WO2024017559A1 - Brayton-kreisprozess-maschine und verfahren zum betreiben einer brayton-kreisprozess-maschine - Google Patents

Brayton-kreisprozess-maschine und verfahren zum betreiben einer brayton-kreisprozess-maschine Download PDF

Info

Publication number
WO2024017559A1
WO2024017559A1 PCT/EP2023/067044 EP2023067044W WO2024017559A1 WO 2024017559 A1 WO2024017559 A1 WO 2024017559A1 EP 2023067044 W EP2023067044 W EP 2023067044W WO 2024017559 A1 WO2024017559 A1 WO 2024017559A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
working medium
compressor
brayton cycle
cycle machine
Prior art date
Application number
PCT/EP2023/067044
Other languages
English (en)
French (fr)
Inventor
Alexander Rippl
Salman Azmat CHAUDHRY
Steffen GAU
Johannes Hartz
Gerhard Schlegl
Original Assignee
Man Energy Solutions Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Man Energy Solutions Se filed Critical Man Energy Solutions Se
Publication of WO2024017559A1 publication Critical patent/WO2024017559A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing

Definitions

  • the invention relates to a Brayton cycle machine and a method for operating a Brayton cycle machine.
  • a Brayton cycle machine has a compressor that is set up to compress gaseous working medium from an inlet pressure of the compressor to an outlet pressure of the compressor. Furthermore, a Brayton cycle machine has a first heat - exchanger, which is set up to extract heat from the gaseous, compressed working medium downstream of the compressor. An expander of the Brayton cycle machine is set up to expand the working medium downstream of the first heat exchanger, with the Brayton cycle machine having a second heat exchanger downstream of the expander, which is set up to convert heat into the gaseous form downstream of the expander to couple in the working medium.
  • the working medium is in a gaseous state throughout the entire cycle, whereby the working medium can be air, CO2 or even argon.
  • the compressor is designed as a turbo compressor. This means that in Brayton cycle machines known from practice, final compression temperatures of a maximum of 450°C can be achieved downstream of the compressor.
  • the compressor is a reciprocating piston compressor with at least one cylinder.
  • the compressor is a reciprocating compressor with at least one cylinder. This makes it possible to achieve higher final compression temperatures of up to 600°C or up to 800°C.
  • the Brayton cycle machine has a third heat exchanger, which is set up to couple residual heat from the working medium guided via the first heat exchanger into the working medium to be compressed upstream of the compressor.
  • the third heat exchanger is part of a secondary circuit which has a further heat exchanger, the further heat exchanger being set up to couple residual heat of the working medium into a process medium of the secondary circuit downstream of the first heat exchanger, and the third heat exchanger being set up to transfer the residual heat upstream of the compressor to couple the working medium guided via the first heat exchanger into the working medium to be compressed. This allows the efficiency of the Brayton cycle machine to be further increased.
  • the reciprocating compressor is driven by a motor and coupled to the expander, in particular via a gear and/or a clutch.
  • the expander can be used to support the engine. Efficient operation of the Brayton cycle machine is possible.
  • the Brayton cycle machine preferably has an injection device for water, which is set up to inject water downstream of the expander and upstream of the second heat exchanger and/or water in the area of the second heat exchanger into the working medium to be compressed. It is possible to operate the Brayton cycle with moist air to further increase the efficiency of the cycle.
  • the method according to the invention for operating a Brayton cycle machine is defined in claim 10.
  • FIG. 2 is a block diagram of a second Brayton cycle machine according to the invention.
  • Fig. 3 is a block diagram of a third Brayton cycle machine according to the invention.
  • the invention of a Brayton cycle machine.
  • the invention further relates to a method for operating a Brayton cycle machine.
  • FIG. 1 shows a Brayton cycle machine 10 according to the invention, the Brayton cycle machine 10 having a compressor 11 which is set up to compress gaseous working medium starting from an inlet pressure of the compressor 11 to an outlet pressure of the same.
  • the Brayton cycle machine 10 also has a first heat exchanger 12, which is set up to extract heat from the gaseous, compressed working medium downstream of the compressor 11. Furthermore, the Brayton cycle machine 10 has an expander 13, which is set up to expand the gaseous working medium downstream of the first heat exchanger 12.
  • the expander 13 can also be referred to as a turbine.
  • the Brayton cycle machine 10 Downstream of the expander 13 and upstream of the compressor 11, the Brayton cycle machine 10 includes a second heat exchanger 14, which is set up to couple heat into the gaseous working medium downstream of the expander 13.
  • the working medium which can be air, CO2 or even argon, is in a gaseous state.
  • the compressor 11 is a reciprocating compressor with at least one cylinder 15.
  • the reciprocating compressor 11 can be driven starting from the expander 13 to support the motor 17, whereby a gearbox (not shown) and/or a clutch (not shown) or an electrical connection of a tubine generator can be connected between the expander 13 and the reciprocating compressor 11 and compressor motor.
  • a reciprocating piston compressor 11 is used as the compressor, high final compression temperatures downstream of the compressor 11 of up to 600 C or up to 800 ° C can be achieved.
  • a reciprocating piston internal combustion engine can be used as the reciprocating piston compressor 11, in which, however, no fuel is burned; rather, only the working medium is then compressed in the cylinders 15 of the same.
  • the reciprocating compressor 11 is driven by the motor 17.
  • the working medium to be compressed is preheated, sucked in via the reciprocating compressor 11 and compressed to a target pressure and thus a target temperature.
  • Oil can be removed from the working medium via an oil filter or oil separator 18 arranged downstream of the reciprocating compressor 11.
  • heat can be extracted from the working medium, in particular transferred as useful heat to steam, thermal oil, air or liquid salt.
  • the Brayton cycle machine 10 of FIG. 1 has a third heat exchanger 19, which is set up to couple residual heat of the gaseous working medium guided via the first heat exchanger 12 into the gaseous working medium to be compressed upstream of the compressor 11.
  • the working medium guided via the two heat exchangers 12 and 19 then reaches the area of the expander 13.
  • the expander 13 can use energy obtained during the expansion of the gaseous working medium to drive the reciprocating piston compressor 11, for which purpose the expander 13 electrically and/or mechanically, in particular via a gearbox (not shown) and/or a not shown clutch shown, with which the reciprocating compressor 11 can be coupled.
  • a further heat exchanger 20 is arranged upstream of the third heat exchanger 19 and downstream of the second heat exchanger 14, which is set up to receive heat from a lubricating medium and/or a cooling medium. in order to couple the reciprocating piston compressor 11 into the working medium This makes it possible to provide an effective cooling mechanism for the reciprocating compressor 11, which is exposed to high temperatures. Heat from the lubricating medium and/or cooling medium can be dissipated from the housing of the reciprocating piston compressor 11 and coupled into the gaseous working medium to be compressed via the further heat exchanger 20.
  • Fig. 2 shows a further development of the Brayton cycle machine 10 of Fig. 1, wherein in Fig. 2 the third heat exchanger 19 is part of a secondary circuit 21, into which a further heat exchanger 22 is integrated.
  • the further heat exchanger 22 is set up to couple residual heat of the working medium into a process medium of the secondary circuit 21 downstream of the first heat exchanger 12.
  • the third heat exchanger 19 is then set up to couple the residual heat of the working medium, which was coupled into the process medium, upstream of the compressor 11, into the gaseous working medium to be compressed upstream of the compressor 11.
  • a pump 23 is integrated into the secondary circuit.
  • the process medium of the secondary circuit 21, which can also be referred to as transfer fluid, can be thermal oil or water.
  • 2 further shows a pressure maintenance system 24 for the secondary circuit 21.
  • the pressure in the secondary circuit 21 can be regulated via the pressure maintenance system 24.
  • the compressors 11 of the Brayton cycle machines 10 of FIGS. 1 and 2 are reciprocating compressors. These have at least one cylinder 15 with a piston 16 that can be moved up and down in the cylinder 15.
  • the reciprocating compressor 11 can be assemblies of a reciprocating internal combustion engine, which, however, is not used to burn fuel, but only for Compression of the working medium, with the reciprocating piston compressor 11 being driven by the motor 17, optionally supported by the expander 13.
  • the heat exchangers 19 and 20 can be provided by intercoolers of a reciprocating piston internal combustion engine.
  • the other heat exchangers 12, 14 and 22 can also be designed using the technology of intercoolers of reciprocating piston internal combustion engines. This then makes a compact, simple structure of the Brayton cycle machine 10 possible.
  • module which includes the expander 13 and all heat exchangers 12, 14, 20, 19 and 22, as a unit and to install it on the housing of the reciprocating compressor.
  • a module consisting of the expander 13 and the heat exchangers 12, 19, 20, 14 and 22 can be designed to be compact and installed on the housing of the reciprocating compressor 11.
  • FIG. 3 shows a further modification of the Brayton cycle machine 10 of FIG. 1, wherein the Brayton cycle machine 10 of FIG. 3 has an injection device 25 which is set up downstream of the expander 13 and upstream of the second Heat exchanger 14 to inject water into the gaseous working medium to be compressed, specifically according to FIG the gaseous working medium immediately upstream of the second heat exchanger 14 and an injector 27 for injecting the water into the gaseous working medium immediately in the second heat exchanger 14.
  • the Brayton cycle machine 10 is operated with moist air.
  • water is injected into the gaseous working medium upstream of the second heat exchanger 14 and/or directly in the area of the second heat exchanger 14, namely a maximum of so much water that downstream of the second heat exchanger 14 and upstream of the reciprocating piston compressor 11 there is a fully saturated working medium with moisture of a maximum of 100%.
  • 3 shows a condensate separator 28 downstream of the expander 13, via which condensate arising downstream of the expander 13 can be separated from the gaseous working medium in order to collect it in a tank 29 and in turn make it available to the injection device 25 via a pump 30 place.
  • the condensate separator 28 and/or the injection device 25 can be dispensed with by a direct connection with short line paths. Liquid droplets form which are entrained in the flow of the working medium and are absorbed by the gaseous working medium in the subsequent second heat exchanger 14.
  • the Brayton cycle machine 10 actually does not require an injection device 25 and no condensate separation 28.
  • the injection device 25 and the condensate separation 28 are advantageous for starting up the Brayton cycle machine 10 and for readjusting the humidity.
  • the injection or injection of water into the gaseous working medium can also be provided for start-up at another point in the cycle.
  • the injection of water can be used to control the outlet temperature of the expander 13, for example to avoid icing in the area of the expander 13. The more water is injected into the working medium, the higher the outlet temperature of the expander 13.
  • the invention further relates to a method for operating a Brayton cycle machine 10, namely the Brayton cycle machine 10 of FIG. 3, in which water flows into the gaseous working medium downstream of the second heat exchanger 14 and/or in the area of the second heat exchanger 14 is injected into the gaseous working medium.
  • a Brayton cycle machine 10 namely the Brayton cycle machine 10 of FIG. 3
  • water flows into the gaseous working medium downstream of the second heat exchanger 14 and/or in the area of the second heat exchanger 14 is injected into the gaseous working medium.
  • This can be done in a controlled and/or regulated manner, in particular depending on a measured outlet temperature of the expander 13.
  • the amount of injected water can be adjusted in order to prevent the expander 13 from freezing over.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Brayton-Kreisprozess-Maschine (10), mit einem Verdichter (11), der eingerichtet ist, gasförmiges Arbeitsmedium ausgehend von einem Eingangsdruck des Verdichters (11) auf einen Ausgangsdruck des Verdichters (11) zu verdichten, mit einem ersten Wärmetauscher (12), der eingerichtet ist, stromabwärts des Verdichters (12) Wärme aus dem gasförmigen, verdichteten Arbeitsmedium auszukoppeln, mit einem Expander (13), der eingerichtet ist, stromabwärts des ersten Wärmetauschers (12) das gasförmige Arbeitsmedium zu entspannen, mit einem zweiten Wärmetauscher (14), der eingerichtet ist, stromabwärts des Expanders (13) Wärme in das gasförmige Arbeitsmedium einzukoppeln, wobei der Verdichter (11) ein Hubkolbenverdichter mit mindestens einem Zylinder (15) ist.

Description

Brayton-Kreisprozess-Maschine und Verfahren zum Betreiben einer Brayton- Kreisprozess-Maschine
Die Erfindung betrifft eine Brayton-Kreisprozess-Maschine und ein Verfahren zum Betreiben einer Brayton-Kreisprozess-Maschine.
Der grundsätzliche Aufbau einer Brayton-Kreisprozess-Maschine ist aus der Pra- xis bekannt. So verfügt eine Brayton-Kreisprozess-Maschine über einen Verdich- ter, der eingerichtet ist, gasförmiges Arbeitsmedium ausgehend von einem Ein- gangsdruck des Verdichters auf einen Ausgangsdruck des Verdichters zu verdich- ten. Ferner verfügt eine Brayton-Kreisprozess-Maschine über einen ersten Wär- metauscher, der eingerichtet ist, stromabwärts des Verdichters Wärme aus dem gasförmigen, verdichteten Arbeitsmedium auszukoppeln. Ein Expander der Bray- ton-Kreisprozess-Maschine ist eingerichtet, stromabwärts des ersten Wärmetau- schers das Arbeitsmedium zu entspannen, wobei stromabwärts des Expanders die Brayton-Kreisprozess-Maschine einen zweiten Wärmetauscher aufweist, der eingerichtet ist, stromabwärts des Expanders Wärme in das gasförmige Arbeits- medium einzukoppeln. Das Arbeitsmedium liegt während des gesamten Kreispro- zesses in einem gasförmigen Aggregatzustand vor, wobei es sich beim Arbeits- medium um Luft, CO2 oder auch Argon handeln kann. Bei aus der Praxis bekann- ten Brayton-Kreisprozess-Maschinen ist der Verdichter als Turboverdichter ausge- führt. Damit können bei aus der Praxis bekannten Brayton-Kreisprozess- Maschinen stromabwärts des Verdichters Verdichtungsendtemperaturen von ma- ximal 450°C realisiert werden.
Es besteht Bedarf an einer Brayton-Kreisprozess-Maschine, mit welcher höhere Verdichtungstemperaturen realisiert werden können. Aufgabe der Erfindung ist es, eine solche Brayton-Kreisprozess-Maschine und ein Verfahren zum Betreiben derselben zu schaffen. Diese Aufgabe wird durch eine Brayton-Kreisprozess-Maschine nach Anspruch 1 gelöst. Erfindungsgemäß ist der Verdichter ein Hubkolbenverdichter mit mindes- tens einem Zylinder. Erfindungsgemäß ist der Verdichter ein Hubkolbenverdichter mit mindestens einem Zylinder. Hierdurch ist es möglich, höhere Verdichtungsend- temperaturen von bis zu 600°C oder bis zu 800°C zu realisieren.
Vorzugsweise weist die Brayton-Kreisprozess-Maschine einen dritten Wärmetau- scher auf, der eingerichtet ist, stromaufwärts des Verdichters Restwärme des über den ersten Wärmetauscher geführten Arbeitsmediums in das zu verdichtende Ar- beitsmedium einzukoppeln. Insbesondere ist der dritte Wärmetauscher Bestandteil eines Sekundärkreislaufs, der einen weiteren Wärmetauscher aufweist, wobei der weitere Wärmetauscher eingerichtet ist, stromabwärts des ersten Wärmetauscher Restwärme des Arbeitsmediums in ein Prozessmedium des Sekundärkreislaufs einzukoppeln, und wobei der dritte Wärmetauscher eingerichtet ist, stromaufwärts des Verdichters die Restwärme des über den ersten Wärmetauscher geführten Arbeitsmediums in das zu verdichtende Arbeitsmedium einzukoppeln. Hiermit kann die Effizienz der Brayton-Kreisprozess-Maschine weiter gesteigert werden.
Vorzugsweise ist der Hubkolbenverdichter von einem Motor angetrieben und mit dem Expander insbesondere über ein Getriebe und/oder eine Kupplung gekoppelt. Der Expander kann zur Unterstützung des Motors genutzt werden. Es ist ein effi- zienter Betrieb der Brayton-Kreisprozess-Maschine möglich.
Vorzugsweise weist die Brayton-Kreisprozess-Maschine ein eine Injektionseinrich- tung für Wasser auf, die eingerichtet ist, stromabwärts des Expanders und strom- aufwärts des zweiten Wärmetauschers Wasser und/oder im Bereich des zweiten Wärmestauschers Wasser in das zu verdichtende Arbeitsmedium zu injizieren. Es ist möglich, den Brayton-Kreisprozess mit feuchter Luft zu betreiben, um die Effizi- enz des Kreisprozesses weiter zu steigern. Das erfindungsgemäße Verfahren zum Betreiben einer Brayton-Kreisprozess- Maschine ist in Anspruch 10 definiert.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprü- chen und der nachfolgenden Beschreibung.
Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
Fig. 1 : ein Blockschaltbild einer ersten erfindungsgemäßen Brayton- Kreisprozess-Maschine,
Fig. 2 ein Blockschaltbild einer zweiten erfindungsgemäßen Brayton- Kreisprozess-Maschine,
Fig. 3 ein Blockschaltbild einer dritten erfindungsgemäßen Brayton- Kreisprozess-Maschine.
Die Erfindung eine Brayton-Kreisprozess-Maschine. Ferner betrifft die Erfindung ein Verfahren zum Betreiben einer Brayton-Kreisprozess-Maschine.
Fig. 1 zeigt eine erfindungsgemäße Brayton-Kreisprozess-Maschine 10, wobei die Brayton-Kreisprozess-Maschine 10 über einen Verdichter 11 verfügt, der einge- richtet ist, gasförmiges Arbeitsmedium ausgehend von einem Eingangsdruck des Verdichters 11 auf einen Ausgangsdruck desselben zu verdichten.
Die Brayton-Kreisprozess-Maschine 10 verfügt ferner über einen ersten Wärme- tauscher 12, der eingerichtet ist, stromabwärts des Verdichters 11 Wärme aus dem gasförmigen, verdichteten Arbeitsmedium auszukoppeln. Ferner verfügt die Brayton-Kreisprozess-Maschine 10 über einen Expander 13, der eingerichtet ist, stromabwärts des ersten Wärmetauschers 12 das gasförmige Arbeitsmedium zu entspannen. Der Exapnder 13 kann auch als Turbine bezeich- net werden.
Stromabwärts des Expanders 13 und stromaufwärts des Verdichters 11 umfasst die Brayton-Kreisprozess-Maschine 10 über einen zweiten Wärmetauscher 14, der eingerichtet ist, stromabwärts des Expanders 13 Wärme in das gasförmige Ar- beitsmedium einzukoppeln.
Während des gesamten Kreisprozesses liegt das Arbeitsmedium, bei welchem es sich um Luft, CO2 oder auch Argon handeln kann, in einem gasförmigen Zustand vor.
Der Verdichter 11 ist erfindungsgemäß ein Hubkolbenverdichter mit mindestens einem Zylinder 15. Fig. 1 zeigt lediglich exemplarisch einen Zylinder 15 sowie ei- nen Kolben 16 im Bereich des Zylinders 15. Der Hubkolbenverdichter 11 ist aus- gehend von einem Motor 17 antreibbar. Ebenso kann der Hubkolbenverdichter 11 ausgehend vom Expander 13 zur Unterstützung des Motors 17 angetrieben wer- den, wobei zwischen dem Expander 13 und den Hubkolbenverdichter 11 ein nicht gezeigtes Getriebe und/oder eine nicht gezeigte Kupplung geschaltet sein kann oder eine elektrische Verschaltung von Tubinen-Generator und Verrdichter-Motor.
Dadurch, dass als Verdichter ein Hubkolbenverdichter 11 genutzt wird, können hohe Verdichtungsendtemperaturen stromabwärts des Verdichters 11 von bis zu 600 C oder bis zu 800°C realisiert werden. Als Hubkolbenverdichter 11 kann auf einen Hubkolbenverbrennungsmotor zurückgegriffen werden, in dem dann jedoch kein Kraftstoff verbrannt wird, vielmehr wird in den Zylindern 15 desselben dann ausschließlich das Arbeitsmedium verdichtet. Wie bereits ausgeführt, ist der Hubkolbenverdichter 11 ausgehend vom Motor 17 angetrieben. Im Bereich des zweiten Wärmetauschers 14 wird das zu verdichteten Arbeitsmedium vorgewärmt, über den Hubkolbenverdichter 11 angesaugt und bis auf einen Zieldruck und damit eine Zieltemperatur verdichtet.
Über einen stromabwärts des Hubkolbenverdichters 11 angeordneten Ölfilter oder Ölabscheider 18 kann Öl aus dem Arbeitsmedium entfernt werden.
Im ersten Wärmetauscher 12 kann Wärme aus dem Arbeitsmedium ausgekoppelt werden, insbesondere als Nutzwärme an Dampf, Thermo-Öl, Luft oder Flüssigsalz übertragen werden.
Die Brayton-Kreisprozess-Maschine 10 der Fig. 1 weist einen dritten Wärmetau- scher 19 auf, der eingerichtet ist, stromaufwärts des Verdichters 11 Restwärme des über den ersten Wärmetauscher 12 geführten gasförmigen Arbeitsmediums in das zu verdichtende gasförmige Arbeitsmedium einzukoppeln. Dabei gelangt dann in Fig. 1 das über die beiden Wärmetauscher 12 und 19 geführte Arbeitsmedium anschließend in den Bereich des Expanders 13.
Wie bereits ausgeführt, kann der Expander 13 bei der Entspannung des gasförmi- gen Arbeitsmediums gewonnene Energie zum Antreiben des Hubkolbenverdich- ters 11 nutzen, wozu der Expander 13 elektrisch und/oder mechanisch, insbeson- dere über ein nicht gezeigtes Getriebe und/oder eine nicht gezeigte Kupplung, mit dem Hubkolbenverdichter 11 gekoppelt sein kann.
Bei der Brayton-Kreisprozess-Maschine 10 ist in Strömungsrichtung des Arbeits- mediums gesehen stromaufwärts des dritten Wärmetauschers 19 und stromab- wärts des zweiten Wärmetauschers 14 ein weiterer Wärmetauscher 20 angeord- net, der eingerichtet ist, Wärme eines Schmiermediums und/oder eines Kühlmedi- ums des Hubkolbenverdichters 11 in das zu Arbeitsmedium einzukoppeln Hierdurch ist es möglich, einen effektiven Kühlmechanismus für den Hubkolben- verdichter 11 , der hohen Temperaturen ausgesetzt ist, bereitzustellen. Wärme des Schmiermediums und/oder Kühlmediums kann aus dem Gehäuse des Hubkol- benverdichters 11 abgeführt und über den weiteren Wärmetauscher 20 in das zu verdichtende, gasförmige Arbeitsmedium eingekoppelt werden.
Fig. 2 zeigt eine Weiterbildung der Brayton-Kreisprozess-Maschine 10 der Fig. 1 , wobei in Fig. 2 der dritte Wärmetauscher 19 Bestandteil eines Sekundärkreislaufs 21 ist, in den ein weiterer Wärmetauscher 22 eingebunden ist. Der weitere Wär- metauscher 22 ist eingerichtet, stromabwärts des ersten Wärmetauschers 12 Restwärme des Arbeitsmediums in ein Prozessmedium des Sekundärkreislaufs 21 einzukoppeln. Der dritte Wärmetauscher 19 ist dann eingerichtet, stromaufwärts des Verdichters 11 die Restwärme des Arbeitsmediums, die in das Prozessmedi- um eingekoppelt wurde, in das gasförmige, zu verdichtende Arbeitsmedium stromaufwärts des Verdichters 11 einzukoppeln. Dabei ist gemäß Fig. 2 in den Sekundärkreis eine Pumpe 23 integriert. Bei dem Prozessmedium des Sekundär- kreises 21 , welches auch als T ransferfluid bezeichnet werden kann, kann es sich um Thermo-Öl oder auch um Wasser handeln. Fig. 2 zeigt weiterhin ein Druckhal- tesystem 24 für den Sekundärkreislauf 21 . Über das Druckhaltesystem 24 kann der Druck im Sekundärkreislauf 21 geregelt werden.
Wie bereits ausgeführt, handelt es sich bei den Verdichtern 11 der Brayton- Kreisprozess-Maschinen 10 der Fig. 1 und 2 um Hubkolbenverdichter. Diese ver- fügen über mindestens einen Zylinder 15 mit einem im Zylinder 15 auf und ab be- wegbaren Kolben 16. Dabei kann es sich bei dem Hubkolbenverdichter 11 um Baugruppen eines Hubkolbenverbrennungsmotors handeln, der jedoch nicht zur Verbrennung von Kraftstoff genutzt wird, sondern lediglich zur Verdichtung des Arbeitsmediums, wobei der Hubkolbenverdichter 11 ausgehend vom Motor 17 ge- gebenenfalls unterstützt durch den Expander 13 angetrieben wird. Die Wärmetauscher 19 und 20 können dabei von Ladeluftkühlern eines Hubkol- benverbrennungsmotors bereitgestellt werden. Auch die anderen Wärmetauscher 12, 14 und 22 können in der Technologie von Ladeluftkühlern von Hubkolbenver- brennungsmotors ausgeführt werden. Hierdurch ist dann ein kompakter, einfacher Aufbau der Brayton-Kreisprozess-Maschine 10 möglich.
Es ist möglich, ein Modul, welches den Expander 13 und sämtliche Wärmetau- scher 12, 14, 20, 19 und 22 umfasst, als Einheit zusammenzufassen und am Ge- häuse des Hubkolbenverdichters zu verbauen. Ein solches Moduls aus dem Ex- pander 13 und den Wärmetauschern 12, 19, 20, 14 und 22 kann kompakt ausge- führt und am Gehäuse des Hubkolbenverdichters 11 verbaut sein.
Fig. 3 zeigt eine weitere Abwandlung der Brayton-Kreisprozess-Maschine 10 der Fig. 1 , wobei die Brayton-Kreisprozess-Maschine 10 der Fig. 3 eine Injektionsein- richtung 25 aufweist, die eingerichtet ist, stromabwärts des Expanders 13 und stromaufwärts des zweiten Wärmetauschers 14 Wasser in das zu verdichtende, gasförmige Arbeitsmedium zu injizieren, und zwar gemäß Fig. 3 unmittelbar vor dem zweiten Wärmetauscher 14 und/oder im Bereich des zweiten Wärmetau- schers 14. So zeigt Fig. 3 eine Düse 26 zur Injektion des Wassers in das gasför- mige Arbeitsmedium unmittelbar stromaufwärts des zweiten Wärmetauschers 14 und einen Injektor 27 für eine Injektion des Wassers in das gasförmige Arbeitsme- dium unmittelbar im zweiten Wärmetauscher 14.
In der Variante der Fig. 3 wird also die Brayton-Kreisprozess-Maschine 10 mit feuchter Luft betrieben. Hierbei wird stromaufwärts des zweiten Wärmetauschers 14 und/oder unmittelbar im Bereich des zweiten Wärmetauschers 14 Wasser in das gasförmige Arbeitsmedium injiziert, und zwar maximal so viel Wasser, dass stromabwärts des zweiten Wärmetauschers 14 und stromaufwärts des Hubkol- benverdichters 11 voll gesättigtes Arbeitsmedium mit einer Feuchtigkeit von ma- ximal 100% vorliegt. Fig. 3 zeigt stromabwärts des Expanders 13 einen Kondensatabscheider 28, über welchen stromabwärts des Expanders 13 anfallendes Kondensat aus dem gas- förmigen Arbeitsmedium abgeschieden werden kann, um dasselbe in einem Tank 29 zu sammeln und über eine Pumpe 30 wiederum der Injektionseinrichtung 25 zur Verfügung zu stellen. Insbesondere kann durch eine direkte Verschaltung mit kurzen Leitungswegen auf den Kondensatabscheider 28 und/oder die Injektions- einrichtung 25 verzichtet werden. Es bilden sich Flüssigkeitströpfchen aus, die im Strom des Arbeitsmediums mitgerissen werden und im nachfolgenden zweiten Wärmetauscher 14 von dem gasförmigen Arbeitsmedium aufgenommen werden. Somit benötigt die Brayton-Kreisprozess-Maschine 10 eigentlich keine Injektions- einrichtung 25 und keine Kondensatabscheidung 28. Zum Anfahren der Brayton- Kreisprozess-Maschine 10 und zum Nachregeln der Feuchtigkeit sind die Injekti- onseinrichtung 25 und die Kondensatabscheidung 28 jedoch von Vorteil. Die Ein- düsung oder Injektion von Wasser in das gasförmige Arbeitsmedium kann zum Anfahren auch an einer anderen Stelle im Kreisprozess vorgesehen sein.
Je mehr Wasser in Fig. 3 in das Arbeitsmedium der Brayton-Kreisprozess- Maschine 10 injiziert wird, desto höher ist die Effizienz des Kreisprozesses. Zu- sätzlich kann die Eindüsung des Wassers zur Regelung der Austrittstemperatur des Expanders 13 genutzt werden, um zum Beispiel eine Vereisung im Bereich des Expanders 13 zu vermeiden. Je mehr Wasser in das Arbeitsmedium injiziert wird, desto höher ist die Austrittstemperatur des Expanders 13.
Die Erfindung betrifft weiterhin ein Verfahren zum Betreiben einer Brayton- Kreisprozess-Maschine 10, nämlich der Brayton-Kreisprozess-Maschine 10 der Fig. 3, bei welchem Wasser in das gasförmige Arbeitsmedium stromabwärts des zweiten Wärmetauschers 14 und/oder im Bereich des zweiten Wärmetauschers 14 in das gasförmige Arbeitsmedium injiziert wird. Dies kann gesteuert und/oder geregelt erfolgen, insbesondere abhängig von einer gemessenen Austrittstempe- ratur des Expanders 13. Abhängig von der Austrittstemperatur des Expanders 13 kann die Menge des injizierten Wassers eingestellt werden, um ein Vereisen des Expanders 13 auszuschließen. Bezugszeichenliste
10 Brayton-Kreisprozess-Maschme
11 Verdichter
12 Wärmetauscher
13 Expander
14 Wärmetauscher
15 Zylinder
16 Kolben
17 Motor
18 Ölabscheider/Ölfilter
19 Wärmetauscher
20 Wärmetauscher
21 Sekundärkreislauf
22 Wärmetauscher
23 Pumpe
24 Druckhaltesystem
25 Injektionseinrichtung
26 Düse
27 Injektor
28 Kondensatabscheider
29 Tank
30 Pumpe

Claims

Ansprüche Brayton-Kreisprozess-Maschine (10), mit einem Verdichter (11 ), der eingerichtet ist, gasförmiges Arbeitsme- dium ausgehend von einem Eingangsdruck des Verdichters (11 ) auf einen Ausgangsdruck des Verdichters (11 ) zu verdichten, mit einem ersten Wärmetauscher (12), der eingerichtet ist, stromab- wärts des Verdichters (12) Wärme aus dem gasförmigen, verdichteten Ar- beitsmedium auszukoppeln, mit einem Expander (13), der eingerichtet ist, stromabwärts des ersten Wärmetauschers (12) das gasförmige Arbeitsmedium zu entspannen, mit einem zweiten Wärmetauscher (14), der eingerichtet ist, stromab- wärts des Expanders (13) Wärme in das gasförmige Arbeitsmedium einzu- koppeln, dadurch gekennzeichnet, dass der Verdichter (11 ) ein Hubkolbenverdichter mit mindestens einem Zy- linder (15) ist. Brayton-Kreisprozess-Maschine (10) nach Anspruch 1 , dadurch gekenn- zeichnet, dass der Hubkolbenverdichter (11) von einem Motor (17) ange- trieben ist. Brayton-Kreisprozess-Maschine (10) nach Anspruch 1 oder 2, gekenn- zeichnet durch einen dritten Wärmetauscher (19), der eingerichtet ist, stromaufwärts des Verdichters (11) Restwärme des über den ersten Wärme- tauscher (12) geführten Arbeitsmediums in das zu verdichtende Arbeitsmedi- um einzukoppeln. 4. Brayton-Kreisprozess-Maschine (10) nach Anspruch 3, gekennzeichnet durch einen vierten Wärmetauscher (20), der eingerichtet ist, stromaufwärts des dritten Wärmetauchers (19) Wärme eines Schmiermediums und/oder ei- nes Kühlmediums in das zu verdichtende Arbeitsmedium einzukoppeln.
5. Brayton-Kreisprozess-Maschine (10) nach Anspruch 3 oder 4, dadurch ge- kennzeichnet, dass der dritte Wärmetaucher (19) Bestandteil eines Sekun- därkreislaufs (21 ) ist, der einen weiteren Wärmetauscher (22) aufweist, wo- bei der weiteren Wärmetauscher (22) eingerichtet ist, stromabwärts des ers- ten Wärmetauscher (12) Restwärme des Arbeitsmediums in ein Prozessme- dium des Sekundärkreislaufs (21 ) einzukoppeln, und wobei der dritte Wärme- taucher (19) eingerichtet ist, stromaufwärts des Verdichters (11) die Rest- wärme des über den ersten Wärmetauscher (12) geführten Arbeitsmediums in das zu verdichtende Arbeitsmedium einzukoppeln.
6. Brayton-Kreisprozess-Maschine (10) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Expander (13) mit dem Verdichter (11) insbesondere über ein Getriebe und/oder eine Kupplung oder elektrische Verschaltung gekoppelt ist.
7. Brayton-Kreisprozess-Maschine (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Expander (13) und die Wärmetauscher (12, 14, 19, 20, 22) als Modul an dem Hubkolbenverdichter (11 ) verbaut sind.
8. Brayton-Kreisprozess-Maschine (10) nach einem der Ansprüche 1 bis 7, ge- kennzeichnet durch eine Injektionseinrichtung (25) für Wasser, die einge- richtet ist, stromabwärts des Expanders (13) und stromaufwärts des zweiten Wärmetauschers (14) Wasser in das zu verdichtende Arbeitsmedium zu inji- zieren. Brayton-Kreisprozess-Maschine (10) nach einem der Ansprüche 1 bis 8, ge- kennzeichnet durch ein3 Injektionseinrichtung (25) für Wasser, die einge- richtet ist, im Bereich des zweiten Wärmstauschers (14) Wasser in das zu verdichtende Arbeitsmedium zu injizieren. Verfahren zum Betreiben einer Brayton-Kreisprozess-Maschine (10) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass in das zu verdichtende Arbeitsmedium unmittelbar stromaufwärts des zweiten Wärmstauschers (14) und/oder im Bereich des zweiten Wärmstauschers(14) Wasser injiziert wird.
PCT/EP2023/067044 2022-07-22 2023-06-22 Brayton-kreisprozess-maschine und verfahren zum betreiben einer brayton-kreisprozess-maschine WO2024017559A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022118387.4A DE102022118387A1 (de) 2022-07-22 2022-07-22 Brayton-Kreisprozess-Maschine und Verfahren zum Betreiben einer Brayton-Kreisprozess-Maschine
DE102022118387.4 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024017559A1 true WO2024017559A1 (de) 2024-01-25

Family

ID=87070975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/067044 WO2024017559A1 (de) 2022-07-22 2023-06-22 Brayton-kreisprozess-maschine und verfahren zum betreiben einer brayton-kreisprozess-maschine

Country Status (2)

Country Link
DE (1) DE102022118387A1 (de)
WO (1) WO2024017559A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8245531B2 (en) * 2007-05-16 2012-08-21 Panasonic Corporation Fluid machine and refrigeration cycle apparatus having the same
US20140007569A1 (en) * 2012-07-04 2014-01-09 Kairama Inc. Isothermal machines, systems and methods
JP5389608B2 (ja) * 2009-11-02 2014-01-15 サンデン株式会社 流体機械及び流体機械を用いた自動車用廃熱利用システム
AU2019286912A1 (en) * 2018-06-11 2021-01-21 Nuovo Pignone Tecnologie - S.R.L. System for recovering waste heat and method thereof
ES2706393B2 (es) * 2017-09-27 2021-06-10 Ferreiro Garcia Ramon Planta termoeléctrica de ciclo combindado entre ciclo BRAYTON INVERSO asistido con calor de baja y/o alta temperatura y una máquina térmica y su procedimiento de operación

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2833370T3 (es) 2016-10-26 2021-06-15 Peter Ortmann Dispositivo de almacenamiento de energía, así como procedimiento para almacenar energía
DE102019127431B4 (de) 2019-10-11 2021-05-06 Enolcon Gmbh Thermischer Stromspeicher mit Festbett-Wärmespeicher und Festbett-Kältespeicher und Verfahren zum Betreiben eines thermischen Stromspeichers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8245531B2 (en) * 2007-05-16 2012-08-21 Panasonic Corporation Fluid machine and refrigeration cycle apparatus having the same
JP5389608B2 (ja) * 2009-11-02 2014-01-15 サンデン株式会社 流体機械及び流体機械を用いた自動車用廃熱利用システム
US20140007569A1 (en) * 2012-07-04 2014-01-09 Kairama Inc. Isothermal machines, systems and methods
ES2706393B2 (es) * 2017-09-27 2021-06-10 Ferreiro Garcia Ramon Planta termoeléctrica de ciclo combindado entre ciclo BRAYTON INVERSO asistido con calor de baja y/o alta temperatura y una máquina térmica y su procedimiento de operación
AU2019286912A1 (en) * 2018-06-11 2021-01-21 Nuovo Pignone Tecnologie - S.R.L. System for recovering waste heat and method thereof

Also Published As

Publication number Publication date
DE102022118387A1 (de) 2024-01-25

Similar Documents

Publication Publication Date Title
EP1330592B1 (de) Verfahren zum betreiben einer dampf-wärmekraftmaschine, insbesondere als fahrzeug-antriebsaggregat
EP2480780B1 (de) Brennkraftmaschine
DE2900014A1 (de) Gasturbinenvorrichtung
DE102010003906A1 (de) Verbrennungsmotor
EP0592059B1 (de) Verfahren und Vorrichtung zum Verdichten von Luft
DE102010056299A1 (de) Abwärmenutzungsanlage
DE102007049366A1 (de) Vorrichtung und Verfahren zur Gewinnung von mechanischer Energie aus heißen Gasströmen insbesondere eines Verbrennungsmotors
DE102008032831A1 (de) Vorrichtung und Verfahren zur Gewinnung von mechanischer Energie aus heißen Gasströmen insbesondere eines Verbrennungsmotors
WO2024017559A1 (de) Brayton-kreisprozess-maschine und verfahren zum betreiben einer brayton-kreisprozess-maschine
EP1167721A2 (de) Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
DE2719668A1 (de) Mehrzylinder-viertakt-dieselmotor
WO2011000548A2 (de) Verfahren zum betrieb eines kraftwerks mit einer gasturbinenanlage
WO2012013462A1 (de) Über einen dampfkraftprozess antreibbare kolbenmaschine
DE2750549A1 (de) Kombinierter verbrennungs-dampfmotor
DE204630C (de)
DE102022124989A1 (de) Wärmekraftmaschine und Verfahren zum Betreiben einer Wärmekraftmaschine
AT525537B1 (de) Verfahren und Vorrichtung zur Umwandlung von thermischer Energie in mechanische Energie
DE102011102803B4 (de) Abwärmenutzungsanlage
DE3343319A1 (de) Kombinierte gasturbinen-dampfturbinenanlage bzw. gasturbinenanlage
WO2012013471A1 (de) Kolbenmaschine
WO2012022288A2 (de) Vorrichtung zur durchführung eines thermodynamischen kreisprozesses
DE10228986A1 (de) Verfahren zur Zwischenkühlung sowie Gasturbinenanlage mit Zwischenkühlung
DE102010003436B4 (de) Verbrennungsmaschine und Verfahren zum Betrieb einer Verbrennungsmaschine
DE102022118369A1 (de) Kompressionskältemaschine, System aus Kompressionskältemaschinen und Verfahren zum Betreiben einer Kompressionskältemaschine
DE2730769B2 (de) Brennkraftmaschine, deren Austritt mit einer Abgasturbine verbunden ist

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23736249

Country of ref document: EP

Kind code of ref document: A1