WO2024017390A1 - 自主工作装置、系统及控制方法 - Google Patents

自主工作装置、系统及控制方法 Download PDF

Info

Publication number
WO2024017390A1
WO2024017390A1 PCT/CN2023/108919 CN2023108919W WO2024017390A1 WO 2024017390 A1 WO2024017390 A1 WO 2024017390A1 CN 2023108919 W CN2023108919 W CN 2023108919W WO 2024017390 A1 WO2024017390 A1 WO 2024017390A1
Authority
WO
WIPO (PCT)
Prior art keywords
working device
autonomous working
preset
autonomous
user
Prior art date
Application number
PCT/CN2023/108919
Other languages
English (en)
French (fr)
Inventor
翁蒙
卢帅龙
杨盛仓
任治国
查霞红
兰彬财
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2024017390A1 publication Critical patent/WO2024017390A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles

Definitions

  • the present disclosure relates to the technical field of autonomous working devices, and specifically to an autonomous working device, system and control method.
  • embodiments of the present disclosure are dedicated to providing an autonomous working device, an autonomous working system and a control method.
  • the following mainly introduces several aspects involved in this application.
  • a method for controlling an autonomous working device adapted to perform at least one work task in a work area includes:
  • the at least one working parameter it is judged according to the at least one working parameter whether the autonomous working device needs to return to the preset parking position outside the working area. If the judgment result is yes, the position data of at least one preset position is obtained and the autonomous working device is controlled. The working device travels to the at least one preset position to wait for user operation; wherein the preset parking position is different from the preset position;
  • the autonomous working device is returned to the preset docking position and switched to a state of waiting for execution of the next work task or shut down.
  • the above control method can make the autonomous working device pass at least one preset position before returning to the preset parking position, and wait for the user's operation at the preset position, so that the autonomous working device can operate in a safer driving environment and/or better conditions. Return to the preset parking position under safe driving conditions to ensure pedestrian safety.
  • a method for controlling an autonomous working device is provided.
  • the autonomous working device is adapted to perform at least one work task in a work area.
  • the method includes: obtaining the information when the autonomous working device enters the work area. Position data for approach position; obtain At least one working parameter when the autonomous working device performs the current work task; judging whether the autonomous working device needs to be subjected to user operation according to the at least one working parameter; if the judgment result is yes, control the driving of the autonomous working device to the entry position to wait for user action to be applied.
  • a method for controlling an autonomous working device adapted to perform at least one work task in a work area includes: acquiring position data of a plurality of preset positions; wherein, in The autonomous working device at the preset position is waiting for a user operation; obtaining at least one working parameter when the autonomous working device performs the current work task; and judging whether the autonomous working device needs to be operated based on the at least one working parameter.
  • a user operation is applied, and if the determination result is yes, the autonomous working device is controlled to travel to one of the plurality of preset positions to wait for the user operation to be applied.
  • an autonomous working device is provided.
  • the autonomous working device is adapted to perform at least one work task in a working area, including: a fuselage; a working component, a driving component, and a sensor component respectively connected to the fuselage.
  • the sensor component is at least configured to obtain positioning data of the autonomous working device;
  • the autonomous working device further includes a control circuit, the control circuit is coupled with the working component, the driving component, and the sensor component, Configured to execute a control process, the control process includes: obtaining at least one working parameter when the autonomous working device performs the current work task; judging whether the autonomous working device needs to return to the location according to the at least one working parameter. The preset parking position outside the work area.
  • the autonomous working device is controlled to travel to a preset position to wait for user operation; wherein the preset parking position is different from the preset position. ; Based on the applied user operation, the autonomous working device returns to the preset parking position and switches to a state of waiting for the execution of the next work task or shuts down.
  • an autonomous working device system includes the autonomous working device as described in the fourth aspect; a terminal that is communicatively connected to the autonomous working device; and a server that is connected to the autonomous working device and the autonomous working device.
  • the terminal communication connection is configured to store map data of different working areas, so as to send map data of the working area to be performed to the autonomous working device and/or the terminal.
  • a sixth aspect provides a computer-readable storage medium on which executable code is stored. When the executable code is executed, the method described in any one of the first to third aspects can be implemented. .
  • Figure 1 shows a schematic diagram of the transfer of autonomous working devices between different working areas
  • Figure 2 shows a schematic structural diagram of an autonomous working device according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the approach of an autonomous working device according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of the regression of the first part of the autonomous working device according to an embodiment of the present application
  • Figure 5 shows a return schematic diagram of the second part of the autonomous working device according to an embodiment of the present application
  • Figure 6 shows a driving schematic diagram of the autonomous working device replenishing power according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of the autonomous working device continuing to perform work tasks after replenishing power according to an embodiment of the present application
  • Figure 8 shows a schematic diagram of the return of the autonomous working device after replenishing power and completing the current work task according to an embodiment of the present application
  • Figure 9 shows a schematic diagram of the approach of an autonomous working device according to an embodiment of the present application.
  • Figure 10 shows a regression schematic diagram of the first part of the autonomous working device according to an embodiment of the present application
  • Figure 11 shows a return schematic diagram of the second part of the autonomous working device according to an embodiment of the present application.
  • Figure 12 shows a schematic diagram of the autonomous working device replenishing power according to an embodiment of the present application.
  • an autonomous working device may refer to a device with automatic driving function, which can perform work tasks during automatic driving.
  • the types of autonomous working devices may include multiple types, and the embodiments of the present disclosure are not limited thereto.
  • the autonomous working device may be an automatic lawn mower, an automatic snow plow, an automatic watering machine, an automatic leaf blower, an automatic sweeper, a mopping robot, an integrated sweeping and mopping robot, etc.
  • the autonomous work device is adapted to perform one or more work tasks within the work area.
  • the autonomous working device when the autonomous working device is an automatic lawn mower, it can perform lawn mowing tasks in the work area; for another example, when the autonomous working device is an automatic snowplow, it can perform snow clearing tasks in the work area; for another example, When the autonomous working device is an automatic watering machine, it can perform watering tasks in the work area; for another example, when the autonomous working device is an automatic leaf blower, it can perform the task of blowing fallen leaves in the work area; for another example, when the autonomous working device is an automatic leaf blower, When the device is an automatic sweeper, it can perform sweeping tasks in the work area; for example, when the autonomous working device has both a cutting component and a watering component, it can perform lawn mowing tasks in the work area and also in the work area. Perform watering tasks, etc.
  • the embodiment of the present application provides an autonomous working device.
  • the autonomous working device When the autonomous working device needs to return to the transport vehicle, it will first return to a preset position, and wait for the user to perform operations at the preset position, so as to operate in a relatively safe driving environment and/or driving state (such as the state of user-controlled driving). ) to return to the transport vehicle to ensure pedestrian safety.
  • the autonomous working device can collect environmental information and/or positioning information through sensors, and transmit it to the control circuit for analysis and processing to generate instructions that can control the actions of the working components and the driving components, and thus can operate at different times. Work independently in the work area to save labor costs.
  • the position data of the preset position for the autonomous working device to return to after completing the work task can be collected in advance.
  • the location data of one or more locations can be collected in advance as the location data of the preset location.
  • the location data of multiple locations can be collected as the location data of the preset location, it can be used by the user in subsequent use. Select the preset position to return to, or the autonomous working device can select the appropriate preset position to return based on the distance.
  • the autonomous working device needs to be operated by the user, it can autonomously drive to the preset position.
  • the user receives the operation prompt the user can also go to the preset position, thereby shortening the time for interaction and improving work efficiency.
  • the preset location can be set by collecting the location data of the appropriate location in advance according to the surrounding environment of the home working area. For example, for the home lawn, you can choose the location in the home driveway near the home lawn, or the home driveway. The location near the boundary connected to the lawn can ensure that the autonomous working device has a relatively wide driving environment and improve the driving safety of the autonomous working device.
  • there can be multiple preset locations that is to say, location data of multiple suitable locations (for example, the aforementioned locations with relatively wide driving environments) can be collected in advance based on the surrounding environment of the home working area. This way, you don't have to return to a fixed position every time, which helps avoid lawn wear.
  • the preset position can also be determined based on the position of the autonomous working device when it enters the work area.
  • the autonomous working device can be returned to the transport vehicle along the original approach path, thereby improving the driving performance of the autonomous working device.
  • Safety on the other hand, the location data of the entry location is recorded when entering the work area. There is no need to select other locations for interaction, which simplifies the steps and also facilitates the business team personnel to carry their bags after entering the site. The battery pack and other items are placed near the entry location, so there is no need to carry them throughout the entire process and increase the burden.
  • the entry position of the autonomous working device can be random each time it enters the work area, which means that it does not need to return to a fixed entry location every time. location, thus helping to avoid lawn wear.
  • the operations that the autonomous working device waits for at a preset position by the user may include opening the seat panel for riding, pressing a button to confirm return after confirming the driving environment, manually driving the machine to return, etc. Based on the above operations, it is helpful to provide a relatively safe driving environment and/or driving state for the autonomous working device, thereby ensuring the driving safety of the autonomous working device and ensuring the safety of pedestrians.
  • the autonomous working device 100 may include a body 10 , a working component 20 , a driving component 30 , and a sensor component 40 respectively connected to the body 10 , and the working component 20 , the driving component 30 , Sensor assembly 40 is coupled to control circuit 50 .
  • These components (or parts) included in the autonomous working device 100 are introduced respectively below.
  • the body 10 may include the shell and chassis of the autonomous working device 100, which is mainly used to install the working component 20, the driving component 30, the sensor component 40, and the interactive component (such as buttons, keys, touch panels, etc.).
  • the fuselage 10 may also include a shield for protection (to avoid personal injury) and/or an anti-collision piece for buffering collisions.
  • the working assembly 20 may include a driving motor and a working head connected to an output shaft of the driving motor.
  • the types of work heads can be diverse, for example, they can be lawn mowing heads, blowing heads, snow removal heads, trimming heads, watering heads, sweeping heads, etc., which can be used to perform lawn mowing tasks and blowing fallen leaves. tasks, snow clearing tasks, edge trimming tasks, watering tasks, sweeping tasks, etc.
  • the grass-cutting head can also be equipped with a grass-breaking component
  • the snow-removal working head can also be equipped with a snow-blowing component, that is, the working head can be further equipped with sub-components for optimizing working performance.
  • the working component 20 is detachably connected to the fuselage, so that the corresponding working head can be coupled to work according to the task scenario.
  • the drive assembly 30 may include drive components such as motors and motors, and moving components connected to such drive components.
  • the driving component 30 can use the driving component to drive the moving component to move according to the driving instruction to drive the autonomous working device 100 to move.
  • the moving parts can usually be installed at the bottom of the autonomous working device 100, and can include universal wheels, driving wheels, etc.
  • the moving component includes a universal wheel, it can be used to change the traveling direction of the autonomous working device 100.
  • the universal wheel can be installed at the bottom front end of the autonomous working device 100 (the front end of the moving direction of the autonomous working device 100); the moving component When a driving wheel is included, it can be used to drive the autonomous working device 100 to move, and the driving wheel can be installed at the bottom side of the autonomous working device 100 .
  • the sensor component 40 can be used to collect information, such as position information of the autonomous working device 100, environmental information of the environment where the autonomous working device 100 is located, etc.
  • the types of sensor components 40 may include multiple types, which are not limited in the embodiments of the present application.
  • the sensor component 40 may include, but is not limited to, an ultrasonic sensor, an infrared sensor, a visual sensor, a laser sensor, an image sensor, a satellite positioning sensor, etc.
  • the control circuit 50 is coupled to the working component 20, the driving component 30, and the sensor component 40.
  • it can be electrically connected, or it can be a communication connection, or some of it can be mechanically connected, as long as the control circuit 50 can be connected with these components. It suffices to transmit necessary signals (also called data and instructions); for example, the control circuit 50 and these components may be directly connected, indirectly connected through an intermediary, or connected through internal components. wait.
  • the control circuit 50 may also have functions that need to be implemented in advance in order to realize the control function, such as identification, analysis, modulation/demodulation, judgment, etc.
  • the control circuit 50 may include a controller.
  • control circuit 50 may also include an identification unit, a path planning unit, an analysis unit, a modulation/demodulation unit, a judgment unit, etc. These unit components may be partially or fully integrated into the control circuit 50 , or may be separately provided in the control circuit 50 .
  • control circuit 50 can be configured to execute a control program.
  • control program the autonomous working device 100 implements the following steps:
  • the obtained at least one working parameter includes at least one of execution progress of the current working task, driving power, driving speed, workload, remaining power, and map parameters.
  • the execution progress of the current work task can be represented by the coverage of the work area by the autonomous working device 100, or can also be represented by the driving progress of the planned work path.
  • map parameters can be used to determine whether there is a new map input/load, for example, it can be the number of downloaded maps, map reception progress, map download progress, etc.
  • the autonomous working device 100 can obtain the above working parameters in real time, for example, the above working parameters can be obtained every 50ms, 100ms, 500ms, 1s, 2s, so that whether the autonomous working device 100 needs to be monitored in real time Return to the default docking location.
  • some working parameters need to be acquired in real time, while other working parameters do not need to be acquired in real time.
  • the execution progress, workload, and remaining power of the current work task need to be obtained in real time, while the map parameters can be obtained after it is determined that the execution progress of the current work task meets the conditions.
  • S200 Determine whether the autonomous working device 100 needs to return to a preset parking position outside the work area based on at least one working parameter. If the judgment result is yes, control the autonomous working device 100 to drive to a preset position to wait for user operation; Among them, the preset parking position is different from the preset position.
  • the preset parking position and the preset position are two different positions.
  • the preset location can be inside the work area, outside the work area (such as the internal driveway of a home), or on the boundary of the work area.
  • the preset parking space can be in the home's interior driveway or in a common area outside the home.
  • the preset parking space can be a parking space in a transport vehicle compartment near the work area, or a parking space in a charging station set outside the work area, where the transport vehicle can transport the autonomous working device 100 to Different work areas (including work areas in different regions) perform work tasks.
  • the preset location can be collected in advance by the business team and stored in a memory so that it can be recalled at any time when the autonomous working device 100 needs to be used.
  • the memory may be a local memory, such as a memory in the autonomous working device 100, or may be mounted in a virtual server through cloud storage technology (for example, in the form of a cloud disk).
  • the condition for the autonomous working device 100 to return to the preset parking position may be to complete the current work task, and the corresponding obtained work parameters may be the execution progress of the current work task.
  • the execution progress of the current task such as the coverage of the work area or the driving progress of the planned route
  • the position data of the preset position B1 is used to control the autonomous working device 100 to first travel to the preset position B1 and wait for user operation, and then return to the preset parking position based on the applied user operation.
  • the condition for the autonomous working device 100 to return to the preset docking position may also be that the current work task is completed and no other map data is input/loaded, and the corresponding obtained work parameters may be the execution progress of the current work task and as mentioned above. map parameters.
  • the autonomous working device 100 detects that the current work task has been completed and no other map data has been input/loaded, it can be confirmed that there is no area in the current area where the autonomous working device 100 needs to work, so that the location data of the preset location can be called.
  • the control causes the autonomous working device 100 to first travel to a preset position to wait for user operation, then returns the autonomous working device 100 to the carriage of the transport vehicle, and then transports the autonomous working device 100 to the next area for work via the transport vehicle.
  • the condition that the autonomous working device 100 needs to return to the preset docking position may also be that it needs to return to the preset docking position outside the work area to replenish power, and the corresponding obtained working parameter may be the remaining power of the autonomous working device 100 .
  • the location data of the preset location can be called to control the autonomous working device 100 to first drive to the preset location and wait. User operation, and then returns to the default docking location based on the applied user operation.
  • the above-mentioned preset position can also be recorded when the autonomous working device 100 enters the work area, that is, the autonomous working device 100 is moved from the preset parking position M1 outside the work area.
  • the entry position B1 when entering the work area AR1 is used as the default position.
  • the autonomous working device 100 obtains higher-precision positioning data by calibrating the heading near the approach area the position where the autonomous working device 100 completes the heading calibration can also be used as the preset position.
  • position data of one or more preset positions can be collected in advance, or the entry position of the autonomous working device 100 can be used as one of the preset positions. This can prevent the autonomous working device 100 from Returns to a fixed, preset position every time, reducing wear and tear on your lawn.
  • At least one preset position is located inside and/or at the boundary of the work area. This can prevent the autonomous working device 100 from traveling outside the work area when performing the current work task, thereby further improving autonomous work. Security of device 100.
  • the autonomous working device 100 Based on the applied user operation, the autonomous working device 100 returns to the preset docking position, and switches to a state of waiting for the execution of the next work task or shuts down.
  • the autonomous working device 100 may be returned to the preset docking position M1 based on the applied user operation. Specifically, it includes at least the following three ways:
  • the user can input an instruction to confirm the return to the autonomous working device 100.
  • the control circuit 50 controls the autonomous working device 100 to autonomously return to the preset parking position.
  • interactive components such as buttons, keys, touch panels, etc.
  • the user can also send confirmation to the autonomous working device 100 through an APP at a preset location. Return command.
  • the user can input an instruction to the autonomous working device 100 to confirm switching to the manual mode, so that in the manual mode, the autonomous working device 100 can return to the preset docking position M1 based on the user's manipulation.
  • a joystick can be provided on the autonomous working device 100, so that in manual mode, the user can ride on the autonomous working device 100 and use the joystick to control the autonomous working device 100 to return to the preset docking position M1.
  • the user in the manual mode, the user can also use the remote control to remotely control the autonomous working device 100 to return to the preset docking position M1.
  • the autonomous working device 100 drives from the preset position B1 to the vicinity of the preset parking position M1 under the control of the user, and then the user switches the manual mode to the automatic mode. Finally, the autonomous working device 100 Automatically return to the preset parking position M1.
  • the user can input an instruction to the autonomous working device 100 to confirm switching to the manual mode, so that in the manual mode, the autonomous working device 100 can drive to the vicinity of the preset parking position M1 based on the user's control, and then, The user can input an instruction to the autonomous working device 100 to confirm switching to the automatic mode, so that based on the instruction, the autonomous working device 100 autonomously returns to the preset docking position M1.
  • the autonomous working device 100 may be provided with the interactive components and joystick (which may also be a remote control) as described above.
  • the autonomous working device 100 can pass through at least one preset position before returning to the preset parking position, and wait for the user's operation at the preset position, so that the autonomous working device 100 can drive more safely. Return to the preset parking position under environmental and/or safer driving conditions to ensure pedestrian safety.
  • the control circuit 50 before the autonomous working device 100 performs the work task, when the control circuit 50 implements the control program of this embodiment, it also implements the following steps: obtaining map data of the work area; wherein the map data of the work area includes at least one Location data for preset locations. That is to say, the location data of the preset location can be included in the map data package of the work area in advance, so that the location data of the preset location can be obtained synchronously when the autonomous working device 100 obtains the map of the work area, thereby improving work efficiency.
  • obtaining the map data of the work area may include: collecting location data of the boundary of the work area and location data of at least one preset location; and generating the map data based on the collected location data. That is to say, the position data of the preset position can be collected in advance during the process of collecting the boundaries of the work area. Therefore, the preset position can also be included in the generated map of the work area and downloaded together with the map, which is convenient. Acquisition of position data for subsequent preset positions.
  • obtaining the map data of the work area may include: collecting location data of the boundaries of the work area, and location data of a guide line or guide area used to guide the autonomous working device 100 to enter the work area from outside the work area; wherein , the position data of the guide line or the guide area includes position data of at least one preset position; map data is generated based on the collected position data.
  • the autonomous working device 100 can be guided into the work area, thereby realizing the function of the autonomous working device 100 entering the site autonomously;
  • the position data of the guide lines or guide areas can be One or more data are used as the position data of the preset position, so that there is no need to collect additional position data of other positions (used as the preset position), nor to add additional steps to obtain the preset position, and directly obtain the map data of the work area.
  • the location data of the preset location can be obtained synchronously at any time, which is helpful to improve work efficiency.
  • At least one working parameter includes the remaining power of the autonomous working device 100.
  • the autonomous working device 100 also implements the following steps: determining whether the autonomous working device 100 needs to be replenished based on the remaining power of the autonomous working device 100. If the judgment result is yes, the autonomous working device is controlled to travel to at least one preset position and waits for the user to replenish the battery. In this embodiment, as shown in Figure 6, the power is replenished at the preset position B1 and not at the preset parking position. Since the preset position B1 itself is selected in advance according to the surrounding environment of the home and is relatively wide, the preset position B1 is Setting position B1 to recharge the battery will help improve driving safety during the replenishment process.
  • a power threshold can be 25%, 20%, 15%, etc. of the total power.
  • the appropriate power threshold can be determined based on the actual working area size.
  • the operation of replenishing power may include replacing the battery pack, or connecting the autonomous working device 100 to an external energy device for charging.
  • the autonomous working device 100 can also implement the following steps: receiving an instruction input by the user to confirm the end of power replenishment; based on the instruction, controlling the autonomous working device 100 to leave at least one preset position and continue to perform the current work. Task.
  • the autonomous working device 100 can interact with the autonomous working device 100 to confirm that the replenishing of power is completed, and the autonomous working device 100 will start the program to continue working. Travel from the preset position B1 to the position where the work was originally suspended and return to recharge, and then continue to perform the current work task.
  • the position data of the pause position and some working parameters (such as driving power, working head height, etc.) when performing the current work task can be saved in advance before the power is cut off. , so that when the autonomous working device 100 is powered on again, the above data can be called to ensure the continued execution of the current working task.
  • the autonomous working device 100 after the autonomous working device 100 continues to perform the current work task and completes the current work task, it will return to the preset position B1 again to wait for user operation, so as to operate in a safer driving environment and/or driving state. Next, return to the preset docking position M1 outside the work area.
  • the autonomous working device includes a fuselage, a working component, a driving component, and a sensor component respectively connected to the fuselage, and a control circuit coupled with the working component, the driving component, and the sensor component.
  • the component settings in the driving component, the working component, the sensor component and the connection relationship with the fuselage can be referred to the autonomous working device 100, which will not be described again here.
  • control circuit can be configured to execute a control program.
  • control program the autonomous working device implements the following steps:
  • S300' Determine whether the autonomous working device needs to be subjected to user operation based on at least one working parameter. If the judgment result is yes, control the autonomous working device to travel to the entry position to wait for user operation to be applied.
  • the position data of the autonomous working device can be obtained when it enters the work area, so that the entry position is used as the position where the user operation is applied to the autonomous working device.
  • the autonomous working device needs to be operated by the user, it can go to the entry position on its own.
  • the user can also go to the entry position after receiving the operation prompt, thereby shortening the time for interaction implementation and improving work efficiency.
  • the location data of the entry location is recorded when entering the work area. There is no need to select other locations for interaction, which simplifies the steps. It also facilitates the business team members to carry the battery packs etc. after entering the site.
  • the entry position of the autonomous working device can be random each time it enters the work area, which means that it does not need to return to a fixed entry location every time. location, thus helping to avoid lawn wear.
  • the position where the autonomous working device completes the heading calibration can also be used as the approach position.
  • the obtained at least one working parameter includes at least one of the execution progress of the current working task, driving power, driving speed, workload, remaining power, and map parameters.
  • the execution progress of the current work task can be represented by the coverage of the work area by the autonomous working device, or can also be represented by the travel progress of the planned work path.
  • map parameters can be used to determine the increase or decrease in the number of maps, for example, the number of maps, map reception progress, map download progress, etc.
  • the operations that the autonomous working device waits for at the entry position may include replacing the battery pack, opening the seat panel for riding, pressing a button to confirm return after confirming the driving environment, manually driving the machine to return, etc. Based on the above operations, it is conducive to timely replenishing power and ensuring the smooth progress of work tasks. It can also provide a relatively safe driving environment and/or driving state for the autonomous working device when returning to the transport vehicle, thereby ensuring the driving safety of the autonomous working device and ensuring Pedestrian safety.
  • the autonomous working device includes a fuselage, a working component, a driving component, and a sensor component respectively connected to the fuselage, and a control circuit coupled with the working component, the driving component, and the sensor component.
  • the component settings in the driving component, the working component, the sensor component and the connection relationship with the fuselage can be referred to the autonomous working device 100, which will not be described again here.
  • control circuit can be configured to execute a control program.
  • control program the autonomous working device implements the following steps:
  • a plurality of preset positions can be pre-selected as positions where user operations are applied to the autonomous working device.
  • the user can select one of multiple preset positions to go to, that is, there is no need to return to a fixed position every time, which helps avoid lawn wear.
  • the user will also go to the selected preset location, which will help shorten the interaction implementation time and improve work efficiency.
  • the autonomous working device enters the work area and starts working.
  • the map of the work area AR1 is preset with multiple preset positions C1, C2, C3, and C4. Among them, the multiple preset positions C1, C2, C3, and C4 can be used to create the work area AR1. The map is created together.
  • the autonomous working device After the autonomous working device completes the current work task, it will drive to one of the preset locations. Taking the example shown in Figure 10 as an example, after completing the current work task, the autonomous working device 200 requires the user to perform a return confirmation/re-work confirmation operation. At this time, it happens to be near the preset position C4, and can stay at the preset position C4 and wait for the user to come. .
  • the system can return to the default parking position automatically/based on user control.
  • the autonomous working device 200 can return to the preset docking position M1 automatically/based on user control.
  • the remaining power of the autonomous working device can be detected.
  • the autonomous working device 200 can choose to go to one of the preset locations (such as the nearest preset location). Set the position C3) to wait for the user to come and replenish the power. After the replenishment is completed, the autonomous working device 200 can leave the preset position C3 and return to the suspended work position to continue working until the current work task is completed.
  • the step of controlling the autonomous working device to travel to one of a plurality of preset positions to wait for a user operation includes: obtaining a preset selected by the user in response to a location selection instruction sent by the user terminal.
  • the location data of the set location is set, and the autonomous working device is controlled to travel to a preset location selected by the user to wait for user operation. That is to say, when the autonomous working device needs to be operated by the user, the user can choose which preset position to return to, and the autonomous working device then travels to the preset position selected by the user.
  • the step of controlling the autonomous working device to travel to one of the plurality of preset positions to wait for a user operation may also include: obtaining a default preset position among the plurality of preset positions. location data, and controls the autonomous working device to travel to a default preset position to wait for user operations.
  • the default preset position may be selected by the user in advance, or may be determined based on the preset position selected by the user previously.
  • the obtained at least one working parameter includes at least one of execution progress of the current working task, driving power, driving speed, workload, remaining power, and map parameters.
  • the execution progress of the current work task can be represented by the coverage of the work area by the autonomous working device, or can also be represented by the travel progress of the planned work path.
  • map parameters can be used to determine the increase or decrease in the number of maps, for example, the number of maps, map reception progress, map download progress, etc.
  • the operations that the autonomous working device waits for at the approach position may include replacing the battery pack, opening the seat panel for riding, confirming the return by pressing the button after confirming the driving environment, returning the manual driving machine, etc. Based on the above operations, it is conducive to timely replenishing power and ensuring the smooth progress of work tasks. It can also provide a relatively safe driving environment and/or driving state for the autonomous working device when returning to the transport vehicle, thereby ensuring the driving safety of the autonomous working device and ensuring Pedestrian safety.
  • an autonomous working system may include the autonomous working device as described in any of the previous embodiments, as well as a terminal and a server.
  • the above-mentioned terminal is communicatively connected with the autonomous working device.
  • the terminal may also be called user equipment (UE), access terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to the user, such as a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, etc.
  • the above-mentioned server is communicatively connected with autonomous working devices and terminals. And can be configured to store map data of different work areas, so as to send map data of the work area to be performed to the autonomous work device and/or terminal.
  • the above server may be a cloud server. In some implementations, the above-mentioned server may also be a local server.
  • a computer-readable storage medium is also provided.
  • a computer program is stored on the storage medium. When the computer program is executed, the method steps described in the previous embodiments are implemented.
  • the controller may include a processor, and the processor may be a general-purpose central processing unit (CPU), other general-purpose processors, or a digital signal processor (DSP). , application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the storage device (also called memory) in the embodiment of the present application may include a read-only memory and a random access memory, and provides instructions and data to the processor.
  • Part of the processor may also include non-volatile random access memory.
  • the processor may also store information about the device type.
  • each of the above steps can be completed through the integrated logic circuit of the hardware in the controller or instructions in the form of software.
  • the method for requesting uplink transmission resources disclosed in conjunction with the embodiments of the present disclosure may be directly implemented by a hardware processor, or may be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the controller reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present disclosure.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Abstract

一种自主工作装置(100,200)、系统及控制方法。自主工作装置(100,200)适于在工作区域执行至少一种工作任务,控制方法包括:获取自主工作装置(100,200)执行当前工作任务时的至少一个工作参数;根据至少一个工作参数判断自主工作装置(100,200)是否需要返回位于工作区域外部的预设停靠位,若判断结果为是,则控制自主工作装置(100,200)行驶至一预设位置以等待被施加用户操作;其中,预设停靠位与预设位置不同;基于施加的用户操作使自主工作装置(100,200)返回预设停靠位,并切换为等待执行下一工作任务的状态或关机。有利于使自主工作装置(100,200)在更为安全的行驶环境和/或更为安全的行驶状态下返回预设停靠位,保障行人安全。

Description

自主工作装置、系统及控制方法 技术领域
本公开涉及自主工作装置技术领域,具体涉及一种自主工作装置、系统及控制方法。
背景技术
对于提供割草服务的商业团队而言,需要驾驶运输车将骑乘式割草机或是站立式割草机运输到不同家庭的草坪附近,再人工驾驶割草机进入草坪割草,从而不可避免地会增加人工成本。同时,这类机器对操作人员的驾驶技术也有一定要求,容易导致工作效率和切割质量的不稳定。
发明内容
有鉴于此,本公开实施例致力于提供一种自主工作装置、自主工作系统及控制方法。下文主要介绍本申请涉及的几个方面。
第一方面,提供了一种自主工作装置的控制方法,所述自主工作装置适于在工作区域执行至少一种工作任务,所述方法包括:
获取所述自主工作装置执行当前工作任务时的至少一个工作参数;
根据所述至少一个工作参数判断所述自主工作装置是否需要返回位于所述工作区域外部的预设停靠位,若判断结果为是,则获取至少一个预设位置的位置数据,并控制所述自主工作装置行驶至所述至少一个预设位置以等待被施加用户操作;其中,所述预设停靠位与所述预设位置不同;
基于施加的用户操作使所述自主工作装置返回所述预设停靠位,并切换为等待执行下一工作任务的状态或关机。
上述控制方法,可以使自主工作装置在返回预设停靠位之前至少经过一个预设位置,并在该预设位置处等待用户操作,以使自主工作装置在更为安全的行驶环境和/或更为安全的行驶状态下返回预设停靠位,保障行人安全。
第二方面,提供了一种自主工作装置的控制方法,所述自主工作装置适于在工作区域执行至少一种工作任务,所述方法包括:获取所述自主工作装置进入所述工作区域时的进场位置的位置数据;获取 所述自主工作装置执行当前工作任务时的至少一个工作参数;根据所述至少一个工作参数判断所述自主工作装置是否需要被施加用户操作,若判断结果为是,则控制所述自主工作装置行驶至所述进场位置以等待被施加用户操作。
第三方面,提供了一种自主工作装置的控制方法,所述自主工作装置适于在工作区域执行至少一种工作任务,所述方法包括:获取多个预设位置的位置数据;其中,在所述预设位置处所述自主工作装置等待被施加用户操作;获取所述自主工作装置执行当前工作任务时的至少一个工作参数;根据所述至少一个工作参数判断所述自主工作装置是否需要被施加用户操作,若判断结果为是,则控制所述自主工作装置行驶至所述多个预设位置中的一个预设位置以等待被施加用户操作。
第四方面,提供了一种自主工作装置,所述自主工作装置适于在工作区域执行至少一种工作任务,包括:机身;分别与所述机身连接的工作组件、驱动组件、传感器组件,所述传感器组件至少被配置为获取所述自主工作装置的定位数据;所述自主工作装置还包括控制电路,所述控制电路与所述工作组件、所述驱动组件、所述传感器组件耦合,被配置为执行一个控制过程,所述控制过程包括:获取所述自主工作装置执行当前工作任务时的至少一个工作参数;根据所述至少一个工作参数判断所述自主工作装置是否需要返回位于所述工作区域外部的预设停靠位,若判断结果为是,则控制所述自主工作装置行驶至一预设位置以等待被施加用户操作;其中,所述预设停靠位与所述预设位置不同;基于施加的用户操作使所述自主工作装置返回所述预设停靠位,并切换为等待执行下一工作任务的状态或关机。
第五方面,提供了一种自主工作装置系统,该系统包括如第四方面所述的自主工作装置;终端,与所述自主工作装置通信连接;以及,服务器,与所述自主工作装置和所述终端通信连接,被配置为存储有不同工作区域的地图数据,以向所述自主工作装置和/或终端发送待执行工作任务的工作区域的地图数据。
第六方面,提供了一种计算机可读存储介质,其上存储有可执行代码,当所述可执行代码被执行时,能够实现如第一方面至第三方面中任一方面所述的方法。
附图说明
图1示出了自主工作装置在不同工作区域间的转移示意图;
图2示出了本申请一实施例的自主工作装置的结构示意图;
图3示出了本申请一实施例的自主工作装置的进场示意图;
图4示出了本申请一实施例的自主工作装置的第一部分的回归示意图;
图5示出了本申请一实施例的自主工作装置的第二部分的回归示意图;
图6示出了本申请一实施例的自主工作装置补充电量的行驶示意图;
图7示出了本申请一实施例的自主工作装置补充电量后继续执行工作任务的行驶示意图;
图8示出了本申请一实施例的自主工作装置补充电量并完成当前工作任务后的回归示意图;
图9示出了本申请一实施例的自主工作装置的进场示意图;
图10示出了本申请一实施例的自主工作装置的第一部分的回归示意图;
图11示出了本申请一实施例的自主工作装置的第二部分的回归示意图;
图12示出了本申请一实施例的自主工作装置补充电量的行驶示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。
随着科技的快速发展,智能控制技术在人们生活中的应用愈加广泛。自主工作装置作为一种智能控制技术衍生的智能产品,能够给人们生活带来方便和快捷,因此,自主工作装置在人们生活中使用频繁。
通常,自主工作装置可以是指具备自动行驶功能的装置,其能够在自动行驶的过程中执行工作任务。自主工作装置的类型可以包括多种,本公开实施例对此并不限定。示例性的,自主工作装置可以是自动割草机、自动扫雪机、自动浇水机、自动吹落叶机、自动扫地机、拖地机器人、扫拖一体机器人等。进一步而言,自主工作装置适于在工作区域内执行一种或多种工作任务。例如,自主工作装置为自动割草机时,其可以在工作区域内执行割草任务;再例如,自主工作装置为自动扫雪机时,其可以在工作区域内执行扫雪任务;又例如,自主工作装置为自动浇水机时,其可以在工作区域内执行浇水任务;又例如,自主工作装置为自动吹落叶机时,其可以在工作区域内执行吹落叶任务;又例如,自主工作装置为自动扫地机时,其可以在工作区域内执行扫地任务;又例如,自主工作装置同时具备切割组件和浇水组件时,其既可以在工作区域内执行割草任务,也可以在工作区域内执行浇水任务,等等。
然而,上述能够自主工作的园艺机器人目前主要应用在家用领域,在商用领域鲜有看到采用智能控制的园艺机器人。
在商用领域,商业团队通常根据排好的订单,在一天内驾驶装载由割草机和其他园林工具的运输车前往不同的用户家庭进行草坪维护,包括割草、修边、修枝、吹落叶等多项工作,这些工作通常需由工作人员手动完成,导致团队的人力支出较高。并且,天气、地形、植被的分布和生长状况等因素都会影响团队的作业时间,作业时间越长,商业团队的人力支出也越多。除此之外,对于骑乘式或站立式割草机而言,商业团队中不同的人的驾驶技术也各有差异,容易导致工作效率和切割质量的不稳定。
因此,如果商业团队使用能够自主工作的园艺机器人则可以大大减少人工支出。但是,如图1所示,采用这类园艺机器人100需要使其自运输车1000进入相应的工作区域AR1、AR2,并在其完成工 作任务后使其驶离工作区域返回运输车1000。该过程中如何保证园艺机器人行驶时的安全性是目前亟待解决的一个问题。
本申请实施例提供了一种自主工作装置。该自主工作装置在需要返回运输车时会先返回一个预设的位置,并在该预设的位置等待用户施加操作,以在相对安全的行驶环境和/或行驶状态(如用户操控行驶的状态)下返回运输车,进而保障行人安全。
可以理解,如果不等待用户施加操作,而是直接自动返回运输车,则由于未对行驶环境进行确认,也未能保证自主工作装置在相对安全的行驶状态下返回,因此仍旧存在一定的安全风险;另外,选择等待用户施加操作但是不返回预设的位置(例如自主工作装置开向用户所在位置或是原地等待用户过来操作),则又会增加额外的处理时间,影响商业团队的工作效率。
在本申请的一些实施例中,自主工作装置可通过传感器采集环境信息和/或定位信息,并传输至控制电路供其分析处理以生成可控制工作组件和驱动组件动作的指令,进而能够在不同工作区域内自主工作,节约人力成本。
在本申请的一些实施例中,供自主工作装置完成工作任务后先行返回的预设位置的位置数据可以预先采集。示例性的,可以预先采集一个或多个位置的位置数据作为预设位置的位置数据,进一步的,当采集多个位置的位置数据作为预设位置的位置数据时,在后续使用时可以由用户选择要返回的预设位置,也可以由自主工作装置根据距离选择合适的预设位置返回。通过上述方式,当自主工作装置需要被用户操作时,可自主驶向预设位置,当用户接收到操作提示后,用户也可前往预设位置,从而缩短交互实现的时间,提升工作效率。
可选的,该预设的位置可以根据家庭工作区域的周边环境提前采集合适位置的位置数据进行设定,例如,对于家庭草坪,可以选择家庭草坪附近的家用车道中的位置,或是家用车道与草坪连接的边界附近的位置,如此可以保证自主工作装置具有相对宽阔的行驶环境,提升自主工作装置的行驶安全。另一方面,该预设的位置可以有多个,也就是说,可以根据家庭工作区域的周边环境提前采集多个合适位置(例如可以是前述具有相对宽阔的行驶环境的位置)的位置数据进行设定,如此,可以不用每次都返回一个固定的位置,从而有利于避免草坪磨损。
可选的,该预设的位置也可以根据自主工作装置驶入工作区域时所处的位置确定,如此,可使自主工作装置大致沿原本的进场路径返回运输车,提升自主工作装置的行驶安全;另一方面,在进入工作区域时即记录进场位置的位置数据,无需额外再选定其他用于交互的位置,简化了步骤,同时也方便商业团队的人员在进场后便将背负的电池包等物品放置在进场位置附近,无需全程携带而增加负担。除此之外,在用户操控自主工作装置驶入工作区域时,自主工作装置每次驶入工作区域时的进场位置可以是随机的,也就是说可以不用每次都返回一个固定的进场位置,从而有利于避免草坪磨损。
在本申请的一些实施例中,自主工作装置在预设位置等待用户施加的操作可以包括打开座位板进行乘坐、确认行驶环境后按键确认返回、手动驾驶机器返回等。基于上述操作有利于为自主工作装置提供相对安全的行驶环境和/或行驶状态,进而保证自主工作装置的行驶安全性,保障行人安全。
下面将结合附图对本申请实施例提供的自主工作装置进行详细描述。
在一实施例中,参见图2可知,自主工作装置100可以包括机身10、分别与机身10连接的工作组件20、驱动组件30、传感器组件40,以及与工作组件20、驱动组件30、传感器组件40耦合的控制电路50。下面对自主工作装置100所包含的这些组件(或部件)分别进行介绍。
机身10可以包括自主工作装置100的外壳和底盘,其主要可用来安装工作组件20、驱动组件30、传感器组件40、交互组件(如按钮、按键、触控面板等)。在一些实施方式中,机身10还可以包括用来防护(避免人受伤)的护罩和/或用来缓冲碰撞的防撞件。
工作组件20可以包括驱动电机以及与驱动电机的输出轴连接的工作头。该工作头的种类可以是多样的,例如可以是割草工作头、吹风工作头、除雪工作头、修边工作头、浇水工作头、扫地工作头等,对应可用来执行割草任务、吹落叶任务、扫雪任务、修边任务、浇水任务、扫地任务等。其中割草工作头中还可兼设有碎草部件,除雪工作头中还可兼设有吹雪部件,即工作头中可进一步设置有优化工作性能的子部件。可选的,工作组件20与机身可拆卸连接,从而可根据任务场景配接对应的工作头进行工作。
驱动组件30可以包括电机、马达等驱动部件,以及与这类驱动部件连接的移动部件。其中,驱动组件30可以根据驱动指令利用驱动部件驱动移动部件移动,以带动自主工作装置100移动。示例性的,移动部件通常可安装于自主工作装置100的底部,可以包括万向轮、驱动轮等。移动部件包括万向轮时,其可以用于改变自主工作装置100的行进方向,该万向轮可以安装于自主工作装置100的底部前端(自主工作装置100的移动方向的前端)位置;移动部件包括驱动轮时,其可以用于带动自主工作装置100移动,该驱动轮可以安装于自主工作装置100的底部边侧位置。
传感器组件40可以用于采集信息,例如采集自主工作装置100的位置信息、自主工作装置100所在环境的环境信息等。传感器组件40的类型可以包括多种,本申请实施例对此并不限定。示例性的,传感器组件40可以包括但不限于超声波传感器、红外传感器、视觉传感器、激光传感器、图像传感器、卫星定位传感器等。
控制电路50与工作组件20、驱动组件30、传感器组件40耦合,例如,可以是电连接,也可以是通信连接,还可以有部分是机械连接,只要能使控制电路50与这些组件之间可以进行必要的信号(也可称数据、指令)传输即可;示例性的,控制电路50与这些组件之间可以是直接相连,也可以是通过中间媒介间接相连,还可以是通过内部元件形成连接等。可以理解,控制电路50除了具有控制功能外,还可以具有为了实现控制功能而需前置实现的如识别、分析、调制/解调、判断等功能,对应的,控制电路50中可以包括控制器,也可以包括识别单元、路径规划单元、分析单元、调制/解调单元、判断单元等,这些单元元件可部分集成也可全部集成于控制电路50,也可分别设置在控制电路50中。
其中,控制电路50可以被配置为执行一个控制程序,实现该控制程序时,自主工作装置100实现以下步骤:
S100、获取自主工作装置100执行当前工作任务时的至少一个工作参数。
在本实施例的一些实施方式中,获取的至少一个工作参数包括当前工作任务的执行进度、驱动功率、行驶速度、工作负载、剩余电量、地图参量中的至少一个。示例性的,当前工作任务的执行进度可以通过自主工作装置100对工作区域的覆盖率表示,也可以通过规划的工作路径的行驶进程表示。示例性的,地图参量可以用来判断是否有新的地图输入/加载,例如可以是下载的地图数量、地图接收进度、地图下载进度等。
在本实施例的一些实施方式中,自主工作装置100可以实时获取上述工作参数,例如可以每隔50ms、100ms、500ms、1s、2s来获取上述工作参数,从而可以实时监测自主工作装置100是否需要返回预设停靠位。
在本实施例的一些实施方式中,一些工作参数需要实时获取,而另一些工作参数不需要实时获取。例如,当前工作任务的执行进度、工作负载、剩余电量需要实时获取,地图参量则可以在确定当前工作任务的执行进度满足条件后再获取。
S200、根据至少一个工作参数判断自主工作装置100是否需要返回位于工作区域外部的预设停靠位,若判断结果为是,则控制自主工作装置100行驶至一预设位置以等待被施加用户操作;其中,预设停靠位与预设位置不同。
应当理解,预设停靠位与预设位置是不同的两个位置。可选的,预设位置可以在工作区域内部,也可以在工作区域外部(例如家庭的内部车道),还可以在工作区域的边界上。可选的,预设停靠位可以是在家庭的内部车道,也可以是在家庭外部的公共区域。可选的,预设停靠位可以是工作区域附近的运输车车厢中的停靠位,也可以是设置在工作区域外部的充电站中的停靠位,其中,运输车可以将自主工作装置100运输至不同工作区域(包括不同地区的工作区域)执行工作任务。
在本实施例的一些实施方式中,预设位置可以由商业团队提前采集并存储在一存储器中,以在自主工作装置100需要使用时能够随时调用。另外,如前文所述,预设位置可以是一个或多个。示例性的,该存储器可以是本地存储器,例如可以是自主工作装置100中的存储器,也可以通过云存储技术(例如以云盘形式)挂载在虚拟服务器中。
可选的,自主工作装置100需要返回预设停靠位的条件可以是完成当前工作任务,对应获取的工作参数可以是当前工作任务的执行进度。例如,如图4所示,可以在当前任务的执行进度(如工作区域的覆盖率或规划路径的行驶进程)为100%时,确认自主工作装置100需要返回预设停靠位B1,则可调用预设位置B1的位置数据以控制自主工作装置100先行驶到预设位置B1等待用户操作,再基于施加的用户操作返回预设停靠位。
可选的,自主工作装置100需要返回预设停靠位的条件也可以是完成当前工作任务且没有其他地图数据输入/加载,对应获取的工作参数可以是当前工作任务的执行进度以及如前文所述的地图参量。例如,当自主工作装置100检测到完成当前工作任务且已没有其他地图数据输入/加载,则可以确认在当前地区已无自主工作装置100需要工作的区域,从而可调用预设位置的位置数据以控制使自主工作装置100先行驶到预设位置等待用户操作,再使自主工作装置100返回运输车车厢,再通过运输车将自主工作装置100运输到下一地区进行工作。
可选的,自主工作装置100需要返回预设停靠位的条件还可以是需要返回工作区域外部的预设停靠位补充电量,对应获取的工作参数可以是自主工作装置100的剩余电量。例如,可以在检测到剩余电量小于或等于预定值时,确认自主工作装置100需要返回预设停靠位充电,则可调用预设位置的位置数据以控制自主工作装置100先行驶到预设位置等待用户操作,再基于施加的用户操作返回预设停靠位。
在本实施例的一些实施方式中,如图3所示,上述预设位置也可以在自主工作装置100进入工作区域时记录,即,将自主工作装置100由工作区域外部的预设停靠位M1进入工作区域AR1时的进场位置B1作为预设位置。进一步的,当自主工作装置100在进场区域附近通过校准航向来获得精度更高的定位数据时,还可将自主工作装置100完成航向校准的位置作为预设位置。
在本实施例的一些实施方式中,既可提前采集一个或多个预设位置的位置数据,也可将自主工作装置100的进场位置作为预设位置之一,如此可避免自主工作装置100每次均返回固定的预设位置,减少草坪磨损。
在本实施例的一些实施方式中,至少一个预设位置位于工作区域的内部和/或边界,如此可以避免在自主工作装置100在执行当前工作任务时行驶到工作区域外部,从而进一步提升自主工作装置100的安全性。
S300、基于施加的用户操作使自主工作装置100返回预设停靠位,并切换为等待执行下一工作任务的状态或关机。
在本实施例的一些实施方式中,如图5所示,基于施加的用户操作可使自主工作装置100返回预设停靠位M1。具体而言,至少包括以下三种方式:
(1)自动模式返回:用户在预设位置处手动确认可以返回后,自主工作装置100由预设位置B1自主返回预设停靠位M1。
例如,在预设位置处,用户确认行驶环境安全后,可向自主工作装置100输入确认返回的指令,基于该指令控制电路50控制自主工作装置100自主返回预设停靠位。可选的,自主工作装置100上可以设置交互组件(如按钮、按键、触控面板等)方便用户输入确认返回指令,当然也可以由用户在预设位置处通过APP向自主工作装置100发送确认返回指令。
(2)手动模式返回:自主工作装置100在用户的操控下由预设位置B1返回预设停靠位M1;
例如,在预设位置处,用户可向自主工作装置100输入确认切换为手动模式的指令,从而在手动模式下,自主工作装置100可基于用户的操控返回预设停靠位M1。可选的,自主工作装置100上可以设置操纵杆,从而在手动模式下,用户可乘坐在自主工作装置100上利用操纵杆操控自主工作装置100返回预设停靠位M1。可选的,在手动模式下,用户还可以利用遥控器遥控自主工作装置100返回预设停靠位M1。
(3)手动模式与自动模式结合返回:自主工作装置100在用户的操控下由预设位置B1行驶到预设停靠位M1附近,再由用户将手动模式切换为自动模式,最后自主工作装置100自主返回预设停靠位M1。
例如,在预设位置处,用户可向自主工作装置100输入确认切换为手动模式的指令,从而在手动模式下,自主工作装置100可基于用户的操控行驶到预设停靠位M1附近,接着,用户可向自主工作装置100输入确认切换为自动模式的指令,从而基于该指令,自主工作装置100自主返回预设停靠位M1。可选的,自主工作装置100可以设置如前文所述的交互组件和操纵杆(也可以是遥控器)。
综上,通过上述方式,可以使自主工作装置100在返回预设停靠位之前至少经过一个预设位置,并在该预设位置处等待用户操作,以使自主工作装置100在更为安全的行驶环境和/或更为安全的行驶状态下返回预设停靠位,保障行人安全。
下面将进一步提供部分可供上述实施例的自主工作装置100使用的实施方式。
在一些实施方式中,在自主工作装置100执行工作任务之前,控制电路50实现本实施例的控制程序时,还实现以下步骤:获取工作区域的地图数据;其中,工作区域的地图数据包括至少一个预设位置的位置数据。也就是说,预设位置的位置数据可以预先包含在工作区域的地图数据包中,从而可在自主工作装置100获取工作区域的地图时同步地获取预设位置的位置数据,提升工作效率。
可选的,获取工作区域的地图数据可以包括:采集工作区域的边界的位置数据以及至少一个预设位置的位置数据;根据采集的位置数据生成所述地图数据。也就是说,可以在采集工作区域的边界过程中将预设位置的位置数据也预先采集了,从而,可以将预设位置也包含在生成的工作区域的地图中,随地图一同被下载,方便后续预设位置的位置数据的获取。
可选的,获取工作区域的地图数据可以包括:采集工作区域的边界的位置数据,以及用于引导自主工作装置100由工作区域的外部行驶进入工作区域的引导线或引导区域的位置数据;其中,引导线或引导区域的位置数据包括至少一个预设位置的位置数据;根据采集的位置数据生成地图数据。通过上述引导线或引导区域,一方面,可将自主工作装置100引导进入工作区域,从而实现自主工作装置100自主进场的功能;另一方面,可以将引导线或引导区域的位置数据中的一个或多个数据作为预设位置的位置数据,从而既不用额外采集其他位置(用作预设位置)的位置数据,也不用增加获取预设位置的额外步骤,直接在获取工作区域的地图数据时便可同步的得到预设位置的位置数据,有利于提升工作效率。
在一些实施方式中,至少一个工作参数包括自主工作装置100的剩余电量,前述控制程序实现时,自主工作装置100还实现以下步骤:根据自主工作装置100的剩余电量判断自主工作装置100是否要补充电量,若判断结果为是,则控制自主工作装置行驶至至少一个预设位置等待用户补充电量。在本实施方式中,如图6所示,补充电量是在预设位置B1而并不在预设停靠位,由于预设位置B1本身是根据家庭周边环境提前选定的,相对宽阔,因此在预设位置B1补充电量有利于提升补充电量移动过程中的行驶安全。可选的,可以通过判断剩余电量是否小于或等于一个电量阈值来确认是否要补充电量,该电量阈值可以是总电量的25%或20%或15%等。另外,需要注意,如果该电量阈值取得较高,则容易频繁行驶到预设位置补电,影响工作效率;如果该电量阈值取得较低,则容易在朝预设位置行驶的过程中耗尽电量,也会影响工作效率,还有可能影响部件性能和装置的使用寿命,因此,可以根据实际的工作区域大小来确定出合适的电量阈值。可选的,补充电量的操作可以包括更换电池包,也可以是将自主工作装置100接入外部能源设备进行充电。
进一步的,前述控制程序实现时,自主工作装置100还可以实现以下步骤:接收用户输入的确认结束补充电量的指令;基于该指令控制自主工作装置100驶离至少一个预设位置并继续执行当前工作任务。在本实施方式中,如图7所示,当用户在预设位置B1完成补充电量的操作后,可以与自主工作装置100交互确认补电完毕,自主工作装置100便会启动继续工作的程序,由预设位置B1行驶到原先暂停工作返回补电的位置,再继续执行当前工作任务。可选的,在补充电量的过程中,如果需要断电,则可以在断电前预先保存暂停位置的位置数据,以及执行当前工作任务时的一些工作参数(如驱动功率、工作头高度等),从而当自主工作装置100重新上电后可调用上述数据,保证当前工作任务的继续执行。
进一步的,如图8所示,在自主工作装置100继续执行当前工作任务并完成当前工作任务后,会再次返回预设位置B1等待用户操作,以在更为安全的行驶环境和/或行驶状态下返回工作区域外部的预设停靠位M1。
在另一实施例中,自主工作装置包括机身、分别与机身连接的工作组件、驱动组件、传感器组件,以及与工作组件、驱动组件、传感器组件耦合的控制电路。其中,驱动组件、工作组件、传感器组件中的部件设置以及与机身的连接关系可参考自主工作装置100,此处不再赘述。
在本实施例中,控制电路可以被配置为执行一个控制程序,实现该控制程序时,自主工作装置实现以下步骤:
S100’、获取自主工作装置进入工作区域时的进场位置的位置数据;
S200’、获取自主工作装置执行当前工作任务时的至少一个工作参数;
S300’、根据至少一个工作参数判断自主工作装置是否需要被施加用户操作,若判断结果为是,则控制自主工作装置行驶至进场位置以等待被施加用户操作。
通过上述方式,可以在自主工作装置进入工作区域时获取其位置数据,以将该进场位置作为自主工作装置被施加用户操作的位置。如此,一方面,自主工作装置需要被用户操作时,可自行前往进场位置,另一方面,用户接收到操作提示后,也可前往进场位置,从而缩短交互实现的时间,提升工作效率。另外,在进入工作区域时即记录进场位置的位置数据,无需额外再选定其他用于交互的位置,简化了步骤,同时也方便商业团队的人员在进场后便将背负的电池包等物品放置在进场位置附近,无需全程携带而增加负担。除此之外,在用户操控自主工作装置驶入工作区域时,自主工作装置每次驶入工作区域时的进场位置可以是随机的,也就是说可以不用每次都返回一个固定的进场位置,从而有利于避免草坪磨损。
在本实施例的一些实施方式中,当自主工作装置在进场区域附近通过校准航向来获得精度更高的定位数据时,还可将自主工作装置完成航向校准的位置作为进场位置。
在本实施例的一些实施方式中,获取的至少一个工作参数包括当前工作任务的执行进度、驱动功率、行驶速度、工作负载、剩余电量、地图参量中的至少一个。示例性的,当前工作任务的执行进度可以通过自主工作装置对工作区域的覆盖率表示,也可以通过规划的工作路径的行驶进程表示。示例性的,地图参量可以用来判断地图数量增减,例如可以是地图数量、地图接收进度、地图下载进度等。
在本实施例的一些实施方式中,自主工作装置在进场位置等待用户施加的操作可以包括更换电池包、打开座位板进行乘坐、确认行驶环境后按键确认返回、手动驾驶机器返回等。基于上述操作有利于及时补电,保障工作任务的顺利进行,也能为自主工作装置在返回运输车时提供相对安全的行驶环境和/或行驶状态,进而保证自主工作装置的行驶安全性,保障行人安全。
在另一实施例中,自主工作装置包括机身、分别与机身连接的工作组件、驱动组件、传感器组件,以及与工作组件、驱动组件、传感器组件耦合的控制电路。其中,驱动组件、工作组件、传感器组件中的部件设置以及与机身的连接关系可参考自主工作装置100,此处不再赘述。
在本实施例中,控制电路可以被配置为执行一个控制程序,实现该控制程序时,自主工作装置实现以下步骤:
S100”、获取多个预设位置的位置数据;其中,在预设位置处自主工作装置等待被施加用户操作;
S200”、获取自主工作装置执行当前工作任务时的至少一个工作参数;
S300”、根据至少一个工作参数判断自主工作装置是否需要被施加用户操作,若判断结果为是,则控制自主工作装置行驶至多个预设位置中的一个预设位置以等待被施加用户操作。
通过上述方式,可以预先选定多个预设位置作为自主工作装置被施加用户操作的位置。如此,自主工作装置需要被用户操作时,可以在多个预设位置中选择一个位置前往,即可以不用每次都返回一个固定的位置,从而有利于避免草坪磨损。同时,用户接收到操作提示后,也会前往选择的预设位置,从而有利于缩短交互实现的时间,提升工作效率。
首先,自主工作装置进入工作区域开始工作。以图9所示为例,工作区域AR1的地图中预先设置有多个预设位置C1、C2、C3、C4,其中,多个预设位置C1、C2、C3、C4可在建立工作区域AR1的地图时一同被建立。
当自主工作装置完成当前工作任务后,将会行驶到其中一个预设位置。以图10所示为例,自主工作装置200在完成当前工作任务后需要用户进行返回确认/再工作确认操作,此时刚好位于预设位置C4附近,便可停留在预设位置C4等待用户过来。
当用户确认无需再工作,则可自动/基于用户操控地返回预设停靠位。以图11所示为例,自主工作装置200在接收到确认返回/确认无需再工作的指令后,可自动/基于用户操控地返回预设停靠位M1。
另外,以图12所示为例,在整个工作过程中,可以检测自主工作装置的剩余电量,当发现剩余电量过低,自主工作装置200可以选择前往其中一个预设位置(如距离最近的预设位置C3)等待用户过来补充电量,补电完毕后,自主工作装置200便可驶离预设位置C3回到暂停工作的位置继续工作,直至完成当前工作任务。
在本实施例的一些实施方式中,步骤控制自主工作装置行驶至多个预设位置中的一个预设位置以等待被施加用户操作,包括:响应于用户终端发送的位置选择指令获取用户选择的预设位置的位置数据,并控制自主工作装置行驶至用户选择的预设位置以等待被施加用户操作。也就是说,当自主工作装置需要被施加用户操作时,可以由用户选择返回哪个预设位置,自主工作装置再向用户选择的预设位置行驶。
在本实施例的一些实施方式中,步骤控制自主工作装置行驶至多个预设位置中的一个预设位置以等待被施加用户操作,也可以包括:获取多个预设位置中的默认预设位置的位置数据,并控制自主工作装置行驶至默认预设位置以等待被施加用户操作。可选的,默认预设位置可以是用户提前选定的,也可以是根据用户前一次选择的预设位置而确定的。
在本实施例的一些实施方式中,获取的至少一个工作参数包括当前工作任务的执行进度、驱动功率、行驶速度、工作负载、剩余电量、地图参量中的至少一个。示例性的,当前工作任务的执行进度可以通过自主工作装置对工作区域的覆盖率表示,也可以通过规划的工作路径的行驶进程表示。示例性的,地图参量可以用来判断地图数量增减,例如可以是地图数量、地图接收进度、地图下载进度等。
在本实施例的一些实施方式中,自主工作装置在进场位置等待用户施加的操作可以包括更换电池包、打开座位板进行乘坐、确认行驶环境后按键确认返回、手动驾驶机器返回等。基于上述操作有利于及时补电,保障工作任务的顺利进行,也能为自主工作装置在返回运输车时提供相对安全的行驶环境和/或行驶状态,进而保证自主工作装置的行驶安全性,保障行人安全。
在本申请实施例中,还提供了一种自主工作系统。自主工作系统可以包括如前文任一实施例所述的自主工作装置,以及终端和服务器。
上述终端,与自主工作装置通信连接。其中,终端也可以称为用户设备(user equipment,UE)、接入终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备等。
上述服务器,与自主工作装置和终端通信连接。并且可以被配置为存储有不同工作区域的地图数据,以向自主工作装置和/或终端发送待执行工作任务的工作区域的地图数据。在一些实现方式中,上述服务器可以是云端服务器。在一些实现方式中,上述服务器还可以是本地服务器。
在本申请实施例中,还提供了一种计算机可读存储介质,存储介质上存储有计算机程序,当计算机程序被执行时实现如前文各实施例所述的方法步骤。
应理解,在本公开实施例中,控制器可以包括处理器,处理器可以采用通用的中央处理器(central processing unit,CPU),其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中的存储装置(又称存储器)可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
在实现过程中,上述各步骤可以通过控制器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本公开实施例所公开的用于请求上行传输资源的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,控制器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,在本公开实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本公开的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种自主工作装置的控制方法,所述自主工作装置适于在工作区域执行至少一种工作任务,其特征在于,所述方法包括:
    获取所述自主工作装置执行当前工作任务时的至少一个工作参数;
    根据所述至少一个工作参数判断所述自主工作装置是否需要返回位于所述工作区域外部的预设停靠位,若判断结果为是,则控制所述自主工作装置行驶至一预设位置以等待被施加用户操作;其中,所述预设停靠位与所述预设位置不同;
    基于施加的用户操作使所述自主工作装置返回所述预设停靠位,并切换为等待执行下一工作任务的状态或关机。
  2. 根据权利要求1所述的方法,其特征在于,所述预设位置的位置数据包括所述自主工作装置进入所述工作区域时的进场位置的位置数据。
  3. 根据权利要求2所述的方法,其特征在于,所述进场位置的位置数据包括所述自主工作装置进入工作区域后完成航向校准的位置的位置数据。
  4. 根据权利要求1所述的方法,其特征在于,在所述自主工作装置执行工作任务之前,还包括:
    获取所述工作区域的地图数据;其中,所述地图数据包括所述预设位置的位置数据。
  5. 根据权利要求4所述的方法,其特征在于,所述获取所述工作区域的地图数据包括:
    采集所述工作区域的边界的位置数据以及所述至少一个预设位置的位置数据;
    根据采集的位置数据生成所述地图数据。
  6. 根据权利要求4所述的方法,其特征在于,所述获取所述工作区域的地图数据包括:
    采集所述工作区域的边界的位置数据,以及用于引导所述自主工作装置由所述工作区域的外部行驶进入所述工作区域的引导线或引导区域的位置数据;其中,所述引导线或引导区域的位置数据包括所述至少一个预设位置的位置数据;
    根据采集的位置数据生成所述地图数据。
  7. 根据权利要求1所述的方法,其特征在于,所述至少一个预设位置位于所述工作区域的内部和/或边界。
  8. 根据权利要求1所述的方法,其特征在于,所述停靠位置位于所述工作区域附近的移动工具上,所述移动工具被配置为运输所述自主工作装置至不同的工作区域执行工作任务。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述至少一个工作参数包括所述当前工作任务的执行进度。
  10. 根据权利要求9所述的方法,其特征在于,所述基于施加的用户操作使所述自主工作装置行驶至所述预设停靠位,包括:
    接收用户输入的确认返回所述预设的停靠位置的指令;
    基于所述指令控制所述自主工作装置返回所述预设停靠位。
  11. 根据权利要求9所述的方法,其特征在于,所述基于施加的用户操作使所述自主工作装置行驶至所述预设停靠位,包括:
    接收用户输入的确认切换为手动模式的指令;
    基于所述指令控制所述自主工作装置切换为所述手动模式,在所述手动模式下,所述自主工作装置基于用户的操控返回所述预设停靠位。
  12. 根据权利要求9所述的方法,其特征在于,所述至少一个工作参数还包括所述自主工作装置的剩余电量,所述方法还包括:
    根据所述自主工作装置的剩余电量判断所述自主工作装置是否要补充电量,若判断结果为是,则控制所述自主工作装置行驶至所述至少一个预设位置等待用户补充电量。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收用户输入的确认结束补充电量的指令;
    基于所述指令控制所述自主工作装置驶离所述至少一个预设位置并继续执行当前工作任务。
  14. 一种自主工作装置的控制方法,所述自主工作装置适于在工作区域执行至少一种工作任务,其特征在于,所述方法包括:
    获取所述自主工作装置进入所述工作区域时的进场位置的位置数据;
    获取所述自主工作装置执行当前工作任务时的至少一个工作参数;
    根据所述至少一个工作参数判断所述自主工作装置是否需要被施加用户操作,若判断结果为是,则控制所述自主工作装置行驶至所述进场位置以等待被施加用户操作。
  15. 一种自主工作装置的控制方法,所述自主工作装置适于在工作区域执行至少一种工作任务,其特征在于,所述方法包括:
    获取多个预设位置的位置数据;其中,在所述预设位置处所述自主工作装置等待被施加用户操作;
    获取所述自主工作装置执行当前工作任务时的至少一个工作参数;
    根据所述至少一个工作参数判断所述自主工作装置是否需要被施加用户操作,若判断结果为是,则控制所述自主工作装置行驶至所述多个预设位置中的一个预设位置以等待被施加用户操作。
  16. 根据权利要求15所述的方法,其特征在于,所述控制所述自主工作装置行驶至所述多个预设位置中的一个预设位置以等待被施加用户操作,包括:
    响应于用户终端发送的位置选择指令获取用户从多个预设位置中选择的预设位置的位置数据,并控制所述自主工作装置行驶至所述用户选择的预设位置以等待被施加用户操作。
  17. 根据权利要求15所述的方法,其特征在于,所述控制所述自主工作装置行驶至所述多个预设位置中的一个预设位置以等待被施加用户操作,包括:
    获取所述多个预设位置中的默认预设位置的位置数据,并控制所述自主工作装置行驶至所述默认预设位置以等待被施加用户操作。
  18. 一种自主工作装置,所述自主工作装置适于在工作区域执行至少一种工作任务,包括:机身;分别与所述机身连接的工作组件、驱动组件、传感器组件,所述传感器组件至少被配置为获取所述自主工作装置的定位数据;
    其特征在于,
    所述自主工作装置还包括控制电路,所述控制电路与所述工作组件、所述驱动组件、所述传感器组件耦合,被配置为执行一个控制过程,所述控制过程包括:
    获取所述自主工作装置执行当前工作任务时的至少一个工作参数;
    根据所述至少一个工作参数判断所述自主工作装置是否需要返回位于所述工作区域外部的预设停靠位,若判断结果为是,则控制所述自主工作装置行驶至一预设位置以等待被施加用户操作;其中,所述预设停靠位与所述预设位置不同;
    基于施加的用户操作使所述自主工作装置返回所述预设停靠位,并切换为等待执行下一工作任务的状态或关机。
  19. 一种自主工作系统,其特征在于,包括:
    如权利要求18所述的自主工作装置;
    终端,与所述自主工作装置通信连接;以及,
    服务器,与所述自主工作装置和所述终端通信连接,被配置为存储有不同工作区域的地图数据,以向所述自主工作装置和/或终端发送待执行工作任务的工作区域的地图数据。
  20. 一种计算机可读存储介质,其特征在于,所述存储介质上存储有计算机程序,当所述计算机程序被执行时实现如权利要求1-17中任一项所述的方法的步骤。
PCT/CN2023/108919 2022-07-22 2023-07-24 自主工作装置、系统及控制方法 WO2024017390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210870782.9 2022-07-22
CN202210870782 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024017390A1 true WO2024017390A1 (zh) 2024-01-25

Family

ID=89546941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108919 WO2024017390A1 (zh) 2022-07-22 2023-07-24 自主工作装置、系统及控制方法

Country Status (2)

Country Link
CN (1) CN117429460A (zh)
WO (1) WO2024017390A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929846A (zh) * 2016-06-08 2016-09-07 深圳高科新农技术有限公司 基于无人机的喷药方法及装置
WO2017119803A1 (ko) * 2016-01-09 2017-07-13 김성호 무인항공기의 배터리 자동교환시스템
CN107885225A (zh) * 2014-07-16 2018-04-06 深圳市大疆创新科技有限公司 电动无人机及其智能电量保护方法
CN108073186A (zh) * 2017-12-18 2018-05-25 北京富地勘察测绘有限公司 一种旋翼机的断点续航控制方法及系统
US20190248509A1 (en) * 2014-05-10 2019-08-15 Wing Aviation Llc Home Station for Unmanned Aerial Vehicle
CN110725594A (zh) * 2019-09-29 2020-01-24 沈阳航空航天大学 一种基于自动更换电池装置的智能无人机机库
CN112971628A (zh) * 2021-04-25 2021-06-18 珠海格力电器股份有限公司 扫地机器人清扫控制方法、装置、计算机设备和介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190248509A1 (en) * 2014-05-10 2019-08-15 Wing Aviation Llc Home Station for Unmanned Aerial Vehicle
CN107885225A (zh) * 2014-07-16 2018-04-06 深圳市大疆创新科技有限公司 电动无人机及其智能电量保护方法
WO2017119803A1 (ko) * 2016-01-09 2017-07-13 김성호 무인항공기의 배터리 자동교환시스템
CN105929846A (zh) * 2016-06-08 2016-09-07 深圳高科新农技术有限公司 基于无人机的喷药方法及装置
CN108073186A (zh) * 2017-12-18 2018-05-25 北京富地勘察测绘有限公司 一种旋翼机的断点续航控制方法及系统
CN110725594A (zh) * 2019-09-29 2020-01-24 沈阳航空航天大学 一种基于自动更换电池装置的智能无人机机库
CN112971628A (zh) * 2021-04-25 2021-06-18 珠海格力电器股份有限公司 扫地机器人清扫控制方法、装置、计算机设备和介质

Also Published As

Publication number Publication date
CN117429460A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
EP3833177B1 (en) Handle and method for training an autonomous vehicle, and methods of storing same
US20190291779A1 (en) Electric outdoor ride-on power equipment
EP2296071A1 (en) Modular and scalable positioning and navigation system
JP5944473B2 (ja) 移動型作業車およびその制御装置
AU2021203303A1 (en) Mower fleet management device, method, and system
JP6877330B2 (ja) 自律走行型作業機のための作業領域決定システム、自律走行型作業機、および、作業領域決定プログラム
CN112492956A (zh) 一种割草机及其自动驾驶方法
WO2024017390A1 (zh) 自主工作装置、系统及控制方法
CN114353801B (zh) 自移动设备及其导航方法
CN109669447B (zh) 自动行走设备及其控制方法
WO2023125650A1 (zh) 机器人工具的控制方法及机器人工具
US20230263093A1 (en) Autonomous mower system
CN109960253B (zh) 自动工作系统
WO2021139685A1 (zh) 一种自动工作系统
WO2020156519A1 (zh) 自移动设备的工作方法及装置、自移动设备
CN114937258A (zh) 割草机器人的控制方法、割草机器人以及计算机存储介质
CN111601497B (zh) 自动工作系统、自移动设备及其控制方法
EP4332711A1 (en) Creation of a virtual boundary for a robotic garden tool
CN117433502A (zh) 自主工作装置及控制方法、自主工作系统
CN114679951B (zh) 自驱动设备系统
JP7351566B2 (ja) 自走式作業機及び自走式作業機の制御システム及び制御方法
CN220446474U (zh) 温室生产巡检机器人
US20230397525A1 (en) Display for controlling and monitoring a robotic garden tool
CN112445213B (zh) 自动工作系统、自动行走设备及其控制方法及计算机设备和计算机可读存储介质
CN112486157B (zh) 自动工作系统及其转向方法、自移动设备