WO2024017118A1 - 细胞球体制备装置及制备方法 - Google Patents

细胞球体制备装置及制备方法 Download PDF

Info

Publication number
WO2024017118A1
WO2024017118A1 PCT/CN2023/106991 CN2023106991W WO2024017118A1 WO 2024017118 A1 WO2024017118 A1 WO 2024017118A1 CN 2023106991 W CN2023106991 W CN 2023106991W WO 2024017118 A1 WO2024017118 A1 WO 2024017118A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
pump
cell
oil phase
cell suspension
Prior art date
Application number
PCT/CN2023/106991
Other languages
English (en)
French (fr)
Inventor
马少华
杨浩威
Original Assignee
清华大学深圳国际研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳国际研究生院 filed Critical 清华大学深圳国际研究生院
Publication of WO2024017118A1 publication Critical patent/WO2024017118A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/01Drops
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/20Heat exchange systems, e.g. heat jackets or outer envelopes the heat transfer medium being a gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements

Definitions

  • the present invention relates to the technical field of organoid preparation, and in particular to a cell spheroids preparation device and a preparation method.
  • Organoid spheroids can be grown from cell spheroids. Simply put, the cell suspension can be prepared first, and then the cell suspension and the oil phase material are mixed in a T-shaped channel. The cell suspension is sheared by the oil phase material to form droplets. After the droplets solidify, they form cell spheroids. The spheroids can then be cultured to form organoid spheroids.
  • the preparation efficiency of cell spheroids is low, and due to the low accuracy of controlling the amount of cell suspension, the quality and quality stability of the cell spheroids are poor.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a device for preparing cell spheroids, which has a high efficiency in preparing cell spheroids, and the quality and quality stability of the prepared cell spheroids are high.
  • the invention also proposes a method for preparing cell spheroids.
  • the cell spheroids preparation device includes: a rack, and a feeding module, a microfluidic chip and a curing module installed on the rack;
  • the feeding module includes a host computer, a switch valve, and a water phase liquid reservoir, an oil phase liquid reservoir, a first pump, a second pump and a liquid storage pipe connected to the switching valve, wherein the water phase liquid reservoir is used to store cell suspension, so The oil phase liquid reservoir is used to store oil phase materials.
  • the first pump, the second pump and the switching valve are all communicatively connected with the host computer so that the host computer can drive the first pump.
  • the microfluidic chip has a three-way flow channel, the three-way flow channel has a first inlet, a second inlet and an outlet, and the outlet is connected to the solidification
  • the module is connected, the outlet allows the droplets of the cell suspension to flow out, and the oil phase liquid reservoir is connected to the second inlet, so that the oil phase material in the oil phase liquid reservoir can flow to The second inlet;
  • the solidification module is used to solidify the droplets of the cell suspension;
  • the switching valve has a sampling state and a preparation state; when the switching valve is in the sampling state: the water phase storage
  • the liquid storage tube and the first pump are connected in sequence, and the first pump can suck the cell suspension in the aqueous phase liquid reservoir, so that the inside of the liquid storage tube has the Cell suspension; when the switching valve is in the preparation state: the second pump, the liquid storage tube and the first inlet are connected in sequence, and the second pump can move the cells in the liquid storage tube
  • the suspension is delivered to
  • the cell spheroid preparation device has at least the following beneficial effects: the preparation device of the present invention drives the first pump, the second pump and the switching valve through the host computer to realize automatic sampling of cell suspension and oil phase materials; The sampling process does not require the user to manually drive the pump or adjust the status of the valve, which is beneficial to improving the sampling efficiency and thereby improving the efficiency of cell spheroids preparation.
  • the amount of liquid in the cell suspension in the storage tube can be accurately controlled, thereby controlling the amount of liquid entering the microfluidic chip in the preparation state.
  • the liquid volume of the cell suspension can be ensured to ensure the accuracy of the cell suspension volume of the microfluidic chip, improve the quality of the cell spheroids and improve the quality stability of the cell spheroids.
  • the switching valve has a first interface, a second interface, a third interface, a fourth interface, a fifth interface and a sixth interface; the water phase liquid reservoir and the first interface connection, the first pump is connected to the second interface, both ends of the liquid storage tube are connected to the third interface and the sixth interface respectively, the second pump is connected to the fourth interface , the first inlet of the microfluidic chip is connected to the fifth interface; when the switching valve is in the sampling state: the first interface is connected to the sixth interface, and the second interface is connected to the The third interface is connected, the fourth interface is connected with the fifth interface; when the switching valve is in the preparation state: the first interface is connected with the second interface, the third interface is connected with the fourth interface The interfaces are connected, and the fifth interface and the sixth interface are connected.
  • the second pump is connected to the oil phase liquid reservoir; when the switching valve is in a preparation state, the second pump can switch the oil phase liquid in the oil phase liquid reservoir to The oil phase material is injected into the liquid storage tube, so that the oil phase material pushes the cell suspension in the liquid storage tube to the first inlet.
  • a printing module is also included.
  • the printing module includes: a print head, connected to the curing module, for ejecting the cell spheroids; and a multi-axis displacement mechanism installed on the frame.
  • the print head On the top of the printer, the print head is installed on the multi-axis displacement mechanism, and the multi-axis displacement mechanism can drive the print head to move.
  • the rack includes a preparation chamber and a curing chamber spaced apart from each other, the feeding module and the microfluidic chip are both disposed in the preparation chamber, and the curing module is disposed in in the curing chamber.
  • a temperature adjustment module is further included.
  • the temperature adjustment module is installed inside the frame, and the temperature adjustment module is used to adjust the temperature of the preparation chamber.
  • the method for preparing cell spheroids according to the second embodiment of the present invention includes: connecting an aqueous phase liquid reservoir, a liquid storage tube and a first pump in sequence, and the first pump sucks all the liquid in the aqueous phase liquid reservoir.
  • the cell suspension so that the inside of the liquid storage tube has the cell suspension; the second pump, the liquid storage tube and the first inlet of the microfluidic chip are connected in sequence, and the second pump
  • the cell suspension inside the liquid storage tube is transported to the first inlet; the oil phase material in the oil phase liquid reservoir is made to flow to the second inlet of the microfluidic chip, so that the oil phase material is in the
  • the cell suspension is cut in the microfluidic chip and droplets of the cell suspension are formed; the droplets are solidified to form cell spheroids.
  • the cell spheroids preparation method according to the embodiment of the present invention has at least the following beneficial effects: it can improve the microfluidic chip
  • the injection efficiency improves the preparation efficiency of cell spheroids; moreover, this method can accurately control the amount of cell suspension injected into the microfluidic chip, ensuring the quality of the cell spheroids and improving the quality stability of the cell spheroids.
  • a cell sample is obtained through puncture sampling, and the cell sample is used to prepare the cell suspension.
  • the method for preparing cell spheroids according to embodiments of the present invention has at least the following beneficial effects: sampling is convenient and the demand for sample volume is small, which is beneficial to reducing the material cost of cell microspheres or organoid spheroids.
  • Figure 1 is a schematic structural diagram of a cell spheroids preparation device according to an embodiment of the present invention
  • Figure 2 is a system schematic diagram of a cell spheroids preparation device according to an embodiment of the present invention
  • Figure 3 is a schematic diagram of the flow channel of the microfluidic chip of the cell spheroids preparation device of the present invention
  • Figure 4 is a schematic diagram of the switching valve of the cell spheroid preparation device of the present invention when it is in the sampling state;
  • Figure 5 is a schematic diagram of the switching valve of the cell spheroids preparation device of the present invention when it is in the preparation state;
  • Figure 6 is a schematic diagram of a method for preparing cell spheroids according to an embodiment of the present invention.
  • orientation descriptions such as up, down, front, back, left, right, etc., are based on the orientation or position relationships shown in the drawings and are only In order to facilitate the description of the present invention and simplify the description, it is not intended to indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore should not be construed as a limitation of the present invention.
  • the present invention provides a cell spheroid preparation device (hereinafter referred to as the device, corresponding to the reference sign "100").
  • the preparation device 100 can use oil phase materials to shear cell suspensions (cell suspensions are equivalent to water phase materials). Force, prepare droplets of cell suspension, and then solidify the droplets to form cell spheroids.
  • the type of cells contained in the cell suspension depends on the type of organoids to be prepared. Specifically, the cells can be muscle cells, liver cells, etc. After the user obtains the cell sample, he or she can add the cells to solutions such as Matrigel or hydrogel to obtain a cell suspension.
  • the oil phase material may be fluorine oil.
  • the preparation device 100 includes a rack 101, a feeding module 201, a microfluidic chip 208 and a curing module 209, where the feeding module 201, the microfluidic chip 208 and the curing module 209 are all installed in the rack 101.
  • the microfluidic chip 208 has a three-way flow channel 300 , and the three-way flow channel 300 has a first inlet 301 , a second inlet 302 and an outlet 303 . If the oil phase material enters the three-way flow channel 300 through the second inlet 302, and the cell suspension enters the three-way flow channel 300 through the first inlet 301, after the cell suspension and the oil phase material merge at the three-way passage, the cell suspension will It will be dispersed into uniform tiny droplets that wrap around the cells. The droplets of cell suspension will leave the microfluidic channel through the outlet 303, and the oil phase material will also leave the microfluidic chip 208 through the outlet 303.
  • the outlet 303 of the microfluidic chip 208 is connected to the solidification module 209.
  • the droplets leaving the microfluidic chip 208 will enter the solidification module 209.
  • the solidification module 209 can solidify the droplets and form cell spheroids including cells.
  • Cell spheroids include solidified hydrogel or Matrigel, and cells encapsulated in the hydrogel or Matrigel.
  • the curing module 209 can heat the liquid droplets to solidify the liquid droplets in a certain temperature range; for example, the curing module 209 includes a curing pipeline (not specifically shown), and the liquid droplets leaving the microfluidic chip 208 will enter the curing pipeline.
  • the curing module 209 solidifies the liquid droplets in the pipeline by heating, thereby solidifying the liquid droplets to form cell spheres.
  • the heating method of the curing module 209 for the curing pipeline may be water bath heating.
  • the curing module 209 may also include a water bath container capable of holding water and a heating element (such as an electric heating wire) for heating the water in the water bath container.
  • the pipes can be immersed in water in a water bath container.
  • the curing module 209 includes an electric heating wire, which is directly arranged outside the curing pipe for the liquid droplets to flow, and the electric heating wire directly heats the curing pipe.
  • the feeding module 201 will be introduced below.
  • the feeding module 201 includes a host computer 211, a switching valve 206, and a water phase liquid reservoir 202, an oil phase liquid reservoir 203, a first pump 207, a second pump 205 and a liquid storage tank connected to the switching valve 206. tube204.
  • the water phase reservoir 202 is used to store cell suspension, and the oil phase reservoir 203 is used to store oil phase materials.
  • the upper computer 211 may be a computer capable of issuing control commands.
  • the first pump 207 and the second pump 205 are both communicatively connected to the upper computer 211 .
  • the first pump 207, the second pump 205 and the switching valve 206 can all operate according to the instructions issued by the host computer 211, thereby realizing the injection; the injection in the present invention refers to inputting the cell suspension and oil phase materials into the microfluidic system. Chip 208.
  • the curing module 209 and the printing module 210 can also be communicated with the host computer 211, and the operations of the curing module 209 and the printing module 210 can be controlled by the host computer 211.
  • the switching valve 206 has an injection state and a preparation state.
  • the switching valve 206 when the switching valve 206 is in the sampling state, the water phase liquid reservoir 202, the liquid storage tube 204 and the first pump 207 are connected in sequence, and the first pump 207 draws the cell suspension in the water phase liquid reservoir 202.
  • the cell suspension will enter the interior of the liquid storage tube 204 .
  • the second pump 205, the liquid storage tube 204 and the first inlet 301 are connected in sequence, and the second pump 205 transports the cell suspension in the liquid storage tube 204 to the first inlet 301 .
  • the oil phase reservoir 203 can be connected to the second inlet 302 of the microfluidic chip 208 (can be connected through a pipeline), so that the oil phase material in the oil phase reservoir 203 can flow from the second inlet 302 flows into the microfluidic chip 208. Furthermore, the oil phase material may be caused to flow from the oil phase reservoir 203 to the second inlet 302 when the switching valve 206 is in the preparation state. After the cell suspension entering from the first inlet 301 and the oil phase material entering from the second inlet 302 are combined, the cell suspension is dispersed into droplets.
  • the supply module 201 may further include a third pump (not shown), and the third pump is used to drive the oil phase material in the oil phase reservoir 203 to flow to the second inlet 302 .
  • the third pump is not necessary.
  • the oil phase reservoir 203 can also be set at a higher position, and the gravity of the oil phase material is used to make the oil phase material flow to the second inlet 302; correspondingly Simply install a valve to control the flow of the oil phase material on the pipeline between the oil phase reservoir 203 and the second inlet 302 .
  • the preparation device 100 of the present invention drives the first pump 207, the second pump 205 and the switching valve 206 through the host computer 211 to realize automatic sampling of cell suspension and oil phase materials.
  • the sampling process does not require the user to manually drive the pump or adjust the valve. state, which is conducive to improving the injection efficiency, thereby improving the preparation efficiency of cell spheroids.
  • the state switching time interval of the switching valve 206, the running time of the first pump 207, and the running time of the second pump 205 the cells in the liquid storage tube 204 can be accurately controlled.
  • the liquid amount of the suspension is controlled to control the amount of cell suspension entering the microfluidic chip 208 under the preparation state, thereby ensuring the accuracy of the cell suspension amount entering the microfluidic chip 208, improving the quality of the cell spheroids and improving Mass stability of cell spheroids.
  • the preparation device 100 further includes a printing module 210.
  • the printing module 210 is connected to the curing module 209, and the printing module 210 is used to eject cell spheroids.
  • the printing module 210 includes a print head (the print head is not shown) and a multi-axis displacement mechanism 103. Referring to FIG. 1, the multi-axis displacement mechanism 103 is installed on the top of the frame 101. The multi-axis displacement mechanism 103 is used to drive the print head movement. The inlet end of the print head is connected to the outlet end of the curing module 209.
  • cell spheroids flowing out from the outlet 303 of the curing module 209 will enter the print head, and the print head will eject the cell spheroids through air pressure.
  • cell spheroids ejected from the print head may be ejected into a cell culture plate 102 or a culture dish.
  • the multi-axis displacement mechanism 103 is used to drive the print head to move, thereby spraying multiple cell spheroids into different holes of the cell culture plate 102 . It should be noted that when the print head ejects the cell spheres, the oil phase material will also eject from the print head and evaporate.
  • switching valve 206 is configured as a six-channel switching valve.
  • the switching valve 206 includes a first interface 401 , a second interface 402 , a third interface 403 , a fourth interface 404 , a fifth interface 405 and a sixth interface 406 .
  • the water phase liquid reservoir 202 is connected to the first interface 401
  • the first pump 207 is connected to the second interface 402
  • both ends of the liquid storage pipe 204 are connected to the third interface 403 and the sixth interface 406 respectively
  • the second pump 205 is connected to the third interface 403 and the sixth interface 406.
  • the four interfaces 404 are connected, and the first inlet 301 of the microfluidic chip 208 is connected to the fifth interface 405.
  • the switching valve 206 when the switching valve 206 is in the sampling state, the first interface 401 is connected to the sixth interface 406, the second interface 402 is connected to the third interface 403, and the fourth interface 404 is connected to the fifth interface 405.
  • the first pump 207 is started to operate, and the cell suspension in the aqueous phase reservoir 202 can flow to the first pump 207. During this flow process, the cell suspension will enter the liquid storage tube 204.
  • the switching valve 206 when the switching valve 206 is in the preparation state, the first interface 401 and the second interface 402 are connected, the third interface 403 and the fourth interface 404 are connected, and the fifth interface 405 and The sixth interface 406 is connected.
  • the second pump 205 is started to operate, and the second pump 205 can pump the cell suspension in the liquid storage tube 204 to the first inlet 301.
  • the second pump 205 can It is configured to transport oil phase materials, and use the oil phase materials to push the cell suspension in the liquid storage tube 204 to the first inlet 301 .
  • the second pump 205 is connected to the oil phase reservoir 203.
  • the second pump 205 can inject the oil phase material in the oil phase reservoir 203.
  • the oil phase material that later enters the liquid storage tube 204 pushes the cell suspension previously existing in the liquid storage tube 204 to the first inlet 301 .
  • the oil phase reservoir 203 may have two mutually separated oil storage chambers, and the oil phase material in one of the oil storage chambers is used to flow to the second inlet. 302, the oil phase material in the other oil storage cavity flows to the liquid storage pipe 204 driven by the second pump 205 (the oil phase material in the two oil storage cavity is the same).
  • the oil phase liquid reservoir 203 may also have only one oil storage cavity, but the oil phase liquid reservoir 203 still needs to have two outlets 303 for the oil phase material to flow out.
  • the oil phase material and the cell suspension do not merge in the flow channel with a tee shape, and the oil phase material does not generate sufficient force on the cell suspension to disperse the cell suspension. Due to the shear force of the droplets, the cell suspension will not be dispersed into droplets in the liquid storage tube 204, and the droplets of the cell suspension are still formed in the three-way flow channel 300 of the microfluidic chip 208. In addition, cell suspension and oil phase materials are incompatible.
  • cell suspension is stored at a suitable temperature and that the cell suspension and oil phase materials are combined at a suitable temperature to ensure the quality of the preparation of cell spheroids.
  • some cell suspensions need to be stored at 4°C.
  • the rack 101 includes a preparation chamber 104 and a solidification chamber, and the preparation chamber 104 and the solidification chamber are spaced apart from each other.
  • the curing chamber is not specifically shown. Under the condition that the preparation chamber 104 and the curing chamber are spaced apart from each other, the position selection of the curing chamber is relatively flexible.
  • the curing module 209 is installed in the curing chamber, and the feeding module 201 and the microfluidic chip 208 are installed in the preparation chamber 104. Since the curing of droplets requires a higher temperature (for example, the droplets need to be cured at 37°C), installing the curing module 209 in another cavity (curing cavity) can reduce the impact of the curing module 209 on the supply module 201 and the micro Effect of temperature at fluidic chip 208.
  • the preparation device 100 further includes a temperature adjustment module.
  • the temperature adjustment module is installed inside the frame 101 (not shown) and is used to adjust the temperature in the preparation chamber 104, thereby adjusting the feeding module 201 and The temperature of the cell suspension in the microfluidic chip 208.
  • the temperature adjustment module may be configured as a vapor compression refrigeration unit, that is, the temperature adjustment module includes a compressor, a condenser, a throttle valve, an evaporator, and a refrigerant circulating through the aforementioned components connected in sequence.
  • the evaporator may be arranged inside the wall of the preparation chamber 104. After the refrigerant evaporates in the evaporator, the refrigerant absorbs the heat of the air and modules in the preparation chamber 104, thereby cooling the preparation chamber 104.
  • the temperature adjustment module also includes a fan, which is used to drive the air to flow through the evaporator and the preparation chamber 104 in sequence. After the air flows through the surface of the evaporator, the temperature decreases, and the low-temperature air is blown into the preparation chamber 104, thereby affecting the preparation chamber 104.
  • the modules in the module are cooled down.
  • the temperature adjustment module can also be connected through communication with the host computer 211, and the operation of the temperature adjustment module can also be controlled by the host computer 211.
  • the present invention also provides a method for preparing cell spheroids (hereinafter referred to as the preparation method).
  • the preparation method includes the following steps:
  • the sampling efficiency of the microfluidic chip 208 can be improved, and the preparation efficiency of cell spheroids can be improved; moreover, using this method can accurately control the amount of cell suspension injected into the microfluidic chip 208, ensuring the quality of the cell spheroids and Improve the quality stability of cell spheroids.
  • the cell spheroids can be cultured and organoid spheroids can be obtained.
  • the preparation method further includes the following step S0: obtaining a cell sample through puncture biopsy sampling, and using the cell sample to prepare a cell suspension.
  • Existing technologies mostly use surgical resection samples for organoid modeling, which is inconvenient and requires a large sample size.
  • the present invention can use puncture biopsy samples to prepare cell spheroids and model organoids, which is convenient for sampling and requires a small amount of sample, which is beneficial to reducing the material cost of cell microspheres or organoid spheroids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种细胞球体制备装置及制备方法。细胞球体制备方法包括:使水相储液器(202)、储液管(204)和第一泵(207)依次连通,第一泵(207)将细胞悬液吸到储液管(204)中;使第二泵(205)、储液管(204)和微流控芯片(208)的第一入口(301)依次连通,第二泵(205)将储液管(204)内部的细胞悬液输送至第一入口(301);使油相材料流向微流控芯片的第二入口(302),使微流控芯片(208)内部形成细胞悬液的液滴;使液滴固化形成细胞球体。所提供的细胞球体制备装置及制备方法,能够提高微流控芯片的进样效率,从而提高细胞球体的制备效率;而且,可以精确控制微流控芯片的细胞悬液进液量,保证细胞球体的质量以及提高细胞球体的质量稳定性。

Description

细胞球体制备装置及制备方法 技术领域
本发明涉及类器官制备技术领域,尤其涉及一种细胞球体制备装置及制备方法。
背景技术
类器官球体可以通过细胞球体培养而成。简单来说,可以先制备细胞悬液,然后将细胞悬液与油相材料在T型通道中混合,细胞悬液被油相材料剪切从而形成液滴,液滴固化后形成细胞球体,细胞球体后续经培养后可以形成类器官球体。
然而,现有技术中,细胞球体的制备效率较低,且由于细胞悬液的进液量的控制精度低,细胞球体的质量和质量稳定性较差。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种细胞球体制备装置,制备细胞球体的效率较高,制备的细胞球体的质量和质量稳定性均较高。
本发明还提出一种细胞球体制备方法。
根据本发明的第一方面实施例的细胞球体制备装置,包括:机架,以及安装于所述机架的供料模块、微流控芯片和固化模块;所述供料模块包括上位机、切换阀,以及连接于所述切换阀的水相储液器、油相储液器、第一泵、第二泵以及储液管,其中,所述水相储液器用于储存细胞悬液,所述油相储液器用于储存油相材料,所述第一泵、所述第二泵和所述切换阀均与所述上位机通讯连接,以使所述上位机能够驱动所述第一泵、所述第二泵和所述切换阀的运行;所述微流控芯片具有三通流道,所述三通流道具有第一入口、第二入口和出口,所述出口与所述固化模块连接,所述出口供所述细胞悬液的液滴流出,所述油相储液器与所述第二入口连接,以使所述油相储液器中的所述油相材料能够流向所述第二入口;所述固化模块用于使所述细胞悬液的液滴固化;所述切换阀具有进样状态和制备状态;当所述切换阀处于进样状态:所述水相储液器、所述储液管和所述第一泵依次连通,所述第一泵能够吸取所述水相储液器中的所述细胞悬液,以使所述储液管内部具有所述细胞悬液;当所述切换阀处于制备状态:所述第二泵、所述储液管和所述第一入口依次连通,所述第二泵能够将所述储液管中的所述细胞悬液输送至所述第一入口。
根据本发明实施例的细胞球体制备装置,至少具有如下有益效果:本发明的制备装置通过上位机驱动第一泵、第二泵和切换阀,实现细胞悬液和油相材料的自动进样,进样过程无需使用者手动驱动泵或调节阀门的状态,这有利于提高进样效率,从而提高细胞球体的制备效率。此外,调整切换阀的状态切换时间间隔、第一泵的运行时间和第二泵的运行时间,可以精确控制储液管中的细胞悬液的液体量,从而控制制备状态下进入微流控芯片的细胞悬液的液体量,从而保证微流控芯片的细胞悬液进液量的精确性,提高细胞球体的质量以及提高细胞球体的质量稳定性。
根据本发明的一些实施例,所述切换阀具有第一接口、第二接口、第三接口、第四接口、第五接口和第六接口;所述水相储液器与所述第一接口连接,所述第一泵与所述第二接口连接,所述储液管的两端分别与所述第三接口和所述第六接口连接,所述第二泵与所述第四接口连接,所述微流控芯片的第一入口与所述第五接口连接;当所述切换阀处于进样状态:所述第一接口和所述第六接口连通,所述第二接口和所述第三接口连通,所述第四接口和所述第五接口连通;当所述切换阀处于制备状态:所述第一接口和所述第二接口连通,所述第三接口和所述第四接口连通,所述第五接口和所述第六接口连通。
根据本发明的一些实施例,所述第二泵与所述油相储液器连接;当所述切换阀处于制备状态,所述第二泵能够将所述油相储液器中的所述油相材料注入所述储液管,以使所述油相材料将所述储液管中的所述细胞悬液推向所述第一入口。
根据本发明的一些实施例,还包括打印模块,所述打印模块包括:打印头,与所述固化模块连接,用于将所述细胞球体喷出;多轴位移机构,安装于所述机架的顶部,所述打印头安装于所述多轴位移机构,所述多轴位移机构能够驱动所述打印头运动。
根据本发明的一些实施例,所述机架包括相互间隔设置的制备腔和固化腔,所述供料模块和所述微流控芯片均设置于所述制备腔中,所述固化模块设置于所述固化腔中。
根据本发明的一些实施例,还包括温度调节模块,温度调节模块安装于所述机架的内部,所述温度调节模块用于调节所述制备腔的温度。
根据本发明的第二方面实施例的细胞球体制备方法,包括:使水相储液器、储液管和第一泵依次连通,所述第一泵吸取所述水相储液器中的所述细胞悬液,以使所述储液管的内部具有所述细胞悬液;使第二泵、所述储液管和微流控芯片的第一入口依次连通,所述第二泵将所述储液管内部的所述细胞悬液输送至所述第一入口;使油相储液器中的油相材料流向所述微流控芯片的第二入口,使所述油相材料在所述微流控芯片中剪切所述细胞悬液,并形成所述细胞悬液的液滴;使所述液滴固化形成细胞球体。
根据本发明实施例的细胞球体制备方法,至少具有如下有益效果:可以提高微流控芯片 的进样效率,提高细胞球体的制备效率;而且,使用该方法可以精确控制微流控芯片的细胞悬液进液量,保证细胞球体的质量以及提高细胞球体的质量稳定性。
根据本发明的一些实施例,通过穿刺取样获得细胞样本,并利用所述细胞样本制备所述细胞悬液。
根据本发明实施例的细胞球体制备方法,至少具有如下有益效果:取样方便,且样本量的需求量较小,这有利于降低细胞微球或类器官球体的材料成本。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本实用新型的实践了解到。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例的细胞球体制备装置的结构示意图;
图2为本发明实施例的细胞球体制备装置的系统示意图;
图3为本发明的细胞球体制备装置的微流控芯片的流道的示意图;
图4为本发明的细胞球体制备装置的切换阀处于进样状态时的示意图;
图5为本发明的细胞球体制备装置的切换阀处于制备状态时的示意图;
图6为本发明实施例的细胞球体制备方法的示意图。
附图标记:100-制备装置,101-机架,102-细胞培养板,103-多轴位移机构,104-制备腔,201-供料模块,202-水相储液器,203-油相储液器,204-储液管,205-第二泵,206-切换阀,207-第一泵,208-微流控芯片,209-固化模块,210-打印模块,211-上位机,300-三通流道,301-第一入口,302-第二入口,303-出口,401-第一接口,402-第二接口,403-第三接口,404-第四接口,405-第五接口,406-第六接口。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
本发明的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
本发明提供了一种细胞球体制备装置(下文简称装置,对应附图标记“100”),该制备装置100可以利用油相材料对细胞悬液(细胞悬液相当于水相材料)的剪切力,制备细胞悬液的液滴,然后使液滴固化形成细胞球体。细胞悬液中含有的细胞种类取决于所需要制备的类器官种类,细胞具体可以是肌肉细胞、肝脏细胞等。使用者获取细胞样本后,可以将细胞加入到基质胶、水凝胶等溶液中而获得细胞悬液。油相材料可以是氟油。
制备装置100包括机架101、供料模块201、微流控芯片208和固化模块209,其中,供料模块201、微流控芯片208和固化模块209均安装在机架101中。
参照图3,微流控芯片208具有三通流道300,三通流道300具有第一入口301、第二入口302和出口303。若油相材料通过第二入口302进入三通流道300,且细胞悬液通过第一入口301进入三通流道300,细胞悬液和油相材料在三通处汇合后,细胞悬液将会被分散为均一的包裹细胞的微小液滴。细胞悬液的液滴会从出口303离开微流控通道,油相材料也会从出口303离开微流控芯片208。
结合图2,微流控芯片208的出口303与固化模块209连接,离开微流控芯片208的液滴会进入固化模块209,固化模块209可以使液滴固化,并形成包括细胞的细胞球体。细胞球体包括凝固的水凝胶或基质胶,以及被包裹在水凝胶或基质胶中的细胞。具体地,固化模块209能够加热液滴,使液滴在某一温度范围下固化;例如,固化模块209包括固化管道(未具体示出),离开微流控芯片208的液滴会进入固化管道中,固化模块209通加热固化管道中的液滴,进而使液滴固化形成细胞球体。
固化模块209对固化管道的加热方式,可以是水浴加热。相应地,固化模块209还可以包括能够容纳水的水浴容器以及用于加热水浴容器中的水的加热件(例如电加热丝),固化 管道可以浸泡在水浴容器中的水里面。又或者,固化模块209包括电加热丝,电加热丝直接在布设在供液滴流动的固化管道的外部,电加热丝直接加热固化管道。固化模块209的具体结构设置方式还有多种,只要能够实现对液滴的加热即可,此处不一一列举。
下面再对供料模块201进行介绍。
参照图2,供料模块201包括上位机211、切换阀206,以及与切换阀206连接的水相储液器202、油相储液器203、第一泵207、第二泵205以及储液管204。水相储液器202用于储存细胞悬液,油相储液器203则用于储存油相材料。上位机211可以是能够发出操控命令的计算机,第一泵207、第二泵205均与上位机211通讯连接。第一泵207、第二泵205和切换阀206均可以根据上位机211发出的指令动作,从而实现进样;本发明中的进样是指指将细胞悬液和油相材料输入微流控芯片208中。
需要说明的是,在一些实施例中,固化模块209、打印模块210也可以与上位机211通讯连接,固化模块209、打印模块210的运行均可以通过上位机211进行控制。
切换阀206具有进样状态和制备状态。参照图4,当切换阀206处于进样状态时,水相储液器202、储液管204和第一泵207依次连通,第一泵207吸取水相储液器202中的细胞悬液,相应地,细胞悬液会进入储液管204的内部。参照图5,当切换阀206处于制备状态时,第二泵205、储液管204和第一入口301依次连通,第二泵205将储液管204中的细胞悬液输送至第一入口301。
结合图2,油相储液器203可以与微流控芯片208的第二入口302连接(可以通过管路连接),从而使油相储液器203中的油相材料可以从第二入口302流入微流控芯片208内部。而且,可以是在切换阀206处于制备状态时,使油相材料从油相储液器203流向第二入口302。从第一入口301进入的细胞悬液和从第二入口302进入的油相材料汇合后,细胞悬液便被分散成液滴。
在一些实施例中,可以是供料模块201还包括第三泵(未示出),第三泵用于驱动油相储液器203中的油相材料流向第二入口302。当然,第三泵并不是必须的,在另一些实施例中,也可以将油相储液器203设置在较高的位置,利用油相材料的重力使油相材料流向第二入口302;相应地,在油相储液器203与第二入口302之间的管路上安装控制油相材料流动的阀门即可。
本发明的制备装置100通过上位机211驱动第一泵207、第二泵205和切换阀206,实现细胞悬液和油相材料的自动进样,进样过程无需使用者手动驱动泵或调节阀门的状态,这有利于提高进样效率,从而提高细胞球体的制备效率。此外,调整切换阀206的状态切换时间间隔、第一泵207的运行时间和第二泵205的运行时间,可以精确控制储液管204中的细胞 悬液的液体量,从而控制制备状态下进入微流控芯片208的细胞悬液的液体量,从而保证微流控芯片208的细胞悬液进液量的精确性,提高细胞球体的质量以及提高细胞球体的质量稳定性。
参照图2,在一些实施例中,制备装置100还包括打印模块210,打印模块210与固化模块209连接,打印模块210用于将细胞球体喷出。打印模块210包括打印头(打印头未示出)和多轴位移机构103,参照图1,多轴位移机构103安装于机架101的顶部,多轴位移机构103用于驱动打印头运动。打印头的入口端与固化模块209的出口端连接,从固化模块209的出口303端流出的细胞球体,会进入打印头,打印头通过气压将细胞球体喷出。参照图1,从打印头喷出的细胞球体可以被喷到细胞培养板102或培养皿中。多轴位移机构103用于驱动打印头运动,从而将多个细胞球体喷到细胞培养板102的不同的孔中。需要说明的是,在打印头将细胞球体喷出时,油相材料也会从打印头中喷出并挥发。
在一些实施例中,切换阀206设置为六通道切换阀。参照图4或图5,具体地,切换阀206包括第一接口401、第二接口402、第三接口403、第四接口404、第五接口405和第六接口406。水相储液器202与第一接口401连接,第一泵207与第二接口402连接,储液管204的两端分别与第三接口403和第六接口406连接,第二泵205与第四接口404连接,微流控芯片208的第一入口301与第五接口405连接。
参照图4,当切换阀206处于进样状态时,第一接口401和第六接口406连通,第二接口402和第三接口403连通,第四接口404和第五接口405连通。此状态下,启动第一泵207运行,水相储液器202中的细胞悬液可以流向第一泵207处,在该流动过程中,细胞悬液会进入储液管204中。
参照图5,当切换阀206处于制备状态时,所述第一接口401和所述第二接口402连通,所述第三接口403和所述第四接口404连通,所述第五接口405和所述第六接口406连通。此状态下,启动第二泵205运行,第二泵205便可以将储液管204中的细胞悬液泵送至第一入口301。
由于气体不易将细胞悬液推动至第一入口301,为了使第二泵205能够将储液管204中的细胞悬液泵送至第一入口301,在一些实施例中,第二泵205可以设置为用于输送油相材料,并利用油相材料将储液管204中的细胞悬液推到第一入口301处。
具体地,结合图2和图5,第二泵205与油相储液器203连接,当切换阀206处于制备状态下,第二泵205能够将油相储液器203中的油相材料注入储液管204,并使后进入储液管204的油相材料将之前存在于储液管204中的细胞悬液推向第一入口301。油相储液器203中可以具有两个相互分隔的储油腔体,其中一个储油腔体中的油相材料用于流向第二入口 302,另一个储油腔体中的油相材料则在第二泵205的驱动下流向储液管204(两个储油腔体中的油相材料相同)。当然,油相储液器203中也可以仅具有一个储油腔体,但油相储液器203仍然需要具有两个供油相材料流出的出口303。
需要说明的是,油相材料进入储液管204后,油相材料和细胞悬液并非在具有三通形状的流道中汇合,油相材料并不会对细胞悬液产生足以使细胞悬液分散成液滴的剪切力,细胞悬液不会在储液管204中被分散成液滴,细胞悬液的液滴还是在微流控芯片208的三通流道300中形成。此外,细胞悬液和油相材料不相溶。
在细胞球体的制备过程中,需要保证细胞悬液在合适的温度下储存,以及保证细胞悬液和油相材料在合适的温度下汇合,从而保证细胞球体的制备质量。例如,某些细胞悬液需要在4℃下储存。
为保持细胞悬液处于合适的温度,机架101包括制备腔104和固化腔,制备腔104和固化腔相互间隔设置。固化腔未具体示出,在保证制备腔104和固化腔相互间隔设置的情况下,固化腔的位置选择较为灵活。
固化模块209安装在固化腔中,供料模块201和微流控芯片208则安装在制备腔104中。由于液滴的固化需要较高的温度(例如,液滴需要在37℃下固化),将固化模块209安装在另外的腔体(固化腔)中可以减少固化模块209对供料模块201和微流控芯片208处的温度的影响。
此外,在一些实施例中,制备装置100还包括温度调节模块,温度调节模块安装于机架101的内部(未示出),并用于调节制备腔104中的温度,从而调节供料模块201和微流控芯片208中的细胞悬液的温度。
温度调节模块可以设置为蒸汽压缩式制冷机组,即,温度调节模块包括依次连接的压缩机、冷凝器、节流阀、蒸发器以及循环流经前述部件的制冷剂。其中,蒸发器可以布置于制备腔104的壁面的内部,制冷剂在蒸发器内蒸发后,制冷剂吸收制备腔104中的空气和模块的热量,从而对制备腔104进行降温。又或者,温度调节模块还包括风机,风机用于驱动空气依次流经蒸发器和制备腔104,空气流经蒸发器的表面后温度降低,低温空气吹入制备腔104中,从而对制备腔104中的模块进行降温。
需要说明的是,温度调节模块也可以与上位机211通讯连接,温度调节模块的运行也可以通过上位机211进行控制。
参照图6,基于上述发明构思,本发明还提供了一种细胞球体制备方法(下文简称制备方法),制备方法包括以下步骤:
S1:使水相储液器202、储液管204和第一泵207依次连通,第一泵207吸取水相储液 器202中的细胞悬液,以使储液管204的内部具有细胞悬液;
S2:使第二泵205、储液管204和微流控芯片208的第一入口301依次连通,第二泵205将储液管204内部的细胞悬液输送至第一入口301;
S3:使油相储液器203中的油相材料流向微流控芯片208的第二入口302,使细胞悬液在微流控芯片208中的三通流道300中形成液滴;
S4:使液滴固化形成细胞球体。
使用该方法,可以提高微流控芯片208的进样效率,提高细胞球体的制备效率;而且,使用该方法可以精确控制微流控芯片208的细胞悬液进液量,保证细胞球体的质量以及提高细胞球体的质量稳定性。在获得细胞球体后,可以对细胞球体进行培养,并获得类器官球体。
此外,参照图6,在一些实施例中,制备方法还包括以下步骤S0:通过穿刺活检取样获得细胞样本,并利用该细胞样本制备细胞悬液。现有技术大多利用手术切除样本进行类器官建模,取样不便,且样本量需要较多。而本发明可以利用穿刺活检的样本进行细胞球体的制备和类器官的建模,取样方便,且样本量的需求量较小,这有利于降低细胞微球或类器官球体的材料成本。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (8)

  1. 细胞球体制备装置,其特征在于,包括机架,以及安装于所述机架的供料模块、微流控芯片和固化模块;
    所述供料模块包括上位机、切换阀,以及连接于所述切换阀的水相储液器、油相储液器、第一泵、第二泵以及储液管,其中,所述水相储液器用于储存细胞悬液,所述油相储液器用于储存油相材料,所述第一泵、所述第二泵和所述切换阀均与所述上位机通讯连接,以使所述上位机能够驱动所述第一泵、所述第二泵和所述切换阀的运行;
    所述微流控芯片具有三通流道,所述三通流道具有第一入口、第二入口和出口,所述出口与所述固化模块连接,所述出口供所述细胞悬液的液滴流出,所述油相储液器与所述第二入口连接,以使所述油相储液器中的所述油相材料能够流向所述第二入口;
    所述固化模块用于使所述细胞悬液的液滴固化;
    所述切换阀具有进样状态和制备状态;
    当所述切换阀处于进样状态:所述水相储液器、所述储液管和所述第一泵依次连通,所述第一泵能够吸取所述水相储液器中的所述细胞悬液,以使所述储液管内部具有所述细胞悬液;
    当所述切换阀处于制备状态:所述第二泵、所述储液管和所述第一入口依次连通,所述第二泵能够将所述储液管中的所述细胞悬液输送至所述第一入口。
  2. 根据权利要求1所述的细胞球体制备装置,其特征在于,所述切换阀具有第一接口、第二接口、第三接口、第四接口、第五接口和第六接口;
    所述水相储液器与所述第一接口连接,所述第一泵与所述第二接口连接,所述储液管的两端分别与所述第三接口和所述第六接口连接,所述第二泵与所述第四接口连接,所述微流控芯片的第一入口与所述第五接口连接;
    当所述切换阀处于进样状态:所述第一接口和所述第六接口连通,所述第二接口和所述第三接口连通,所述第四接口和所述第五接口连通;
    当所述切换阀处于制备状态:所述第一接口和所述第二接口连通,所述第三接口和所述第四接口连通,所述第五接口和所述第六接口连通。
  3. 根据权利要求1或2所述的细胞球体制备装置,其特征在于,所述第二泵与所述油相储液器连接;
    当所述切换阀处于制备状态,所述第二泵能够将所述油相储液器中的所述油相材料注入 所述储液管,以使所述油相材料将所述储液管中的所述细胞悬液推向所述第一入口。
  4. 根据权利要求1所述的细胞球体制备装置,其特征在于,还包括打印模块,所述打印模块包括:
    打印头,与所述固化模块连接,用于将所述细胞球体喷出;
    多轴位移机构,安装于所述机架的顶部,所述打印头安装于所述多轴位移机构,所述多轴位移机构能够驱动所述打印头运动。
  5. 根据权利要求1所述的细胞球体制备装置,其特征在于,所述机架包括相互间隔设置的制备腔和固化腔,所述供料模块和所述微流控芯片均设置于所述制备腔中,所述固化模块设置于所述固化腔中。
  6. 根据权利要求5所述的细胞球体制备装置,其特征在于,还包括温度调节模块,温度调节模块安装于所述机架的内部,所述温度调节模块用于调节所述制备腔的温度。
  7. 细胞球体制备方法,其特征在于,包括以下步骤:
    使水相储液器、储液管和第一泵依次连通,所述第一泵吸取所述水相储液器中的所述细胞悬液,以使所述储液管的内部具有所述细胞悬液;
    使第二泵、所述储液管和微流控芯片的第一入口依次连通,所述第二泵将所述储液管内部的所述细胞悬液输送至所述第一入口;
    使油相储液器中的油相材料流向所述微流控芯片的第二入口,使所述油相材料在所述微流控芯片中剪切所述细胞悬液,并形成所述细胞悬液的液滴;
    使所述液滴固化形成细胞球体。
  8. 根据权利要求7所述的细胞球体制备方法,其特征在于,还包括以下步骤:
    通过穿刺取样获得细胞样本,并利用所述细胞样本制备所述细胞悬液。
PCT/CN2023/106991 2022-07-21 2023-07-12 细胞球体制备装置及制备方法 WO2024017118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210874295.XA CN115287185A (zh) 2022-07-21 2022-07-21 细胞球体制备装置及制备方法
CN202210874295.X 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024017118A1 true WO2024017118A1 (zh) 2024-01-25

Family

ID=83824946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106991 WO2024017118A1 (zh) 2022-07-21 2023-07-12 细胞球体制备装置及制备方法

Country Status (2)

Country Link
CN (1) CN115287185A (zh)
WO (1) WO2024017118A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540305A (zh) * 2022-01-07 2022-05-27 杭州海兰时生物科技有限责任公司 一种基于微流控技术高通量培养的类器官结构的制备方法
CN115287185A (zh) * 2022-07-21 2022-11-04 清华大学深圳国际研究生院 细胞球体制备装置及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331766A (ja) * 1989-06-29 1991-02-12 Shimadzu Corp 試料導入装置
US6558946B1 (en) * 2000-08-29 2003-05-06 The United States Of America As Represented By The Secretary Of The Army Automated sample processing for identification of microorganisms and proteins
JP3109378U (ja) * 2004-12-14 2005-05-19 出光興産株式会社 高分子物質の分析装置
CN107418872A (zh) * 2016-08-31 2017-12-01 四川蓝光英诺生物科技股份有限公司 制备微球的装置和制备微球的方法
US20190105279A1 (en) * 2017-10-05 2019-04-11 Auburn University Microfluidics device for fabrication of large, uniform, injectable hydrogel microparticles for cell encapsulation
CN110711608A (zh) * 2019-09-23 2020-01-21 中国科学院上海微系统与信息技术研究所 一种用于细胞检测的微流控芯片及其制备方法
JP2021067641A (ja) * 2019-10-17 2021-04-30 株式会社アイスティサイエンス 流路切替バルブを備える液体クロマトグラフ
CN113583960A (zh) * 2021-06-02 2021-11-02 清华大学 一种基于液滴微流控技术的个性化肿瘤类组装体构建方法及装置
CN115287185A (zh) * 2022-07-21 2022-11-04 清华大学深圳国际研究生院 细胞球体制备装置及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331766A (ja) * 1989-06-29 1991-02-12 Shimadzu Corp 試料導入装置
US6558946B1 (en) * 2000-08-29 2003-05-06 The United States Of America As Represented By The Secretary Of The Army Automated sample processing for identification of microorganisms and proteins
JP3109378U (ja) * 2004-12-14 2005-05-19 出光興産株式会社 高分子物質の分析装置
CN107418872A (zh) * 2016-08-31 2017-12-01 四川蓝光英诺生物科技股份有限公司 制备微球的装置和制备微球的方法
US20190105279A1 (en) * 2017-10-05 2019-04-11 Auburn University Microfluidics device for fabrication of large, uniform, injectable hydrogel microparticles for cell encapsulation
CN110711608A (zh) * 2019-09-23 2020-01-21 中国科学院上海微系统与信息技术研究所 一种用于细胞检测的微流控芯片及其制备方法
JP2021067641A (ja) * 2019-10-17 2021-04-30 株式会社アイスティサイエンス 流路切替バルブを備える液体クロマトグラフ
CN113583960A (zh) * 2021-06-02 2021-11-02 清华大学 一种基于液滴微流控技术的个性化肿瘤类组装体构建方法及装置
CN115287185A (zh) * 2022-07-21 2022-11-04 清华大学深圳国际研究生院 细胞球体制备装置及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG,T. ET AL.: "One-Step Generation and Purification of Cell-Encapsulated Hydrogel Microsphere With an Easily Assembled Microfluidic Device.", FRONT. BIOENG. BIOTECHNOL., vol. 9, 28 January 2022 (2022-01-28), XP055930020, DOI: 10.3389/fbioe.2021.816089 *

Also Published As

Publication number Publication date
CN115287185A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024017118A1 (zh) 细胞球体制备装置及制备方法
CN205394950U (zh) 一种环氧树脂浇灌装置
WO2019037778A1 (zh) 一种温度可控的砂型3d打印供液系统
CN101537318B (zh) 一种制备气体水合物的喷射式反应器
CN113280570B (zh) 一种过冷水滴生成装置
CN106246230A (zh) 一种用于等温压缩空气储能的内控温液体活塞装置
CN200951393Y (zh) 一种喷雾强化水合物连续制备装置
CN106322849A (zh) 换热器结构
CN112432391A (zh) 一种低温满液式蒸发器及使用方法
CN210063917U (zh) 一种活性表面剂储存设备
CN106325322A (zh) 一种泵驱两相流体回路用两级控温装置
CN208993018U (zh) 一种注塑模具
CN113246467B (zh) 生物微球打印机
CN108738285A (zh) 一种充电桩冷却装置和充电系统
CN113218447B (zh) 一种针对于油冷电机测试用油位自平衡测试设备
CN110639632B (zh) 一种用于精液检测的恒温水浴装置
CN209060924U (zh) 一种液态金属液滴形成装置
CN212167481U (zh) 实验室供给冷却水装置
CN208285727U (zh) 一种充电桩冷却装置和充电系统
CN115466676B (zh) 用于体外器官微球制备的温控装置
CN204602493U (zh) 独立切换型多细胞/材料组装喷头
CN208998615U (zh) 一种强制循环式贮冷装置
CN209075494U (zh) 一种高效滴丸装置
CN102967093A (zh) 一种二相流储液稳流器
CN112874166B (zh) 一种具有询问型均墨结构的打印机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842183

Country of ref document: EP

Kind code of ref document: A1