101の伝送路に、蛍光部材108を接触させる。いずれの場合もクラッド104と蛍光部材108とは光学的に結合されているので、クラッド104を伝搬するレーザ光107は蛍光部材108まで達する。 The fluorescent member 108 is disposed so as to be in contact with the outside of the clad 104 from which the coating resin 105 in the vicinity of the incident end of the optical fiber 101 has been removed. As shown in FIG. 7, in the optical fiber 101 having the support layer 106, the fluorescent member 108 is brought into contact with the outside of the support layer 106. That is, the fluorescent member 108 is brought into contact with the transmission path of the optical fiber 101. In either case, since the clad 104 and the fluorescent member 108 are optically coupled, the laser beam 107 propagating through the clad 104 reaches the fluorescent member 108.
 自由空間を伝搬しているレーザ光107は、集光レンズ102によって集光され、コア103に入射するように調整されている。しかし、図7に示すように、調芯ずれが発生して一部のレーザ光107がクラッド104に入射した場合、蛍光部材108までレーザ光107が達する。蛍光部材108に達したレーザ光107は、蛍光部材108に含まれる蛍光物質に吸収され、蛍光部材108は蛍光109を発する。 The laser beam 107 propagating in the free space is condensed by the condenser lens 102 and adjusted so as to enter the core 103. However, as shown in FIG. 7, when a misalignment occurs and a part of the laser beam 107 enters the clad 104, the laser beam 107 reaches the fluorescent member 108. The laser beam 107 reaching the fluorescent member 108 is absorbed by the fluorescent substance contained in the fluorescent member 108, and the fluorescent member 108 emits fluorescence 109.
 蛍光109は全方位に放出される。蛍光109はサポート層106、クラッド104、コア103を通って光ファイバ101の表面やエンドキャップ112の端面から自由空間に出射される。あるいは、蛍光部材108から直接自由空間に出射される。この蛍光109は、クラッド104へ入射されるレーザ光107が増加する程、強度が強くなっていく。 Fluorescence 109 is emitted in all directions. The fluorescence 109 passes through the support layer 106, the clad 104, and the core 103 and is emitted from the surface of the optical fiber 101 and the end face of the end cap 112 to free space. Alternatively, the light is emitted directly from the fluorescent member 108 to the free space. The intensity of the fluorescence 109 increases as the laser beam 107 incident on the clad 104 increases.
 この蛍光部材108について、以下詳細に説明する。図8は、本実施の形態の、蛍光部材108が光ファイバ101の伝送路に接する箇所における断面図である。被覆樹脂105を除去されているので被覆樹脂105は記載されていない。蛍光部材108は、サポート層106の外側に接触させる。サポート層106を有さない光ファイバ101の場合はクラッド104の外側に蛍光部材108を接触させる。 The fluorescent member 108 will be described in detail below. FIG. 8 is a cross-sectional view of the present embodiment where the fluorescent member 108 is in contact with the transmission path of the optical fiber 101. Since the coating resin 105 is removed, the coating resin 105 is not described. The fluorescent member 108 is brought into contact with the outside of the support layer 106. In the case of the optical fiber 101 without the support layer 106, the fluorescent member 108 is brought into contact with the outside of the clad 104.
 蛍光部材108の基材は透明、または半透明な材質を使用するのが望ましく、高出力のレーザ光107を使用する場合は耐熱性のある石英ガラス、または結晶が望ましい。 It is desirable to use a transparent or translucent material for the base material of the fluorescent member 108, and when using the high-power laser beam 107, heat-resistant quartz glass or crystal is desirable.
 蛍光部材108にレーザ光107が入射すると、蛍光物質がレーザ光107を吸収して蛍光物質内の電子を励起する。そして励起された電子が安定状態に戻る時にレーザ光107と異なる波長の蛍光109を発する。この蛍光109は全方向に放射され指向性はない。蛍光物質は含有される材質ごとに吸収される波長の範囲が決まっているので、使用するレーザ光107の波長を考慮して蛍光部材108の蛍光物質を選択する。 When the laser beam 107 enters the fluorescent member 108, the fluorescent material absorbs the laser beam 107 and excites electrons in the fluorescent material. Then, when the excited electrons return to the stable state, fluorescence 109 having a wavelength different from that of the laser beam 107 is emitted. The fluorescence 109 is emitted in all directions and has no directivity. Since the range of wavelengths to be absorbed for each fluorescent material is determined, the fluorescent material of the fluorescent member 108 is selected in consideration of the wavelength of the laser beam 107 to be used.
 例えば、波長0.98μmのレーザ光107を入射光とする場合、イッテルビウム元素を含有した材料Ybを含有させた石英ガラスを蛍光部材108とし、蛍光部材108は波長0.98μmの光を吸収して波長1.06μmの蛍光を発する。また、エルビウム元素を含有した材料Erを含有させた石英ガラスを蛍光部材108として使用すれば、蛍光部材108は波長0.98μmのレーザ光107を吸収して1.55μmの蛍光を発する。 For example, when laser light 107 having a wavelength of 0.98 μm is used as incident light, quartz glass containing a material Yb 2 O 3 containing ytterbium element is used as the fluorescent member 108, and the fluorescent member 108 emits light having a wavelength of 0.98 μm. Absorbs and emits fluorescence with a wavelength of 1.06 μm. Further, when quartz glass containing the material Er 2 O 3 containing erbium element is used as the fluorescent member 108, the fluorescent member 108 absorbs the laser beam 107 having a wavelength of 0.98 μm and emits fluorescence of 1.55 μm. .
 蛍光部材108の形状は、光ファイバ101との接触面は凸凹のないように研磨、または劈開して平滑な面に加工する。あるいは、光ファイバ101の円柱形状の側面にならうような円形溝や、円柱形状を保持しやすいV溝の面に加工しても構わない。またあるいは、蛍光部材108を光ファイバ101に接触させる構造ではなく、光ファイバ101のサポート層106に蛍光物質を含有させておく構造も可能である。 The shape of the fluorescent member 108 is polished or cleaved so that the contact surface with the optical fiber 101 is not uneven, and is processed into a smooth surface. Or you may process into the surface of the circular groove | channel which follows the cylindrical side surface of the optical fiber 101, or the V-groove which is easy to hold | maintain a cylindrical shape. Alternatively, instead of a structure in which the fluorescent member 108 is in contact with the optical fiber 101, a structure in which a fluorescent material is contained in the support layer 106 of the optical fiber 101 is also possible.
 蛍光部材108は1種類だけに制限されることはなく、異なる波長の蛍光109を発する2種類以上の蛍光部材108を同時に使用しても構わない。例えば、Ybを含有させた蛍光部材108とErを含有させた蛍光部材108を同時に1本の光ファイバ101に接触させても良い。 The fluorescent member 108 is not limited to one type, and two or more types of fluorescent members 108 that emit fluorescent light 109 having different wavelengths may be used simultaneously. For example, the fluorescent member 108 containing Yb 2 O 3 and the fluorescent member 108 containing Er 2 O 3 may be brought into contact with one optical fiber 101 at the same time.
 ファイバレーザで使用されている光ファイバ101には石英ガラス製のコア103に希土類元素が含有されており、光ファイバ101も蛍光部材108として使用することができる。 The optical fiber 101 used in the fiber laser contains a rare earth element in the quartz glass core 103, and the optical fiber 101 can also be used as the fluorescent member.
 次に光検出器110について説明する。 Next, the photodetector 110 will be described.
 光検出器110は、蛍光部材108から発せられる蛍光109を検出できる位置に配置されている。図7に示した構成の一例では、エンドキャップ112から自由空間に出射された蛍光109を検知できる位置に設置している。 The photodetector 110 is disposed at a position where the fluorescence 109 emitted from the fluorescent member 108 can be detected. In the example of the configuration shown in FIG. 7, the fluorescent light 109 emitted from the end cap 112 to the free space is installed at a position where it can be detected.
 この光検出器110としては、フォトダイオードを使用するとよい。フォトダイオードは光を電気信号に変換する半導体である。小型、かつ、高速応答という特徴があるので、光検出器110として使用するのに最適である。受光した光の強さによって流れる電気量が変化し、この電気量の変化を読み取って特定レベル以上の電気量が流れた時に調芯ずれが発生したことを検知する。 As the photodetector 110, a photodiode may be used. A photodiode is a semiconductor that converts light into an electrical signal. Because of its small size and high-speed response, it is optimal for use as the photodetector 110. The amount of electricity flowing changes depending on the intensity of the received light, and the change in the amount of electricity is read to detect the occurrence of misalignment when the amount of electricity exceeding a specific level flows.
 光検出器110には測定できる波長の範囲があるので、蛍光109を測定できるものを選択する。好ましくは、レーザ光107の波長には反応せず、蛍光109の波長に反応する光検出器110を用いることで、後述する光学フィルタ111を使用しなくても良くなる。 Since the photodetector 110 has a range of wavelengths that can be measured, the one that can measure the fluorescence 109 is selected. Preferably, by using the photodetector 110 that does not react to the wavelength of the laser beam 107 but reacts to the wavelength of the fluorescence 109, it is not necessary to use an optical filter 111 described later.
 光検出器110は、蛍光109だけでなく、レーザ光107の散乱光も含めて受光し、軸ずれが発生していないにもかかわらず軸ずれと検知してしまう可能性がある。これを防止する為、光検出器110の受光面の前面に波長選択性を有する光学フィルタ111を配置する。蛍光109とレーザ光107は異なる波長であるので、蛍光109を通し、かつレーザ光107を遮断する特性を有する光学フィルタ111を使用する。 The light detector 110 receives not only the fluorescence 109 but also the scattered light of the laser beam 107, and may detect an axial deviation even though no axial deviation has occurred. In order to prevent this, an optical filter 111 having wavelength selectivity is disposed in front of the light receiving surface of the photodetector 110. Since the fluorescence 109 and the laser beam 107 have different wavelengths, an optical filter 111 having a characteristic of passing the fluorescence 109 and blocking the laser beam 107 is used.
 これにより、レーザ光107と蛍光109の波長が異なることを利用してコア103に入射するレーザ光107の散乱光を検出しなくなり、クラッド104にレーザ光107が入射しているかどうかを判別することができる。 Accordingly, the scattered light of the laser beam 107 incident on the core 103 is not detected by utilizing the difference between the wavelengths of the laser beam 107 and the fluorescence 109, and it is determined whether the laser beam 107 is incident on the clad 104. Can do.
 光検出器110と光学フィルタ111と、レーザ光107や蛍光109の波長と強度を考慮して適切な組み合わせのものを選択する。 A suitable combination is selected in consideration of the wavelength and intensity of the photodetector 110, the optical filter 111, and the laser beam 107 and the fluorescence 109.
 以上のように構成することで、光検出器110は蛍光部材108から出射された蛍光109の強度を検知することができる。 By configuring as described above, the photodetector 110 can detect the intensity of the fluorescence 109 emitted from the fluorescent member 108.
 光ファイバ101に入射するレーザ光107がクラッド104に入射した場合、蛍光部材108によって蛍光109が発せられる。蛍光109の強度を光検出器110で読み取り、読み取った蛍光109の強度があるレベルを超えた時に警報を発するようにすることで、作業者は光ファイバ装置100に調芯ずれが発生したことを知ることができる。 When the laser beam 107 incident on the optical fiber 101 is incident on the clad 104, fluorescence 109 is emitted by the fluorescent member 108. By reading the intensity of the fluorescence 109 with the photodetector 110 and issuing an alarm when the intensity of the read fluorescence 109 exceeds a certain level, the operator can confirm that the alignment error has occurred in the optical fiber device 100. I can know.
 なお、蛍光部材108は1種類に限らず、蛍光波長の異なる蛍光物質を有する蛍光部材108を2種類以上備えてもよい。この場合、各々の蛍光部材108が異なる波長の蛍光109を発するので、調芯ずれの位置によってそれぞれの蛍光109の強度の比率が変化する。蛍光109の強度の比率を光検出器110で読み取ることで、どの方向に調芯ずれが生じているかも推定できる。 Note that the fluorescent member 108 is not limited to one type, and two or more types of fluorescent members 108 having fluorescent substances having different fluorescent wavelengths may be provided. In this case, since each fluorescent member 108 emits fluorescent light 109 having a different wavelength, the intensity ratio of the fluorescent light 109 changes depending on the position of misalignment. By reading the intensity ratio of the fluorescence 109 with the photodetector 110, it can be estimated in which direction the misalignment has occurred.
 以上に述べたように、本実施の形態の光ファイバ装置100によれば、レーザ光107の一部がクラッドに入射した場合に、蛍光部材がレーザ光107と異なる波長の蛍光を発する。これにより、クラッドにレーザ光107が入射したことを検知でき、クラッドにレーザ光107が入射されることで生じる光ファイバ装置の信頼性の悪化や伝送するレーザ光107の品質の悪化を防止することができる。 As described above, according to the optical fiber device 100 of the present embodiment, the fluorescent member emits fluorescence having a wavelength different from that of the laser beam 107 when a part of the laser beam 107 is incident on the clad. Accordingly, it is possible to detect that the laser beam 107 has entered the clad, and to prevent deterioration of the reliability of the optical fiber device and quality of the transmitted laser beam 107 caused by the incident laser beam 107 on the clad. Can do.
 <蛍光部材108の配置の変形例について>
 図9の(a)~(g)は、蛍光部材の配置のバリエーションを示す、光ファイバ101と蛍光部材108との断面図である。
<Modification of Arrangement of Fluorescent Member 108>
FIGS. 9A to 9G are cross-sectional views of the optical fiber 101 and the fluorescent member 108 showing variations in the arrangement of the fluorescent member.
 図9の(a)では、サポート層を有さない光ファイバ101のクラッド104の外側に4つの蛍光部材108が接触されている。図9の(a)では、4つの蛍光部材108を配置しているが、蛍光部材108の数は4つに限らず、何個接触させても良い。なお、光ファイバ101の中心軸を基準として等間隔に蛍光部材108を接触させることが望ましい。これにより、調芯ずれの方向による検知感度の差を少なくできる。 9A, four fluorescent members 108 are in contact with the outside of the clad 104 of the optical fiber 101 that does not have a support layer. In FIG. 9A, four fluorescent members 108 are arranged, but the number of fluorescent members 108 is not limited to four, and any number may be brought into contact. In addition, it is desirable that the fluorescent member 108 is brought into contact with the central axis of the optical fiber 101 at equal intervals. Thereby, the difference in detection sensitivity due to the direction of misalignment can be reduced.
 図9の(b)では、蛍光物質を含有したサポート層113が、光ファイバ101のクラッド104の周囲に設けられている。なお、サポート層113は、サポート層106に蛍光物質が含まれた蛍光部材である。光ファイバ101のクラッド104にレーザ光107が入射すると、サポート層113が蛍光109を発する。このように、クラッド104の全周にサポート層113(蛍光部材)を配置することで、あらゆる方向の調芯ずれを検出することができる。 9B, a support layer 113 containing a fluorescent material is provided around the cladding 104 of the optical fiber 101. In FIG. The support layer 113 is a fluorescent member in which the support layer 106 includes a fluorescent material. When the laser beam 107 is incident on the clad 104 of the optical fiber 101, the support layer 113 emits fluorescence 109. As described above, by disposing the support layer 113 (fluorescent member) around the entire circumference of the clad 104, misalignment in any direction can be detected.
 図9の(c)では、光ファイバ101のクラッド104の周囲に蛍光部材108を配置して一体化し、さらにその周囲にサポート層106を配置して一体化している。図9の(b)と同様に、クラッド104の全周に蛍光部材108を配置することで、あらゆる方向の調芯ずれを検出することができる。さらに、サポート層106と蛍光部材108とをそれぞれ別々に作成することで、蛍光部材108の機能とサポート層106の機能をともに十分に発揮することができる。 9C, the fluorescent member 108 is arranged and integrated around the cladding 104 of the optical fiber 101, and the support layer 106 is arranged and integrated around the fluorescent member 108. Similar to FIG. 9B, by arranging the fluorescent member 108 on the entire circumference of the clad 104, misalignment in any direction can be detected. Further, by separately forming the support layer 106 and the fluorescent member 108, the functions of the fluorescent member 108 and the support layer 106 can be fully exhibited.
 図9の(d)では、光ファイバ101のサポート層106の外側に4つの蛍光部材108が接触されている。図9の(d)では、4つの蛍光部材108を配置しているが、蛍光部材108の数は4つに限らず、何個接触させても良い。なお、図9の(a)と同様に、光ファイバ101の中心軸を基準として等間隔に蛍光部材108を接触させることが望ましい。これにより、調芯ずれの方向による検知感度の差を少なくできる。 In FIG. 9D, four fluorescent members 108 are in contact with the outside of the support layer 106 of the optical fiber 101. In FIG. 9D, four fluorescent members 108 are arranged, but the number of fluorescent members 108 is not limited to four, and any number may be brought into contact. As in FIG. 9A, it is desirable that the fluorescent member 108 is brought into contact with the central axis of the optical fiber 101 at equal intervals. Thereby, the difference in detection sensitivity due to the direction of misalignment can be reduced.
 図9の(e)では、光ファイバ101のサポート層106の外側に2つの蛍光部材108が接触されている。そして、蛍光部材108の、光ファイバ101との接触面は円形溝の形状であり、光ファイバ101との接触面積を大きくしている。図9の(e)では、2つの蛍光部材108を配置しているが、蛍光部材108の数は2つに限らず、何個接触させても良い。なお、光ファイバ101の中心軸を基準として等間隔に蛍光部材108を接触させることが望ましい。これにより、調芯ずれの方向による検知感度の差を少なくできる。 In FIG. 9 (e), two fluorescent members 108 are in contact with the outside of the support layer 106 of the optical fiber 101. The contact surface of the fluorescent member 108 with the optical fiber 101 has a circular groove shape, and the contact area with the optical fiber 101 is increased. In FIG. 9E, two fluorescent members 108 are arranged, but the number of fluorescent members 108 is not limited to two, and any number may be brought into contact. In addition, it is desirable that the fluorescent member 108 is brought into contact with the central axis of the optical fiber 101 at equal intervals. Thereby, the difference in detection sensitivity due to the direction of misalignment can be reduced.
 図9の(f)では、光ファイバ101のサポート層106の周囲に蛍光部材108が配置され一体化されている。これは、図9の(c)のサポート層106と蛍光部材108の配置を入れ替えたものであり、図9の(c)と同様の効果がある。 9 (f), the fluorescent member 108 is disposed and integrated around the support layer 106 of the optical fiber 101. FIG. This is obtained by replacing the arrangement of the support layer 106 and the fluorescent member 108 in FIG. 9C, and has the same effect as in FIG. 9C.
 図9の(g)では、光ファイバ101のサポート層106の外側に蛍光物質を含有したコア114を有する蛍光部材115を接触させている。すなわち、蛍光部材として、コアに蛍光物質が含有された光ファイバを用いている。これにより、蛍光109は蛍光部材115の逆の端面から出射されるので、光検出器110まで蛍光109をファイバ伝送することができ、蛍光の伝送が容易になる。 9 (g), a fluorescent member 115 having a core 114 containing a fluorescent substance is brought into contact with the outside of the support layer 106 of the optical fiber 101. That is, an optical fiber containing a fluorescent material in the core is used as the fluorescent member. Thereby, since the fluorescence 109 is emitted from the opposite end face of the fluorescence member 115, the fluorescence 109 can be fiber-transmitted to the photodetector 110, and the fluorescence can be easily transmitted.
 <異なる蛍光を発する蛍光部材の配置の変形例について>
 図10の(a)~(f)は、異なる蛍光を発する複数の蛍光部材108を配置したバリエーションを示す、光ファイバ101と蛍光部材108との断面図である。
<Variation of arrangement of fluorescent members emitting different fluorescence>
FIGS. 10A to 10F are cross-sectional views of the optical fiber 101 and the fluorescent member 108 showing a variation in which a plurality of fluorescent members 108 emitting different fluorescence are arranged.
 図10の(a)では、サポート層を有さない光ファイバ101のクラッド104の外側に、異なる2つの蛍光部材108が接触されている。異なる2つの蛍光部材108は、光ファイバ101の中心軸と点対称な位置に配置されている。図9の(a)では、2つの蛍光部材108を配置しているが、蛍光部材の数は2つに限らず、何個接触させても良い。なお、光ファイバ101の中心軸を基準として等間隔に蛍光部材108を接触させることが望ましい。なお、2つの蛍光部材108を配置する場合は、光ファイバ装置100の設置環境や調芯ずれの方向を鑑み、調芯ずれが生じやすい方向に配置しておくと、より異常を検知しやすくなる。 10A, two different fluorescent members 108 are in contact with the outside of the cladding 104 of the optical fiber 101 that does not have a support layer. The two different fluorescent members 108 are disposed at positions symmetrical with respect to the central axis of the optical fiber 101. In FIG. 9A, two fluorescent members 108 are arranged, but the number of fluorescent members is not limited to two, and any number may be brought into contact. In addition, it is desirable that the fluorescent member 108 is brought into contact with the central axis of the optical fiber 101 at equal intervals. In the case where two fluorescent members 108 are arranged, it is easier to detect an abnormality if they are arranged in a direction in which misalignment is likely to occur in consideration of the installation environment of the optical fiber device 100 and the direction of misalignment. .
 図10の(b)では、サポート層を有さない光ファイバ101のクラッド104の外側に、互いに異なる3つの蛍光部材108が接触されている。異なる3つの蛍光部材108は、光ファイバ101の中心軸を中心として120°回転させた位置ごとに等間隔に配置されている。また、3つの蛍光部材108のそれぞれは、互いに異なる蛍光109を発生させる。 10B, three different fluorescent members 108 are in contact with the outside of the clad 104 of the optical fiber 101 that does not have a support layer. Three different fluorescent members 108 are arranged at equal intervals for each position rotated by 120 ° about the central axis of the optical fiber 101. In addition, each of the three fluorescent members 108 generates different fluorescent light 109.
 図10の(c)では、光ファイバ101のクラッド104の周囲に蛍光部材108を配置して一体化し、さらに蛍光部材108の周囲にサポート層113を配置して一体化している。サポート層113はサポート層106に蛍光物質を含ませたものであり、サポート層113に含まれる蛍光物質による蛍光の波長は、蛍光部材108の蛍光の波長とは異なるものである。このように、クラッド104の全周に蛍光部材108とサポート層113(蛍光部材)とを配置することで、あらゆる方向の調芯ずれを検出することができる。 10C, the fluorescent member 108 is disposed and integrated around the cladding 104 of the optical fiber 101, and the support layer 113 is disposed and integrated around the fluorescent member 108. The support layer 113 includes the support layer 106 containing a fluorescent material, and the fluorescence wavelength of the fluorescent material contained in the support layer 113 is different from the fluorescence wavelength of the fluorescent member 108. Thus, by arranging the fluorescent member 108 and the support layer 113 (fluorescent member) around the entire circumference of the clad 104, misalignment in any direction can be detected.
 図10の(d)では、光ファイバ101のクラッド104の周囲に別の蛍光部材108を配置して一体化し、さらに蛍光部材108の周囲に蛍光部材108を配置して一体化し、さらにその周囲にサポート層106を配置して一体化したものである。内側の蛍光部材108に含まれる蛍光物質による蛍光の波長は、外側の蛍光部材108に含まれる蛍光物質による蛍光の波長とは異なる。図10の(c)と同様に、クラッド104の全周に蛍光部材108を配置することで、あらゆる方向の調芯ずれを検出することができる。さらに、サポート層106と蛍光部材108とをそれぞれ別々に作成することで、蛍光部材108の機能とサポート層106の機能をともに十分に発揮することができる。 In FIG. 10D, another fluorescent member 108 is arranged and integrated around the cladding 104 of the optical fiber 101, and further, the fluorescent member 108 is arranged and integrated around the fluorescent member 108, and further around the fluorescent member 108. The support layer 106 is disposed and integrated. The wavelength of fluorescence by the fluorescent material contained in the inner fluorescent member 108 is different from the wavelength of fluorescence by the fluorescent material contained in the outer fluorescent member 108. Similar to (c) of FIG. 10, by arranging the fluorescent member 108 on the entire circumference of the clad 104, misalignment in any direction can be detected. Further, by separately forming the support layer 106 and the fluorescent member 108, the functions of the fluorescent member 108 and the support layer 106 can be fully exhibited.
 図10の(e)では、光ファイバ101のサポート層106の外側に、互いに異なる3つの蛍光部材108を接触させたものである。異なる3つの蛍光部材108は、光ファイバ101の中心軸を中心として120°回転させた位置ごとに等間隔に配置されている。また、3つの異なる蛍光部材108のそれぞれは、互いに異なる蛍光109を発生させる。 In FIG. 10E, three different fluorescent members 108 are brought into contact with the outside of the support layer 106 of the optical fiber 101. Three different fluorescent members 108 are arranged at equal intervals for each position rotated by 120 ° about the central axis of the optical fiber 101. In addition, each of the three different fluorescent members 108 generates different fluorescent light 109.
 図10の(f)では、光ファイバ101のサポート層106の外側に、4つの蛍光部材108を接触させたものである。4つの蛍光部材108は2種類の蛍光部材が2つずつであり、光ファイバ101の中心軸と点対称な位置に同じ種類の蛍光部材108を接触させ、中心軸を中心として90°回転させた位置ごとに等間隔に配置している。なお、図10の(f)では、2種類の波長の蛍光109を発する蛍光部材108を2つずつ配置しているが、これに限るものではない。光ファイバ101の中心軸を基準として等間隔に蛍光部材108を接触させることが望ましい。 10F, four fluorescent members 108 are brought into contact with the outside of the support layer 106 of the optical fiber 101. In FIG. The four fluorescent members 108 each include two types of fluorescent members. The same type of fluorescent member 108 is brought into contact with the central axis of the optical fiber 101 and rotated by 90 ° about the central axis. It arrange | positions at equal intervals for every position. In FIG. 10F, two fluorescent members 108 that emit two types of wavelengths of fluorescence 109 are arranged, but the present invention is not limited to this. Desirably, the fluorescent member 108 is brought into contact with the central axis of the optical fiber 101 at equal intervals.
 <蛍光部材の保持の詳細構成について>
 前述のように配置した蛍光部材108の保持の方法の1つとしては、蛍光部材108をクラッド104またはサポート層106に接触させた状態で、隙間に介在させた透明樹脂で接着する方法がある。また、蛍光部材108の保持の別の方法としては、蛍光部材108をクラッド104またはサポート層106に接触させるように蛍光部材108を外部の構造物で保持する方法がある。高出力のレーザ光107を使用する場合、前者の方法では、透明樹脂が損傷する可能性があるので、隙間に透明樹脂を介在させない後者の方法が望ましい。
<Detailed configuration of holding fluorescent member>
As one method for holding the fluorescent member 108 arranged as described above, there is a method in which the fluorescent member 108 is bonded to the clad 104 or the support layer 106 with a transparent resin interposed in the gap. As another method of holding the fluorescent member 108, there is a method of holding the fluorescent member 108 with an external structure so that the fluorescent member 108 is brought into contact with the clad 104 or the support layer 106. When the high-power laser beam 107 is used, since the transparent resin may be damaged in the former method, the latter method in which the transparent resin is not interposed in the gap is desirable.
 後者の蛍光部材の保持方法では、光ファイバ101の端部をコネクタ201によって一体化した構造とするのが望ましい。図11は、蛍光部材108をコネクタ201で保持した、2つの例を示す、延伸方向に垂直な断面図である。なお、コネクタ201を用いて蛍光部材108の保持する構造は、特にこれに限定されるものでない。 In the latter method of holding the fluorescent member, it is desirable that the end of the optical fiber 101 is integrated by the connector 201. FIG. 11 is a cross-sectional view perpendicular to the extending direction, showing two examples in which the fluorescent member 108 is held by the connector 201. The structure held by the fluorescent member 108 using the connector 201 is not particularly limited to this.
 図11の(a)は、予めコネクタ201に蛍光部材108を挿入する貫通穴を設け、光ファイバ101をコネクタ201と一体化した後に蛍光部材108を一体化したコネクタ201の断面図である。光ファイバ101とコネクタ201とを一体化した後に、蛍光部材108をコネクタ201の貫通孔の外側から挿入し、光ファイバ101のサポート層106に接触させる。接触した蛍光部材108は、コネクタ201と接着、または機械的に固定される。蛍光部材108を固定した後、蛍光やレーザ光107が外部に放出されないように貫通穴には外側から蓋がされる。 11A is a cross-sectional view of the connector 201 in which a through hole for inserting the fluorescent member 108 is provided in the connector 201 in advance, and the optical fiber 101 is integrated with the connector 201 and then the fluorescent member 108 is integrated. After the optical fiber 101 and the connector 201 are integrated, the fluorescent member 108 is inserted from the outside of the through hole of the connector 201 and brought into contact with the support layer 106 of the optical fiber 101. The contacted fluorescent member 108 is bonded or mechanically fixed to the connector 201. After the fluorescent member 108 is fixed, the through hole is covered from the outside so that the fluorescent light and the laser beam 107 are not emitted to the outside.
 図11の(b)は、蛍光部材108をコネクタ201に設けられたガイドの中に設置するコネクタ201の例である。ガイドに設置された蛍光部材108は、バネなどの弾性体202によって光ファイバ101のサポート層106に絶えず押し付けられている。図11の(a)の貫通穴は図11の(b)のガイドであり、また、図11の(a)の蓋は、図11の(b)では、弾性体202を保持する機能も兼ねている。 FIG. 11B is an example of the connector 201 in which the fluorescent member 108 is installed in a guide provided on the connector 201. The fluorescent member 108 installed in the guide is constantly pressed against the support layer 106 of the optical fiber 101 by an elastic body 202 such as a spring. The through hole in FIG. 11 (a) is the guide in FIG. 11 (b), and the lid in FIG. 11 (a) also has the function of holding the elastic body 202 in FIG. 11 (b). ing.
 なお、接着剤やコネクタを用いずに、蛍光部材108を保持する構造の例としては、図9の(b)、(c)、(f)、図10の(c)、(d)のようにクラッド104またはサポート層106の周囲に蛍光部材108を層状に配置して一体化した構造がある。 In addition, as an example of a structure for holding the fluorescent member 108 without using an adhesive or a connector, as shown in FIGS. 9B, 9C, 10F, and 10C, FIG. Further, there is a structure in which fluorescent members 108 are arranged in a layered manner around the cladding 104 or the support layer 106 and integrated.
 図12は、蛍光部材108を一体化した光ファイバ101の2つの例を示す、延伸方向の断面図である。図12に示すように、一般的に光ファイバ101を接続する際に実施される溶融接続によっても蛍光部材108を保持できる。なお、光ファイバ101に蛍光部材108を溶融接続して保持する構造は、特にこれに限定されるものでない。 FIG. 12 is a cross-sectional view in the extending direction showing two examples of the optical fiber 101 in which the fluorescent member 108 is integrated. As shown in FIG. 12, the fluorescent member 108 can be held also by fusion connection that is generally performed when the optical fiber 101 is connected. Note that the structure in which the fluorescent member 108 is fused and held to the optical fiber 101 is not particularly limited to this.
 図12の(a)は、光ファイバ101の端面に、図9の(b)のような蛍光物質を含有したサポート層113を有する光ファイバ101を示す、延伸方向の断面図である。図12の(a)に示すように、サポート層113を有さない光ファイバの端部に、サポート層113を有する光ファイバを溶融接続した構造である。さらに、サポート層113を有する光ファイバの逆の端部にエンドキャップ112を溶融接続した構造である。サポート層113を有さない光ファイバとサポート層113を有する光ファイバとは、コア103およびサポート層113の外径は同じサイズが望ましい。また、光ファイバ101の端部において、蛍光物質を有さないサポート層106を除去した部分に蛍光物質を有するサポート層113を形成しても構わない。このようにすることで、光ファイバ同士の界面を少なくすることができる。 12 (a) is a cross-sectional view in the stretching direction showing the optical fiber 101 having the support layer 113 containing the fluorescent material as shown in FIG. 9 (b) on the end face of the optical fiber 101. FIG. As shown in FIG. 12A, the optical fiber having the support layer 113 is fused and connected to the end of the optical fiber not having the support layer 113. Further, the end cap 112 is fused and connected to the opposite end of the optical fiber having the support layer 113. The optical fiber that does not have the support layer 113 and the optical fiber that has the support layer 113 preferably have the same outer diameter of the core 103 and the support layer 113. Further, a support layer 113 having a fluorescent material may be formed at a portion where the support layer 106 having no fluorescent material is removed at the end of the optical fiber 101. By doing in this way, the interface between optical fibers can be decreased.
 図12の(b)は、光ファイバ101の端面に図9の(c)のようなクラッド104の周囲に蛍光部材108を配置して一体化し、さらにその周囲にサポート層106を配置して一体化した光ファイバ101を溶融接続した構造である。さらに、蛍光部材108を有する光ファイバの逆の端部にエンドキャップ112を溶融接続した構造である。蛍光部材108を有さない光ファイバと蛍光部材108を有する光ファイバとは、コア103とサポート層106の外径は同じサイズが望ましい。 In FIG. 12B, the fluorescent member 108 is arranged and integrated around the cladding 104 as shown in FIG. 9C on the end face of the optical fiber 101, and the support layer 106 is arranged around it to integrate. In this structure, the optical fiber 101 is fused and connected. Further, the end cap 112 is fused and connected to the opposite end of the optical fiber having the fluorescent member 108. The outer diameters of the core 103 and the support layer 106 are preferably the same for the optical fiber not having the fluorescent member 108 and the optical fiber having the fluorescent member 108.
 また、図9の(f)に示すような、光ファイバ101のクラッド104またはサポート層106の周囲に蛍光部材108を配置して一体化した構造の光ファイバだけを使用しても構わない。このように、光ファイバの入射端から出射端までの全長を、蛍光物質を含有した構造とすることで、融着接続による界面をなくし、レーザ光107の伝送による損失を低減できる。 Further, as shown in FIG. 9F, only an optical fiber having a structure in which the fluorescent member 108 is arranged and integrated around the clad 104 or the support layer 106 of the optical fiber 101 may be used. As described above, the entire length from the incident end to the exit end of the optical fiber has a structure containing a fluorescent material, so that an interface due to fusion splicing can be eliminated and loss due to transmission of the laser beam 107 can be reduced.
 なお、蛍光部材108は1種類に限らず、異なる波長の蛍光109を発する複数の蛍光部材108を同時に使用しても良い。例えば、図10の(e)に示す構造では、調芯ずれが発生してクラッド104に入射されたレーザ光107が蛍光部材108まで達する。ここで、光ファイバ101の端面におけるレーザ光107の入射位置によって、各々の蛍光部材108に入射されるレーザ光107の量が異なる。これにより、各々の蛍光部材108から発せられる、異なる波長の蛍光109の強度の比率が変化し、調芯ずれの方向を特定できる。調芯装置204には複数の送りネジが使用されているので、蛍光109の強度の比率に基づいて送りネジの押込み量を変化させることで調芯作業が容易になる。 The fluorescent member 108 is not limited to one type, and a plurality of fluorescent members 108 that emit fluorescent light 109 having different wavelengths may be used simultaneously. For example, in the structure shown in FIG. 10E, misalignment occurs and the laser light 107 incident on the clad 104 reaches the fluorescent member. Here, the amount of the laser beam 107 incident on each fluorescent member 108 varies depending on the incident position of the laser beam 107 on the end face of the optical fiber 101. Thereby, the ratio of the intensity of the fluorescence 109 emitted from each fluorescent member 108 is changed, and the direction of misalignment can be specified. Since the aligning device 204 uses a plurality of feed screws, the aligning operation is facilitated by changing the push-in amount of the feed screw based on the intensity ratio of the fluorescence 109.
 <本開示の光ファイバ装置100の変形例>
 ところで、光検出器110は、図1に示すような、ハウジング203に取り付ける構成に限らない。すなわち、光検出器110を、光ファイバ101を保持するコネクタ201に取り付けても構わない。この場合は、コネクタ201の内部の自由空間に出射される蛍光109を受光できるように、コネクタ201に光検出器110を取り付ける。
<Modification of Optical Fiber Device 100 of Present Disclosure>
By the way, the photodetector 110 is not restricted to the structure attached to the housing 203 as shown in FIG. That is, the photodetector 110 may be attached to the connector 201 that holds the optical fiber 101. In this case, the photodetector 110 is attached to the connector 201 so that the fluorescence 109 emitted to the free space inside the connector 201 can be received.
 図13は、コネクタ201に光検出器110を設けた光ファイバ装置100を示す断面図である。 FIG. 13 is a cross-sectional view showing the optical fiber device 100 in which the optical detector 110 is provided in the connector 201.
 光ファイバ101をコネクタ201と一体化した後、蛍光部材108をコネクタ201の貫通穴から挿入してサポート層106に接触させて固定する。その後、光検出器110と光学フィルタ111をコネクタ201に取り付ける。光検出器110は電気配線され、測定器(図示せず)に接続される。光学フィルタ111は光検出器110の受光面の前面、言い換えると、光検出器110と蛍光部材108との間に取り付ける。最後に、ハウジング203に調芯装置204が取り付けられ、集光レンズ102を調芯装置204に取り付けた後、コネクタ201と一体化した光ファイバ101をハウジング203に差し込んで固定する。 After the optical fiber 101 is integrated with the connector 201, the fluorescent member 108 is inserted through the through hole of the connector 201 and is brought into contact with the support layer 106 and fixed. Thereafter, the photodetector 110 and the optical filter 111 are attached to the connector 201. The photodetector 110 is electrically wired and connected to a measuring instrument (not shown). The optical filter 111 is attached to the front surface of the light receiving surface of the photodetector 110, in other words, between the photodetector 110 and the fluorescent member 108. Finally, the alignment device 204 is attached to the housing 203, and after the condenser lens 102 is attached to the alignment device 204, the optical fiber 101 integrated with the connector 201 is inserted into the housing 203 and fixed.
 図13を用いて、レーザ光107の伝搬について説明する。レーザ光107の軸ずれによってクラッド104に入射したレーザ光107は、蛍光部材108によって蛍光109を発する。蛍光部材108から、直接、コネクタ201の内側の自由空間に出射された蛍光109は、光学フィルタ111を通過して光検出器110に入射される。これにより、コネクタ201に設けた光検出器110によって、レーザ光107がクラッド104に入射したことを検知できる。 The propagation of the laser beam 107 will be described with reference to FIG. The laser beam 107 incident on the clad 104 due to the axial deviation of the laser beam 107 emits fluorescence 109 by the fluorescent member 108. The fluorescent light 109 emitted directly from the fluorescent member 108 into the free space inside the connector 201 passes through the optical filter 111 and enters the photodetector 110. Thereby, it is possible to detect that the laser beam 107 has entered the clad 104 by the photodetector 110 provided in the connector 201.
 更に別の光ファイバ装置100について、図14を用いて説明する。図14は、互いに異なる蛍光を発する2つの蛍光部材108を有する光ファイバ装置100の延伸方向の断面図である。コネクタ201には、異なる波長の蛍光を発する2つの蛍光部材108a、108bが設けられ、ハウジング203には、2つの光検出器110が設けられている。2つの蛍光部材108a、108bは、光ファイバ101のサポート層106にそれぞれ接触させ、コネクタ201によって光ファイバ101と一体化されている。 Still another optical fiber device 100 will be described with reference to FIG. FIG. 14 is a cross-sectional view in the extending direction of the optical fiber device 100 having two fluorescent members 108 that emit different fluorescence. The connector 201 is provided with two fluorescent members 108 a and 108 b that emit fluorescence of different wavelengths, and the housing 203 is provided with two photodetectors 110. The two fluorescent members 108 a and 108 b are brought into contact with the support layer 106 of the optical fiber 101, respectively, and are integrated with the optical fiber 101 by the connector 201.
 本構成では、2つの蛍光部材108a、108bによって発せられる2種類の波長の蛍光を検知できるように、波長選択性のある2種類の光学フィルタ111a、111bを、それぞれ2つの光検出器110の受光面の前面に取り付ける。図14に示す構成では、光学フィルタ111aは蛍光部材108aが発する蛍光の波長に対応し、光学フィルタ111bは蛍光部材108bが発する蛍光の波長に対応する。光検出器110はそれぞれ電気配線され、測定器(図示せず)に接続される。 In this configuration, two types of optical filters 111a and 111b having wavelength selectivity are received by the two photodetectors 110, respectively, so that fluorescence of two types of wavelengths emitted by the two fluorescent members 108a and 108b can be detected. Attach to the front of the surface. In the configuration shown in FIG. 14, the optical filter 111a corresponds to the wavelength of fluorescence emitted from the fluorescent member 108a, and the optical filter 111b corresponds to the wavelength of fluorescence emitted from the fluorescent member 108b. Each of the photodetectors 110 is electrically wired and connected to a measuring instrument (not shown).
 最後に、ハウジング203に調芯装置204が取り付けられ、集光レンズ102を調芯装置204に取り付けた後、コネクタ201と一体化した光ファイバ101をハウジング203に差し込んで固定する。 Finally, the alignment device 204 is attached to the housing 203, and after the condenser lens 102 is attached to the alignment device 204, the optical fiber 101 integrated with the connector 201 is inserted into the housing 203 and fixed.
 図14を用いて、レーザ光107の伝搬について説明する。レーザ光107の軸ずれによってクラッド104に入射したレーザ光107は、蛍光部材108aによって蛍光109aを発する。蛍光109aはクラッド104、サポート層106、コア103、エンドキャップ112を通って、ハウジング203内の自由空間に出射される。 The propagation of the laser beam 107 will be described with reference to FIG. The laser beam 107 incident on the clad 104 due to the axial deviation of the laser beam 107 emits fluorescence 109a by the fluorescence member 108a. The fluorescent light 109 a passes through the cladding 104, the support layer 106, the core 103, and the end cap 112, and is emitted to a free space in the housing 203.
 自由空間に出射された蛍光109aは2つの光検出器110に向かって進行する。波長選択性のある光学フィルタ111a、111bが、それぞれ2つの光検出器110の受光面の前面に取り付けられている。蛍光109aを透過する光学フィルタ111aに対応した光検出器110には蛍光109aが入射され、蛍光109aを透過させない光学フィルタ111bに対応した光検出器110には蛍光109aが入射されない。 Fluorescence 109a emitted into free space travels toward the two photodetectors 110. Optical filters 111a and 111b having wavelength selectivity are attached to the front surfaces of the light receiving surfaces of the two photodetectors 110, respectively. The fluorescence 109a is incident on the photodetector 110 corresponding to the optical filter 111a that transmits the fluorescence 109a, and the fluorescence 109a is not incident on the photodetector 110 corresponding to the optical filter 111b that does not transmit the fluorescence 109a.
 以上のような構成とすることで、調芯ずれによってクラッド104へのレーザ光107の入射の判別に加えて、蛍光部材の強度から、調芯ずれの方向や程度を判定することができる。 With the above configuration, in addition to the determination of the incidence of the laser beam 107 on the clad 104 due to misalignment, the direction and degree of misalignment can be determined from the intensity of the fluorescent member.
 <実施のための具体例>
 次に、本実施の形態の具体例について説明する。光ファイバ装置100は、図1に示される構成と同じであり、製造方法も前述と同じ方法である。なお、以下の具体例は本開示の一例であり、本開示を限定するものではない。
<Specific examples for implementation>
Next, a specific example of the present embodiment will be described. The optical fiber device 100 has the same configuration as that shown in FIG. 1, and the manufacturing method is the same as described above. Note that the following specific examples are examples of the present disclosure and do not limit the present disclosure.
 図15は、本実施の形態にかかる、光ファイバ装置100を有するレーザ出力確認装置を示す側面図である。 FIG. 15 is a side view showing a laser output confirmation device having the optical fiber device 100 according to the present embodiment.
 光ファイバ101は、コア103の直径が100μm、クラッド104の直径が125μm、サポート層106の直径が500μmであり、開口数NAは0.22である。コア103とサポート層106は純粋石英ガラス、クラッド104はフッ素ドープ石英ガラス、被覆樹脂105はクラッド104よりも低い屈折率のシリコーン樹脂でできている。直径が8mmの円柱形状であり、純粋石英ガラス製のエンドキャップ112が光ファイバ101の出入端面に接続されている。 The optical fiber 101 has a core 103 with a diameter of 100 μm, a cladding 104 with a diameter of 125 μm, a support layer 106 with a diameter of 500 μm, and a numerical aperture NA of 0.22. The core 103 and the support layer 106 are made of pure quartz glass, the clad 104 is made of fluorine-doped quartz glass, and the coating resin 105 is made of a silicone resin having a lower refractive index than that of the clad 104. The end cap 112 made of a pure quartz glass has a cylindrical shape with a diameter of 8 mm and is connected to the entrance / exit end face of the optical fiber 101.
 蛍光部材108はイッテルビウムドープ石英ガラスである。蛍光部材108は、波長0.98μmのレーザ光107を吸収して波長1.06μmの蛍光を放出する。 The fluorescent member 108 is ytterbium-doped quartz glass. The fluorescent member 108 absorbs the laser beam 107 having a wavelength of 0.98 μm and emits fluorescence having a wavelength of 1.06 μm.
 光検出器110はフォトダイオードであり、光検出器110の測定波長域は0.6μm~1.1μmである。光学フィルタ111は、波長0.98μmの光に対する反射率は99%以上であり、波長1.06μmの光に対する反射率は1%である。 The photodetector 110 is a photodiode, and the measurement wavelength range of the photodetector 110 is 0.6 μm to 1.1 μm. The optical filter 111 has a reflectance of 99% or more with respect to light having a wavelength of 0.98 μm and a reflectance of 1% with respect to light having a wavelength of 1.06 μm.
 光ファイバ101はコネクタ201と一体化され、蛍光部材108はサポート層106に接触されている。コネクタ201はハウジング203に差し込んで固定でき、ハウジング203の内部に、集光レンズ102と調芯装置204が設置されている。集光レンズ102の焦点距離は30mmである。さらにハウジング203の内部に光検出器110が取り付けられ、光検出器110の受光面の前面には光学フィルタ111が取り付けられている。 The optical fiber 101 is integrated with the connector 201, and the fluorescent member 108 is in contact with the support layer 106. The connector 201 can be fixed by being inserted into the housing 203, and the condenser lens 102 and the alignment device 204 are installed inside the housing 203. The focal length of the condenser lens 102 is 30 mm. Further, a photodetector 110 is attached inside the housing 203, and an optical filter 111 is attached to the front surface of the light receiving surface of the photodetector 110.
 光ファイバ装置100の動作確認について説明する。光ファイバ101にレーザ光107を入射し、出射端面から出射されるレーザ光107のパワーを計測することで動作確認を行う。レーザ光107の光源はレーザ光源301である。レーザ光源301から出射されるレーザ光107の発振波長は0.98μmであり、出力は0~100Wであり、光ファイバ101から出射されたレーザ光107のNAは0.15である。光ファイバ101の出射端付近には出射されたレーザ光107を受光するパワーメータ302が設置され、これにより、光ファイバ101から出射されたレーザ光107の出力を測定する。 The operation check of the optical fiber device 100 will be described. The operation is confirmed by entering the laser beam 107 into the optical fiber 101 and measuring the power of the laser beam 107 emitted from the emission end face. The light source of the laser beam 107 is a laser light source 301. The oscillation wavelength of the laser beam 107 emitted from the laser light source 301 is 0.98 μm, the output is 0 to 100 W, and the NA of the laser beam 107 emitted from the optical fiber 101 is 0.15. A power meter 302 that receives the emitted laser beam 107 is installed near the emission end of the optical fiber 101, thereby measuring the output of the laser beam 107 emitted from the optical fiber 101.
 次に、光ファイバ101のクラッド104を伝送するレーザ光107の確認について説明する。光ファイバ101の出射端付近から入射端側10cm程度の被覆樹脂105を除去してサポート層106を露出させる。露出されたサポート層106の側面にサポート層106よりも屈折率の高い透明樹脂303を接触させる。クラッド104内のレーザ光107はサポート層106よりも屈折率の高い透明樹脂303に吸収されて除去される。そのため、クラッド104内でレーザ光107が伝送されていると、光ファイバ101の出射端面におけるレーザ光の出力が減少し、パワーメータ302の表示値が低くなる。この作業は、レーザ光107の調芯ずれを確認するものであり、レーザ加工の実施中には行わない。 Next, confirmation of the laser beam 107 transmitted through the clad 104 of the optical fiber 101 will be described. The support resin 106 is exposed by removing about 10 cm of the coating resin 105 from the vicinity of the exit end of the optical fiber 101. A transparent resin 303 having a refractive index higher than that of the support layer 106 is brought into contact with the exposed side surface of the support layer 106. The laser beam 107 in the clad 104 is absorbed and removed by the transparent resin 303 having a refractive index higher than that of the support layer 106. Therefore, when the laser beam 107 is transmitted in the clad 104, the output of the laser beam at the emission end face of the optical fiber 101 is reduced, and the display value of the power meter 302 is lowered. This operation is for confirming the misalignment of the laser beam 107 and is not performed during the laser processing.
 次に、パワーメータ302を用いた調芯作業について説明する。まず、5W程度の低出力のレーザ光107をレーザ光源301から出射しながら集光レンズ102の位置を調芯装置204で調整する。このとき、パワーメータ302の表示値が最大になるように集光レンズ102の位置を調整する。そして、パワーメータ302の表示値が最大となった集光レンズ102の位置が、調芯ずれのない状態であり、光ファイバ101のコア103にレーザ光107が入射されている状態である。 Next, alignment work using the power meter 302 will be described. First, the position of the condenser lens 102 is adjusted by the aligning device 204 while emitting a low-power laser beam 107 of about 5 W from the laser light source 301. At this time, the position of the condenser lens 102 is adjusted so that the display value of the power meter 302 is maximized. The position of the condensing lens 102 at which the display value of the power meter 302 is maximized is in a state where there is no misalignment, and the laser beam 107 is incident on the core 103 of the optical fiber 101.
 パワーメータ302による調芯終了後に、レーザ光源301から100Wの高出力のレーザ光107を出射しながらパワーメータ302の表示値と光検出器110から出る電気量を読み取る。次に、集光レンズ102の位置を移動させて調芯ずれを意図的に発生させる。調芯ずれが大きくなっていくにつれてパワーメータ302の表示値は低下し、逆に光検出器110から出力される電気量が大きくなる。この相関から、軸ずれによってクラッド104へ光が入射していることが判別でき、本開示の蛍光部材による調芯ずれの検出が正常に機能することが確認できる。 After the alignment by the power meter 302 is completed, the display value of the power meter 302 and the amount of electricity emitted from the photodetector 110 are read while emitting 100 W of high-power laser light 107 from the laser light source 301. Next, the position of the condenser lens 102 is moved to intentionally cause misalignment. As the misalignment increases, the display value of the power meter 302 decreases, and conversely, the amount of electricity output from the photodetector 110 increases. From this correlation, it can be determined that light is incident on the clad 104 due to the axial deviation, and it can be confirmed that the detection of misalignment by the fluorescent member of the present disclosure functions normally.
 本開示にかかる光ファイバ装置は、クラッドにレーザ光が入射したことを検知でき、光ファイバ装置の信頼性の悪化や伝送するレーザ光の品質の悪化を防止することができる。そのため、自由空間から光ファイバの端面に導光する光ファイバ装置等において有用である。 The optical fiber device according to the present disclosure can detect that laser light has entered the clad, and can prevent deterioration of the reliability of the optical fiber device and deterioration of the quality of the transmitted laser light. Therefore, it is useful in an optical fiber device that guides light from the free space to the end face of the optical fiber.
100 光ファイバ装置
101 光ファイバ
102 集光レンズ
103,114 コア
104 クラッド
105 被覆樹脂
106,113 サポート層
107 レーザ光
108,108a,108b,115 蛍光部材
109,109a 蛍光
110 光検出器
111,111a,111b 光学フィルタ
112 エンドキャップ
201 コネクタ
202 弾性体
203 ハウジング
204 調芯装置
301 レーザ光源
302 パワーメータ
303 透明樹脂
400 光ファイバ装置
401 光ファイバ
402 出入射端
403 拡散体
404 検出器
DESCRIPTION OF SYMBOLS 100 Optical fiber apparatus 101 Optical fiber 102 Condensing lens 103,114 Core 104 Cladding 105 Coating resin 106,113 Support layer 107 Laser beam 108,108a, 108b, 115 Fluorescence member 109,109a Fluorescence 110 Photodetector 111,111a, 111b Optical filter 112 End cap 201 Connector 202 Elastic body 203 Housing 204 Alignment device 301 Laser light source 302 Power meter 303 Transparent resin 400 Optical fiber device 401 Optical fiber 402 Light incident / exit end 403 Diffuser 404 Detector

Claims (14)

  1.  コアおよび前記コアを囲むクラッドを有する伝送路と、前記伝送路を囲む被覆と、を有する光ファイバと、
     前記光ファイバの前記被覆が剥離された剥離部において、前記伝送路に接する蛍光部材と、
     前記蛍光部材の発光波長の光を検知する光検出器と、を備えた光ファイバ装置。
    A transmission line having a core and a clad surrounding the core; and a coating surrounding the transmission line; and an optical fiber having:
    In the peeling portion where the coating of the optical fiber is peeled off, a fluorescent member in contact with the transmission path,
    An optical fiber device comprising: a photodetector that detects light having an emission wavelength of the fluorescent member.
  2.  前記伝送路は、前記クラッドを囲むサポート層をさらに有する請求項1に記載の光ファイバ装置。 The optical fiber device according to claim 1, wherein the transmission path further includes a support layer surrounding the clad.
  3.  前記蛍光部材は、前記伝送路の周囲を囲んでいる請求項1または2に記載の光ファイバ装置。 The optical fiber device according to claim 1 or 2, wherein the fluorescent member surrounds the periphery of the transmission path.
  4.  前記光ファイバの入射端に溶融接続されたエンドキャップをさらに備えた請求項1~3のいずれかに記載の光ファイバ装置。 The optical fiber device according to any one of claims 1 to 3, further comprising an end cap fused and connected to an incident end of the optical fiber.
  5.  前記光検出器と前記蛍光部材の間に設けられ、波長選択性を有する光学フィルタをさらに備えた請求項1~4のいずれかに記載の光ファイバ装置。 The optical fiber device according to any one of claims 1 to 4, further comprising an optical filter provided between the photodetector and the fluorescent member and having wavelength selectivity.
  6.  前記光ファイバおよび前記蛍光部材と一体化されたコネクタをさらに備えた請求項1または2に記載の光ファイバ装置。 The optical fiber device according to claim 1 or 2, further comprising a connector integrated with the optical fiber and the fluorescent member.
  7.  前記コネクタに設けられた貫通孔に前記蛍光部材が挿入され、
     前記貫通孔内に設けられた弾性体によって前記蛍光部材が前記伝送路に押圧された請求項6に記載の光ファイバ装置。
    The fluorescent member is inserted into a through hole provided in the connector,
    The optical fiber device according to claim 6, wherein the fluorescent member is pressed against the transmission path by an elastic body provided in the through hole.
  8.  前記光検出器と前記蛍光部材の間に設けられ、波長選択性を有する光学フィルタをさらに備えた請求項6または7に記載の光ファイバ装置。 The optical fiber device according to claim 6 or 7, further comprising an optical filter provided between the photodetector and the fluorescent member and having wavelength selectivity.
  9.  前記コネクタは、前記光検出器と前記光学フィルタと一体化されている請求項8に記載の光ファイバ装置。 9. The optical fiber device according to claim 8, wherein the connector is integrated with the photodetector and the optical filter.
  10.  前記蛍光部材は、第1の波長の蛍光を発生する第1の蛍光部材と、前記第1の波長とは異なる第2の波長の蛍光を発生する第2の蛍光部材とを含む請求項6または7に記載の光ファイバ装置。 The fluorescent member includes a first fluorescent member that generates fluorescence of a first wavelength and a second fluorescent member that generates fluorescence of a second wavelength different from the first wavelength. 8. An optical fiber device according to 7.
  11.  前記光検出器は、第1の光検出器および第2の光検出器を含み、
     前記第1の光検出器と前記第1の蛍光部材の間に設けられ、前記第1の波長を透過する第1の光学フィルタと、
     前記第2の光検出器と前記第2の蛍光部材の間に設けられ、前記第2の波長を透過する第2の光学フィルタと、をさらに備えた請求項10に記載の光ファイバ装置。
    The photodetector includes a first photodetector and a second photodetector,
    A first optical filter that is provided between the first photodetector and the first fluorescent member and transmits the first wavelength;
    The optical fiber device according to claim 10, further comprising: a second optical filter that is provided between the second photodetector and the second fluorescent member and transmits the second wavelength.
  12.  前記コネクタは、前記第1の光検出器と前記第2の光検出器と前記第1の光学フィルタと前記第2の光学フィルタと一体化されている請求項11に記載の光ファイバ装置。 12. The optical fiber device according to claim 11, wherein the connector is integrated with the first photodetector, the second photodetector, the first optical filter, and the second optical filter.
  13.  前記光ファイバの入射端に溶融接続されたエンドキャップをさらに備えた請求項6~12のいずれかに記載の光ファイバ装置。 The optical fiber device according to any one of claims 6 to 12, further comprising an end cap fused and connected to an incident end of the optical fiber.
  14.  前記コネクタは、前記エンドキャップと一体化されている請求項13に記載の光ファイバ装置。 14. The optical fiber device according to claim 13, wherein the connector is integrated with the end cap.
PCT/JP2015/001324 2014-03-12 2015-03-11 Optical fiber device WO2015136924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-048458 2014-03-12
JP2014048458 2014-03-12

Publications (1)

Publication Number Publication Date
WO2015136924A1 true WO2015136924A1 (en) 2015-09-17

Family

ID=54071381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001324 WO2015136924A1 (en) 2014-03-12 2015-03-11 Optical fiber device

Country Status (1)

Country Link
WO (1) WO2015136924A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216395A (en) * 2016-06-01 2017-12-07 新日鐵住金株式会社 Abnormality detector of laser irradiation facility
JP2017223782A (en) * 2016-06-14 2017-12-21 株式会社フジクラ Optical device and laser apparatus
WO2020196562A1 (en) * 2019-03-27 2020-10-01 古河電気工業株式会社 End part structure of optical fiber and semiconductor laser module
CN113615013A (en) * 2019-03-11 2021-11-05 株式会社藤仓 Optical connector and laser device provided with same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249118A (en) * 1987-04-06 1988-10-17 Nippon Telegr & Teleph Corp <Ntt> Method and connector plug for accessing optical fiber line
JPH07318733A (en) * 1994-05-10 1995-12-08 Permanova Lasersyst Ab Fiber
JP2004151667A (en) * 2002-09-05 2004-05-27 Amada Co Ltd Optical fiber for laser machining, and laser beam transmission device
JP2004317630A (en) * 2003-04-14 2004-11-11 Fujikura Ltd Optical transmitting module
JP2007227573A (en) * 2006-02-22 2007-09-06 Harison Toshiba Lighting Corp Light emitting device
JP2011145216A (en) * 2010-01-15 2011-07-28 Panasonic Electric Works Co Ltd Hot-line detection device
JP2011232706A (en) * 2010-04-30 2011-11-17 Fujitsu Ltd Optical device, optical monitoring system and manufacturing method of optical device
JP2011242655A (en) * 2010-05-19 2011-12-01 Furukawa Electric Co Ltd:The Fiber stub and optical module using the same
JP2012181343A (en) * 2011-03-01 2012-09-20 Sumitomo Electric Ind Ltd Optical waveguide, laser light irradiation device, and method for assembling laser light irradiation device
JP2012211939A (en) * 2011-03-30 2012-11-01 Sumitomo Electric Ind Ltd Laser light irradiation device, laser light irradiation module adjusting device, and laser light irradiation module adjusting method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249118A (en) * 1987-04-06 1988-10-17 Nippon Telegr & Teleph Corp <Ntt> Method and connector plug for accessing optical fiber line
JPH07318733A (en) * 1994-05-10 1995-12-08 Permanova Lasersyst Ab Fiber
JP2004151667A (en) * 2002-09-05 2004-05-27 Amada Co Ltd Optical fiber for laser machining, and laser beam transmission device
JP2004317630A (en) * 2003-04-14 2004-11-11 Fujikura Ltd Optical transmitting module
JP2007227573A (en) * 2006-02-22 2007-09-06 Harison Toshiba Lighting Corp Light emitting device
JP2011145216A (en) * 2010-01-15 2011-07-28 Panasonic Electric Works Co Ltd Hot-line detection device
JP2011232706A (en) * 2010-04-30 2011-11-17 Fujitsu Ltd Optical device, optical monitoring system and manufacturing method of optical device
JP2011242655A (en) * 2010-05-19 2011-12-01 Furukawa Electric Co Ltd:The Fiber stub and optical module using the same
JP2012181343A (en) * 2011-03-01 2012-09-20 Sumitomo Electric Ind Ltd Optical waveguide, laser light irradiation device, and method for assembling laser light irradiation device
JP2012211939A (en) * 2011-03-30 2012-11-01 Sumitomo Electric Ind Ltd Laser light irradiation device, laser light irradiation module adjusting device, and laser light irradiation module adjusting method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216395A (en) * 2016-06-01 2017-12-07 新日鐵住金株式会社 Abnormality detector of laser irradiation facility
JP2017223782A (en) * 2016-06-14 2017-12-21 株式会社フジクラ Optical device and laser apparatus
CN113615013A (en) * 2019-03-11 2021-11-05 株式会社藤仓 Optical connector and laser device provided with same
US20220163742A1 (en) * 2019-03-11 2022-05-26 Fujikura Ltd. Optical connector and laser apparatus having the same
EP3940896A4 (en) * 2019-03-11 2022-12-07 Fujikura Ltd. Optical connector and laser device provided with optical connector
WO2020196562A1 (en) * 2019-03-27 2020-10-01 古河電気工業株式会社 End part structure of optical fiber and semiconductor laser module
JP7479348B2 (en) 2019-03-27 2024-05-08 古河電気工業株式会社 Optical fiber end structure and semiconductor laser module

Similar Documents

Publication Publication Date Title
US9534952B2 (en) Integrated parameter monitoring in a fiber laser/amplifier
JP4347688B2 (en) Fiber optic equipment
US7957438B2 (en) Method and device for monitoring light
JP6387356B2 (en) Ultra high power fiber laser system with multimode-multimode fiber coupler
US7058267B2 (en) Method for manufacturing of an optical fiber with a decoupling interface for scattered light, use of an optical fiber and device for monitoring of the light power guided through an optical fiber
JP4878259B2 (en) Optical components
JP5297887B2 (en) Optical demultiplexing detector and fluorescence detection system for fluorescence analysis
WO2015136924A1 (en) Optical fiber device
EP3477348A1 (en) Optical device and laser device
JP4855429B2 (en) Connection method of double clad fiber
JP2007293300A (en) Beam converting apparatus
JP2013024738A (en) Live-wire detection device
WO2012118021A1 (en) Optical waveguide, laser light irradiation device, and method for assembling laser light irradiation device
JP5469191B2 (en) Optical component, and optical fiber amplifier and laser device using the same
JP6738218B2 (en) Optical device and laser device
US20060198582A1 (en) Photodetection device and light source module
JP6540310B2 (en) Fiber optic terminal
JP2009092940A (en) Optical power monitor and manufacturing method thereof
KR20210040800A (en) Optical probe, optical probe array, test system and test method
JP2007187774A (en) Method of manufacturing optical module for multimode
JP5341164B2 (en) Optical components
JP2008122674A (en) Method of manufacturing optical module
JP2008197241A (en) Optical module
JP3949137B2 (en) Optical fiber terminal, manufacturing method thereof, optical coupler and optical component
JP2007279228A (en) Optical component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15760989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP